1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCall.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGRecordLayout.h" 20 #include "CGObjCRuntime.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/Intrinsics.h" 25 #include "llvm/Target/TargetData.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 //===--------------------------------------------------------------------===// 30 // Miscellaneous Helper Methods 31 //===--------------------------------------------------------------------===// 32 33 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 34 unsigned addressSpace = 35 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 36 37 const llvm::PointerType *destType = Int8PtrTy; 38 if (addressSpace) 39 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 40 41 if (value->getType() == destType) return value; 42 return Builder.CreateBitCast(value, destType); 43 } 44 45 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 46 /// block. 47 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty, 48 const llvm::Twine &Name) { 49 if (!Builder.isNamePreserving()) 50 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 51 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 52 } 53 54 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 55 llvm::Value *Init) { 56 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 57 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 58 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 59 } 60 61 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 62 const llvm::Twine &Name) { 63 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 64 // FIXME: Should we prefer the preferred type alignment here? 65 CharUnits Align = getContext().getTypeAlignInChars(Ty); 66 Alloc->setAlignment(Align.getQuantity()); 67 return Alloc; 68 } 69 70 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 71 const llvm::Twine &Name) { 72 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 73 // FIXME: Should we prefer the preferred type alignment here? 74 CharUnits Align = getContext().getTypeAlignInChars(Ty); 75 Alloc->setAlignment(Align.getQuantity()); 76 return Alloc; 77 } 78 79 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 80 /// expression and compare the result against zero, returning an Int1Ty value. 81 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 82 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 83 llvm::Value *MemPtr = EmitScalarExpr(E); 84 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 85 } 86 87 QualType BoolTy = getContext().BoolTy; 88 if (!E->getType()->isAnyComplexType()) 89 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 90 91 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 92 } 93 94 /// EmitIgnoredExpr - Emit code to compute the specified expression, 95 /// ignoring the result. 96 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 97 if (E->isRValue()) 98 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 99 100 // Just emit it as an l-value and drop the result. 101 EmitLValue(E); 102 } 103 104 /// EmitAnyExpr - Emit code to compute the specified expression which 105 /// can have any type. The result is returned as an RValue struct. 106 /// If this is an aggregate expression, AggSlot indicates where the 107 /// result should be returned. 108 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, 109 bool IgnoreResult) { 110 if (!hasAggregateLLVMType(E->getType())) 111 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 112 else if (E->getType()->isAnyComplexType()) 113 return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); 114 115 EmitAggExpr(E, AggSlot, IgnoreResult); 116 return AggSlot.asRValue(); 117 } 118 119 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 120 /// always be accessible even if no aggregate location is provided. 121 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 122 AggValueSlot AggSlot = AggValueSlot::ignored(); 123 124 if (hasAggregateLLVMType(E->getType()) && 125 !E->getType()->isAnyComplexType()) 126 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 127 return EmitAnyExpr(E, AggSlot); 128 } 129 130 /// EmitAnyExprToMem - Evaluate an expression into a given memory 131 /// location. 132 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 133 llvm::Value *Location, 134 Qualifiers Quals, 135 bool IsInit) { 136 if (E->getType()->isAnyComplexType()) 137 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 138 else if (hasAggregateLLVMType(E->getType())) 139 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, IsInit)); 140 else { 141 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 142 LValue LV = MakeAddrLValue(Location, E->getType()); 143 EmitStoreThroughLValue(RV, LV); 144 } 145 } 146 147 namespace { 148 /// \brief An adjustment to be made to the temporary created when emitting a 149 /// reference binding, which accesses a particular subobject of that temporary. 150 struct SubobjectAdjustment { 151 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; 152 153 union { 154 struct { 155 const CastExpr *BasePath; 156 const CXXRecordDecl *DerivedClass; 157 } DerivedToBase; 158 159 FieldDecl *Field; 160 }; 161 162 SubobjectAdjustment(const CastExpr *BasePath, 163 const CXXRecordDecl *DerivedClass) 164 : Kind(DerivedToBaseAdjustment) { 165 DerivedToBase.BasePath = BasePath; 166 DerivedToBase.DerivedClass = DerivedClass; 167 } 168 169 SubobjectAdjustment(FieldDecl *Field) 170 : Kind(FieldAdjustment) { 171 this->Field = Field; 172 } 173 }; 174 } 175 176 static llvm::Value * 177 CreateReferenceTemporary(CodeGenFunction& CGF, QualType Type, 178 const NamedDecl *InitializedDecl) { 179 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 180 if (VD->hasGlobalStorage()) { 181 llvm::SmallString<256> Name; 182 llvm::raw_svector_ostream Out(Name); 183 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 184 Out.flush(); 185 186 const llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 187 188 // Create the reference temporary. 189 llvm::GlobalValue *RefTemp = 190 new llvm::GlobalVariable(CGF.CGM.getModule(), 191 RefTempTy, /*isConstant=*/false, 192 llvm::GlobalValue::InternalLinkage, 193 llvm::Constant::getNullValue(RefTempTy), 194 Name.str()); 195 return RefTemp; 196 } 197 } 198 199 return CGF.CreateMemTemp(Type, "ref.tmp"); 200 } 201 202 static llvm::Value * 203 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 204 llvm::Value *&ReferenceTemporary, 205 const CXXDestructorDecl *&ReferenceTemporaryDtor, 206 QualType &ObjCARCReferenceLifetimeType, 207 const NamedDecl *InitializedDecl) { 208 // Look through expressions for materialized temporaries (for now). 209 if (const MaterializeTemporaryExpr *M 210 = dyn_cast<MaterializeTemporaryExpr>(E)) { 211 // Objective-C++ ARC: 212 // If we are binding a reference to a temporary that has ownership, we 213 // need to perform retain/release operations on the temporary. 214 if (CGF.getContext().getLangOptions().ObjCAutoRefCount && 215 E->getType()->isObjCLifetimeType() && 216 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 217 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 218 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 219 ObjCARCReferenceLifetimeType = E->getType(); 220 221 E = M->GetTemporaryExpr(); 222 } 223 224 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 225 E = DAE->getExpr(); 226 227 if (const ExprWithCleanups *TE = dyn_cast<ExprWithCleanups>(E)) { 228 CodeGenFunction::RunCleanupsScope Scope(CGF); 229 230 return EmitExprForReferenceBinding(CGF, TE->getSubExpr(), 231 ReferenceTemporary, 232 ReferenceTemporaryDtor, 233 ObjCARCReferenceLifetimeType, 234 InitializedDecl); 235 } 236 237 if (const ObjCPropertyRefExpr *PRE = 238 dyn_cast<ObjCPropertyRefExpr>(E->IgnoreParenImpCasts())) 239 if (PRE->getGetterResultType()->isReferenceType()) 240 E = PRE; 241 242 RValue RV; 243 if (E->isGLValue()) { 244 // Emit the expression as an lvalue. 245 LValue LV = CGF.EmitLValue(E); 246 if (LV.isPropertyRef()) { 247 RV = CGF.EmitLoadOfPropertyRefLValue(LV); 248 return RV.getScalarVal(); 249 } 250 251 if (LV.isSimple()) 252 return LV.getAddress(); 253 254 // We have to load the lvalue. 255 RV = CGF.EmitLoadOfLValue(LV); 256 } else { 257 if (!ObjCARCReferenceLifetimeType.isNull()) { 258 ReferenceTemporary = CreateReferenceTemporary(CGF, 259 ObjCARCReferenceLifetimeType, 260 InitializedDecl); 261 262 263 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 264 ObjCARCReferenceLifetimeType); 265 266 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 267 RefTempDst, false); 268 269 bool ExtendsLifeOfTemporary = false; 270 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 271 if (Var->extendsLifetimeOfTemporary()) 272 ExtendsLifeOfTemporary = true; 273 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 274 ExtendsLifeOfTemporary = true; 275 } 276 277 if (!ExtendsLifeOfTemporary) { 278 // Since the lifetime of this temporary isn't going to be extended, 279 // we need to clean it up ourselves at the end of the full expression. 280 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 281 case Qualifiers::OCL_None: 282 case Qualifiers::OCL_ExplicitNone: 283 case Qualifiers::OCL_Autoreleasing: 284 break; 285 286 case Qualifiers::OCL_Strong: 287 CGF.PushARCReleaseCleanup(CGF.getARCCleanupKind(), 288 ObjCARCReferenceLifetimeType, 289 ReferenceTemporary, 290 /*Precise lifetime=*/false, 291 /*For full expression=*/true); 292 break; 293 294 case Qualifiers::OCL_Weak: 295 CGF.PushARCWeakReleaseCleanup(NormalAndEHCleanup, 296 ObjCARCReferenceLifetimeType, 297 ReferenceTemporary, 298 /*For full expression=*/true); 299 break; 300 } 301 302 ObjCARCReferenceLifetimeType = QualType(); 303 } 304 305 return ReferenceTemporary; 306 } 307 308 llvm::SmallVector<SubobjectAdjustment, 2> Adjustments; 309 while (true) { 310 E = E->IgnoreParens(); 311 312 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 313 if ((CE->getCastKind() == CK_DerivedToBase || 314 CE->getCastKind() == CK_UncheckedDerivedToBase) && 315 E->getType()->isRecordType()) { 316 E = CE->getSubExpr(); 317 CXXRecordDecl *Derived 318 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 319 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 320 continue; 321 } 322 323 if (CE->getCastKind() == CK_NoOp) { 324 E = CE->getSubExpr(); 325 continue; 326 } 327 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 328 if (!ME->isArrow() && ME->getBase()->isRValue()) { 329 assert(ME->getBase()->getType()->isRecordType()); 330 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 331 E = ME->getBase(); 332 Adjustments.push_back(SubobjectAdjustment(Field)); 333 continue; 334 } 335 } 336 } 337 338 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 339 if (opaque->getType()->isRecordType()) 340 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 341 342 // Nothing changed. 343 break; 344 } 345 346 // Create a reference temporary if necessary. 347 AggValueSlot AggSlot = AggValueSlot::ignored(); 348 if (CGF.hasAggregateLLVMType(E->getType()) && 349 !E->getType()->isAnyComplexType()) { 350 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 351 InitializedDecl); 352 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Qualifiers(), 353 InitializedDecl != 0); 354 } 355 356 if (InitializedDecl) { 357 // Get the destructor for the reference temporary. 358 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 359 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 360 if (!ClassDecl->hasTrivialDestructor()) 361 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 362 } 363 } 364 365 RV = CGF.EmitAnyExpr(E, AggSlot); 366 367 // Check if need to perform derived-to-base casts and/or field accesses, to 368 // get from the temporary object we created (and, potentially, for which we 369 // extended the lifetime) to the subobject we're binding the reference to. 370 if (!Adjustments.empty()) { 371 llvm::Value *Object = RV.getAggregateAddr(); 372 for (unsigned I = Adjustments.size(); I != 0; --I) { 373 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 374 switch (Adjustment.Kind) { 375 case SubobjectAdjustment::DerivedToBaseAdjustment: 376 Object = 377 CGF.GetAddressOfBaseClass(Object, 378 Adjustment.DerivedToBase.DerivedClass, 379 Adjustment.DerivedToBase.BasePath->path_begin(), 380 Adjustment.DerivedToBase.BasePath->path_end(), 381 /*NullCheckValue=*/false); 382 break; 383 384 case SubobjectAdjustment::FieldAdjustment: { 385 LValue LV = 386 CGF.EmitLValueForField(Object, Adjustment.Field, 0); 387 if (LV.isSimple()) { 388 Object = LV.getAddress(); 389 break; 390 } 391 392 // For non-simple lvalues, we actually have to create a copy of 393 // the object we're binding to. 394 QualType T = Adjustment.Field->getType().getNonReferenceType() 395 .getUnqualifiedType(); 396 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 397 LValue TempLV = CGF.MakeAddrLValue(Object, 398 Adjustment.Field->getType()); 399 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 400 break; 401 } 402 403 } 404 } 405 406 return Object; 407 } 408 } 409 410 if (RV.isAggregate()) 411 return RV.getAggregateAddr(); 412 413 // Create a temporary variable that we can bind the reference to. 414 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 415 InitializedDecl); 416 417 418 unsigned Alignment = 419 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 420 if (RV.isScalar()) 421 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 422 /*Volatile=*/false, Alignment, E->getType()); 423 else 424 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 425 /*Volatile=*/false); 426 return ReferenceTemporary; 427 } 428 429 RValue 430 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 431 const NamedDecl *InitializedDecl) { 432 llvm::Value *ReferenceTemporary = 0; 433 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 434 QualType ObjCARCReferenceLifetimeType; 435 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 436 ReferenceTemporaryDtor, 437 ObjCARCReferenceLifetimeType, 438 InitializedDecl); 439 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 440 return RValue::get(Value); 441 442 // Make sure to call the destructor for the reference temporary. 443 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 444 if (VD && VD->hasGlobalStorage()) { 445 if (ReferenceTemporaryDtor) { 446 llvm::Constant *DtorFn = 447 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 448 EmitCXXGlobalDtorRegistration(DtorFn, 449 cast<llvm::Constant>(ReferenceTemporary)); 450 } else { 451 assert(!ObjCARCReferenceLifetimeType.isNull()); 452 // Note: We intentionally do not register a global "destructor" to 453 // release the object. 454 } 455 456 return RValue::get(Value); 457 } 458 459 if (ReferenceTemporaryDtor) 460 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 461 else { 462 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 463 case Qualifiers::OCL_None: 464 assert(0 && "Not a reference temporary that needs to be deallocated"); 465 case Qualifiers::OCL_ExplicitNone: 466 case Qualifiers::OCL_Autoreleasing: 467 // Nothing to do. 468 break; 469 470 case Qualifiers::OCL_Strong: 471 PushARCReleaseCleanup(getARCCleanupKind(), ObjCARCReferenceLifetimeType, 472 ReferenceTemporary, 473 VD && VD->hasAttr<ObjCPreciseLifetimeAttr>()); 474 break; 475 476 case Qualifiers::OCL_Weak: 477 // __weak objects always get EH cleanups; otherwise, exceptions 478 // could cause really nasty crashes instead of mere leaks. 479 PushARCWeakReleaseCleanup(NormalAndEHCleanup, 480 ObjCARCReferenceLifetimeType, 481 ReferenceTemporary); 482 break; 483 } 484 } 485 486 return RValue::get(Value); 487 } 488 489 490 /// getAccessedFieldNo - Given an encoded value and a result number, return the 491 /// input field number being accessed. 492 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 493 const llvm::Constant *Elts) { 494 if (isa<llvm::ConstantAggregateZero>(Elts)) 495 return 0; 496 497 return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue(); 498 } 499 500 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 501 if (!CatchUndefined) 502 return; 503 504 // This needs to be to the standard address space. 505 Address = Builder.CreateBitCast(Address, Int8PtrTy); 506 507 llvm::Type *IntPtrT = IntPtrTy; 508 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, &IntPtrT, 1); 509 510 // In time, people may want to control this and use a 1 here. 511 llvm::Value *Arg = Builder.getFalse(); 512 llvm::Value *C = Builder.CreateCall2(F, Address, Arg); 513 llvm::BasicBlock *Cont = createBasicBlock(); 514 llvm::BasicBlock *Check = createBasicBlock(); 515 llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL); 516 Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check); 517 518 EmitBlock(Check); 519 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 520 llvm::ConstantInt::get(IntPtrTy, Size)), 521 Cont, getTrapBB()); 522 EmitBlock(Cont); 523 } 524 525 526 CodeGenFunction::ComplexPairTy CodeGenFunction:: 527 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 528 bool isInc, bool isPre) { 529 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 530 LV.isVolatileQualified()); 531 532 llvm::Value *NextVal; 533 if (isa<llvm::IntegerType>(InVal.first->getType())) { 534 uint64_t AmountVal = isInc ? 1 : -1; 535 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 536 537 // Add the inc/dec to the real part. 538 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 539 } else { 540 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 541 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 542 if (!isInc) 543 FVal.changeSign(); 544 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 545 546 // Add the inc/dec to the real part. 547 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 548 } 549 550 ComplexPairTy IncVal(NextVal, InVal.second); 551 552 // Store the updated result through the lvalue. 553 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 554 555 // If this is a postinc, return the value read from memory, otherwise use the 556 // updated value. 557 return isPre ? IncVal : InVal; 558 } 559 560 561 //===----------------------------------------------------------------------===// 562 // LValue Expression Emission 563 //===----------------------------------------------------------------------===// 564 565 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 566 if (Ty->isVoidType()) 567 return RValue::get(0); 568 569 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 570 const llvm::Type *EltTy = ConvertType(CTy->getElementType()); 571 llvm::Value *U = llvm::UndefValue::get(EltTy); 572 return RValue::getComplex(std::make_pair(U, U)); 573 } 574 575 // If this is a use of an undefined aggregate type, the aggregate must have an 576 // identifiable address. Just because the contents of the value are undefined 577 // doesn't mean that the address can't be taken and compared. 578 if (hasAggregateLLVMType(Ty)) { 579 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 580 return RValue::getAggregate(DestPtr); 581 } 582 583 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 584 } 585 586 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 587 const char *Name) { 588 ErrorUnsupported(E, Name); 589 return GetUndefRValue(E->getType()); 590 } 591 592 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 593 const char *Name) { 594 ErrorUnsupported(E, Name); 595 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 596 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 597 } 598 599 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 600 LValue LV = EmitLValue(E); 601 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 602 EmitCheck(LV.getAddress(), 603 getContext().getTypeSizeInChars(E->getType()).getQuantity()); 604 return LV; 605 } 606 607 /// EmitLValue - Emit code to compute a designator that specifies the location 608 /// of the expression. 609 /// 610 /// This can return one of two things: a simple address or a bitfield reference. 611 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 612 /// an LLVM pointer type. 613 /// 614 /// If this returns a bitfield reference, nothing about the pointee type of the 615 /// LLVM value is known: For example, it may not be a pointer to an integer. 616 /// 617 /// If this returns a normal address, and if the lvalue's C type is fixed size, 618 /// this method guarantees that the returned pointer type will point to an LLVM 619 /// type of the same size of the lvalue's type. If the lvalue has a variable 620 /// length type, this is not possible. 621 /// 622 LValue CodeGenFunction::EmitLValue(const Expr *E) { 623 switch (E->getStmtClass()) { 624 default: return EmitUnsupportedLValue(E, "l-value expression"); 625 626 case Expr::ObjCSelectorExprClass: 627 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 628 case Expr::ObjCIsaExprClass: 629 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 630 case Expr::BinaryOperatorClass: 631 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 632 case Expr::CompoundAssignOperatorClass: 633 if (!E->getType()->isAnyComplexType()) 634 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 635 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 636 case Expr::CallExprClass: 637 case Expr::CXXMemberCallExprClass: 638 case Expr::CXXOperatorCallExprClass: 639 return EmitCallExprLValue(cast<CallExpr>(E)); 640 case Expr::VAArgExprClass: 641 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 642 case Expr::DeclRefExprClass: 643 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 644 case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 645 case Expr::GenericSelectionExprClass: 646 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 647 case Expr::PredefinedExprClass: 648 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 649 case Expr::StringLiteralClass: 650 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 651 case Expr::ObjCEncodeExprClass: 652 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 653 654 case Expr::BlockDeclRefExprClass: 655 return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E)); 656 657 case Expr::CXXTemporaryObjectExprClass: 658 case Expr::CXXConstructExprClass: 659 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 660 case Expr::CXXBindTemporaryExprClass: 661 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 662 case Expr::ExprWithCleanupsClass: 663 return EmitExprWithCleanupsLValue(cast<ExprWithCleanups>(E)); 664 case Expr::CXXScalarValueInitExprClass: 665 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 666 case Expr::CXXDefaultArgExprClass: 667 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 668 case Expr::CXXTypeidExprClass: 669 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 670 671 case Expr::ObjCMessageExprClass: 672 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 673 case Expr::ObjCIvarRefExprClass: 674 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 675 case Expr::ObjCPropertyRefExprClass: 676 return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E)); 677 case Expr::StmtExprClass: 678 return EmitStmtExprLValue(cast<StmtExpr>(E)); 679 case Expr::UnaryOperatorClass: 680 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 681 case Expr::ArraySubscriptExprClass: 682 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 683 case Expr::ExtVectorElementExprClass: 684 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 685 case Expr::MemberExprClass: 686 return EmitMemberExpr(cast<MemberExpr>(E)); 687 case Expr::CompoundLiteralExprClass: 688 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 689 case Expr::ConditionalOperatorClass: 690 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 691 case Expr::BinaryConditionalOperatorClass: 692 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 693 case Expr::ChooseExprClass: 694 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 695 case Expr::OpaqueValueExprClass: 696 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 697 case Expr::ImplicitCastExprClass: 698 case Expr::CStyleCastExprClass: 699 case Expr::CXXFunctionalCastExprClass: 700 case Expr::CXXStaticCastExprClass: 701 case Expr::CXXDynamicCastExprClass: 702 case Expr::CXXReinterpretCastExprClass: 703 case Expr::CXXConstCastExprClass: 704 case Expr::ObjCBridgedCastExprClass: 705 return EmitCastLValue(cast<CastExpr>(E)); 706 707 case Expr::MaterializeTemporaryExprClass: 708 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 709 } 710 } 711 712 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 713 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 714 lvalue.getAlignment(), lvalue.getType(), 715 lvalue.getTBAAInfo()); 716 } 717 718 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 719 unsigned Alignment, QualType Ty, 720 llvm::MDNode *TBAAInfo) { 721 llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp"); 722 if (Volatile) 723 Load->setVolatile(true); 724 if (Alignment) 725 Load->setAlignment(Alignment); 726 if (TBAAInfo) 727 CGM.DecorateInstruction(Load, TBAAInfo); 728 729 return EmitFromMemory(Load, Ty); 730 } 731 732 static bool isBooleanUnderlyingType(QualType Ty) { 733 if (const EnumType *ET = dyn_cast<EnumType>(Ty)) 734 return ET->getDecl()->getIntegerType()->isBooleanType(); 735 return false; 736 } 737 738 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 739 // Bool has a different representation in memory than in registers. 740 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 741 // This should really always be an i1, but sometimes it's already 742 // an i8, and it's awkward to track those cases down. 743 if (Value->getType()->isIntegerTy(1)) 744 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 745 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 746 } 747 748 return Value; 749 } 750 751 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 752 // Bool has a different representation in memory than in registers. 753 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 754 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 755 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 756 } 757 758 return Value; 759 } 760 761 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 762 bool Volatile, unsigned Alignment, 763 QualType Ty, 764 llvm::MDNode *TBAAInfo) { 765 Value = EmitToMemory(Value, Ty); 766 767 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 768 if (Alignment) 769 Store->setAlignment(Alignment); 770 if (TBAAInfo) 771 CGM.DecorateInstruction(Store, TBAAInfo); 772 } 773 774 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue) { 775 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 776 lvalue.getAlignment(), lvalue.getType(), 777 lvalue.getTBAAInfo()); 778 } 779 780 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 781 /// method emits the address of the lvalue, then loads the result as an rvalue, 782 /// returning the rvalue. 783 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 784 if (LV.isObjCWeak()) { 785 // load of a __weak object. 786 llvm::Value *AddrWeakObj = LV.getAddress(); 787 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 788 AddrWeakObj)); 789 } 790 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 791 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 792 793 if (LV.isSimple()) { 794 assert(!LV.getType()->isFunctionType()); 795 796 // Everything needs a load. 797 return RValue::get(EmitLoadOfScalar(LV)); 798 } 799 800 if (LV.isVectorElt()) { 801 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), 802 LV.isVolatileQualified(), "tmp"); 803 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), 804 "vecext")); 805 } 806 807 // If this is a reference to a subset of the elements of a vector, either 808 // shuffle the input or extract/insert them as appropriate. 809 if (LV.isExtVectorElt()) 810 return EmitLoadOfExtVectorElementLValue(LV); 811 812 if (LV.isBitField()) 813 return EmitLoadOfBitfieldLValue(LV); 814 815 assert(LV.isPropertyRef() && "Unknown LValue type!"); 816 return EmitLoadOfPropertyRefLValue(LV); 817 } 818 819 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 820 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 821 822 // Get the output type. 823 const llvm::Type *ResLTy = ConvertType(LV.getType()); 824 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 825 826 // Compute the result as an OR of all of the individual component accesses. 827 llvm::Value *Res = 0; 828 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 829 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 830 831 // Get the field pointer. 832 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 833 834 // Only offset by the field index if used, so that incoming values are not 835 // required to be structures. 836 if (AI.FieldIndex) 837 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 838 839 // Offset by the byte offset, if used. 840 if (!AI.FieldByteOffset.isZero()) { 841 Ptr = EmitCastToVoidPtr(Ptr); 842 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 843 "bf.field.offs"); 844 } 845 846 // Cast to the access type. 847 const llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 848 AI.AccessWidth, 849 CGM.getContext().getTargetAddressSpace(LV.getType())); 850 Ptr = Builder.CreateBitCast(Ptr, PTy); 851 852 // Perform the load. 853 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 854 if (!AI.AccessAlignment.isZero()) 855 Load->setAlignment(AI.AccessAlignment.getQuantity()); 856 857 // Shift out unused low bits and mask out unused high bits. 858 llvm::Value *Val = Load; 859 if (AI.FieldBitStart) 860 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 861 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 862 AI.TargetBitWidth), 863 "bf.clear"); 864 865 // Extend or truncate to the target size. 866 if (AI.AccessWidth < ResSizeInBits) 867 Val = Builder.CreateZExt(Val, ResLTy); 868 else if (AI.AccessWidth > ResSizeInBits) 869 Val = Builder.CreateTrunc(Val, ResLTy); 870 871 // Shift into place, and OR into the result. 872 if (AI.TargetBitOffset) 873 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 874 Res = Res ? Builder.CreateOr(Res, Val) : Val; 875 } 876 877 // If the bit-field is signed, perform the sign-extension. 878 // 879 // FIXME: This can easily be folded into the load of the high bits, which 880 // could also eliminate the mask of high bits in some situations. 881 if (Info.isSigned()) { 882 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 883 if (ExtraBits) 884 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 885 ExtraBits, "bf.val.sext"); 886 } 887 888 return RValue::get(Res); 889 } 890 891 // If this is a reference to a subset of the elements of a vector, create an 892 // appropriate shufflevector. 893 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 894 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(), 895 LV.isVolatileQualified(), "tmp"); 896 897 const llvm::Constant *Elts = LV.getExtVectorElts(); 898 899 // If the result of the expression is a non-vector type, we must be extracting 900 // a single element. Just codegen as an extractelement. 901 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 902 if (!ExprVT) { 903 unsigned InIdx = getAccessedFieldNo(0, Elts); 904 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 905 return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp")); 906 } 907 908 // Always use shuffle vector to try to retain the original program structure 909 unsigned NumResultElts = ExprVT->getNumElements(); 910 911 llvm::SmallVector<llvm::Constant*, 4> Mask; 912 for (unsigned i = 0; i != NumResultElts; ++i) { 913 unsigned InIdx = getAccessedFieldNo(i, Elts); 914 Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx)); 915 } 916 917 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 918 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 919 MaskV, "tmp"); 920 return RValue::get(Vec); 921 } 922 923 924 925 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 926 /// lvalue, where both are guaranteed to the have the same type, and that type 927 /// is 'Ty'. 928 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst) { 929 if (!Dst.isSimple()) { 930 if (Dst.isVectorElt()) { 931 // Read/modify/write the vector, inserting the new element. 932 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), 933 Dst.isVolatileQualified(), "tmp"); 934 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 935 Dst.getVectorIdx(), "vecins"); 936 Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified()); 937 return; 938 } 939 940 // If this is an update of extended vector elements, insert them as 941 // appropriate. 942 if (Dst.isExtVectorElt()) 943 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 944 945 if (Dst.isBitField()) 946 return EmitStoreThroughBitfieldLValue(Src, Dst); 947 948 assert(Dst.isPropertyRef() && "Unknown LValue type"); 949 return EmitStoreThroughPropertyRefLValue(Src, Dst); 950 } 951 952 // There's special magic for assigning into an ARC-qualified l-value. 953 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 954 switch (Lifetime) { 955 case Qualifiers::OCL_None: 956 llvm_unreachable("present but none"); 957 958 case Qualifiers::OCL_ExplicitNone: 959 // nothing special 960 break; 961 962 case Qualifiers::OCL_Strong: 963 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 964 return; 965 966 case Qualifiers::OCL_Weak: 967 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 968 return; 969 970 case Qualifiers::OCL_Autoreleasing: 971 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 972 Src.getScalarVal())); 973 // fall into the normal path 974 break; 975 } 976 } 977 978 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 979 // load of a __weak object. 980 llvm::Value *LvalueDst = Dst.getAddress(); 981 llvm::Value *src = Src.getScalarVal(); 982 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 983 return; 984 } 985 986 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 987 // load of a __strong object. 988 llvm::Value *LvalueDst = Dst.getAddress(); 989 llvm::Value *src = Src.getScalarVal(); 990 if (Dst.isObjCIvar()) { 991 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 992 const llvm::Type *ResultType = ConvertType(getContext().LongTy); 993 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 994 llvm::Value *dst = RHS; 995 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 996 llvm::Value *LHS = 997 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 998 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 999 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1000 BytesBetween); 1001 } else if (Dst.isGlobalObjCRef()) { 1002 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1003 Dst.isThreadLocalRef()); 1004 } 1005 else 1006 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1007 return; 1008 } 1009 1010 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1011 EmitStoreOfScalar(Src.getScalarVal(), Dst); 1012 } 1013 1014 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1015 llvm::Value **Result) { 1016 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1017 1018 // Get the output type. 1019 const llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1020 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1021 1022 // Get the source value, truncated to the width of the bit-field. 1023 llvm::Value *SrcVal = Src.getScalarVal(); 1024 1025 if (Dst.getType()->isBooleanType()) 1026 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1027 1028 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1029 Info.getSize()), 1030 "bf.value"); 1031 1032 // Return the new value of the bit-field, if requested. 1033 if (Result) { 1034 // Cast back to the proper type for result. 1035 const llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1036 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1037 "bf.reload.val"); 1038 1039 // Sign extend if necessary. 1040 if (Info.isSigned()) { 1041 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1042 if (ExtraBits) 1043 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1044 ExtraBits, "bf.reload.sext"); 1045 } 1046 1047 *Result = ReloadVal; 1048 } 1049 1050 // Iterate over the components, writing each piece to memory. 1051 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1052 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1053 1054 // Get the field pointer. 1055 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1056 unsigned addressSpace = 1057 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1058 1059 // Only offset by the field index if used, so that incoming values are not 1060 // required to be structures. 1061 if (AI.FieldIndex) 1062 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1063 1064 // Offset by the byte offset, if used. 1065 if (!AI.FieldByteOffset.isZero()) { 1066 Ptr = EmitCastToVoidPtr(Ptr); 1067 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1068 "bf.field.offs"); 1069 } 1070 1071 // Cast to the access type. 1072 const llvm::Type *AccessLTy = 1073 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1074 1075 const llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1076 Ptr = Builder.CreateBitCast(Ptr, PTy); 1077 1078 // Extract the piece of the bit-field value to write in this access, limited 1079 // to the values that are part of this access. 1080 llvm::Value *Val = SrcVal; 1081 if (AI.TargetBitOffset) 1082 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1083 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1084 AI.TargetBitWidth)); 1085 1086 // Extend or truncate to the access size. 1087 if (ResSizeInBits < AI.AccessWidth) 1088 Val = Builder.CreateZExt(Val, AccessLTy); 1089 else if (ResSizeInBits > AI.AccessWidth) 1090 Val = Builder.CreateTrunc(Val, AccessLTy); 1091 1092 // Shift into the position in memory. 1093 if (AI.FieldBitStart) 1094 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1095 1096 // If necessary, load and OR in bits that are outside of the bit-field. 1097 if (AI.TargetBitWidth != AI.AccessWidth) { 1098 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1099 if (!AI.AccessAlignment.isZero()) 1100 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1101 1102 // Compute the mask for zeroing the bits that are part of the bit-field. 1103 llvm::APInt InvMask = 1104 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1105 AI.FieldBitStart + AI.TargetBitWidth); 1106 1107 // Apply the mask and OR in to the value to write. 1108 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1109 } 1110 1111 // Write the value. 1112 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1113 Dst.isVolatileQualified()); 1114 if (!AI.AccessAlignment.isZero()) 1115 Store->setAlignment(AI.AccessAlignment.getQuantity()); 1116 } 1117 } 1118 1119 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1120 LValue Dst) { 1121 // This access turns into a read/modify/write of the vector. Load the input 1122 // value now. 1123 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(), 1124 Dst.isVolatileQualified(), "tmp"); 1125 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1126 1127 llvm::Value *SrcVal = Src.getScalarVal(); 1128 1129 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1130 unsigned NumSrcElts = VTy->getNumElements(); 1131 unsigned NumDstElts = 1132 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1133 if (NumDstElts == NumSrcElts) { 1134 // Use shuffle vector is the src and destination are the same number of 1135 // elements and restore the vector mask since it is on the side it will be 1136 // stored. 1137 llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1138 for (unsigned i = 0; i != NumSrcElts; ++i) { 1139 unsigned InIdx = getAccessedFieldNo(i, Elts); 1140 Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i); 1141 } 1142 1143 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1144 Vec = Builder.CreateShuffleVector(SrcVal, 1145 llvm::UndefValue::get(Vec->getType()), 1146 MaskV, "tmp"); 1147 } else if (NumDstElts > NumSrcElts) { 1148 // Extended the source vector to the same length and then shuffle it 1149 // into the destination. 1150 // FIXME: since we're shuffling with undef, can we just use the indices 1151 // into that? This could be simpler. 1152 llvm::SmallVector<llvm::Constant*, 4> ExtMask; 1153 unsigned i; 1154 for (i = 0; i != NumSrcElts; ++i) 1155 ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i)); 1156 for (; i != NumDstElts; ++i) 1157 ExtMask.push_back(llvm::UndefValue::get(Int32Ty)); 1158 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1159 llvm::Value *ExtSrcVal = 1160 Builder.CreateShuffleVector(SrcVal, 1161 llvm::UndefValue::get(SrcVal->getType()), 1162 ExtMaskV, "tmp"); 1163 // build identity 1164 llvm::SmallVector<llvm::Constant*, 4> Mask; 1165 for (unsigned i = 0; i != NumDstElts; ++i) 1166 Mask.push_back(llvm::ConstantInt::get(Int32Ty, i)); 1167 1168 // modify when what gets shuffled in 1169 for (unsigned i = 0; i != NumSrcElts; ++i) { 1170 unsigned Idx = getAccessedFieldNo(i, Elts); 1171 Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts); 1172 } 1173 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1174 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp"); 1175 } else { 1176 // We should never shorten the vector 1177 assert(0 && "unexpected shorten vector length"); 1178 } 1179 } else { 1180 // If the Src is a scalar (not a vector) it must be updating one element. 1181 unsigned InIdx = getAccessedFieldNo(0, Elts); 1182 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1183 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp"); 1184 } 1185 1186 Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified()); 1187 } 1188 1189 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1190 // generating write-barries API. It is currently a global, ivar, 1191 // or neither. 1192 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1193 LValue &LV) { 1194 if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC) 1195 return; 1196 1197 if (isa<ObjCIvarRefExpr>(E)) { 1198 LV.setObjCIvar(true); 1199 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1200 LV.setBaseIvarExp(Exp->getBase()); 1201 LV.setObjCArray(E->getType()->isArrayType()); 1202 return; 1203 } 1204 1205 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1206 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1207 if (VD->hasGlobalStorage()) { 1208 LV.setGlobalObjCRef(true); 1209 LV.setThreadLocalRef(VD->isThreadSpecified()); 1210 } 1211 } 1212 LV.setObjCArray(E->getType()->isArrayType()); 1213 return; 1214 } 1215 1216 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1217 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1218 return; 1219 } 1220 1221 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1222 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1223 if (LV.isObjCIvar()) { 1224 // If cast is to a structure pointer, follow gcc's behavior and make it 1225 // a non-ivar write-barrier. 1226 QualType ExpTy = E->getType(); 1227 if (ExpTy->isPointerType()) 1228 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1229 if (ExpTy->isRecordType()) 1230 LV.setObjCIvar(false); 1231 } 1232 return; 1233 } 1234 1235 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1236 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1237 return; 1238 } 1239 1240 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1241 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1242 return; 1243 } 1244 1245 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1246 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1247 return; 1248 } 1249 1250 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1251 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV); 1252 return; 1253 } 1254 1255 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1256 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1257 if (LV.isObjCIvar() && !LV.isObjCArray()) 1258 // Using array syntax to assigning to what an ivar points to is not 1259 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1260 LV.setObjCIvar(false); 1261 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1262 // Using array syntax to assigning to what global points to is not 1263 // same as assigning to the global itself. {id *G;} G[i] = 0; 1264 LV.setGlobalObjCRef(false); 1265 return; 1266 } 1267 1268 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1269 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1270 // We don't know if member is an 'ivar', but this flag is looked at 1271 // only in the context of LV.isObjCIvar(). 1272 LV.setObjCArray(E->getType()->isArrayType()); 1273 return; 1274 } 1275 } 1276 1277 static llvm::Value * 1278 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1279 llvm::Value *V, llvm::Type *IRType, 1280 llvm::StringRef Name = llvm::StringRef()) { 1281 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1282 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1283 } 1284 1285 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1286 const Expr *E, const VarDecl *VD) { 1287 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1288 "Var decl must have external storage or be a file var decl!"); 1289 1290 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1291 if (VD->getType()->isReferenceType()) 1292 V = CGF.Builder.CreateLoad(V, "tmp"); 1293 1294 V = EmitBitCastOfLValueToProperType(CGF, V, 1295 CGF.getTypes().ConvertTypeForMem(E->getType())); 1296 1297 unsigned Alignment = CGF.getContext().getDeclAlign(VD).getQuantity(); 1298 LValue LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1299 setObjCGCLValueClass(CGF.getContext(), E, LV); 1300 return LV; 1301 } 1302 1303 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1304 const Expr *E, const FunctionDecl *FD) { 1305 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1306 if (!FD->hasPrototype()) { 1307 if (const FunctionProtoType *Proto = 1308 FD->getType()->getAs<FunctionProtoType>()) { 1309 // Ugly case: for a K&R-style definition, the type of the definition 1310 // isn't the same as the type of a use. Correct for this with a 1311 // bitcast. 1312 QualType NoProtoType = 1313 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1314 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1315 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp"); 1316 } 1317 } 1318 unsigned Alignment = CGF.getContext().getDeclAlign(FD).getQuantity(); 1319 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1320 } 1321 1322 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1323 const NamedDecl *ND = E->getDecl(); 1324 unsigned Alignment = getContext().getDeclAlign(ND).getQuantity(); 1325 1326 if (ND->hasAttr<WeakRefAttr>()) { 1327 const ValueDecl *VD = cast<ValueDecl>(ND); 1328 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1329 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1330 } 1331 1332 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1333 1334 // Check if this is a global variable. 1335 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1336 return EmitGlobalVarDeclLValue(*this, E, VD); 1337 1338 bool NonGCable = VD->hasLocalStorage() && 1339 !VD->getType()->isReferenceType() && 1340 !VD->hasAttr<BlocksAttr>(); 1341 1342 llvm::Value *V = LocalDeclMap[VD]; 1343 if (!V && VD->isStaticLocal()) 1344 V = CGM.getStaticLocalDeclAddress(VD); 1345 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1346 1347 if (VD->hasAttr<BlocksAttr>()) 1348 V = BuildBlockByrefAddress(V, VD); 1349 1350 if (VD->getType()->isReferenceType()) 1351 V = Builder.CreateLoad(V, "tmp"); 1352 1353 V = EmitBitCastOfLValueToProperType(*this, V, 1354 getTypes().ConvertTypeForMem(E->getType())); 1355 1356 LValue LV = MakeAddrLValue(V, E->getType(), Alignment); 1357 if (NonGCable) { 1358 LV.getQuals().removeObjCGCAttr(); 1359 LV.setNonGC(true); 1360 } 1361 setObjCGCLValueClass(getContext(), E, LV); 1362 return LV; 1363 } 1364 1365 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1366 return EmitFunctionDeclLValue(*this, E, fn); 1367 1368 assert(false && "Unhandled DeclRefExpr"); 1369 1370 // an invalid LValue, but the assert will 1371 // ensure that this point is never reached. 1372 return LValue(); 1373 } 1374 1375 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) { 1376 unsigned Alignment = 1377 getContext().getDeclAlign(E->getDecl()).getQuantity(); 1378 return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment); 1379 } 1380 1381 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1382 // __extension__ doesn't affect lvalue-ness. 1383 if (E->getOpcode() == UO_Extension) 1384 return EmitLValue(E->getSubExpr()); 1385 1386 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1387 switch (E->getOpcode()) { 1388 default: assert(0 && "Unknown unary operator lvalue!"); 1389 case UO_Deref: { 1390 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1391 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1392 1393 LValue LV = MakeAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1394 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1395 1396 // We should not generate __weak write barrier on indirect reference 1397 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1398 // But, we continue to generate __strong write barrier on indirect write 1399 // into a pointer to object. 1400 if (getContext().getLangOptions().ObjC1 && 1401 getContext().getLangOptions().getGCMode() != LangOptions::NonGC && 1402 LV.isObjCWeak()) 1403 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1404 return LV; 1405 } 1406 case UO_Real: 1407 case UO_Imag: { 1408 LValue LV = EmitLValue(E->getSubExpr()); 1409 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1410 llvm::Value *Addr = LV.getAddress(); 1411 1412 // real and imag are valid on scalars. This is a faster way of 1413 // testing that. 1414 if (!cast<llvm::PointerType>(Addr->getType()) 1415 ->getElementType()->isStructTy()) { 1416 assert(E->getSubExpr()->getType()->isArithmeticType()); 1417 return LV; 1418 } 1419 1420 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1421 1422 unsigned Idx = E->getOpcode() == UO_Imag; 1423 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1424 Idx, "idx"), 1425 ExprTy); 1426 } 1427 case UO_PreInc: 1428 case UO_PreDec: { 1429 LValue LV = EmitLValue(E->getSubExpr()); 1430 bool isInc = E->getOpcode() == UO_PreInc; 1431 1432 if (E->getType()->isAnyComplexType()) 1433 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1434 else 1435 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1436 return LV; 1437 } 1438 } 1439 } 1440 1441 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1442 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1443 E->getType()); 1444 } 1445 1446 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1447 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1448 E->getType()); 1449 } 1450 1451 1452 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1453 switch (E->getIdentType()) { 1454 default: 1455 return EmitUnsupportedLValue(E, "predefined expression"); 1456 1457 case PredefinedExpr::Func: 1458 case PredefinedExpr::Function: 1459 case PredefinedExpr::PrettyFunction: { 1460 unsigned Type = E->getIdentType(); 1461 std::string GlobalVarName; 1462 1463 switch (Type) { 1464 default: assert(0 && "Invalid type"); 1465 case PredefinedExpr::Func: 1466 GlobalVarName = "__func__."; 1467 break; 1468 case PredefinedExpr::Function: 1469 GlobalVarName = "__FUNCTION__."; 1470 break; 1471 case PredefinedExpr::PrettyFunction: 1472 GlobalVarName = "__PRETTY_FUNCTION__."; 1473 break; 1474 } 1475 1476 llvm::StringRef FnName = CurFn->getName(); 1477 if (FnName.startswith("\01")) 1478 FnName = FnName.substr(1); 1479 GlobalVarName += FnName; 1480 1481 const Decl *CurDecl = CurCodeDecl; 1482 if (CurDecl == 0) 1483 CurDecl = getContext().getTranslationUnitDecl(); 1484 1485 std::string FunctionName = 1486 (isa<BlockDecl>(CurDecl) 1487 ? FnName.str() 1488 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl)); 1489 1490 llvm::Constant *C = 1491 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 1492 return MakeAddrLValue(C, E->getType()); 1493 } 1494 } 1495 } 1496 1497 llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1498 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1499 1500 // If we are not optimzing, don't collapse all calls to trap in the function 1501 // to the same call, that way, in the debugger they can see which operation 1502 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1503 // to just one per function to save on codesize. 1504 if (GCO.OptimizationLevel && TrapBB) 1505 return TrapBB; 1506 1507 llvm::BasicBlock *Cont = 0; 1508 if (HaveInsertPoint()) { 1509 Cont = createBasicBlock("cont"); 1510 EmitBranch(Cont); 1511 } 1512 TrapBB = createBasicBlock("trap"); 1513 EmitBlock(TrapBB); 1514 1515 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap, 0, 0); 1516 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1517 TrapCall->setDoesNotReturn(); 1518 TrapCall->setDoesNotThrow(); 1519 Builder.CreateUnreachable(); 1520 1521 if (Cont) 1522 EmitBlock(Cont); 1523 return TrapBB; 1524 } 1525 1526 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1527 /// array to pointer, return the array subexpression. 1528 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1529 // If this isn't just an array->pointer decay, bail out. 1530 const CastExpr *CE = dyn_cast<CastExpr>(E); 1531 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1532 return 0; 1533 1534 // If this is a decay from variable width array, bail out. 1535 const Expr *SubExpr = CE->getSubExpr(); 1536 if (SubExpr->getType()->isVariableArrayType()) 1537 return 0; 1538 1539 return SubExpr; 1540 } 1541 1542 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1543 // The index must always be an integer, which is not an aggregate. Emit it. 1544 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1545 QualType IdxTy = E->getIdx()->getType(); 1546 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1547 1548 // If the base is a vector type, then we are forming a vector element lvalue 1549 // with this subscript. 1550 if (E->getBase()->getType()->isVectorType()) { 1551 // Emit the vector as an lvalue to get its address. 1552 LValue LHS = EmitLValue(E->getBase()); 1553 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1554 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 1555 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1556 E->getBase()->getType()); 1557 } 1558 1559 // Extend or truncate the index type to 32 or 64-bits. 1560 if (Idx->getType() != IntPtrTy) 1561 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 1562 1563 // FIXME: As llvm implements the object size checking, this can come out. 1564 if (CatchUndefined) { 1565 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){ 1566 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) { 1567 if (ICE->getCastKind() == CK_ArrayToPointerDecay) { 1568 if (const ConstantArrayType *CAT 1569 = getContext().getAsConstantArrayType(DRE->getType())) { 1570 llvm::APInt Size = CAT->getSize(); 1571 llvm::BasicBlock *Cont = createBasicBlock("cont"); 1572 Builder.CreateCondBr(Builder.CreateICmpULE(Idx, 1573 llvm::ConstantInt::get(Idx->getType(), Size)), 1574 Cont, getTrapBB()); 1575 EmitBlock(Cont); 1576 } 1577 } 1578 } 1579 } 1580 } 1581 1582 // We know that the pointer points to a type of the correct size, unless the 1583 // size is a VLA or Objective-C interface. 1584 llvm::Value *Address = 0; 1585 unsigned ArrayAlignment = 0; 1586 if (const VariableArrayType *vla = 1587 getContext().getAsVariableArrayType(E->getType())) { 1588 // The base must be a pointer, which is not an aggregate. Emit 1589 // it. It needs to be emitted first in case it's what captures 1590 // the VLA bounds. 1591 Address = EmitScalarExpr(E->getBase()); 1592 1593 // The element count here is the total number of non-VLA elements. 1594 llvm::Value *numElements = getVLASize(vla).first; 1595 1596 // Effectively, the multiply by the VLA size is part of the GEP. 1597 // GEP indexes are signed, and scaling an index isn't permitted to 1598 // signed-overflow, so we use the same semantics for our explicit 1599 // multiply. We suppress this if overflow is not undefined behavior. 1600 if (getLangOptions().isSignedOverflowDefined()) { 1601 Idx = Builder.CreateMul(Idx, numElements); 1602 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1603 } else { 1604 Idx = Builder.CreateNSWMul(Idx, numElements); 1605 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 1606 } 1607 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1608 // Indexing over an interface, as in "NSString *P; P[4];" 1609 llvm::Value *InterfaceSize = 1610 llvm::ConstantInt::get(Idx->getType(), 1611 getContext().getTypeSizeInChars(OIT).getQuantity()); 1612 1613 Idx = Builder.CreateMul(Idx, InterfaceSize); 1614 1615 // The base must be a pointer, which is not an aggregate. Emit it. 1616 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1617 Address = EmitCastToVoidPtr(Base); 1618 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1619 Address = Builder.CreateBitCast(Address, Base->getType()); 1620 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1621 // If this is A[i] where A is an array, the frontend will have decayed the 1622 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1623 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1624 // "gep x, i" here. Emit one "gep A, 0, i". 1625 assert(Array->getType()->isArrayType() && 1626 "Array to pointer decay must have array source type!"); 1627 LValue ArrayLV = EmitLValue(Array); 1628 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 1629 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1630 llvm::Value *Args[] = { Zero, Idx }; 1631 1632 // Propagate the alignment from the array itself to the result. 1633 ArrayAlignment = ArrayLV.getAlignment(); 1634 1635 if (getContext().getLangOptions().isSignedOverflowDefined()) 1636 Address = Builder.CreateGEP(ArrayPtr, Args, Args+2, "arrayidx"); 1637 else 1638 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, Args+2, "arrayidx"); 1639 } else { 1640 // The base must be a pointer, which is not an aggregate. Emit it. 1641 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1642 if (getContext().getLangOptions().isSignedOverflowDefined()) 1643 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 1644 else 1645 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1646 } 1647 1648 QualType T = E->getBase()->getType()->getPointeeType(); 1649 assert(!T.isNull() && 1650 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1651 1652 // Limit the alignment to that of the result type. 1653 if (ArrayAlignment) { 1654 unsigned Align = getContext().getTypeAlignInChars(T).getQuantity(); 1655 ArrayAlignment = std::min(Align, ArrayAlignment); 1656 } 1657 1658 LValue LV = MakeAddrLValue(Address, T, ArrayAlignment); 1659 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1660 1661 if (getContext().getLangOptions().ObjC1 && 1662 getContext().getLangOptions().getGCMode() != LangOptions::NonGC) { 1663 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1664 setObjCGCLValueClass(getContext(), E, LV); 1665 } 1666 return LV; 1667 } 1668 1669 static 1670 llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext, 1671 llvm::SmallVector<unsigned, 4> &Elts) { 1672 llvm::SmallVector<llvm::Constant*, 4> CElts; 1673 1674 const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext); 1675 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1676 CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i])); 1677 1678 return llvm::ConstantVector::get(CElts); 1679 } 1680 1681 LValue CodeGenFunction:: 1682 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1683 // Emit the base vector as an l-value. 1684 LValue Base; 1685 1686 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1687 if (E->isArrow()) { 1688 // If it is a pointer to a vector, emit the address and form an lvalue with 1689 // it. 1690 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1691 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1692 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 1693 Base.getQuals().removeObjCGCAttr(); 1694 } else if (E->getBase()->isGLValue()) { 1695 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 1696 // emit the base as an lvalue. 1697 assert(E->getBase()->getType()->isVectorType()); 1698 Base = EmitLValue(E->getBase()); 1699 } else { 1700 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 1701 assert(E->getBase()->getType()->isVectorType() && 1702 "Result must be a vector"); 1703 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 1704 1705 // Store the vector to memory (because LValue wants an address). 1706 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 1707 Builder.CreateStore(Vec, VecMem); 1708 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 1709 } 1710 1711 QualType type = 1712 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 1713 1714 // Encode the element access list into a vector of unsigned indices. 1715 llvm::SmallVector<unsigned, 4> Indices; 1716 E->getEncodedElementAccess(Indices); 1717 1718 if (Base.isSimple()) { 1719 llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices); 1720 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type); 1721 } 1722 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1723 1724 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1725 llvm::SmallVector<llvm::Constant *, 4> CElts; 1726 1727 for (unsigned i = 0, e = Indices.size(); i != e; ++i) { 1728 if (isa<llvm::ConstantAggregateZero>(BaseElts)) 1729 CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0)); 1730 else 1731 CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i]))); 1732 } 1733 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 1734 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type); 1735 } 1736 1737 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1738 bool isNonGC = false; 1739 Expr *BaseExpr = E->getBase(); 1740 llvm::Value *BaseValue = NULL; 1741 Qualifiers BaseQuals; 1742 1743 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1744 if (E->isArrow()) { 1745 BaseValue = EmitScalarExpr(BaseExpr); 1746 const PointerType *PTy = 1747 BaseExpr->getType()->getAs<PointerType>(); 1748 BaseQuals = PTy->getPointeeType().getQualifiers(); 1749 } else { 1750 LValue BaseLV = EmitLValue(BaseExpr); 1751 if (BaseLV.isNonGC()) 1752 isNonGC = true; 1753 // FIXME: this isn't right for bitfields. 1754 BaseValue = BaseLV.getAddress(); 1755 QualType BaseTy = BaseExpr->getType(); 1756 BaseQuals = BaseTy.getQualifiers(); 1757 } 1758 1759 NamedDecl *ND = E->getMemberDecl(); 1760 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1761 LValue LV = EmitLValueForField(BaseValue, Field, 1762 BaseQuals.getCVRQualifiers()); 1763 LV.setNonGC(isNonGC); 1764 setObjCGCLValueClass(getContext(), E, LV); 1765 return LV; 1766 } 1767 1768 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 1769 return EmitGlobalVarDeclLValue(*this, E, VD); 1770 1771 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 1772 return EmitFunctionDeclLValue(*this, E, FD); 1773 1774 assert(false && "Unhandled member declaration!"); 1775 return LValue(); 1776 } 1777 1778 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, 1779 const FieldDecl *Field, 1780 unsigned CVRQualifiers) { 1781 const CGRecordLayout &RL = 1782 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1783 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 1784 return LValue::MakeBitfield(BaseValue, Info, 1785 Field->getType().withCVRQualifiers(CVRQualifiers)); 1786 } 1787 1788 /// EmitLValueForAnonRecordField - Given that the field is a member of 1789 /// an anonymous struct or union buried inside a record, and given 1790 /// that the base value is a pointer to the enclosing record, derive 1791 /// an lvalue for the ultimate field. 1792 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 1793 const IndirectFieldDecl *Field, 1794 unsigned CVRQualifiers) { 1795 IndirectFieldDecl::chain_iterator I = Field->chain_begin(), 1796 IEnd = Field->chain_end(); 1797 while (true) { 1798 LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I), 1799 CVRQualifiers); 1800 if (++I == IEnd) return LV; 1801 1802 assert(LV.isSimple()); 1803 BaseValue = LV.getAddress(); 1804 CVRQualifiers |= LV.getVRQualifiers(); 1805 } 1806 } 1807 1808 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr, 1809 const FieldDecl *field, 1810 unsigned cvr) { 1811 if (field->isBitField()) 1812 return EmitLValueForBitfield(baseAddr, field, cvr); 1813 1814 const RecordDecl *rec = field->getParent(); 1815 QualType type = field->getType(); 1816 1817 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 1818 1819 llvm::Value *addr = baseAddr; 1820 if (rec->isUnion()) { 1821 // For unions, there is no pointer adjustment. 1822 assert(!type->isReferenceType() && "union has reference member"); 1823 } else { 1824 // For structs, we GEP to the field that the record layout suggests. 1825 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 1826 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 1827 1828 // If this is a reference field, load the reference right now. 1829 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 1830 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 1831 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 1832 1833 if (CGM.shouldUseTBAA()) { 1834 llvm::MDNode *tbaa; 1835 if (mayAlias) 1836 tbaa = CGM.getTBAAInfo(getContext().CharTy); 1837 else 1838 tbaa = CGM.getTBAAInfo(type); 1839 CGM.DecorateInstruction(load, tbaa); 1840 } 1841 1842 addr = load; 1843 mayAlias = false; 1844 type = refType->getPointeeType(); 1845 cvr = 0; // qualifiers don't recursively apply to referencee 1846 } 1847 } 1848 1849 // Make sure that the address is pointing to the right type. This is critical 1850 // for both unions and structs. A union needs a bitcast, a struct element 1851 // will need a bitcast if the LLVM type laid out doesn't match the desired 1852 // type. 1853 addr = EmitBitCastOfLValueToProperType(*this, addr, 1854 CGM.getTypes().ConvertTypeForMem(type), 1855 field->getName()); 1856 1857 unsigned alignment = getContext().getDeclAlign(field).getQuantity(); 1858 LValue LV = MakeAddrLValue(addr, type, alignment); 1859 LV.getQuals().addCVRQualifiers(cvr); 1860 1861 // __weak attribute on a field is ignored. 1862 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 1863 LV.getQuals().removeObjCGCAttr(); 1864 1865 // Fields of may_alias structs act like 'char' for TBAA purposes. 1866 // FIXME: this should get propagated down through anonymous structs 1867 // and unions. 1868 if (mayAlias && LV.getTBAAInfo()) 1869 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 1870 1871 return LV; 1872 } 1873 1874 LValue 1875 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue, 1876 const FieldDecl *Field, 1877 unsigned CVRQualifiers) { 1878 QualType FieldType = Field->getType(); 1879 1880 if (!FieldType->isReferenceType()) 1881 return EmitLValueForField(BaseValue, Field, CVRQualifiers); 1882 1883 const CGRecordLayout &RL = 1884 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1885 unsigned idx = RL.getLLVMFieldNo(Field); 1886 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp"); 1887 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 1888 1889 1890 // Make sure that the address is pointing to the right type. This is critical 1891 // for both unions and structs. A union needs a bitcast, a struct element 1892 // will need a bitcast if the LLVM type laid out doesn't match the desired 1893 // type. 1894 const llvm::Type *llvmType = ConvertTypeForMem(FieldType); 1895 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1896 V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS)); 1897 1898 unsigned Alignment = getContext().getDeclAlign(Field).getQuantity(); 1899 return MakeAddrLValue(V, FieldType, Alignment); 1900 } 1901 1902 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 1903 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 1904 const Expr *InitExpr = E->getInitializer(); 1905 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 1906 1907 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 1908 /*Init*/ true); 1909 1910 return Result; 1911 } 1912 1913 LValue CodeGenFunction:: 1914 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 1915 if (!expr->isGLValue()) { 1916 // ?: here should be an aggregate. 1917 assert((hasAggregateLLVMType(expr->getType()) && 1918 !expr->getType()->isAnyComplexType()) && 1919 "Unexpected conditional operator!"); 1920 return EmitAggExprToLValue(expr); 1921 } 1922 1923 const Expr *condExpr = expr->getCond(); 1924 bool CondExprBool; 1925 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 1926 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 1927 if (!CondExprBool) std::swap(live, dead); 1928 1929 if (!ContainsLabel(dead)) 1930 return EmitLValue(live); 1931 } 1932 1933 OpaqueValueMapping binding(*this, expr); 1934 1935 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 1936 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 1937 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 1938 1939 ConditionalEvaluation eval(*this); 1940 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 1941 1942 // Any temporaries created here are conditional. 1943 EmitBlock(lhsBlock); 1944 eval.begin(*this); 1945 LValue lhs = EmitLValue(expr->getTrueExpr()); 1946 eval.end(*this); 1947 1948 if (!lhs.isSimple()) 1949 return EmitUnsupportedLValue(expr, "conditional operator"); 1950 1951 lhsBlock = Builder.GetInsertBlock(); 1952 Builder.CreateBr(contBlock); 1953 1954 // Any temporaries created here are conditional. 1955 EmitBlock(rhsBlock); 1956 eval.begin(*this); 1957 LValue rhs = EmitLValue(expr->getFalseExpr()); 1958 eval.end(*this); 1959 if (!rhs.isSimple()) 1960 return EmitUnsupportedLValue(expr, "conditional operator"); 1961 rhsBlock = Builder.GetInsertBlock(); 1962 1963 EmitBlock(contBlock); 1964 1965 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 1966 "cond-lvalue"); 1967 phi->addIncoming(lhs.getAddress(), lhsBlock); 1968 phi->addIncoming(rhs.getAddress(), rhsBlock); 1969 return MakeAddrLValue(phi, expr->getType()); 1970 } 1971 1972 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. 1973 /// If the cast is a dynamic_cast, we can have the usual lvalue result, 1974 /// otherwise if a cast is needed by the code generator in an lvalue context, 1975 /// then it must mean that we need the address of an aggregate in order to 1976 /// access one of its fields. This can happen for all the reasons that casts 1977 /// are permitted with aggregate result, including noop aggregate casts, and 1978 /// cast from scalar to union. 1979 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 1980 switch (E->getCastKind()) { 1981 case CK_ToVoid: 1982 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 1983 1984 case CK_Dependent: 1985 llvm_unreachable("dependent cast kind in IR gen!"); 1986 1987 case CK_GetObjCProperty: { 1988 LValue LV = EmitLValue(E->getSubExpr()); 1989 assert(LV.isPropertyRef()); 1990 RValue RV = EmitLoadOfPropertyRefLValue(LV); 1991 1992 // Property is an aggregate r-value. 1993 if (RV.isAggregate()) { 1994 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 1995 } 1996 1997 // Implicit property returns an l-value. 1998 assert(RV.isScalar()); 1999 return MakeAddrLValue(RV.getScalarVal(), E->getSubExpr()->getType()); 2000 } 2001 2002 case CK_NoOp: 2003 case CK_LValueToRValue: 2004 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2005 || E->getType()->isRecordType()) 2006 return EmitLValue(E->getSubExpr()); 2007 // Fall through to synthesize a temporary. 2008 2009 case CK_BitCast: 2010 case CK_ArrayToPointerDecay: 2011 case CK_FunctionToPointerDecay: 2012 case CK_NullToMemberPointer: 2013 case CK_NullToPointer: 2014 case CK_IntegralToPointer: 2015 case CK_PointerToIntegral: 2016 case CK_PointerToBoolean: 2017 case CK_VectorSplat: 2018 case CK_IntegralCast: 2019 case CK_IntegralToBoolean: 2020 case CK_IntegralToFloating: 2021 case CK_FloatingToIntegral: 2022 case CK_FloatingToBoolean: 2023 case CK_FloatingCast: 2024 case CK_FloatingRealToComplex: 2025 case CK_FloatingComplexToReal: 2026 case CK_FloatingComplexToBoolean: 2027 case CK_FloatingComplexCast: 2028 case CK_FloatingComplexToIntegralComplex: 2029 case CK_IntegralRealToComplex: 2030 case CK_IntegralComplexToReal: 2031 case CK_IntegralComplexToBoolean: 2032 case CK_IntegralComplexCast: 2033 case CK_IntegralComplexToFloatingComplex: 2034 case CK_DerivedToBaseMemberPointer: 2035 case CK_BaseToDerivedMemberPointer: 2036 case CK_MemberPointerToBoolean: 2037 case CK_AnyPointerToBlockPointerCast: 2038 case CK_ObjCProduceObject: 2039 case CK_ObjCConsumeObject: 2040 case CK_ObjCReclaimReturnedObject: { 2041 // These casts only produce lvalues when we're binding a reference to a 2042 // temporary realized from a (converted) pure rvalue. Emit the expression 2043 // as a value, copy it into a temporary, and return an lvalue referring to 2044 // that temporary. 2045 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2046 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2047 return MakeAddrLValue(V, E->getType()); 2048 } 2049 2050 case CK_Dynamic: { 2051 LValue LV = EmitLValue(E->getSubExpr()); 2052 llvm::Value *V = LV.getAddress(); 2053 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2054 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2055 } 2056 2057 case CK_ConstructorConversion: 2058 case CK_UserDefinedConversion: 2059 case CK_AnyPointerToObjCPointerCast: 2060 return EmitLValue(E->getSubExpr()); 2061 2062 case CK_UncheckedDerivedToBase: 2063 case CK_DerivedToBase: { 2064 const RecordType *DerivedClassTy = 2065 E->getSubExpr()->getType()->getAs<RecordType>(); 2066 CXXRecordDecl *DerivedClassDecl = 2067 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2068 2069 LValue LV = EmitLValue(E->getSubExpr()); 2070 llvm::Value *This = LV.getAddress(); 2071 2072 // Perform the derived-to-base conversion 2073 llvm::Value *Base = 2074 GetAddressOfBaseClass(This, DerivedClassDecl, 2075 E->path_begin(), E->path_end(), 2076 /*NullCheckValue=*/false); 2077 2078 return MakeAddrLValue(Base, E->getType()); 2079 } 2080 case CK_ToUnion: 2081 return EmitAggExprToLValue(E); 2082 case CK_BaseToDerived: { 2083 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2084 CXXRecordDecl *DerivedClassDecl = 2085 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2086 2087 LValue LV = EmitLValue(E->getSubExpr()); 2088 2089 // Perform the base-to-derived conversion 2090 llvm::Value *Derived = 2091 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2092 E->path_begin(), E->path_end(), 2093 /*NullCheckValue=*/false); 2094 2095 return MakeAddrLValue(Derived, E->getType()); 2096 } 2097 case CK_LValueBitCast: { 2098 // This must be a reinterpret_cast (or c-style equivalent). 2099 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2100 2101 LValue LV = EmitLValue(E->getSubExpr()); 2102 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2103 ConvertType(CE->getTypeAsWritten())); 2104 return MakeAddrLValue(V, E->getType()); 2105 } 2106 case CK_ObjCObjectLValueCast: { 2107 LValue LV = EmitLValue(E->getSubExpr()); 2108 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2109 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2110 ConvertType(ToType)); 2111 return MakeAddrLValue(V, E->getType()); 2112 } 2113 } 2114 2115 llvm_unreachable("Unhandled lvalue cast kind?"); 2116 } 2117 2118 LValue CodeGenFunction::EmitNullInitializationLValue( 2119 const CXXScalarValueInitExpr *E) { 2120 QualType Ty = E->getType(); 2121 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2122 EmitNullInitialization(LV.getAddress(), Ty); 2123 return LV; 2124 } 2125 2126 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2127 assert(e->isGLValue() || e->getType()->isRecordType()); 2128 return getOpaqueLValueMapping(e); 2129 } 2130 2131 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2132 const MaterializeTemporaryExpr *E) { 2133 RValue RV = EmitReferenceBindingToExpr(E->GetTemporaryExpr(), 2134 /*InitializedDecl=*/0); 2135 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2136 } 2137 2138 2139 //===--------------------------------------------------------------------===// 2140 // Expression Emission 2141 //===--------------------------------------------------------------------===// 2142 2143 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2144 ReturnValueSlot ReturnValue) { 2145 if (CGDebugInfo *DI = getDebugInfo()) { 2146 DI->setLocation(E->getLocStart()); 2147 DI->UpdateLineDirectiveRegion(Builder); 2148 DI->EmitStopPoint(Builder); 2149 } 2150 2151 // Builtins never have block type. 2152 if (E->getCallee()->getType()->isBlockPointerType()) 2153 return EmitBlockCallExpr(E, ReturnValue); 2154 2155 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2156 return EmitCXXMemberCallExpr(CE, ReturnValue); 2157 2158 const Decl *TargetDecl = 0; 2159 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) { 2160 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) { 2161 TargetDecl = DRE->getDecl(); 2162 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl)) 2163 if (unsigned builtinID = FD->getBuiltinID()) 2164 return EmitBuiltinExpr(FD, builtinID, E); 2165 } 2166 } 2167 2168 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2169 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2170 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2171 2172 if (const CXXPseudoDestructorExpr *PseudoDtor 2173 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2174 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2175 if (getContext().getLangOptions().ObjCAutoRefCount && 2176 DestroyedType->isObjCLifetimeType() && 2177 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2178 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2179 // Automatic Reference Counting: 2180 // If the pseudo-expression names a retainable object with weak or 2181 // strong lifetime, the object shall be released. 2182 Expr *BaseExpr = PseudoDtor->getBase(); 2183 llvm::Value *BaseValue = NULL; 2184 Qualifiers BaseQuals; 2185 2186 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2187 if (PseudoDtor->isArrow()) { 2188 BaseValue = EmitScalarExpr(BaseExpr); 2189 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2190 BaseQuals = PTy->getPointeeType().getQualifiers(); 2191 } else { 2192 LValue BaseLV = EmitLValue(BaseExpr); 2193 BaseValue = BaseLV.getAddress(); 2194 QualType BaseTy = BaseExpr->getType(); 2195 BaseQuals = BaseTy.getQualifiers(); 2196 } 2197 2198 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2199 case Qualifiers::OCL_None: 2200 case Qualifiers::OCL_ExplicitNone: 2201 case Qualifiers::OCL_Autoreleasing: 2202 break; 2203 2204 case Qualifiers::OCL_Strong: 2205 EmitARCRelease(Builder.CreateLoad(BaseValue, 2206 PseudoDtor->getDestroyedType().isVolatileQualified()), 2207 /*precise*/ true); 2208 break; 2209 2210 case Qualifiers::OCL_Weak: 2211 EmitARCDestroyWeak(BaseValue); 2212 break; 2213 } 2214 } else { 2215 // C++ [expr.pseudo]p1: 2216 // The result shall only be used as the operand for the function call 2217 // operator (), and the result of such a call has type void. The only 2218 // effect is the evaluation of the postfix-expression before the dot or 2219 // arrow. 2220 EmitScalarExpr(E->getCallee()); 2221 } 2222 2223 return RValue::get(0); 2224 } 2225 2226 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2227 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2228 E->arg_begin(), E->arg_end(), TargetDecl); 2229 } 2230 2231 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2232 // Comma expressions just emit their LHS then their RHS as an l-value. 2233 if (E->getOpcode() == BO_Comma) { 2234 EmitIgnoredExpr(E->getLHS()); 2235 EnsureInsertPoint(); 2236 return EmitLValue(E->getRHS()); 2237 } 2238 2239 if (E->getOpcode() == BO_PtrMemD || 2240 E->getOpcode() == BO_PtrMemI) 2241 return EmitPointerToDataMemberBinaryExpr(E); 2242 2243 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2244 2245 // Note that in all of these cases, __block variables need the RHS 2246 // evaluated first just in case the variable gets moved by the RHS. 2247 2248 if (!hasAggregateLLVMType(E->getType())) { 2249 switch (E->getLHS()->getType().getObjCLifetime()) { 2250 case Qualifiers::OCL_Strong: 2251 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2252 2253 case Qualifiers::OCL_Autoreleasing: 2254 return EmitARCStoreAutoreleasing(E).first; 2255 2256 // No reason to do any of these differently. 2257 case Qualifiers::OCL_None: 2258 case Qualifiers::OCL_ExplicitNone: 2259 case Qualifiers::OCL_Weak: 2260 break; 2261 } 2262 2263 RValue RV = EmitAnyExpr(E->getRHS()); 2264 LValue LV = EmitLValue(E->getLHS()); 2265 EmitStoreThroughLValue(RV, LV); 2266 return LV; 2267 } 2268 2269 if (E->getType()->isAnyComplexType()) 2270 return EmitComplexAssignmentLValue(E); 2271 2272 return EmitAggExprToLValue(E); 2273 } 2274 2275 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2276 RValue RV = EmitCallExpr(E); 2277 2278 if (!RV.isScalar()) 2279 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2280 2281 assert(E->getCallReturnType()->isReferenceType() && 2282 "Can't have a scalar return unless the return type is a " 2283 "reference type!"); 2284 2285 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2286 } 2287 2288 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2289 // FIXME: This shouldn't require another copy. 2290 return EmitAggExprToLValue(E); 2291 } 2292 2293 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2294 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2295 && "binding l-value to type which needs a temporary"); 2296 AggValueSlot Slot = CreateAggTemp(E->getType(), "tmp"); 2297 EmitCXXConstructExpr(E, Slot); 2298 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2299 } 2300 2301 LValue 2302 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2303 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2304 } 2305 2306 LValue 2307 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2308 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2309 Slot.setLifetimeExternallyManaged(); 2310 EmitAggExpr(E->getSubExpr(), Slot); 2311 EmitCXXTemporary(E->getTemporary(), Slot.getAddr()); 2312 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2313 } 2314 2315 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2316 RValue RV = EmitObjCMessageExpr(E); 2317 2318 if (!RV.isScalar()) 2319 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2320 2321 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2322 "Can't have a scalar return unless the return type is a " 2323 "reference type!"); 2324 2325 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2326 } 2327 2328 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2329 llvm::Value *V = 2330 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2331 return MakeAddrLValue(V, E->getType()); 2332 } 2333 2334 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2335 const ObjCIvarDecl *Ivar) { 2336 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2337 } 2338 2339 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2340 llvm::Value *BaseValue, 2341 const ObjCIvarDecl *Ivar, 2342 unsigned CVRQualifiers) { 2343 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2344 Ivar, CVRQualifiers); 2345 } 2346 2347 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2348 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2349 llvm::Value *BaseValue = 0; 2350 const Expr *BaseExpr = E->getBase(); 2351 Qualifiers BaseQuals; 2352 QualType ObjectTy; 2353 if (E->isArrow()) { 2354 BaseValue = EmitScalarExpr(BaseExpr); 2355 ObjectTy = BaseExpr->getType()->getPointeeType(); 2356 BaseQuals = ObjectTy.getQualifiers(); 2357 } else { 2358 LValue BaseLV = EmitLValue(BaseExpr); 2359 // FIXME: this isn't right for bitfields. 2360 BaseValue = BaseLV.getAddress(); 2361 ObjectTy = BaseExpr->getType(); 2362 BaseQuals = ObjectTy.getQualifiers(); 2363 } 2364 2365 LValue LV = 2366 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2367 BaseQuals.getCVRQualifiers()); 2368 setObjCGCLValueClass(getContext(), E, LV); 2369 return LV; 2370 } 2371 2372 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2373 // Can only get l-value for message expression returning aggregate type 2374 RValue RV = EmitAnyExprToTemp(E); 2375 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2376 } 2377 2378 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2379 ReturnValueSlot ReturnValue, 2380 CallExpr::const_arg_iterator ArgBeg, 2381 CallExpr::const_arg_iterator ArgEnd, 2382 const Decl *TargetDecl) { 2383 // Get the actual function type. The callee type will always be a pointer to 2384 // function type or a block pointer type. 2385 assert(CalleeType->isFunctionPointerType() && 2386 "Call must have function pointer type!"); 2387 2388 CalleeType = getContext().getCanonicalType(CalleeType); 2389 2390 const FunctionType *FnType 2391 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2392 2393 CallArgList Args; 2394 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2395 2396 return EmitCall(CGM.getTypes().getFunctionInfo(Args, FnType), 2397 Callee, ReturnValue, Args, TargetDecl); 2398 } 2399 2400 LValue CodeGenFunction:: 2401 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2402 llvm::Value *BaseV; 2403 if (E->getOpcode() == BO_PtrMemI) 2404 BaseV = EmitScalarExpr(E->getLHS()); 2405 else 2406 BaseV = EmitLValue(E->getLHS()).getAddress(); 2407 2408 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2409 2410 const MemberPointerType *MPT 2411 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2412 2413 llvm::Value *AddV = 2414 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2415 2416 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2417 } 2418