1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
65                                           const Twine &Name,
66                                           llvm::Value *ArraySize,
67                                           bool CastToDefaultAddrSpace) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getQuantity());
70   llvm::Value *V = Alloca;
71   // Alloca always returns a pointer in alloca address space, which may
72   // be different from the type defined by the language. For example,
73   // in C++ the auto variables are in the default address space. Therefore
74   // cast alloca to the default address space when necessary.
75   if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) {
76     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
77     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
78     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
79     // otherwise alloca is inserted at the current insertion point of the
80     // builder.
81     if (!ArraySize)
82       Builder.SetInsertPoint(AllocaInsertPt);
83     V = getTargetHooks().performAddrSpaceCast(
84         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
85         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
86   }
87 
88   return Address(V, Align);
89 }
90 
91 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
92 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
93 /// insertion point of the builder.
94 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
95                                                     const Twine &Name,
96                                                     llvm::Value *ArraySize) {
97   if (ArraySize)
98     return Builder.CreateAlloca(Ty, ArraySize, Name);
99   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
100                               ArraySize, Name, AllocaInsertPt);
101 }
102 
103 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
104 /// default alignment of the corresponding LLVM type, which is *not*
105 /// guaranteed to be related in any way to the expected alignment of
106 /// an AST type that might have been lowered to Ty.
107 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
108                                                       const Twine &Name) {
109   CharUnits Align =
110     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
111   return CreateTempAlloca(Ty, Align, Name);
112 }
113 
114 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
115   assert(isa<llvm::AllocaInst>(Var.getPointer()));
116   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
117   Store->setAlignment(Var.getAlignment().getQuantity());
118   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
119   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
120 }
121 
122 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
123   CharUnits Align = getContext().getTypeAlignInChars(Ty);
124   return CreateTempAlloca(ConvertType(Ty), Align, Name);
125 }
126 
127 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
128                                        bool CastToDefaultAddrSpace) {
129   // FIXME: Should we prefer the preferred type alignment here?
130   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name,
131                        CastToDefaultAddrSpace);
132 }
133 
134 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
135                                        const Twine &Name,
136                                        bool CastToDefaultAddrSpace) {
137   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr,
138                           CastToDefaultAddrSpace);
139 }
140 
141 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
142 /// expression and compare the result against zero, returning an Int1Ty value.
143 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
144   PGO.setCurrentStmt(E);
145   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
146     llvm::Value *MemPtr = EmitScalarExpr(E);
147     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
148   }
149 
150   QualType BoolTy = getContext().BoolTy;
151   SourceLocation Loc = E->getExprLoc();
152   if (!E->getType()->isAnyComplexType())
153     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
154 
155   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
156                                        Loc);
157 }
158 
159 /// EmitIgnoredExpr - Emit code to compute the specified expression,
160 /// ignoring the result.
161 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
162   if (E->isRValue())
163     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
164 
165   // Just emit it as an l-value and drop the result.
166   EmitLValue(E);
167 }
168 
169 /// EmitAnyExpr - Emit code to compute the specified expression which
170 /// can have any type.  The result is returned as an RValue struct.
171 /// If this is an aggregate expression, AggSlot indicates where the
172 /// result should be returned.
173 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
174                                     AggValueSlot aggSlot,
175                                     bool ignoreResult) {
176   switch (getEvaluationKind(E->getType())) {
177   case TEK_Scalar:
178     return RValue::get(EmitScalarExpr(E, ignoreResult));
179   case TEK_Complex:
180     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
181   case TEK_Aggregate:
182     if (!ignoreResult && aggSlot.isIgnored())
183       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
184     EmitAggExpr(E, aggSlot);
185     return aggSlot.asRValue();
186   }
187   llvm_unreachable("bad evaluation kind");
188 }
189 
190 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
191 /// always be accessible even if no aggregate location is provided.
192 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
193   AggValueSlot AggSlot = AggValueSlot::ignored();
194 
195   if (hasAggregateEvaluationKind(E->getType()))
196     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
197   return EmitAnyExpr(E, AggSlot);
198 }
199 
200 /// EmitAnyExprToMem - Evaluate an expression into a given memory
201 /// location.
202 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
203                                        Address Location,
204                                        Qualifiers Quals,
205                                        bool IsInit) {
206   // FIXME: This function should take an LValue as an argument.
207   switch (getEvaluationKind(E->getType())) {
208   case TEK_Complex:
209     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
210                               /*isInit*/ false);
211     return;
212 
213   case TEK_Aggregate: {
214     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
215                                          AggValueSlot::IsDestructed_t(IsInit),
216                                          AggValueSlot::DoesNotNeedGCBarriers,
217                                          AggValueSlot::IsAliased_t(!IsInit)));
218     return;
219   }
220 
221   case TEK_Scalar: {
222     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
223     LValue LV = MakeAddrLValue(Location, E->getType());
224     EmitStoreThroughLValue(RV, LV);
225     return;
226   }
227   }
228   llvm_unreachable("bad evaluation kind");
229 }
230 
231 static void
232 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
233                      const Expr *E, Address ReferenceTemporary) {
234   // Objective-C++ ARC:
235   //   If we are binding a reference to a temporary that has ownership, we
236   //   need to perform retain/release operations on the temporary.
237   //
238   // FIXME: This should be looking at E, not M.
239   if (auto Lifetime = M->getType().getObjCLifetime()) {
240     switch (Lifetime) {
241     case Qualifiers::OCL_None:
242     case Qualifiers::OCL_ExplicitNone:
243       // Carry on to normal cleanup handling.
244       break;
245 
246     case Qualifiers::OCL_Autoreleasing:
247       // Nothing to do; cleaned up by an autorelease pool.
248       return;
249 
250     case Qualifiers::OCL_Strong:
251     case Qualifiers::OCL_Weak:
252       switch (StorageDuration Duration = M->getStorageDuration()) {
253       case SD_Static:
254         // Note: we intentionally do not register a cleanup to release
255         // the object on program termination.
256         return;
257 
258       case SD_Thread:
259         // FIXME: We should probably register a cleanup in this case.
260         return;
261 
262       case SD_Automatic:
263       case SD_FullExpression:
264         CodeGenFunction::Destroyer *Destroy;
265         CleanupKind CleanupKind;
266         if (Lifetime == Qualifiers::OCL_Strong) {
267           const ValueDecl *VD = M->getExtendingDecl();
268           bool Precise =
269               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
270           CleanupKind = CGF.getARCCleanupKind();
271           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
272                             : &CodeGenFunction::destroyARCStrongImprecise;
273         } else {
274           // __weak objects always get EH cleanups; otherwise, exceptions
275           // could cause really nasty crashes instead of mere leaks.
276           CleanupKind = NormalAndEHCleanup;
277           Destroy = &CodeGenFunction::destroyARCWeak;
278         }
279         if (Duration == SD_FullExpression)
280           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
281                           M->getType(), *Destroy,
282                           CleanupKind & EHCleanup);
283         else
284           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
285                                           M->getType(),
286                                           *Destroy, CleanupKind & EHCleanup);
287         return;
288 
289       case SD_Dynamic:
290         llvm_unreachable("temporary cannot have dynamic storage duration");
291       }
292       llvm_unreachable("unknown storage duration");
293     }
294   }
295 
296   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
297   if (const RecordType *RT =
298           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
299     // Get the destructor for the reference temporary.
300     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
301     if (!ClassDecl->hasTrivialDestructor())
302       ReferenceTemporaryDtor = ClassDecl->getDestructor();
303   }
304 
305   if (!ReferenceTemporaryDtor)
306     return;
307 
308   // Call the destructor for the temporary.
309   switch (M->getStorageDuration()) {
310   case SD_Static:
311   case SD_Thread: {
312     llvm::Constant *CleanupFn;
313     llvm::Constant *CleanupArg;
314     if (E->getType()->isArrayType()) {
315       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
316           ReferenceTemporary, E->getType(),
317           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
318           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
319       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
320     } else {
321       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
322                                                StructorType::Complete);
323       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
324     }
325     CGF.CGM.getCXXABI().registerGlobalDtor(
326         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
327     break;
328   }
329 
330   case SD_FullExpression:
331     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
332                     CodeGenFunction::destroyCXXObject,
333                     CGF.getLangOpts().Exceptions);
334     break;
335 
336   case SD_Automatic:
337     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
338                                     ReferenceTemporary, E->getType(),
339                                     CodeGenFunction::destroyCXXObject,
340                                     CGF.getLangOpts().Exceptions);
341     break;
342 
343   case SD_Dynamic:
344     llvm_unreachable("temporary cannot have dynamic storage duration");
345   }
346 }
347 
348 static Address createReferenceTemporary(CodeGenFunction &CGF,
349                                         const MaterializeTemporaryExpr *M,
350                                         const Expr *Inner) {
351   auto &TCG = CGF.getTargetHooks();
352   switch (M->getStorageDuration()) {
353   case SD_FullExpression:
354   case SD_Automatic: {
355     // If we have a constant temporary array or record try to promote it into a
356     // constant global under the same rules a normal constant would've been
357     // promoted. This is easier on the optimizer and generally emits fewer
358     // instructions.
359     QualType Ty = Inner->getType();
360     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
361         (Ty->isArrayType() || Ty->isRecordType()) &&
362         CGF.CGM.isTypeConstant(Ty, true))
363       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
364         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
365           auto AS = AddrSpace.getValue();
366           auto *GV = new llvm::GlobalVariable(
367               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
368               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
369               llvm::GlobalValue::NotThreadLocal,
370               CGF.getContext().getTargetAddressSpace(AS));
371           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
372           GV->setAlignment(alignment.getQuantity());
373           llvm::Constant *C = GV;
374           if (AS != LangAS::Default)
375             C = TCG.performAddrSpaceCast(
376                 CGF.CGM, GV, AS, LangAS::Default,
377                 GV->getValueType()->getPointerTo(
378                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
379           // FIXME: Should we put the new global into a COMDAT?
380           return Address(C, alignment);
381         }
382       }
383     return CGF.CreateMemTemp(Ty, "ref.tmp");
384   }
385   case SD_Thread:
386   case SD_Static:
387     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
388 
389   case SD_Dynamic:
390     llvm_unreachable("temporary can't have dynamic storage duration");
391   }
392   llvm_unreachable("unknown storage duration");
393 }
394 
395 LValue CodeGenFunction::
396 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
397   const Expr *E = M->GetTemporaryExpr();
398 
399     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
400     // as that will cause the lifetime adjustment to be lost for ARC
401   auto ownership = M->getType().getObjCLifetime();
402   if (ownership != Qualifiers::OCL_None &&
403       ownership != Qualifiers::OCL_ExplicitNone) {
404     Address Object = createReferenceTemporary(*this, M, E);
405     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
406       Object = Address(llvm::ConstantExpr::getBitCast(Var,
407                            ConvertTypeForMem(E->getType())
408                              ->getPointerTo(Object.getAddressSpace())),
409                        Object.getAlignment());
410 
411       // createReferenceTemporary will promote the temporary to a global with a
412       // constant initializer if it can.  It can only do this to a value of
413       // ARC-manageable type if the value is global and therefore "immune" to
414       // ref-counting operations.  Therefore we have no need to emit either a
415       // dynamic initialization or a cleanup and we can just return the address
416       // of the temporary.
417       if (Var->hasInitializer())
418         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
419 
420       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
421     }
422     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
423                                        AlignmentSource::Decl);
424 
425     switch (getEvaluationKind(E->getType())) {
426     default: llvm_unreachable("expected scalar or aggregate expression");
427     case TEK_Scalar:
428       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
429       break;
430     case TEK_Aggregate: {
431       EmitAggExpr(E, AggValueSlot::forAddr(Object,
432                                            E->getType().getQualifiers(),
433                                            AggValueSlot::IsDestructed,
434                                            AggValueSlot::DoesNotNeedGCBarriers,
435                                            AggValueSlot::IsNotAliased));
436       break;
437     }
438     }
439 
440     pushTemporaryCleanup(*this, M, E, Object);
441     return RefTempDst;
442   }
443 
444   SmallVector<const Expr *, 2> CommaLHSs;
445   SmallVector<SubobjectAdjustment, 2> Adjustments;
446   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
447 
448   for (const auto &Ignored : CommaLHSs)
449     EmitIgnoredExpr(Ignored);
450 
451   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
452     if (opaque->getType()->isRecordType()) {
453       assert(Adjustments.empty());
454       return EmitOpaqueValueLValue(opaque);
455     }
456   }
457 
458   // Create and initialize the reference temporary.
459   Address Object = createReferenceTemporary(*this, M, E);
460   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
461           Object.getPointer()->stripPointerCasts())) {
462     Object = Address(llvm::ConstantExpr::getBitCast(
463                          cast<llvm::Constant>(Object.getPointer()),
464                          ConvertTypeForMem(E->getType())->getPointerTo()),
465                      Object.getAlignment());
466     // If the temporary is a global and has a constant initializer or is a
467     // constant temporary that we promoted to a global, we may have already
468     // initialized it.
469     if (!Var->hasInitializer()) {
470       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
471       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
472     }
473   } else {
474     switch (M->getStorageDuration()) {
475     case SD_Automatic:
476     case SD_FullExpression:
477       if (auto *Size = EmitLifetimeStart(
478               CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
479               Object.getPointer())) {
480         if (M->getStorageDuration() == SD_Automatic)
481           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
482                                                     Object, Size);
483         else
484           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
485                                                Size);
486       }
487       break;
488     default:
489       break;
490     }
491     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
492   }
493   pushTemporaryCleanup(*this, M, E, Object);
494 
495   // Perform derived-to-base casts and/or field accesses, to get from the
496   // temporary object we created (and, potentially, for which we extended
497   // the lifetime) to the subobject we're binding the reference to.
498   for (unsigned I = Adjustments.size(); I != 0; --I) {
499     SubobjectAdjustment &Adjustment = Adjustments[I-1];
500     switch (Adjustment.Kind) {
501     case SubobjectAdjustment::DerivedToBaseAdjustment:
502       Object =
503           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
504                                 Adjustment.DerivedToBase.BasePath->path_begin(),
505                                 Adjustment.DerivedToBase.BasePath->path_end(),
506                                 /*NullCheckValue=*/ false, E->getExprLoc());
507       break;
508 
509     case SubobjectAdjustment::FieldAdjustment: {
510       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
511       LV = EmitLValueForField(LV, Adjustment.Field);
512       assert(LV.isSimple() &&
513              "materialized temporary field is not a simple lvalue");
514       Object = LV.getAddress();
515       break;
516     }
517 
518     case SubobjectAdjustment::MemberPointerAdjustment: {
519       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
520       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
521                                                Adjustment.Ptr.MPT);
522       break;
523     }
524     }
525   }
526 
527   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
528 }
529 
530 RValue
531 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
532   // Emit the expression as an lvalue.
533   LValue LV = EmitLValue(E);
534   assert(LV.isSimple());
535   llvm::Value *Value = LV.getPointer();
536 
537   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
538     // C++11 [dcl.ref]p5 (as amended by core issue 453):
539     //   If a glvalue to which a reference is directly bound designates neither
540     //   an existing object or function of an appropriate type nor a region of
541     //   storage of suitable size and alignment to contain an object of the
542     //   reference's type, the behavior is undefined.
543     QualType Ty = E->getType();
544     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
545   }
546 
547   return RValue::get(Value);
548 }
549 
550 
551 /// getAccessedFieldNo - Given an encoded value and a result number, return the
552 /// input field number being accessed.
553 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
554                                              const llvm::Constant *Elts) {
555   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
556       ->getZExtValue();
557 }
558 
559 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
560 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
561                                     llvm::Value *High) {
562   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
563   llvm::Value *K47 = Builder.getInt64(47);
564   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
565   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
566   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
567   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
568   return Builder.CreateMul(B1, KMul);
569 }
570 
571 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
572   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
573          TCK == TCK_UpcastToVirtualBase;
574 }
575 
576 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
577   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
578   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
579          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
580           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
581           TCK == TCK_UpcastToVirtualBase);
582 }
583 
584 bool CodeGenFunction::sanitizePerformTypeCheck() const {
585   return SanOpts.has(SanitizerKind::Null) |
586          SanOpts.has(SanitizerKind::Alignment) |
587          SanOpts.has(SanitizerKind::ObjectSize) |
588          SanOpts.has(SanitizerKind::Vptr);
589 }
590 
591 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
592                                     llvm::Value *Ptr, QualType Ty,
593                                     CharUnits Alignment,
594                                     SanitizerSet SkippedChecks) {
595   if (!sanitizePerformTypeCheck())
596     return;
597 
598   // Don't check pointers outside the default address space. The null check
599   // isn't correct, the object-size check isn't supported by LLVM, and we can't
600   // communicate the addresses to the runtime handler for the vptr check.
601   if (Ptr->getType()->getPointerAddressSpace())
602     return;
603 
604   // Don't check pointers to volatile data. The behavior here is implementation-
605   // defined.
606   if (Ty.isVolatileQualified())
607     return;
608 
609   SanitizerScope SanScope(this);
610 
611   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
612   llvm::BasicBlock *Done = nullptr;
613 
614   // Quickly determine whether we have a pointer to an alloca. It's possible
615   // to skip null checks, and some alignment checks, for these pointers. This
616   // can reduce compile-time significantly.
617   auto PtrToAlloca =
618       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
619 
620   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
621   llvm::Value *IsNonNull = nullptr;
622   bool IsGuaranteedNonNull =
623       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
624   bool AllowNullPointers = isNullPointerAllowed(TCK);
625   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
626       !IsGuaranteedNonNull) {
627     // The glvalue must not be an empty glvalue.
628     IsNonNull = Builder.CreateIsNotNull(Ptr);
629 
630     // The IR builder can constant-fold the null check if the pointer points to
631     // a constant.
632     IsGuaranteedNonNull = IsNonNull == True;
633 
634     // Skip the null check if the pointer is known to be non-null.
635     if (!IsGuaranteedNonNull) {
636       if (AllowNullPointers) {
637         // When performing pointer casts, it's OK if the value is null.
638         // Skip the remaining checks in that case.
639         Done = createBasicBlock("null");
640         llvm::BasicBlock *Rest = createBasicBlock("not.null");
641         Builder.CreateCondBr(IsNonNull, Rest, Done);
642         EmitBlock(Rest);
643       } else {
644         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
645       }
646     }
647   }
648 
649   if (SanOpts.has(SanitizerKind::ObjectSize) &&
650       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
651       !Ty->isIncompleteType()) {
652     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
653 
654     // The glvalue must refer to a large enough storage region.
655     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
656     //        to check this.
657     // FIXME: Get object address space
658     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
659     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
660     llvm::Value *Min = Builder.getFalse();
661     llvm::Value *NullIsUnknown = Builder.getFalse();
662     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
663     llvm::Value *LargeEnough = Builder.CreateICmpUGE(
664         Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}),
665         llvm::ConstantInt::get(IntPtrTy, Size));
666     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
667   }
668 
669   uint64_t AlignVal = 0;
670   llvm::Value *PtrAsInt = nullptr;
671 
672   if (SanOpts.has(SanitizerKind::Alignment) &&
673       !SkippedChecks.has(SanitizerKind::Alignment)) {
674     AlignVal = Alignment.getQuantity();
675     if (!Ty->isIncompleteType() && !AlignVal)
676       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
677 
678     // The glvalue must be suitably aligned.
679     if (AlignVal > 1 &&
680         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
681       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
682       llvm::Value *Align = Builder.CreateAnd(
683           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
684       llvm::Value *Aligned =
685           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
686       if (Aligned != True)
687         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
688     }
689   }
690 
691   if (Checks.size() > 0) {
692     // Make sure we're not losing information. Alignment needs to be a power of
693     // 2
694     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
695     llvm::Constant *StaticData[] = {
696         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
697         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
698         llvm::ConstantInt::get(Int8Ty, TCK)};
699     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
700               PtrAsInt ? PtrAsInt : Ptr);
701   }
702 
703   // If possible, check that the vptr indicates that there is a subobject of
704   // type Ty at offset zero within this object.
705   //
706   // C++11 [basic.life]p5,6:
707   //   [For storage which does not refer to an object within its lifetime]
708   //   The program has undefined behavior if:
709   //    -- the [pointer or glvalue] is used to access a non-static data member
710   //       or call a non-static member function
711   if (SanOpts.has(SanitizerKind::Vptr) &&
712       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
713     // Ensure that the pointer is non-null before loading it. If there is no
714     // compile-time guarantee, reuse the run-time null check or emit a new one.
715     if (!IsGuaranteedNonNull) {
716       if (!IsNonNull)
717         IsNonNull = Builder.CreateIsNotNull(Ptr);
718       if (!Done)
719         Done = createBasicBlock("vptr.null");
720       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
721       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
722       EmitBlock(VptrNotNull);
723     }
724 
725     // Compute a hash of the mangled name of the type.
726     //
727     // FIXME: This is not guaranteed to be deterministic! Move to a
728     //        fingerprinting mechanism once LLVM provides one. For the time
729     //        being the implementation happens to be deterministic.
730     SmallString<64> MangledName;
731     llvm::raw_svector_ostream Out(MangledName);
732     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
733                                                      Out);
734 
735     // Blacklist based on the mangled type.
736     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
737             SanitizerKind::Vptr, Out.str())) {
738       llvm::hash_code TypeHash = hash_value(Out.str());
739 
740       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
741       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
742       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
743       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
744       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
745       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
746 
747       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
748       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
749 
750       // Look the hash up in our cache.
751       const int CacheSize = 128;
752       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
753       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
754                                                      "__ubsan_vptr_type_cache");
755       llvm::Value *Slot = Builder.CreateAnd(Hash,
756                                             llvm::ConstantInt::get(IntPtrTy,
757                                                                    CacheSize-1));
758       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
759       llvm::Value *CacheVal =
760         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
761                                   getPointerAlign());
762 
763       // If the hash isn't in the cache, call a runtime handler to perform the
764       // hard work of checking whether the vptr is for an object of the right
765       // type. This will either fill in the cache and return, or produce a
766       // diagnostic.
767       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
768       llvm::Constant *StaticData[] = {
769         EmitCheckSourceLocation(Loc),
770         EmitCheckTypeDescriptor(Ty),
771         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
772         llvm::ConstantInt::get(Int8Ty, TCK)
773       };
774       llvm::Value *DynamicData[] = { Ptr, Hash };
775       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
776                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
777                 DynamicData);
778     }
779   }
780 
781   if (Done) {
782     Builder.CreateBr(Done);
783     EmitBlock(Done);
784   }
785 }
786 
787 /// Determine whether this expression refers to a flexible array member in a
788 /// struct. We disable array bounds checks for such members.
789 static bool isFlexibleArrayMemberExpr(const Expr *E) {
790   // For compatibility with existing code, we treat arrays of length 0 or
791   // 1 as flexible array members.
792   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
793   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
794     if (CAT->getSize().ugt(1))
795       return false;
796   } else if (!isa<IncompleteArrayType>(AT))
797     return false;
798 
799   E = E->IgnoreParens();
800 
801   // A flexible array member must be the last member in the class.
802   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
803     // FIXME: If the base type of the member expr is not FD->getParent(),
804     // this should not be treated as a flexible array member access.
805     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
806       RecordDecl::field_iterator FI(
807           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
808       return ++FI == FD->getParent()->field_end();
809     }
810   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
811     return IRE->getDecl()->getNextIvar() == nullptr;
812   }
813 
814   return false;
815 }
816 
817 /// If Base is known to point to the start of an array, return the length of
818 /// that array. Return 0 if the length cannot be determined.
819 static llvm::Value *getArrayIndexingBound(
820     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
821   // For the vector indexing extension, the bound is the number of elements.
822   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
823     IndexedType = Base->getType();
824     return CGF.Builder.getInt32(VT->getNumElements());
825   }
826 
827   Base = Base->IgnoreParens();
828 
829   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
830     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
831         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
832       IndexedType = CE->getSubExpr()->getType();
833       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
834       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
835         return CGF.Builder.getInt(CAT->getSize());
836       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
837         return CGF.getVLASize(VAT).first;
838     }
839   }
840 
841   return nullptr;
842 }
843 
844 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
845                                       llvm::Value *Index, QualType IndexType,
846                                       bool Accessed) {
847   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
848          "should not be called unless adding bounds checks");
849   SanitizerScope SanScope(this);
850 
851   QualType IndexedType;
852   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
853   if (!Bound)
854     return;
855 
856   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
857   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
858   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
859 
860   llvm::Constant *StaticData[] = {
861     EmitCheckSourceLocation(E->getExprLoc()),
862     EmitCheckTypeDescriptor(IndexedType),
863     EmitCheckTypeDescriptor(IndexType)
864   };
865   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
866                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
867   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
868             SanitizerHandler::OutOfBounds, StaticData, Index);
869 }
870 
871 
872 CodeGenFunction::ComplexPairTy CodeGenFunction::
873 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
874                          bool isInc, bool isPre) {
875   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
876 
877   llvm::Value *NextVal;
878   if (isa<llvm::IntegerType>(InVal.first->getType())) {
879     uint64_t AmountVal = isInc ? 1 : -1;
880     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
881 
882     // Add the inc/dec to the real part.
883     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
884   } else {
885     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
886     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
887     if (!isInc)
888       FVal.changeSign();
889     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
890 
891     // Add the inc/dec to the real part.
892     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
893   }
894 
895   ComplexPairTy IncVal(NextVal, InVal.second);
896 
897   // Store the updated result through the lvalue.
898   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
899 
900   // If this is a postinc, return the value read from memory, otherwise use the
901   // updated value.
902   return isPre ? IncVal : InVal;
903 }
904 
905 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
906                                              CodeGenFunction *CGF) {
907   // Bind VLAs in the cast type.
908   if (CGF && E->getType()->isVariablyModifiedType())
909     CGF->EmitVariablyModifiedType(E->getType());
910 
911   if (CGDebugInfo *DI = getModuleDebugInfo())
912     DI->EmitExplicitCastType(E->getType());
913 }
914 
915 //===----------------------------------------------------------------------===//
916 //                         LValue Expression Emission
917 //===----------------------------------------------------------------------===//
918 
919 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
920 /// derive a more accurate bound on the alignment of the pointer.
921 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
922                                                   LValueBaseInfo *BaseInfo,
923                                                   TBAAAccessInfo *TBAAInfo) {
924   // We allow this with ObjC object pointers because of fragile ABIs.
925   assert(E->getType()->isPointerType() ||
926          E->getType()->isObjCObjectPointerType());
927   E = E->IgnoreParens();
928 
929   // Casts:
930   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
931     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
932       CGM.EmitExplicitCastExprType(ECE, this);
933 
934     switch (CE->getCastKind()) {
935     // Non-converting casts (but not C's implicit conversion from void*).
936     case CK_BitCast:
937     case CK_NoOp:
938     case CK_AddressSpaceConversion:
939       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
940         if (PtrTy->getPointeeType()->isVoidType())
941           break;
942 
943         LValueBaseInfo InnerBaseInfo;
944         TBAAAccessInfo InnerTBAAInfo;
945         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
946                                                 &InnerBaseInfo,
947                                                 &InnerTBAAInfo);
948         if (BaseInfo) *BaseInfo = InnerBaseInfo;
949         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
950 
951         if (isa<ExplicitCastExpr>(CE)) {
952           LValueBaseInfo TargetTypeBaseInfo;
953           TBAAAccessInfo TargetTypeTBAAInfo;
954           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
955                                                            &TargetTypeBaseInfo,
956                                                            &TargetTypeTBAAInfo);
957           if (TBAAInfo)
958             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
959                                                  TargetTypeTBAAInfo);
960           // If the source l-value is opaque, honor the alignment of the
961           // casted-to type.
962           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
963             if (BaseInfo)
964               BaseInfo->mergeForCast(TargetTypeBaseInfo);
965             Addr = Address(Addr.getPointer(), Align);
966           }
967         }
968 
969         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
970             CE->getCastKind() == CK_BitCast) {
971           if (auto PT = E->getType()->getAs<PointerType>())
972             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
973                                       /*MayBeNull=*/true,
974                                       CodeGenFunction::CFITCK_UnrelatedCast,
975                                       CE->getLocStart());
976         }
977         return CE->getCastKind() != CK_AddressSpaceConversion
978                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
979                    : Builder.CreateAddrSpaceCast(Addr,
980                                                  ConvertType(E->getType()));
981       }
982       break;
983 
984     // Array-to-pointer decay.
985     case CK_ArrayToPointerDecay:
986       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
987 
988     // Derived-to-base conversions.
989     case CK_UncheckedDerivedToBase:
990     case CK_DerivedToBase: {
991       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo,
992                                               TBAAInfo);
993       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
994       return GetAddressOfBaseClass(Addr, Derived,
995                                    CE->path_begin(), CE->path_end(),
996                                    ShouldNullCheckClassCastValue(CE),
997                                    CE->getExprLoc());
998     }
999 
1000     // TODO: Is there any reason to treat base-to-derived conversions
1001     // specially?
1002     default:
1003       break;
1004     }
1005   }
1006 
1007   // Unary &.
1008   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1009     if (UO->getOpcode() == UO_AddrOf) {
1010       LValue LV = EmitLValue(UO->getSubExpr());
1011       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1012       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1013       return LV.getAddress();
1014     }
1015   }
1016 
1017   // TODO: conditional operators, comma.
1018 
1019   // Otherwise, use the alignment of the type.
1020   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1021                                                    TBAAInfo);
1022   return Address(EmitScalarExpr(E), Align);
1023 }
1024 
1025 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1026   if (Ty->isVoidType())
1027     return RValue::get(nullptr);
1028 
1029   switch (getEvaluationKind(Ty)) {
1030   case TEK_Complex: {
1031     llvm::Type *EltTy =
1032       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1033     llvm::Value *U = llvm::UndefValue::get(EltTy);
1034     return RValue::getComplex(std::make_pair(U, U));
1035   }
1036 
1037   // If this is a use of an undefined aggregate type, the aggregate must have an
1038   // identifiable address.  Just because the contents of the value are undefined
1039   // doesn't mean that the address can't be taken and compared.
1040   case TEK_Aggregate: {
1041     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1042     return RValue::getAggregate(DestPtr);
1043   }
1044 
1045   case TEK_Scalar:
1046     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1047   }
1048   llvm_unreachable("bad evaluation kind");
1049 }
1050 
1051 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1052                                               const char *Name) {
1053   ErrorUnsupported(E, Name);
1054   return GetUndefRValue(E->getType());
1055 }
1056 
1057 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1058                                               const char *Name) {
1059   ErrorUnsupported(E, Name);
1060   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1061   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1062                         E->getType());
1063 }
1064 
1065 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1066   const Expr *Base = Obj;
1067   while (!isa<CXXThisExpr>(Base)) {
1068     // The result of a dynamic_cast can be null.
1069     if (isa<CXXDynamicCastExpr>(Base))
1070       return false;
1071 
1072     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1073       Base = CE->getSubExpr();
1074     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1075       Base = PE->getSubExpr();
1076     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1077       if (UO->getOpcode() == UO_Extension)
1078         Base = UO->getSubExpr();
1079       else
1080         return false;
1081     } else {
1082       return false;
1083     }
1084   }
1085   return true;
1086 }
1087 
1088 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1089   LValue LV;
1090   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1091     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1092   else
1093     LV = EmitLValue(E);
1094   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1095     SanitizerSet SkippedChecks;
1096     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1097       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1098       if (IsBaseCXXThis)
1099         SkippedChecks.set(SanitizerKind::Alignment, true);
1100       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1101         SkippedChecks.set(SanitizerKind::Null, true);
1102     }
1103     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1104                   E->getType(), LV.getAlignment(), SkippedChecks);
1105   }
1106   return LV;
1107 }
1108 
1109 /// EmitLValue - Emit code to compute a designator that specifies the location
1110 /// of the expression.
1111 ///
1112 /// This can return one of two things: a simple address or a bitfield reference.
1113 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1114 /// an LLVM pointer type.
1115 ///
1116 /// If this returns a bitfield reference, nothing about the pointee type of the
1117 /// LLVM value is known: For example, it may not be a pointer to an integer.
1118 ///
1119 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1120 /// this method guarantees that the returned pointer type will point to an LLVM
1121 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1122 /// length type, this is not possible.
1123 ///
1124 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1125   ApplyDebugLocation DL(*this, E);
1126   switch (E->getStmtClass()) {
1127   default: return EmitUnsupportedLValue(E, "l-value expression");
1128 
1129   case Expr::ObjCPropertyRefExprClass:
1130     llvm_unreachable("cannot emit a property reference directly");
1131 
1132   case Expr::ObjCSelectorExprClass:
1133     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1134   case Expr::ObjCIsaExprClass:
1135     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1136   case Expr::BinaryOperatorClass:
1137     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1138   case Expr::CompoundAssignOperatorClass: {
1139     QualType Ty = E->getType();
1140     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1141       Ty = AT->getValueType();
1142     if (!Ty->isAnyComplexType())
1143       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1144     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1145   }
1146   case Expr::CallExprClass:
1147   case Expr::CXXMemberCallExprClass:
1148   case Expr::CXXOperatorCallExprClass:
1149   case Expr::UserDefinedLiteralClass:
1150     return EmitCallExprLValue(cast<CallExpr>(E));
1151   case Expr::VAArgExprClass:
1152     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1153   case Expr::DeclRefExprClass:
1154     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1155   case Expr::ParenExprClass:
1156     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1157   case Expr::GenericSelectionExprClass:
1158     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1159   case Expr::PredefinedExprClass:
1160     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1161   case Expr::StringLiteralClass:
1162     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1163   case Expr::ObjCEncodeExprClass:
1164     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1165   case Expr::PseudoObjectExprClass:
1166     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1167   case Expr::InitListExprClass:
1168     return EmitInitListLValue(cast<InitListExpr>(E));
1169   case Expr::CXXTemporaryObjectExprClass:
1170   case Expr::CXXConstructExprClass:
1171     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1172   case Expr::CXXBindTemporaryExprClass:
1173     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1174   case Expr::CXXUuidofExprClass:
1175     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1176   case Expr::LambdaExprClass:
1177     return EmitLambdaLValue(cast<LambdaExpr>(E));
1178 
1179   case Expr::ExprWithCleanupsClass: {
1180     const auto *cleanups = cast<ExprWithCleanups>(E);
1181     enterFullExpression(cleanups);
1182     RunCleanupsScope Scope(*this);
1183     LValue LV = EmitLValue(cleanups->getSubExpr());
1184     if (LV.isSimple()) {
1185       // Defend against branches out of gnu statement expressions surrounded by
1186       // cleanups.
1187       llvm::Value *V = LV.getPointer();
1188       Scope.ForceCleanup({&V});
1189       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1190                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1191     }
1192     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1193     // bitfield lvalue or some other non-simple lvalue?
1194     return LV;
1195   }
1196 
1197   case Expr::CXXDefaultArgExprClass:
1198     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1199   case Expr::CXXDefaultInitExprClass: {
1200     CXXDefaultInitExprScope Scope(*this);
1201     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1202   }
1203   case Expr::CXXTypeidExprClass:
1204     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1205 
1206   case Expr::ObjCMessageExprClass:
1207     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1208   case Expr::ObjCIvarRefExprClass:
1209     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1210   case Expr::StmtExprClass:
1211     return EmitStmtExprLValue(cast<StmtExpr>(E));
1212   case Expr::UnaryOperatorClass:
1213     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1214   case Expr::ArraySubscriptExprClass:
1215     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1216   case Expr::OMPArraySectionExprClass:
1217     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1218   case Expr::ExtVectorElementExprClass:
1219     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1220   case Expr::MemberExprClass:
1221     return EmitMemberExpr(cast<MemberExpr>(E));
1222   case Expr::CompoundLiteralExprClass:
1223     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1224   case Expr::ConditionalOperatorClass:
1225     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1226   case Expr::BinaryConditionalOperatorClass:
1227     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1228   case Expr::ChooseExprClass:
1229     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1230   case Expr::OpaqueValueExprClass:
1231     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1232   case Expr::SubstNonTypeTemplateParmExprClass:
1233     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1234   case Expr::ImplicitCastExprClass:
1235   case Expr::CStyleCastExprClass:
1236   case Expr::CXXFunctionalCastExprClass:
1237   case Expr::CXXStaticCastExprClass:
1238   case Expr::CXXDynamicCastExprClass:
1239   case Expr::CXXReinterpretCastExprClass:
1240   case Expr::CXXConstCastExprClass:
1241   case Expr::ObjCBridgedCastExprClass:
1242     return EmitCastLValue(cast<CastExpr>(E));
1243 
1244   case Expr::MaterializeTemporaryExprClass:
1245     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1246 
1247   case Expr::CoawaitExprClass:
1248     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1249   case Expr::CoyieldExprClass:
1250     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1251   }
1252 }
1253 
1254 /// Given an object of the given canonical type, can we safely copy a
1255 /// value out of it based on its initializer?
1256 static bool isConstantEmittableObjectType(QualType type) {
1257   assert(type.isCanonical());
1258   assert(!type->isReferenceType());
1259 
1260   // Must be const-qualified but non-volatile.
1261   Qualifiers qs = type.getLocalQualifiers();
1262   if (!qs.hasConst() || qs.hasVolatile()) return false;
1263 
1264   // Otherwise, all object types satisfy this except C++ classes with
1265   // mutable subobjects or non-trivial copy/destroy behavior.
1266   if (const auto *RT = dyn_cast<RecordType>(type))
1267     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1268       if (RD->hasMutableFields() || !RD->isTrivial())
1269         return false;
1270 
1271   return true;
1272 }
1273 
1274 /// Can we constant-emit a load of a reference to a variable of the
1275 /// given type?  This is different from predicates like
1276 /// Decl::isUsableInConstantExpressions because we do want it to apply
1277 /// in situations that don't necessarily satisfy the language's rules
1278 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1279 /// to do this with const float variables even if those variables
1280 /// aren't marked 'constexpr'.
1281 enum ConstantEmissionKind {
1282   CEK_None,
1283   CEK_AsReferenceOnly,
1284   CEK_AsValueOrReference,
1285   CEK_AsValueOnly
1286 };
1287 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1288   type = type.getCanonicalType();
1289   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1290     if (isConstantEmittableObjectType(ref->getPointeeType()))
1291       return CEK_AsValueOrReference;
1292     return CEK_AsReferenceOnly;
1293   }
1294   if (isConstantEmittableObjectType(type))
1295     return CEK_AsValueOnly;
1296   return CEK_None;
1297 }
1298 
1299 /// Try to emit a reference to the given value without producing it as
1300 /// an l-value.  This is actually more than an optimization: we can't
1301 /// produce an l-value for variables that we never actually captured
1302 /// in a block or lambda, which means const int variables or constexpr
1303 /// literals or similar.
1304 CodeGenFunction::ConstantEmission
1305 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1306   ValueDecl *value = refExpr->getDecl();
1307 
1308   // The value needs to be an enum constant or a constant variable.
1309   ConstantEmissionKind CEK;
1310   if (isa<ParmVarDecl>(value)) {
1311     CEK = CEK_None;
1312   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1313     CEK = checkVarTypeForConstantEmission(var->getType());
1314   } else if (isa<EnumConstantDecl>(value)) {
1315     CEK = CEK_AsValueOnly;
1316   } else {
1317     CEK = CEK_None;
1318   }
1319   if (CEK == CEK_None) return ConstantEmission();
1320 
1321   Expr::EvalResult result;
1322   bool resultIsReference;
1323   QualType resultType;
1324 
1325   // It's best to evaluate all the way as an r-value if that's permitted.
1326   if (CEK != CEK_AsReferenceOnly &&
1327       refExpr->EvaluateAsRValue(result, getContext())) {
1328     resultIsReference = false;
1329     resultType = refExpr->getType();
1330 
1331   // Otherwise, try to evaluate as an l-value.
1332   } else if (CEK != CEK_AsValueOnly &&
1333              refExpr->EvaluateAsLValue(result, getContext())) {
1334     resultIsReference = true;
1335     resultType = value->getType();
1336 
1337   // Failure.
1338   } else {
1339     return ConstantEmission();
1340   }
1341 
1342   // In any case, if the initializer has side-effects, abandon ship.
1343   if (result.HasSideEffects)
1344     return ConstantEmission();
1345 
1346   // Emit as a constant.
1347   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1348                                                result.Val, resultType);
1349 
1350   // Make sure we emit a debug reference to the global variable.
1351   // This should probably fire even for
1352   if (isa<VarDecl>(value)) {
1353     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1354       EmitDeclRefExprDbgValue(refExpr, result.Val);
1355   } else {
1356     assert(isa<EnumConstantDecl>(value));
1357     EmitDeclRefExprDbgValue(refExpr, result.Val);
1358   }
1359 
1360   // If we emitted a reference constant, we need to dereference that.
1361   if (resultIsReference)
1362     return ConstantEmission::forReference(C);
1363 
1364   return ConstantEmission::forValue(C);
1365 }
1366 
1367 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1368                                                         const MemberExpr *ME) {
1369   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1370     // Try to emit static variable member expressions as DREs.
1371     return DeclRefExpr::Create(
1372         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1373         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1374         ME->getType(), ME->getValueKind());
1375   }
1376   return nullptr;
1377 }
1378 
1379 CodeGenFunction::ConstantEmission
1380 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1381   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1382     return tryEmitAsConstant(DRE);
1383   return ConstantEmission();
1384 }
1385 
1386 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1387                                                SourceLocation Loc) {
1388   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1389                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1390                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1391 }
1392 
1393 static bool hasBooleanRepresentation(QualType Ty) {
1394   if (Ty->isBooleanType())
1395     return true;
1396 
1397   if (const EnumType *ET = Ty->getAs<EnumType>())
1398     return ET->getDecl()->getIntegerType()->isBooleanType();
1399 
1400   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1401     return hasBooleanRepresentation(AT->getValueType());
1402 
1403   return false;
1404 }
1405 
1406 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1407                             llvm::APInt &Min, llvm::APInt &End,
1408                             bool StrictEnums, bool IsBool) {
1409   const EnumType *ET = Ty->getAs<EnumType>();
1410   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1411                                 ET && !ET->getDecl()->isFixed();
1412   if (!IsBool && !IsRegularCPlusPlusEnum)
1413     return false;
1414 
1415   if (IsBool) {
1416     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1417     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1418   } else {
1419     const EnumDecl *ED = ET->getDecl();
1420     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1421     unsigned Bitwidth = LTy->getScalarSizeInBits();
1422     unsigned NumNegativeBits = ED->getNumNegativeBits();
1423     unsigned NumPositiveBits = ED->getNumPositiveBits();
1424 
1425     if (NumNegativeBits) {
1426       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1427       assert(NumBits <= Bitwidth);
1428       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1429       Min = -End;
1430     } else {
1431       assert(NumPositiveBits <= Bitwidth);
1432       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1433       Min = llvm::APInt(Bitwidth, 0);
1434     }
1435   }
1436   return true;
1437 }
1438 
1439 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1440   llvm::APInt Min, End;
1441   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1442                        hasBooleanRepresentation(Ty)))
1443     return nullptr;
1444 
1445   llvm::MDBuilder MDHelper(getLLVMContext());
1446   return MDHelper.createRange(Min, End);
1447 }
1448 
1449 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1450                                            SourceLocation Loc) {
1451   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1452   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1453   if (!HasBoolCheck && !HasEnumCheck)
1454     return false;
1455 
1456   bool IsBool = hasBooleanRepresentation(Ty) ||
1457                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1458   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1459   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1460   if (!NeedsBoolCheck && !NeedsEnumCheck)
1461     return false;
1462 
1463   // Single-bit booleans don't need to be checked. Special-case this to avoid
1464   // a bit width mismatch when handling bitfield values. This is handled by
1465   // EmitFromMemory for the non-bitfield case.
1466   if (IsBool &&
1467       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1468     return false;
1469 
1470   llvm::APInt Min, End;
1471   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1472     return true;
1473 
1474   auto &Ctx = getLLVMContext();
1475   SanitizerScope SanScope(this);
1476   llvm::Value *Check;
1477   --End;
1478   if (!Min) {
1479     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1480   } else {
1481     llvm::Value *Upper =
1482         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1483     llvm::Value *Lower =
1484         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1485     Check = Builder.CreateAnd(Upper, Lower);
1486   }
1487   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1488                                   EmitCheckTypeDescriptor(Ty)};
1489   SanitizerMask Kind =
1490       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1491   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1492             StaticArgs, EmitCheckValue(Value));
1493   return true;
1494 }
1495 
1496 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1497                                                QualType Ty,
1498                                                SourceLocation Loc,
1499                                                LValueBaseInfo BaseInfo,
1500                                                TBAAAccessInfo TBAAInfo,
1501                                                bool isNontemporal) {
1502   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1503     // For better performance, handle vector loads differently.
1504     if (Ty->isVectorType()) {
1505       const llvm::Type *EltTy = Addr.getElementType();
1506 
1507       const auto *VTy = cast<llvm::VectorType>(EltTy);
1508 
1509       // Handle vectors of size 3 like size 4 for better performance.
1510       if (VTy->getNumElements() == 3) {
1511 
1512         // Bitcast to vec4 type.
1513         llvm::VectorType *vec4Ty =
1514             llvm::VectorType::get(VTy->getElementType(), 4);
1515         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1516         // Now load value.
1517         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1518 
1519         // Shuffle vector to get vec3.
1520         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1521                                         {0, 1, 2}, "extractVec");
1522         return EmitFromMemory(V, Ty);
1523       }
1524     }
1525   }
1526 
1527   // Atomic operations have to be done on integral types.
1528   LValue AtomicLValue =
1529       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1530   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1531     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1532   }
1533 
1534   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1535   if (isNontemporal) {
1536     llvm::MDNode *Node = llvm::MDNode::get(
1537         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1538     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1539   }
1540 
1541   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1542 
1543   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1544     // In order to prevent the optimizer from throwing away the check, don't
1545     // attach range metadata to the load.
1546   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1547     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1548       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1549 
1550   return EmitFromMemory(Load, Ty);
1551 }
1552 
1553 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1554   // Bool has a different representation in memory than in registers.
1555   if (hasBooleanRepresentation(Ty)) {
1556     // This should really always be an i1, but sometimes it's already
1557     // an i8, and it's awkward to track those cases down.
1558     if (Value->getType()->isIntegerTy(1))
1559       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1560     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1561            "wrong value rep of bool");
1562   }
1563 
1564   return Value;
1565 }
1566 
1567 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1568   // Bool has a different representation in memory than in registers.
1569   if (hasBooleanRepresentation(Ty)) {
1570     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1571            "wrong value rep of bool");
1572     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1573   }
1574 
1575   return Value;
1576 }
1577 
1578 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1579                                         bool Volatile, QualType Ty,
1580                                         LValueBaseInfo BaseInfo,
1581                                         TBAAAccessInfo TBAAInfo,
1582                                         bool isInit, bool isNontemporal) {
1583   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1584     // Handle vectors differently to get better performance.
1585     if (Ty->isVectorType()) {
1586       llvm::Type *SrcTy = Value->getType();
1587       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1588       // Handle vec3 special.
1589       if (VecTy && VecTy->getNumElements() == 3) {
1590         // Our source is a vec3, do a shuffle vector to make it a vec4.
1591         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1592                                   Builder.getInt32(2),
1593                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1594         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1595         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1596                                             MaskV, "extractVec");
1597         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1598       }
1599       if (Addr.getElementType() != SrcTy) {
1600         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1601       }
1602     }
1603   }
1604 
1605   Value = EmitToMemory(Value, Ty);
1606 
1607   LValue AtomicLValue =
1608       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1609   if (Ty->isAtomicType() ||
1610       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1611     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1612     return;
1613   }
1614 
1615   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1616   if (isNontemporal) {
1617     llvm::MDNode *Node =
1618         llvm::MDNode::get(Store->getContext(),
1619                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1620     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1621   }
1622 
1623   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1624 }
1625 
1626 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1627                                         bool isInit) {
1628   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1629                     lvalue.getType(), lvalue.getBaseInfo(),
1630                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1631 }
1632 
1633 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1634 /// method emits the address of the lvalue, then loads the result as an rvalue,
1635 /// returning the rvalue.
1636 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1637   if (LV.isObjCWeak()) {
1638     // load of a __weak object.
1639     Address AddrWeakObj = LV.getAddress();
1640     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1641                                                              AddrWeakObj));
1642   }
1643   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1644     // In MRC mode, we do a load+autorelease.
1645     if (!getLangOpts().ObjCAutoRefCount) {
1646       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1647     }
1648 
1649     // In ARC mode, we load retained and then consume the value.
1650     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1651     Object = EmitObjCConsumeObject(LV.getType(), Object);
1652     return RValue::get(Object);
1653   }
1654 
1655   if (LV.isSimple()) {
1656     assert(!LV.getType()->isFunctionType());
1657 
1658     // Everything needs a load.
1659     return RValue::get(EmitLoadOfScalar(LV, Loc));
1660   }
1661 
1662   if (LV.isVectorElt()) {
1663     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1664                                               LV.isVolatileQualified());
1665     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1666                                                     "vecext"));
1667   }
1668 
1669   // If this is a reference to a subset of the elements of a vector, either
1670   // shuffle the input or extract/insert them as appropriate.
1671   if (LV.isExtVectorElt())
1672     return EmitLoadOfExtVectorElementLValue(LV);
1673 
1674   // Global Register variables always invoke intrinsics
1675   if (LV.isGlobalReg())
1676     return EmitLoadOfGlobalRegLValue(LV);
1677 
1678   assert(LV.isBitField() && "Unknown LValue type!");
1679   return EmitLoadOfBitfieldLValue(LV, Loc);
1680 }
1681 
1682 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1683                                                  SourceLocation Loc) {
1684   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1685 
1686   // Get the output type.
1687   llvm::Type *ResLTy = ConvertType(LV.getType());
1688 
1689   Address Ptr = LV.getBitFieldAddress();
1690   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1691 
1692   if (Info.IsSigned) {
1693     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1694     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1695     if (HighBits)
1696       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1697     if (Info.Offset + HighBits)
1698       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1699   } else {
1700     if (Info.Offset)
1701       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1702     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1703       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1704                                                               Info.Size),
1705                               "bf.clear");
1706   }
1707   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1708   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1709   return RValue::get(Val);
1710 }
1711 
1712 // If this is a reference to a subset of the elements of a vector, create an
1713 // appropriate shufflevector.
1714 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1715   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1716                                         LV.isVolatileQualified());
1717 
1718   const llvm::Constant *Elts = LV.getExtVectorElts();
1719 
1720   // If the result of the expression is a non-vector type, we must be extracting
1721   // a single element.  Just codegen as an extractelement.
1722   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1723   if (!ExprVT) {
1724     unsigned InIdx = getAccessedFieldNo(0, Elts);
1725     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1726     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1727   }
1728 
1729   // Always use shuffle vector to try to retain the original program structure
1730   unsigned NumResultElts = ExprVT->getNumElements();
1731 
1732   SmallVector<llvm::Constant*, 4> Mask;
1733   for (unsigned i = 0; i != NumResultElts; ++i)
1734     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1735 
1736   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1737   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1738                                     MaskV);
1739   return RValue::get(Vec);
1740 }
1741 
1742 /// @brief Generates lvalue for partial ext_vector access.
1743 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1744   Address VectorAddress = LV.getExtVectorAddress();
1745   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1746   QualType EQT = ExprVT->getElementType();
1747   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1748 
1749   Address CastToPointerElement =
1750     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1751                                  "conv.ptr.element");
1752 
1753   const llvm::Constant *Elts = LV.getExtVectorElts();
1754   unsigned ix = getAccessedFieldNo(0, Elts);
1755 
1756   Address VectorBasePtrPlusIx =
1757     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1758                                    getContext().getTypeSizeInChars(EQT),
1759                                    "vector.elt");
1760 
1761   return VectorBasePtrPlusIx;
1762 }
1763 
1764 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1765 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1766   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1767          "Bad type for register variable");
1768   llvm::MDNode *RegName = cast<llvm::MDNode>(
1769       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1770 
1771   // We accept integer and pointer types only
1772   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1773   llvm::Type *Ty = OrigTy;
1774   if (OrigTy->isPointerTy())
1775     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1776   llvm::Type *Types[] = { Ty };
1777 
1778   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1779   llvm::Value *Call = Builder.CreateCall(
1780       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1781   if (OrigTy->isPointerTy())
1782     Call = Builder.CreateIntToPtr(Call, OrigTy);
1783   return RValue::get(Call);
1784 }
1785 
1786 
1787 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1788 /// lvalue, where both are guaranteed to the have the same type, and that type
1789 /// is 'Ty'.
1790 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1791                                              bool isInit) {
1792   if (!Dst.isSimple()) {
1793     if (Dst.isVectorElt()) {
1794       // Read/modify/write the vector, inserting the new element.
1795       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1796                                             Dst.isVolatileQualified());
1797       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1798                                         Dst.getVectorIdx(), "vecins");
1799       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1800                           Dst.isVolatileQualified());
1801       return;
1802     }
1803 
1804     // If this is an update of extended vector elements, insert them as
1805     // appropriate.
1806     if (Dst.isExtVectorElt())
1807       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1808 
1809     if (Dst.isGlobalReg())
1810       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1811 
1812     assert(Dst.isBitField() && "Unknown LValue type");
1813     return EmitStoreThroughBitfieldLValue(Src, Dst);
1814   }
1815 
1816   // There's special magic for assigning into an ARC-qualified l-value.
1817   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1818     switch (Lifetime) {
1819     case Qualifiers::OCL_None:
1820       llvm_unreachable("present but none");
1821 
1822     case Qualifiers::OCL_ExplicitNone:
1823       // nothing special
1824       break;
1825 
1826     case Qualifiers::OCL_Strong:
1827       if (isInit) {
1828         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1829         break;
1830       }
1831       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1832       return;
1833 
1834     case Qualifiers::OCL_Weak:
1835       if (isInit)
1836         // Initialize and then skip the primitive store.
1837         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1838       else
1839         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1840       return;
1841 
1842     case Qualifiers::OCL_Autoreleasing:
1843       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1844                                                      Src.getScalarVal()));
1845       // fall into the normal path
1846       break;
1847     }
1848   }
1849 
1850   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1851     // load of a __weak object.
1852     Address LvalueDst = Dst.getAddress();
1853     llvm::Value *src = Src.getScalarVal();
1854      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1855     return;
1856   }
1857 
1858   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1859     // load of a __strong object.
1860     Address LvalueDst = Dst.getAddress();
1861     llvm::Value *src = Src.getScalarVal();
1862     if (Dst.isObjCIvar()) {
1863       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1864       llvm::Type *ResultType = IntPtrTy;
1865       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1866       llvm::Value *RHS = dst.getPointer();
1867       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1868       llvm::Value *LHS =
1869         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1870                                "sub.ptr.lhs.cast");
1871       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1872       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1873                                               BytesBetween);
1874     } else if (Dst.isGlobalObjCRef()) {
1875       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1876                                                 Dst.isThreadLocalRef());
1877     }
1878     else
1879       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1880     return;
1881   }
1882 
1883   assert(Src.isScalar() && "Can't emit an agg store with this method");
1884   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1885 }
1886 
1887 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1888                                                      llvm::Value **Result) {
1889   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1890   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1891   Address Ptr = Dst.getBitFieldAddress();
1892 
1893   // Get the source value, truncated to the width of the bit-field.
1894   llvm::Value *SrcVal = Src.getScalarVal();
1895 
1896   // Cast the source to the storage type and shift it into place.
1897   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1898                                  /*IsSigned=*/false);
1899   llvm::Value *MaskedVal = SrcVal;
1900 
1901   // See if there are other bits in the bitfield's storage we'll need to load
1902   // and mask together with source before storing.
1903   if (Info.StorageSize != Info.Size) {
1904     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1905     llvm::Value *Val =
1906       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1907 
1908     // Mask the source value as needed.
1909     if (!hasBooleanRepresentation(Dst.getType()))
1910       SrcVal = Builder.CreateAnd(SrcVal,
1911                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1912                                                             Info.Size),
1913                                  "bf.value");
1914     MaskedVal = SrcVal;
1915     if (Info.Offset)
1916       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1917 
1918     // Mask out the original value.
1919     Val = Builder.CreateAnd(Val,
1920                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1921                                                      Info.Offset,
1922                                                      Info.Offset + Info.Size),
1923                             "bf.clear");
1924 
1925     // Or together the unchanged values and the source value.
1926     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1927   } else {
1928     assert(Info.Offset == 0);
1929   }
1930 
1931   // Write the new value back out.
1932   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1933 
1934   // Return the new value of the bit-field, if requested.
1935   if (Result) {
1936     llvm::Value *ResultVal = MaskedVal;
1937 
1938     // Sign extend the value if needed.
1939     if (Info.IsSigned) {
1940       assert(Info.Size <= Info.StorageSize);
1941       unsigned HighBits = Info.StorageSize - Info.Size;
1942       if (HighBits) {
1943         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1944         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1945       }
1946     }
1947 
1948     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1949                                       "bf.result.cast");
1950     *Result = EmitFromMemory(ResultVal, Dst.getType());
1951   }
1952 }
1953 
1954 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1955                                                                LValue Dst) {
1956   // This access turns into a read/modify/write of the vector.  Load the input
1957   // value now.
1958   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1959                                         Dst.isVolatileQualified());
1960   const llvm::Constant *Elts = Dst.getExtVectorElts();
1961 
1962   llvm::Value *SrcVal = Src.getScalarVal();
1963 
1964   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1965     unsigned NumSrcElts = VTy->getNumElements();
1966     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
1967     if (NumDstElts == NumSrcElts) {
1968       // Use shuffle vector is the src and destination are the same number of
1969       // elements and restore the vector mask since it is on the side it will be
1970       // stored.
1971       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1972       for (unsigned i = 0; i != NumSrcElts; ++i)
1973         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1974 
1975       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1976       Vec = Builder.CreateShuffleVector(SrcVal,
1977                                         llvm::UndefValue::get(Vec->getType()),
1978                                         MaskV);
1979     } else if (NumDstElts > NumSrcElts) {
1980       // Extended the source vector to the same length and then shuffle it
1981       // into the destination.
1982       // FIXME: since we're shuffling with undef, can we just use the indices
1983       //        into that?  This could be simpler.
1984       SmallVector<llvm::Constant*, 4> ExtMask;
1985       for (unsigned i = 0; i != NumSrcElts; ++i)
1986         ExtMask.push_back(Builder.getInt32(i));
1987       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1988       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1989       llvm::Value *ExtSrcVal =
1990         Builder.CreateShuffleVector(SrcVal,
1991                                     llvm::UndefValue::get(SrcVal->getType()),
1992                                     ExtMaskV);
1993       // build identity
1994       SmallVector<llvm::Constant*, 4> Mask;
1995       for (unsigned i = 0; i != NumDstElts; ++i)
1996         Mask.push_back(Builder.getInt32(i));
1997 
1998       // When the vector size is odd and .odd or .hi is used, the last element
1999       // of the Elts constant array will be one past the size of the vector.
2000       // Ignore the last element here, if it is greater than the mask size.
2001       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2002         NumSrcElts--;
2003 
2004       // modify when what gets shuffled in
2005       for (unsigned i = 0; i != NumSrcElts; ++i)
2006         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2007       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2008       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2009     } else {
2010       // We should never shorten the vector
2011       llvm_unreachable("unexpected shorten vector length");
2012     }
2013   } else {
2014     // If the Src is a scalar (not a vector) it must be updating one element.
2015     unsigned InIdx = getAccessedFieldNo(0, Elts);
2016     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2017     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2018   }
2019 
2020   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2021                       Dst.isVolatileQualified());
2022 }
2023 
2024 /// @brief Store of global named registers are always calls to intrinsics.
2025 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2026   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2027          "Bad type for register variable");
2028   llvm::MDNode *RegName = cast<llvm::MDNode>(
2029       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2030   assert(RegName && "Register LValue is not metadata");
2031 
2032   // We accept integer and pointer types only
2033   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2034   llvm::Type *Ty = OrigTy;
2035   if (OrigTy->isPointerTy())
2036     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2037   llvm::Type *Types[] = { Ty };
2038 
2039   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2040   llvm::Value *Value = Src.getScalarVal();
2041   if (OrigTy->isPointerTy())
2042     Value = Builder.CreatePtrToInt(Value, Ty);
2043   Builder.CreateCall(
2044       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2045 }
2046 
2047 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2048 // generating write-barries API. It is currently a global, ivar,
2049 // or neither.
2050 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2051                                  LValue &LV,
2052                                  bool IsMemberAccess=false) {
2053   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2054     return;
2055 
2056   if (isa<ObjCIvarRefExpr>(E)) {
2057     QualType ExpTy = E->getType();
2058     if (IsMemberAccess && ExpTy->isPointerType()) {
2059       // If ivar is a structure pointer, assigning to field of
2060       // this struct follows gcc's behavior and makes it a non-ivar
2061       // writer-barrier conservatively.
2062       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2063       if (ExpTy->isRecordType()) {
2064         LV.setObjCIvar(false);
2065         return;
2066       }
2067     }
2068     LV.setObjCIvar(true);
2069     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2070     LV.setBaseIvarExp(Exp->getBase());
2071     LV.setObjCArray(E->getType()->isArrayType());
2072     return;
2073   }
2074 
2075   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2076     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2077       if (VD->hasGlobalStorage()) {
2078         LV.setGlobalObjCRef(true);
2079         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2080       }
2081     }
2082     LV.setObjCArray(E->getType()->isArrayType());
2083     return;
2084   }
2085 
2086   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2087     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2088     return;
2089   }
2090 
2091   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2092     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2093     if (LV.isObjCIvar()) {
2094       // If cast is to a structure pointer, follow gcc's behavior and make it
2095       // a non-ivar write-barrier.
2096       QualType ExpTy = E->getType();
2097       if (ExpTy->isPointerType())
2098         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2099       if (ExpTy->isRecordType())
2100         LV.setObjCIvar(false);
2101     }
2102     return;
2103   }
2104 
2105   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2106     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2107     return;
2108   }
2109 
2110   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2111     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2112     return;
2113   }
2114 
2115   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2116     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2117     return;
2118   }
2119 
2120   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2121     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2122     return;
2123   }
2124 
2125   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2126     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2127     if (LV.isObjCIvar() && !LV.isObjCArray())
2128       // Using array syntax to assigning to what an ivar points to is not
2129       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2130       LV.setObjCIvar(false);
2131     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2132       // Using array syntax to assigning to what global points to is not
2133       // same as assigning to the global itself. {id *G;} G[i] = 0;
2134       LV.setGlobalObjCRef(false);
2135     return;
2136   }
2137 
2138   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2139     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2140     // We don't know if member is an 'ivar', but this flag is looked at
2141     // only in the context of LV.isObjCIvar().
2142     LV.setObjCArray(E->getType()->isArrayType());
2143     return;
2144   }
2145 }
2146 
2147 static llvm::Value *
2148 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2149                                 llvm::Value *V, llvm::Type *IRType,
2150                                 StringRef Name = StringRef()) {
2151   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2152   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2153 }
2154 
2155 static LValue EmitThreadPrivateVarDeclLValue(
2156     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2157     llvm::Type *RealVarTy, SourceLocation Loc) {
2158   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2159   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2160   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2161 }
2162 
2163 Address
2164 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2165                                      LValueBaseInfo *PointeeBaseInfo,
2166                                      TBAAAccessInfo *PointeeTBAAInfo) {
2167   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2168                                             RefLVal.isVolatile());
2169   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2170 
2171   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2172                                             PointeeBaseInfo, PointeeTBAAInfo,
2173                                             /* forPointeeType= */ true);
2174   return Address(Load, Align);
2175 }
2176 
2177 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2178   LValueBaseInfo PointeeBaseInfo;
2179   TBAAAccessInfo PointeeTBAAInfo;
2180   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2181                                             &PointeeTBAAInfo);
2182   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2183                         PointeeBaseInfo, PointeeTBAAInfo);
2184 }
2185 
2186 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2187                                            const PointerType *PtrTy,
2188                                            LValueBaseInfo *BaseInfo,
2189                                            TBAAAccessInfo *TBAAInfo) {
2190   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2191   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2192                                                BaseInfo, TBAAInfo,
2193                                                /*forPointeeType=*/true));
2194 }
2195 
2196 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2197                                                 const PointerType *PtrTy) {
2198   LValueBaseInfo BaseInfo;
2199   TBAAAccessInfo TBAAInfo;
2200   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2201   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2202 }
2203 
2204 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2205                                       const Expr *E, const VarDecl *VD) {
2206   QualType T = E->getType();
2207 
2208   // If it's thread_local, emit a call to its wrapper function instead.
2209   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2210       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2211     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2212 
2213   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2214   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2215   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2216   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2217   Address Addr(V, Alignment);
2218   // Emit reference to the private copy of the variable if it is an OpenMP
2219   // threadprivate variable.
2220   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
2221     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2222                                           E->getExprLoc());
2223   LValue LV = VD->getType()->isReferenceType() ?
2224       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2225                                     AlignmentSource::Decl) :
2226       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2227   setObjCGCLValueClass(CGF.getContext(), E, LV);
2228   return LV;
2229 }
2230 
2231 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2232                                                const FunctionDecl *FD) {
2233   if (FD->hasAttr<WeakRefAttr>()) {
2234     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2235     return aliasee.getPointer();
2236   }
2237 
2238   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2239   if (!FD->hasPrototype()) {
2240     if (const FunctionProtoType *Proto =
2241             FD->getType()->getAs<FunctionProtoType>()) {
2242       // Ugly case: for a K&R-style definition, the type of the definition
2243       // isn't the same as the type of a use.  Correct for this with a
2244       // bitcast.
2245       QualType NoProtoType =
2246           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2247       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2248       V = llvm::ConstantExpr::getBitCast(V,
2249                                       CGM.getTypes().ConvertType(NoProtoType));
2250     }
2251   }
2252   return V;
2253 }
2254 
2255 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2256                                      const Expr *E, const FunctionDecl *FD) {
2257   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2258   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2259   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2260                             AlignmentSource::Decl);
2261 }
2262 
2263 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2264                                       llvm::Value *ThisValue) {
2265   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2266   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2267   return CGF.EmitLValueForField(LV, FD);
2268 }
2269 
2270 /// Named Registers are named metadata pointing to the register name
2271 /// which will be read from/written to as an argument to the intrinsic
2272 /// @llvm.read/write_register.
2273 /// So far, only the name is being passed down, but other options such as
2274 /// register type, allocation type or even optimization options could be
2275 /// passed down via the metadata node.
2276 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2277   SmallString<64> Name("llvm.named.register.");
2278   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2279   assert(Asm->getLabel().size() < 64-Name.size() &&
2280       "Register name too big");
2281   Name.append(Asm->getLabel());
2282   llvm::NamedMDNode *M =
2283     CGM.getModule().getOrInsertNamedMetadata(Name);
2284   if (M->getNumOperands() == 0) {
2285     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2286                                               Asm->getLabel());
2287     llvm::Metadata *Ops[] = {Str};
2288     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2289   }
2290 
2291   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2292 
2293   llvm::Value *Ptr =
2294     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2295   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2296 }
2297 
2298 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2299   const NamedDecl *ND = E->getDecl();
2300   QualType T = E->getType();
2301 
2302   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2303     // Global Named registers access via intrinsics only
2304     if (VD->getStorageClass() == SC_Register &&
2305         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2306       return EmitGlobalNamedRegister(VD, CGM);
2307 
2308     // A DeclRefExpr for a reference initialized by a constant expression can
2309     // appear without being odr-used. Directly emit the constant initializer.
2310     const Expr *Init = VD->getAnyInitializer(VD);
2311     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2312         VD->isUsableInConstantExpressions(getContext()) &&
2313         VD->checkInitIsICE() &&
2314         // Do not emit if it is private OpenMP variable.
2315         !(E->refersToEnclosingVariableOrCapture() &&
2316           ((CapturedStmtInfo &&
2317             (LocalDeclMap.count(VD->getCanonicalDecl()) ||
2318              CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
2319            LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
2320            isa<BlockDecl>(CurCodeDecl)))) {
2321       llvm::Constant *Val =
2322         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2323                                             *VD->evaluateValue(),
2324                                             VD->getType());
2325       assert(Val && "failed to emit reference constant expression");
2326       // FIXME: Eventually we will want to emit vector element references.
2327 
2328       // Should we be using the alignment of the constant pointer we emitted?
2329       CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
2330                                                     /* BaseInfo= */ nullptr,
2331                                                     /* TBAAInfo= */ nullptr,
2332                                                     /* forPointeeType= */ true);
2333       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2334     }
2335 
2336     // Check for captured variables.
2337     if (E->refersToEnclosingVariableOrCapture()) {
2338       VD = VD->getCanonicalDecl();
2339       if (auto *FD = LambdaCaptureFields.lookup(VD))
2340         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2341       else if (CapturedStmtInfo) {
2342         auto I = LocalDeclMap.find(VD);
2343         if (I != LocalDeclMap.end()) {
2344           if (VD->getType()->isReferenceType())
2345             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2346                                              AlignmentSource::Decl);
2347           return MakeAddrLValue(I->second, T);
2348         }
2349         LValue CapLVal =
2350             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2351                                     CapturedStmtInfo->getContextValue());
2352         return MakeAddrLValue(
2353             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2354             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2355             CapLVal.getTBAAInfo());
2356       }
2357 
2358       assert(isa<BlockDecl>(CurCodeDecl));
2359       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2360       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2361     }
2362   }
2363 
2364   // FIXME: We should be able to assert this for FunctionDecls as well!
2365   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2366   // those with a valid source location.
2367   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2368           !E->getLocation().isValid()) &&
2369          "Should not use decl without marking it used!");
2370 
2371   if (ND->hasAttr<WeakRefAttr>()) {
2372     const auto *VD = cast<ValueDecl>(ND);
2373     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2374     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2375   }
2376 
2377   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2378     // Check if this is a global variable.
2379     if (VD->hasLinkage() || VD->isStaticDataMember())
2380       return EmitGlobalVarDeclLValue(*this, E, VD);
2381 
2382     Address addr = Address::invalid();
2383 
2384     // The variable should generally be present in the local decl map.
2385     auto iter = LocalDeclMap.find(VD);
2386     if (iter != LocalDeclMap.end()) {
2387       addr = iter->second;
2388 
2389     // Otherwise, it might be static local we haven't emitted yet for
2390     // some reason; most likely, because it's in an outer function.
2391     } else if (VD->isStaticLocal()) {
2392       addr = Address(CGM.getOrCreateStaticVarDecl(
2393           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2394                      getContext().getDeclAlign(VD));
2395 
2396     // No other cases for now.
2397     } else {
2398       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2399     }
2400 
2401 
2402     // Check for OpenMP threadprivate variables.
2403     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2404       return EmitThreadPrivateVarDeclLValue(
2405           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2406           E->getExprLoc());
2407     }
2408 
2409     // Drill into block byref variables.
2410     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2411     if (isBlockByref) {
2412       addr = emitBlockByrefAddress(addr, VD);
2413     }
2414 
2415     // Drill into reference types.
2416     LValue LV = VD->getType()->isReferenceType() ?
2417         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2418         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2419 
2420     bool isLocalStorage = VD->hasLocalStorage();
2421 
2422     bool NonGCable = isLocalStorage &&
2423                      !VD->getType()->isReferenceType() &&
2424                      !isBlockByref;
2425     if (NonGCable) {
2426       LV.getQuals().removeObjCGCAttr();
2427       LV.setNonGC(true);
2428     }
2429 
2430     bool isImpreciseLifetime =
2431       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2432     if (isImpreciseLifetime)
2433       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2434     setObjCGCLValueClass(getContext(), E, LV);
2435     return LV;
2436   }
2437 
2438   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2439     return EmitFunctionDeclLValue(*this, E, FD);
2440 
2441   // FIXME: While we're emitting a binding from an enclosing scope, all other
2442   // DeclRefExprs we see should be implicitly treated as if they also refer to
2443   // an enclosing scope.
2444   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2445     return EmitLValue(BD->getBinding());
2446 
2447   llvm_unreachable("Unhandled DeclRefExpr");
2448 }
2449 
2450 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2451   // __extension__ doesn't affect lvalue-ness.
2452   if (E->getOpcode() == UO_Extension)
2453     return EmitLValue(E->getSubExpr());
2454 
2455   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2456   switch (E->getOpcode()) {
2457   default: llvm_unreachable("Unknown unary operator lvalue!");
2458   case UO_Deref: {
2459     QualType T = E->getSubExpr()->getType()->getPointeeType();
2460     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2461 
2462     LValueBaseInfo BaseInfo;
2463     TBAAAccessInfo TBAAInfo;
2464     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2465                                             &TBAAInfo);
2466     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2467     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2468 
2469     // We should not generate __weak write barrier on indirect reference
2470     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2471     // But, we continue to generate __strong write barrier on indirect write
2472     // into a pointer to object.
2473     if (getLangOpts().ObjC1 &&
2474         getLangOpts().getGC() != LangOptions::NonGC &&
2475         LV.isObjCWeak())
2476       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2477     return LV;
2478   }
2479   case UO_Real:
2480   case UO_Imag: {
2481     LValue LV = EmitLValue(E->getSubExpr());
2482     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2483 
2484     // __real is valid on scalars.  This is a faster way of testing that.
2485     // __imag can only produce an rvalue on scalars.
2486     if (E->getOpcode() == UO_Real &&
2487         !LV.getAddress().getElementType()->isStructTy()) {
2488       assert(E->getSubExpr()->getType()->isArithmeticType());
2489       return LV;
2490     }
2491 
2492     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2493 
2494     Address Component =
2495       (E->getOpcode() == UO_Real
2496          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2497          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2498     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2499                                    CGM.getTBAAInfoForSubobject(LV, T));
2500     ElemLV.getQuals().addQualifiers(LV.getQuals());
2501     return ElemLV;
2502   }
2503   case UO_PreInc:
2504   case UO_PreDec: {
2505     LValue LV = EmitLValue(E->getSubExpr());
2506     bool isInc = E->getOpcode() == UO_PreInc;
2507 
2508     if (E->getType()->isAnyComplexType())
2509       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2510     else
2511       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2512     return LV;
2513   }
2514   }
2515 }
2516 
2517 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2518   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2519                         E->getType(), AlignmentSource::Decl);
2520 }
2521 
2522 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2523   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2524                         E->getType(), AlignmentSource::Decl);
2525 }
2526 
2527 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2528   auto SL = E->getFunctionName();
2529   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2530   StringRef FnName = CurFn->getName();
2531   if (FnName.startswith("\01"))
2532     FnName = FnName.substr(1);
2533   StringRef NameItems[] = {
2534       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2535   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2536   if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) {
2537     std::string Name = SL->getString();
2538     if (!Name.empty()) {
2539       unsigned Discriminator =
2540           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2541       if (Discriminator)
2542         Name += "_" + Twine(Discriminator + 1).str();
2543       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2544       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2545     } else {
2546       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2547       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2548     }
2549   }
2550   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2551   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2552 }
2553 
2554 /// Emit a type description suitable for use by a runtime sanitizer library. The
2555 /// format of a type descriptor is
2556 ///
2557 /// \code
2558 ///   { i16 TypeKind, i16 TypeInfo }
2559 /// \endcode
2560 ///
2561 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2562 /// integer, 1 for a floating point value, and -1 for anything else.
2563 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2564   // Only emit each type's descriptor once.
2565   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2566     return C;
2567 
2568   uint16_t TypeKind = -1;
2569   uint16_t TypeInfo = 0;
2570 
2571   if (T->isIntegerType()) {
2572     TypeKind = 0;
2573     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2574                (T->isSignedIntegerType() ? 1 : 0);
2575   } else if (T->isFloatingType()) {
2576     TypeKind = 1;
2577     TypeInfo = getContext().getTypeSize(T);
2578   }
2579 
2580   // Format the type name as if for a diagnostic, including quotes and
2581   // optionally an 'aka'.
2582   SmallString<32> Buffer;
2583   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2584                                     (intptr_t)T.getAsOpaquePtr(),
2585                                     StringRef(), StringRef(), None, Buffer,
2586                                     None);
2587 
2588   llvm::Constant *Components[] = {
2589     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2590     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2591   };
2592   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2593 
2594   auto *GV = new llvm::GlobalVariable(
2595       CGM.getModule(), Descriptor->getType(),
2596       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2597   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2598   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2599 
2600   // Remember the descriptor for this type.
2601   CGM.setTypeDescriptorInMap(T, GV);
2602 
2603   return GV;
2604 }
2605 
2606 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2607   llvm::Type *TargetTy = IntPtrTy;
2608 
2609   if (V->getType() == TargetTy)
2610     return V;
2611 
2612   // Floating-point types which fit into intptr_t are bitcast to integers
2613   // and then passed directly (after zero-extension, if necessary).
2614   if (V->getType()->isFloatingPointTy()) {
2615     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2616     if (Bits <= TargetTy->getIntegerBitWidth())
2617       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2618                                                          Bits));
2619   }
2620 
2621   // Integers which fit in intptr_t are zero-extended and passed directly.
2622   if (V->getType()->isIntegerTy() &&
2623       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2624     return Builder.CreateZExt(V, TargetTy);
2625 
2626   // Pointers are passed directly, everything else is passed by address.
2627   if (!V->getType()->isPointerTy()) {
2628     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2629     Builder.CreateStore(V, Ptr);
2630     V = Ptr.getPointer();
2631   }
2632   return Builder.CreatePtrToInt(V, TargetTy);
2633 }
2634 
2635 /// \brief Emit a representation of a SourceLocation for passing to a handler
2636 /// in a sanitizer runtime library. The format for this data is:
2637 /// \code
2638 ///   struct SourceLocation {
2639 ///     const char *Filename;
2640 ///     int32_t Line, Column;
2641 ///   };
2642 /// \endcode
2643 /// For an invalid SourceLocation, the Filename pointer is null.
2644 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2645   llvm::Constant *Filename;
2646   int Line, Column;
2647 
2648   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2649   if (PLoc.isValid()) {
2650     StringRef FilenameString = PLoc.getFilename();
2651 
2652     int PathComponentsToStrip =
2653         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2654     if (PathComponentsToStrip < 0) {
2655       assert(PathComponentsToStrip != INT_MIN);
2656       int PathComponentsToKeep = -PathComponentsToStrip;
2657       auto I = llvm::sys::path::rbegin(FilenameString);
2658       auto E = llvm::sys::path::rend(FilenameString);
2659       while (I != E && --PathComponentsToKeep)
2660         ++I;
2661 
2662       FilenameString = FilenameString.substr(I - E);
2663     } else if (PathComponentsToStrip > 0) {
2664       auto I = llvm::sys::path::begin(FilenameString);
2665       auto E = llvm::sys::path::end(FilenameString);
2666       while (I != E && PathComponentsToStrip--)
2667         ++I;
2668 
2669       if (I != E)
2670         FilenameString =
2671             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2672       else
2673         FilenameString = llvm::sys::path::filename(FilenameString);
2674     }
2675 
2676     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2677     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2678                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2679     Filename = FilenameGV.getPointer();
2680     Line = PLoc.getLine();
2681     Column = PLoc.getColumn();
2682   } else {
2683     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2684     Line = Column = 0;
2685   }
2686 
2687   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2688                             Builder.getInt32(Column)};
2689 
2690   return llvm::ConstantStruct::getAnon(Data);
2691 }
2692 
2693 namespace {
2694 /// \brief Specify under what conditions this check can be recovered
2695 enum class CheckRecoverableKind {
2696   /// Always terminate program execution if this check fails.
2697   Unrecoverable,
2698   /// Check supports recovering, runtime has both fatal (noreturn) and
2699   /// non-fatal handlers for this check.
2700   Recoverable,
2701   /// Runtime conditionally aborts, always need to support recovery.
2702   AlwaysRecoverable
2703 };
2704 }
2705 
2706 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2707   assert(llvm::countPopulation(Kind) == 1);
2708   switch (Kind) {
2709   case SanitizerKind::Vptr:
2710     return CheckRecoverableKind::AlwaysRecoverable;
2711   case SanitizerKind::Return:
2712   case SanitizerKind::Unreachable:
2713     return CheckRecoverableKind::Unrecoverable;
2714   default:
2715     return CheckRecoverableKind::Recoverable;
2716   }
2717 }
2718 
2719 namespace {
2720 struct SanitizerHandlerInfo {
2721   char const *const Name;
2722   unsigned Version;
2723 };
2724 }
2725 
2726 const SanitizerHandlerInfo SanitizerHandlers[] = {
2727 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2728     LIST_SANITIZER_CHECKS
2729 #undef SANITIZER_CHECK
2730 };
2731 
2732 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2733                                  llvm::FunctionType *FnType,
2734                                  ArrayRef<llvm::Value *> FnArgs,
2735                                  SanitizerHandler CheckHandler,
2736                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2737                                  llvm::BasicBlock *ContBB) {
2738   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2739   bool NeedsAbortSuffix =
2740       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2741   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2742   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2743   const StringRef CheckName = CheckInfo.Name;
2744   std::string FnName = "__ubsan_handle_" + CheckName.str();
2745   if (CheckInfo.Version && !MinimalRuntime)
2746     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2747   if (MinimalRuntime)
2748     FnName += "_minimal";
2749   if (NeedsAbortSuffix)
2750     FnName += "_abort";
2751   bool MayReturn =
2752       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2753 
2754   llvm::AttrBuilder B;
2755   if (!MayReturn) {
2756     B.addAttribute(llvm::Attribute::NoReturn)
2757         .addAttribute(llvm::Attribute::NoUnwind);
2758   }
2759   B.addAttribute(llvm::Attribute::UWTable);
2760 
2761   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2762       FnType, FnName,
2763       llvm::AttributeList::get(CGF.getLLVMContext(),
2764                                llvm::AttributeList::FunctionIndex, B),
2765       /*Local=*/true);
2766   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2767   if (!MayReturn) {
2768     HandlerCall->setDoesNotReturn();
2769     CGF.Builder.CreateUnreachable();
2770   } else {
2771     CGF.Builder.CreateBr(ContBB);
2772   }
2773 }
2774 
2775 void CodeGenFunction::EmitCheck(
2776     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2777     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2778     ArrayRef<llvm::Value *> DynamicArgs) {
2779   assert(IsSanitizerScope);
2780   assert(Checked.size() > 0);
2781   assert(CheckHandler >= 0 &&
2782          CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers));
2783   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2784 
2785   llvm::Value *FatalCond = nullptr;
2786   llvm::Value *RecoverableCond = nullptr;
2787   llvm::Value *TrapCond = nullptr;
2788   for (int i = 0, n = Checked.size(); i < n; ++i) {
2789     llvm::Value *Check = Checked[i].first;
2790     // -fsanitize-trap= overrides -fsanitize-recover=.
2791     llvm::Value *&Cond =
2792         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2793             ? TrapCond
2794             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2795                   ? RecoverableCond
2796                   : FatalCond;
2797     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2798   }
2799 
2800   if (TrapCond)
2801     EmitTrapCheck(TrapCond);
2802   if (!FatalCond && !RecoverableCond)
2803     return;
2804 
2805   llvm::Value *JointCond;
2806   if (FatalCond && RecoverableCond)
2807     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2808   else
2809     JointCond = FatalCond ? FatalCond : RecoverableCond;
2810   assert(JointCond);
2811 
2812   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2813   assert(SanOpts.has(Checked[0].second));
2814 #ifndef NDEBUG
2815   for (int i = 1, n = Checked.size(); i < n; ++i) {
2816     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2817            "All recoverable kinds in a single check must be same!");
2818     assert(SanOpts.has(Checked[i].second));
2819   }
2820 #endif
2821 
2822   llvm::BasicBlock *Cont = createBasicBlock("cont");
2823   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2824   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2825   // Give hint that we very much don't expect to execute the handler
2826   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2827   llvm::MDBuilder MDHelper(getLLVMContext());
2828   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2829   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2830   EmitBlock(Handlers);
2831 
2832   // Handler functions take an i8* pointing to the (handler-specific) static
2833   // information block, followed by a sequence of intptr_t arguments
2834   // representing operand values.
2835   SmallVector<llvm::Value *, 4> Args;
2836   SmallVector<llvm::Type *, 4> ArgTypes;
2837   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2838     Args.reserve(DynamicArgs.size() + 1);
2839     ArgTypes.reserve(DynamicArgs.size() + 1);
2840 
2841     // Emit handler arguments and create handler function type.
2842     if (!StaticArgs.empty()) {
2843       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2844       auto *InfoPtr =
2845           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2846                                    llvm::GlobalVariable::PrivateLinkage, Info);
2847       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2848       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2849       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2850       ArgTypes.push_back(Int8PtrTy);
2851     }
2852 
2853     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2854       Args.push_back(EmitCheckValue(DynamicArgs[i]));
2855       ArgTypes.push_back(IntPtrTy);
2856     }
2857   }
2858 
2859   llvm::FunctionType *FnType =
2860     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2861 
2862   if (!FatalCond || !RecoverableCond) {
2863     // Simple case: we need to generate a single handler call, either
2864     // fatal, or non-fatal.
2865     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
2866                          (FatalCond != nullptr), Cont);
2867   } else {
2868     // Emit two handler calls: first one for set of unrecoverable checks,
2869     // another one for recoverable.
2870     llvm::BasicBlock *NonFatalHandlerBB =
2871         createBasicBlock("non_fatal." + CheckName);
2872     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2873     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2874     EmitBlock(FatalHandlerBB);
2875     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
2876                          NonFatalHandlerBB);
2877     EmitBlock(NonFatalHandlerBB);
2878     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
2879                          Cont);
2880   }
2881 
2882   EmitBlock(Cont);
2883 }
2884 
2885 void CodeGenFunction::EmitCfiSlowPathCheck(
2886     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2887     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2888   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2889 
2890   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2891   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2892 
2893   llvm::MDBuilder MDHelper(getLLVMContext());
2894   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2895   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2896 
2897   EmitBlock(CheckBB);
2898 
2899   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
2900 
2901   llvm::CallInst *CheckCall;
2902   if (WithDiag) {
2903     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2904     auto *InfoPtr =
2905         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2906                                  llvm::GlobalVariable::PrivateLinkage, Info);
2907     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2908     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2909 
2910     llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction(
2911         "__cfi_slowpath_diag",
2912         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
2913                                 false));
2914     CheckCall = Builder.CreateCall(
2915         SlowPathDiagFn,
2916         {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
2917   } else {
2918     llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2919         "__cfi_slowpath",
2920         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
2921     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2922   }
2923 
2924   CheckCall->setDoesNotThrow();
2925 
2926   EmitBlock(Cont);
2927 }
2928 
2929 // Emit a stub for __cfi_check function so that the linker knows about this
2930 // symbol in LTO mode.
2931 void CodeGenFunction::EmitCfiCheckStub() {
2932   llvm::Module *M = &CGM.getModule();
2933   auto &Ctx = M->getContext();
2934   llvm::Function *F = llvm::Function::Create(
2935       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
2936       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
2937   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
2938   // FIXME: consider emitting an intrinsic call like
2939   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
2940   // which can be lowered in CrossDSOCFI pass to the actual contents of
2941   // __cfi_check. This would allow inlining of __cfi_check calls.
2942   llvm::CallInst::Create(
2943       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
2944   llvm::ReturnInst::Create(Ctx, nullptr, BB);
2945 }
2946 
2947 // This function is basically a switch over the CFI failure kind, which is
2948 // extracted from CFICheckFailData (1st function argument). Each case is either
2949 // llvm.trap or a call to one of the two runtime handlers, based on
2950 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
2951 // failure kind) traps, but this should really never happen.  CFICheckFailData
2952 // can be nullptr if the calling module has -fsanitize-trap behavior for this
2953 // check kind; in this case __cfi_check_fail traps as well.
2954 void CodeGenFunction::EmitCfiCheckFail() {
2955   SanitizerScope SanScope(this);
2956   FunctionArgList Args;
2957   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
2958                             ImplicitParamDecl::Other);
2959   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
2960                             ImplicitParamDecl::Other);
2961   Args.push_back(&ArgData);
2962   Args.push_back(&ArgAddr);
2963 
2964   const CGFunctionInfo &FI =
2965     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
2966 
2967   llvm::Function *F = llvm::Function::Create(
2968       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
2969       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
2970   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
2971 
2972   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
2973                 SourceLocation());
2974 
2975   llvm::Value *Data =
2976       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
2977                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
2978   llvm::Value *Addr =
2979       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
2980                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
2981 
2982   // Data == nullptr means the calling module has trap behaviour for this check.
2983   llvm::Value *DataIsNotNullPtr =
2984       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
2985   EmitTrapCheck(DataIsNotNullPtr);
2986 
2987   llvm::StructType *SourceLocationTy =
2988       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
2989   llvm::StructType *CfiCheckFailDataTy =
2990       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
2991 
2992   llvm::Value *V = Builder.CreateConstGEP2_32(
2993       CfiCheckFailDataTy,
2994       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
2995       0);
2996   Address CheckKindAddr(V, getIntAlign());
2997   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
2998 
2999   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3000       CGM.getLLVMContext(),
3001       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3002   llvm::Value *ValidVtable = Builder.CreateZExt(
3003       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3004                          {Addr, AllVtables}),
3005       IntPtrTy);
3006 
3007   const std::pair<int, SanitizerMask> CheckKinds[] = {
3008       {CFITCK_VCall, SanitizerKind::CFIVCall},
3009       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3010       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3011       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3012       {CFITCK_ICall, SanitizerKind::CFIICall}};
3013 
3014   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3015   for (auto CheckKindMaskPair : CheckKinds) {
3016     int Kind = CheckKindMaskPair.first;
3017     SanitizerMask Mask = CheckKindMaskPair.second;
3018     llvm::Value *Cond =
3019         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3020     if (CGM.getLangOpts().Sanitize.has(Mask))
3021       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3022                 {Data, Addr, ValidVtable});
3023     else
3024       EmitTrapCheck(Cond);
3025   }
3026 
3027   FinishFunction();
3028   // The only reference to this function will be created during LTO link.
3029   // Make sure it survives until then.
3030   CGM.addUsedGlobal(F);
3031 }
3032 
3033 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3034   llvm::BasicBlock *Cont = createBasicBlock("cont");
3035 
3036   // If we're optimizing, collapse all calls to trap down to just one per
3037   // function to save on code size.
3038   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3039     TrapBB = createBasicBlock("trap");
3040     Builder.CreateCondBr(Checked, Cont, TrapBB);
3041     EmitBlock(TrapBB);
3042     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3043     TrapCall->setDoesNotReturn();
3044     TrapCall->setDoesNotThrow();
3045     Builder.CreateUnreachable();
3046   } else {
3047     Builder.CreateCondBr(Checked, Cont, TrapBB);
3048   }
3049 
3050   EmitBlock(Cont);
3051 }
3052 
3053 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3054   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3055 
3056   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3057     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3058                                   CGM.getCodeGenOpts().TrapFuncName);
3059     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3060   }
3061 
3062   return TrapCall;
3063 }
3064 
3065 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3066                                                  LValueBaseInfo *BaseInfo,
3067                                                  TBAAAccessInfo *TBAAInfo) {
3068   assert(E->getType()->isArrayType() &&
3069          "Array to pointer decay must have array source type!");
3070 
3071   // Expressions of array type can't be bitfields or vector elements.
3072   LValue LV = EmitLValue(E);
3073   Address Addr = LV.getAddress();
3074 
3075   // If the array type was an incomplete type, we need to make sure
3076   // the decay ends up being the right type.
3077   llvm::Type *NewTy = ConvertType(E->getType());
3078   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3079 
3080   // Note that VLA pointers are always decayed, so we don't need to do
3081   // anything here.
3082   if (!E->getType()->isVariableArrayType()) {
3083     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3084            "Expected pointer to array");
3085     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3086   }
3087 
3088   // The result of this decay conversion points to an array element within the
3089   // base lvalue. However, since TBAA currently does not support representing
3090   // accesses to elements of member arrays, we conservatively represent accesses
3091   // to the pointee object as if it had no any base lvalue specified.
3092   // TODO: Support TBAA for member arrays.
3093   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3094   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3095   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3096 
3097   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3098 }
3099 
3100 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3101 /// array to pointer, return the array subexpression.
3102 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3103   // If this isn't just an array->pointer decay, bail out.
3104   const auto *CE = dyn_cast<CastExpr>(E);
3105   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3106     return nullptr;
3107 
3108   // If this is a decay from variable width array, bail out.
3109   const Expr *SubExpr = CE->getSubExpr();
3110   if (SubExpr->getType()->isVariableArrayType())
3111     return nullptr;
3112 
3113   return SubExpr;
3114 }
3115 
3116 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3117                                           llvm::Value *ptr,
3118                                           ArrayRef<llvm::Value*> indices,
3119                                           bool inbounds,
3120                                           bool signedIndices,
3121                                           SourceLocation loc,
3122                                     const llvm::Twine &name = "arrayidx") {
3123   if (inbounds) {
3124     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3125                                       CodeGenFunction::NotSubtraction, loc,
3126                                       name);
3127   } else {
3128     return CGF.Builder.CreateGEP(ptr, indices, name);
3129   }
3130 }
3131 
3132 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3133                                       llvm::Value *idx,
3134                                       CharUnits eltSize) {
3135   // If we have a constant index, we can use the exact offset of the
3136   // element we're accessing.
3137   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3138     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3139     return arrayAlign.alignmentAtOffset(offset);
3140 
3141   // Otherwise, use the worst-case alignment for any element.
3142   } else {
3143     return arrayAlign.alignmentOfArrayElement(eltSize);
3144   }
3145 }
3146 
3147 static QualType getFixedSizeElementType(const ASTContext &ctx,
3148                                         const VariableArrayType *vla) {
3149   QualType eltType;
3150   do {
3151     eltType = vla->getElementType();
3152   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3153   return eltType;
3154 }
3155 
3156 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3157                                      ArrayRef<llvm::Value *> indices,
3158                                      QualType eltType, bool inbounds,
3159                                      bool signedIndices, SourceLocation loc,
3160                                      const llvm::Twine &name = "arrayidx") {
3161   // All the indices except that last must be zero.
3162 #ifndef NDEBUG
3163   for (auto idx : indices.drop_back())
3164     assert(isa<llvm::ConstantInt>(idx) &&
3165            cast<llvm::ConstantInt>(idx)->isZero());
3166 #endif
3167 
3168   // Determine the element size of the statically-sized base.  This is
3169   // the thing that the indices are expressed in terms of.
3170   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3171     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3172   }
3173 
3174   // We can use that to compute the best alignment of the element.
3175   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3176   CharUnits eltAlign =
3177     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3178 
3179   llvm::Value *eltPtr = emitArraySubscriptGEP(
3180       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3181   return Address(eltPtr, eltAlign);
3182 }
3183 
3184 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3185                                                bool Accessed) {
3186   // The index must always be an integer, which is not an aggregate.  Emit it
3187   // in lexical order (this complexity is, sadly, required by C++17).
3188   llvm::Value *IdxPre =
3189       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3190   bool SignedIndices = false;
3191   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3192     auto *Idx = IdxPre;
3193     if (E->getLHS() != E->getIdx()) {
3194       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3195       Idx = EmitScalarExpr(E->getIdx());
3196     }
3197 
3198     QualType IdxTy = E->getIdx()->getType();
3199     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3200     SignedIndices |= IdxSigned;
3201 
3202     if (SanOpts.has(SanitizerKind::ArrayBounds))
3203       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3204 
3205     // Extend or truncate the index type to 32 or 64-bits.
3206     if (Promote && Idx->getType() != IntPtrTy)
3207       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3208 
3209     return Idx;
3210   };
3211   IdxPre = nullptr;
3212 
3213   // If the base is a vector type, then we are forming a vector element lvalue
3214   // with this subscript.
3215   if (E->getBase()->getType()->isVectorType() &&
3216       !isa<ExtVectorElementExpr>(E->getBase())) {
3217     // Emit the vector as an lvalue to get its address.
3218     LValue LHS = EmitLValue(E->getBase());
3219     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3220     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3221     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3222                                  LHS.getBaseInfo(), TBAAAccessInfo());
3223   }
3224 
3225   // All the other cases basically behave like simple offsetting.
3226 
3227   // Handle the extvector case we ignored above.
3228   if (isa<ExtVectorElementExpr>(E->getBase())) {
3229     LValue LV = EmitLValue(E->getBase());
3230     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3231     Address Addr = EmitExtVectorElementLValue(LV);
3232 
3233     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3234     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3235                                  SignedIndices, E->getExprLoc());
3236     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3237                           CGM.getTBAAInfoForSubobject(LV, EltType));
3238   }
3239 
3240   LValueBaseInfo EltBaseInfo;
3241   TBAAAccessInfo EltTBAAInfo;
3242   Address Addr = Address::invalid();
3243   if (const VariableArrayType *vla =
3244            getContext().getAsVariableArrayType(E->getType())) {
3245     // The base must be a pointer, which is not an aggregate.  Emit
3246     // it.  It needs to be emitted first in case it's what captures
3247     // the VLA bounds.
3248     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3249     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3250 
3251     // The element count here is the total number of non-VLA elements.
3252     llvm::Value *numElements = getVLASize(vla).first;
3253 
3254     // Effectively, the multiply by the VLA size is part of the GEP.
3255     // GEP indexes are signed, and scaling an index isn't permitted to
3256     // signed-overflow, so we use the same semantics for our explicit
3257     // multiply.  We suppress this if overflow is not undefined behavior.
3258     if (getLangOpts().isSignedOverflowDefined()) {
3259       Idx = Builder.CreateMul(Idx, numElements);
3260     } else {
3261       Idx = Builder.CreateNSWMul(Idx, numElements);
3262     }
3263 
3264     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3265                                  !getLangOpts().isSignedOverflowDefined(),
3266                                  SignedIndices, E->getExprLoc());
3267 
3268   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3269     // Indexing over an interface, as in "NSString *P; P[4];"
3270 
3271     // Emit the base pointer.
3272     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3273     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3274 
3275     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3276     llvm::Value *InterfaceSizeVal =
3277         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3278 
3279     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3280 
3281     // We don't necessarily build correct LLVM struct types for ObjC
3282     // interfaces, so we can't rely on GEP to do this scaling
3283     // correctly, so we need to cast to i8*.  FIXME: is this actually
3284     // true?  A lot of other things in the fragile ABI would break...
3285     llvm::Type *OrigBaseTy = Addr.getType();
3286     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3287 
3288     // Do the GEP.
3289     CharUnits EltAlign =
3290       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3291     llvm::Value *EltPtr =
3292         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3293                               SignedIndices, E->getExprLoc());
3294     Addr = Address(EltPtr, EltAlign);
3295 
3296     // Cast back.
3297     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3298   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3299     // If this is A[i] where A is an array, the frontend will have decayed the
3300     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3301     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3302     // "gep x, i" here.  Emit one "gep A, 0, i".
3303     assert(Array->getType()->isArrayType() &&
3304            "Array to pointer decay must have array source type!");
3305     LValue ArrayLV;
3306     // For simple multidimensional array indexing, set the 'accessed' flag for
3307     // better bounds-checking of the base expression.
3308     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3309       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3310     else
3311       ArrayLV = EmitLValue(Array);
3312     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3313 
3314     // Propagate the alignment from the array itself to the result.
3315     Addr = emitArraySubscriptGEP(
3316         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3317         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3318         E->getExprLoc());
3319     EltBaseInfo = ArrayLV.getBaseInfo();
3320     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3321   } else {
3322     // The base must be a pointer; emit it with an estimate of its alignment.
3323     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3324     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3325     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3326                                  !getLangOpts().isSignedOverflowDefined(),
3327                                  SignedIndices, E->getExprLoc());
3328   }
3329 
3330   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3331 
3332   if (getLangOpts().ObjC1 &&
3333       getLangOpts().getGC() != LangOptions::NonGC) {
3334     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3335     setObjCGCLValueClass(getContext(), E, LV);
3336   }
3337   return LV;
3338 }
3339 
3340 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3341                                        LValueBaseInfo &BaseInfo,
3342                                        TBAAAccessInfo &TBAAInfo,
3343                                        QualType BaseTy, QualType ElTy,
3344                                        bool IsLowerBound) {
3345   LValue BaseLVal;
3346   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3347     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3348     if (BaseTy->isArrayType()) {
3349       Address Addr = BaseLVal.getAddress();
3350       BaseInfo = BaseLVal.getBaseInfo();
3351 
3352       // If the array type was an incomplete type, we need to make sure
3353       // the decay ends up being the right type.
3354       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3355       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3356 
3357       // Note that VLA pointers are always decayed, so we don't need to do
3358       // anything here.
3359       if (!BaseTy->isVariableArrayType()) {
3360         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3361                "Expected pointer to array");
3362         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3363                                            "arraydecay");
3364       }
3365 
3366       return CGF.Builder.CreateElementBitCast(Addr,
3367                                               CGF.ConvertTypeForMem(ElTy));
3368     }
3369     LValueBaseInfo TypeBaseInfo;
3370     TBAAAccessInfo TypeTBAAInfo;
3371     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3372                                                   &TypeTBAAInfo);
3373     BaseInfo.mergeForCast(TypeBaseInfo);
3374     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3375     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3376   }
3377   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3378 }
3379 
3380 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3381                                                 bool IsLowerBound) {
3382   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3383   QualType ResultExprTy;
3384   if (auto *AT = getContext().getAsArrayType(BaseTy))
3385     ResultExprTy = AT->getElementType();
3386   else
3387     ResultExprTy = BaseTy->getPointeeType();
3388   llvm::Value *Idx = nullptr;
3389   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3390     // Requesting lower bound or upper bound, but without provided length and
3391     // without ':' symbol for the default length -> length = 1.
3392     // Idx = LowerBound ?: 0;
3393     if (auto *LowerBound = E->getLowerBound()) {
3394       Idx = Builder.CreateIntCast(
3395           EmitScalarExpr(LowerBound), IntPtrTy,
3396           LowerBound->getType()->hasSignedIntegerRepresentation());
3397     } else
3398       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3399   } else {
3400     // Try to emit length or lower bound as constant. If this is possible, 1
3401     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3402     // IR (LB + Len) - 1.
3403     auto &C = CGM.getContext();
3404     auto *Length = E->getLength();
3405     llvm::APSInt ConstLength;
3406     if (Length) {
3407       // Idx = LowerBound + Length - 1;
3408       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3409         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3410         Length = nullptr;
3411       }
3412       auto *LowerBound = E->getLowerBound();
3413       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3414       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3415         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3416         LowerBound = nullptr;
3417       }
3418       if (!Length)
3419         --ConstLength;
3420       else if (!LowerBound)
3421         --ConstLowerBound;
3422 
3423       if (Length || LowerBound) {
3424         auto *LowerBoundVal =
3425             LowerBound
3426                 ? Builder.CreateIntCast(
3427                       EmitScalarExpr(LowerBound), IntPtrTy,
3428                       LowerBound->getType()->hasSignedIntegerRepresentation())
3429                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3430         auto *LengthVal =
3431             Length
3432                 ? Builder.CreateIntCast(
3433                       EmitScalarExpr(Length), IntPtrTy,
3434                       Length->getType()->hasSignedIntegerRepresentation())
3435                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3436         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3437                                 /*HasNUW=*/false,
3438                                 !getLangOpts().isSignedOverflowDefined());
3439         if (Length && LowerBound) {
3440           Idx = Builder.CreateSub(
3441               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3442               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3443         }
3444       } else
3445         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3446     } else {
3447       // Idx = ArraySize - 1;
3448       QualType ArrayTy = BaseTy->isPointerType()
3449                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3450                              : BaseTy;
3451       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3452         Length = VAT->getSizeExpr();
3453         if (Length->isIntegerConstantExpr(ConstLength, C))
3454           Length = nullptr;
3455       } else {
3456         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3457         ConstLength = CAT->getSize();
3458       }
3459       if (Length) {
3460         auto *LengthVal = Builder.CreateIntCast(
3461             EmitScalarExpr(Length), IntPtrTy,
3462             Length->getType()->hasSignedIntegerRepresentation());
3463         Idx = Builder.CreateSub(
3464             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3465             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3466       } else {
3467         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3468         --ConstLength;
3469         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3470       }
3471     }
3472   }
3473   assert(Idx);
3474 
3475   Address EltPtr = Address::invalid();
3476   LValueBaseInfo BaseInfo;
3477   TBAAAccessInfo TBAAInfo;
3478   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3479     // The base must be a pointer, which is not an aggregate.  Emit
3480     // it.  It needs to be emitted first in case it's what captures
3481     // the VLA bounds.
3482     Address Base =
3483         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3484                                 BaseTy, VLA->getElementType(), IsLowerBound);
3485     // The element count here is the total number of non-VLA elements.
3486     llvm::Value *NumElements = getVLASize(VLA).first;
3487 
3488     // Effectively, the multiply by the VLA size is part of the GEP.
3489     // GEP indexes are signed, and scaling an index isn't permitted to
3490     // signed-overflow, so we use the same semantics for our explicit
3491     // multiply.  We suppress this if overflow is not undefined behavior.
3492     if (getLangOpts().isSignedOverflowDefined())
3493       Idx = Builder.CreateMul(Idx, NumElements);
3494     else
3495       Idx = Builder.CreateNSWMul(Idx, NumElements);
3496     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3497                                    !getLangOpts().isSignedOverflowDefined(),
3498                                    /*SignedIndices=*/false, E->getExprLoc());
3499   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3500     // If this is A[i] where A is an array, the frontend will have decayed the
3501     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3502     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3503     // "gep x, i" here.  Emit one "gep A, 0, i".
3504     assert(Array->getType()->isArrayType() &&
3505            "Array to pointer decay must have array source type!");
3506     LValue ArrayLV;
3507     // For simple multidimensional array indexing, set the 'accessed' flag for
3508     // better bounds-checking of the base expression.
3509     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3510       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3511     else
3512       ArrayLV = EmitLValue(Array);
3513 
3514     // Propagate the alignment from the array itself to the result.
3515     EltPtr = emitArraySubscriptGEP(
3516         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3517         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3518         /*SignedIndices=*/false, E->getExprLoc());
3519     BaseInfo = ArrayLV.getBaseInfo();
3520     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3521   } else {
3522     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3523                                            TBAAInfo, BaseTy, ResultExprTy,
3524                                            IsLowerBound);
3525     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3526                                    !getLangOpts().isSignedOverflowDefined(),
3527                                    /*SignedIndices=*/false, E->getExprLoc());
3528   }
3529 
3530   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3531 }
3532 
3533 LValue CodeGenFunction::
3534 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3535   // Emit the base vector as an l-value.
3536   LValue Base;
3537 
3538   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3539   if (E->isArrow()) {
3540     // If it is a pointer to a vector, emit the address and form an lvalue with
3541     // it.
3542     LValueBaseInfo BaseInfo;
3543     TBAAAccessInfo TBAAInfo;
3544     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3545     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3546     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3547     Base.getQuals().removeObjCGCAttr();
3548   } else if (E->getBase()->isGLValue()) {
3549     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3550     // emit the base as an lvalue.
3551     assert(E->getBase()->getType()->isVectorType());
3552     Base = EmitLValue(E->getBase());
3553   } else {
3554     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3555     assert(E->getBase()->getType()->isVectorType() &&
3556            "Result must be a vector");
3557     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3558 
3559     // Store the vector to memory (because LValue wants an address).
3560     Address VecMem = CreateMemTemp(E->getBase()->getType());
3561     Builder.CreateStore(Vec, VecMem);
3562     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3563                           AlignmentSource::Decl);
3564   }
3565 
3566   QualType type =
3567     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3568 
3569   // Encode the element access list into a vector of unsigned indices.
3570   SmallVector<uint32_t, 4> Indices;
3571   E->getEncodedElementAccess(Indices);
3572 
3573   if (Base.isSimple()) {
3574     llvm::Constant *CV =
3575         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3576     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3577                                     Base.getBaseInfo(), TBAAAccessInfo());
3578   }
3579   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3580 
3581   llvm::Constant *BaseElts = Base.getExtVectorElts();
3582   SmallVector<llvm::Constant *, 4> CElts;
3583 
3584   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3585     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3586   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3587   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3588                                   Base.getBaseInfo(), TBAAAccessInfo());
3589 }
3590 
3591 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3592   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3593     EmitIgnoredExpr(E->getBase());
3594     return EmitDeclRefLValue(DRE);
3595   }
3596 
3597   Expr *BaseExpr = E->getBase();
3598   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3599   LValue BaseLV;
3600   if (E->isArrow()) {
3601     LValueBaseInfo BaseInfo;
3602     TBAAAccessInfo TBAAInfo;
3603     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3604     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3605     SanitizerSet SkippedChecks;
3606     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3607     if (IsBaseCXXThis)
3608       SkippedChecks.set(SanitizerKind::Alignment, true);
3609     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3610       SkippedChecks.set(SanitizerKind::Null, true);
3611     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3612                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3613     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3614   } else
3615     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3616 
3617   NamedDecl *ND = E->getMemberDecl();
3618   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3619     LValue LV = EmitLValueForField(BaseLV, Field);
3620     setObjCGCLValueClass(getContext(), E, LV);
3621     return LV;
3622   }
3623 
3624   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3625     return EmitFunctionDeclLValue(*this, E, FD);
3626 
3627   llvm_unreachable("Unhandled member declaration!");
3628 }
3629 
3630 /// Given that we are currently emitting a lambda, emit an l-value for
3631 /// one of its members.
3632 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3633   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3634   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3635   QualType LambdaTagType =
3636     getContext().getTagDeclType(Field->getParent());
3637   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3638   return EmitLValueForField(LambdaLV, Field);
3639 }
3640 
3641 /// Drill down to the storage of a field without walking into
3642 /// reference types.
3643 ///
3644 /// The resulting address doesn't necessarily have the right type.
3645 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3646                                       const FieldDecl *field) {
3647   const RecordDecl *rec = field->getParent();
3648 
3649   unsigned idx =
3650     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3651 
3652   CharUnits offset;
3653   // Adjust the alignment down to the given offset.
3654   // As a special case, if the LLVM field index is 0, we know that this
3655   // is zero.
3656   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3657                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3658          "LLVM field at index zero had non-zero offset?");
3659   if (idx != 0) {
3660     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3661     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3662     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3663   }
3664 
3665   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3666 }
3667 
3668 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3669   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3670   if (!RD)
3671     return false;
3672 
3673   if (RD->isDynamicClass())
3674     return true;
3675 
3676   for (const auto &Base : RD->bases())
3677     if (hasAnyVptr(Base.getType(), Context))
3678       return true;
3679 
3680   for (const FieldDecl *Field : RD->fields())
3681     if (hasAnyVptr(Field->getType(), Context))
3682       return true;
3683 
3684   return false;
3685 }
3686 
3687 LValue CodeGenFunction::EmitLValueForField(LValue base,
3688                                            const FieldDecl *field) {
3689   LValueBaseInfo BaseInfo = base.getBaseInfo();
3690 
3691   if (field->isBitField()) {
3692     const CGRecordLayout &RL =
3693       CGM.getTypes().getCGRecordLayout(field->getParent());
3694     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3695     Address Addr = base.getAddress();
3696     unsigned Idx = RL.getLLVMFieldNo(field);
3697     if (Idx != 0)
3698       // For structs, we GEP to the field that the record layout suggests.
3699       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3700                                      field->getName());
3701     // Get the access type.
3702     llvm::Type *FieldIntTy =
3703       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3704     if (Addr.getElementType() != FieldIntTy)
3705       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3706 
3707     QualType fieldType =
3708       field->getType().withCVRQualifiers(base.getVRQualifiers());
3709     // TODO: Support TBAA for bit fields.
3710     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
3711     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3712                                 TBAAAccessInfo());
3713   }
3714 
3715   // Fields of may-alias structures are may-alias themselves.
3716   // FIXME: this should get propagated down through anonymous structs
3717   // and unions.
3718   QualType FieldType = field->getType();
3719   const RecordDecl *rec = field->getParent();
3720   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3721   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
3722   TBAAAccessInfo FieldTBAAInfo;
3723   if (base.getTBAAInfo().isMayAlias() ||
3724           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
3725     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3726   } else if (rec->isUnion()) {
3727     // TODO: Support TBAA for unions.
3728     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3729   } else {
3730     // If no base type been assigned for the base access, then try to generate
3731     // one for this base lvalue.
3732     FieldTBAAInfo = base.getTBAAInfo();
3733     if (!FieldTBAAInfo.BaseType) {
3734         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3735         assert(!FieldTBAAInfo.Offset &&
3736                "Nonzero offset for an access with no base type!");
3737     }
3738 
3739     // Adjust offset to be relative to the base type.
3740     const ASTRecordLayout &Layout =
3741         getContext().getASTRecordLayout(field->getParent());
3742     unsigned CharWidth = getContext().getCharWidth();
3743     if (FieldTBAAInfo.BaseType)
3744       FieldTBAAInfo.Offset +=
3745           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3746 
3747     // Update the final access type.
3748     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3749   }
3750 
3751   Address addr = base.getAddress();
3752   unsigned RecordCVR = base.getVRQualifiers();
3753   if (rec->isUnion()) {
3754     // For unions, there is no pointer adjustment.
3755     assert(!FieldType->isReferenceType() && "union has reference member");
3756     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3757         hasAnyVptr(FieldType, getContext()))
3758       // Because unions can easily skip invariant.barriers, we need to add
3759       // a barrier every time CXXRecord field with vptr is referenced.
3760       addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()),
3761                      addr.getAlignment());
3762   } else {
3763     // For structs, we GEP to the field that the record layout suggests.
3764     addr = emitAddrOfFieldStorage(*this, addr, field);
3765 
3766     // If this is a reference field, load the reference right now.
3767     if (FieldType->isReferenceType()) {
3768       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
3769                                       FieldTBAAInfo);
3770       if (RecordCVR & Qualifiers::Volatile)
3771         RefLVal.getQuals().setVolatile(true);
3772       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
3773 
3774       // Qualifiers on the struct don't apply to the referencee.
3775       RecordCVR = 0;
3776       FieldType = FieldType->getPointeeType();
3777     }
3778   }
3779 
3780   // Make sure that the address is pointing to the right type.  This is critical
3781   // for both unions and structs.  A union needs a bitcast, a struct element
3782   // will need a bitcast if the LLVM type laid out doesn't match the desired
3783   // type.
3784   addr = Builder.CreateElementBitCast(
3785       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
3786 
3787   if (field->hasAttr<AnnotateAttr>())
3788     addr = EmitFieldAnnotations(field, addr);
3789 
3790   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
3791   LV.getQuals().addCVRQualifiers(RecordCVR);
3792 
3793   // __weak attribute on a field is ignored.
3794   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3795     LV.getQuals().removeObjCGCAttr();
3796 
3797   return LV;
3798 }
3799 
3800 LValue
3801 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3802                                                   const FieldDecl *Field) {
3803   QualType FieldType = Field->getType();
3804 
3805   if (!FieldType->isReferenceType())
3806     return EmitLValueForField(Base, Field);
3807 
3808   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3809 
3810   // Make sure that the address is pointing to the right type.
3811   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3812   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3813 
3814   // TODO: Generate TBAA information that describes this access as a structure
3815   // member access and not just an access to an object of the field's type. This
3816   // should be similar to what we do in EmitLValueForField().
3817   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3818   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
3819   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
3820   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
3821                         CGM.getTBAAInfoForSubobject(Base, FieldType));
3822 }
3823 
3824 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3825   if (E->isFileScope()) {
3826     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3827     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3828   }
3829   if (E->getType()->isVariablyModifiedType())
3830     // make sure to emit the VLA size.
3831     EmitVariablyModifiedType(E->getType());
3832 
3833   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3834   const Expr *InitExpr = E->getInitializer();
3835   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3836 
3837   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3838                    /*Init*/ true);
3839 
3840   return Result;
3841 }
3842 
3843 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3844   if (!E->isGLValue())
3845     // Initializing an aggregate temporary in C++11: T{...}.
3846     return EmitAggExprToLValue(E);
3847 
3848   // An lvalue initializer list must be initializing a reference.
3849   assert(E->isTransparent() && "non-transparent glvalue init list");
3850   return EmitLValue(E->getInit(0));
3851 }
3852 
3853 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3854 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3855 /// LValue is returned and the current block has been terminated.
3856 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3857                                                     const Expr *Operand) {
3858   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3859     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3860     return None;
3861   }
3862 
3863   return CGF.EmitLValue(Operand);
3864 }
3865 
3866 LValue CodeGenFunction::
3867 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3868   if (!expr->isGLValue()) {
3869     // ?: here should be an aggregate.
3870     assert(hasAggregateEvaluationKind(expr->getType()) &&
3871            "Unexpected conditional operator!");
3872     return EmitAggExprToLValue(expr);
3873   }
3874 
3875   OpaqueValueMapping binding(*this, expr);
3876 
3877   const Expr *condExpr = expr->getCond();
3878   bool CondExprBool;
3879   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3880     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3881     if (!CondExprBool) std::swap(live, dead);
3882 
3883     if (!ContainsLabel(dead)) {
3884       // If the true case is live, we need to track its region.
3885       if (CondExprBool)
3886         incrementProfileCounter(expr);
3887       return EmitLValue(live);
3888     }
3889   }
3890 
3891   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3892   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3893   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3894 
3895   ConditionalEvaluation eval(*this);
3896   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3897 
3898   // Any temporaries created here are conditional.
3899   EmitBlock(lhsBlock);
3900   incrementProfileCounter(expr);
3901   eval.begin(*this);
3902   Optional<LValue> lhs =
3903       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3904   eval.end(*this);
3905 
3906   if (lhs && !lhs->isSimple())
3907     return EmitUnsupportedLValue(expr, "conditional operator");
3908 
3909   lhsBlock = Builder.GetInsertBlock();
3910   if (lhs)
3911     Builder.CreateBr(contBlock);
3912 
3913   // Any temporaries created here are conditional.
3914   EmitBlock(rhsBlock);
3915   eval.begin(*this);
3916   Optional<LValue> rhs =
3917       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3918   eval.end(*this);
3919   if (rhs && !rhs->isSimple())
3920     return EmitUnsupportedLValue(expr, "conditional operator");
3921   rhsBlock = Builder.GetInsertBlock();
3922 
3923   EmitBlock(contBlock);
3924 
3925   if (lhs && rhs) {
3926     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3927                                            2, "cond-lvalue");
3928     phi->addIncoming(lhs->getPointer(), lhsBlock);
3929     phi->addIncoming(rhs->getPointer(), rhsBlock);
3930     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3931     AlignmentSource alignSource =
3932       std::max(lhs->getBaseInfo().getAlignmentSource(),
3933                rhs->getBaseInfo().getAlignmentSource());
3934     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
3935         lhs->getTBAAInfo(), rhs->getTBAAInfo());
3936     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
3937                           TBAAInfo);
3938   } else {
3939     assert((lhs || rhs) &&
3940            "both operands of glvalue conditional are throw-expressions?");
3941     return lhs ? *lhs : *rhs;
3942   }
3943 }
3944 
3945 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3946 /// type. If the cast is to a reference, we can have the usual lvalue result,
3947 /// otherwise if a cast is needed by the code generator in an lvalue context,
3948 /// then it must mean that we need the address of an aggregate in order to
3949 /// access one of its members.  This can happen for all the reasons that casts
3950 /// are permitted with aggregate result, including noop aggregate casts, and
3951 /// cast from scalar to union.
3952 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3953   switch (E->getCastKind()) {
3954   case CK_ToVoid:
3955   case CK_BitCast:
3956   case CK_ArrayToPointerDecay:
3957   case CK_FunctionToPointerDecay:
3958   case CK_NullToMemberPointer:
3959   case CK_NullToPointer:
3960   case CK_IntegralToPointer:
3961   case CK_PointerToIntegral:
3962   case CK_PointerToBoolean:
3963   case CK_VectorSplat:
3964   case CK_IntegralCast:
3965   case CK_BooleanToSignedIntegral:
3966   case CK_IntegralToBoolean:
3967   case CK_IntegralToFloating:
3968   case CK_FloatingToIntegral:
3969   case CK_FloatingToBoolean:
3970   case CK_FloatingCast:
3971   case CK_FloatingRealToComplex:
3972   case CK_FloatingComplexToReal:
3973   case CK_FloatingComplexToBoolean:
3974   case CK_FloatingComplexCast:
3975   case CK_FloatingComplexToIntegralComplex:
3976   case CK_IntegralRealToComplex:
3977   case CK_IntegralComplexToReal:
3978   case CK_IntegralComplexToBoolean:
3979   case CK_IntegralComplexCast:
3980   case CK_IntegralComplexToFloatingComplex:
3981   case CK_DerivedToBaseMemberPointer:
3982   case CK_BaseToDerivedMemberPointer:
3983   case CK_MemberPointerToBoolean:
3984   case CK_ReinterpretMemberPointer:
3985   case CK_AnyPointerToBlockPointerCast:
3986   case CK_ARCProduceObject:
3987   case CK_ARCConsumeObject:
3988   case CK_ARCReclaimReturnedObject:
3989   case CK_ARCExtendBlockObject:
3990   case CK_CopyAndAutoreleaseBlockObject:
3991   case CK_AddressSpaceConversion:
3992   case CK_IntToOCLSampler:
3993     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
3994 
3995   case CK_Dependent:
3996     llvm_unreachable("dependent cast kind in IR gen!");
3997 
3998   case CK_BuiltinFnToFnPtr:
3999     llvm_unreachable("builtin functions are handled elsewhere");
4000 
4001   // These are never l-values; just use the aggregate emission code.
4002   case CK_NonAtomicToAtomic:
4003   case CK_AtomicToNonAtomic:
4004     return EmitAggExprToLValue(E);
4005 
4006   case CK_Dynamic: {
4007     LValue LV = EmitLValue(E->getSubExpr());
4008     Address V = LV.getAddress();
4009     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4010     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4011   }
4012 
4013   case CK_ConstructorConversion:
4014   case CK_UserDefinedConversion:
4015   case CK_CPointerToObjCPointerCast:
4016   case CK_BlockPointerToObjCPointerCast:
4017   case CK_NoOp:
4018   case CK_LValueToRValue:
4019     return EmitLValue(E->getSubExpr());
4020 
4021   case CK_UncheckedDerivedToBase:
4022   case CK_DerivedToBase: {
4023     const RecordType *DerivedClassTy =
4024       E->getSubExpr()->getType()->getAs<RecordType>();
4025     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4026 
4027     LValue LV = EmitLValue(E->getSubExpr());
4028     Address This = LV.getAddress();
4029 
4030     // Perform the derived-to-base conversion
4031     Address Base = GetAddressOfBaseClass(
4032         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4033         /*NullCheckValue=*/false, E->getExprLoc());
4034 
4035     // TODO: Support accesses to members of base classes in TBAA. For now, we
4036     // conservatively pretend that the complete object is of the base class
4037     // type.
4038     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4039                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4040   }
4041   case CK_ToUnion:
4042     return EmitAggExprToLValue(E);
4043   case CK_BaseToDerived: {
4044     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4045     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4046 
4047     LValue LV = EmitLValue(E->getSubExpr());
4048 
4049     // Perform the base-to-derived conversion
4050     Address Derived =
4051       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4052                                E->path_begin(), E->path_end(),
4053                                /*NullCheckValue=*/false);
4054 
4055     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4056     // performed and the object is not of the derived type.
4057     if (sanitizePerformTypeCheck())
4058       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4059                     Derived.getPointer(), E->getType());
4060 
4061     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4062       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4063                                 /*MayBeNull=*/false,
4064                                 CFITCK_DerivedCast, E->getLocStart());
4065 
4066     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4067                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4068   }
4069   case CK_LValueBitCast: {
4070     // This must be a reinterpret_cast (or c-style equivalent).
4071     const auto *CE = cast<ExplicitCastExpr>(E);
4072 
4073     CGM.EmitExplicitCastExprType(CE, this);
4074     LValue LV = EmitLValue(E->getSubExpr());
4075     Address V = Builder.CreateBitCast(LV.getAddress(),
4076                                       ConvertType(CE->getTypeAsWritten()));
4077 
4078     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4079       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4080                                 /*MayBeNull=*/false,
4081                                 CFITCK_UnrelatedCast, E->getLocStart());
4082 
4083     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4084                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4085   }
4086   case CK_ObjCObjectLValueCast: {
4087     LValue LV = EmitLValue(E->getSubExpr());
4088     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4089                                              ConvertType(E->getType()));
4090     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4091                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4092   }
4093   case CK_ZeroToOCLQueue:
4094     llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid");
4095   case CK_ZeroToOCLEvent:
4096     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
4097   }
4098 
4099   llvm_unreachable("Unhandled lvalue cast kind?");
4100 }
4101 
4102 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4103   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4104   return getOpaqueLValueMapping(e);
4105 }
4106 
4107 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4108                                            const FieldDecl *FD,
4109                                            SourceLocation Loc) {
4110   QualType FT = FD->getType();
4111   LValue FieldLV = EmitLValueForField(LV, FD);
4112   switch (getEvaluationKind(FT)) {
4113   case TEK_Complex:
4114     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4115   case TEK_Aggregate:
4116     return FieldLV.asAggregateRValue();
4117   case TEK_Scalar:
4118     // This routine is used to load fields one-by-one to perform a copy, so
4119     // don't load reference fields.
4120     if (FD->getType()->isReferenceType())
4121       return RValue::get(FieldLV.getPointer());
4122     return EmitLoadOfLValue(FieldLV, Loc);
4123   }
4124   llvm_unreachable("bad evaluation kind");
4125 }
4126 
4127 //===--------------------------------------------------------------------===//
4128 //                             Expression Emission
4129 //===--------------------------------------------------------------------===//
4130 
4131 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4132                                      ReturnValueSlot ReturnValue) {
4133   // Builtins never have block type.
4134   if (E->getCallee()->getType()->isBlockPointerType())
4135     return EmitBlockCallExpr(E, ReturnValue);
4136 
4137   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4138     return EmitCXXMemberCallExpr(CE, ReturnValue);
4139 
4140   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4141     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4142 
4143   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4144     if (const CXXMethodDecl *MD =
4145           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4146       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4147 
4148   CGCallee callee = EmitCallee(E->getCallee());
4149 
4150   if (callee.isBuiltin()) {
4151     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4152                            E, ReturnValue);
4153   }
4154 
4155   if (callee.isPseudoDestructor()) {
4156     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4157   }
4158 
4159   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4160 }
4161 
4162 /// Emit a CallExpr without considering whether it might be a subclass.
4163 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4164                                            ReturnValueSlot ReturnValue) {
4165   CGCallee Callee = EmitCallee(E->getCallee());
4166   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4167 }
4168 
4169 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4170   if (auto builtinID = FD->getBuiltinID()) {
4171     return CGCallee::forBuiltin(builtinID, FD);
4172   }
4173 
4174   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4175   return CGCallee::forDirect(calleePtr, FD);
4176 }
4177 
4178 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4179   E = E->IgnoreParens();
4180 
4181   // Look through function-to-pointer decay.
4182   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4183     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4184         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4185       return EmitCallee(ICE->getSubExpr());
4186     }
4187 
4188   // Resolve direct calls.
4189   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4190     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4191       return EmitDirectCallee(*this, FD);
4192     }
4193   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4194     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4195       EmitIgnoredExpr(ME->getBase());
4196       return EmitDirectCallee(*this, FD);
4197     }
4198 
4199   // Look through template substitutions.
4200   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4201     return EmitCallee(NTTP->getReplacement());
4202 
4203   // Treat pseudo-destructor calls differently.
4204   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4205     return CGCallee::forPseudoDestructor(PDE);
4206   }
4207 
4208   // Otherwise, we have an indirect reference.
4209   llvm::Value *calleePtr;
4210   QualType functionType;
4211   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4212     calleePtr = EmitScalarExpr(E);
4213     functionType = ptrType->getPointeeType();
4214   } else {
4215     functionType = E->getType();
4216     calleePtr = EmitLValue(E).getPointer();
4217   }
4218   assert(functionType->isFunctionType());
4219   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
4220                           E->getReferencedDeclOfCallee());
4221   CGCallee callee(calleeInfo, calleePtr);
4222   return callee;
4223 }
4224 
4225 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4226   // Comma expressions just emit their LHS then their RHS as an l-value.
4227   if (E->getOpcode() == BO_Comma) {
4228     EmitIgnoredExpr(E->getLHS());
4229     EnsureInsertPoint();
4230     return EmitLValue(E->getRHS());
4231   }
4232 
4233   if (E->getOpcode() == BO_PtrMemD ||
4234       E->getOpcode() == BO_PtrMemI)
4235     return EmitPointerToDataMemberBinaryExpr(E);
4236 
4237   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4238 
4239   // Note that in all of these cases, __block variables need the RHS
4240   // evaluated first just in case the variable gets moved by the RHS.
4241 
4242   switch (getEvaluationKind(E->getType())) {
4243   case TEK_Scalar: {
4244     switch (E->getLHS()->getType().getObjCLifetime()) {
4245     case Qualifiers::OCL_Strong:
4246       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4247 
4248     case Qualifiers::OCL_Autoreleasing:
4249       return EmitARCStoreAutoreleasing(E).first;
4250 
4251     // No reason to do any of these differently.
4252     case Qualifiers::OCL_None:
4253     case Qualifiers::OCL_ExplicitNone:
4254     case Qualifiers::OCL_Weak:
4255       break;
4256     }
4257 
4258     RValue RV = EmitAnyExpr(E->getRHS());
4259     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4260     if (RV.isScalar())
4261       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4262     EmitStoreThroughLValue(RV, LV);
4263     return LV;
4264   }
4265 
4266   case TEK_Complex:
4267     return EmitComplexAssignmentLValue(E);
4268 
4269   case TEK_Aggregate:
4270     return EmitAggExprToLValue(E);
4271   }
4272   llvm_unreachable("bad evaluation kind");
4273 }
4274 
4275 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4276   RValue RV = EmitCallExpr(E);
4277 
4278   if (!RV.isScalar())
4279     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4280                           AlignmentSource::Decl);
4281 
4282   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4283          "Can't have a scalar return unless the return type is a "
4284          "reference type!");
4285 
4286   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4287 }
4288 
4289 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4290   // FIXME: This shouldn't require another copy.
4291   return EmitAggExprToLValue(E);
4292 }
4293 
4294 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4295   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4296          && "binding l-value to type which needs a temporary");
4297   AggValueSlot Slot = CreateAggTemp(E->getType());
4298   EmitCXXConstructExpr(E, Slot);
4299   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4300 }
4301 
4302 LValue
4303 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4304   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4305 }
4306 
4307 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4308   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4309                                       ConvertType(E->getType()));
4310 }
4311 
4312 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4313   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4314                         AlignmentSource::Decl);
4315 }
4316 
4317 LValue
4318 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4319   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4320   Slot.setExternallyDestructed();
4321   EmitAggExpr(E->getSubExpr(), Slot);
4322   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4323   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4324 }
4325 
4326 LValue
4327 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
4328   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4329   EmitLambdaExpr(E, Slot);
4330   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4331 }
4332 
4333 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4334   RValue RV = EmitObjCMessageExpr(E);
4335 
4336   if (!RV.isScalar())
4337     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4338                           AlignmentSource::Decl);
4339 
4340   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4341          "Can't have a scalar return unless the return type is a "
4342          "reference type!");
4343 
4344   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4345 }
4346 
4347 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4348   Address V =
4349     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4350   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4351 }
4352 
4353 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4354                                              const ObjCIvarDecl *Ivar) {
4355   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4356 }
4357 
4358 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4359                                           llvm::Value *BaseValue,
4360                                           const ObjCIvarDecl *Ivar,
4361                                           unsigned CVRQualifiers) {
4362   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4363                                                    Ivar, CVRQualifiers);
4364 }
4365 
4366 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4367   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4368   llvm::Value *BaseValue = nullptr;
4369   const Expr *BaseExpr = E->getBase();
4370   Qualifiers BaseQuals;
4371   QualType ObjectTy;
4372   if (E->isArrow()) {
4373     BaseValue = EmitScalarExpr(BaseExpr);
4374     ObjectTy = BaseExpr->getType()->getPointeeType();
4375     BaseQuals = ObjectTy.getQualifiers();
4376   } else {
4377     LValue BaseLV = EmitLValue(BaseExpr);
4378     BaseValue = BaseLV.getPointer();
4379     ObjectTy = BaseExpr->getType();
4380     BaseQuals = ObjectTy.getQualifiers();
4381   }
4382 
4383   LValue LV =
4384     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4385                       BaseQuals.getCVRQualifiers());
4386   setObjCGCLValueClass(getContext(), E, LV);
4387   return LV;
4388 }
4389 
4390 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4391   // Can only get l-value for message expression returning aggregate type
4392   RValue RV = EmitAnyExprToTemp(E);
4393   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4394                         AlignmentSource::Decl);
4395 }
4396 
4397 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4398                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4399                                  llvm::Value *Chain) {
4400   // Get the actual function type. The callee type will always be a pointer to
4401   // function type or a block pointer type.
4402   assert(CalleeType->isFunctionPointerType() &&
4403          "Call must have function pointer type!");
4404 
4405   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4406 
4407   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4408     // We can only guarantee that a function is called from the correct
4409     // context/function based on the appropriate target attributes,
4410     // so only check in the case where we have both always_inline and target
4411     // since otherwise we could be making a conditional call after a check for
4412     // the proper cpu features (and it won't cause code generation issues due to
4413     // function based code generation).
4414     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4415         TargetDecl->hasAttr<TargetAttr>())
4416       checkTargetFeatures(E, FD);
4417 
4418   CalleeType = getContext().getCanonicalType(CalleeType);
4419 
4420   const auto *FnType =
4421       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
4422 
4423   CGCallee Callee = OrigCallee;
4424 
4425   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4426       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4427     if (llvm::Constant *PrefixSig =
4428             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4429       SanitizerScope SanScope(this);
4430       llvm::Constant *FTRTTIConst =
4431           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
4432       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4433       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4434           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4435 
4436       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4437 
4438       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4439           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4440       llvm::Value *CalleeSigPtr =
4441           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4442       llvm::Value *CalleeSig =
4443           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4444       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4445 
4446       llvm::BasicBlock *Cont = createBasicBlock("cont");
4447       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4448       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4449 
4450       EmitBlock(TypeCheck);
4451       llvm::Value *CalleeRTTIPtr =
4452           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4453       llvm::Value *CalleeRTTIEncoded =
4454           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4455       llvm::Value *CalleeRTTI =
4456           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4457       llvm::Value *CalleeRTTIMatch =
4458           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4459       llvm::Constant *StaticData[] = {
4460         EmitCheckSourceLocation(E->getLocStart()),
4461         EmitCheckTypeDescriptor(CalleeType)
4462       };
4463       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4464                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4465 
4466       Builder.CreateBr(Cont);
4467       EmitBlock(Cont);
4468     }
4469   }
4470 
4471   // If we are checking indirect calls and this call is indirect, check that the
4472   // function pointer is a member of the bit set for the function type.
4473   if (SanOpts.has(SanitizerKind::CFIICall) &&
4474       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4475     SanitizerScope SanScope(this);
4476     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4477 
4478     llvm::Metadata *MD;
4479     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4480       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4481     else
4482       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4483 
4484     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4485 
4486     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4487     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4488     llvm::Value *TypeTest = Builder.CreateCall(
4489         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4490 
4491     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4492     llvm::Constant *StaticData[] = {
4493         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4494         EmitCheckSourceLocation(E->getLocStart()),
4495         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4496     };
4497     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4498       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4499                            CastedCallee, StaticData);
4500     } else {
4501       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4502                 SanitizerHandler::CFICheckFail, StaticData,
4503                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4504     }
4505   }
4506 
4507   CallArgList Args;
4508   if (Chain)
4509     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4510              CGM.getContext().VoidPtrTy);
4511 
4512   // C++17 requires that we evaluate arguments to a call using assignment syntax
4513   // right-to-left, and that we evaluate arguments to certain other operators
4514   // left-to-right. Note that we allow this to override the order dictated by
4515   // the calling convention on the MS ABI, which means that parameter
4516   // destruction order is not necessarily reverse construction order.
4517   // FIXME: Revisit this based on C++ committee response to unimplementability.
4518   EvaluationOrder Order = EvaluationOrder::Default;
4519   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4520     if (OCE->isAssignmentOp())
4521       Order = EvaluationOrder::ForceRightToLeft;
4522     else {
4523       switch (OCE->getOperator()) {
4524       case OO_LessLess:
4525       case OO_GreaterGreater:
4526       case OO_AmpAmp:
4527       case OO_PipePipe:
4528       case OO_Comma:
4529       case OO_ArrowStar:
4530         Order = EvaluationOrder::ForceLeftToRight;
4531         break;
4532       default:
4533         break;
4534       }
4535     }
4536   }
4537 
4538   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4539                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4540 
4541   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4542       Args, FnType, /*isChainCall=*/Chain);
4543 
4544   // C99 6.5.2.2p6:
4545   //   If the expression that denotes the called function has a type
4546   //   that does not include a prototype, [the default argument
4547   //   promotions are performed]. If the number of arguments does not
4548   //   equal the number of parameters, the behavior is undefined. If
4549   //   the function is defined with a type that includes a prototype,
4550   //   and either the prototype ends with an ellipsis (, ...) or the
4551   //   types of the arguments after promotion are not compatible with
4552   //   the types of the parameters, the behavior is undefined. If the
4553   //   function is defined with a type that does not include a
4554   //   prototype, and the types of the arguments after promotion are
4555   //   not compatible with those of the parameters after promotion,
4556   //   the behavior is undefined [except in some trivial cases].
4557   // That is, in the general case, we should assume that a call
4558   // through an unprototyped function type works like a *non-variadic*
4559   // call.  The way we make this work is to cast to the exact type
4560   // of the promoted arguments.
4561   //
4562   // Chain calls use this same code path to add the invisible chain parameter
4563   // to the function type.
4564   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4565     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4566     CalleeTy = CalleeTy->getPointerTo();
4567 
4568     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4569     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4570     Callee.setFunctionPointer(CalleePtr);
4571   }
4572 
4573   return EmitCall(FnInfo, Callee, ReturnValue, Args);
4574 }
4575 
4576 LValue CodeGenFunction::
4577 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4578   Address BaseAddr = Address::invalid();
4579   if (E->getOpcode() == BO_PtrMemI) {
4580     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4581   } else {
4582     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4583   }
4584 
4585   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4586 
4587   const MemberPointerType *MPT
4588     = E->getRHS()->getType()->getAs<MemberPointerType>();
4589 
4590   LValueBaseInfo BaseInfo;
4591   TBAAAccessInfo TBAAInfo;
4592   Address MemberAddr =
4593     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4594                                     &TBAAInfo);
4595 
4596   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4597 }
4598 
4599 /// Given the address of a temporary variable, produce an r-value of
4600 /// its type.
4601 RValue CodeGenFunction::convertTempToRValue(Address addr,
4602                                             QualType type,
4603                                             SourceLocation loc) {
4604   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4605   switch (getEvaluationKind(type)) {
4606   case TEK_Complex:
4607     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4608   case TEK_Aggregate:
4609     return lvalue.asAggregateRValue();
4610   case TEK_Scalar:
4611     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4612   }
4613   llvm_unreachable("bad evaluation kind");
4614 }
4615 
4616 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4617   assert(Val->getType()->isFPOrFPVectorTy());
4618   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4619     return;
4620 
4621   llvm::MDBuilder MDHelper(getLLVMContext());
4622   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4623 
4624   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4625 }
4626 
4627 namespace {
4628   struct LValueOrRValue {
4629     LValue LV;
4630     RValue RV;
4631   };
4632 }
4633 
4634 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4635                                            const PseudoObjectExpr *E,
4636                                            bool forLValue,
4637                                            AggValueSlot slot) {
4638   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4639 
4640   // Find the result expression, if any.
4641   const Expr *resultExpr = E->getResultExpr();
4642   LValueOrRValue result;
4643 
4644   for (PseudoObjectExpr::const_semantics_iterator
4645          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4646     const Expr *semantic = *i;
4647 
4648     // If this semantic expression is an opaque value, bind it
4649     // to the result of its source expression.
4650     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4651 
4652       // If this is the result expression, we may need to evaluate
4653       // directly into the slot.
4654       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4655       OVMA opaqueData;
4656       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4657           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4658         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4659         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4660                                        AlignmentSource::Decl);
4661         opaqueData = OVMA::bind(CGF, ov, LV);
4662         result.RV = slot.asRValue();
4663 
4664       // Otherwise, emit as normal.
4665       } else {
4666         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4667 
4668         // If this is the result, also evaluate the result now.
4669         if (ov == resultExpr) {
4670           if (forLValue)
4671             result.LV = CGF.EmitLValue(ov);
4672           else
4673             result.RV = CGF.EmitAnyExpr(ov, slot);
4674         }
4675       }
4676 
4677       opaques.push_back(opaqueData);
4678 
4679     // Otherwise, if the expression is the result, evaluate it
4680     // and remember the result.
4681     } else if (semantic == resultExpr) {
4682       if (forLValue)
4683         result.LV = CGF.EmitLValue(semantic);
4684       else
4685         result.RV = CGF.EmitAnyExpr(semantic, slot);
4686 
4687     // Otherwise, evaluate the expression in an ignored context.
4688     } else {
4689       CGF.EmitIgnoredExpr(semantic);
4690     }
4691   }
4692 
4693   // Unbind all the opaques now.
4694   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4695     opaques[i].unbind(CGF);
4696 
4697   return result;
4698 }
4699 
4700 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4701                                                AggValueSlot slot) {
4702   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4703 }
4704 
4705 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4706   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4707 }
4708