1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCall.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGRecordLayout.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/LLVMContext.h" 27 #include "llvm/Target/TargetData.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===--------------------------------------------------------------------===// 32 // Miscellaneous Helper Methods 33 //===--------------------------------------------------------------------===// 34 35 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 36 unsigned addressSpace = 37 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 38 39 llvm::PointerType *destType = Int8PtrTy; 40 if (addressSpace) 41 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 42 43 if (value->getType() == destType) return value; 44 return Builder.CreateBitCast(value, destType); 45 } 46 47 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 48 /// block. 49 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 50 const Twine &Name) { 51 if (!Builder.isNamePreserving()) 52 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 53 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 54 } 55 56 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 57 llvm::Value *Init) { 58 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 59 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 60 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 61 } 62 63 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 64 const Twine &Name) { 65 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 66 // FIXME: Should we prefer the preferred type alignment here? 67 CharUnits Align = getContext().getTypeAlignInChars(Ty); 68 Alloc->setAlignment(Align.getQuantity()); 69 return Alloc; 70 } 71 72 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 73 const Twine &Name) { 74 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 75 // FIXME: Should we prefer the preferred type alignment here? 76 CharUnits Align = getContext().getTypeAlignInChars(Ty); 77 Alloc->setAlignment(Align.getQuantity()); 78 return Alloc; 79 } 80 81 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 82 /// expression and compare the result against zero, returning an Int1Ty value. 83 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 84 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 85 llvm::Value *MemPtr = EmitScalarExpr(E); 86 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 87 } 88 89 QualType BoolTy = getContext().BoolTy; 90 if (!E->getType()->isAnyComplexType()) 91 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 92 93 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 94 } 95 96 /// EmitIgnoredExpr - Emit code to compute the specified expression, 97 /// ignoring the result. 98 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 99 if (E->isRValue()) 100 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 101 102 // Just emit it as an l-value and drop the result. 103 EmitLValue(E); 104 } 105 106 /// EmitAnyExpr - Emit code to compute the specified expression which 107 /// can have any type. The result is returned as an RValue struct. 108 /// If this is an aggregate expression, AggSlot indicates where the 109 /// result should be returned. 110 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, 111 bool IgnoreResult) { 112 if (!hasAggregateLLVMType(E->getType())) 113 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 114 else if (E->getType()->isAnyComplexType()) 115 return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); 116 117 EmitAggExpr(E, AggSlot, IgnoreResult); 118 return AggSlot.asRValue(); 119 } 120 121 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 122 /// always be accessible even if no aggregate location is provided. 123 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 124 AggValueSlot AggSlot = AggValueSlot::ignored(); 125 126 if (hasAggregateLLVMType(E->getType()) && 127 !E->getType()->isAnyComplexType()) 128 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 129 return EmitAnyExpr(E, AggSlot); 130 } 131 132 /// EmitAnyExprToMem - Evaluate an expression into a given memory 133 /// location. 134 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 135 llvm::Value *Location, 136 Qualifiers Quals) { 137 // FIXME: This function should take an LValue as an argument. 138 if (E->getType()->isAnyComplexType()) { 139 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 140 } else if (hasAggregateLLVMType(E->getType())) { 141 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 142 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 143 AggValueSlot::IsDestructed, 144 AggValueSlot::DoesNotNeedGCBarriers, 145 AggValueSlot::IsNotAliased, 146 AggValueSlot::IsCompleteObject)); 147 } else { 148 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 149 LValue LV = MakeAddrLValue(Location, E->getType()); 150 EmitStoreThroughLValue(RV, LV); 151 } 152 } 153 154 namespace { 155 /// \brief An adjustment to be made to the temporary created when emitting a 156 /// reference binding, which accesses a particular subobject of that temporary. 157 struct SubobjectAdjustment { 158 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; 159 160 union { 161 struct { 162 const CastExpr *BasePath; 163 const CXXRecordDecl *DerivedClass; 164 } DerivedToBase; 165 166 FieldDecl *Field; 167 }; 168 169 SubobjectAdjustment(const CastExpr *BasePath, 170 const CXXRecordDecl *DerivedClass) 171 : Kind(DerivedToBaseAdjustment) { 172 DerivedToBase.BasePath = BasePath; 173 DerivedToBase.DerivedClass = DerivedClass; 174 } 175 176 SubobjectAdjustment(FieldDecl *Field) 177 : Kind(FieldAdjustment) { 178 this->Field = Field; 179 } 180 }; 181 } 182 183 static llvm::Value * 184 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 185 const NamedDecl *InitializedDecl) { 186 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 187 if (VD->hasGlobalStorage()) { 188 SmallString<256> Name; 189 llvm::raw_svector_ostream Out(Name); 190 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 191 Out.flush(); 192 193 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 194 195 // Create the reference temporary. 196 llvm::GlobalValue *RefTemp = 197 new llvm::GlobalVariable(CGF.CGM.getModule(), 198 RefTempTy, /*isConstant=*/false, 199 llvm::GlobalValue::InternalLinkage, 200 llvm::Constant::getNullValue(RefTempTy), 201 Name.str()); 202 return RefTemp; 203 } 204 } 205 206 return CGF.CreateMemTemp(Type, "ref.tmp"); 207 } 208 209 static llvm::Value * 210 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 211 llvm::Value *&ReferenceTemporary, 212 const CXXDestructorDecl *&ReferenceTemporaryDtor, 213 QualType &ObjCARCReferenceLifetimeType, 214 const NamedDecl *InitializedDecl) { 215 // Look through single-element init lists that claim to be lvalues. They're 216 // just syntactic wrappers in this case. 217 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) { 218 if (ILE->getNumInits() == 1 && ILE->isGLValue()) 219 E = ILE->getInit(0); 220 } 221 222 // Look through expressions for materialized temporaries (for now). 223 if (const MaterializeTemporaryExpr *M 224 = dyn_cast<MaterializeTemporaryExpr>(E)) { 225 // Objective-C++ ARC: 226 // If we are binding a reference to a temporary that has ownership, we 227 // need to perform retain/release operations on the temporary. 228 if (CGF.getContext().getLangOpts().ObjCAutoRefCount && 229 E->getType()->isObjCLifetimeType() && 230 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 231 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 232 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 233 ObjCARCReferenceLifetimeType = E->getType(); 234 235 E = M->GetTemporaryExpr(); 236 } 237 238 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 239 E = DAE->getExpr(); 240 241 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 242 CGF.enterFullExpression(EWC); 243 CodeGenFunction::RunCleanupsScope Scope(CGF); 244 245 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 246 ReferenceTemporary, 247 ReferenceTemporaryDtor, 248 ObjCARCReferenceLifetimeType, 249 InitializedDecl); 250 } 251 252 RValue RV; 253 if (E->isGLValue()) { 254 // Emit the expression as an lvalue. 255 LValue LV = CGF.EmitLValue(E); 256 257 if (LV.isSimple()) 258 return LV.getAddress(); 259 260 // We have to load the lvalue. 261 RV = CGF.EmitLoadOfLValue(LV); 262 } else { 263 if (!ObjCARCReferenceLifetimeType.isNull()) { 264 ReferenceTemporary = CreateReferenceTemporary(CGF, 265 ObjCARCReferenceLifetimeType, 266 InitializedDecl); 267 268 269 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 270 ObjCARCReferenceLifetimeType); 271 272 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 273 RefTempDst, false); 274 275 bool ExtendsLifeOfTemporary = false; 276 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 277 if (Var->extendsLifetimeOfTemporary()) 278 ExtendsLifeOfTemporary = true; 279 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 280 ExtendsLifeOfTemporary = true; 281 } 282 283 if (!ExtendsLifeOfTemporary) { 284 // Since the lifetime of this temporary isn't going to be extended, 285 // we need to clean it up ourselves at the end of the full expression. 286 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 287 case Qualifiers::OCL_None: 288 case Qualifiers::OCL_ExplicitNone: 289 case Qualifiers::OCL_Autoreleasing: 290 break; 291 292 case Qualifiers::OCL_Strong: { 293 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 294 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 295 CGF.pushDestroy(cleanupKind, 296 ReferenceTemporary, 297 ObjCARCReferenceLifetimeType, 298 CodeGenFunction::destroyARCStrongImprecise, 299 cleanupKind & EHCleanup); 300 break; 301 } 302 303 case Qualifiers::OCL_Weak: 304 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 305 CGF.pushDestroy(NormalAndEHCleanup, 306 ReferenceTemporary, 307 ObjCARCReferenceLifetimeType, 308 CodeGenFunction::destroyARCWeak, 309 /*useEHCleanupForArray*/ true); 310 break; 311 } 312 313 ObjCARCReferenceLifetimeType = QualType(); 314 } 315 316 return ReferenceTemporary; 317 } 318 319 SmallVector<SubobjectAdjustment, 2> Adjustments; 320 while (true) { 321 E = E->IgnoreParens(); 322 323 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 324 if ((CE->getCastKind() == CK_DerivedToBase || 325 CE->getCastKind() == CK_UncheckedDerivedToBase) && 326 E->getType()->isRecordType()) { 327 E = CE->getSubExpr(); 328 CXXRecordDecl *Derived 329 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 330 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 331 continue; 332 } 333 334 if (CE->getCastKind() == CK_NoOp) { 335 E = CE->getSubExpr(); 336 continue; 337 } 338 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 339 if (!ME->isArrow() && ME->getBase()->isRValue()) { 340 assert(ME->getBase()->getType()->isRecordType()); 341 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 342 E = ME->getBase(); 343 Adjustments.push_back(SubobjectAdjustment(Field)); 344 continue; 345 } 346 } 347 } 348 349 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 350 if (opaque->getType()->isRecordType()) 351 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 352 353 // Nothing changed. 354 break; 355 } 356 357 // Create a reference temporary if necessary. 358 AggValueSlot AggSlot = AggValueSlot::ignored(); 359 if (CGF.hasAggregateLLVMType(E->getType()) && 360 !E->getType()->isAnyComplexType()) { 361 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 362 InitializedDecl); 363 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 364 AggValueSlot::IsDestructed_t isDestructed 365 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 366 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 367 Qualifiers(), isDestructed, 368 AggValueSlot::DoesNotNeedGCBarriers, 369 AggValueSlot::IsNotAliased, 370 AggValueSlot::IsCompleteObject); 371 } 372 373 if (InitializedDecl) { 374 // Get the destructor for the reference temporary. 375 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 376 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 377 if (!ClassDecl->hasTrivialDestructor()) 378 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 379 } 380 } 381 382 RV = CGF.EmitAnyExpr(E, AggSlot); 383 384 // Check if need to perform derived-to-base casts and/or field accesses, to 385 // get from the temporary object we created (and, potentially, for which we 386 // extended the lifetime) to the subobject we're binding the reference to. 387 if (!Adjustments.empty()) { 388 llvm::Value *Object = RV.getAggregateAddr(); 389 for (unsigned I = Adjustments.size(); I != 0; --I) { 390 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 391 switch (Adjustment.Kind) { 392 case SubobjectAdjustment::DerivedToBaseAdjustment: 393 Object = 394 CGF.GetAddressOfBaseClass(Object, 395 Adjustment.DerivedToBase.DerivedClass, 396 Adjustment.DerivedToBase.BasePath->path_begin(), 397 Adjustment.DerivedToBase.BasePath->path_end(), 398 /*NullCheckValue=*/false); 399 break; 400 401 case SubobjectAdjustment::FieldAdjustment: { 402 LValue LV = 403 CGF.EmitLValueForField(Object, Adjustment.Field, 0); 404 if (LV.isSimple()) { 405 Object = LV.getAddress(); 406 break; 407 } 408 409 // For non-simple lvalues, we actually have to create a copy of 410 // the object we're binding to. 411 QualType T = Adjustment.Field->getType().getNonReferenceType() 412 .getUnqualifiedType(); 413 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 414 LValue TempLV = CGF.MakeAddrLValue(Object, 415 Adjustment.Field->getType()); 416 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 417 break; 418 } 419 420 } 421 } 422 423 return Object; 424 } 425 } 426 427 if (RV.isAggregate()) 428 return RV.getAggregateAddr(); 429 430 // Create a temporary variable that we can bind the reference to. 431 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 432 InitializedDecl); 433 434 435 unsigned Alignment = 436 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 437 if (RV.isScalar()) 438 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 439 /*Volatile=*/false, Alignment, E->getType()); 440 else 441 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 442 /*Volatile=*/false); 443 return ReferenceTemporary; 444 } 445 446 RValue 447 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 448 const NamedDecl *InitializedDecl) { 449 llvm::Value *ReferenceTemporary = 0; 450 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 451 QualType ObjCARCReferenceLifetimeType; 452 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 453 ReferenceTemporaryDtor, 454 ObjCARCReferenceLifetimeType, 455 InitializedDecl); 456 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 457 return RValue::get(Value); 458 459 // Make sure to call the destructor for the reference temporary. 460 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 461 if (VD && VD->hasGlobalStorage()) { 462 if (ReferenceTemporaryDtor) { 463 llvm::Constant *DtorFn = 464 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 465 EmitCXXGlobalDtorRegistration(DtorFn, 466 cast<llvm::Constant>(ReferenceTemporary)); 467 } else { 468 assert(!ObjCARCReferenceLifetimeType.isNull()); 469 // Note: We intentionally do not register a global "destructor" to 470 // release the object. 471 } 472 473 return RValue::get(Value); 474 } 475 476 if (ReferenceTemporaryDtor) 477 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 478 else { 479 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 480 case Qualifiers::OCL_None: 481 llvm_unreachable( 482 "Not a reference temporary that needs to be deallocated"); 483 case Qualifiers::OCL_ExplicitNone: 484 case Qualifiers::OCL_Autoreleasing: 485 // Nothing to do. 486 break; 487 488 case Qualifiers::OCL_Strong: { 489 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 490 CleanupKind cleanupKind = getARCCleanupKind(); 491 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 492 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, 493 cleanupKind & EHCleanup); 494 break; 495 } 496 497 case Qualifiers::OCL_Weak: { 498 // __weak objects always get EH cleanups; otherwise, exceptions 499 // could cause really nasty crashes instead of mere leaks. 500 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 501 ObjCARCReferenceLifetimeType, destroyARCWeak, true); 502 break; 503 } 504 } 505 } 506 507 return RValue::get(Value); 508 } 509 510 511 /// getAccessedFieldNo - Given an encoded value and a result number, return the 512 /// input field number being accessed. 513 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 514 const llvm::Constant *Elts) { 515 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 516 ->getZExtValue(); 517 } 518 519 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 520 if (!CatchUndefined) 521 return; 522 523 // This needs to be to the standard address space. 524 Address = Builder.CreateBitCast(Address, Int8PtrTy); 525 526 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 527 528 // In time, people may want to control this and use a 1 here. 529 llvm::Value *Arg = Builder.getFalse(); 530 llvm::Value *C = Builder.CreateCall2(F, Address, Arg); 531 llvm::BasicBlock *Cont = createBasicBlock(); 532 llvm::BasicBlock *Check = createBasicBlock(); 533 llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL); 534 Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check); 535 536 EmitBlock(Check); 537 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 538 llvm::ConstantInt::get(IntPtrTy, Size)), 539 Cont, getTrapBB()); 540 EmitBlock(Cont); 541 } 542 543 544 CodeGenFunction::ComplexPairTy CodeGenFunction:: 545 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 546 bool isInc, bool isPre) { 547 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 548 LV.isVolatileQualified()); 549 550 llvm::Value *NextVal; 551 if (isa<llvm::IntegerType>(InVal.first->getType())) { 552 uint64_t AmountVal = isInc ? 1 : -1; 553 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 554 555 // Add the inc/dec to the real part. 556 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 557 } else { 558 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 559 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 560 if (!isInc) 561 FVal.changeSign(); 562 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 563 564 // Add the inc/dec to the real part. 565 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 566 } 567 568 ComplexPairTy IncVal(NextVal, InVal.second); 569 570 // Store the updated result through the lvalue. 571 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 572 573 // If this is a postinc, return the value read from memory, otherwise use the 574 // updated value. 575 return isPre ? IncVal : InVal; 576 } 577 578 579 //===----------------------------------------------------------------------===// 580 // LValue Expression Emission 581 //===----------------------------------------------------------------------===// 582 583 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 584 if (Ty->isVoidType()) 585 return RValue::get(0); 586 587 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 588 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 589 llvm::Value *U = llvm::UndefValue::get(EltTy); 590 return RValue::getComplex(std::make_pair(U, U)); 591 } 592 593 // If this is a use of an undefined aggregate type, the aggregate must have an 594 // identifiable address. Just because the contents of the value are undefined 595 // doesn't mean that the address can't be taken and compared. 596 if (hasAggregateLLVMType(Ty)) { 597 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 598 return RValue::getAggregate(DestPtr); 599 } 600 601 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 602 } 603 604 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 605 const char *Name) { 606 ErrorUnsupported(E, Name); 607 return GetUndefRValue(E->getType()); 608 } 609 610 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 611 const char *Name) { 612 ErrorUnsupported(E, Name); 613 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 614 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 615 } 616 617 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 618 LValue LV = EmitLValue(E); 619 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 620 EmitCheck(LV.getAddress(), 621 getContext().getTypeSizeInChars(E->getType()).getQuantity()); 622 return LV; 623 } 624 625 /// EmitLValue - Emit code to compute a designator that specifies the location 626 /// of the expression. 627 /// 628 /// This can return one of two things: a simple address or a bitfield reference. 629 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 630 /// an LLVM pointer type. 631 /// 632 /// If this returns a bitfield reference, nothing about the pointee type of the 633 /// LLVM value is known: For example, it may not be a pointer to an integer. 634 /// 635 /// If this returns a normal address, and if the lvalue's C type is fixed size, 636 /// this method guarantees that the returned pointer type will point to an LLVM 637 /// type of the same size of the lvalue's type. If the lvalue has a variable 638 /// length type, this is not possible. 639 /// 640 LValue CodeGenFunction::EmitLValue(const Expr *E) { 641 switch (E->getStmtClass()) { 642 default: return EmitUnsupportedLValue(E, "l-value expression"); 643 644 case Expr::ObjCPropertyRefExprClass: 645 llvm_unreachable("cannot emit a property reference directly"); 646 647 case Expr::ObjCSelectorExprClass: 648 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 649 case Expr::ObjCIsaExprClass: 650 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 651 case Expr::BinaryOperatorClass: 652 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 653 case Expr::CompoundAssignOperatorClass: 654 if (!E->getType()->isAnyComplexType()) 655 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 656 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 657 case Expr::CallExprClass: 658 case Expr::CXXMemberCallExprClass: 659 case Expr::CXXOperatorCallExprClass: 660 case Expr::UserDefinedLiteralClass: 661 return EmitCallExprLValue(cast<CallExpr>(E)); 662 case Expr::VAArgExprClass: 663 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 664 case Expr::DeclRefExprClass: 665 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 666 case Expr::ParenExprClass: 667 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 668 case Expr::GenericSelectionExprClass: 669 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 670 case Expr::PredefinedExprClass: 671 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 672 case Expr::StringLiteralClass: 673 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 674 case Expr::ObjCEncodeExprClass: 675 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 676 case Expr::PseudoObjectExprClass: 677 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 678 case Expr::InitListExprClass: 679 assert(cast<InitListExpr>(E)->getNumInits() == 1 && 680 "Only single-element init list can be lvalue."); 681 return EmitLValue(cast<InitListExpr>(E)->getInit(0)); 682 683 case Expr::CXXTemporaryObjectExprClass: 684 case Expr::CXXConstructExprClass: 685 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 686 case Expr::CXXBindTemporaryExprClass: 687 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 688 case Expr::LambdaExprClass: 689 return EmitLambdaLValue(cast<LambdaExpr>(E)); 690 691 case Expr::ExprWithCleanupsClass: { 692 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 693 enterFullExpression(cleanups); 694 RunCleanupsScope Scope(*this); 695 return EmitLValue(cleanups->getSubExpr()); 696 } 697 698 case Expr::CXXScalarValueInitExprClass: 699 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 700 case Expr::CXXDefaultArgExprClass: 701 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 702 case Expr::CXXTypeidExprClass: 703 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 704 705 case Expr::ObjCMessageExprClass: 706 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 707 case Expr::ObjCIvarRefExprClass: 708 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 709 case Expr::StmtExprClass: 710 return EmitStmtExprLValue(cast<StmtExpr>(E)); 711 case Expr::UnaryOperatorClass: 712 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 713 case Expr::ArraySubscriptExprClass: 714 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 715 case Expr::ExtVectorElementExprClass: 716 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 717 case Expr::MemberExprClass: 718 return EmitMemberExpr(cast<MemberExpr>(E)); 719 case Expr::CompoundLiteralExprClass: 720 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 721 case Expr::ConditionalOperatorClass: 722 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 723 case Expr::BinaryConditionalOperatorClass: 724 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 725 case Expr::ChooseExprClass: 726 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 727 case Expr::OpaqueValueExprClass: 728 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 729 case Expr::SubstNonTypeTemplateParmExprClass: 730 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 731 case Expr::ImplicitCastExprClass: 732 case Expr::CStyleCastExprClass: 733 case Expr::CXXFunctionalCastExprClass: 734 case Expr::CXXStaticCastExprClass: 735 case Expr::CXXDynamicCastExprClass: 736 case Expr::CXXReinterpretCastExprClass: 737 case Expr::CXXConstCastExprClass: 738 case Expr::ObjCBridgedCastExprClass: 739 return EmitCastLValue(cast<CastExpr>(E)); 740 741 case Expr::MaterializeTemporaryExprClass: 742 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 743 } 744 } 745 746 /// Given an object of the given canonical type, can we safely copy a 747 /// value out of it based on its initializer? 748 static bool isConstantEmittableObjectType(QualType type) { 749 assert(type.isCanonical()); 750 assert(!type->isReferenceType()); 751 752 // Must be const-qualified but non-volatile. 753 Qualifiers qs = type.getLocalQualifiers(); 754 if (!qs.hasConst() || qs.hasVolatile()) return false; 755 756 // Otherwise, all object types satisfy this except C++ classes with 757 // mutable subobjects or non-trivial copy/destroy behavior. 758 if (const RecordType *RT = dyn_cast<RecordType>(type)) 759 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 760 if (RD->hasMutableFields() || !RD->isTrivial()) 761 return false; 762 763 return true; 764 } 765 766 /// Can we constant-emit a load of a reference to a variable of the 767 /// given type? This is different from predicates like 768 /// Decl::isUsableInConstantExpressions because we do want it to apply 769 /// in situations that don't necessarily satisfy the language's rules 770 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 771 /// to do this with const float variables even if those variables 772 /// aren't marked 'constexpr'. 773 enum ConstantEmissionKind { 774 CEK_None, 775 CEK_AsReferenceOnly, 776 CEK_AsValueOrReference, 777 CEK_AsValueOnly 778 }; 779 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 780 type = type.getCanonicalType(); 781 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 782 if (isConstantEmittableObjectType(ref->getPointeeType())) 783 return CEK_AsValueOrReference; 784 return CEK_AsReferenceOnly; 785 } 786 if (isConstantEmittableObjectType(type)) 787 return CEK_AsValueOnly; 788 return CEK_None; 789 } 790 791 /// Try to emit a reference to the given value without producing it as 792 /// an l-value. This is actually more than an optimization: we can't 793 /// produce an l-value for variables that we never actually captured 794 /// in a block or lambda, which means const int variables or constexpr 795 /// literals or similar. 796 CodeGenFunction::ConstantEmission 797 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 798 ValueDecl *value = refExpr->getDecl(); 799 800 // The value needs to be an enum constant or a constant variable. 801 ConstantEmissionKind CEK; 802 if (isa<ParmVarDecl>(value)) { 803 CEK = CEK_None; 804 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 805 CEK = checkVarTypeForConstantEmission(var->getType()); 806 } else if (isa<EnumConstantDecl>(value)) { 807 CEK = CEK_AsValueOnly; 808 } else { 809 CEK = CEK_None; 810 } 811 if (CEK == CEK_None) return ConstantEmission(); 812 813 Expr::EvalResult result; 814 bool resultIsReference; 815 QualType resultType; 816 817 // It's best to evaluate all the way as an r-value if that's permitted. 818 if (CEK != CEK_AsReferenceOnly && 819 refExpr->EvaluateAsRValue(result, getContext())) { 820 resultIsReference = false; 821 resultType = refExpr->getType(); 822 823 // Otherwise, try to evaluate as an l-value. 824 } else if (CEK != CEK_AsValueOnly && 825 refExpr->EvaluateAsLValue(result, getContext())) { 826 resultIsReference = true; 827 resultType = value->getType(); 828 829 // Failure. 830 } else { 831 return ConstantEmission(); 832 } 833 834 // In any case, if the initializer has side-effects, abandon ship. 835 if (result.HasSideEffects) 836 return ConstantEmission(); 837 838 // Emit as a constant. 839 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 840 841 // Make sure we emit a debug reference to the global variable. 842 // This should probably fire even for 843 if (isa<VarDecl>(value)) { 844 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 845 EmitDeclRefExprDbgValue(refExpr, C); 846 } else { 847 assert(isa<EnumConstantDecl>(value)); 848 EmitDeclRefExprDbgValue(refExpr, C); 849 } 850 851 // If we emitted a reference constant, we need to dereference that. 852 if (resultIsReference) 853 return ConstantEmission::forReference(C); 854 855 return ConstantEmission::forValue(C); 856 } 857 858 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 859 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 860 lvalue.getAlignment().getQuantity(), 861 lvalue.getType(), lvalue.getTBAAInfo()); 862 } 863 864 static bool hasBooleanRepresentation(QualType Ty) { 865 if (Ty->isBooleanType()) 866 return true; 867 868 if (const EnumType *ET = Ty->getAs<EnumType>()) 869 return ET->getDecl()->getIntegerType()->isBooleanType(); 870 871 return false; 872 } 873 874 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 875 const EnumType *ET = Ty->getAs<EnumType>(); 876 bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET && 877 CGM.getCodeGenOpts().StrictEnums && 878 !ET->getDecl()->isFixed()); 879 bool IsBool = hasBooleanRepresentation(Ty); 880 llvm::Type *LTy; 881 if (!IsBool && !IsRegularCPlusPlusEnum) 882 return NULL; 883 884 llvm::APInt Min; 885 llvm::APInt End; 886 if (IsBool) { 887 Min = llvm::APInt(8, 0); 888 End = llvm::APInt(8, 2); 889 LTy = Int8Ty; 890 } else { 891 const EnumDecl *ED = ET->getDecl(); 892 LTy = ConvertTypeForMem(ED->getIntegerType()); 893 unsigned Bitwidth = LTy->getScalarSizeInBits(); 894 unsigned NumNegativeBits = ED->getNumNegativeBits(); 895 unsigned NumPositiveBits = ED->getNumPositiveBits(); 896 897 if (NumNegativeBits) { 898 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 899 assert(NumBits <= Bitwidth); 900 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 901 Min = -End; 902 } else { 903 assert(NumPositiveBits <= Bitwidth); 904 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 905 Min = llvm::APInt(Bitwidth, 0); 906 } 907 } 908 909 if (End == Min) 910 return NULL; 911 912 llvm::Value *LowAndHigh[2]; 913 LowAndHigh[0] = llvm::ConstantInt::get(LTy, Min); 914 LowAndHigh[1] = llvm::ConstantInt::get(LTy, End); 915 916 llvm::LLVMContext &C = getLLVMContext(); 917 llvm::MDNode *Range = llvm::MDNode::get(C, LowAndHigh); 918 return Range; 919 } 920 921 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 922 unsigned Alignment, QualType Ty, 923 llvm::MDNode *TBAAInfo) { 924 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 925 if (Volatile) 926 Load->setVolatile(true); 927 if (Alignment) 928 Load->setAlignment(Alignment); 929 if (TBAAInfo) 930 CGM.DecorateInstruction(Load, TBAAInfo); 931 // If this is an atomic type, all normal reads must be atomic 932 if (Ty->isAtomicType()) 933 Load->setAtomic(llvm::SequentiallyConsistent); 934 935 if (CGM.getCodeGenOpts().OptimizationLevel > 0) 936 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 937 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 938 939 return EmitFromMemory(Load, Ty); 940 } 941 942 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 943 // Bool has a different representation in memory than in registers. 944 if (hasBooleanRepresentation(Ty)) { 945 // This should really always be an i1, but sometimes it's already 946 // an i8, and it's awkward to track those cases down. 947 if (Value->getType()->isIntegerTy(1)) 948 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 949 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 950 } 951 952 return Value; 953 } 954 955 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 956 // Bool has a different representation in memory than in registers. 957 if (hasBooleanRepresentation(Ty)) { 958 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 959 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 960 } 961 962 return Value; 963 } 964 965 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 966 bool Volatile, unsigned Alignment, 967 QualType Ty, 968 llvm::MDNode *TBAAInfo, 969 bool isInit) { 970 Value = EmitToMemory(Value, Ty); 971 972 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 973 if (Alignment) 974 Store->setAlignment(Alignment); 975 if (TBAAInfo) 976 CGM.DecorateInstruction(Store, TBAAInfo); 977 if (!isInit && Ty->isAtomicType()) 978 Store->setAtomic(llvm::SequentiallyConsistent); 979 } 980 981 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 982 bool isInit) { 983 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 984 lvalue.getAlignment().getQuantity(), lvalue.getType(), 985 lvalue.getTBAAInfo(), isInit); 986 } 987 988 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 989 /// method emits the address of the lvalue, then loads the result as an rvalue, 990 /// returning the rvalue. 991 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 992 if (LV.isObjCWeak()) { 993 // load of a __weak object. 994 llvm::Value *AddrWeakObj = LV.getAddress(); 995 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 996 AddrWeakObj)); 997 } 998 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 999 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1000 1001 if (LV.isSimple()) { 1002 assert(!LV.getType()->isFunctionType()); 1003 1004 // Everything needs a load. 1005 return RValue::get(EmitLoadOfScalar(LV)); 1006 } 1007 1008 if (LV.isVectorElt()) { 1009 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1010 LV.isVolatileQualified()); 1011 Load->setAlignment(LV.getAlignment().getQuantity()); 1012 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1013 "vecext")); 1014 } 1015 1016 // If this is a reference to a subset of the elements of a vector, either 1017 // shuffle the input or extract/insert them as appropriate. 1018 if (LV.isExtVectorElt()) 1019 return EmitLoadOfExtVectorElementLValue(LV); 1020 1021 assert(LV.isBitField() && "Unknown LValue type!"); 1022 return EmitLoadOfBitfieldLValue(LV); 1023 } 1024 1025 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1026 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1027 1028 // Get the output type. 1029 llvm::Type *ResLTy = ConvertType(LV.getType()); 1030 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1031 1032 // Compute the result as an OR of all of the individual component accesses. 1033 llvm::Value *Res = 0; 1034 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1035 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1036 1037 // Get the field pointer. 1038 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 1039 1040 // Only offset by the field index if used, so that incoming values are not 1041 // required to be structures. 1042 if (AI.FieldIndex) 1043 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1044 1045 // Offset by the byte offset, if used. 1046 if (!AI.FieldByteOffset.isZero()) { 1047 Ptr = EmitCastToVoidPtr(Ptr); 1048 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1049 "bf.field.offs"); 1050 } 1051 1052 // Cast to the access type. 1053 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth, 1054 CGM.getContext().getTargetAddressSpace(LV.getType())); 1055 Ptr = Builder.CreateBitCast(Ptr, PTy); 1056 1057 // Perform the load. 1058 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 1059 if (!AI.AccessAlignment.isZero()) 1060 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1061 1062 // Shift out unused low bits and mask out unused high bits. 1063 llvm::Value *Val = Load; 1064 if (AI.FieldBitStart) 1065 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 1066 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 1067 AI.TargetBitWidth), 1068 "bf.clear"); 1069 1070 // Extend or truncate to the target size. 1071 if (AI.AccessWidth < ResSizeInBits) 1072 Val = Builder.CreateZExt(Val, ResLTy); 1073 else if (AI.AccessWidth > ResSizeInBits) 1074 Val = Builder.CreateTrunc(Val, ResLTy); 1075 1076 // Shift into place, and OR into the result. 1077 if (AI.TargetBitOffset) 1078 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 1079 Res = Res ? Builder.CreateOr(Res, Val) : Val; 1080 } 1081 1082 // If the bit-field is signed, perform the sign-extension. 1083 // 1084 // FIXME: This can easily be folded into the load of the high bits, which 1085 // could also eliminate the mask of high bits in some situations. 1086 if (Info.isSigned()) { 1087 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1088 if (ExtraBits) 1089 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 1090 ExtraBits, "bf.val.sext"); 1091 } 1092 1093 return RValue::get(Res); 1094 } 1095 1096 // If this is a reference to a subset of the elements of a vector, create an 1097 // appropriate shufflevector. 1098 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1099 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1100 LV.isVolatileQualified()); 1101 Load->setAlignment(LV.getAlignment().getQuantity()); 1102 llvm::Value *Vec = Load; 1103 1104 const llvm::Constant *Elts = LV.getExtVectorElts(); 1105 1106 // If the result of the expression is a non-vector type, we must be extracting 1107 // a single element. Just codegen as an extractelement. 1108 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1109 if (!ExprVT) { 1110 unsigned InIdx = getAccessedFieldNo(0, Elts); 1111 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1112 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1113 } 1114 1115 // Always use shuffle vector to try to retain the original program structure 1116 unsigned NumResultElts = ExprVT->getNumElements(); 1117 1118 SmallVector<llvm::Constant*, 4> Mask; 1119 for (unsigned i = 0; i != NumResultElts; ++i) 1120 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1121 1122 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1123 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1124 MaskV); 1125 return RValue::get(Vec); 1126 } 1127 1128 1129 1130 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1131 /// lvalue, where both are guaranteed to the have the same type, and that type 1132 /// is 'Ty'. 1133 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1134 if (!Dst.isSimple()) { 1135 if (Dst.isVectorElt()) { 1136 // Read/modify/write the vector, inserting the new element. 1137 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1138 Dst.isVolatileQualified()); 1139 Load->setAlignment(Dst.getAlignment().getQuantity()); 1140 llvm::Value *Vec = Load; 1141 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1142 Dst.getVectorIdx(), "vecins"); 1143 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1144 Dst.isVolatileQualified()); 1145 Store->setAlignment(Dst.getAlignment().getQuantity()); 1146 return; 1147 } 1148 1149 // If this is an update of extended vector elements, insert them as 1150 // appropriate. 1151 if (Dst.isExtVectorElt()) 1152 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1153 1154 assert(Dst.isBitField() && "Unknown LValue type"); 1155 return EmitStoreThroughBitfieldLValue(Src, Dst); 1156 } 1157 1158 // There's special magic for assigning into an ARC-qualified l-value. 1159 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1160 switch (Lifetime) { 1161 case Qualifiers::OCL_None: 1162 llvm_unreachable("present but none"); 1163 1164 case Qualifiers::OCL_ExplicitNone: 1165 // nothing special 1166 break; 1167 1168 case Qualifiers::OCL_Strong: 1169 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1170 return; 1171 1172 case Qualifiers::OCL_Weak: 1173 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1174 return; 1175 1176 case Qualifiers::OCL_Autoreleasing: 1177 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1178 Src.getScalarVal())); 1179 // fall into the normal path 1180 break; 1181 } 1182 } 1183 1184 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1185 // load of a __weak object. 1186 llvm::Value *LvalueDst = Dst.getAddress(); 1187 llvm::Value *src = Src.getScalarVal(); 1188 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1189 return; 1190 } 1191 1192 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1193 // load of a __strong object. 1194 llvm::Value *LvalueDst = Dst.getAddress(); 1195 llvm::Value *src = Src.getScalarVal(); 1196 if (Dst.isObjCIvar()) { 1197 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1198 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1199 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1200 llvm::Value *dst = RHS; 1201 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1202 llvm::Value *LHS = 1203 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1204 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1205 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1206 BytesBetween); 1207 } else if (Dst.isGlobalObjCRef()) { 1208 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1209 Dst.isThreadLocalRef()); 1210 } 1211 else 1212 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1213 return; 1214 } 1215 1216 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1217 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1218 } 1219 1220 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1221 llvm::Value **Result) { 1222 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1223 1224 // Get the output type. 1225 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1226 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1227 1228 // Get the source value, truncated to the width of the bit-field. 1229 llvm::Value *SrcVal = Src.getScalarVal(); 1230 1231 if (Dst.getType()->isBooleanType()) 1232 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1233 1234 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1235 Info.getSize()), 1236 "bf.value"); 1237 1238 // Return the new value of the bit-field, if requested. 1239 if (Result) { 1240 // Cast back to the proper type for result. 1241 llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1242 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1243 "bf.reload.val"); 1244 1245 // Sign extend if necessary. 1246 if (Info.isSigned()) { 1247 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1248 if (ExtraBits) 1249 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1250 ExtraBits, "bf.reload.sext"); 1251 } 1252 1253 *Result = ReloadVal; 1254 } 1255 1256 // Iterate over the components, writing each piece to memory. 1257 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1258 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1259 1260 // Get the field pointer. 1261 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1262 unsigned addressSpace = 1263 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1264 1265 // Only offset by the field index if used, so that incoming values are not 1266 // required to be structures. 1267 if (AI.FieldIndex) 1268 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1269 1270 // Offset by the byte offset, if used. 1271 if (!AI.FieldByteOffset.isZero()) { 1272 Ptr = EmitCastToVoidPtr(Ptr); 1273 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1274 "bf.field.offs"); 1275 } 1276 1277 // Cast to the access type. 1278 llvm::Type *AccessLTy = 1279 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1280 1281 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1282 Ptr = Builder.CreateBitCast(Ptr, PTy); 1283 1284 // Extract the piece of the bit-field value to write in this access, limited 1285 // to the values that are part of this access. 1286 llvm::Value *Val = SrcVal; 1287 if (AI.TargetBitOffset) 1288 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1289 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1290 AI.TargetBitWidth)); 1291 1292 // Extend or truncate to the access size. 1293 if (ResSizeInBits < AI.AccessWidth) 1294 Val = Builder.CreateZExt(Val, AccessLTy); 1295 else if (ResSizeInBits > AI.AccessWidth) 1296 Val = Builder.CreateTrunc(Val, AccessLTy); 1297 1298 // Shift into the position in memory. 1299 if (AI.FieldBitStart) 1300 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1301 1302 // If necessary, load and OR in bits that are outside of the bit-field. 1303 if (AI.TargetBitWidth != AI.AccessWidth) { 1304 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1305 if (!AI.AccessAlignment.isZero()) 1306 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1307 1308 // Compute the mask for zeroing the bits that are part of the bit-field. 1309 llvm::APInt InvMask = 1310 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1311 AI.FieldBitStart + AI.TargetBitWidth); 1312 1313 // Apply the mask and OR in to the value to write. 1314 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1315 } 1316 1317 // Write the value. 1318 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1319 Dst.isVolatileQualified()); 1320 if (!AI.AccessAlignment.isZero()) 1321 Store->setAlignment(AI.AccessAlignment.getQuantity()); 1322 } 1323 } 1324 1325 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1326 LValue Dst) { 1327 // This access turns into a read/modify/write of the vector. Load the input 1328 // value now. 1329 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1330 Dst.isVolatileQualified()); 1331 Load->setAlignment(Dst.getAlignment().getQuantity()); 1332 llvm::Value *Vec = Load; 1333 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1334 1335 llvm::Value *SrcVal = Src.getScalarVal(); 1336 1337 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1338 unsigned NumSrcElts = VTy->getNumElements(); 1339 unsigned NumDstElts = 1340 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1341 if (NumDstElts == NumSrcElts) { 1342 // Use shuffle vector is the src and destination are the same number of 1343 // elements and restore the vector mask since it is on the side it will be 1344 // stored. 1345 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1346 for (unsigned i = 0; i != NumSrcElts; ++i) 1347 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1348 1349 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1350 Vec = Builder.CreateShuffleVector(SrcVal, 1351 llvm::UndefValue::get(Vec->getType()), 1352 MaskV); 1353 } else if (NumDstElts > NumSrcElts) { 1354 // Extended the source vector to the same length and then shuffle it 1355 // into the destination. 1356 // FIXME: since we're shuffling with undef, can we just use the indices 1357 // into that? This could be simpler. 1358 SmallVector<llvm::Constant*, 4> ExtMask; 1359 for (unsigned i = 0; i != NumSrcElts; ++i) 1360 ExtMask.push_back(Builder.getInt32(i)); 1361 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1362 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1363 llvm::Value *ExtSrcVal = 1364 Builder.CreateShuffleVector(SrcVal, 1365 llvm::UndefValue::get(SrcVal->getType()), 1366 ExtMaskV); 1367 // build identity 1368 SmallVector<llvm::Constant*, 4> Mask; 1369 for (unsigned i = 0; i != NumDstElts; ++i) 1370 Mask.push_back(Builder.getInt32(i)); 1371 1372 // modify when what gets shuffled in 1373 for (unsigned i = 0; i != NumSrcElts; ++i) 1374 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1375 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1376 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1377 } else { 1378 // We should never shorten the vector 1379 llvm_unreachable("unexpected shorten vector length"); 1380 } 1381 } else { 1382 // If the Src is a scalar (not a vector) it must be updating one element. 1383 unsigned InIdx = getAccessedFieldNo(0, Elts); 1384 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1385 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1386 } 1387 1388 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1389 Dst.isVolatileQualified()); 1390 Store->setAlignment(Dst.getAlignment().getQuantity()); 1391 } 1392 1393 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1394 // generating write-barries API. It is currently a global, ivar, 1395 // or neither. 1396 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1397 LValue &LV, 1398 bool IsMemberAccess=false) { 1399 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1400 return; 1401 1402 if (isa<ObjCIvarRefExpr>(E)) { 1403 QualType ExpTy = E->getType(); 1404 if (IsMemberAccess && ExpTy->isPointerType()) { 1405 // If ivar is a structure pointer, assigning to field of 1406 // this struct follows gcc's behavior and makes it a non-ivar 1407 // writer-barrier conservatively. 1408 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1409 if (ExpTy->isRecordType()) { 1410 LV.setObjCIvar(false); 1411 return; 1412 } 1413 } 1414 LV.setObjCIvar(true); 1415 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1416 LV.setBaseIvarExp(Exp->getBase()); 1417 LV.setObjCArray(E->getType()->isArrayType()); 1418 return; 1419 } 1420 1421 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1422 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1423 if (VD->hasGlobalStorage()) { 1424 LV.setGlobalObjCRef(true); 1425 LV.setThreadLocalRef(VD->isThreadSpecified()); 1426 } 1427 } 1428 LV.setObjCArray(E->getType()->isArrayType()); 1429 return; 1430 } 1431 1432 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1433 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1434 return; 1435 } 1436 1437 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1438 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1439 if (LV.isObjCIvar()) { 1440 // If cast is to a structure pointer, follow gcc's behavior and make it 1441 // a non-ivar write-barrier. 1442 QualType ExpTy = E->getType(); 1443 if (ExpTy->isPointerType()) 1444 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1445 if (ExpTy->isRecordType()) 1446 LV.setObjCIvar(false); 1447 } 1448 return; 1449 } 1450 1451 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1452 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1453 return; 1454 } 1455 1456 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1457 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1458 return; 1459 } 1460 1461 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1462 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1463 return; 1464 } 1465 1466 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1467 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1468 return; 1469 } 1470 1471 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1472 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1473 if (LV.isObjCIvar() && !LV.isObjCArray()) 1474 // Using array syntax to assigning to what an ivar points to is not 1475 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1476 LV.setObjCIvar(false); 1477 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1478 // Using array syntax to assigning to what global points to is not 1479 // same as assigning to the global itself. {id *G;} G[i] = 0; 1480 LV.setGlobalObjCRef(false); 1481 return; 1482 } 1483 1484 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1485 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1486 // We don't know if member is an 'ivar', but this flag is looked at 1487 // only in the context of LV.isObjCIvar(). 1488 LV.setObjCArray(E->getType()->isArrayType()); 1489 return; 1490 } 1491 } 1492 1493 static llvm::Value * 1494 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1495 llvm::Value *V, llvm::Type *IRType, 1496 StringRef Name = StringRef()) { 1497 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1498 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1499 } 1500 1501 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1502 const Expr *E, const VarDecl *VD) { 1503 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1504 "Var decl must have external storage or be a file var decl!"); 1505 1506 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1507 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1508 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1509 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1510 QualType T = E->getType(); 1511 LValue LV; 1512 if (VD->getType()->isReferenceType()) { 1513 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1514 LI->setAlignment(Alignment.getQuantity()); 1515 V = LI; 1516 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1517 } else { 1518 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1519 } 1520 setObjCGCLValueClass(CGF.getContext(), E, LV); 1521 return LV; 1522 } 1523 1524 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1525 const Expr *E, const FunctionDecl *FD) { 1526 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1527 if (!FD->hasPrototype()) { 1528 if (const FunctionProtoType *Proto = 1529 FD->getType()->getAs<FunctionProtoType>()) { 1530 // Ugly case: for a K&R-style definition, the type of the definition 1531 // isn't the same as the type of a use. Correct for this with a 1532 // bitcast. 1533 QualType NoProtoType = 1534 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1535 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1536 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1537 } 1538 } 1539 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1540 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1541 } 1542 1543 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1544 const NamedDecl *ND = E->getDecl(); 1545 CharUnits Alignment = getContext().getDeclAlign(ND); 1546 QualType T = E->getType(); 1547 1548 // FIXME: We should be able to assert this for FunctionDecls as well! 1549 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1550 // those with a valid source location. 1551 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1552 !E->getLocation().isValid()) && 1553 "Should not use decl without marking it used!"); 1554 1555 if (ND->hasAttr<WeakRefAttr>()) { 1556 const ValueDecl *VD = cast<ValueDecl>(ND); 1557 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1558 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1559 } 1560 1561 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1562 // Check if this is a global variable. 1563 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1564 return EmitGlobalVarDeclLValue(*this, E, VD); 1565 1566 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1567 1568 bool NonGCable = VD->hasLocalStorage() && 1569 !VD->getType()->isReferenceType() && 1570 !isBlockVariable; 1571 1572 llvm::Value *V = LocalDeclMap[VD]; 1573 if (!V && VD->isStaticLocal()) 1574 V = CGM.getStaticLocalDeclAddress(VD); 1575 1576 // Use special handling for lambdas. 1577 if (!V) { 1578 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) 1579 return EmitLValueForField(CXXABIThisValue, FD, 0); 1580 1581 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1582 CharUnits alignment = getContext().getDeclAlign(VD); 1583 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1584 E->getType(), alignment); 1585 } 1586 1587 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1588 1589 if (isBlockVariable) 1590 V = BuildBlockByrefAddress(V, VD); 1591 1592 LValue LV; 1593 if (VD->getType()->isReferenceType()) { 1594 llvm::LoadInst *LI = Builder.CreateLoad(V); 1595 LI->setAlignment(Alignment.getQuantity()); 1596 V = LI; 1597 LV = MakeNaturalAlignAddrLValue(V, T); 1598 } else { 1599 LV = MakeAddrLValue(V, T, Alignment); 1600 } 1601 1602 if (NonGCable) { 1603 LV.getQuals().removeObjCGCAttr(); 1604 LV.setNonGC(true); 1605 } 1606 setObjCGCLValueClass(getContext(), E, LV); 1607 return LV; 1608 } 1609 1610 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1611 return EmitFunctionDeclLValue(*this, E, fn); 1612 1613 llvm_unreachable("Unhandled DeclRefExpr"); 1614 } 1615 1616 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1617 // __extension__ doesn't affect lvalue-ness. 1618 if (E->getOpcode() == UO_Extension) 1619 return EmitLValue(E->getSubExpr()); 1620 1621 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1622 switch (E->getOpcode()) { 1623 default: llvm_unreachable("Unknown unary operator lvalue!"); 1624 case UO_Deref: { 1625 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1626 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1627 1628 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1629 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1630 1631 // We should not generate __weak write barrier on indirect reference 1632 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1633 // But, we continue to generate __strong write barrier on indirect write 1634 // into a pointer to object. 1635 if (getContext().getLangOpts().ObjC1 && 1636 getContext().getLangOpts().getGC() != LangOptions::NonGC && 1637 LV.isObjCWeak()) 1638 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1639 return LV; 1640 } 1641 case UO_Real: 1642 case UO_Imag: { 1643 LValue LV = EmitLValue(E->getSubExpr()); 1644 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1645 llvm::Value *Addr = LV.getAddress(); 1646 1647 // __real is valid on scalars. This is a faster way of testing that. 1648 // __imag can only produce an rvalue on scalars. 1649 if (E->getOpcode() == UO_Real && 1650 !cast<llvm::PointerType>(Addr->getType()) 1651 ->getElementType()->isStructTy()) { 1652 assert(E->getSubExpr()->getType()->isArithmeticType()); 1653 return LV; 1654 } 1655 1656 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1657 1658 unsigned Idx = E->getOpcode() == UO_Imag; 1659 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1660 Idx, "idx"), 1661 ExprTy); 1662 } 1663 case UO_PreInc: 1664 case UO_PreDec: { 1665 LValue LV = EmitLValue(E->getSubExpr()); 1666 bool isInc = E->getOpcode() == UO_PreInc; 1667 1668 if (E->getType()->isAnyComplexType()) 1669 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1670 else 1671 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1672 return LV; 1673 } 1674 } 1675 } 1676 1677 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1678 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1679 E->getType()); 1680 } 1681 1682 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1683 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1684 E->getType()); 1685 } 1686 1687 1688 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1689 switch (E->getIdentType()) { 1690 default: 1691 return EmitUnsupportedLValue(E, "predefined expression"); 1692 1693 case PredefinedExpr::Func: 1694 case PredefinedExpr::Function: 1695 case PredefinedExpr::PrettyFunction: { 1696 unsigned Type = E->getIdentType(); 1697 std::string GlobalVarName; 1698 1699 switch (Type) { 1700 default: llvm_unreachable("Invalid type"); 1701 case PredefinedExpr::Func: 1702 GlobalVarName = "__func__."; 1703 break; 1704 case PredefinedExpr::Function: 1705 GlobalVarName = "__FUNCTION__."; 1706 break; 1707 case PredefinedExpr::PrettyFunction: 1708 GlobalVarName = "__PRETTY_FUNCTION__."; 1709 break; 1710 } 1711 1712 StringRef FnName = CurFn->getName(); 1713 if (FnName.startswith("\01")) 1714 FnName = FnName.substr(1); 1715 GlobalVarName += FnName; 1716 1717 const Decl *CurDecl = CurCodeDecl; 1718 if (CurDecl == 0) 1719 CurDecl = getContext().getTranslationUnitDecl(); 1720 1721 std::string FunctionName = 1722 (isa<BlockDecl>(CurDecl) 1723 ? FnName.str() 1724 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl)); 1725 1726 llvm::Constant *C = 1727 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 1728 return MakeAddrLValue(C, E->getType()); 1729 } 1730 } 1731 } 1732 1733 llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1734 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1735 1736 // If we are not optimzing, don't collapse all calls to trap in the function 1737 // to the same call, that way, in the debugger they can see which operation 1738 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1739 // to just one per function to save on codesize. 1740 if (GCO.OptimizationLevel && TrapBB) 1741 return TrapBB; 1742 1743 llvm::BasicBlock *Cont = 0; 1744 if (HaveInsertPoint()) { 1745 Cont = createBasicBlock("cont"); 1746 EmitBranch(Cont); 1747 } 1748 TrapBB = createBasicBlock("trap"); 1749 EmitBlock(TrapBB); 1750 1751 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 1752 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1753 TrapCall->setDoesNotReturn(); 1754 TrapCall->setDoesNotThrow(); 1755 Builder.CreateUnreachable(); 1756 1757 if (Cont) 1758 EmitBlock(Cont); 1759 return TrapBB; 1760 } 1761 1762 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1763 /// array to pointer, return the array subexpression. 1764 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1765 // If this isn't just an array->pointer decay, bail out. 1766 const CastExpr *CE = dyn_cast<CastExpr>(E); 1767 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1768 return 0; 1769 1770 // If this is a decay from variable width array, bail out. 1771 const Expr *SubExpr = CE->getSubExpr(); 1772 if (SubExpr->getType()->isVariableArrayType()) 1773 return 0; 1774 1775 return SubExpr; 1776 } 1777 1778 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1779 // The index must always be an integer, which is not an aggregate. Emit it. 1780 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1781 QualType IdxTy = E->getIdx()->getType(); 1782 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1783 1784 // If the base is a vector type, then we are forming a vector element lvalue 1785 // with this subscript. 1786 if (E->getBase()->getType()->isVectorType()) { 1787 // Emit the vector as an lvalue to get its address. 1788 LValue LHS = EmitLValue(E->getBase()); 1789 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1790 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 1791 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1792 E->getBase()->getType(), LHS.getAlignment()); 1793 } 1794 1795 // Extend or truncate the index type to 32 or 64-bits. 1796 if (Idx->getType() != IntPtrTy) 1797 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 1798 1799 // FIXME: As llvm implements the object size checking, this can come out. 1800 if (CatchUndefined) { 1801 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){ 1802 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) { 1803 if (ICE->getCastKind() == CK_ArrayToPointerDecay) { 1804 if (const ConstantArrayType *CAT 1805 = getContext().getAsConstantArrayType(DRE->getType())) { 1806 llvm::APInt Size = CAT->getSize(); 1807 llvm::BasicBlock *Cont = createBasicBlock("cont"); 1808 Builder.CreateCondBr(Builder.CreateICmpULE(Idx, 1809 llvm::ConstantInt::get(Idx->getType(), Size)), 1810 Cont, getTrapBB()); 1811 EmitBlock(Cont); 1812 } 1813 } 1814 } 1815 } 1816 } 1817 1818 // We know that the pointer points to a type of the correct size, unless the 1819 // size is a VLA or Objective-C interface. 1820 llvm::Value *Address = 0; 1821 CharUnits ArrayAlignment; 1822 if (const VariableArrayType *vla = 1823 getContext().getAsVariableArrayType(E->getType())) { 1824 // The base must be a pointer, which is not an aggregate. Emit 1825 // it. It needs to be emitted first in case it's what captures 1826 // the VLA bounds. 1827 Address = EmitScalarExpr(E->getBase()); 1828 1829 // The element count here is the total number of non-VLA elements. 1830 llvm::Value *numElements = getVLASize(vla).first; 1831 1832 // Effectively, the multiply by the VLA size is part of the GEP. 1833 // GEP indexes are signed, and scaling an index isn't permitted to 1834 // signed-overflow, so we use the same semantics for our explicit 1835 // multiply. We suppress this if overflow is not undefined behavior. 1836 if (getLangOpts().isSignedOverflowDefined()) { 1837 Idx = Builder.CreateMul(Idx, numElements); 1838 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1839 } else { 1840 Idx = Builder.CreateNSWMul(Idx, numElements); 1841 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 1842 } 1843 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1844 // Indexing over an interface, as in "NSString *P; P[4];" 1845 llvm::Value *InterfaceSize = 1846 llvm::ConstantInt::get(Idx->getType(), 1847 getContext().getTypeSizeInChars(OIT).getQuantity()); 1848 1849 Idx = Builder.CreateMul(Idx, InterfaceSize); 1850 1851 // The base must be a pointer, which is not an aggregate. Emit it. 1852 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1853 Address = EmitCastToVoidPtr(Base); 1854 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1855 Address = Builder.CreateBitCast(Address, Base->getType()); 1856 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1857 // If this is A[i] where A is an array, the frontend will have decayed the 1858 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1859 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1860 // "gep x, i" here. Emit one "gep A, 0, i". 1861 assert(Array->getType()->isArrayType() && 1862 "Array to pointer decay must have array source type!"); 1863 LValue ArrayLV = EmitLValue(Array); 1864 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 1865 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1866 llvm::Value *Args[] = { Zero, Idx }; 1867 1868 // Propagate the alignment from the array itself to the result. 1869 ArrayAlignment = ArrayLV.getAlignment(); 1870 1871 if (getContext().getLangOpts().isSignedOverflowDefined()) 1872 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 1873 else 1874 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 1875 } else { 1876 // The base must be a pointer, which is not an aggregate. Emit it. 1877 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1878 if (getContext().getLangOpts().isSignedOverflowDefined()) 1879 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 1880 else 1881 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1882 } 1883 1884 QualType T = E->getBase()->getType()->getPointeeType(); 1885 assert(!T.isNull() && 1886 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1887 1888 1889 // Limit the alignment to that of the result type. 1890 LValue LV; 1891 if (!ArrayAlignment.isZero()) { 1892 CharUnits Align = getContext().getTypeAlignInChars(T); 1893 ArrayAlignment = std::min(Align, ArrayAlignment); 1894 LV = MakeAddrLValue(Address, T, ArrayAlignment); 1895 } else { 1896 LV = MakeNaturalAlignAddrLValue(Address, T); 1897 } 1898 1899 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1900 1901 if (getContext().getLangOpts().ObjC1 && 1902 getContext().getLangOpts().getGC() != LangOptions::NonGC) { 1903 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1904 setObjCGCLValueClass(getContext(), E, LV); 1905 } 1906 return LV; 1907 } 1908 1909 static 1910 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 1911 SmallVector<unsigned, 4> &Elts) { 1912 SmallVector<llvm::Constant*, 4> CElts; 1913 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1914 CElts.push_back(Builder.getInt32(Elts[i])); 1915 1916 return llvm::ConstantVector::get(CElts); 1917 } 1918 1919 LValue CodeGenFunction:: 1920 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1921 // Emit the base vector as an l-value. 1922 LValue Base; 1923 1924 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1925 if (E->isArrow()) { 1926 // If it is a pointer to a vector, emit the address and form an lvalue with 1927 // it. 1928 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1929 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1930 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 1931 Base.getQuals().removeObjCGCAttr(); 1932 } else if (E->getBase()->isGLValue()) { 1933 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 1934 // emit the base as an lvalue. 1935 assert(E->getBase()->getType()->isVectorType()); 1936 Base = EmitLValue(E->getBase()); 1937 } else { 1938 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 1939 assert(E->getBase()->getType()->isVectorType() && 1940 "Result must be a vector"); 1941 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 1942 1943 // Store the vector to memory (because LValue wants an address). 1944 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 1945 Builder.CreateStore(Vec, VecMem); 1946 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 1947 } 1948 1949 QualType type = 1950 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 1951 1952 // Encode the element access list into a vector of unsigned indices. 1953 SmallVector<unsigned, 4> Indices; 1954 E->getEncodedElementAccess(Indices); 1955 1956 if (Base.isSimple()) { 1957 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 1958 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 1959 Base.getAlignment()); 1960 } 1961 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1962 1963 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1964 SmallVector<llvm::Constant *, 4> CElts; 1965 1966 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 1967 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 1968 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 1969 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 1970 Base.getAlignment()); 1971 } 1972 1973 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1974 bool isNonGC = false; 1975 Expr *BaseExpr = E->getBase(); 1976 llvm::Value *BaseValue = NULL; 1977 Qualifiers BaseQuals; 1978 1979 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1980 if (E->isArrow()) { 1981 BaseValue = EmitScalarExpr(BaseExpr); 1982 const PointerType *PTy = 1983 BaseExpr->getType()->getAs<PointerType>(); 1984 BaseQuals = PTy->getPointeeType().getQualifiers(); 1985 } else { 1986 LValue BaseLV = EmitLValue(BaseExpr); 1987 if (BaseLV.isNonGC()) 1988 isNonGC = true; 1989 // FIXME: this isn't right for bitfields. 1990 BaseValue = BaseLV.getAddress(); 1991 QualType BaseTy = BaseExpr->getType(); 1992 BaseQuals = BaseTy.getQualifiers(); 1993 } 1994 1995 NamedDecl *ND = E->getMemberDecl(); 1996 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1997 LValue LV = EmitLValueForField(BaseValue, Field, 1998 BaseQuals.getCVRQualifiers()); 1999 LV.setNonGC(isNonGC); 2000 setObjCGCLValueClass(getContext(), E, LV); 2001 return LV; 2002 } 2003 2004 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 2005 return EmitGlobalVarDeclLValue(*this, E, VD); 2006 2007 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 2008 return EmitFunctionDeclLValue(*this, E, FD); 2009 2010 llvm_unreachable("Unhandled member declaration!"); 2011 } 2012 2013 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, 2014 const FieldDecl *Field, 2015 unsigned CVRQualifiers) { 2016 const CGRecordLayout &RL = 2017 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2018 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 2019 return LValue::MakeBitfield(BaseValue, Info, 2020 Field->getType().withCVRQualifiers(CVRQualifiers)); 2021 } 2022 2023 /// EmitLValueForAnonRecordField - Given that the field is a member of 2024 /// an anonymous struct or union buried inside a record, and given 2025 /// that the base value is a pointer to the enclosing record, derive 2026 /// an lvalue for the ultimate field. 2027 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 2028 const IndirectFieldDecl *Field, 2029 unsigned CVRQualifiers) { 2030 IndirectFieldDecl::chain_iterator I = Field->chain_begin(), 2031 IEnd = Field->chain_end(); 2032 while (true) { 2033 LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I), 2034 CVRQualifiers); 2035 if (++I == IEnd) return LV; 2036 2037 assert(LV.isSimple()); 2038 BaseValue = LV.getAddress(); 2039 CVRQualifiers |= LV.getVRQualifiers(); 2040 } 2041 } 2042 2043 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr, 2044 const FieldDecl *field, 2045 unsigned cvr) { 2046 if (field->isBitField()) 2047 return EmitLValueForBitfield(baseAddr, field, cvr); 2048 2049 const RecordDecl *rec = field->getParent(); 2050 QualType type = field->getType(); 2051 CharUnits alignment = getContext().getDeclAlign(field); 2052 2053 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2054 2055 llvm::Value *addr = baseAddr; 2056 if (rec->isUnion()) { 2057 // For unions, there is no pointer adjustment. 2058 assert(!type->isReferenceType() && "union has reference member"); 2059 } else { 2060 // For structs, we GEP to the field that the record layout suggests. 2061 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2062 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2063 2064 // If this is a reference field, load the reference right now. 2065 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2066 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2067 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2068 load->setAlignment(alignment.getQuantity()); 2069 2070 if (CGM.shouldUseTBAA()) { 2071 llvm::MDNode *tbaa; 2072 if (mayAlias) 2073 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2074 else 2075 tbaa = CGM.getTBAAInfo(type); 2076 CGM.DecorateInstruction(load, tbaa); 2077 } 2078 2079 addr = load; 2080 mayAlias = false; 2081 type = refType->getPointeeType(); 2082 if (type->isIncompleteType()) 2083 alignment = CharUnits(); 2084 else 2085 alignment = getContext().getTypeAlignInChars(type); 2086 cvr = 0; // qualifiers don't recursively apply to referencee 2087 } 2088 } 2089 2090 // Make sure that the address is pointing to the right type. This is critical 2091 // for both unions and structs. A union needs a bitcast, a struct element 2092 // will need a bitcast if the LLVM type laid out doesn't match the desired 2093 // type. 2094 addr = EmitBitCastOfLValueToProperType(*this, addr, 2095 CGM.getTypes().ConvertTypeForMem(type), 2096 field->getName()); 2097 2098 if (field->hasAttr<AnnotateAttr>()) 2099 addr = EmitFieldAnnotations(field, addr); 2100 2101 LValue LV = MakeAddrLValue(addr, type, alignment); 2102 LV.getQuals().addCVRQualifiers(cvr); 2103 2104 // __weak attribute on a field is ignored. 2105 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2106 LV.getQuals().removeObjCGCAttr(); 2107 2108 // Fields of may_alias structs act like 'char' for TBAA purposes. 2109 // FIXME: this should get propagated down through anonymous structs 2110 // and unions. 2111 if (mayAlias && LV.getTBAAInfo()) 2112 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2113 2114 return LV; 2115 } 2116 2117 LValue 2118 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue, 2119 const FieldDecl *Field, 2120 unsigned CVRQualifiers) { 2121 QualType FieldType = Field->getType(); 2122 2123 if (!FieldType->isReferenceType()) 2124 return EmitLValueForField(BaseValue, Field, CVRQualifiers); 2125 2126 const CGRecordLayout &RL = 2127 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2128 unsigned idx = RL.getLLVMFieldNo(Field); 2129 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx); 2130 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2131 2132 2133 // Make sure that the address is pointing to the right type. This is critical 2134 // for both unions and structs. A union needs a bitcast, a struct element 2135 // will need a bitcast if the LLVM type laid out doesn't match the desired 2136 // type. 2137 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2138 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2139 V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS)); 2140 2141 CharUnits Alignment = getContext().getDeclAlign(Field); 2142 return MakeAddrLValue(V, FieldType, Alignment); 2143 } 2144 2145 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2146 if (E->isFileScope()) { 2147 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2148 return MakeAddrLValue(GlobalPtr, E->getType()); 2149 } 2150 2151 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2152 const Expr *InitExpr = E->getInitializer(); 2153 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2154 2155 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers()); 2156 2157 return Result; 2158 } 2159 2160 LValue CodeGenFunction:: 2161 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2162 if (!expr->isGLValue()) { 2163 // ?: here should be an aggregate. 2164 assert((hasAggregateLLVMType(expr->getType()) && 2165 !expr->getType()->isAnyComplexType()) && 2166 "Unexpected conditional operator!"); 2167 return EmitAggExprToLValue(expr); 2168 } 2169 2170 OpaqueValueMapping binding(*this, expr); 2171 2172 const Expr *condExpr = expr->getCond(); 2173 bool CondExprBool; 2174 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2175 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2176 if (!CondExprBool) std::swap(live, dead); 2177 2178 if (!ContainsLabel(dead)) 2179 return EmitLValue(live); 2180 } 2181 2182 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2183 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2184 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2185 2186 ConditionalEvaluation eval(*this); 2187 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2188 2189 // Any temporaries created here are conditional. 2190 EmitBlock(lhsBlock); 2191 eval.begin(*this); 2192 LValue lhs = EmitLValue(expr->getTrueExpr()); 2193 eval.end(*this); 2194 2195 if (!lhs.isSimple()) 2196 return EmitUnsupportedLValue(expr, "conditional operator"); 2197 2198 lhsBlock = Builder.GetInsertBlock(); 2199 Builder.CreateBr(contBlock); 2200 2201 // Any temporaries created here are conditional. 2202 EmitBlock(rhsBlock); 2203 eval.begin(*this); 2204 LValue rhs = EmitLValue(expr->getFalseExpr()); 2205 eval.end(*this); 2206 if (!rhs.isSimple()) 2207 return EmitUnsupportedLValue(expr, "conditional operator"); 2208 rhsBlock = Builder.GetInsertBlock(); 2209 2210 EmitBlock(contBlock); 2211 2212 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2213 "cond-lvalue"); 2214 phi->addIncoming(lhs.getAddress(), lhsBlock); 2215 phi->addIncoming(rhs.getAddress(), rhsBlock); 2216 return MakeAddrLValue(phi, expr->getType()); 2217 } 2218 2219 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. 2220 /// If the cast is a dynamic_cast, we can have the usual lvalue result, 2221 /// otherwise if a cast is needed by the code generator in an lvalue context, 2222 /// then it must mean that we need the address of an aggregate in order to 2223 /// access one of its fields. This can happen for all the reasons that casts 2224 /// are permitted with aggregate result, including noop aggregate casts, and 2225 /// cast from scalar to union. 2226 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2227 switch (E->getCastKind()) { 2228 case CK_ToVoid: 2229 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2230 2231 case CK_Dependent: 2232 llvm_unreachable("dependent cast kind in IR gen!"); 2233 2234 // These two casts are currently treated as no-ops, although they could 2235 // potentially be real operations depending on the target's ABI. 2236 case CK_NonAtomicToAtomic: 2237 case CK_AtomicToNonAtomic: 2238 2239 case CK_NoOp: 2240 case CK_LValueToRValue: 2241 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2242 || E->getType()->isRecordType()) 2243 return EmitLValue(E->getSubExpr()); 2244 // Fall through to synthesize a temporary. 2245 2246 case CK_BitCast: 2247 case CK_ArrayToPointerDecay: 2248 case CK_FunctionToPointerDecay: 2249 case CK_NullToMemberPointer: 2250 case CK_NullToPointer: 2251 case CK_IntegralToPointer: 2252 case CK_PointerToIntegral: 2253 case CK_PointerToBoolean: 2254 case CK_VectorSplat: 2255 case CK_IntegralCast: 2256 case CK_IntegralToBoolean: 2257 case CK_IntegralToFloating: 2258 case CK_FloatingToIntegral: 2259 case CK_FloatingToBoolean: 2260 case CK_FloatingCast: 2261 case CK_FloatingRealToComplex: 2262 case CK_FloatingComplexToReal: 2263 case CK_FloatingComplexToBoolean: 2264 case CK_FloatingComplexCast: 2265 case CK_FloatingComplexToIntegralComplex: 2266 case CK_IntegralRealToComplex: 2267 case CK_IntegralComplexToReal: 2268 case CK_IntegralComplexToBoolean: 2269 case CK_IntegralComplexCast: 2270 case CK_IntegralComplexToFloatingComplex: 2271 case CK_DerivedToBaseMemberPointer: 2272 case CK_BaseToDerivedMemberPointer: 2273 case CK_MemberPointerToBoolean: 2274 case CK_ReinterpretMemberPointer: 2275 case CK_AnyPointerToBlockPointerCast: 2276 case CK_ARCProduceObject: 2277 case CK_ARCConsumeObject: 2278 case CK_ARCReclaimReturnedObject: 2279 case CK_ARCExtendBlockObject: 2280 case CK_CopyAndAutoreleaseBlockObject: { 2281 // These casts only produce lvalues when we're binding a reference to a 2282 // temporary realized from a (converted) pure rvalue. Emit the expression 2283 // as a value, copy it into a temporary, and return an lvalue referring to 2284 // that temporary. 2285 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2286 EmitAnyExprToMem(E, V, E->getType().getQualifiers()); 2287 return MakeAddrLValue(V, E->getType()); 2288 } 2289 2290 case CK_Dynamic: { 2291 LValue LV = EmitLValue(E->getSubExpr()); 2292 llvm::Value *V = LV.getAddress(); 2293 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2294 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2295 } 2296 2297 case CK_ConstructorConversion: 2298 case CK_UserDefinedConversion: 2299 case CK_CPointerToObjCPointerCast: 2300 case CK_BlockPointerToObjCPointerCast: 2301 return EmitLValue(E->getSubExpr()); 2302 2303 case CK_UncheckedDerivedToBase: 2304 case CK_DerivedToBase: { 2305 const RecordType *DerivedClassTy = 2306 E->getSubExpr()->getType()->getAs<RecordType>(); 2307 CXXRecordDecl *DerivedClassDecl = 2308 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2309 2310 LValue LV = EmitLValue(E->getSubExpr()); 2311 llvm::Value *This = LV.getAddress(); 2312 2313 // Perform the derived-to-base conversion 2314 llvm::Value *Base = 2315 GetAddressOfBaseClass(This, DerivedClassDecl, 2316 E->path_begin(), E->path_end(), 2317 /*NullCheckValue=*/false); 2318 2319 return MakeAddrLValue(Base, E->getType()); 2320 } 2321 case CK_ToUnion: 2322 return EmitAggExprToLValue(E); 2323 case CK_BaseToDerived: { 2324 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2325 CXXRecordDecl *DerivedClassDecl = 2326 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2327 2328 LValue LV = EmitLValue(E->getSubExpr()); 2329 2330 // Perform the base-to-derived conversion 2331 llvm::Value *Derived = 2332 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2333 E->path_begin(), E->path_end(), 2334 /*NullCheckValue=*/false); 2335 2336 return MakeAddrLValue(Derived, E->getType()); 2337 } 2338 case CK_LValueBitCast: { 2339 // This must be a reinterpret_cast (or c-style equivalent). 2340 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2341 2342 LValue LV = EmitLValue(E->getSubExpr()); 2343 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2344 ConvertType(CE->getTypeAsWritten())); 2345 return MakeAddrLValue(V, E->getType()); 2346 } 2347 case CK_ObjCObjectLValueCast: { 2348 LValue LV = EmitLValue(E->getSubExpr()); 2349 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2350 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2351 ConvertType(ToType)); 2352 return MakeAddrLValue(V, E->getType()); 2353 } 2354 } 2355 2356 llvm_unreachable("Unhandled lvalue cast kind?"); 2357 } 2358 2359 LValue CodeGenFunction::EmitNullInitializationLValue( 2360 const CXXScalarValueInitExpr *E) { 2361 QualType Ty = E->getType(); 2362 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2363 EmitNullInitialization(LV.getAddress(), Ty); 2364 return LV; 2365 } 2366 2367 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2368 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2369 return getOpaqueLValueMapping(e); 2370 } 2371 2372 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2373 const MaterializeTemporaryExpr *E) { 2374 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2375 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2376 } 2377 2378 2379 //===--------------------------------------------------------------------===// 2380 // Expression Emission 2381 //===--------------------------------------------------------------------===// 2382 2383 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2384 ReturnValueSlot ReturnValue) { 2385 if (CGDebugInfo *DI = getDebugInfo()) 2386 DI->EmitLocation(Builder, E->getLocStart()); 2387 2388 // Builtins never have block type. 2389 if (E->getCallee()->getType()->isBlockPointerType()) 2390 return EmitBlockCallExpr(E, ReturnValue); 2391 2392 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2393 return EmitCXXMemberCallExpr(CE, ReturnValue); 2394 2395 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2396 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2397 2398 const Decl *TargetDecl = E->getCalleeDecl(); 2399 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2400 if (unsigned builtinID = FD->getBuiltinID()) 2401 return EmitBuiltinExpr(FD, builtinID, E); 2402 } 2403 2404 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2405 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2406 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2407 2408 if (const CXXPseudoDestructorExpr *PseudoDtor 2409 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2410 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2411 if (getContext().getLangOpts().ObjCAutoRefCount && 2412 DestroyedType->isObjCLifetimeType() && 2413 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2414 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2415 // Automatic Reference Counting: 2416 // If the pseudo-expression names a retainable object with weak or 2417 // strong lifetime, the object shall be released. 2418 Expr *BaseExpr = PseudoDtor->getBase(); 2419 llvm::Value *BaseValue = NULL; 2420 Qualifiers BaseQuals; 2421 2422 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2423 if (PseudoDtor->isArrow()) { 2424 BaseValue = EmitScalarExpr(BaseExpr); 2425 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2426 BaseQuals = PTy->getPointeeType().getQualifiers(); 2427 } else { 2428 LValue BaseLV = EmitLValue(BaseExpr); 2429 BaseValue = BaseLV.getAddress(); 2430 QualType BaseTy = BaseExpr->getType(); 2431 BaseQuals = BaseTy.getQualifiers(); 2432 } 2433 2434 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2435 case Qualifiers::OCL_None: 2436 case Qualifiers::OCL_ExplicitNone: 2437 case Qualifiers::OCL_Autoreleasing: 2438 break; 2439 2440 case Qualifiers::OCL_Strong: 2441 EmitARCRelease(Builder.CreateLoad(BaseValue, 2442 PseudoDtor->getDestroyedType().isVolatileQualified()), 2443 /*precise*/ true); 2444 break; 2445 2446 case Qualifiers::OCL_Weak: 2447 EmitARCDestroyWeak(BaseValue); 2448 break; 2449 } 2450 } else { 2451 // C++ [expr.pseudo]p1: 2452 // The result shall only be used as the operand for the function call 2453 // operator (), and the result of such a call has type void. The only 2454 // effect is the evaluation of the postfix-expression before the dot or 2455 // arrow. 2456 EmitScalarExpr(E->getCallee()); 2457 } 2458 2459 return RValue::get(0); 2460 } 2461 2462 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2463 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2464 E->arg_begin(), E->arg_end(), TargetDecl); 2465 } 2466 2467 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2468 // Comma expressions just emit their LHS then their RHS as an l-value. 2469 if (E->getOpcode() == BO_Comma) { 2470 EmitIgnoredExpr(E->getLHS()); 2471 EnsureInsertPoint(); 2472 return EmitLValue(E->getRHS()); 2473 } 2474 2475 if (E->getOpcode() == BO_PtrMemD || 2476 E->getOpcode() == BO_PtrMemI) 2477 return EmitPointerToDataMemberBinaryExpr(E); 2478 2479 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2480 2481 // Note that in all of these cases, __block variables need the RHS 2482 // evaluated first just in case the variable gets moved by the RHS. 2483 2484 if (!hasAggregateLLVMType(E->getType())) { 2485 switch (E->getLHS()->getType().getObjCLifetime()) { 2486 case Qualifiers::OCL_Strong: 2487 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2488 2489 case Qualifiers::OCL_Autoreleasing: 2490 return EmitARCStoreAutoreleasing(E).first; 2491 2492 // No reason to do any of these differently. 2493 case Qualifiers::OCL_None: 2494 case Qualifiers::OCL_ExplicitNone: 2495 case Qualifiers::OCL_Weak: 2496 break; 2497 } 2498 2499 RValue RV = EmitAnyExpr(E->getRHS()); 2500 LValue LV = EmitLValue(E->getLHS()); 2501 EmitStoreThroughLValue(RV, LV); 2502 return LV; 2503 } 2504 2505 if (E->getType()->isAnyComplexType()) 2506 return EmitComplexAssignmentLValue(E); 2507 2508 return EmitAggExprToLValue(E); 2509 } 2510 2511 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2512 RValue RV = EmitCallExpr(E); 2513 2514 if (!RV.isScalar()) 2515 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2516 2517 assert(E->getCallReturnType()->isReferenceType() && 2518 "Can't have a scalar return unless the return type is a " 2519 "reference type!"); 2520 2521 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2522 } 2523 2524 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2525 // FIXME: This shouldn't require another copy. 2526 return EmitAggExprToLValue(E); 2527 } 2528 2529 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2530 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2531 && "binding l-value to type which needs a temporary"); 2532 AggValueSlot Slot = CreateAggTemp(E->getType()); 2533 EmitCXXConstructExpr(E, Slot); 2534 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2535 } 2536 2537 LValue 2538 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2539 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2540 } 2541 2542 LValue 2543 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2544 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2545 Slot.setExternallyDestructed(); 2546 EmitAggExpr(E->getSubExpr(), Slot); 2547 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 2548 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2549 } 2550 2551 LValue 2552 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 2553 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2554 EmitLambdaExpr(E, Slot); 2555 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2556 } 2557 2558 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2559 RValue RV = EmitObjCMessageExpr(E); 2560 2561 if (!RV.isScalar()) 2562 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2563 2564 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2565 "Can't have a scalar return unless the return type is a " 2566 "reference type!"); 2567 2568 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2569 } 2570 2571 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2572 llvm::Value *V = 2573 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2574 return MakeAddrLValue(V, E->getType()); 2575 } 2576 2577 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2578 const ObjCIvarDecl *Ivar) { 2579 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2580 } 2581 2582 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2583 llvm::Value *BaseValue, 2584 const ObjCIvarDecl *Ivar, 2585 unsigned CVRQualifiers) { 2586 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2587 Ivar, CVRQualifiers); 2588 } 2589 2590 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2591 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2592 llvm::Value *BaseValue = 0; 2593 const Expr *BaseExpr = E->getBase(); 2594 Qualifiers BaseQuals; 2595 QualType ObjectTy; 2596 if (E->isArrow()) { 2597 BaseValue = EmitScalarExpr(BaseExpr); 2598 ObjectTy = BaseExpr->getType()->getPointeeType(); 2599 BaseQuals = ObjectTy.getQualifiers(); 2600 } else { 2601 LValue BaseLV = EmitLValue(BaseExpr); 2602 // FIXME: this isn't right for bitfields. 2603 BaseValue = BaseLV.getAddress(); 2604 ObjectTy = BaseExpr->getType(); 2605 BaseQuals = ObjectTy.getQualifiers(); 2606 } 2607 2608 LValue LV = 2609 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2610 BaseQuals.getCVRQualifiers()); 2611 setObjCGCLValueClass(getContext(), E, LV); 2612 return LV; 2613 } 2614 2615 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2616 // Can only get l-value for message expression returning aggregate type 2617 RValue RV = EmitAnyExprToTemp(E); 2618 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2619 } 2620 2621 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2622 ReturnValueSlot ReturnValue, 2623 CallExpr::const_arg_iterator ArgBeg, 2624 CallExpr::const_arg_iterator ArgEnd, 2625 const Decl *TargetDecl) { 2626 // Get the actual function type. The callee type will always be a pointer to 2627 // function type or a block pointer type. 2628 assert(CalleeType->isFunctionPointerType() && 2629 "Call must have function pointer type!"); 2630 2631 CalleeType = getContext().getCanonicalType(CalleeType); 2632 2633 const FunctionType *FnType 2634 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2635 2636 CallArgList Args; 2637 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2638 2639 const CGFunctionInfo &FnInfo = 2640 CGM.getTypes().arrangeFunctionCall(Args, FnType); 2641 2642 // C99 6.5.2.2p6: 2643 // If the expression that denotes the called function has a type 2644 // that does not include a prototype, [the default argument 2645 // promotions are performed]. If the number of arguments does not 2646 // equal the number of parameters, the behavior is undefined. If 2647 // the function is defined with a type that includes a prototype, 2648 // and either the prototype ends with an ellipsis (, ...) or the 2649 // types of the arguments after promotion are not compatible with 2650 // the types of the parameters, the behavior is undefined. If the 2651 // function is defined with a type that does not include a 2652 // prototype, and the types of the arguments after promotion are 2653 // not compatible with those of the parameters after promotion, 2654 // the behavior is undefined [except in some trivial cases]. 2655 // That is, in the general case, we should assume that a call 2656 // through an unprototyped function type works like a *non-variadic* 2657 // call. The way we make this work is to cast to the exact type 2658 // of the promoted arguments. 2659 if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) { 2660 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 2661 CalleeTy = CalleeTy->getPointerTo(); 2662 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 2663 } 2664 2665 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 2666 } 2667 2668 LValue CodeGenFunction:: 2669 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2670 llvm::Value *BaseV; 2671 if (E->getOpcode() == BO_PtrMemI) 2672 BaseV = EmitScalarExpr(E->getLHS()); 2673 else 2674 BaseV = EmitLValue(E->getLHS()).getAddress(); 2675 2676 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2677 2678 const MemberPointerType *MPT 2679 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2680 2681 llvm::Value *AddV = 2682 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2683 2684 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2685 } 2686 2687 static void 2688 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 2689 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 2690 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 2691 if (E->isCmpXChg()) { 2692 // Note that cmpxchg only supports specifying one ordering and 2693 // doesn't support weak cmpxchg, at least at the moment. 2694 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2695 LoadVal1->setAlignment(Align); 2696 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 2697 LoadVal2->setAlignment(Align); 2698 llvm::AtomicCmpXchgInst *CXI = 2699 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 2700 CXI->setVolatile(E->isVolatile()); 2701 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 2702 StoreVal1->setAlignment(Align); 2703 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 2704 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 2705 return; 2706 } 2707 2708 if (E->getOp() == AtomicExpr::Load) { 2709 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 2710 Load->setAtomic(Order); 2711 Load->setAlignment(Size); 2712 Load->setVolatile(E->isVolatile()); 2713 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 2714 StoreDest->setAlignment(Align); 2715 return; 2716 } 2717 2718 if (E->getOp() == AtomicExpr::Store) { 2719 assert(!Dest && "Store does not return a value"); 2720 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2721 LoadVal1->setAlignment(Align); 2722 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 2723 Store->setAtomic(Order); 2724 Store->setAlignment(Size); 2725 Store->setVolatile(E->isVolatile()); 2726 return; 2727 } 2728 2729 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 2730 switch (E->getOp()) { 2731 case AtomicExpr::CmpXchgWeak: 2732 case AtomicExpr::CmpXchgStrong: 2733 case AtomicExpr::Store: 2734 case AtomicExpr::Init: 2735 case AtomicExpr::Load: assert(0 && "Already handled!"); 2736 case AtomicExpr::Add: Op = llvm::AtomicRMWInst::Add; break; 2737 case AtomicExpr::Sub: Op = llvm::AtomicRMWInst::Sub; break; 2738 case AtomicExpr::And: Op = llvm::AtomicRMWInst::And; break; 2739 case AtomicExpr::Or: Op = llvm::AtomicRMWInst::Or; break; 2740 case AtomicExpr::Xor: Op = llvm::AtomicRMWInst::Xor; break; 2741 case AtomicExpr::Xchg: Op = llvm::AtomicRMWInst::Xchg; break; 2742 } 2743 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2744 LoadVal1->setAlignment(Align); 2745 llvm::AtomicRMWInst *RMWI = 2746 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 2747 RMWI->setVolatile(E->isVolatile()); 2748 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(RMWI, Dest); 2749 StoreDest->setAlignment(Align); 2750 } 2751 2752 // This function emits any expression (scalar, complex, or aggregate) 2753 // into a temporary alloca. 2754 static llvm::Value * 2755 EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 2756 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 2757 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers()); 2758 return DeclPtr; 2759 } 2760 2761 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, 2762 llvm::Value *Dest) { 2763 if (Ty->isAnyComplexType()) 2764 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); 2765 if (CGF.hasAggregateLLVMType(Ty)) 2766 return RValue::getAggregate(Dest); 2767 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); 2768 } 2769 2770 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 2771 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 2772 QualType MemTy = AtomicTy->getAs<AtomicType>()->getValueType(); 2773 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 2774 uint64_t Size = sizeChars.getQuantity(); 2775 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 2776 unsigned Align = alignChars.getQuantity(); 2777 unsigned MaxInlineWidth = 2778 getContext().getTargetInfo().getMaxAtomicInlineWidth(); 2779 bool UseLibcall = (Size != Align || Size > MaxInlineWidth); 2780 2781 2782 2783 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 2784 Ptr = EmitScalarExpr(E->getPtr()); 2785 2786 if (E->getOp() == AtomicExpr::Init) { 2787 assert(!Dest && "Init does not return a value"); 2788 Val1 = EmitScalarExpr(E->getVal1()); 2789 llvm::StoreInst *Store = Builder.CreateStore(Val1, Ptr); 2790 Store->setAlignment(Size); 2791 Store->setVolatile(E->isVolatile()); 2792 return RValue::get(0); 2793 } 2794 2795 Order = EmitScalarExpr(E->getOrder()); 2796 if (E->isCmpXChg()) { 2797 Val1 = EmitScalarExpr(E->getVal1()); 2798 Val2 = EmitValToTemp(*this, E->getVal2()); 2799 OrderFail = EmitScalarExpr(E->getOrderFail()); 2800 (void)OrderFail; // OrderFail is unused at the moment 2801 } else if ((E->getOp() == AtomicExpr::Add || E->getOp() == AtomicExpr::Sub) && 2802 MemTy->isPointerType()) { 2803 // For pointers, we're required to do a bit of math: adding 1 to an int* 2804 // is not the same as adding 1 to a uintptr_t. 2805 QualType Val1Ty = E->getVal1()->getType(); 2806 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 2807 CharUnits PointeeIncAmt = 2808 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 2809 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 2810 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 2811 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 2812 } else if (E->getOp() != AtomicExpr::Load) { 2813 Val1 = EmitValToTemp(*this, E->getVal1()); 2814 } 2815 2816 if (E->getOp() != AtomicExpr::Store && !Dest) 2817 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 2818 2819 if (UseLibcall) { 2820 // FIXME: Finalize what the libcalls are actually supposed to look like. 2821 // See also http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 2822 return EmitUnsupportedRValue(E, "atomic library call"); 2823 } 2824 #if 0 2825 if (UseLibcall) { 2826 const char* LibCallName; 2827 switch (E->getOp()) { 2828 case AtomicExpr::CmpXchgWeak: 2829 LibCallName = "__atomic_compare_exchange_generic"; break; 2830 case AtomicExpr::CmpXchgStrong: 2831 LibCallName = "__atomic_compare_exchange_generic"; break; 2832 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; 2833 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; 2834 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; 2835 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; 2836 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; 2837 case AtomicExpr::Xchg: LibCallName = "__atomic_exchange_generic"; break; 2838 case AtomicExpr::Store: LibCallName = "__atomic_store_generic"; break; 2839 case AtomicExpr::Load: LibCallName = "__atomic_load_generic"; break; 2840 } 2841 llvm::SmallVector<QualType, 4> Params; 2842 CallArgList Args; 2843 QualType RetTy = getContext().VoidTy; 2844 if (E->getOp() != AtomicExpr::Store && !E->isCmpXChg()) 2845 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 2846 getContext().VoidPtrTy); 2847 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 2848 getContext().VoidPtrTy); 2849 if (E->getOp() != AtomicExpr::Load) 2850 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 2851 getContext().VoidPtrTy); 2852 if (E->isCmpXChg()) { 2853 Args.add(RValue::get(EmitCastToVoidPtr(Val2)), 2854 getContext().VoidPtrTy); 2855 RetTy = getContext().IntTy; 2856 } 2857 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 2858 getContext().getSizeType()); 2859 const CGFunctionInfo &FuncInfo = 2860 CGM.getTypes().arrangeFunctionCall(RetTy, Args, FunctionType::ExtInfo(), 2861 /*variadic*/ false); 2862 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo, false); 2863 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 2864 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 2865 if (E->isCmpXChg()) 2866 return Res; 2867 if (E->getOp() == AtomicExpr::Store) 2868 return RValue::get(0); 2869 return ConvertTempToRValue(*this, E->getType(), Dest); 2870 } 2871 #endif 2872 llvm::Type *IPtrTy = 2873 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 2874 llvm::Value *OrigDest = Dest; 2875 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 2876 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 2877 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 2878 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 2879 2880 if (isa<llvm::ConstantInt>(Order)) { 2881 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 2882 switch (ord) { 2883 case 0: // memory_order_relaxed 2884 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2885 llvm::Monotonic); 2886 break; 2887 case 1: // memory_order_consume 2888 case 2: // memory_order_acquire 2889 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2890 llvm::Acquire); 2891 break; 2892 case 3: // memory_order_release 2893 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2894 llvm::Release); 2895 break; 2896 case 4: // memory_order_acq_rel 2897 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2898 llvm::AcquireRelease); 2899 break; 2900 case 5: // memory_order_seq_cst 2901 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2902 llvm::SequentiallyConsistent); 2903 break; 2904 default: // invalid order 2905 // We should not ever get here normally, but it's hard to 2906 // enforce that in general. 2907 break; 2908 } 2909 if (E->getOp() == AtomicExpr::Store || E->getOp() == AtomicExpr::Init) 2910 return RValue::get(0); 2911 return ConvertTempToRValue(*this, E->getType(), OrigDest); 2912 } 2913 2914 // Long case, when Order isn't obviously constant. 2915 2916 // Create all the relevant BB's 2917 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 2918 *AcqRelBB = 0, *SeqCstBB = 0; 2919 MonotonicBB = createBasicBlock("monotonic", CurFn); 2920 if (E->getOp() != AtomicExpr::Store) 2921 AcquireBB = createBasicBlock("acquire", CurFn); 2922 if (E->getOp() != AtomicExpr::Load) 2923 ReleaseBB = createBasicBlock("release", CurFn); 2924 if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) 2925 AcqRelBB = createBasicBlock("acqrel", CurFn); 2926 SeqCstBB = createBasicBlock("seqcst", CurFn); 2927 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 2928 2929 // Create the switch for the split 2930 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 2931 // doesn't matter unless someone is crazy enough to use something that 2932 // doesn't fold to a constant for the ordering. 2933 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 2934 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 2935 2936 // Emit all the different atomics 2937 Builder.SetInsertPoint(MonotonicBB); 2938 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2939 llvm::Monotonic); 2940 Builder.CreateBr(ContBB); 2941 if (E->getOp() != AtomicExpr::Store) { 2942 Builder.SetInsertPoint(AcquireBB); 2943 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2944 llvm::Acquire); 2945 Builder.CreateBr(ContBB); 2946 SI->addCase(Builder.getInt32(1), AcquireBB); 2947 SI->addCase(Builder.getInt32(2), AcquireBB); 2948 } 2949 if (E->getOp() != AtomicExpr::Load) { 2950 Builder.SetInsertPoint(ReleaseBB); 2951 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2952 llvm::Release); 2953 Builder.CreateBr(ContBB); 2954 SI->addCase(Builder.getInt32(3), ReleaseBB); 2955 } 2956 if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) { 2957 Builder.SetInsertPoint(AcqRelBB); 2958 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2959 llvm::AcquireRelease); 2960 Builder.CreateBr(ContBB); 2961 SI->addCase(Builder.getInt32(4), AcqRelBB); 2962 } 2963 Builder.SetInsertPoint(SeqCstBB); 2964 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2965 llvm::SequentiallyConsistent); 2966 Builder.CreateBr(ContBB); 2967 SI->addCase(Builder.getInt32(5), SeqCstBB); 2968 2969 // Cleanup and return 2970 Builder.SetInsertPoint(ContBB); 2971 if (E->getOp() == AtomicExpr::Store) 2972 return RValue::get(0); 2973 return ConvertTempToRValue(*this, E->getType(), OrigDest); 2974 } 2975 2976 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN, 2977 unsigned AccuracyD) { 2978 assert(Val->getType()->isFPOrFPVectorTy()); 2979 if (!AccuracyN || !isa<llvm::Instruction>(Val)) 2980 return; 2981 2982 llvm::Value *Vals[2]; 2983 Vals[0] = llvm::ConstantInt::get(Int32Ty, AccuracyN); 2984 Vals[1] = llvm::ConstantInt::get(Int32Ty, AccuracyD); 2985 llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), Vals); 2986 2987 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy, 2988 Node); 2989 } 2990 2991 namespace { 2992 struct LValueOrRValue { 2993 LValue LV; 2994 RValue RV; 2995 }; 2996 } 2997 2998 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 2999 const PseudoObjectExpr *E, 3000 bool forLValue, 3001 AggValueSlot slot) { 3002 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3003 3004 // Find the result expression, if any. 3005 const Expr *resultExpr = E->getResultExpr(); 3006 LValueOrRValue result; 3007 3008 for (PseudoObjectExpr::const_semantics_iterator 3009 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3010 const Expr *semantic = *i; 3011 3012 // If this semantic expression is an opaque value, bind it 3013 // to the result of its source expression. 3014 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3015 3016 // If this is the result expression, we may need to evaluate 3017 // directly into the slot. 3018 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3019 OVMA opaqueData; 3020 if (ov == resultExpr && ov->isRValue() && !forLValue && 3021 CodeGenFunction::hasAggregateLLVMType(ov->getType()) && 3022 !ov->getType()->isAnyComplexType()) { 3023 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3024 3025 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3026 opaqueData = OVMA::bind(CGF, ov, LV); 3027 result.RV = slot.asRValue(); 3028 3029 // Otherwise, emit as normal. 3030 } else { 3031 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3032 3033 // If this is the result, also evaluate the result now. 3034 if (ov == resultExpr) { 3035 if (forLValue) 3036 result.LV = CGF.EmitLValue(ov); 3037 else 3038 result.RV = CGF.EmitAnyExpr(ov, slot); 3039 } 3040 } 3041 3042 opaques.push_back(opaqueData); 3043 3044 // Otherwise, if the expression is the result, evaluate it 3045 // and remember the result. 3046 } else if (semantic == resultExpr) { 3047 if (forLValue) 3048 result.LV = CGF.EmitLValue(semantic); 3049 else 3050 result.RV = CGF.EmitAnyExpr(semantic, slot); 3051 3052 // Otherwise, evaluate the expression in an ignored context. 3053 } else { 3054 CGF.EmitIgnoredExpr(semantic); 3055 } 3056 } 3057 3058 // Unbind all the opaques now. 3059 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3060 opaques[i].unbind(CGF); 3061 3062 return result; 3063 } 3064 3065 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3066 AggValueSlot slot) { 3067 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3068 } 3069 3070 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3071 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3072 } 3073