1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "llvm/ADT/Hashing.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/Support/ConvertUTF.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/Path.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 #include <string>
43 
44 using namespace clang;
45 using namespace CodeGen;
46 
47 //===--------------------------------------------------------------------===//
48 //                        Miscellaneous Helper Methods
49 //===--------------------------------------------------------------------===//
50 
51 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
52   unsigned addressSpace =
53       cast<llvm::PointerType>(value->getType())->getAddressSpace();
54 
55   llvm::PointerType *destType = Int8PtrTy;
56   if (addressSpace)
57     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
58 
59   if (value->getType() == destType) return value;
60   return Builder.CreateBitCast(value, destType);
61 }
62 
63 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
64 /// block.
65 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
66                                                      CharUnits Align,
67                                                      const Twine &Name,
68                                                      llvm::Value *ArraySize) {
69   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
70   Alloca->setAlignment(Align.getAsAlign());
71   return Address(Alloca, Align);
72 }
73 
74 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
75 /// block. The alloca is casted to default address space if necessary.
76 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
77                                           const Twine &Name,
78                                           llvm::Value *ArraySize,
79                                           Address *AllocaAddr) {
80   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
81   if (AllocaAddr)
82     *AllocaAddr = Alloca;
83   llvm::Value *V = Alloca.getPointer();
84   // Alloca always returns a pointer in alloca address space, which may
85   // be different from the type defined by the language. For example,
86   // in C++ the auto variables are in the default address space. Therefore
87   // cast alloca to the default address space when necessary.
88   if (getASTAllocaAddressSpace() != LangAS::Default) {
89     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
90     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
91     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
92     // otherwise alloca is inserted at the current insertion point of the
93     // builder.
94     if (!ArraySize)
95       Builder.SetInsertPoint(AllocaInsertPt);
96     V = getTargetHooks().performAddrSpaceCast(
97         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
98         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
99   }
100 
101   return Address(V, Align);
102 }
103 
104 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
105 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
106 /// insertion point of the builder.
107 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
108                                                     const Twine &Name,
109                                                     llvm::Value *ArraySize) {
110   if (ArraySize)
111     return Builder.CreateAlloca(Ty, ArraySize, Name);
112   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
113                               ArraySize, Name, AllocaInsertPt);
114 }
115 
116 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
117 /// default alignment of the corresponding LLVM type, which is *not*
118 /// guaranteed to be related in any way to the expected alignment of
119 /// an AST type that might have been lowered to Ty.
120 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
121                                                       const Twine &Name) {
122   CharUnits Align =
123     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
124   return CreateTempAlloca(Ty, Align, Name);
125 }
126 
127 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
128   assert(isa<llvm::AllocaInst>(Var.getPointer()));
129   auto *Store = new llvm::StoreInst(Init, Var.getPointer(), /*volatile*/ false,
130                                     Var.getAlignment().getAsAlign());
131   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
132   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
133 }
134 
135 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
136   CharUnits Align = getContext().getTypeAlignInChars(Ty);
137   return CreateTempAlloca(ConvertType(Ty), Align, Name);
138 }
139 
140 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
141                                        Address *Alloca) {
142   // FIXME: Should we prefer the preferred type alignment here?
143   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
144 }
145 
146 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
147                                        const Twine &Name, Address *Alloca) {
148   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
149                                     /*ArraySize=*/nullptr, Alloca);
150 
151   if (Ty->isConstantMatrixType()) {
152     auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
153     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
154                                                 ArrayTy->getNumElements());
155 
156     Result = Address(
157         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
158         Result.getAlignment());
159   }
160   return Result;
161 }
162 
163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
164                                                   const Twine &Name) {
165   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
166 }
167 
168 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
169                                                   const Twine &Name) {
170   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
171                                   Name);
172 }
173 
174 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
175 /// expression and compare the result against zero, returning an Int1Ty value.
176 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
177   PGO.setCurrentStmt(E);
178   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
179     llvm::Value *MemPtr = EmitScalarExpr(E);
180     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
181   }
182 
183   QualType BoolTy = getContext().BoolTy;
184   SourceLocation Loc = E->getExprLoc();
185   if (!E->getType()->isAnyComplexType())
186     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
187 
188   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
189                                        Loc);
190 }
191 
192 /// EmitIgnoredExpr - Emit code to compute the specified expression,
193 /// ignoring the result.
194 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
195   if (E->isRValue())
196     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
197 
198   // Just emit it as an l-value and drop the result.
199   EmitLValue(E);
200 }
201 
202 /// EmitAnyExpr - Emit code to compute the specified expression which
203 /// can have any type.  The result is returned as an RValue struct.
204 /// If this is an aggregate expression, AggSlot indicates where the
205 /// result should be returned.
206 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
207                                     AggValueSlot aggSlot,
208                                     bool ignoreResult) {
209   switch (getEvaluationKind(E->getType())) {
210   case TEK_Scalar:
211     return RValue::get(EmitScalarExpr(E, ignoreResult));
212   case TEK_Complex:
213     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
214   case TEK_Aggregate:
215     if (!ignoreResult && aggSlot.isIgnored())
216       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
217     EmitAggExpr(E, aggSlot);
218     return aggSlot.asRValue();
219   }
220   llvm_unreachable("bad evaluation kind");
221 }
222 
223 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
224 /// always be accessible even if no aggregate location is provided.
225 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
226   AggValueSlot AggSlot = AggValueSlot::ignored();
227 
228   if (hasAggregateEvaluationKind(E->getType()))
229     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
230   return EmitAnyExpr(E, AggSlot);
231 }
232 
233 /// EmitAnyExprToMem - Evaluate an expression into a given memory
234 /// location.
235 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
236                                        Address Location,
237                                        Qualifiers Quals,
238                                        bool IsInit) {
239   // FIXME: This function should take an LValue as an argument.
240   switch (getEvaluationKind(E->getType())) {
241   case TEK_Complex:
242     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
243                               /*isInit*/ false);
244     return;
245 
246   case TEK_Aggregate: {
247     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
248                                          AggValueSlot::IsDestructed_t(IsInit),
249                                          AggValueSlot::DoesNotNeedGCBarriers,
250                                          AggValueSlot::IsAliased_t(!IsInit),
251                                          AggValueSlot::MayOverlap));
252     return;
253   }
254 
255   case TEK_Scalar: {
256     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
257     LValue LV = MakeAddrLValue(Location, E->getType());
258     EmitStoreThroughLValue(RV, LV);
259     return;
260   }
261   }
262   llvm_unreachable("bad evaluation kind");
263 }
264 
265 static void
266 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
267                      const Expr *E, Address ReferenceTemporary) {
268   // Objective-C++ ARC:
269   //   If we are binding a reference to a temporary that has ownership, we
270   //   need to perform retain/release operations on the temporary.
271   //
272   // FIXME: This should be looking at E, not M.
273   if (auto Lifetime = M->getType().getObjCLifetime()) {
274     switch (Lifetime) {
275     case Qualifiers::OCL_None:
276     case Qualifiers::OCL_ExplicitNone:
277       // Carry on to normal cleanup handling.
278       break;
279 
280     case Qualifiers::OCL_Autoreleasing:
281       // Nothing to do; cleaned up by an autorelease pool.
282       return;
283 
284     case Qualifiers::OCL_Strong:
285     case Qualifiers::OCL_Weak:
286       switch (StorageDuration Duration = M->getStorageDuration()) {
287       case SD_Static:
288         // Note: we intentionally do not register a cleanup to release
289         // the object on program termination.
290         return;
291 
292       case SD_Thread:
293         // FIXME: We should probably register a cleanup in this case.
294         return;
295 
296       case SD_Automatic:
297       case SD_FullExpression:
298         CodeGenFunction::Destroyer *Destroy;
299         CleanupKind CleanupKind;
300         if (Lifetime == Qualifiers::OCL_Strong) {
301           const ValueDecl *VD = M->getExtendingDecl();
302           bool Precise =
303               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
304           CleanupKind = CGF.getARCCleanupKind();
305           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
306                             : &CodeGenFunction::destroyARCStrongImprecise;
307         } else {
308           // __weak objects always get EH cleanups; otherwise, exceptions
309           // could cause really nasty crashes instead of mere leaks.
310           CleanupKind = NormalAndEHCleanup;
311           Destroy = &CodeGenFunction::destroyARCWeak;
312         }
313         if (Duration == SD_FullExpression)
314           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
315                           M->getType(), *Destroy,
316                           CleanupKind & EHCleanup);
317         else
318           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
319                                           M->getType(),
320                                           *Destroy, CleanupKind & EHCleanup);
321         return;
322 
323       case SD_Dynamic:
324         llvm_unreachable("temporary cannot have dynamic storage duration");
325       }
326       llvm_unreachable("unknown storage duration");
327     }
328   }
329 
330   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
331   if (const RecordType *RT =
332           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
333     // Get the destructor for the reference temporary.
334     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
335     if (!ClassDecl->hasTrivialDestructor())
336       ReferenceTemporaryDtor = ClassDecl->getDestructor();
337   }
338 
339   if (!ReferenceTemporaryDtor)
340     return;
341 
342   // Call the destructor for the temporary.
343   switch (M->getStorageDuration()) {
344   case SD_Static:
345   case SD_Thread: {
346     llvm::FunctionCallee CleanupFn;
347     llvm::Constant *CleanupArg;
348     if (E->getType()->isArrayType()) {
349       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
350           ReferenceTemporary, E->getType(),
351           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
352           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
353       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
354     } else {
355       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
356           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
357       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
358     }
359     CGF.CGM.getCXXABI().registerGlobalDtor(
360         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
361     break;
362   }
363 
364   case SD_FullExpression:
365     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
366                     CodeGenFunction::destroyCXXObject,
367                     CGF.getLangOpts().Exceptions);
368     break;
369 
370   case SD_Automatic:
371     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
372                                     ReferenceTemporary, E->getType(),
373                                     CodeGenFunction::destroyCXXObject,
374                                     CGF.getLangOpts().Exceptions);
375     break;
376 
377   case SD_Dynamic:
378     llvm_unreachable("temporary cannot have dynamic storage duration");
379   }
380 }
381 
382 static Address createReferenceTemporary(CodeGenFunction &CGF,
383                                         const MaterializeTemporaryExpr *M,
384                                         const Expr *Inner,
385                                         Address *Alloca = nullptr) {
386   auto &TCG = CGF.getTargetHooks();
387   switch (M->getStorageDuration()) {
388   case SD_FullExpression:
389   case SD_Automatic: {
390     // If we have a constant temporary array or record try to promote it into a
391     // constant global under the same rules a normal constant would've been
392     // promoted. This is easier on the optimizer and generally emits fewer
393     // instructions.
394     QualType Ty = Inner->getType();
395     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
396         (Ty->isArrayType() || Ty->isRecordType()) &&
397         CGF.CGM.isTypeConstant(Ty, true))
398       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
399         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
400           auto AS = AddrSpace.getValue();
401           auto *GV = new llvm::GlobalVariable(
402               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
403               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
404               llvm::GlobalValue::NotThreadLocal,
405               CGF.getContext().getTargetAddressSpace(AS));
406           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
407           GV->setAlignment(alignment.getAsAlign());
408           llvm::Constant *C = GV;
409           if (AS != LangAS::Default)
410             C = TCG.performAddrSpaceCast(
411                 CGF.CGM, GV, AS, LangAS::Default,
412                 GV->getValueType()->getPointerTo(
413                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
414           // FIXME: Should we put the new global into a COMDAT?
415           return Address(C, alignment);
416         }
417       }
418     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
419   }
420   case SD_Thread:
421   case SD_Static:
422     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
423 
424   case SD_Dynamic:
425     llvm_unreachable("temporary can't have dynamic storage duration");
426   }
427   llvm_unreachable("unknown storage duration");
428 }
429 
430 /// Helper method to check if the underlying ABI is AAPCS
431 static bool isAAPCS(const TargetInfo &TargetInfo) {
432   return TargetInfo.getABI().startswith("aapcs");
433 }
434 
435 LValue CodeGenFunction::
436 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
437   const Expr *E = M->getSubExpr();
438 
439   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
440           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
441          "Reference should never be pseudo-strong!");
442 
443   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
444   // as that will cause the lifetime adjustment to be lost for ARC
445   auto ownership = M->getType().getObjCLifetime();
446   if (ownership != Qualifiers::OCL_None &&
447       ownership != Qualifiers::OCL_ExplicitNone) {
448     Address Object = createReferenceTemporary(*this, M, E);
449     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
450       Object = Address(llvm::ConstantExpr::getBitCast(Var,
451                            ConvertTypeForMem(E->getType())
452                              ->getPointerTo(Object.getAddressSpace())),
453                        Object.getAlignment());
454 
455       // createReferenceTemporary will promote the temporary to a global with a
456       // constant initializer if it can.  It can only do this to a value of
457       // ARC-manageable type if the value is global and therefore "immune" to
458       // ref-counting operations.  Therefore we have no need to emit either a
459       // dynamic initialization or a cleanup and we can just return the address
460       // of the temporary.
461       if (Var->hasInitializer())
462         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
463 
464       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
465     }
466     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
467                                        AlignmentSource::Decl);
468 
469     switch (getEvaluationKind(E->getType())) {
470     default: llvm_unreachable("expected scalar or aggregate expression");
471     case TEK_Scalar:
472       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
473       break;
474     case TEK_Aggregate: {
475       EmitAggExpr(E, AggValueSlot::forAddr(Object,
476                                            E->getType().getQualifiers(),
477                                            AggValueSlot::IsDestructed,
478                                            AggValueSlot::DoesNotNeedGCBarriers,
479                                            AggValueSlot::IsNotAliased,
480                                            AggValueSlot::DoesNotOverlap));
481       break;
482     }
483     }
484 
485     pushTemporaryCleanup(*this, M, E, Object);
486     return RefTempDst;
487   }
488 
489   SmallVector<const Expr *, 2> CommaLHSs;
490   SmallVector<SubobjectAdjustment, 2> Adjustments;
491   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
492 
493   for (const auto &Ignored : CommaLHSs)
494     EmitIgnoredExpr(Ignored);
495 
496   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
497     if (opaque->getType()->isRecordType()) {
498       assert(Adjustments.empty());
499       return EmitOpaqueValueLValue(opaque);
500     }
501   }
502 
503   // Create and initialize the reference temporary.
504   Address Alloca = Address::invalid();
505   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
506   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
507           Object.getPointer()->stripPointerCasts())) {
508     Object = Address(llvm::ConstantExpr::getBitCast(
509                          cast<llvm::Constant>(Object.getPointer()),
510                          ConvertTypeForMem(E->getType())->getPointerTo()),
511                      Object.getAlignment());
512     // If the temporary is a global and has a constant initializer or is a
513     // constant temporary that we promoted to a global, we may have already
514     // initialized it.
515     if (!Var->hasInitializer()) {
516       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
517       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
518     }
519   } else {
520     switch (M->getStorageDuration()) {
521     case SD_Automatic:
522       if (auto *Size = EmitLifetimeStart(
523               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
524               Alloca.getPointer())) {
525         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
526                                                   Alloca, Size);
527       }
528       break;
529 
530     case SD_FullExpression: {
531       if (!ShouldEmitLifetimeMarkers)
532         break;
533 
534       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
535       // marker. Instead, start the lifetime of a conditional temporary earlier
536       // so that it's unconditional. Don't do this with sanitizers which need
537       // more precise lifetime marks.
538       ConditionalEvaluation *OldConditional = nullptr;
539       CGBuilderTy::InsertPoint OldIP;
540       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
541           !SanOpts.has(SanitizerKind::HWAddress) &&
542           !SanOpts.has(SanitizerKind::Memory) &&
543           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
544         OldConditional = OutermostConditional;
545         OutermostConditional = nullptr;
546 
547         OldIP = Builder.saveIP();
548         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
549         Builder.restoreIP(CGBuilderTy::InsertPoint(
550             Block, llvm::BasicBlock::iterator(Block->back())));
551       }
552 
553       if (auto *Size = EmitLifetimeStart(
554               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
555               Alloca.getPointer())) {
556         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
557                                              Size);
558       }
559 
560       if (OldConditional) {
561         OutermostConditional = OldConditional;
562         Builder.restoreIP(OldIP);
563       }
564       break;
565     }
566 
567     default:
568       break;
569     }
570     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
571   }
572   pushTemporaryCleanup(*this, M, E, Object);
573 
574   // Perform derived-to-base casts and/or field accesses, to get from the
575   // temporary object we created (and, potentially, for which we extended
576   // the lifetime) to the subobject we're binding the reference to.
577   for (unsigned I = Adjustments.size(); I != 0; --I) {
578     SubobjectAdjustment &Adjustment = Adjustments[I-1];
579     switch (Adjustment.Kind) {
580     case SubobjectAdjustment::DerivedToBaseAdjustment:
581       Object =
582           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
583                                 Adjustment.DerivedToBase.BasePath->path_begin(),
584                                 Adjustment.DerivedToBase.BasePath->path_end(),
585                                 /*NullCheckValue=*/ false, E->getExprLoc());
586       break;
587 
588     case SubobjectAdjustment::FieldAdjustment: {
589       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
590       LV = EmitLValueForField(LV, Adjustment.Field);
591       assert(LV.isSimple() &&
592              "materialized temporary field is not a simple lvalue");
593       Object = LV.getAddress(*this);
594       break;
595     }
596 
597     case SubobjectAdjustment::MemberPointerAdjustment: {
598       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
599       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
600                                                Adjustment.Ptr.MPT);
601       break;
602     }
603     }
604   }
605 
606   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
607 }
608 
609 RValue
610 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
611   // Emit the expression as an lvalue.
612   LValue LV = EmitLValue(E);
613   assert(LV.isSimple());
614   llvm::Value *Value = LV.getPointer(*this);
615 
616   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
617     // C++11 [dcl.ref]p5 (as amended by core issue 453):
618     //   If a glvalue to which a reference is directly bound designates neither
619     //   an existing object or function of an appropriate type nor a region of
620     //   storage of suitable size and alignment to contain an object of the
621     //   reference's type, the behavior is undefined.
622     QualType Ty = E->getType();
623     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
624   }
625 
626   return RValue::get(Value);
627 }
628 
629 
630 /// getAccessedFieldNo - Given an encoded value and a result number, return the
631 /// input field number being accessed.
632 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
633                                              const llvm::Constant *Elts) {
634   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
635       ->getZExtValue();
636 }
637 
638 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
639 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
640                                     llvm::Value *High) {
641   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
642   llvm::Value *K47 = Builder.getInt64(47);
643   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
644   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
645   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
646   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
647   return Builder.CreateMul(B1, KMul);
648 }
649 
650 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
651   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
652          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
653 }
654 
655 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
656   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
657   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
658          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
659           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
660           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
661 }
662 
663 bool CodeGenFunction::sanitizePerformTypeCheck() const {
664   return SanOpts.has(SanitizerKind::Null) |
665          SanOpts.has(SanitizerKind::Alignment) |
666          SanOpts.has(SanitizerKind::ObjectSize) |
667          SanOpts.has(SanitizerKind::Vptr);
668 }
669 
670 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
671                                     llvm::Value *Ptr, QualType Ty,
672                                     CharUnits Alignment,
673                                     SanitizerSet SkippedChecks,
674                                     llvm::Value *ArraySize) {
675   if (!sanitizePerformTypeCheck())
676     return;
677 
678   // Don't check pointers outside the default address space. The null check
679   // isn't correct, the object-size check isn't supported by LLVM, and we can't
680   // communicate the addresses to the runtime handler for the vptr check.
681   if (Ptr->getType()->getPointerAddressSpace())
682     return;
683 
684   // Don't check pointers to volatile data. The behavior here is implementation-
685   // defined.
686   if (Ty.isVolatileQualified())
687     return;
688 
689   SanitizerScope SanScope(this);
690 
691   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
692   llvm::BasicBlock *Done = nullptr;
693 
694   // Quickly determine whether we have a pointer to an alloca. It's possible
695   // to skip null checks, and some alignment checks, for these pointers. This
696   // can reduce compile-time significantly.
697   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
698 
699   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
700   llvm::Value *IsNonNull = nullptr;
701   bool IsGuaranteedNonNull =
702       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
703   bool AllowNullPointers = isNullPointerAllowed(TCK);
704   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
705       !IsGuaranteedNonNull) {
706     // The glvalue must not be an empty glvalue.
707     IsNonNull = Builder.CreateIsNotNull(Ptr);
708 
709     // The IR builder can constant-fold the null check if the pointer points to
710     // a constant.
711     IsGuaranteedNonNull = IsNonNull == True;
712 
713     // Skip the null check if the pointer is known to be non-null.
714     if (!IsGuaranteedNonNull) {
715       if (AllowNullPointers) {
716         // When performing pointer casts, it's OK if the value is null.
717         // Skip the remaining checks in that case.
718         Done = createBasicBlock("null");
719         llvm::BasicBlock *Rest = createBasicBlock("not.null");
720         Builder.CreateCondBr(IsNonNull, Rest, Done);
721         EmitBlock(Rest);
722       } else {
723         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
724       }
725     }
726   }
727 
728   if (SanOpts.has(SanitizerKind::ObjectSize) &&
729       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
730       !Ty->isIncompleteType()) {
731     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
732     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
733     if (ArraySize)
734       Size = Builder.CreateMul(Size, ArraySize);
735 
736     // Degenerate case: new X[0] does not need an objectsize check.
737     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
738     if (!ConstantSize || !ConstantSize->isNullValue()) {
739       // The glvalue must refer to a large enough storage region.
740       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
741       //        to check this.
742       // FIXME: Get object address space
743       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
744       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
745       llvm::Value *Min = Builder.getFalse();
746       llvm::Value *NullIsUnknown = Builder.getFalse();
747       llvm::Value *Dynamic = Builder.getFalse();
748       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
749       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
750           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
751       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
752     }
753   }
754 
755   uint64_t AlignVal = 0;
756   llvm::Value *PtrAsInt = nullptr;
757 
758   if (SanOpts.has(SanitizerKind::Alignment) &&
759       !SkippedChecks.has(SanitizerKind::Alignment)) {
760     AlignVal = Alignment.getQuantity();
761     if (!Ty->isIncompleteType() && !AlignVal)
762       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
763                                              /*ForPointeeType=*/true)
764                      .getQuantity();
765 
766     // The glvalue must be suitably aligned.
767     if (AlignVal > 1 &&
768         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
769       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
770       llvm::Value *Align = Builder.CreateAnd(
771           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
772       llvm::Value *Aligned =
773           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
774       if (Aligned != True)
775         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
776     }
777   }
778 
779   if (Checks.size() > 0) {
780     // Make sure we're not losing information. Alignment needs to be a power of
781     // 2
782     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
783     llvm::Constant *StaticData[] = {
784         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
785         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
786         llvm::ConstantInt::get(Int8Ty, TCK)};
787     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
788               PtrAsInt ? PtrAsInt : Ptr);
789   }
790 
791   // If possible, check that the vptr indicates that there is a subobject of
792   // type Ty at offset zero within this object.
793   //
794   // C++11 [basic.life]p5,6:
795   //   [For storage which does not refer to an object within its lifetime]
796   //   The program has undefined behavior if:
797   //    -- the [pointer or glvalue] is used to access a non-static data member
798   //       or call a non-static member function
799   if (SanOpts.has(SanitizerKind::Vptr) &&
800       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
801     // Ensure that the pointer is non-null before loading it. If there is no
802     // compile-time guarantee, reuse the run-time null check or emit a new one.
803     if (!IsGuaranteedNonNull) {
804       if (!IsNonNull)
805         IsNonNull = Builder.CreateIsNotNull(Ptr);
806       if (!Done)
807         Done = createBasicBlock("vptr.null");
808       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
809       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
810       EmitBlock(VptrNotNull);
811     }
812 
813     // Compute a hash of the mangled name of the type.
814     //
815     // FIXME: This is not guaranteed to be deterministic! Move to a
816     //        fingerprinting mechanism once LLVM provides one. For the time
817     //        being the implementation happens to be deterministic.
818     SmallString<64> MangledName;
819     llvm::raw_svector_ostream Out(MangledName);
820     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
821                                                      Out);
822 
823     // Blacklist based on the mangled type.
824     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
825             SanitizerKind::Vptr, Out.str())) {
826       llvm::hash_code TypeHash = hash_value(Out.str());
827 
828       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
829       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
830       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
831       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
832       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
833       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
834 
835       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
836       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
837 
838       // Look the hash up in our cache.
839       const int CacheSize = 128;
840       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
841       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
842                                                      "__ubsan_vptr_type_cache");
843       llvm::Value *Slot = Builder.CreateAnd(Hash,
844                                             llvm::ConstantInt::get(IntPtrTy,
845                                                                    CacheSize-1));
846       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
847       llvm::Value *CacheVal =
848         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
849                                   getPointerAlign());
850 
851       // If the hash isn't in the cache, call a runtime handler to perform the
852       // hard work of checking whether the vptr is for an object of the right
853       // type. This will either fill in the cache and return, or produce a
854       // diagnostic.
855       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
856       llvm::Constant *StaticData[] = {
857         EmitCheckSourceLocation(Loc),
858         EmitCheckTypeDescriptor(Ty),
859         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
860         llvm::ConstantInt::get(Int8Ty, TCK)
861       };
862       llvm::Value *DynamicData[] = { Ptr, Hash };
863       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
864                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
865                 DynamicData);
866     }
867   }
868 
869   if (Done) {
870     Builder.CreateBr(Done);
871     EmitBlock(Done);
872   }
873 }
874 
875 /// Determine whether this expression refers to a flexible array member in a
876 /// struct. We disable array bounds checks for such members.
877 static bool isFlexibleArrayMemberExpr(const Expr *E) {
878   // For compatibility with existing code, we treat arrays of length 0 or
879   // 1 as flexible array members.
880   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
881   // the two mechanisms.
882   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
883   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
884     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
885     // was produced by macro expansion.
886     if (CAT->getSize().ugt(1))
887       return false;
888   } else if (!isa<IncompleteArrayType>(AT))
889     return false;
890 
891   E = E->IgnoreParens();
892 
893   // A flexible array member must be the last member in the class.
894   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
895     // FIXME: If the base type of the member expr is not FD->getParent(),
896     // this should not be treated as a flexible array member access.
897     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
898       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
899       // member, only a T[0] or T[] member gets that treatment.
900       if (FD->getParent()->isUnion())
901         return true;
902       RecordDecl::field_iterator FI(
903           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
904       return ++FI == FD->getParent()->field_end();
905     }
906   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
907     return IRE->getDecl()->getNextIvar() == nullptr;
908   }
909 
910   return false;
911 }
912 
913 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
914                                                    QualType EltTy) {
915   ASTContext &C = getContext();
916   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
917   if (!EltSize)
918     return nullptr;
919 
920   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
921   if (!ArrayDeclRef)
922     return nullptr;
923 
924   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
925   if (!ParamDecl)
926     return nullptr;
927 
928   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
929   if (!POSAttr)
930     return nullptr;
931 
932   // Don't load the size if it's a lower bound.
933   int POSType = POSAttr->getType();
934   if (POSType != 0 && POSType != 1)
935     return nullptr;
936 
937   // Find the implicit size parameter.
938   auto PassedSizeIt = SizeArguments.find(ParamDecl);
939   if (PassedSizeIt == SizeArguments.end())
940     return nullptr;
941 
942   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
943   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
944   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
945   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
946                                               C.getSizeType(), E->getExprLoc());
947   llvm::Value *SizeOfElement =
948       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
949   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
950 }
951 
952 /// If Base is known to point to the start of an array, return the length of
953 /// that array. Return 0 if the length cannot be determined.
954 static llvm::Value *getArrayIndexingBound(
955     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
956   // For the vector indexing extension, the bound is the number of elements.
957   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
958     IndexedType = Base->getType();
959     return CGF.Builder.getInt32(VT->getNumElements());
960   }
961 
962   Base = Base->IgnoreParens();
963 
964   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
965     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
966         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
967       IndexedType = CE->getSubExpr()->getType();
968       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
969       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
970         return CGF.Builder.getInt(CAT->getSize());
971       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
972         return CGF.getVLASize(VAT).NumElts;
973       // Ignore pass_object_size here. It's not applicable on decayed pointers.
974     }
975   }
976 
977   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
978   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
979     IndexedType = Base->getType();
980     return POS;
981   }
982 
983   return nullptr;
984 }
985 
986 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
987                                       llvm::Value *Index, QualType IndexType,
988                                       bool Accessed) {
989   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
990          "should not be called unless adding bounds checks");
991   SanitizerScope SanScope(this);
992 
993   QualType IndexedType;
994   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
995   if (!Bound)
996     return;
997 
998   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
999   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1000   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1001 
1002   llvm::Constant *StaticData[] = {
1003     EmitCheckSourceLocation(E->getExprLoc()),
1004     EmitCheckTypeDescriptor(IndexedType),
1005     EmitCheckTypeDescriptor(IndexType)
1006   };
1007   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1008                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1009   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1010             SanitizerHandler::OutOfBounds, StaticData, Index);
1011 }
1012 
1013 
1014 CodeGenFunction::ComplexPairTy CodeGenFunction::
1015 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1016                          bool isInc, bool isPre) {
1017   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1018 
1019   llvm::Value *NextVal;
1020   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1021     uint64_t AmountVal = isInc ? 1 : -1;
1022     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1023 
1024     // Add the inc/dec to the real part.
1025     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1026   } else {
1027     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1028     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1029     if (!isInc)
1030       FVal.changeSign();
1031     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1032 
1033     // Add the inc/dec to the real part.
1034     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1035   }
1036 
1037   ComplexPairTy IncVal(NextVal, InVal.second);
1038 
1039   // Store the updated result through the lvalue.
1040   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1041   if (getLangOpts().OpenMP)
1042     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1043                                                               E->getSubExpr());
1044 
1045   // If this is a postinc, return the value read from memory, otherwise use the
1046   // updated value.
1047   return isPre ? IncVal : InVal;
1048 }
1049 
1050 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1051                                              CodeGenFunction *CGF) {
1052   // Bind VLAs in the cast type.
1053   if (CGF && E->getType()->isVariablyModifiedType())
1054     CGF->EmitVariablyModifiedType(E->getType());
1055 
1056   if (CGDebugInfo *DI = getModuleDebugInfo())
1057     DI->EmitExplicitCastType(E->getType());
1058 }
1059 
1060 //===----------------------------------------------------------------------===//
1061 //                         LValue Expression Emission
1062 //===----------------------------------------------------------------------===//
1063 
1064 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1065 /// derive a more accurate bound on the alignment of the pointer.
1066 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1067                                                   LValueBaseInfo *BaseInfo,
1068                                                   TBAAAccessInfo *TBAAInfo) {
1069   // We allow this with ObjC object pointers because of fragile ABIs.
1070   assert(E->getType()->isPointerType() ||
1071          E->getType()->isObjCObjectPointerType());
1072   E = E->IgnoreParens();
1073 
1074   // Casts:
1075   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1076     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1077       CGM.EmitExplicitCastExprType(ECE, this);
1078 
1079     switch (CE->getCastKind()) {
1080     // Non-converting casts (but not C's implicit conversion from void*).
1081     case CK_BitCast:
1082     case CK_NoOp:
1083     case CK_AddressSpaceConversion:
1084       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1085         if (PtrTy->getPointeeType()->isVoidType())
1086           break;
1087 
1088         LValueBaseInfo InnerBaseInfo;
1089         TBAAAccessInfo InnerTBAAInfo;
1090         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1091                                                 &InnerBaseInfo,
1092                                                 &InnerTBAAInfo);
1093         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1094         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1095 
1096         if (isa<ExplicitCastExpr>(CE)) {
1097           LValueBaseInfo TargetTypeBaseInfo;
1098           TBAAAccessInfo TargetTypeTBAAInfo;
1099           CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1100               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1101           if (TBAAInfo)
1102             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1103                                                  TargetTypeTBAAInfo);
1104           // If the source l-value is opaque, honor the alignment of the
1105           // casted-to type.
1106           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1107             if (BaseInfo)
1108               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1109             Addr = Address(Addr.getPointer(), Align);
1110           }
1111         }
1112 
1113         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1114             CE->getCastKind() == CK_BitCast) {
1115           if (auto PT = E->getType()->getAs<PointerType>())
1116             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1117                                       /*MayBeNull=*/true,
1118                                       CodeGenFunction::CFITCK_UnrelatedCast,
1119                                       CE->getBeginLoc());
1120         }
1121         return CE->getCastKind() != CK_AddressSpaceConversion
1122                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1123                    : Builder.CreateAddrSpaceCast(Addr,
1124                                                  ConvertType(E->getType()));
1125       }
1126       break;
1127 
1128     // Array-to-pointer decay.
1129     case CK_ArrayToPointerDecay:
1130       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1131 
1132     // Derived-to-base conversions.
1133     case CK_UncheckedDerivedToBase:
1134     case CK_DerivedToBase: {
1135       // TODO: Support accesses to members of base classes in TBAA. For now, we
1136       // conservatively pretend that the complete object is of the base class
1137       // type.
1138       if (TBAAInfo)
1139         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1140       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1141       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1142       return GetAddressOfBaseClass(Addr, Derived,
1143                                    CE->path_begin(), CE->path_end(),
1144                                    ShouldNullCheckClassCastValue(CE),
1145                                    CE->getExprLoc());
1146     }
1147 
1148     // TODO: Is there any reason to treat base-to-derived conversions
1149     // specially?
1150     default:
1151       break;
1152     }
1153   }
1154 
1155   // Unary &.
1156   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1157     if (UO->getOpcode() == UO_AddrOf) {
1158       LValue LV = EmitLValue(UO->getSubExpr());
1159       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1160       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1161       return LV.getAddress(*this);
1162     }
1163   }
1164 
1165   // TODO: conditional operators, comma.
1166 
1167   // Otherwise, use the alignment of the type.
1168   CharUnits Align =
1169       CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1170   return Address(EmitScalarExpr(E), Align);
1171 }
1172 
1173 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1174   if (Ty->isVoidType())
1175     return RValue::get(nullptr);
1176 
1177   switch (getEvaluationKind(Ty)) {
1178   case TEK_Complex: {
1179     llvm::Type *EltTy =
1180       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1181     llvm::Value *U = llvm::UndefValue::get(EltTy);
1182     return RValue::getComplex(std::make_pair(U, U));
1183   }
1184 
1185   // If this is a use of an undefined aggregate type, the aggregate must have an
1186   // identifiable address.  Just because the contents of the value are undefined
1187   // doesn't mean that the address can't be taken and compared.
1188   case TEK_Aggregate: {
1189     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1190     return RValue::getAggregate(DestPtr);
1191   }
1192 
1193   case TEK_Scalar:
1194     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1195   }
1196   llvm_unreachable("bad evaluation kind");
1197 }
1198 
1199 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1200                                               const char *Name) {
1201   ErrorUnsupported(E, Name);
1202   return GetUndefRValue(E->getType());
1203 }
1204 
1205 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1206                                               const char *Name) {
1207   ErrorUnsupported(E, Name);
1208   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1209   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1210                         E->getType());
1211 }
1212 
1213 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1214   const Expr *Base = Obj;
1215   while (!isa<CXXThisExpr>(Base)) {
1216     // The result of a dynamic_cast can be null.
1217     if (isa<CXXDynamicCastExpr>(Base))
1218       return false;
1219 
1220     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1221       Base = CE->getSubExpr();
1222     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1223       Base = PE->getSubExpr();
1224     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1225       if (UO->getOpcode() == UO_Extension)
1226         Base = UO->getSubExpr();
1227       else
1228         return false;
1229     } else {
1230       return false;
1231     }
1232   }
1233   return true;
1234 }
1235 
1236 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1237   LValue LV;
1238   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1239     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1240   else
1241     LV = EmitLValue(E);
1242   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1243     SanitizerSet SkippedChecks;
1244     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1245       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1246       if (IsBaseCXXThis)
1247         SkippedChecks.set(SanitizerKind::Alignment, true);
1248       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1249         SkippedChecks.set(SanitizerKind::Null, true);
1250     }
1251     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1252                   LV.getAlignment(), SkippedChecks);
1253   }
1254   return LV;
1255 }
1256 
1257 /// EmitLValue - Emit code to compute a designator that specifies the location
1258 /// of the expression.
1259 ///
1260 /// This can return one of two things: a simple address or a bitfield reference.
1261 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1262 /// an LLVM pointer type.
1263 ///
1264 /// If this returns a bitfield reference, nothing about the pointee type of the
1265 /// LLVM value is known: For example, it may not be a pointer to an integer.
1266 ///
1267 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1268 /// this method guarantees that the returned pointer type will point to an LLVM
1269 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1270 /// length type, this is not possible.
1271 ///
1272 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1273   ApplyDebugLocation DL(*this, E);
1274   switch (E->getStmtClass()) {
1275   default: return EmitUnsupportedLValue(E, "l-value expression");
1276 
1277   case Expr::ObjCPropertyRefExprClass:
1278     llvm_unreachable("cannot emit a property reference directly");
1279 
1280   case Expr::ObjCSelectorExprClass:
1281     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1282   case Expr::ObjCIsaExprClass:
1283     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1284   case Expr::BinaryOperatorClass:
1285     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1286   case Expr::CompoundAssignOperatorClass: {
1287     QualType Ty = E->getType();
1288     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1289       Ty = AT->getValueType();
1290     if (!Ty->isAnyComplexType())
1291       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1292     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1293   }
1294   case Expr::CallExprClass:
1295   case Expr::CXXMemberCallExprClass:
1296   case Expr::CXXOperatorCallExprClass:
1297   case Expr::UserDefinedLiteralClass:
1298     return EmitCallExprLValue(cast<CallExpr>(E));
1299   case Expr::CXXRewrittenBinaryOperatorClass:
1300     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1301   case Expr::VAArgExprClass:
1302     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1303   case Expr::DeclRefExprClass:
1304     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1305   case Expr::ConstantExprClass:
1306     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1307   case Expr::ParenExprClass:
1308     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1309   case Expr::GenericSelectionExprClass:
1310     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1311   case Expr::PredefinedExprClass:
1312     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1313   case Expr::StringLiteralClass:
1314     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1315   case Expr::ObjCEncodeExprClass:
1316     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1317   case Expr::PseudoObjectExprClass:
1318     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1319   case Expr::InitListExprClass:
1320     return EmitInitListLValue(cast<InitListExpr>(E));
1321   case Expr::CXXTemporaryObjectExprClass:
1322   case Expr::CXXConstructExprClass:
1323     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1324   case Expr::CXXBindTemporaryExprClass:
1325     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1326   case Expr::CXXUuidofExprClass:
1327     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1328   case Expr::LambdaExprClass:
1329     return EmitAggExprToLValue(E);
1330 
1331   case Expr::ExprWithCleanupsClass: {
1332     const auto *cleanups = cast<ExprWithCleanups>(E);
1333     RunCleanupsScope Scope(*this);
1334     LValue LV = EmitLValue(cleanups->getSubExpr());
1335     if (LV.isSimple()) {
1336       // Defend against branches out of gnu statement expressions surrounded by
1337       // cleanups.
1338       llvm::Value *V = LV.getPointer(*this);
1339       Scope.ForceCleanup({&V});
1340       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1341                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1342     }
1343     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1344     // bitfield lvalue or some other non-simple lvalue?
1345     return LV;
1346   }
1347 
1348   case Expr::CXXDefaultArgExprClass: {
1349     auto *DAE = cast<CXXDefaultArgExpr>(E);
1350     CXXDefaultArgExprScope Scope(*this, DAE);
1351     return EmitLValue(DAE->getExpr());
1352   }
1353   case Expr::CXXDefaultInitExprClass: {
1354     auto *DIE = cast<CXXDefaultInitExpr>(E);
1355     CXXDefaultInitExprScope Scope(*this, DIE);
1356     return EmitLValue(DIE->getExpr());
1357   }
1358   case Expr::CXXTypeidExprClass:
1359     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1360 
1361   case Expr::ObjCMessageExprClass:
1362     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1363   case Expr::ObjCIvarRefExprClass:
1364     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1365   case Expr::StmtExprClass:
1366     return EmitStmtExprLValue(cast<StmtExpr>(E));
1367   case Expr::UnaryOperatorClass:
1368     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1369   case Expr::ArraySubscriptExprClass:
1370     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1371   case Expr::MatrixSubscriptExprClass:
1372     return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1373   case Expr::OMPArraySectionExprClass:
1374     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1375   case Expr::ExtVectorElementExprClass:
1376     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1377   case Expr::MemberExprClass:
1378     return EmitMemberExpr(cast<MemberExpr>(E));
1379   case Expr::CompoundLiteralExprClass:
1380     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1381   case Expr::ConditionalOperatorClass:
1382     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1383   case Expr::BinaryConditionalOperatorClass:
1384     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1385   case Expr::ChooseExprClass:
1386     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1387   case Expr::OpaqueValueExprClass:
1388     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1389   case Expr::SubstNonTypeTemplateParmExprClass:
1390     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1391   case Expr::ImplicitCastExprClass:
1392   case Expr::CStyleCastExprClass:
1393   case Expr::CXXFunctionalCastExprClass:
1394   case Expr::CXXStaticCastExprClass:
1395   case Expr::CXXDynamicCastExprClass:
1396   case Expr::CXXReinterpretCastExprClass:
1397   case Expr::CXXConstCastExprClass:
1398   case Expr::CXXAddrspaceCastExprClass:
1399   case Expr::ObjCBridgedCastExprClass:
1400     return EmitCastLValue(cast<CastExpr>(E));
1401 
1402   case Expr::MaterializeTemporaryExprClass:
1403     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1404 
1405   case Expr::CoawaitExprClass:
1406     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1407   case Expr::CoyieldExprClass:
1408     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1409   }
1410 }
1411 
1412 /// Given an object of the given canonical type, can we safely copy a
1413 /// value out of it based on its initializer?
1414 static bool isConstantEmittableObjectType(QualType type) {
1415   assert(type.isCanonical());
1416   assert(!type->isReferenceType());
1417 
1418   // Must be const-qualified but non-volatile.
1419   Qualifiers qs = type.getLocalQualifiers();
1420   if (!qs.hasConst() || qs.hasVolatile()) return false;
1421 
1422   // Otherwise, all object types satisfy this except C++ classes with
1423   // mutable subobjects or non-trivial copy/destroy behavior.
1424   if (const auto *RT = dyn_cast<RecordType>(type))
1425     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1426       if (RD->hasMutableFields() || !RD->isTrivial())
1427         return false;
1428 
1429   return true;
1430 }
1431 
1432 /// Can we constant-emit a load of a reference to a variable of the
1433 /// given type?  This is different from predicates like
1434 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1435 /// in situations that don't necessarily satisfy the language's rules
1436 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1437 /// to do this with const float variables even if those variables
1438 /// aren't marked 'constexpr'.
1439 enum ConstantEmissionKind {
1440   CEK_None,
1441   CEK_AsReferenceOnly,
1442   CEK_AsValueOrReference,
1443   CEK_AsValueOnly
1444 };
1445 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1446   type = type.getCanonicalType();
1447   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1448     if (isConstantEmittableObjectType(ref->getPointeeType()))
1449       return CEK_AsValueOrReference;
1450     return CEK_AsReferenceOnly;
1451   }
1452   if (isConstantEmittableObjectType(type))
1453     return CEK_AsValueOnly;
1454   return CEK_None;
1455 }
1456 
1457 /// Try to emit a reference to the given value without producing it as
1458 /// an l-value.  This is just an optimization, but it avoids us needing
1459 /// to emit global copies of variables if they're named without triggering
1460 /// a formal use in a context where we can't emit a direct reference to them,
1461 /// for instance if a block or lambda or a member of a local class uses a
1462 /// const int variable or constexpr variable from an enclosing function.
1463 CodeGenFunction::ConstantEmission
1464 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1465   ValueDecl *value = refExpr->getDecl();
1466 
1467   // The value needs to be an enum constant or a constant variable.
1468   ConstantEmissionKind CEK;
1469   if (isa<ParmVarDecl>(value)) {
1470     CEK = CEK_None;
1471   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1472     CEK = checkVarTypeForConstantEmission(var->getType());
1473   } else if (isa<EnumConstantDecl>(value)) {
1474     CEK = CEK_AsValueOnly;
1475   } else {
1476     CEK = CEK_None;
1477   }
1478   if (CEK == CEK_None) return ConstantEmission();
1479 
1480   Expr::EvalResult result;
1481   bool resultIsReference;
1482   QualType resultType;
1483 
1484   // It's best to evaluate all the way as an r-value if that's permitted.
1485   if (CEK != CEK_AsReferenceOnly &&
1486       refExpr->EvaluateAsRValue(result, getContext())) {
1487     resultIsReference = false;
1488     resultType = refExpr->getType();
1489 
1490   // Otherwise, try to evaluate as an l-value.
1491   } else if (CEK != CEK_AsValueOnly &&
1492              refExpr->EvaluateAsLValue(result, getContext())) {
1493     resultIsReference = true;
1494     resultType = value->getType();
1495 
1496   // Failure.
1497   } else {
1498     return ConstantEmission();
1499   }
1500 
1501   // In any case, if the initializer has side-effects, abandon ship.
1502   if (result.HasSideEffects)
1503     return ConstantEmission();
1504 
1505   // Emit as a constant.
1506   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1507                                                result.Val, resultType);
1508 
1509   // Make sure we emit a debug reference to the global variable.
1510   // This should probably fire even for
1511   if (isa<VarDecl>(value)) {
1512     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1513       EmitDeclRefExprDbgValue(refExpr, result.Val);
1514   } else {
1515     assert(isa<EnumConstantDecl>(value));
1516     EmitDeclRefExprDbgValue(refExpr, result.Val);
1517   }
1518 
1519   // If we emitted a reference constant, we need to dereference that.
1520   if (resultIsReference)
1521     return ConstantEmission::forReference(C);
1522 
1523   return ConstantEmission::forValue(C);
1524 }
1525 
1526 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1527                                                         const MemberExpr *ME) {
1528   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1529     // Try to emit static variable member expressions as DREs.
1530     return DeclRefExpr::Create(
1531         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1532         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1533         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1534   }
1535   return nullptr;
1536 }
1537 
1538 CodeGenFunction::ConstantEmission
1539 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1540   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1541     return tryEmitAsConstant(DRE);
1542   return ConstantEmission();
1543 }
1544 
1545 llvm::Value *CodeGenFunction::emitScalarConstant(
1546     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1547   assert(Constant && "not a constant");
1548   if (Constant.isReference())
1549     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1550                             E->getExprLoc())
1551         .getScalarVal();
1552   return Constant.getValue();
1553 }
1554 
1555 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1556                                                SourceLocation Loc) {
1557   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1558                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1559                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1560 }
1561 
1562 static bool hasBooleanRepresentation(QualType Ty) {
1563   if (Ty->isBooleanType())
1564     return true;
1565 
1566   if (const EnumType *ET = Ty->getAs<EnumType>())
1567     return ET->getDecl()->getIntegerType()->isBooleanType();
1568 
1569   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1570     return hasBooleanRepresentation(AT->getValueType());
1571 
1572   return false;
1573 }
1574 
1575 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1576                             llvm::APInt &Min, llvm::APInt &End,
1577                             bool StrictEnums, bool IsBool) {
1578   const EnumType *ET = Ty->getAs<EnumType>();
1579   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1580                                 ET && !ET->getDecl()->isFixed();
1581   if (!IsBool && !IsRegularCPlusPlusEnum)
1582     return false;
1583 
1584   if (IsBool) {
1585     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1586     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1587   } else {
1588     const EnumDecl *ED = ET->getDecl();
1589     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1590     unsigned Bitwidth = LTy->getScalarSizeInBits();
1591     unsigned NumNegativeBits = ED->getNumNegativeBits();
1592     unsigned NumPositiveBits = ED->getNumPositiveBits();
1593 
1594     if (NumNegativeBits) {
1595       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1596       assert(NumBits <= Bitwidth);
1597       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1598       Min = -End;
1599     } else {
1600       assert(NumPositiveBits <= Bitwidth);
1601       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1602       Min = llvm::APInt(Bitwidth, 0);
1603     }
1604   }
1605   return true;
1606 }
1607 
1608 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1609   llvm::APInt Min, End;
1610   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1611                        hasBooleanRepresentation(Ty)))
1612     return nullptr;
1613 
1614   llvm::MDBuilder MDHelper(getLLVMContext());
1615   return MDHelper.createRange(Min, End);
1616 }
1617 
1618 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1619                                            SourceLocation Loc) {
1620   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1621   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1622   if (!HasBoolCheck && !HasEnumCheck)
1623     return false;
1624 
1625   bool IsBool = hasBooleanRepresentation(Ty) ||
1626                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1627   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1628   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1629   if (!NeedsBoolCheck && !NeedsEnumCheck)
1630     return false;
1631 
1632   // Single-bit booleans don't need to be checked. Special-case this to avoid
1633   // a bit width mismatch when handling bitfield values. This is handled by
1634   // EmitFromMemory for the non-bitfield case.
1635   if (IsBool &&
1636       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1637     return false;
1638 
1639   llvm::APInt Min, End;
1640   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1641     return true;
1642 
1643   auto &Ctx = getLLVMContext();
1644   SanitizerScope SanScope(this);
1645   llvm::Value *Check;
1646   --End;
1647   if (!Min) {
1648     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1649   } else {
1650     llvm::Value *Upper =
1651         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1652     llvm::Value *Lower =
1653         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1654     Check = Builder.CreateAnd(Upper, Lower);
1655   }
1656   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1657                                   EmitCheckTypeDescriptor(Ty)};
1658   SanitizerMask Kind =
1659       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1660   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1661             StaticArgs, EmitCheckValue(Value));
1662   return true;
1663 }
1664 
1665 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1666                                                QualType Ty,
1667                                                SourceLocation Loc,
1668                                                LValueBaseInfo BaseInfo,
1669                                                TBAAAccessInfo TBAAInfo,
1670                                                bool isNontemporal) {
1671   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1672     // For better performance, handle vector loads differently.
1673     if (Ty->isVectorType()) {
1674       const llvm::Type *EltTy = Addr.getElementType();
1675 
1676       const auto *VTy = cast<llvm::VectorType>(EltTy);
1677 
1678       // Handle vectors of size 3 like size 4 for better performance.
1679       if (VTy->getNumElements() == 3) {
1680 
1681         // Bitcast to vec4 type.
1682         auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
1683         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1684         // Now load value.
1685         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1686 
1687         // Shuffle vector to get vec3.
1688         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1689                                         ArrayRef<int>{0, 1, 2}, "extractVec");
1690         return EmitFromMemory(V, Ty);
1691       }
1692     }
1693   }
1694 
1695   // Atomic operations have to be done on integral types.
1696   LValue AtomicLValue =
1697       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1698   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1699     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1700   }
1701 
1702   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1703   if (isNontemporal) {
1704     llvm::MDNode *Node = llvm::MDNode::get(
1705         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1706     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1707   }
1708 
1709   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1710 
1711   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1712     // In order to prevent the optimizer from throwing away the check, don't
1713     // attach range metadata to the load.
1714   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1715     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1716       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1717 
1718   return EmitFromMemory(Load, Ty);
1719 }
1720 
1721 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1722   // Bool has a different representation in memory than in registers.
1723   if (hasBooleanRepresentation(Ty)) {
1724     // This should really always be an i1, but sometimes it's already
1725     // an i8, and it's awkward to track those cases down.
1726     if (Value->getType()->isIntegerTy(1))
1727       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1728     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1729            "wrong value rep of bool");
1730   }
1731 
1732   return Value;
1733 }
1734 
1735 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1736   // Bool has a different representation in memory than in registers.
1737   if (hasBooleanRepresentation(Ty)) {
1738     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1739            "wrong value rep of bool");
1740     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1741   }
1742 
1743   return Value;
1744 }
1745 
1746 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1747 // MatrixType), if it points to a array (the memory type of MatrixType).
1748 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1749                                          bool IsVector = true) {
1750   auto *ArrayTy = dyn_cast<llvm::ArrayType>(
1751       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1752   if (ArrayTy && IsVector) {
1753     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1754                                                 ArrayTy->getNumElements());
1755 
1756     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1757   }
1758   auto *VectorTy = dyn_cast<llvm::VectorType>(
1759       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1760   if (VectorTy && !IsVector) {
1761     auto *ArrayTy = llvm::ArrayType::get(VectorTy->getElementType(),
1762                                          VectorTy->getNumElements());
1763 
1764     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1765   }
1766 
1767   return Addr;
1768 }
1769 
1770 // Emit a store of a matrix LValue. This may require casting the original
1771 // pointer to memory address (ArrayType) to a pointer to the value type
1772 // (VectorType).
1773 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1774                                     bool isInit, CodeGenFunction &CGF) {
1775   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1776                                            value->getType()->isVectorTy());
1777   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1778                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1779                         lvalue.isNontemporal());
1780 }
1781 
1782 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1783                                         bool Volatile, QualType Ty,
1784                                         LValueBaseInfo BaseInfo,
1785                                         TBAAAccessInfo TBAAInfo,
1786                                         bool isInit, bool isNontemporal) {
1787   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1788     // Handle vectors differently to get better performance.
1789     if (Ty->isVectorType()) {
1790       llvm::Type *SrcTy = Value->getType();
1791       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1792       // Handle vec3 special.
1793       if (VecTy && VecTy->getNumElements() == 3) {
1794         // Our source is a vec3, do a shuffle vector to make it a vec4.
1795         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1796                                             ArrayRef<int>{0, 1, 2, -1},
1797                                             "extractVec");
1798         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1799       }
1800       if (Addr.getElementType() != SrcTy) {
1801         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1802       }
1803     }
1804   }
1805 
1806   Value = EmitToMemory(Value, Ty);
1807 
1808   LValue AtomicLValue =
1809       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1810   if (Ty->isAtomicType() ||
1811       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1812     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1813     return;
1814   }
1815 
1816   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1817   if (isNontemporal) {
1818     llvm::MDNode *Node =
1819         llvm::MDNode::get(Store->getContext(),
1820                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1821     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1822   }
1823 
1824   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1825 }
1826 
1827 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1828                                         bool isInit) {
1829   if (lvalue.getType()->isConstantMatrixType()) {
1830     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1831     return;
1832   }
1833 
1834   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1835                     lvalue.getType(), lvalue.getBaseInfo(),
1836                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1837 }
1838 
1839 // Emit a load of a LValue of matrix type. This may require casting the pointer
1840 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1841 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1842                                      CodeGenFunction &CGF) {
1843   assert(LV.getType()->isConstantMatrixType());
1844   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1845   LV.setAddress(Addr);
1846   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1847 }
1848 
1849 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1850 /// method emits the address of the lvalue, then loads the result as an rvalue,
1851 /// returning the rvalue.
1852 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1853   if (LV.isObjCWeak()) {
1854     // load of a __weak object.
1855     Address AddrWeakObj = LV.getAddress(*this);
1856     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1857                                                              AddrWeakObj));
1858   }
1859   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1860     // In MRC mode, we do a load+autorelease.
1861     if (!getLangOpts().ObjCAutoRefCount) {
1862       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1863     }
1864 
1865     // In ARC mode, we load retained and then consume the value.
1866     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1867     Object = EmitObjCConsumeObject(LV.getType(), Object);
1868     return RValue::get(Object);
1869   }
1870 
1871   if (LV.isSimple()) {
1872     assert(!LV.getType()->isFunctionType());
1873 
1874     if (LV.getType()->isConstantMatrixType())
1875       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1876 
1877     // Everything needs a load.
1878     return RValue::get(EmitLoadOfScalar(LV, Loc));
1879   }
1880 
1881   if (LV.isVectorElt()) {
1882     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1883                                               LV.isVolatileQualified());
1884     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1885                                                     "vecext"));
1886   }
1887 
1888   // If this is a reference to a subset of the elements of a vector, either
1889   // shuffle the input or extract/insert them as appropriate.
1890   if (LV.isExtVectorElt()) {
1891     return EmitLoadOfExtVectorElementLValue(LV);
1892   }
1893 
1894   // Global Register variables always invoke intrinsics
1895   if (LV.isGlobalReg())
1896     return EmitLoadOfGlobalRegLValue(LV);
1897 
1898   if (LV.isMatrixElt()) {
1899     llvm::LoadInst *Load =
1900         Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
1901     return RValue::get(
1902         Builder.CreateExtractElement(Load, LV.getMatrixIdx(), "matrixext"));
1903   }
1904 
1905   assert(LV.isBitField() && "Unknown LValue type!");
1906   return EmitLoadOfBitfieldLValue(LV, Loc);
1907 }
1908 
1909 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1910                                                  SourceLocation Loc) {
1911   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1912 
1913   // Get the output type.
1914   llvm::Type *ResLTy = ConvertType(LV.getType());
1915 
1916   Address Ptr = LV.getBitFieldAddress();
1917   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1918 
1919   if (Info.IsSigned) {
1920     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1921     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1922     if (HighBits)
1923       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1924     if (Info.Offset + HighBits)
1925       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1926   } else {
1927     if (Info.Offset)
1928       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1929     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1930       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1931                                                               Info.Size),
1932                               "bf.clear");
1933   }
1934   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1935   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1936   return RValue::get(Val);
1937 }
1938 
1939 // If this is a reference to a subset of the elements of a vector, create an
1940 // appropriate shufflevector.
1941 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1942   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1943                                         LV.isVolatileQualified());
1944 
1945   const llvm::Constant *Elts = LV.getExtVectorElts();
1946 
1947   // If the result of the expression is a non-vector type, we must be extracting
1948   // a single element.  Just codegen as an extractelement.
1949   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1950   if (!ExprVT) {
1951     unsigned InIdx = getAccessedFieldNo(0, Elts);
1952     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1953     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1954   }
1955 
1956   // Always use shuffle vector to try to retain the original program structure
1957   unsigned NumResultElts = ExprVT->getNumElements();
1958 
1959   SmallVector<int, 4> Mask;
1960   for (unsigned i = 0; i != NumResultElts; ++i)
1961     Mask.push_back(getAccessedFieldNo(i, Elts));
1962 
1963   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1964                                     Mask);
1965   return RValue::get(Vec);
1966 }
1967 
1968 /// Generates lvalue for partial ext_vector access.
1969 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1970   Address VectorAddress = LV.getExtVectorAddress();
1971   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
1972   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1973 
1974   Address CastToPointerElement =
1975     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1976                                  "conv.ptr.element");
1977 
1978   const llvm::Constant *Elts = LV.getExtVectorElts();
1979   unsigned ix = getAccessedFieldNo(0, Elts);
1980 
1981   Address VectorBasePtrPlusIx =
1982     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1983                                    "vector.elt");
1984 
1985   return VectorBasePtrPlusIx;
1986 }
1987 
1988 /// Load of global gamed gegisters are always calls to intrinsics.
1989 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1990   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1991          "Bad type for register variable");
1992   llvm::MDNode *RegName = cast<llvm::MDNode>(
1993       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1994 
1995   // We accept integer and pointer types only
1996   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1997   llvm::Type *Ty = OrigTy;
1998   if (OrigTy->isPointerTy())
1999     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2000   llvm::Type *Types[] = { Ty };
2001 
2002   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2003   llvm::Value *Call = Builder.CreateCall(
2004       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2005   if (OrigTy->isPointerTy())
2006     Call = Builder.CreateIntToPtr(Call, OrigTy);
2007   return RValue::get(Call);
2008 }
2009 
2010 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2011 /// lvalue, where both are guaranteed to the have the same type, and that type
2012 /// is 'Ty'.
2013 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2014                                              bool isInit) {
2015   if (!Dst.isSimple()) {
2016     if (Dst.isVectorElt()) {
2017       // Read/modify/write the vector, inserting the new element.
2018       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2019                                             Dst.isVolatileQualified());
2020       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2021                                         Dst.getVectorIdx(), "vecins");
2022       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2023                           Dst.isVolatileQualified());
2024       return;
2025     }
2026 
2027     // If this is an update of extended vector elements, insert them as
2028     // appropriate.
2029     if (Dst.isExtVectorElt())
2030       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2031 
2032     if (Dst.isGlobalReg())
2033       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2034 
2035     if (Dst.isMatrixElt()) {
2036       llvm::Value *Vec = Builder.CreateLoad(Dst.getMatrixAddress());
2037       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2038                                         Dst.getMatrixIdx(), "matins");
2039       Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2040                           Dst.isVolatileQualified());
2041       return;
2042     }
2043 
2044     assert(Dst.isBitField() && "Unknown LValue type");
2045     return EmitStoreThroughBitfieldLValue(Src, Dst);
2046   }
2047 
2048   // There's special magic for assigning into an ARC-qualified l-value.
2049   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2050     switch (Lifetime) {
2051     case Qualifiers::OCL_None:
2052       llvm_unreachable("present but none");
2053 
2054     case Qualifiers::OCL_ExplicitNone:
2055       // nothing special
2056       break;
2057 
2058     case Qualifiers::OCL_Strong:
2059       if (isInit) {
2060         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2061         break;
2062       }
2063       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2064       return;
2065 
2066     case Qualifiers::OCL_Weak:
2067       if (isInit)
2068         // Initialize and then skip the primitive store.
2069         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2070       else
2071         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2072                          /*ignore*/ true);
2073       return;
2074 
2075     case Qualifiers::OCL_Autoreleasing:
2076       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2077                                                      Src.getScalarVal()));
2078       // fall into the normal path
2079       break;
2080     }
2081   }
2082 
2083   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2084     // load of a __weak object.
2085     Address LvalueDst = Dst.getAddress(*this);
2086     llvm::Value *src = Src.getScalarVal();
2087      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2088     return;
2089   }
2090 
2091   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2092     // load of a __strong object.
2093     Address LvalueDst = Dst.getAddress(*this);
2094     llvm::Value *src = Src.getScalarVal();
2095     if (Dst.isObjCIvar()) {
2096       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2097       llvm::Type *ResultType = IntPtrTy;
2098       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2099       llvm::Value *RHS = dst.getPointer();
2100       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2101       llvm::Value *LHS =
2102         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2103                                "sub.ptr.lhs.cast");
2104       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2105       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2106                                               BytesBetween);
2107     } else if (Dst.isGlobalObjCRef()) {
2108       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2109                                                 Dst.isThreadLocalRef());
2110     }
2111     else
2112       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2113     return;
2114   }
2115 
2116   assert(Src.isScalar() && "Can't emit an agg store with this method");
2117   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2118 }
2119 
2120 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2121                                                      llvm::Value **Result) {
2122   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2123   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2124   Address Ptr = Dst.getBitFieldAddress();
2125 
2126   // Get the source value, truncated to the width of the bit-field.
2127   llvm::Value *SrcVal = Src.getScalarVal();
2128 
2129   // Cast the source to the storage type and shift it into place.
2130   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2131                                  /*isSigned=*/false);
2132   llvm::Value *MaskedVal = SrcVal;
2133 
2134   // See if there are other bits in the bitfield's storage we'll need to load
2135   // and mask together with source before storing.
2136   if (Info.StorageSize != Info.Size) {
2137     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2138     llvm::Value *Val =
2139       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2140 
2141     // Mask the source value as needed.
2142     if (!hasBooleanRepresentation(Dst.getType()))
2143       SrcVal = Builder.CreateAnd(SrcVal,
2144                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2145                                                             Info.Size),
2146                                  "bf.value");
2147     MaskedVal = SrcVal;
2148     if (Info.Offset)
2149       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2150 
2151     // Mask out the original value.
2152     Val = Builder.CreateAnd(Val,
2153                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2154                                                      Info.Offset,
2155                                                      Info.Offset + Info.Size),
2156                             "bf.clear");
2157 
2158     // Or together the unchanged values and the source value.
2159     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2160   } else {
2161     assert(Info.Offset == 0);
2162     // According to the AACPS:
2163     // When a volatile bit-field is written, and its container does not overlap
2164     // with any non-bit-field member, its container must be read exactly once and
2165     // written exactly once using the access width appropriate to the type of the
2166     // container. The two accesses are not atomic.
2167     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2168         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2169       Builder.CreateLoad(Ptr, true, "bf.load");
2170   }
2171 
2172   // Write the new value back out.
2173   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2174 
2175   // Return the new value of the bit-field, if requested.
2176   if (Result) {
2177     llvm::Value *ResultVal = MaskedVal;
2178 
2179     // Sign extend the value if needed.
2180     if (Info.IsSigned) {
2181       assert(Info.Size <= Info.StorageSize);
2182       unsigned HighBits = Info.StorageSize - Info.Size;
2183       if (HighBits) {
2184         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2185         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2186       }
2187     }
2188 
2189     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2190                                       "bf.result.cast");
2191     *Result = EmitFromMemory(ResultVal, Dst.getType());
2192   }
2193 }
2194 
2195 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2196                                                                LValue Dst) {
2197   // This access turns into a read/modify/write of the vector.  Load the input
2198   // value now.
2199   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2200                                         Dst.isVolatileQualified());
2201   const llvm::Constant *Elts = Dst.getExtVectorElts();
2202 
2203   llvm::Value *SrcVal = Src.getScalarVal();
2204 
2205   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2206     unsigned NumSrcElts = VTy->getNumElements();
2207     unsigned NumDstElts =
2208         cast<llvm::VectorType>(Vec->getType())->getNumElements();
2209     if (NumDstElts == NumSrcElts) {
2210       // Use shuffle vector is the src and destination are the same number of
2211       // elements and restore the vector mask since it is on the side it will be
2212       // stored.
2213       SmallVector<int, 4> Mask(NumDstElts);
2214       for (unsigned i = 0; i != NumSrcElts; ++i)
2215         Mask[getAccessedFieldNo(i, Elts)] = i;
2216 
2217       Vec = Builder.CreateShuffleVector(
2218           SrcVal, llvm::UndefValue::get(Vec->getType()), Mask);
2219     } else if (NumDstElts > NumSrcElts) {
2220       // Extended the source vector to the same length and then shuffle it
2221       // into the destination.
2222       // FIXME: since we're shuffling with undef, can we just use the indices
2223       //        into that?  This could be simpler.
2224       SmallVector<int, 4> ExtMask;
2225       for (unsigned i = 0; i != NumSrcElts; ++i)
2226         ExtMask.push_back(i);
2227       ExtMask.resize(NumDstElts, -1);
2228       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(
2229           SrcVal, llvm::UndefValue::get(SrcVal->getType()), ExtMask);
2230       // build identity
2231       SmallVector<int, 4> Mask;
2232       for (unsigned i = 0; i != NumDstElts; ++i)
2233         Mask.push_back(i);
2234 
2235       // When the vector size is odd and .odd or .hi is used, the last element
2236       // of the Elts constant array will be one past the size of the vector.
2237       // Ignore the last element here, if it is greater than the mask size.
2238       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2239         NumSrcElts--;
2240 
2241       // modify when what gets shuffled in
2242       for (unsigned i = 0; i != NumSrcElts; ++i)
2243         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2244       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2245     } else {
2246       // We should never shorten the vector
2247       llvm_unreachable("unexpected shorten vector length");
2248     }
2249   } else {
2250     // If the Src is a scalar (not a vector) it must be updating one element.
2251     unsigned InIdx = getAccessedFieldNo(0, Elts);
2252     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2253     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2254   }
2255 
2256   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2257                       Dst.isVolatileQualified());
2258 }
2259 
2260 /// Store of global named registers are always calls to intrinsics.
2261 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2262   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2263          "Bad type for register variable");
2264   llvm::MDNode *RegName = cast<llvm::MDNode>(
2265       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2266   assert(RegName && "Register LValue is not metadata");
2267 
2268   // We accept integer and pointer types only
2269   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2270   llvm::Type *Ty = OrigTy;
2271   if (OrigTy->isPointerTy())
2272     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2273   llvm::Type *Types[] = { Ty };
2274 
2275   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2276   llvm::Value *Value = Src.getScalarVal();
2277   if (OrigTy->isPointerTy())
2278     Value = Builder.CreatePtrToInt(Value, Ty);
2279   Builder.CreateCall(
2280       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2281 }
2282 
2283 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2284 // generating write-barries API. It is currently a global, ivar,
2285 // or neither.
2286 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2287                                  LValue &LV,
2288                                  bool IsMemberAccess=false) {
2289   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2290     return;
2291 
2292   if (isa<ObjCIvarRefExpr>(E)) {
2293     QualType ExpTy = E->getType();
2294     if (IsMemberAccess && ExpTy->isPointerType()) {
2295       // If ivar is a structure pointer, assigning to field of
2296       // this struct follows gcc's behavior and makes it a non-ivar
2297       // writer-barrier conservatively.
2298       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2299       if (ExpTy->isRecordType()) {
2300         LV.setObjCIvar(false);
2301         return;
2302       }
2303     }
2304     LV.setObjCIvar(true);
2305     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2306     LV.setBaseIvarExp(Exp->getBase());
2307     LV.setObjCArray(E->getType()->isArrayType());
2308     return;
2309   }
2310 
2311   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2312     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2313       if (VD->hasGlobalStorage()) {
2314         LV.setGlobalObjCRef(true);
2315         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2316       }
2317     }
2318     LV.setObjCArray(E->getType()->isArrayType());
2319     return;
2320   }
2321 
2322   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2323     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2324     return;
2325   }
2326 
2327   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2328     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2329     if (LV.isObjCIvar()) {
2330       // If cast is to a structure pointer, follow gcc's behavior and make it
2331       // a non-ivar write-barrier.
2332       QualType ExpTy = E->getType();
2333       if (ExpTy->isPointerType())
2334         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2335       if (ExpTy->isRecordType())
2336         LV.setObjCIvar(false);
2337     }
2338     return;
2339   }
2340 
2341   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2342     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2343     return;
2344   }
2345 
2346   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2347     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2348     return;
2349   }
2350 
2351   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2352     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2353     return;
2354   }
2355 
2356   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2357     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2358     return;
2359   }
2360 
2361   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2362     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2363     if (LV.isObjCIvar() && !LV.isObjCArray())
2364       // Using array syntax to assigning to what an ivar points to is not
2365       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2366       LV.setObjCIvar(false);
2367     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2368       // Using array syntax to assigning to what global points to is not
2369       // same as assigning to the global itself. {id *G;} G[i] = 0;
2370       LV.setGlobalObjCRef(false);
2371     return;
2372   }
2373 
2374   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2375     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2376     // We don't know if member is an 'ivar', but this flag is looked at
2377     // only in the context of LV.isObjCIvar().
2378     LV.setObjCArray(E->getType()->isArrayType());
2379     return;
2380   }
2381 }
2382 
2383 static llvm::Value *
2384 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2385                                 llvm::Value *V, llvm::Type *IRType,
2386                                 StringRef Name = StringRef()) {
2387   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2388   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2389 }
2390 
2391 static LValue EmitThreadPrivateVarDeclLValue(
2392     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2393     llvm::Type *RealVarTy, SourceLocation Loc) {
2394   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2395   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2396   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2397 }
2398 
2399 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2400                                            const VarDecl *VD, QualType T) {
2401   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2402       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2403   // Return an invalid address if variable is MT_To and unified
2404   // memory is not enabled. For all other cases: MT_Link and
2405   // MT_To with unified memory, return a valid address.
2406   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2407                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2408     return Address::invalid();
2409   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2410           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2411            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2412          "Expected link clause OR to clause with unified memory enabled.");
2413   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2414   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2415   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2416 }
2417 
2418 Address
2419 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2420                                      LValueBaseInfo *PointeeBaseInfo,
2421                                      TBAAAccessInfo *PointeeTBAAInfo) {
2422   llvm::LoadInst *Load =
2423       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2424   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2425 
2426   CharUnits Align = CGM.getNaturalTypeAlignment(
2427       RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo,
2428       /* forPointeeType= */ true);
2429   return Address(Load, Align);
2430 }
2431 
2432 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2433   LValueBaseInfo PointeeBaseInfo;
2434   TBAAAccessInfo PointeeTBAAInfo;
2435   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2436                                             &PointeeTBAAInfo);
2437   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2438                         PointeeBaseInfo, PointeeTBAAInfo);
2439 }
2440 
2441 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2442                                            const PointerType *PtrTy,
2443                                            LValueBaseInfo *BaseInfo,
2444                                            TBAAAccessInfo *TBAAInfo) {
2445   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2446   return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
2447                                                    BaseInfo, TBAAInfo,
2448                                                    /*forPointeeType=*/true));
2449 }
2450 
2451 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2452                                                 const PointerType *PtrTy) {
2453   LValueBaseInfo BaseInfo;
2454   TBAAAccessInfo TBAAInfo;
2455   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2456   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2457 }
2458 
2459 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2460                                       const Expr *E, const VarDecl *VD) {
2461   QualType T = E->getType();
2462 
2463   // If it's thread_local, emit a call to its wrapper function instead.
2464   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2465       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2466     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2467   // Check if the variable is marked as declare target with link clause in
2468   // device codegen.
2469   if (CGF.getLangOpts().OpenMPIsDevice) {
2470     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2471     if (Addr.isValid())
2472       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2473   }
2474 
2475   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2476   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2477   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2478   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2479   Address Addr(V, Alignment);
2480   // Emit reference to the private copy of the variable if it is an OpenMP
2481   // threadprivate variable.
2482   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2483       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2484     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2485                                           E->getExprLoc());
2486   }
2487   LValue LV = VD->getType()->isReferenceType() ?
2488       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2489                                     AlignmentSource::Decl) :
2490       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2491   setObjCGCLValueClass(CGF.getContext(), E, LV);
2492   return LV;
2493 }
2494 
2495 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2496                                                GlobalDecl GD) {
2497   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2498   if (FD->hasAttr<WeakRefAttr>()) {
2499     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2500     return aliasee.getPointer();
2501   }
2502 
2503   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2504   if (!FD->hasPrototype()) {
2505     if (const FunctionProtoType *Proto =
2506             FD->getType()->getAs<FunctionProtoType>()) {
2507       // Ugly case: for a K&R-style definition, the type of the definition
2508       // isn't the same as the type of a use.  Correct for this with a
2509       // bitcast.
2510       QualType NoProtoType =
2511           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2512       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2513       V = llvm::ConstantExpr::getBitCast(V,
2514                                       CGM.getTypes().ConvertType(NoProtoType));
2515     }
2516   }
2517   return V;
2518 }
2519 
2520 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2521                                      GlobalDecl GD) {
2522   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2523   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2524   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2525   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2526                             AlignmentSource::Decl);
2527 }
2528 
2529 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2530                                       llvm::Value *ThisValue) {
2531   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2532   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2533   return CGF.EmitLValueForField(LV, FD);
2534 }
2535 
2536 /// Named Registers are named metadata pointing to the register name
2537 /// which will be read from/written to as an argument to the intrinsic
2538 /// @llvm.read/write_register.
2539 /// So far, only the name is being passed down, but other options such as
2540 /// register type, allocation type or even optimization options could be
2541 /// passed down via the metadata node.
2542 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2543   SmallString<64> Name("llvm.named.register.");
2544   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2545   assert(Asm->getLabel().size() < 64-Name.size() &&
2546       "Register name too big");
2547   Name.append(Asm->getLabel());
2548   llvm::NamedMDNode *M =
2549     CGM.getModule().getOrInsertNamedMetadata(Name);
2550   if (M->getNumOperands() == 0) {
2551     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2552                                               Asm->getLabel());
2553     llvm::Metadata *Ops[] = {Str};
2554     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2555   }
2556 
2557   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2558 
2559   llvm::Value *Ptr =
2560     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2561   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2562 }
2563 
2564 /// Determine whether we can emit a reference to \p VD from the current
2565 /// context, despite not necessarily having seen an odr-use of the variable in
2566 /// this context.
2567 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2568                                                const DeclRefExpr *E,
2569                                                const VarDecl *VD,
2570                                                bool IsConstant) {
2571   // For a variable declared in an enclosing scope, do not emit a spurious
2572   // reference even if we have a capture, as that will emit an unwarranted
2573   // reference to our capture state, and will likely generate worse code than
2574   // emitting a local copy.
2575   if (E->refersToEnclosingVariableOrCapture())
2576     return false;
2577 
2578   // For a local declaration declared in this function, we can always reference
2579   // it even if we don't have an odr-use.
2580   if (VD->hasLocalStorage()) {
2581     return VD->getDeclContext() ==
2582            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2583   }
2584 
2585   // For a global declaration, we can emit a reference to it if we know
2586   // for sure that we are able to emit a definition of it.
2587   VD = VD->getDefinition(CGF.getContext());
2588   if (!VD)
2589     return false;
2590 
2591   // Don't emit a spurious reference if it might be to a variable that only
2592   // exists on a different device / target.
2593   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2594   // cross-target reference.
2595   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2596       CGF.getLangOpts().OpenCL) {
2597     return false;
2598   }
2599 
2600   // We can emit a spurious reference only if the linkage implies that we'll
2601   // be emitting a non-interposable symbol that will be retained until link
2602   // time.
2603   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2604   case llvm::GlobalValue::ExternalLinkage:
2605   case llvm::GlobalValue::LinkOnceODRLinkage:
2606   case llvm::GlobalValue::WeakODRLinkage:
2607   case llvm::GlobalValue::InternalLinkage:
2608   case llvm::GlobalValue::PrivateLinkage:
2609     return true;
2610   default:
2611     return false;
2612   }
2613 }
2614 
2615 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2616   const NamedDecl *ND = E->getDecl();
2617   QualType T = E->getType();
2618 
2619   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2620          "should not emit an unevaluated operand");
2621 
2622   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2623     // Global Named registers access via intrinsics only
2624     if (VD->getStorageClass() == SC_Register &&
2625         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2626       return EmitGlobalNamedRegister(VD, CGM);
2627 
2628     // If this DeclRefExpr does not constitute an odr-use of the variable,
2629     // we're not permitted to emit a reference to it in general, and it might
2630     // not be captured if capture would be necessary for a use. Emit the
2631     // constant value directly instead.
2632     if (E->isNonOdrUse() == NOUR_Constant &&
2633         (VD->getType()->isReferenceType() ||
2634          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2635       VD->getAnyInitializer(VD);
2636       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2637           E->getLocation(), *VD->evaluateValue(), VD->getType());
2638       assert(Val && "failed to emit constant expression");
2639 
2640       Address Addr = Address::invalid();
2641       if (!VD->getType()->isReferenceType()) {
2642         // Spill the constant value to a global.
2643         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2644                                            getContext().getDeclAlign(VD));
2645         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2646         auto *PTy = llvm::PointerType::get(
2647             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2648         if (PTy != Addr.getType())
2649           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2650       } else {
2651         // Should we be using the alignment of the constant pointer we emitted?
2652         CharUnits Alignment =
2653             CGM.getNaturalTypeAlignment(E->getType(),
2654                                         /* BaseInfo= */ nullptr,
2655                                         /* TBAAInfo= */ nullptr,
2656                                         /* forPointeeType= */ true);
2657         Addr = Address(Val, Alignment);
2658       }
2659       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2660     }
2661 
2662     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2663 
2664     // Check for captured variables.
2665     if (E->refersToEnclosingVariableOrCapture()) {
2666       VD = VD->getCanonicalDecl();
2667       if (auto *FD = LambdaCaptureFields.lookup(VD))
2668         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2669       if (CapturedStmtInfo) {
2670         auto I = LocalDeclMap.find(VD);
2671         if (I != LocalDeclMap.end()) {
2672           LValue CapLVal;
2673           if (VD->getType()->isReferenceType())
2674             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2675                                                 AlignmentSource::Decl);
2676           else
2677             CapLVal = MakeAddrLValue(I->second, T);
2678           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2679           // in simd context.
2680           if (getLangOpts().OpenMP &&
2681               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2682             CapLVal.setNontemporal(/*Value=*/true);
2683           return CapLVal;
2684         }
2685         LValue CapLVal =
2686             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2687                                     CapturedStmtInfo->getContextValue());
2688         CapLVal = MakeAddrLValue(
2689             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2690             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2691             CapLVal.getTBAAInfo());
2692         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2693         // in simd context.
2694         if (getLangOpts().OpenMP &&
2695             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2696           CapLVal.setNontemporal(/*Value=*/true);
2697         return CapLVal;
2698       }
2699 
2700       assert(isa<BlockDecl>(CurCodeDecl));
2701       Address addr = GetAddrOfBlockDecl(VD);
2702       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2703     }
2704   }
2705 
2706   // FIXME: We should be able to assert this for FunctionDecls as well!
2707   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2708   // those with a valid source location.
2709   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2710           !E->getLocation().isValid()) &&
2711          "Should not use decl without marking it used!");
2712 
2713   if (ND->hasAttr<WeakRefAttr>()) {
2714     const auto *VD = cast<ValueDecl>(ND);
2715     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2716     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2717   }
2718 
2719   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2720     // Check if this is a global variable.
2721     if (VD->hasLinkage() || VD->isStaticDataMember())
2722       return EmitGlobalVarDeclLValue(*this, E, VD);
2723 
2724     Address addr = Address::invalid();
2725 
2726     // The variable should generally be present in the local decl map.
2727     auto iter = LocalDeclMap.find(VD);
2728     if (iter != LocalDeclMap.end()) {
2729       addr = iter->second;
2730 
2731     // Otherwise, it might be static local we haven't emitted yet for
2732     // some reason; most likely, because it's in an outer function.
2733     } else if (VD->isStaticLocal()) {
2734       addr = Address(CGM.getOrCreateStaticVarDecl(
2735           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2736                      getContext().getDeclAlign(VD));
2737 
2738     // No other cases for now.
2739     } else {
2740       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2741     }
2742 
2743 
2744     // Check for OpenMP threadprivate variables.
2745     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2746         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2747       return EmitThreadPrivateVarDeclLValue(
2748           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2749           E->getExprLoc());
2750     }
2751 
2752     // Drill into block byref variables.
2753     bool isBlockByref = VD->isEscapingByref();
2754     if (isBlockByref) {
2755       addr = emitBlockByrefAddress(addr, VD);
2756     }
2757 
2758     // Drill into reference types.
2759     LValue LV = VD->getType()->isReferenceType() ?
2760         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2761         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2762 
2763     bool isLocalStorage = VD->hasLocalStorage();
2764 
2765     bool NonGCable = isLocalStorage &&
2766                      !VD->getType()->isReferenceType() &&
2767                      !isBlockByref;
2768     if (NonGCable) {
2769       LV.getQuals().removeObjCGCAttr();
2770       LV.setNonGC(true);
2771     }
2772 
2773     bool isImpreciseLifetime =
2774       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2775     if (isImpreciseLifetime)
2776       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2777     setObjCGCLValueClass(getContext(), E, LV);
2778     return LV;
2779   }
2780 
2781   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2782     return EmitFunctionDeclLValue(*this, E, FD);
2783 
2784   // FIXME: While we're emitting a binding from an enclosing scope, all other
2785   // DeclRefExprs we see should be implicitly treated as if they also refer to
2786   // an enclosing scope.
2787   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2788     return EmitLValue(BD->getBinding());
2789 
2790   // We can form DeclRefExprs naming GUID declarations when reconstituting
2791   // non-type template parameters into expressions.
2792   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2793     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2794                           AlignmentSource::Decl);
2795 
2796   llvm_unreachable("Unhandled DeclRefExpr");
2797 }
2798 
2799 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2800   // __extension__ doesn't affect lvalue-ness.
2801   if (E->getOpcode() == UO_Extension)
2802     return EmitLValue(E->getSubExpr());
2803 
2804   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2805   switch (E->getOpcode()) {
2806   default: llvm_unreachable("Unknown unary operator lvalue!");
2807   case UO_Deref: {
2808     QualType T = E->getSubExpr()->getType()->getPointeeType();
2809     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2810 
2811     LValueBaseInfo BaseInfo;
2812     TBAAAccessInfo TBAAInfo;
2813     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2814                                             &TBAAInfo);
2815     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2816     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2817 
2818     // We should not generate __weak write barrier on indirect reference
2819     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2820     // But, we continue to generate __strong write barrier on indirect write
2821     // into a pointer to object.
2822     if (getLangOpts().ObjC &&
2823         getLangOpts().getGC() != LangOptions::NonGC &&
2824         LV.isObjCWeak())
2825       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2826     return LV;
2827   }
2828   case UO_Real:
2829   case UO_Imag: {
2830     LValue LV = EmitLValue(E->getSubExpr());
2831     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2832 
2833     // __real is valid on scalars.  This is a faster way of testing that.
2834     // __imag can only produce an rvalue on scalars.
2835     if (E->getOpcode() == UO_Real &&
2836         !LV.getAddress(*this).getElementType()->isStructTy()) {
2837       assert(E->getSubExpr()->getType()->isArithmeticType());
2838       return LV;
2839     }
2840 
2841     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2842 
2843     Address Component =
2844         (E->getOpcode() == UO_Real
2845              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2846              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2847     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2848                                    CGM.getTBAAInfoForSubobject(LV, T));
2849     ElemLV.getQuals().addQualifiers(LV.getQuals());
2850     return ElemLV;
2851   }
2852   case UO_PreInc:
2853   case UO_PreDec: {
2854     LValue LV = EmitLValue(E->getSubExpr());
2855     bool isInc = E->getOpcode() == UO_PreInc;
2856 
2857     if (E->getType()->isAnyComplexType())
2858       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2859     else
2860       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2861     return LV;
2862   }
2863   }
2864 }
2865 
2866 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2867   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2868                         E->getType(), AlignmentSource::Decl);
2869 }
2870 
2871 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2872   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2873                         E->getType(), AlignmentSource::Decl);
2874 }
2875 
2876 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2877   auto SL = E->getFunctionName();
2878   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2879   StringRef FnName = CurFn->getName();
2880   if (FnName.startswith("\01"))
2881     FnName = FnName.substr(1);
2882   StringRef NameItems[] = {
2883       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2884   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2885   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2886     std::string Name = std::string(SL->getString());
2887     if (!Name.empty()) {
2888       unsigned Discriminator =
2889           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2890       if (Discriminator)
2891         Name += "_" + Twine(Discriminator + 1).str();
2892       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2893       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2894     } else {
2895       auto C =
2896           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2897       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2898     }
2899   }
2900   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2901   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2902 }
2903 
2904 /// Emit a type description suitable for use by a runtime sanitizer library. The
2905 /// format of a type descriptor is
2906 ///
2907 /// \code
2908 ///   { i16 TypeKind, i16 TypeInfo }
2909 /// \endcode
2910 ///
2911 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2912 /// integer, 1 for a floating point value, and -1 for anything else.
2913 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2914   // Only emit each type's descriptor once.
2915   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2916     return C;
2917 
2918   uint16_t TypeKind = -1;
2919   uint16_t TypeInfo = 0;
2920 
2921   if (T->isIntegerType()) {
2922     TypeKind = 0;
2923     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2924                (T->isSignedIntegerType() ? 1 : 0);
2925   } else if (T->isFloatingType()) {
2926     TypeKind = 1;
2927     TypeInfo = getContext().getTypeSize(T);
2928   }
2929 
2930   // Format the type name as if for a diagnostic, including quotes and
2931   // optionally an 'aka'.
2932   SmallString<32> Buffer;
2933   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2934                                     (intptr_t)T.getAsOpaquePtr(),
2935                                     StringRef(), StringRef(), None, Buffer,
2936                                     None);
2937 
2938   llvm::Constant *Components[] = {
2939     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2940     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2941   };
2942   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2943 
2944   auto *GV = new llvm::GlobalVariable(
2945       CGM.getModule(), Descriptor->getType(),
2946       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2947   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2948   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2949 
2950   // Remember the descriptor for this type.
2951   CGM.setTypeDescriptorInMap(T, GV);
2952 
2953   return GV;
2954 }
2955 
2956 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2957   llvm::Type *TargetTy = IntPtrTy;
2958 
2959   if (V->getType() == TargetTy)
2960     return V;
2961 
2962   // Floating-point types which fit into intptr_t are bitcast to integers
2963   // and then passed directly (after zero-extension, if necessary).
2964   if (V->getType()->isFloatingPointTy()) {
2965     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2966     if (Bits <= TargetTy->getIntegerBitWidth())
2967       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2968                                                          Bits));
2969   }
2970 
2971   // Integers which fit in intptr_t are zero-extended and passed directly.
2972   if (V->getType()->isIntegerTy() &&
2973       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2974     return Builder.CreateZExt(V, TargetTy);
2975 
2976   // Pointers are passed directly, everything else is passed by address.
2977   if (!V->getType()->isPointerTy()) {
2978     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2979     Builder.CreateStore(V, Ptr);
2980     V = Ptr.getPointer();
2981   }
2982   return Builder.CreatePtrToInt(V, TargetTy);
2983 }
2984 
2985 /// Emit a representation of a SourceLocation for passing to a handler
2986 /// in a sanitizer runtime library. The format for this data is:
2987 /// \code
2988 ///   struct SourceLocation {
2989 ///     const char *Filename;
2990 ///     int32_t Line, Column;
2991 ///   };
2992 /// \endcode
2993 /// For an invalid SourceLocation, the Filename pointer is null.
2994 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2995   llvm::Constant *Filename;
2996   int Line, Column;
2997 
2998   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2999   if (PLoc.isValid()) {
3000     StringRef FilenameString = PLoc.getFilename();
3001 
3002     int PathComponentsToStrip =
3003         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3004     if (PathComponentsToStrip < 0) {
3005       assert(PathComponentsToStrip != INT_MIN);
3006       int PathComponentsToKeep = -PathComponentsToStrip;
3007       auto I = llvm::sys::path::rbegin(FilenameString);
3008       auto E = llvm::sys::path::rend(FilenameString);
3009       while (I != E && --PathComponentsToKeep)
3010         ++I;
3011 
3012       FilenameString = FilenameString.substr(I - E);
3013     } else if (PathComponentsToStrip > 0) {
3014       auto I = llvm::sys::path::begin(FilenameString);
3015       auto E = llvm::sys::path::end(FilenameString);
3016       while (I != E && PathComponentsToStrip--)
3017         ++I;
3018 
3019       if (I != E)
3020         FilenameString =
3021             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3022       else
3023         FilenameString = llvm::sys::path::filename(FilenameString);
3024     }
3025 
3026     auto FilenameGV =
3027         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3028     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3029                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3030     Filename = FilenameGV.getPointer();
3031     Line = PLoc.getLine();
3032     Column = PLoc.getColumn();
3033   } else {
3034     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3035     Line = Column = 0;
3036   }
3037 
3038   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3039                             Builder.getInt32(Column)};
3040 
3041   return llvm::ConstantStruct::getAnon(Data);
3042 }
3043 
3044 namespace {
3045 /// Specify under what conditions this check can be recovered
3046 enum class CheckRecoverableKind {
3047   /// Always terminate program execution if this check fails.
3048   Unrecoverable,
3049   /// Check supports recovering, runtime has both fatal (noreturn) and
3050   /// non-fatal handlers for this check.
3051   Recoverable,
3052   /// Runtime conditionally aborts, always need to support recovery.
3053   AlwaysRecoverable
3054 };
3055 }
3056 
3057 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3058   assert(Kind.countPopulation() == 1);
3059   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3060     return CheckRecoverableKind::AlwaysRecoverable;
3061   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3062     return CheckRecoverableKind::Unrecoverable;
3063   else
3064     return CheckRecoverableKind::Recoverable;
3065 }
3066 
3067 namespace {
3068 struct SanitizerHandlerInfo {
3069   char const *const Name;
3070   unsigned Version;
3071 };
3072 }
3073 
3074 const SanitizerHandlerInfo SanitizerHandlers[] = {
3075 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3076     LIST_SANITIZER_CHECKS
3077 #undef SANITIZER_CHECK
3078 };
3079 
3080 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3081                                  llvm::FunctionType *FnType,
3082                                  ArrayRef<llvm::Value *> FnArgs,
3083                                  SanitizerHandler CheckHandler,
3084                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3085                                  llvm::BasicBlock *ContBB) {
3086   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3087   Optional<ApplyDebugLocation> DL;
3088   if (!CGF.Builder.getCurrentDebugLocation()) {
3089     // Ensure that the call has at least an artificial debug location.
3090     DL.emplace(CGF, SourceLocation());
3091   }
3092   bool NeedsAbortSuffix =
3093       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3094   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3095   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3096   const StringRef CheckName = CheckInfo.Name;
3097   std::string FnName = "__ubsan_handle_" + CheckName.str();
3098   if (CheckInfo.Version && !MinimalRuntime)
3099     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3100   if (MinimalRuntime)
3101     FnName += "_minimal";
3102   if (NeedsAbortSuffix)
3103     FnName += "_abort";
3104   bool MayReturn =
3105       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3106 
3107   llvm::AttrBuilder B;
3108   if (!MayReturn) {
3109     B.addAttribute(llvm::Attribute::NoReturn)
3110         .addAttribute(llvm::Attribute::NoUnwind);
3111   }
3112   B.addAttribute(llvm::Attribute::UWTable);
3113 
3114   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3115       FnType, FnName,
3116       llvm::AttributeList::get(CGF.getLLVMContext(),
3117                                llvm::AttributeList::FunctionIndex, B),
3118       /*Local=*/true);
3119   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3120   if (!MayReturn) {
3121     HandlerCall->setDoesNotReturn();
3122     CGF.Builder.CreateUnreachable();
3123   } else {
3124     CGF.Builder.CreateBr(ContBB);
3125   }
3126 }
3127 
3128 void CodeGenFunction::EmitCheck(
3129     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3130     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3131     ArrayRef<llvm::Value *> DynamicArgs) {
3132   assert(IsSanitizerScope);
3133   assert(Checked.size() > 0);
3134   assert(CheckHandler >= 0 &&
3135          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3136   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3137 
3138   llvm::Value *FatalCond = nullptr;
3139   llvm::Value *RecoverableCond = nullptr;
3140   llvm::Value *TrapCond = nullptr;
3141   for (int i = 0, n = Checked.size(); i < n; ++i) {
3142     llvm::Value *Check = Checked[i].first;
3143     // -fsanitize-trap= overrides -fsanitize-recover=.
3144     llvm::Value *&Cond =
3145         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3146             ? TrapCond
3147             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3148                   ? RecoverableCond
3149                   : FatalCond;
3150     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3151   }
3152 
3153   if (TrapCond)
3154     EmitTrapCheck(TrapCond);
3155   if (!FatalCond && !RecoverableCond)
3156     return;
3157 
3158   llvm::Value *JointCond;
3159   if (FatalCond && RecoverableCond)
3160     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3161   else
3162     JointCond = FatalCond ? FatalCond : RecoverableCond;
3163   assert(JointCond);
3164 
3165   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3166   assert(SanOpts.has(Checked[0].second));
3167 #ifndef NDEBUG
3168   for (int i = 1, n = Checked.size(); i < n; ++i) {
3169     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3170            "All recoverable kinds in a single check must be same!");
3171     assert(SanOpts.has(Checked[i].second));
3172   }
3173 #endif
3174 
3175   llvm::BasicBlock *Cont = createBasicBlock("cont");
3176   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3177   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3178   // Give hint that we very much don't expect to execute the handler
3179   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3180   llvm::MDBuilder MDHelper(getLLVMContext());
3181   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3182   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3183   EmitBlock(Handlers);
3184 
3185   // Handler functions take an i8* pointing to the (handler-specific) static
3186   // information block, followed by a sequence of intptr_t arguments
3187   // representing operand values.
3188   SmallVector<llvm::Value *, 4> Args;
3189   SmallVector<llvm::Type *, 4> ArgTypes;
3190   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3191     Args.reserve(DynamicArgs.size() + 1);
3192     ArgTypes.reserve(DynamicArgs.size() + 1);
3193 
3194     // Emit handler arguments and create handler function type.
3195     if (!StaticArgs.empty()) {
3196       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3197       auto *InfoPtr =
3198           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3199                                    llvm::GlobalVariable::PrivateLinkage, Info);
3200       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3201       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3202       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3203       ArgTypes.push_back(Int8PtrTy);
3204     }
3205 
3206     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3207       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3208       ArgTypes.push_back(IntPtrTy);
3209     }
3210   }
3211 
3212   llvm::FunctionType *FnType =
3213     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3214 
3215   if (!FatalCond || !RecoverableCond) {
3216     // Simple case: we need to generate a single handler call, either
3217     // fatal, or non-fatal.
3218     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3219                          (FatalCond != nullptr), Cont);
3220   } else {
3221     // Emit two handler calls: first one for set of unrecoverable checks,
3222     // another one for recoverable.
3223     llvm::BasicBlock *NonFatalHandlerBB =
3224         createBasicBlock("non_fatal." + CheckName);
3225     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3226     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3227     EmitBlock(FatalHandlerBB);
3228     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3229                          NonFatalHandlerBB);
3230     EmitBlock(NonFatalHandlerBB);
3231     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3232                          Cont);
3233   }
3234 
3235   EmitBlock(Cont);
3236 }
3237 
3238 void CodeGenFunction::EmitCfiSlowPathCheck(
3239     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3240     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3241   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3242 
3243   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3244   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3245 
3246   llvm::MDBuilder MDHelper(getLLVMContext());
3247   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3248   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3249 
3250   EmitBlock(CheckBB);
3251 
3252   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3253 
3254   llvm::CallInst *CheckCall;
3255   llvm::FunctionCallee SlowPathFn;
3256   if (WithDiag) {
3257     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3258     auto *InfoPtr =
3259         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3260                                  llvm::GlobalVariable::PrivateLinkage, Info);
3261     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3262     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3263 
3264     SlowPathFn = CGM.getModule().getOrInsertFunction(
3265         "__cfi_slowpath_diag",
3266         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3267                                 false));
3268     CheckCall = Builder.CreateCall(
3269         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3270   } else {
3271     SlowPathFn = CGM.getModule().getOrInsertFunction(
3272         "__cfi_slowpath",
3273         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3274     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3275   }
3276 
3277   CGM.setDSOLocal(
3278       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3279   CheckCall->setDoesNotThrow();
3280 
3281   EmitBlock(Cont);
3282 }
3283 
3284 // Emit a stub for __cfi_check function so that the linker knows about this
3285 // symbol in LTO mode.
3286 void CodeGenFunction::EmitCfiCheckStub() {
3287   llvm::Module *M = &CGM.getModule();
3288   auto &Ctx = M->getContext();
3289   llvm::Function *F = llvm::Function::Create(
3290       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3291       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3292   CGM.setDSOLocal(F);
3293   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3294   // FIXME: consider emitting an intrinsic call like
3295   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3296   // which can be lowered in CrossDSOCFI pass to the actual contents of
3297   // __cfi_check. This would allow inlining of __cfi_check calls.
3298   llvm::CallInst::Create(
3299       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3300   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3301 }
3302 
3303 // This function is basically a switch over the CFI failure kind, which is
3304 // extracted from CFICheckFailData (1st function argument). Each case is either
3305 // llvm.trap or a call to one of the two runtime handlers, based on
3306 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3307 // failure kind) traps, but this should really never happen.  CFICheckFailData
3308 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3309 // check kind; in this case __cfi_check_fail traps as well.
3310 void CodeGenFunction::EmitCfiCheckFail() {
3311   SanitizerScope SanScope(this);
3312   FunctionArgList Args;
3313   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3314                             ImplicitParamDecl::Other);
3315   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3316                             ImplicitParamDecl::Other);
3317   Args.push_back(&ArgData);
3318   Args.push_back(&ArgAddr);
3319 
3320   const CGFunctionInfo &FI =
3321     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3322 
3323   llvm::Function *F = llvm::Function::Create(
3324       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3325       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3326 
3327   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
3328   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3329   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3330 
3331   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3332                 SourceLocation());
3333 
3334   // This function should not be affected by blacklist. This function does
3335   // not have a source location, but "src:*" would still apply. Revert any
3336   // changes to SanOpts made in StartFunction.
3337   SanOpts = CGM.getLangOpts().Sanitize;
3338 
3339   llvm::Value *Data =
3340       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3341                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3342   llvm::Value *Addr =
3343       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3344                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3345 
3346   // Data == nullptr means the calling module has trap behaviour for this check.
3347   llvm::Value *DataIsNotNullPtr =
3348       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3349   EmitTrapCheck(DataIsNotNullPtr);
3350 
3351   llvm::StructType *SourceLocationTy =
3352       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3353   llvm::StructType *CfiCheckFailDataTy =
3354       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3355 
3356   llvm::Value *V = Builder.CreateConstGEP2_32(
3357       CfiCheckFailDataTy,
3358       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3359       0);
3360   Address CheckKindAddr(V, getIntAlign());
3361   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3362 
3363   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3364       CGM.getLLVMContext(),
3365       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3366   llvm::Value *ValidVtable = Builder.CreateZExt(
3367       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3368                          {Addr, AllVtables}),
3369       IntPtrTy);
3370 
3371   const std::pair<int, SanitizerMask> CheckKinds[] = {
3372       {CFITCK_VCall, SanitizerKind::CFIVCall},
3373       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3374       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3375       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3376       {CFITCK_ICall, SanitizerKind::CFIICall}};
3377 
3378   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3379   for (auto CheckKindMaskPair : CheckKinds) {
3380     int Kind = CheckKindMaskPair.first;
3381     SanitizerMask Mask = CheckKindMaskPair.second;
3382     llvm::Value *Cond =
3383         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3384     if (CGM.getLangOpts().Sanitize.has(Mask))
3385       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3386                 {Data, Addr, ValidVtable});
3387     else
3388       EmitTrapCheck(Cond);
3389   }
3390 
3391   FinishFunction();
3392   // The only reference to this function will be created during LTO link.
3393   // Make sure it survives until then.
3394   CGM.addUsedGlobal(F);
3395 }
3396 
3397 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3398   if (SanOpts.has(SanitizerKind::Unreachable)) {
3399     SanitizerScope SanScope(this);
3400     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3401                              SanitizerKind::Unreachable),
3402               SanitizerHandler::BuiltinUnreachable,
3403               EmitCheckSourceLocation(Loc), None);
3404   }
3405   Builder.CreateUnreachable();
3406 }
3407 
3408 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3409   llvm::BasicBlock *Cont = createBasicBlock("cont");
3410 
3411   // If we're optimizing, collapse all calls to trap down to just one per
3412   // function to save on code size.
3413   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3414     TrapBB = createBasicBlock("trap");
3415     Builder.CreateCondBr(Checked, Cont, TrapBB);
3416     EmitBlock(TrapBB);
3417     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3418     TrapCall->setDoesNotReturn();
3419     TrapCall->setDoesNotThrow();
3420     Builder.CreateUnreachable();
3421   } else {
3422     Builder.CreateCondBr(Checked, Cont, TrapBB);
3423   }
3424 
3425   EmitBlock(Cont);
3426 }
3427 
3428 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3429   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3430 
3431   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3432     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3433                                   CGM.getCodeGenOpts().TrapFuncName);
3434     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3435   }
3436 
3437   return TrapCall;
3438 }
3439 
3440 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3441                                                  LValueBaseInfo *BaseInfo,
3442                                                  TBAAAccessInfo *TBAAInfo) {
3443   assert(E->getType()->isArrayType() &&
3444          "Array to pointer decay must have array source type!");
3445 
3446   // Expressions of array type can't be bitfields or vector elements.
3447   LValue LV = EmitLValue(E);
3448   Address Addr = LV.getAddress(*this);
3449 
3450   // If the array type was an incomplete type, we need to make sure
3451   // the decay ends up being the right type.
3452   llvm::Type *NewTy = ConvertType(E->getType());
3453   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3454 
3455   // Note that VLA pointers are always decayed, so we don't need to do
3456   // anything here.
3457   if (!E->getType()->isVariableArrayType()) {
3458     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3459            "Expected pointer to array");
3460     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3461   }
3462 
3463   // The result of this decay conversion points to an array element within the
3464   // base lvalue. However, since TBAA currently does not support representing
3465   // accesses to elements of member arrays, we conservatively represent accesses
3466   // to the pointee object as if it had no any base lvalue specified.
3467   // TODO: Support TBAA for member arrays.
3468   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3469   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3470   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3471 
3472   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3473 }
3474 
3475 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3476 /// array to pointer, return the array subexpression.
3477 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3478   // If this isn't just an array->pointer decay, bail out.
3479   const auto *CE = dyn_cast<CastExpr>(E);
3480   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3481     return nullptr;
3482 
3483   // If this is a decay from variable width array, bail out.
3484   const Expr *SubExpr = CE->getSubExpr();
3485   if (SubExpr->getType()->isVariableArrayType())
3486     return nullptr;
3487 
3488   return SubExpr;
3489 }
3490 
3491 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3492                                           llvm::Value *ptr,
3493                                           ArrayRef<llvm::Value*> indices,
3494                                           bool inbounds,
3495                                           bool signedIndices,
3496                                           SourceLocation loc,
3497                                     const llvm::Twine &name = "arrayidx") {
3498   if (inbounds) {
3499     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3500                                       CodeGenFunction::NotSubtraction, loc,
3501                                       name);
3502   } else {
3503     return CGF.Builder.CreateGEP(ptr, indices, name);
3504   }
3505 }
3506 
3507 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3508                                       llvm::Value *idx,
3509                                       CharUnits eltSize) {
3510   // If we have a constant index, we can use the exact offset of the
3511   // element we're accessing.
3512   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3513     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3514     return arrayAlign.alignmentAtOffset(offset);
3515 
3516   // Otherwise, use the worst-case alignment for any element.
3517   } else {
3518     return arrayAlign.alignmentOfArrayElement(eltSize);
3519   }
3520 }
3521 
3522 static QualType getFixedSizeElementType(const ASTContext &ctx,
3523                                         const VariableArrayType *vla) {
3524   QualType eltType;
3525   do {
3526     eltType = vla->getElementType();
3527   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3528   return eltType;
3529 }
3530 
3531 /// Given an array base, check whether its member access belongs to a record
3532 /// with preserve_access_index attribute or not.
3533 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3534   if (!ArrayBase || !CGF.getDebugInfo())
3535     return false;
3536 
3537   // Only support base as either a MemberExpr or DeclRefExpr.
3538   // DeclRefExpr to cover cases like:
3539   //    struct s { int a; int b[10]; };
3540   //    struct s *p;
3541   //    p[1].a
3542   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3543   // p->b[5] is a MemberExpr example.
3544   const Expr *E = ArrayBase->IgnoreImpCasts();
3545   if (const auto *ME = dyn_cast<MemberExpr>(E))
3546     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3547 
3548   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3549     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3550     if (!VarDef)
3551       return false;
3552 
3553     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3554     if (!PtrT)
3555       return false;
3556 
3557     const auto *PointeeT = PtrT->getPointeeType()
3558                              ->getUnqualifiedDesugaredType();
3559     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3560       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3561     return false;
3562   }
3563 
3564   return false;
3565 }
3566 
3567 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3568                                      ArrayRef<llvm::Value *> indices,
3569                                      QualType eltType, bool inbounds,
3570                                      bool signedIndices, SourceLocation loc,
3571                                      QualType *arrayType = nullptr,
3572                                      const Expr *Base = nullptr,
3573                                      const llvm::Twine &name = "arrayidx") {
3574   // All the indices except that last must be zero.
3575 #ifndef NDEBUG
3576   for (auto idx : indices.drop_back())
3577     assert(isa<llvm::ConstantInt>(idx) &&
3578            cast<llvm::ConstantInt>(idx)->isZero());
3579 #endif
3580 
3581   // Determine the element size of the statically-sized base.  This is
3582   // the thing that the indices are expressed in terms of.
3583   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3584     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3585   }
3586 
3587   // We can use that to compute the best alignment of the element.
3588   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3589   CharUnits eltAlign =
3590     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3591 
3592   llvm::Value *eltPtr;
3593   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3594   if (!LastIndex ||
3595       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3596     eltPtr = emitArraySubscriptGEP(
3597         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3598         loc, name);
3599   } else {
3600     // Remember the original array subscript for bpf target
3601     unsigned idx = LastIndex->getZExtValue();
3602     llvm::DIType *DbgInfo = nullptr;
3603     if (arrayType)
3604       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3605     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3606                                                         addr.getPointer(),
3607                                                         indices.size() - 1,
3608                                                         idx, DbgInfo);
3609   }
3610 
3611   return Address(eltPtr, eltAlign);
3612 }
3613 
3614 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3615                                                bool Accessed) {
3616   // The index must always be an integer, which is not an aggregate.  Emit it
3617   // in lexical order (this complexity is, sadly, required by C++17).
3618   llvm::Value *IdxPre =
3619       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3620   bool SignedIndices = false;
3621   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3622     auto *Idx = IdxPre;
3623     if (E->getLHS() != E->getIdx()) {
3624       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3625       Idx = EmitScalarExpr(E->getIdx());
3626     }
3627 
3628     QualType IdxTy = E->getIdx()->getType();
3629     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3630     SignedIndices |= IdxSigned;
3631 
3632     if (SanOpts.has(SanitizerKind::ArrayBounds))
3633       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3634 
3635     // Extend or truncate the index type to 32 or 64-bits.
3636     if (Promote && Idx->getType() != IntPtrTy)
3637       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3638 
3639     return Idx;
3640   };
3641   IdxPre = nullptr;
3642 
3643   // If the base is a vector type, then we are forming a vector element lvalue
3644   // with this subscript.
3645   if (E->getBase()->getType()->isVectorType() &&
3646       !isa<ExtVectorElementExpr>(E->getBase())) {
3647     // Emit the vector as an lvalue to get its address.
3648     LValue LHS = EmitLValue(E->getBase());
3649     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3650     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3651     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3652                                  E->getBase()->getType(), LHS.getBaseInfo(),
3653                                  TBAAAccessInfo());
3654   }
3655 
3656   // All the other cases basically behave like simple offsetting.
3657 
3658   // Handle the extvector case we ignored above.
3659   if (isa<ExtVectorElementExpr>(E->getBase())) {
3660     LValue LV = EmitLValue(E->getBase());
3661     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3662     Address Addr = EmitExtVectorElementLValue(LV);
3663 
3664     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3665     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3666                                  SignedIndices, E->getExprLoc());
3667     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3668                           CGM.getTBAAInfoForSubobject(LV, EltType));
3669   }
3670 
3671   LValueBaseInfo EltBaseInfo;
3672   TBAAAccessInfo EltTBAAInfo;
3673   Address Addr = Address::invalid();
3674   if (const VariableArrayType *vla =
3675            getContext().getAsVariableArrayType(E->getType())) {
3676     // The base must be a pointer, which is not an aggregate.  Emit
3677     // it.  It needs to be emitted first in case it's what captures
3678     // the VLA bounds.
3679     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3680     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3681 
3682     // The element count here is the total number of non-VLA elements.
3683     llvm::Value *numElements = getVLASize(vla).NumElts;
3684 
3685     // Effectively, the multiply by the VLA size is part of the GEP.
3686     // GEP indexes are signed, and scaling an index isn't permitted to
3687     // signed-overflow, so we use the same semantics for our explicit
3688     // multiply.  We suppress this if overflow is not undefined behavior.
3689     if (getLangOpts().isSignedOverflowDefined()) {
3690       Idx = Builder.CreateMul(Idx, numElements);
3691     } else {
3692       Idx = Builder.CreateNSWMul(Idx, numElements);
3693     }
3694 
3695     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3696                                  !getLangOpts().isSignedOverflowDefined(),
3697                                  SignedIndices, E->getExprLoc());
3698 
3699   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3700     // Indexing over an interface, as in "NSString *P; P[4];"
3701 
3702     // Emit the base pointer.
3703     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3704     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3705 
3706     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3707     llvm::Value *InterfaceSizeVal =
3708         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3709 
3710     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3711 
3712     // We don't necessarily build correct LLVM struct types for ObjC
3713     // interfaces, so we can't rely on GEP to do this scaling
3714     // correctly, so we need to cast to i8*.  FIXME: is this actually
3715     // true?  A lot of other things in the fragile ABI would break...
3716     llvm::Type *OrigBaseTy = Addr.getType();
3717     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3718 
3719     // Do the GEP.
3720     CharUnits EltAlign =
3721       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3722     llvm::Value *EltPtr =
3723         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3724                               SignedIndices, E->getExprLoc());
3725     Addr = Address(EltPtr, EltAlign);
3726 
3727     // Cast back.
3728     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3729   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3730     // If this is A[i] where A is an array, the frontend will have decayed the
3731     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3732     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3733     // "gep x, i" here.  Emit one "gep A, 0, i".
3734     assert(Array->getType()->isArrayType() &&
3735            "Array to pointer decay must have array source type!");
3736     LValue ArrayLV;
3737     // For simple multidimensional array indexing, set the 'accessed' flag for
3738     // better bounds-checking of the base expression.
3739     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3740       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3741     else
3742       ArrayLV = EmitLValue(Array);
3743     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3744 
3745     // Propagate the alignment from the array itself to the result.
3746     QualType arrayType = Array->getType();
3747     Addr = emitArraySubscriptGEP(
3748         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3749         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3750         E->getExprLoc(), &arrayType, E->getBase());
3751     EltBaseInfo = ArrayLV.getBaseInfo();
3752     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3753   } else {
3754     // The base must be a pointer; emit it with an estimate of its alignment.
3755     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3756     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3757     QualType ptrType = E->getBase()->getType();
3758     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3759                                  !getLangOpts().isSignedOverflowDefined(),
3760                                  SignedIndices, E->getExprLoc(), &ptrType,
3761                                  E->getBase());
3762   }
3763 
3764   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3765 
3766   if (getLangOpts().ObjC &&
3767       getLangOpts().getGC() != LangOptions::NonGC) {
3768     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3769     setObjCGCLValueClass(getContext(), E, LV);
3770   }
3771   return LV;
3772 }
3773 
3774 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3775   assert(
3776       !E->isIncomplete() &&
3777       "incomplete matrix subscript expressions should be rejected during Sema");
3778   LValue Base = EmitLValue(E->getBase());
3779   llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3780   llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3781   llvm::Value *NumRows = Builder.getIntN(
3782       RowIdx->getType()->getScalarSizeInBits(),
3783       E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
3784   llvm::Value *FinalIdx =
3785       Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3786   return LValue::MakeMatrixElt(
3787       MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3788       E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3789 }
3790 
3791 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3792                                        LValueBaseInfo &BaseInfo,
3793                                        TBAAAccessInfo &TBAAInfo,
3794                                        QualType BaseTy, QualType ElTy,
3795                                        bool IsLowerBound) {
3796   LValue BaseLVal;
3797   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3798     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3799     if (BaseTy->isArrayType()) {
3800       Address Addr = BaseLVal.getAddress(CGF);
3801       BaseInfo = BaseLVal.getBaseInfo();
3802 
3803       // If the array type was an incomplete type, we need to make sure
3804       // the decay ends up being the right type.
3805       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3806       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3807 
3808       // Note that VLA pointers are always decayed, so we don't need to do
3809       // anything here.
3810       if (!BaseTy->isVariableArrayType()) {
3811         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3812                "Expected pointer to array");
3813         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3814       }
3815 
3816       return CGF.Builder.CreateElementBitCast(Addr,
3817                                               CGF.ConvertTypeForMem(ElTy));
3818     }
3819     LValueBaseInfo TypeBaseInfo;
3820     TBAAAccessInfo TypeTBAAInfo;
3821     CharUnits Align =
3822         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3823     BaseInfo.mergeForCast(TypeBaseInfo);
3824     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3825     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3826   }
3827   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3828 }
3829 
3830 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3831                                                 bool IsLowerBound) {
3832   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3833   QualType ResultExprTy;
3834   if (auto *AT = getContext().getAsArrayType(BaseTy))
3835     ResultExprTy = AT->getElementType();
3836   else
3837     ResultExprTy = BaseTy->getPointeeType();
3838   llvm::Value *Idx = nullptr;
3839   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3840     // Requesting lower bound or upper bound, but without provided length and
3841     // without ':' symbol for the default length -> length = 1.
3842     // Idx = LowerBound ?: 0;
3843     if (auto *LowerBound = E->getLowerBound()) {
3844       Idx = Builder.CreateIntCast(
3845           EmitScalarExpr(LowerBound), IntPtrTy,
3846           LowerBound->getType()->hasSignedIntegerRepresentation());
3847     } else
3848       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3849   } else {
3850     // Try to emit length or lower bound as constant. If this is possible, 1
3851     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3852     // IR (LB + Len) - 1.
3853     auto &C = CGM.getContext();
3854     auto *Length = E->getLength();
3855     llvm::APSInt ConstLength;
3856     if (Length) {
3857       // Idx = LowerBound + Length - 1;
3858       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3859         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3860         Length = nullptr;
3861       }
3862       auto *LowerBound = E->getLowerBound();
3863       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3864       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3865         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3866         LowerBound = nullptr;
3867       }
3868       if (!Length)
3869         --ConstLength;
3870       else if (!LowerBound)
3871         --ConstLowerBound;
3872 
3873       if (Length || LowerBound) {
3874         auto *LowerBoundVal =
3875             LowerBound
3876                 ? Builder.CreateIntCast(
3877                       EmitScalarExpr(LowerBound), IntPtrTy,
3878                       LowerBound->getType()->hasSignedIntegerRepresentation())
3879                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3880         auto *LengthVal =
3881             Length
3882                 ? Builder.CreateIntCast(
3883                       EmitScalarExpr(Length), IntPtrTy,
3884                       Length->getType()->hasSignedIntegerRepresentation())
3885                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3886         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3887                                 /*HasNUW=*/false,
3888                                 !getLangOpts().isSignedOverflowDefined());
3889         if (Length && LowerBound) {
3890           Idx = Builder.CreateSub(
3891               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3892               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3893         }
3894       } else
3895         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3896     } else {
3897       // Idx = ArraySize - 1;
3898       QualType ArrayTy = BaseTy->isPointerType()
3899                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3900                              : BaseTy;
3901       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3902         Length = VAT->getSizeExpr();
3903         if (Length->isIntegerConstantExpr(ConstLength, C))
3904           Length = nullptr;
3905       } else {
3906         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3907         ConstLength = CAT->getSize();
3908       }
3909       if (Length) {
3910         auto *LengthVal = Builder.CreateIntCast(
3911             EmitScalarExpr(Length), IntPtrTy,
3912             Length->getType()->hasSignedIntegerRepresentation());
3913         Idx = Builder.CreateSub(
3914             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3915             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3916       } else {
3917         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3918         --ConstLength;
3919         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3920       }
3921     }
3922   }
3923   assert(Idx);
3924 
3925   Address EltPtr = Address::invalid();
3926   LValueBaseInfo BaseInfo;
3927   TBAAAccessInfo TBAAInfo;
3928   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3929     // The base must be a pointer, which is not an aggregate.  Emit
3930     // it.  It needs to be emitted first in case it's what captures
3931     // the VLA bounds.
3932     Address Base =
3933         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3934                                 BaseTy, VLA->getElementType(), IsLowerBound);
3935     // The element count here is the total number of non-VLA elements.
3936     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3937 
3938     // Effectively, the multiply by the VLA size is part of the GEP.
3939     // GEP indexes are signed, and scaling an index isn't permitted to
3940     // signed-overflow, so we use the same semantics for our explicit
3941     // multiply.  We suppress this if overflow is not undefined behavior.
3942     if (getLangOpts().isSignedOverflowDefined())
3943       Idx = Builder.CreateMul(Idx, NumElements);
3944     else
3945       Idx = Builder.CreateNSWMul(Idx, NumElements);
3946     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3947                                    !getLangOpts().isSignedOverflowDefined(),
3948                                    /*signedIndices=*/false, E->getExprLoc());
3949   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3950     // If this is A[i] where A is an array, the frontend will have decayed the
3951     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3952     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3953     // "gep x, i" here.  Emit one "gep A, 0, i".
3954     assert(Array->getType()->isArrayType() &&
3955            "Array to pointer decay must have array source type!");
3956     LValue ArrayLV;
3957     // For simple multidimensional array indexing, set the 'accessed' flag for
3958     // better bounds-checking of the base expression.
3959     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3960       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3961     else
3962       ArrayLV = EmitLValue(Array);
3963 
3964     // Propagate the alignment from the array itself to the result.
3965     EltPtr = emitArraySubscriptGEP(
3966         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3967         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3968         /*signedIndices=*/false, E->getExprLoc());
3969     BaseInfo = ArrayLV.getBaseInfo();
3970     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3971   } else {
3972     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3973                                            TBAAInfo, BaseTy, ResultExprTy,
3974                                            IsLowerBound);
3975     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3976                                    !getLangOpts().isSignedOverflowDefined(),
3977                                    /*signedIndices=*/false, E->getExprLoc());
3978   }
3979 
3980   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3981 }
3982 
3983 LValue CodeGenFunction::
3984 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3985   // Emit the base vector as an l-value.
3986   LValue Base;
3987 
3988   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3989   if (E->isArrow()) {
3990     // If it is a pointer to a vector, emit the address and form an lvalue with
3991     // it.
3992     LValueBaseInfo BaseInfo;
3993     TBAAAccessInfo TBAAInfo;
3994     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3995     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
3996     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3997     Base.getQuals().removeObjCGCAttr();
3998   } else if (E->getBase()->isGLValue()) {
3999     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4000     // emit the base as an lvalue.
4001     assert(E->getBase()->getType()->isVectorType());
4002     Base = EmitLValue(E->getBase());
4003   } else {
4004     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4005     assert(E->getBase()->getType()->isVectorType() &&
4006            "Result must be a vector");
4007     llvm::Value *Vec = EmitScalarExpr(E->getBase());
4008 
4009     // Store the vector to memory (because LValue wants an address).
4010     Address VecMem = CreateMemTemp(E->getBase()->getType());
4011     Builder.CreateStore(Vec, VecMem);
4012     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4013                           AlignmentSource::Decl);
4014   }
4015 
4016   QualType type =
4017     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4018 
4019   // Encode the element access list into a vector of unsigned indices.
4020   SmallVector<uint32_t, 4> Indices;
4021   E->getEncodedElementAccess(Indices);
4022 
4023   if (Base.isSimple()) {
4024     llvm::Constant *CV =
4025         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4026     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4027                                     Base.getBaseInfo(), TBAAAccessInfo());
4028   }
4029   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4030 
4031   llvm::Constant *BaseElts = Base.getExtVectorElts();
4032   SmallVector<llvm::Constant *, 4> CElts;
4033 
4034   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4035     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4036   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4037   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4038                                   Base.getBaseInfo(), TBAAAccessInfo());
4039 }
4040 
4041 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4042   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4043     EmitIgnoredExpr(E->getBase());
4044     return EmitDeclRefLValue(DRE);
4045   }
4046 
4047   Expr *BaseExpr = E->getBase();
4048   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4049   LValue BaseLV;
4050   if (E->isArrow()) {
4051     LValueBaseInfo BaseInfo;
4052     TBAAAccessInfo TBAAInfo;
4053     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4054     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4055     SanitizerSet SkippedChecks;
4056     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4057     if (IsBaseCXXThis)
4058       SkippedChecks.set(SanitizerKind::Alignment, true);
4059     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4060       SkippedChecks.set(SanitizerKind::Null, true);
4061     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4062                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4063     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4064   } else
4065     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4066 
4067   NamedDecl *ND = E->getMemberDecl();
4068   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4069     LValue LV = EmitLValueForField(BaseLV, Field);
4070     setObjCGCLValueClass(getContext(), E, LV);
4071     if (getLangOpts().OpenMP) {
4072       // If the member was explicitly marked as nontemporal, mark it as
4073       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4074       // to children as nontemporal too.
4075       if ((IsWrappedCXXThis(BaseExpr) &&
4076            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4077           BaseLV.isNontemporal())
4078         LV.setNontemporal(/*Value=*/true);
4079     }
4080     return LV;
4081   }
4082 
4083   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4084     return EmitFunctionDeclLValue(*this, E, FD);
4085 
4086   llvm_unreachable("Unhandled member declaration!");
4087 }
4088 
4089 /// Given that we are currently emitting a lambda, emit an l-value for
4090 /// one of its members.
4091 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4092   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4093   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4094   QualType LambdaTagType =
4095     getContext().getTagDeclType(Field->getParent());
4096   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4097   return EmitLValueForField(LambdaLV, Field);
4098 }
4099 
4100 /// Get the field index in the debug info. The debug info structure/union
4101 /// will ignore the unnamed bitfields.
4102 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4103                                              unsigned FieldIndex) {
4104   unsigned I = 0, Skipped = 0;
4105 
4106   for (auto F : Rec->getDefinition()->fields()) {
4107     if (I == FieldIndex)
4108       break;
4109     if (F->isUnnamedBitfield())
4110       Skipped++;
4111     I++;
4112   }
4113 
4114   return FieldIndex - Skipped;
4115 }
4116 
4117 /// Get the address of a zero-sized field within a record. The resulting
4118 /// address doesn't necessarily have the right type.
4119 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4120                                        const FieldDecl *Field) {
4121   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4122       CGF.getContext().getFieldOffset(Field));
4123   if (Offset.isZero())
4124     return Base;
4125   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4126   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4127 }
4128 
4129 /// Drill down to the storage of a field without walking into
4130 /// reference types.
4131 ///
4132 /// The resulting address doesn't necessarily have the right type.
4133 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4134                                       const FieldDecl *field) {
4135   if (field->isZeroSize(CGF.getContext()))
4136     return emitAddrOfZeroSizeField(CGF, base, field);
4137 
4138   const RecordDecl *rec = field->getParent();
4139 
4140   unsigned idx =
4141     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4142 
4143   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4144 }
4145 
4146 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4147                                         Address addr, const FieldDecl *field) {
4148   const RecordDecl *rec = field->getParent();
4149   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4150       base.getType(), rec->getLocation());
4151 
4152   unsigned idx =
4153       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4154 
4155   return CGF.Builder.CreatePreserveStructAccessIndex(
4156       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4157 }
4158 
4159 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4160   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4161   if (!RD)
4162     return false;
4163 
4164   if (RD->isDynamicClass())
4165     return true;
4166 
4167   for (const auto &Base : RD->bases())
4168     if (hasAnyVptr(Base.getType(), Context))
4169       return true;
4170 
4171   for (const FieldDecl *Field : RD->fields())
4172     if (hasAnyVptr(Field->getType(), Context))
4173       return true;
4174 
4175   return false;
4176 }
4177 
4178 LValue CodeGenFunction::EmitLValueForField(LValue base,
4179                                            const FieldDecl *field) {
4180   LValueBaseInfo BaseInfo = base.getBaseInfo();
4181 
4182   if (field->isBitField()) {
4183     const CGRecordLayout &RL =
4184       CGM.getTypes().getCGRecordLayout(field->getParent());
4185     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4186     Address Addr = base.getAddress(*this);
4187     unsigned Idx = RL.getLLVMFieldNo(field);
4188     const RecordDecl *rec = field->getParent();
4189     if (!IsInPreservedAIRegion &&
4190         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4191       if (Idx != 0)
4192         // For structs, we GEP to the field that the record layout suggests.
4193         Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4194     } else {
4195       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4196           getContext().getRecordType(rec), rec->getLocation());
4197       Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx,
4198           getDebugInfoFIndex(rec, field->getFieldIndex()),
4199           DbgInfo);
4200     }
4201 
4202     // Get the access type.
4203     llvm::Type *FieldIntTy =
4204       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
4205     if (Addr.getElementType() != FieldIntTy)
4206       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4207 
4208     QualType fieldType =
4209       field->getType().withCVRQualifiers(base.getVRQualifiers());
4210     // TODO: Support TBAA for bit fields.
4211     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4212     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4213                                 TBAAAccessInfo());
4214   }
4215 
4216   // Fields of may-alias structures are may-alias themselves.
4217   // FIXME: this should get propagated down through anonymous structs
4218   // and unions.
4219   QualType FieldType = field->getType();
4220   const RecordDecl *rec = field->getParent();
4221   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4222   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4223   TBAAAccessInfo FieldTBAAInfo;
4224   if (base.getTBAAInfo().isMayAlias() ||
4225           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4226     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4227   } else if (rec->isUnion()) {
4228     // TODO: Support TBAA for unions.
4229     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4230   } else {
4231     // If no base type been assigned for the base access, then try to generate
4232     // one for this base lvalue.
4233     FieldTBAAInfo = base.getTBAAInfo();
4234     if (!FieldTBAAInfo.BaseType) {
4235         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4236         assert(!FieldTBAAInfo.Offset &&
4237                "Nonzero offset for an access with no base type!");
4238     }
4239 
4240     // Adjust offset to be relative to the base type.
4241     const ASTRecordLayout &Layout =
4242         getContext().getASTRecordLayout(field->getParent());
4243     unsigned CharWidth = getContext().getCharWidth();
4244     if (FieldTBAAInfo.BaseType)
4245       FieldTBAAInfo.Offset +=
4246           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4247 
4248     // Update the final access type and size.
4249     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4250     FieldTBAAInfo.Size =
4251         getContext().getTypeSizeInChars(FieldType).getQuantity();
4252   }
4253 
4254   Address addr = base.getAddress(*this);
4255   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4256     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4257         ClassDef->isDynamicClass()) {
4258       // Getting to any field of dynamic object requires stripping dynamic
4259       // information provided by invariant.group.  This is because accessing
4260       // fields may leak the real address of dynamic object, which could result
4261       // in miscompilation when leaked pointer would be compared.
4262       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4263       addr = Address(stripped, addr.getAlignment());
4264     }
4265   }
4266 
4267   unsigned RecordCVR = base.getVRQualifiers();
4268   if (rec->isUnion()) {
4269     // For unions, there is no pointer adjustment.
4270     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4271         hasAnyVptr(FieldType, getContext()))
4272       // Because unions can easily skip invariant.barriers, we need to add
4273       // a barrier every time CXXRecord field with vptr is referenced.
4274       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4275                      addr.getAlignment());
4276 
4277     if (IsInPreservedAIRegion ||
4278         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4279       // Remember the original union field index
4280       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4281           rec->getLocation());
4282       addr = Address(
4283           Builder.CreatePreserveUnionAccessIndex(
4284               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4285           addr.getAlignment());
4286     }
4287 
4288     if (FieldType->isReferenceType())
4289       addr = Builder.CreateElementBitCast(
4290           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4291   } else {
4292     if (!IsInPreservedAIRegion &&
4293         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4294       // For structs, we GEP to the field that the record layout suggests.
4295       addr = emitAddrOfFieldStorage(*this, addr, field);
4296     else
4297       // Remember the original struct field index
4298       addr = emitPreserveStructAccess(*this, base, addr, field);
4299   }
4300 
4301   // If this is a reference field, load the reference right now.
4302   if (FieldType->isReferenceType()) {
4303     LValue RefLVal =
4304         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4305     if (RecordCVR & Qualifiers::Volatile)
4306       RefLVal.getQuals().addVolatile();
4307     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4308 
4309     // Qualifiers on the struct don't apply to the referencee.
4310     RecordCVR = 0;
4311     FieldType = FieldType->getPointeeType();
4312   }
4313 
4314   // Make sure that the address is pointing to the right type.  This is critical
4315   // for both unions and structs.  A union needs a bitcast, a struct element
4316   // will need a bitcast if the LLVM type laid out doesn't match the desired
4317   // type.
4318   addr = Builder.CreateElementBitCast(
4319       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4320 
4321   if (field->hasAttr<AnnotateAttr>())
4322     addr = EmitFieldAnnotations(field, addr);
4323 
4324   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4325   LV.getQuals().addCVRQualifiers(RecordCVR);
4326 
4327   // __weak attribute on a field is ignored.
4328   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4329     LV.getQuals().removeObjCGCAttr();
4330 
4331   return LV;
4332 }
4333 
4334 LValue
4335 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4336                                                   const FieldDecl *Field) {
4337   QualType FieldType = Field->getType();
4338 
4339   if (!FieldType->isReferenceType())
4340     return EmitLValueForField(Base, Field);
4341 
4342   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4343 
4344   // Make sure that the address is pointing to the right type.
4345   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4346   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4347 
4348   // TODO: Generate TBAA information that describes this access as a structure
4349   // member access and not just an access to an object of the field's type. This
4350   // should be similar to what we do in EmitLValueForField().
4351   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4352   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4353   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4354   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4355                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4356 }
4357 
4358 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4359   if (E->isFileScope()) {
4360     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4361     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4362   }
4363   if (E->getType()->isVariablyModifiedType())
4364     // make sure to emit the VLA size.
4365     EmitVariablyModifiedType(E->getType());
4366 
4367   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4368   const Expr *InitExpr = E->getInitializer();
4369   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4370 
4371   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4372                    /*Init*/ true);
4373 
4374   // Block-scope compound literals are destroyed at the end of the enclosing
4375   // scope in C.
4376   if (!getLangOpts().CPlusPlus)
4377     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4378       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4379                                   E->getType(), getDestroyer(DtorKind),
4380                                   DtorKind & EHCleanup);
4381 
4382   return Result;
4383 }
4384 
4385 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4386   if (!E->isGLValue())
4387     // Initializing an aggregate temporary in C++11: T{...}.
4388     return EmitAggExprToLValue(E);
4389 
4390   // An lvalue initializer list must be initializing a reference.
4391   assert(E->isTransparent() && "non-transparent glvalue init list");
4392   return EmitLValue(E->getInit(0));
4393 }
4394 
4395 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4396 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4397 /// LValue is returned and the current block has been terminated.
4398 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4399                                                     const Expr *Operand) {
4400   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4401     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4402     return None;
4403   }
4404 
4405   return CGF.EmitLValue(Operand);
4406 }
4407 
4408 LValue CodeGenFunction::
4409 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4410   if (!expr->isGLValue()) {
4411     // ?: here should be an aggregate.
4412     assert(hasAggregateEvaluationKind(expr->getType()) &&
4413            "Unexpected conditional operator!");
4414     return EmitAggExprToLValue(expr);
4415   }
4416 
4417   OpaqueValueMapping binding(*this, expr);
4418 
4419   const Expr *condExpr = expr->getCond();
4420   bool CondExprBool;
4421   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4422     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4423     if (!CondExprBool) std::swap(live, dead);
4424 
4425     if (!ContainsLabel(dead)) {
4426       // If the true case is live, we need to track its region.
4427       if (CondExprBool)
4428         incrementProfileCounter(expr);
4429       // If a throw expression we emit it and return an undefined lvalue
4430       // because it can't be used.
4431       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4432         EmitCXXThrowExpr(ThrowExpr);
4433         llvm::Type *Ty =
4434             llvm::PointerType::getUnqual(ConvertType(dead->getType()));
4435         return MakeAddrLValue(
4436             Address(llvm::UndefValue::get(Ty), CharUnits::One()),
4437             dead->getType());
4438       }
4439       return EmitLValue(live);
4440     }
4441   }
4442 
4443   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4444   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4445   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4446 
4447   ConditionalEvaluation eval(*this);
4448   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4449 
4450   // Any temporaries created here are conditional.
4451   EmitBlock(lhsBlock);
4452   incrementProfileCounter(expr);
4453   eval.begin(*this);
4454   Optional<LValue> lhs =
4455       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4456   eval.end(*this);
4457 
4458   if (lhs && !lhs->isSimple())
4459     return EmitUnsupportedLValue(expr, "conditional operator");
4460 
4461   lhsBlock = Builder.GetInsertBlock();
4462   if (lhs)
4463     Builder.CreateBr(contBlock);
4464 
4465   // Any temporaries created here are conditional.
4466   EmitBlock(rhsBlock);
4467   eval.begin(*this);
4468   Optional<LValue> rhs =
4469       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4470   eval.end(*this);
4471   if (rhs && !rhs->isSimple())
4472     return EmitUnsupportedLValue(expr, "conditional operator");
4473   rhsBlock = Builder.GetInsertBlock();
4474 
4475   EmitBlock(contBlock);
4476 
4477   if (lhs && rhs) {
4478     llvm::PHINode *phi =
4479         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4480     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4481     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4482     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4483     AlignmentSource alignSource =
4484       std::max(lhs->getBaseInfo().getAlignmentSource(),
4485                rhs->getBaseInfo().getAlignmentSource());
4486     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4487         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4488     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4489                           TBAAInfo);
4490   } else {
4491     assert((lhs || rhs) &&
4492            "both operands of glvalue conditional are throw-expressions?");
4493     return lhs ? *lhs : *rhs;
4494   }
4495 }
4496 
4497 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4498 /// type. If the cast is to a reference, we can have the usual lvalue result,
4499 /// otherwise if a cast is needed by the code generator in an lvalue context,
4500 /// then it must mean that we need the address of an aggregate in order to
4501 /// access one of its members.  This can happen for all the reasons that casts
4502 /// are permitted with aggregate result, including noop aggregate casts, and
4503 /// cast from scalar to union.
4504 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4505   switch (E->getCastKind()) {
4506   case CK_ToVoid:
4507   case CK_BitCast:
4508   case CK_LValueToRValueBitCast:
4509   case CK_ArrayToPointerDecay:
4510   case CK_FunctionToPointerDecay:
4511   case CK_NullToMemberPointer:
4512   case CK_NullToPointer:
4513   case CK_IntegralToPointer:
4514   case CK_PointerToIntegral:
4515   case CK_PointerToBoolean:
4516   case CK_VectorSplat:
4517   case CK_IntegralCast:
4518   case CK_BooleanToSignedIntegral:
4519   case CK_IntegralToBoolean:
4520   case CK_IntegralToFloating:
4521   case CK_FloatingToIntegral:
4522   case CK_FloatingToBoolean:
4523   case CK_FloatingCast:
4524   case CK_FloatingRealToComplex:
4525   case CK_FloatingComplexToReal:
4526   case CK_FloatingComplexToBoolean:
4527   case CK_FloatingComplexCast:
4528   case CK_FloatingComplexToIntegralComplex:
4529   case CK_IntegralRealToComplex:
4530   case CK_IntegralComplexToReal:
4531   case CK_IntegralComplexToBoolean:
4532   case CK_IntegralComplexCast:
4533   case CK_IntegralComplexToFloatingComplex:
4534   case CK_DerivedToBaseMemberPointer:
4535   case CK_BaseToDerivedMemberPointer:
4536   case CK_MemberPointerToBoolean:
4537   case CK_ReinterpretMemberPointer:
4538   case CK_AnyPointerToBlockPointerCast:
4539   case CK_ARCProduceObject:
4540   case CK_ARCConsumeObject:
4541   case CK_ARCReclaimReturnedObject:
4542   case CK_ARCExtendBlockObject:
4543   case CK_CopyAndAutoreleaseBlockObject:
4544   case CK_IntToOCLSampler:
4545   case CK_FixedPointCast:
4546   case CK_FixedPointToBoolean:
4547   case CK_FixedPointToIntegral:
4548   case CK_IntegralToFixedPoint:
4549     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4550 
4551   case CK_Dependent:
4552     llvm_unreachable("dependent cast kind in IR gen!");
4553 
4554   case CK_BuiltinFnToFnPtr:
4555     llvm_unreachable("builtin functions are handled elsewhere");
4556 
4557   // These are never l-values; just use the aggregate emission code.
4558   case CK_NonAtomicToAtomic:
4559   case CK_AtomicToNonAtomic:
4560     return EmitAggExprToLValue(E);
4561 
4562   case CK_Dynamic: {
4563     LValue LV = EmitLValue(E->getSubExpr());
4564     Address V = LV.getAddress(*this);
4565     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4566     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4567   }
4568 
4569   case CK_ConstructorConversion:
4570   case CK_UserDefinedConversion:
4571   case CK_CPointerToObjCPointerCast:
4572   case CK_BlockPointerToObjCPointerCast:
4573   case CK_NoOp:
4574   case CK_LValueToRValue:
4575     return EmitLValue(E->getSubExpr());
4576 
4577   case CK_UncheckedDerivedToBase:
4578   case CK_DerivedToBase: {
4579     const auto *DerivedClassTy =
4580         E->getSubExpr()->getType()->castAs<RecordType>();
4581     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4582 
4583     LValue LV = EmitLValue(E->getSubExpr());
4584     Address This = LV.getAddress(*this);
4585 
4586     // Perform the derived-to-base conversion
4587     Address Base = GetAddressOfBaseClass(
4588         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4589         /*NullCheckValue=*/false, E->getExprLoc());
4590 
4591     // TODO: Support accesses to members of base classes in TBAA. For now, we
4592     // conservatively pretend that the complete object is of the base class
4593     // type.
4594     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4595                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4596   }
4597   case CK_ToUnion:
4598     return EmitAggExprToLValue(E);
4599   case CK_BaseToDerived: {
4600     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4601     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4602 
4603     LValue LV = EmitLValue(E->getSubExpr());
4604 
4605     // Perform the base-to-derived conversion
4606     Address Derived = GetAddressOfDerivedClass(
4607         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4608         /*NullCheckValue=*/false);
4609 
4610     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4611     // performed and the object is not of the derived type.
4612     if (sanitizePerformTypeCheck())
4613       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4614                     Derived.getPointer(), E->getType());
4615 
4616     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4617       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4618                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4619                                 E->getBeginLoc());
4620 
4621     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4622                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4623   }
4624   case CK_LValueBitCast: {
4625     // This must be a reinterpret_cast (or c-style equivalent).
4626     const auto *CE = cast<ExplicitCastExpr>(E);
4627 
4628     CGM.EmitExplicitCastExprType(CE, this);
4629     LValue LV = EmitLValue(E->getSubExpr());
4630     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4631                                       ConvertType(CE->getTypeAsWritten()));
4632 
4633     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4634       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4635                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4636                                 E->getBeginLoc());
4637 
4638     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4639                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4640   }
4641   case CK_AddressSpaceConversion: {
4642     LValue LV = EmitLValue(E->getSubExpr());
4643     QualType DestTy = getContext().getPointerType(E->getType());
4644     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4645         *this, LV.getPointer(*this),
4646         E->getSubExpr()->getType().getAddressSpace(),
4647         E->getType().getAddressSpace(), ConvertType(DestTy));
4648     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4649                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4650   }
4651   case CK_ObjCObjectLValueCast: {
4652     LValue LV = EmitLValue(E->getSubExpr());
4653     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4654                                              ConvertType(E->getType()));
4655     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4656                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4657   }
4658   case CK_ZeroToOCLOpaqueType:
4659     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4660   }
4661 
4662   llvm_unreachable("Unhandled lvalue cast kind?");
4663 }
4664 
4665 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4666   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4667   return getOrCreateOpaqueLValueMapping(e);
4668 }
4669 
4670 LValue
4671 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4672   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4673 
4674   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4675       it = OpaqueLValues.find(e);
4676 
4677   if (it != OpaqueLValues.end())
4678     return it->second;
4679 
4680   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4681   return EmitLValue(e->getSourceExpr());
4682 }
4683 
4684 RValue
4685 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4686   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4687 
4688   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4689       it = OpaqueRValues.find(e);
4690 
4691   if (it != OpaqueRValues.end())
4692     return it->second;
4693 
4694   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4695   return EmitAnyExpr(e->getSourceExpr());
4696 }
4697 
4698 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4699                                            const FieldDecl *FD,
4700                                            SourceLocation Loc) {
4701   QualType FT = FD->getType();
4702   LValue FieldLV = EmitLValueForField(LV, FD);
4703   switch (getEvaluationKind(FT)) {
4704   case TEK_Complex:
4705     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4706   case TEK_Aggregate:
4707     return FieldLV.asAggregateRValue(*this);
4708   case TEK_Scalar:
4709     // This routine is used to load fields one-by-one to perform a copy, so
4710     // don't load reference fields.
4711     if (FD->getType()->isReferenceType())
4712       return RValue::get(FieldLV.getPointer(*this));
4713     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4714     // primitive load.
4715     if (FieldLV.isBitField())
4716       return EmitLoadOfLValue(FieldLV, Loc);
4717     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4718   }
4719   llvm_unreachable("bad evaluation kind");
4720 }
4721 
4722 //===--------------------------------------------------------------------===//
4723 //                             Expression Emission
4724 //===--------------------------------------------------------------------===//
4725 
4726 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4727                                      ReturnValueSlot ReturnValue) {
4728   // Builtins never have block type.
4729   if (E->getCallee()->getType()->isBlockPointerType())
4730     return EmitBlockCallExpr(E, ReturnValue);
4731 
4732   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4733     return EmitCXXMemberCallExpr(CE, ReturnValue);
4734 
4735   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4736     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4737 
4738   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4739     if (const CXXMethodDecl *MD =
4740           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4741       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4742 
4743   CGCallee callee = EmitCallee(E->getCallee());
4744 
4745   if (callee.isBuiltin()) {
4746     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4747                            E, ReturnValue);
4748   }
4749 
4750   if (callee.isPseudoDestructor()) {
4751     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4752   }
4753 
4754   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4755 }
4756 
4757 /// Emit a CallExpr without considering whether it might be a subclass.
4758 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4759                                            ReturnValueSlot ReturnValue) {
4760   CGCallee Callee = EmitCallee(E->getCallee());
4761   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4762 }
4763 
4764 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4765   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4766 
4767   if (auto builtinID = FD->getBuiltinID()) {
4768     // Replaceable builtin provide their own implementation of a builtin. Unless
4769     // we are in the builtin implementation itself, don't call the actual
4770     // builtin. If we are in the builtin implementation, avoid trivial infinite
4771     // recursion.
4772     if (!FD->isInlineBuiltinDeclaration() ||
4773         CGF.CurFn->getName() == FD->getName())
4774       return CGCallee::forBuiltin(builtinID, FD);
4775   }
4776 
4777   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4778   return CGCallee::forDirect(calleePtr, GD);
4779 }
4780 
4781 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4782   E = E->IgnoreParens();
4783 
4784   // Look through function-to-pointer decay.
4785   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4786     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4787         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4788       return EmitCallee(ICE->getSubExpr());
4789     }
4790 
4791   // Resolve direct calls.
4792   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4793     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4794       return EmitDirectCallee(*this, FD);
4795     }
4796   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4797     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4798       EmitIgnoredExpr(ME->getBase());
4799       return EmitDirectCallee(*this, FD);
4800     }
4801 
4802   // Look through template substitutions.
4803   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4804     return EmitCallee(NTTP->getReplacement());
4805 
4806   // Treat pseudo-destructor calls differently.
4807   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4808     return CGCallee::forPseudoDestructor(PDE);
4809   }
4810 
4811   // Otherwise, we have an indirect reference.
4812   llvm::Value *calleePtr;
4813   QualType functionType;
4814   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4815     calleePtr = EmitScalarExpr(E);
4816     functionType = ptrType->getPointeeType();
4817   } else {
4818     functionType = E->getType();
4819     calleePtr = EmitLValue(E).getPointer(*this);
4820   }
4821   assert(functionType->isFunctionType());
4822 
4823   GlobalDecl GD;
4824   if (const auto *VD =
4825           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4826     GD = GlobalDecl(VD);
4827 
4828   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4829   CGCallee callee(calleeInfo, calleePtr);
4830   return callee;
4831 }
4832 
4833 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4834   // Comma expressions just emit their LHS then their RHS as an l-value.
4835   if (E->getOpcode() == BO_Comma) {
4836     EmitIgnoredExpr(E->getLHS());
4837     EnsureInsertPoint();
4838     return EmitLValue(E->getRHS());
4839   }
4840 
4841   if (E->getOpcode() == BO_PtrMemD ||
4842       E->getOpcode() == BO_PtrMemI)
4843     return EmitPointerToDataMemberBinaryExpr(E);
4844 
4845   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4846 
4847   // Note that in all of these cases, __block variables need the RHS
4848   // evaluated first just in case the variable gets moved by the RHS.
4849 
4850   switch (getEvaluationKind(E->getType())) {
4851   case TEK_Scalar: {
4852     switch (E->getLHS()->getType().getObjCLifetime()) {
4853     case Qualifiers::OCL_Strong:
4854       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4855 
4856     case Qualifiers::OCL_Autoreleasing:
4857       return EmitARCStoreAutoreleasing(E).first;
4858 
4859     // No reason to do any of these differently.
4860     case Qualifiers::OCL_None:
4861     case Qualifiers::OCL_ExplicitNone:
4862     case Qualifiers::OCL_Weak:
4863       break;
4864     }
4865 
4866     RValue RV = EmitAnyExpr(E->getRHS());
4867     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4868     if (RV.isScalar())
4869       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4870     EmitStoreThroughLValue(RV, LV);
4871     if (getLangOpts().OpenMP)
4872       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4873                                                                 E->getLHS());
4874     return LV;
4875   }
4876 
4877   case TEK_Complex:
4878     return EmitComplexAssignmentLValue(E);
4879 
4880   case TEK_Aggregate:
4881     return EmitAggExprToLValue(E);
4882   }
4883   llvm_unreachable("bad evaluation kind");
4884 }
4885 
4886 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4887   RValue RV = EmitCallExpr(E);
4888 
4889   if (!RV.isScalar())
4890     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4891                           AlignmentSource::Decl);
4892 
4893   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4894          "Can't have a scalar return unless the return type is a "
4895          "reference type!");
4896 
4897   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4898 }
4899 
4900 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4901   // FIXME: This shouldn't require another copy.
4902   return EmitAggExprToLValue(E);
4903 }
4904 
4905 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4906   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4907          && "binding l-value to type which needs a temporary");
4908   AggValueSlot Slot = CreateAggTemp(E->getType());
4909   EmitCXXConstructExpr(E, Slot);
4910   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4911 }
4912 
4913 LValue
4914 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4915   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4916 }
4917 
4918 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4919   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
4920                                       ConvertType(E->getType()));
4921 }
4922 
4923 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4924   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4925                         AlignmentSource::Decl);
4926 }
4927 
4928 LValue
4929 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4930   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4931   Slot.setExternallyDestructed();
4932   EmitAggExpr(E->getSubExpr(), Slot);
4933   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4934   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4935 }
4936 
4937 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4938   RValue RV = EmitObjCMessageExpr(E);
4939 
4940   if (!RV.isScalar())
4941     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4942                           AlignmentSource::Decl);
4943 
4944   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4945          "Can't have a scalar return unless the return type is a "
4946          "reference type!");
4947 
4948   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4949 }
4950 
4951 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4952   Address V =
4953     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4954   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4955 }
4956 
4957 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4958                                              const ObjCIvarDecl *Ivar) {
4959   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4960 }
4961 
4962 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4963                                           llvm::Value *BaseValue,
4964                                           const ObjCIvarDecl *Ivar,
4965                                           unsigned CVRQualifiers) {
4966   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4967                                                    Ivar, CVRQualifiers);
4968 }
4969 
4970 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4971   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4972   llvm::Value *BaseValue = nullptr;
4973   const Expr *BaseExpr = E->getBase();
4974   Qualifiers BaseQuals;
4975   QualType ObjectTy;
4976   if (E->isArrow()) {
4977     BaseValue = EmitScalarExpr(BaseExpr);
4978     ObjectTy = BaseExpr->getType()->getPointeeType();
4979     BaseQuals = ObjectTy.getQualifiers();
4980   } else {
4981     LValue BaseLV = EmitLValue(BaseExpr);
4982     BaseValue = BaseLV.getPointer(*this);
4983     ObjectTy = BaseExpr->getType();
4984     BaseQuals = ObjectTy.getQualifiers();
4985   }
4986 
4987   LValue LV =
4988     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4989                       BaseQuals.getCVRQualifiers());
4990   setObjCGCLValueClass(getContext(), E, LV);
4991   return LV;
4992 }
4993 
4994 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4995   // Can only get l-value for message expression returning aggregate type
4996   RValue RV = EmitAnyExprToTemp(E);
4997   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4998                         AlignmentSource::Decl);
4999 }
5000 
5001 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5002                                  const CallExpr *E, ReturnValueSlot ReturnValue,
5003                                  llvm::Value *Chain) {
5004   // Get the actual function type. The callee type will always be a pointer to
5005   // function type or a block pointer type.
5006   assert(CalleeType->isFunctionPointerType() &&
5007          "Call must have function pointer type!");
5008 
5009   const Decl *TargetDecl =
5010       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5011 
5012   CalleeType = getContext().getCanonicalType(CalleeType);
5013 
5014   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5015 
5016   CGCallee Callee = OrigCallee;
5017 
5018   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5019       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5020     if (llvm::Constant *PrefixSig =
5021             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5022       SanitizerScope SanScope(this);
5023       // Remove any (C++17) exception specifications, to allow calling e.g. a
5024       // noexcept function through a non-noexcept pointer.
5025       auto ProtoTy =
5026         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5027       llvm::Constant *FTRTTIConst =
5028           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5029       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
5030       llvm::StructType *PrefixStructTy = llvm::StructType::get(
5031           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
5032 
5033       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5034 
5035       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5036           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5037       llvm::Value *CalleeSigPtr =
5038           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5039       llvm::Value *CalleeSig =
5040           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
5041       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5042 
5043       llvm::BasicBlock *Cont = createBasicBlock("cont");
5044       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5045       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5046 
5047       EmitBlock(TypeCheck);
5048       llvm::Value *CalleeRTTIPtr =
5049           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5050       llvm::Value *CalleeRTTIEncoded =
5051           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
5052       llvm::Value *CalleeRTTI =
5053           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5054       llvm::Value *CalleeRTTIMatch =
5055           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5056       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5057                                       EmitCheckTypeDescriptor(CalleeType)};
5058       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5059                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5060                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5061 
5062       Builder.CreateBr(Cont);
5063       EmitBlock(Cont);
5064     }
5065   }
5066 
5067   const auto *FnType = cast<FunctionType>(PointeeType);
5068 
5069   // If we are checking indirect calls and this call is indirect, check that the
5070   // function pointer is a member of the bit set for the function type.
5071   if (SanOpts.has(SanitizerKind::CFIICall) &&
5072       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5073     SanitizerScope SanScope(this);
5074     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5075 
5076     llvm::Metadata *MD;
5077     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5078       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5079     else
5080       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5081 
5082     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5083 
5084     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5085     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5086     llvm::Value *TypeTest = Builder.CreateCall(
5087         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5088 
5089     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5090     llvm::Constant *StaticData[] = {
5091         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5092         EmitCheckSourceLocation(E->getBeginLoc()),
5093         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5094     };
5095     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5096       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5097                            CastedCallee, StaticData);
5098     } else {
5099       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5100                 SanitizerHandler::CFICheckFail, StaticData,
5101                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5102     }
5103   }
5104 
5105   CallArgList Args;
5106   if (Chain)
5107     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5108              CGM.getContext().VoidPtrTy);
5109 
5110   // C++17 requires that we evaluate arguments to a call using assignment syntax
5111   // right-to-left, and that we evaluate arguments to certain other operators
5112   // left-to-right. Note that we allow this to override the order dictated by
5113   // the calling convention on the MS ABI, which means that parameter
5114   // destruction order is not necessarily reverse construction order.
5115   // FIXME: Revisit this based on C++ committee response to unimplementability.
5116   EvaluationOrder Order = EvaluationOrder::Default;
5117   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5118     if (OCE->isAssignmentOp())
5119       Order = EvaluationOrder::ForceRightToLeft;
5120     else {
5121       switch (OCE->getOperator()) {
5122       case OO_LessLess:
5123       case OO_GreaterGreater:
5124       case OO_AmpAmp:
5125       case OO_PipePipe:
5126       case OO_Comma:
5127       case OO_ArrowStar:
5128         Order = EvaluationOrder::ForceLeftToRight;
5129         break;
5130       default:
5131         break;
5132       }
5133     }
5134   }
5135 
5136   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5137                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5138 
5139   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5140       Args, FnType, /*ChainCall=*/Chain);
5141 
5142   // C99 6.5.2.2p6:
5143   //   If the expression that denotes the called function has a type
5144   //   that does not include a prototype, [the default argument
5145   //   promotions are performed]. If the number of arguments does not
5146   //   equal the number of parameters, the behavior is undefined. If
5147   //   the function is defined with a type that includes a prototype,
5148   //   and either the prototype ends with an ellipsis (, ...) or the
5149   //   types of the arguments after promotion are not compatible with
5150   //   the types of the parameters, the behavior is undefined. If the
5151   //   function is defined with a type that does not include a
5152   //   prototype, and the types of the arguments after promotion are
5153   //   not compatible with those of the parameters after promotion,
5154   //   the behavior is undefined [except in some trivial cases].
5155   // That is, in the general case, we should assume that a call
5156   // through an unprototyped function type works like a *non-variadic*
5157   // call.  The way we make this work is to cast to the exact type
5158   // of the promoted arguments.
5159   //
5160   // Chain calls use this same code path to add the invisible chain parameter
5161   // to the function type.
5162   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5163     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5164     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5165     CalleeTy = CalleeTy->getPointerTo(AS);
5166 
5167     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5168     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5169     Callee.setFunctionPointer(CalleePtr);
5170   }
5171 
5172   llvm::CallBase *CallOrInvoke = nullptr;
5173   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5174                          E->getExprLoc());
5175 
5176   // Generate function declaration DISuprogram in order to be used
5177   // in debug info about call sites.
5178   if (CGDebugInfo *DI = getDebugInfo()) {
5179     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5180       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5181                                   CalleeDecl);
5182   }
5183 
5184   return Call;
5185 }
5186 
5187 LValue CodeGenFunction::
5188 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5189   Address BaseAddr = Address::invalid();
5190   if (E->getOpcode() == BO_PtrMemI) {
5191     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5192   } else {
5193     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5194   }
5195 
5196   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5197   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5198 
5199   LValueBaseInfo BaseInfo;
5200   TBAAAccessInfo TBAAInfo;
5201   Address MemberAddr =
5202     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5203                                     &TBAAInfo);
5204 
5205   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5206 }
5207 
5208 /// Given the address of a temporary variable, produce an r-value of
5209 /// its type.
5210 RValue CodeGenFunction::convertTempToRValue(Address addr,
5211                                             QualType type,
5212                                             SourceLocation loc) {
5213   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5214   switch (getEvaluationKind(type)) {
5215   case TEK_Complex:
5216     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5217   case TEK_Aggregate:
5218     return lvalue.asAggregateRValue(*this);
5219   case TEK_Scalar:
5220     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5221   }
5222   llvm_unreachable("bad evaluation kind");
5223 }
5224 
5225 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5226   assert(Val->getType()->isFPOrFPVectorTy());
5227   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5228     return;
5229 
5230   llvm::MDBuilder MDHelper(getLLVMContext());
5231   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5232 
5233   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5234 }
5235 
5236 namespace {
5237   struct LValueOrRValue {
5238     LValue LV;
5239     RValue RV;
5240   };
5241 }
5242 
5243 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5244                                            const PseudoObjectExpr *E,
5245                                            bool forLValue,
5246                                            AggValueSlot slot) {
5247   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5248 
5249   // Find the result expression, if any.
5250   const Expr *resultExpr = E->getResultExpr();
5251   LValueOrRValue result;
5252 
5253   for (PseudoObjectExpr::const_semantics_iterator
5254          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5255     const Expr *semantic = *i;
5256 
5257     // If this semantic expression is an opaque value, bind it
5258     // to the result of its source expression.
5259     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5260       // Skip unique OVEs.
5261       if (ov->isUnique()) {
5262         assert(ov != resultExpr &&
5263                "A unique OVE cannot be used as the result expression");
5264         continue;
5265       }
5266 
5267       // If this is the result expression, we may need to evaluate
5268       // directly into the slot.
5269       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5270       OVMA opaqueData;
5271       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5272           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5273         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5274         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5275                                        AlignmentSource::Decl);
5276         opaqueData = OVMA::bind(CGF, ov, LV);
5277         result.RV = slot.asRValue();
5278 
5279       // Otherwise, emit as normal.
5280       } else {
5281         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5282 
5283         // If this is the result, also evaluate the result now.
5284         if (ov == resultExpr) {
5285           if (forLValue)
5286             result.LV = CGF.EmitLValue(ov);
5287           else
5288             result.RV = CGF.EmitAnyExpr(ov, slot);
5289         }
5290       }
5291 
5292       opaques.push_back(opaqueData);
5293 
5294     // Otherwise, if the expression is the result, evaluate it
5295     // and remember the result.
5296     } else if (semantic == resultExpr) {
5297       if (forLValue)
5298         result.LV = CGF.EmitLValue(semantic);
5299       else
5300         result.RV = CGF.EmitAnyExpr(semantic, slot);
5301 
5302     // Otherwise, evaluate the expression in an ignored context.
5303     } else {
5304       CGF.EmitIgnoredExpr(semantic);
5305     }
5306   }
5307 
5308   // Unbind all the opaques now.
5309   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5310     opaques[i].unbind(CGF);
5311 
5312   return result;
5313 }
5314 
5315 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5316                                                AggValueSlot slot) {
5317   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5318 }
5319 
5320 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5321   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5322 }
5323