1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "llvm/ADT/Hashing.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/Support/ConvertUTF.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Path.h"
38 #include "llvm/Transforms/Utils/SanitizerStats.h"
39 
40 #include <string>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 
45 //===--------------------------------------------------------------------===//
46 //                        Miscellaneous Helper Methods
47 //===--------------------------------------------------------------------===//
48 
49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
50   unsigned addressSpace =
51       cast<llvm::PointerType>(value->getType())->getAddressSpace();
52 
53   llvm::PointerType *destType = Int8PtrTy;
54   if (addressSpace)
55     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
56 
57   if (value->getType() == destType) return value;
58   return Builder.CreateBitCast(value, destType);
59 }
60 
61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
62 /// block.
63 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
64                                                      CharUnits Align,
65                                                      const Twine &Name,
66                                                      llvm::Value *ArraySize) {
67   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
68   Alloca->setAlignment(Align.getQuantity());
69   return Address(Alloca, Align);
70 }
71 
72 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
73 /// block. The alloca is casted to default address space if necessary.
74 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
75                                           const Twine &Name,
76                                           llvm::Value *ArraySize,
77                                           Address *AllocaAddr) {
78   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
79   if (AllocaAddr)
80     *AllocaAddr = Alloca;
81   llvm::Value *V = Alloca.getPointer();
82   // Alloca always returns a pointer in alloca address space, which may
83   // be different from the type defined by the language. For example,
84   // in C++ the auto variables are in the default address space. Therefore
85   // cast alloca to the default address space when necessary.
86   if (getASTAllocaAddressSpace() != LangAS::Default) {
87     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
88     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
89     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
90     // otherwise alloca is inserted at the current insertion point of the
91     // builder.
92     if (!ArraySize)
93       Builder.SetInsertPoint(AllocaInsertPt);
94     V = getTargetHooks().performAddrSpaceCast(
95         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
96         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
97   }
98 
99   return Address(V, Align);
100 }
101 
102 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
103 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
104 /// insertion point of the builder.
105 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
106                                                     const Twine &Name,
107                                                     llvm::Value *ArraySize) {
108   if (ArraySize)
109     return Builder.CreateAlloca(Ty, ArraySize, Name);
110   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
111                               ArraySize, Name, AllocaInsertPt);
112 }
113 
114 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
115 /// default alignment of the corresponding LLVM type, which is *not*
116 /// guaranteed to be related in any way to the expected alignment of
117 /// an AST type that might have been lowered to Ty.
118 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
119                                                       const Twine &Name) {
120   CharUnits Align =
121     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
122   return CreateTempAlloca(Ty, Align, Name);
123 }
124 
125 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
126   assert(isa<llvm::AllocaInst>(Var.getPointer()));
127   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
128   Store->setAlignment(Var.getAlignment().getQuantity());
129   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
130   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
131 }
132 
133 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
134   CharUnits Align = getContext().getTypeAlignInChars(Ty);
135   return CreateTempAlloca(ConvertType(Ty), Align, Name);
136 }
137 
138 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
139                                        Address *Alloca) {
140   // FIXME: Should we prefer the preferred type alignment here?
141   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
142 }
143 
144 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
145                                        const Twine &Name, Address *Alloca) {
146   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
147                           /*ArraySize=*/nullptr, Alloca);
148 }
149 
150 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
151                                                   const Twine &Name) {
152   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
153 }
154 
155 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
156                                                   const Twine &Name) {
157   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
158                                   Name);
159 }
160 
161 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
162 /// expression and compare the result against zero, returning an Int1Ty value.
163 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
164   PGO.setCurrentStmt(E);
165   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
166     llvm::Value *MemPtr = EmitScalarExpr(E);
167     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
168   }
169 
170   QualType BoolTy = getContext().BoolTy;
171   SourceLocation Loc = E->getExprLoc();
172   if (!E->getType()->isAnyComplexType())
173     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
174 
175   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
176                                        Loc);
177 }
178 
179 /// EmitIgnoredExpr - Emit code to compute the specified expression,
180 /// ignoring the result.
181 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
182   if (E->isRValue())
183     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
184 
185   // Just emit it as an l-value and drop the result.
186   EmitLValue(E);
187 }
188 
189 /// EmitAnyExpr - Emit code to compute the specified expression which
190 /// can have any type.  The result is returned as an RValue struct.
191 /// If this is an aggregate expression, AggSlot indicates where the
192 /// result should be returned.
193 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
194                                     AggValueSlot aggSlot,
195                                     bool ignoreResult) {
196   switch (getEvaluationKind(E->getType())) {
197   case TEK_Scalar:
198     return RValue::get(EmitScalarExpr(E, ignoreResult));
199   case TEK_Complex:
200     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
201   case TEK_Aggregate:
202     if (!ignoreResult && aggSlot.isIgnored())
203       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
204     EmitAggExpr(E, aggSlot);
205     return aggSlot.asRValue();
206   }
207   llvm_unreachable("bad evaluation kind");
208 }
209 
210 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
211 /// always be accessible even if no aggregate location is provided.
212 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
213   AggValueSlot AggSlot = AggValueSlot::ignored();
214 
215   if (hasAggregateEvaluationKind(E->getType()))
216     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
217   return EmitAnyExpr(E, AggSlot);
218 }
219 
220 /// EmitAnyExprToMem - Evaluate an expression into a given memory
221 /// location.
222 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
223                                        Address Location,
224                                        Qualifiers Quals,
225                                        bool IsInit) {
226   // FIXME: This function should take an LValue as an argument.
227   switch (getEvaluationKind(E->getType())) {
228   case TEK_Complex:
229     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
230                               /*isInit*/ false);
231     return;
232 
233   case TEK_Aggregate: {
234     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
235                                          AggValueSlot::IsDestructed_t(IsInit),
236                                          AggValueSlot::DoesNotNeedGCBarriers,
237                                          AggValueSlot::IsAliased_t(!IsInit),
238                                          AggValueSlot::MayOverlap));
239     return;
240   }
241 
242   case TEK_Scalar: {
243     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
244     LValue LV = MakeAddrLValue(Location, E->getType());
245     EmitStoreThroughLValue(RV, LV);
246     return;
247   }
248   }
249   llvm_unreachable("bad evaluation kind");
250 }
251 
252 static void
253 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
254                      const Expr *E, Address ReferenceTemporary) {
255   // Objective-C++ ARC:
256   //   If we are binding a reference to a temporary that has ownership, we
257   //   need to perform retain/release operations on the temporary.
258   //
259   // FIXME: This should be looking at E, not M.
260   if (auto Lifetime = M->getType().getObjCLifetime()) {
261     switch (Lifetime) {
262     case Qualifiers::OCL_None:
263     case Qualifiers::OCL_ExplicitNone:
264       // Carry on to normal cleanup handling.
265       break;
266 
267     case Qualifiers::OCL_Autoreleasing:
268       // Nothing to do; cleaned up by an autorelease pool.
269       return;
270 
271     case Qualifiers::OCL_Strong:
272     case Qualifiers::OCL_Weak:
273       switch (StorageDuration Duration = M->getStorageDuration()) {
274       case SD_Static:
275         // Note: we intentionally do not register a cleanup to release
276         // the object on program termination.
277         return;
278 
279       case SD_Thread:
280         // FIXME: We should probably register a cleanup in this case.
281         return;
282 
283       case SD_Automatic:
284       case SD_FullExpression:
285         CodeGenFunction::Destroyer *Destroy;
286         CleanupKind CleanupKind;
287         if (Lifetime == Qualifiers::OCL_Strong) {
288           const ValueDecl *VD = M->getExtendingDecl();
289           bool Precise =
290               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
291           CleanupKind = CGF.getARCCleanupKind();
292           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
293                             : &CodeGenFunction::destroyARCStrongImprecise;
294         } else {
295           // __weak objects always get EH cleanups; otherwise, exceptions
296           // could cause really nasty crashes instead of mere leaks.
297           CleanupKind = NormalAndEHCleanup;
298           Destroy = &CodeGenFunction::destroyARCWeak;
299         }
300         if (Duration == SD_FullExpression)
301           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
302                           M->getType(), *Destroy,
303                           CleanupKind & EHCleanup);
304         else
305           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
306                                           M->getType(),
307                                           *Destroy, CleanupKind & EHCleanup);
308         return;
309 
310       case SD_Dynamic:
311         llvm_unreachable("temporary cannot have dynamic storage duration");
312       }
313       llvm_unreachable("unknown storage duration");
314     }
315   }
316 
317   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
318   if (const RecordType *RT =
319           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
320     // Get the destructor for the reference temporary.
321     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
322     if (!ClassDecl->hasTrivialDestructor())
323       ReferenceTemporaryDtor = ClassDecl->getDestructor();
324   }
325 
326   if (!ReferenceTemporaryDtor)
327     return;
328 
329   // Call the destructor for the temporary.
330   switch (M->getStorageDuration()) {
331   case SD_Static:
332   case SD_Thread: {
333     llvm::FunctionCallee CleanupFn;
334     llvm::Constant *CleanupArg;
335     if (E->getType()->isArrayType()) {
336       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
337           ReferenceTemporary, E->getType(),
338           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
339           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
340       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
341     } else {
342       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
343           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
344       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
345     }
346     CGF.CGM.getCXXABI().registerGlobalDtor(
347         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
348     break;
349   }
350 
351   case SD_FullExpression:
352     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
353                     CodeGenFunction::destroyCXXObject,
354                     CGF.getLangOpts().Exceptions);
355     break;
356 
357   case SD_Automatic:
358     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
359                                     ReferenceTemporary, E->getType(),
360                                     CodeGenFunction::destroyCXXObject,
361                                     CGF.getLangOpts().Exceptions);
362     break;
363 
364   case SD_Dynamic:
365     llvm_unreachable("temporary cannot have dynamic storage duration");
366   }
367 }
368 
369 static Address createReferenceTemporary(CodeGenFunction &CGF,
370                                         const MaterializeTemporaryExpr *M,
371                                         const Expr *Inner,
372                                         Address *Alloca = nullptr) {
373   auto &TCG = CGF.getTargetHooks();
374   switch (M->getStorageDuration()) {
375   case SD_FullExpression:
376   case SD_Automatic: {
377     // If we have a constant temporary array or record try to promote it into a
378     // constant global under the same rules a normal constant would've been
379     // promoted. This is easier on the optimizer and generally emits fewer
380     // instructions.
381     QualType Ty = Inner->getType();
382     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
383         (Ty->isArrayType() || Ty->isRecordType()) &&
384         CGF.CGM.isTypeConstant(Ty, true))
385       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
386         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
387           auto AS = AddrSpace.getValue();
388           auto *GV = new llvm::GlobalVariable(
389               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
390               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
391               llvm::GlobalValue::NotThreadLocal,
392               CGF.getContext().getTargetAddressSpace(AS));
393           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
394           GV->setAlignment(alignment.getQuantity());
395           llvm::Constant *C = GV;
396           if (AS != LangAS::Default)
397             C = TCG.performAddrSpaceCast(
398                 CGF.CGM, GV, AS, LangAS::Default,
399                 GV->getValueType()->getPointerTo(
400                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
401           // FIXME: Should we put the new global into a COMDAT?
402           return Address(C, alignment);
403         }
404       }
405     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
406   }
407   case SD_Thread:
408   case SD_Static:
409     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
410 
411   case SD_Dynamic:
412     llvm_unreachable("temporary can't have dynamic storage duration");
413   }
414   llvm_unreachable("unknown storage duration");
415 }
416 
417 LValue CodeGenFunction::
418 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
419   const Expr *E = M->GetTemporaryExpr();
420 
421   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
422           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
423          "Reference should never be pseudo-strong!");
424 
425   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
426   // as that will cause the lifetime adjustment to be lost for ARC
427   auto ownership = M->getType().getObjCLifetime();
428   if (ownership != Qualifiers::OCL_None &&
429       ownership != Qualifiers::OCL_ExplicitNone) {
430     Address Object = createReferenceTemporary(*this, M, E);
431     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
432       Object = Address(llvm::ConstantExpr::getBitCast(Var,
433                            ConvertTypeForMem(E->getType())
434                              ->getPointerTo(Object.getAddressSpace())),
435                        Object.getAlignment());
436 
437       // createReferenceTemporary will promote the temporary to a global with a
438       // constant initializer if it can.  It can only do this to a value of
439       // ARC-manageable type if the value is global and therefore "immune" to
440       // ref-counting operations.  Therefore we have no need to emit either a
441       // dynamic initialization or a cleanup and we can just return the address
442       // of the temporary.
443       if (Var->hasInitializer())
444         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
445 
446       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
447     }
448     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
449                                        AlignmentSource::Decl);
450 
451     switch (getEvaluationKind(E->getType())) {
452     default: llvm_unreachable("expected scalar or aggregate expression");
453     case TEK_Scalar:
454       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
455       break;
456     case TEK_Aggregate: {
457       EmitAggExpr(E, AggValueSlot::forAddr(Object,
458                                            E->getType().getQualifiers(),
459                                            AggValueSlot::IsDestructed,
460                                            AggValueSlot::DoesNotNeedGCBarriers,
461                                            AggValueSlot::IsNotAliased,
462                                            AggValueSlot::DoesNotOverlap));
463       break;
464     }
465     }
466 
467     pushTemporaryCleanup(*this, M, E, Object);
468     return RefTempDst;
469   }
470 
471   SmallVector<const Expr *, 2> CommaLHSs;
472   SmallVector<SubobjectAdjustment, 2> Adjustments;
473   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
474 
475   for (const auto &Ignored : CommaLHSs)
476     EmitIgnoredExpr(Ignored);
477 
478   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
479     if (opaque->getType()->isRecordType()) {
480       assert(Adjustments.empty());
481       return EmitOpaqueValueLValue(opaque);
482     }
483   }
484 
485   // Create and initialize the reference temporary.
486   Address Alloca = Address::invalid();
487   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
488   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
489           Object.getPointer()->stripPointerCasts())) {
490     Object = Address(llvm::ConstantExpr::getBitCast(
491                          cast<llvm::Constant>(Object.getPointer()),
492                          ConvertTypeForMem(E->getType())->getPointerTo()),
493                      Object.getAlignment());
494     // If the temporary is a global and has a constant initializer or is a
495     // constant temporary that we promoted to a global, we may have already
496     // initialized it.
497     if (!Var->hasInitializer()) {
498       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
499       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
500     }
501   } else {
502     switch (M->getStorageDuration()) {
503     case SD_Automatic:
504       if (auto *Size = EmitLifetimeStart(
505               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
506               Alloca.getPointer())) {
507         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
508                                                   Alloca, Size);
509       }
510       break;
511 
512     case SD_FullExpression: {
513       if (!ShouldEmitLifetimeMarkers)
514         break;
515 
516       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
517       // marker. Instead, start the lifetime of a conditional temporary earlier
518       // so that it's unconditional. Don't do this in ASan's use-after-scope
519       // mode so that it gets the more precise lifetime marks. If the type has
520       // a non-trivial destructor, we'll have a cleanup block for it anyway,
521       // so this typically doesn't help; skip it in that case.
522       ConditionalEvaluation *OldConditional = nullptr;
523       CGBuilderTy::InsertPoint OldIP;
524       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
525           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
526         OldConditional = OutermostConditional;
527         OutermostConditional = nullptr;
528 
529         OldIP = Builder.saveIP();
530         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
531         Builder.restoreIP(CGBuilderTy::InsertPoint(
532             Block, llvm::BasicBlock::iterator(Block->back())));
533       }
534 
535       if (auto *Size = EmitLifetimeStart(
536               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
537               Alloca.getPointer())) {
538         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
539                                              Size);
540       }
541 
542       if (OldConditional) {
543         OutermostConditional = OldConditional;
544         Builder.restoreIP(OldIP);
545       }
546       break;
547     }
548 
549     default:
550       break;
551     }
552     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
553   }
554   pushTemporaryCleanup(*this, M, E, Object);
555 
556   // Perform derived-to-base casts and/or field accesses, to get from the
557   // temporary object we created (and, potentially, for which we extended
558   // the lifetime) to the subobject we're binding the reference to.
559   for (unsigned I = Adjustments.size(); I != 0; --I) {
560     SubobjectAdjustment &Adjustment = Adjustments[I-1];
561     switch (Adjustment.Kind) {
562     case SubobjectAdjustment::DerivedToBaseAdjustment:
563       Object =
564           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
565                                 Adjustment.DerivedToBase.BasePath->path_begin(),
566                                 Adjustment.DerivedToBase.BasePath->path_end(),
567                                 /*NullCheckValue=*/ false, E->getExprLoc());
568       break;
569 
570     case SubobjectAdjustment::FieldAdjustment: {
571       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
572       LV = EmitLValueForField(LV, Adjustment.Field);
573       assert(LV.isSimple() &&
574              "materialized temporary field is not a simple lvalue");
575       Object = LV.getAddress();
576       break;
577     }
578 
579     case SubobjectAdjustment::MemberPointerAdjustment: {
580       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
581       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
582                                                Adjustment.Ptr.MPT);
583       break;
584     }
585     }
586   }
587 
588   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
589 }
590 
591 RValue
592 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
593   // Emit the expression as an lvalue.
594   LValue LV = EmitLValue(E);
595   assert(LV.isSimple());
596   llvm::Value *Value = LV.getPointer();
597 
598   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
599     // C++11 [dcl.ref]p5 (as amended by core issue 453):
600     //   If a glvalue to which a reference is directly bound designates neither
601     //   an existing object or function of an appropriate type nor a region of
602     //   storage of suitable size and alignment to contain an object of the
603     //   reference's type, the behavior is undefined.
604     QualType Ty = E->getType();
605     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
606   }
607 
608   return RValue::get(Value);
609 }
610 
611 
612 /// getAccessedFieldNo - Given an encoded value and a result number, return the
613 /// input field number being accessed.
614 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
615                                              const llvm::Constant *Elts) {
616   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
617       ->getZExtValue();
618 }
619 
620 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
621 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
622                                     llvm::Value *High) {
623   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
624   llvm::Value *K47 = Builder.getInt64(47);
625   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
626   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
627   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
628   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
629   return Builder.CreateMul(B1, KMul);
630 }
631 
632 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
633   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
634          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
635 }
636 
637 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
638   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
639   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
640          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
641           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
642           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
643 }
644 
645 bool CodeGenFunction::sanitizePerformTypeCheck() const {
646   return SanOpts.has(SanitizerKind::Null) |
647          SanOpts.has(SanitizerKind::Alignment) |
648          SanOpts.has(SanitizerKind::ObjectSize) |
649          SanOpts.has(SanitizerKind::Vptr);
650 }
651 
652 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
653                                     llvm::Value *Ptr, QualType Ty,
654                                     CharUnits Alignment,
655                                     SanitizerSet SkippedChecks,
656                                     llvm::Value *ArraySize) {
657   if (!sanitizePerformTypeCheck())
658     return;
659 
660   // Don't check pointers outside the default address space. The null check
661   // isn't correct, the object-size check isn't supported by LLVM, and we can't
662   // communicate the addresses to the runtime handler for the vptr check.
663   if (Ptr->getType()->getPointerAddressSpace())
664     return;
665 
666   // Don't check pointers to volatile data. The behavior here is implementation-
667   // defined.
668   if (Ty.isVolatileQualified())
669     return;
670 
671   SanitizerScope SanScope(this);
672 
673   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
674   llvm::BasicBlock *Done = nullptr;
675 
676   // Quickly determine whether we have a pointer to an alloca. It's possible
677   // to skip null checks, and some alignment checks, for these pointers. This
678   // can reduce compile-time significantly.
679   auto PtrToAlloca =
680       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
681 
682   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
683   llvm::Value *IsNonNull = nullptr;
684   bool IsGuaranteedNonNull =
685       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
686   bool AllowNullPointers = isNullPointerAllowed(TCK);
687   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
688       !IsGuaranteedNonNull) {
689     // The glvalue must not be an empty glvalue.
690     IsNonNull = Builder.CreateIsNotNull(Ptr);
691 
692     // The IR builder can constant-fold the null check if the pointer points to
693     // a constant.
694     IsGuaranteedNonNull = IsNonNull == True;
695 
696     // Skip the null check if the pointer is known to be non-null.
697     if (!IsGuaranteedNonNull) {
698       if (AllowNullPointers) {
699         // When performing pointer casts, it's OK if the value is null.
700         // Skip the remaining checks in that case.
701         Done = createBasicBlock("null");
702         llvm::BasicBlock *Rest = createBasicBlock("not.null");
703         Builder.CreateCondBr(IsNonNull, Rest, Done);
704         EmitBlock(Rest);
705       } else {
706         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
707       }
708     }
709   }
710 
711   if (SanOpts.has(SanitizerKind::ObjectSize) &&
712       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
713       !Ty->isIncompleteType()) {
714     uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
715     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
716     if (ArraySize)
717       Size = Builder.CreateMul(Size, ArraySize);
718 
719     // Degenerate case: new X[0] does not need an objectsize check.
720     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
721     if (!ConstantSize || !ConstantSize->isNullValue()) {
722       // The glvalue must refer to a large enough storage region.
723       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
724       //        to check this.
725       // FIXME: Get object address space
726       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
727       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
728       llvm::Value *Min = Builder.getFalse();
729       llvm::Value *NullIsUnknown = Builder.getFalse();
730       llvm::Value *Dynamic = Builder.getFalse();
731       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
732       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
733           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
734       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
735     }
736   }
737 
738   uint64_t AlignVal = 0;
739   llvm::Value *PtrAsInt = nullptr;
740 
741   if (SanOpts.has(SanitizerKind::Alignment) &&
742       !SkippedChecks.has(SanitizerKind::Alignment)) {
743     AlignVal = Alignment.getQuantity();
744     if (!Ty->isIncompleteType() && !AlignVal)
745       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
746 
747     // The glvalue must be suitably aligned.
748     if (AlignVal > 1 &&
749         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
750       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
751       llvm::Value *Align = Builder.CreateAnd(
752           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
753       llvm::Value *Aligned =
754           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
755       if (Aligned != True)
756         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
757     }
758   }
759 
760   if (Checks.size() > 0) {
761     // Make sure we're not losing information. Alignment needs to be a power of
762     // 2
763     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
764     llvm::Constant *StaticData[] = {
765         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
766         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
767         llvm::ConstantInt::get(Int8Ty, TCK)};
768     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
769               PtrAsInt ? PtrAsInt : Ptr);
770   }
771 
772   // If possible, check that the vptr indicates that there is a subobject of
773   // type Ty at offset zero within this object.
774   //
775   // C++11 [basic.life]p5,6:
776   //   [For storage which does not refer to an object within its lifetime]
777   //   The program has undefined behavior if:
778   //    -- the [pointer or glvalue] is used to access a non-static data member
779   //       or call a non-static member function
780   if (SanOpts.has(SanitizerKind::Vptr) &&
781       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
782     // Ensure that the pointer is non-null before loading it. If there is no
783     // compile-time guarantee, reuse the run-time null check or emit a new one.
784     if (!IsGuaranteedNonNull) {
785       if (!IsNonNull)
786         IsNonNull = Builder.CreateIsNotNull(Ptr);
787       if (!Done)
788         Done = createBasicBlock("vptr.null");
789       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
790       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
791       EmitBlock(VptrNotNull);
792     }
793 
794     // Compute a hash of the mangled name of the type.
795     //
796     // FIXME: This is not guaranteed to be deterministic! Move to a
797     //        fingerprinting mechanism once LLVM provides one. For the time
798     //        being the implementation happens to be deterministic.
799     SmallString<64> MangledName;
800     llvm::raw_svector_ostream Out(MangledName);
801     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
802                                                      Out);
803 
804     // Blacklist based on the mangled type.
805     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
806             SanitizerKind::Vptr, Out.str())) {
807       llvm::hash_code TypeHash = hash_value(Out.str());
808 
809       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
810       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
811       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
812       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
813       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
814       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
815 
816       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
817       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
818 
819       // Look the hash up in our cache.
820       const int CacheSize = 128;
821       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
822       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
823                                                      "__ubsan_vptr_type_cache");
824       llvm::Value *Slot = Builder.CreateAnd(Hash,
825                                             llvm::ConstantInt::get(IntPtrTy,
826                                                                    CacheSize-1));
827       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
828       llvm::Value *CacheVal =
829         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
830                                   getPointerAlign());
831 
832       // If the hash isn't in the cache, call a runtime handler to perform the
833       // hard work of checking whether the vptr is for an object of the right
834       // type. This will either fill in the cache and return, or produce a
835       // diagnostic.
836       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
837       llvm::Constant *StaticData[] = {
838         EmitCheckSourceLocation(Loc),
839         EmitCheckTypeDescriptor(Ty),
840         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
841         llvm::ConstantInt::get(Int8Ty, TCK)
842       };
843       llvm::Value *DynamicData[] = { Ptr, Hash };
844       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
845                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
846                 DynamicData);
847     }
848   }
849 
850   if (Done) {
851     Builder.CreateBr(Done);
852     EmitBlock(Done);
853   }
854 }
855 
856 /// Determine whether this expression refers to a flexible array member in a
857 /// struct. We disable array bounds checks for such members.
858 static bool isFlexibleArrayMemberExpr(const Expr *E) {
859   // For compatibility with existing code, we treat arrays of length 0 or
860   // 1 as flexible array members.
861   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
862   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
863     if (CAT->getSize().ugt(1))
864       return false;
865   } else if (!isa<IncompleteArrayType>(AT))
866     return false;
867 
868   E = E->IgnoreParens();
869 
870   // A flexible array member must be the last member in the class.
871   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
872     // FIXME: If the base type of the member expr is not FD->getParent(),
873     // this should not be treated as a flexible array member access.
874     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
875       RecordDecl::field_iterator FI(
876           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
877       return ++FI == FD->getParent()->field_end();
878     }
879   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
880     return IRE->getDecl()->getNextIvar() == nullptr;
881   }
882 
883   return false;
884 }
885 
886 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
887                                                    QualType EltTy) {
888   ASTContext &C = getContext();
889   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
890   if (!EltSize)
891     return nullptr;
892 
893   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
894   if (!ArrayDeclRef)
895     return nullptr;
896 
897   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
898   if (!ParamDecl)
899     return nullptr;
900 
901   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
902   if (!POSAttr)
903     return nullptr;
904 
905   // Don't load the size if it's a lower bound.
906   int POSType = POSAttr->getType();
907   if (POSType != 0 && POSType != 1)
908     return nullptr;
909 
910   // Find the implicit size parameter.
911   auto PassedSizeIt = SizeArguments.find(ParamDecl);
912   if (PassedSizeIt == SizeArguments.end())
913     return nullptr;
914 
915   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
916   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
917   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
918   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
919                                               C.getSizeType(), E->getExprLoc());
920   llvm::Value *SizeOfElement =
921       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
922   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
923 }
924 
925 /// If Base is known to point to the start of an array, return the length of
926 /// that array. Return 0 if the length cannot be determined.
927 static llvm::Value *getArrayIndexingBound(
928     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
929   // For the vector indexing extension, the bound is the number of elements.
930   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
931     IndexedType = Base->getType();
932     return CGF.Builder.getInt32(VT->getNumElements());
933   }
934 
935   Base = Base->IgnoreParens();
936 
937   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
938     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
939         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
940       IndexedType = CE->getSubExpr()->getType();
941       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
942       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
943         return CGF.Builder.getInt(CAT->getSize());
944       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
945         return CGF.getVLASize(VAT).NumElts;
946       // Ignore pass_object_size here. It's not applicable on decayed pointers.
947     }
948   }
949 
950   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
951   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
952     IndexedType = Base->getType();
953     return POS;
954   }
955 
956   return nullptr;
957 }
958 
959 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
960                                       llvm::Value *Index, QualType IndexType,
961                                       bool Accessed) {
962   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
963          "should not be called unless adding bounds checks");
964   SanitizerScope SanScope(this);
965 
966   QualType IndexedType;
967   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
968   if (!Bound)
969     return;
970 
971   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
972   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
973   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
974 
975   llvm::Constant *StaticData[] = {
976     EmitCheckSourceLocation(E->getExprLoc()),
977     EmitCheckTypeDescriptor(IndexedType),
978     EmitCheckTypeDescriptor(IndexType)
979   };
980   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
981                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
982   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
983             SanitizerHandler::OutOfBounds, StaticData, Index);
984 }
985 
986 
987 CodeGenFunction::ComplexPairTy CodeGenFunction::
988 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
989                          bool isInc, bool isPre) {
990   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
991 
992   llvm::Value *NextVal;
993   if (isa<llvm::IntegerType>(InVal.first->getType())) {
994     uint64_t AmountVal = isInc ? 1 : -1;
995     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
996 
997     // Add the inc/dec to the real part.
998     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
999   } else {
1000     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
1001     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1002     if (!isInc)
1003       FVal.changeSign();
1004     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1005 
1006     // Add the inc/dec to the real part.
1007     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1008   }
1009 
1010   ComplexPairTy IncVal(NextVal, InVal.second);
1011 
1012   // Store the updated result through the lvalue.
1013   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1014 
1015   // If this is a postinc, return the value read from memory, otherwise use the
1016   // updated value.
1017   return isPre ? IncVal : InVal;
1018 }
1019 
1020 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1021                                              CodeGenFunction *CGF) {
1022   // Bind VLAs in the cast type.
1023   if (CGF && E->getType()->isVariablyModifiedType())
1024     CGF->EmitVariablyModifiedType(E->getType());
1025 
1026   if (CGDebugInfo *DI = getModuleDebugInfo())
1027     DI->EmitExplicitCastType(E->getType());
1028 }
1029 
1030 //===----------------------------------------------------------------------===//
1031 //                         LValue Expression Emission
1032 //===----------------------------------------------------------------------===//
1033 
1034 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1035 /// derive a more accurate bound on the alignment of the pointer.
1036 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1037                                                   LValueBaseInfo *BaseInfo,
1038                                                   TBAAAccessInfo *TBAAInfo) {
1039   // We allow this with ObjC object pointers because of fragile ABIs.
1040   assert(E->getType()->isPointerType() ||
1041          E->getType()->isObjCObjectPointerType());
1042   E = E->IgnoreParens();
1043 
1044   // Casts:
1045   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1046     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1047       CGM.EmitExplicitCastExprType(ECE, this);
1048 
1049     switch (CE->getCastKind()) {
1050     // Non-converting casts (but not C's implicit conversion from void*).
1051     case CK_BitCast:
1052     case CK_NoOp:
1053     case CK_AddressSpaceConversion:
1054       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1055         if (PtrTy->getPointeeType()->isVoidType())
1056           break;
1057 
1058         LValueBaseInfo InnerBaseInfo;
1059         TBAAAccessInfo InnerTBAAInfo;
1060         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1061                                                 &InnerBaseInfo,
1062                                                 &InnerTBAAInfo);
1063         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1064         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1065 
1066         if (isa<ExplicitCastExpr>(CE)) {
1067           LValueBaseInfo TargetTypeBaseInfo;
1068           TBAAAccessInfo TargetTypeTBAAInfo;
1069           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1070                                                            &TargetTypeBaseInfo,
1071                                                            &TargetTypeTBAAInfo);
1072           if (TBAAInfo)
1073             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1074                                                  TargetTypeTBAAInfo);
1075           // If the source l-value is opaque, honor the alignment of the
1076           // casted-to type.
1077           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1078             if (BaseInfo)
1079               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1080             Addr = Address(Addr.getPointer(), Align);
1081           }
1082         }
1083 
1084         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1085             CE->getCastKind() == CK_BitCast) {
1086           if (auto PT = E->getType()->getAs<PointerType>())
1087             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1088                                       /*MayBeNull=*/true,
1089                                       CodeGenFunction::CFITCK_UnrelatedCast,
1090                                       CE->getBeginLoc());
1091         }
1092         return CE->getCastKind() != CK_AddressSpaceConversion
1093                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1094                    : Builder.CreateAddrSpaceCast(Addr,
1095                                                  ConvertType(E->getType()));
1096       }
1097       break;
1098 
1099     // Array-to-pointer decay.
1100     case CK_ArrayToPointerDecay:
1101       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1102 
1103     // Derived-to-base conversions.
1104     case CK_UncheckedDerivedToBase:
1105     case CK_DerivedToBase: {
1106       // TODO: Support accesses to members of base classes in TBAA. For now, we
1107       // conservatively pretend that the complete object is of the base class
1108       // type.
1109       if (TBAAInfo)
1110         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1111       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1112       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1113       return GetAddressOfBaseClass(Addr, Derived,
1114                                    CE->path_begin(), CE->path_end(),
1115                                    ShouldNullCheckClassCastValue(CE),
1116                                    CE->getExprLoc());
1117     }
1118 
1119     // TODO: Is there any reason to treat base-to-derived conversions
1120     // specially?
1121     default:
1122       break;
1123     }
1124   }
1125 
1126   // Unary &.
1127   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1128     if (UO->getOpcode() == UO_AddrOf) {
1129       LValue LV = EmitLValue(UO->getSubExpr());
1130       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1131       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1132       return LV.getAddress();
1133     }
1134   }
1135 
1136   // TODO: conditional operators, comma.
1137 
1138   // Otherwise, use the alignment of the type.
1139   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1140                                                    TBAAInfo);
1141   return Address(EmitScalarExpr(E), Align);
1142 }
1143 
1144 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1145   if (Ty->isVoidType())
1146     return RValue::get(nullptr);
1147 
1148   switch (getEvaluationKind(Ty)) {
1149   case TEK_Complex: {
1150     llvm::Type *EltTy =
1151       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1152     llvm::Value *U = llvm::UndefValue::get(EltTy);
1153     return RValue::getComplex(std::make_pair(U, U));
1154   }
1155 
1156   // If this is a use of an undefined aggregate type, the aggregate must have an
1157   // identifiable address.  Just because the contents of the value are undefined
1158   // doesn't mean that the address can't be taken and compared.
1159   case TEK_Aggregate: {
1160     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1161     return RValue::getAggregate(DestPtr);
1162   }
1163 
1164   case TEK_Scalar:
1165     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1166   }
1167   llvm_unreachable("bad evaluation kind");
1168 }
1169 
1170 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1171                                               const char *Name) {
1172   ErrorUnsupported(E, Name);
1173   return GetUndefRValue(E->getType());
1174 }
1175 
1176 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1177                                               const char *Name) {
1178   ErrorUnsupported(E, Name);
1179   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1180   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1181                         E->getType());
1182 }
1183 
1184 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1185   const Expr *Base = Obj;
1186   while (!isa<CXXThisExpr>(Base)) {
1187     // The result of a dynamic_cast can be null.
1188     if (isa<CXXDynamicCastExpr>(Base))
1189       return false;
1190 
1191     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1192       Base = CE->getSubExpr();
1193     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1194       Base = PE->getSubExpr();
1195     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1196       if (UO->getOpcode() == UO_Extension)
1197         Base = UO->getSubExpr();
1198       else
1199         return false;
1200     } else {
1201       return false;
1202     }
1203   }
1204   return true;
1205 }
1206 
1207 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1208   LValue LV;
1209   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1210     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1211   else
1212     LV = EmitLValue(E);
1213   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1214     SanitizerSet SkippedChecks;
1215     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1216       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1217       if (IsBaseCXXThis)
1218         SkippedChecks.set(SanitizerKind::Alignment, true);
1219       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1220         SkippedChecks.set(SanitizerKind::Null, true);
1221     }
1222     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1223                   E->getType(), LV.getAlignment(), SkippedChecks);
1224   }
1225   return LV;
1226 }
1227 
1228 /// EmitLValue - Emit code to compute a designator that specifies the location
1229 /// of the expression.
1230 ///
1231 /// This can return one of two things: a simple address or a bitfield reference.
1232 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1233 /// an LLVM pointer type.
1234 ///
1235 /// If this returns a bitfield reference, nothing about the pointee type of the
1236 /// LLVM value is known: For example, it may not be a pointer to an integer.
1237 ///
1238 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1239 /// this method guarantees that the returned pointer type will point to an LLVM
1240 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1241 /// length type, this is not possible.
1242 ///
1243 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1244   ApplyDebugLocation DL(*this, E);
1245   switch (E->getStmtClass()) {
1246   default: return EmitUnsupportedLValue(E, "l-value expression");
1247 
1248   case Expr::ObjCPropertyRefExprClass:
1249     llvm_unreachable("cannot emit a property reference directly");
1250 
1251   case Expr::ObjCSelectorExprClass:
1252     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1253   case Expr::ObjCIsaExprClass:
1254     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1255   case Expr::BinaryOperatorClass:
1256     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1257   case Expr::CompoundAssignOperatorClass: {
1258     QualType Ty = E->getType();
1259     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1260       Ty = AT->getValueType();
1261     if (!Ty->isAnyComplexType())
1262       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1263     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1264   }
1265   case Expr::CallExprClass:
1266   case Expr::CXXMemberCallExprClass:
1267   case Expr::CXXOperatorCallExprClass:
1268   case Expr::UserDefinedLiteralClass:
1269     return EmitCallExprLValue(cast<CallExpr>(E));
1270   case Expr::VAArgExprClass:
1271     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1272   case Expr::DeclRefExprClass:
1273     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1274   case Expr::ConstantExprClass:
1275     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1276   case Expr::ParenExprClass:
1277     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1278   case Expr::GenericSelectionExprClass:
1279     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1280   case Expr::PredefinedExprClass:
1281     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1282   case Expr::StringLiteralClass:
1283     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1284   case Expr::ObjCEncodeExprClass:
1285     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1286   case Expr::PseudoObjectExprClass:
1287     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1288   case Expr::InitListExprClass:
1289     return EmitInitListLValue(cast<InitListExpr>(E));
1290   case Expr::CXXTemporaryObjectExprClass:
1291   case Expr::CXXConstructExprClass:
1292     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1293   case Expr::CXXBindTemporaryExprClass:
1294     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1295   case Expr::CXXUuidofExprClass:
1296     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1297   case Expr::LambdaExprClass:
1298     return EmitAggExprToLValue(E);
1299 
1300   case Expr::ExprWithCleanupsClass: {
1301     const auto *cleanups = cast<ExprWithCleanups>(E);
1302     enterFullExpression(cleanups);
1303     RunCleanupsScope Scope(*this);
1304     LValue LV = EmitLValue(cleanups->getSubExpr());
1305     if (LV.isSimple()) {
1306       // Defend against branches out of gnu statement expressions surrounded by
1307       // cleanups.
1308       llvm::Value *V = LV.getPointer();
1309       Scope.ForceCleanup({&V});
1310       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1311                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1312     }
1313     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1314     // bitfield lvalue or some other non-simple lvalue?
1315     return LV;
1316   }
1317 
1318   case Expr::CXXDefaultArgExprClass: {
1319     auto *DAE = cast<CXXDefaultArgExpr>(E);
1320     CXXDefaultArgExprScope Scope(*this, DAE);
1321     return EmitLValue(DAE->getExpr());
1322   }
1323   case Expr::CXXDefaultInitExprClass: {
1324     auto *DIE = cast<CXXDefaultInitExpr>(E);
1325     CXXDefaultInitExprScope Scope(*this, DIE);
1326     return EmitLValue(DIE->getExpr());
1327   }
1328   case Expr::CXXTypeidExprClass:
1329     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1330 
1331   case Expr::ObjCMessageExprClass:
1332     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1333   case Expr::ObjCIvarRefExprClass:
1334     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1335   case Expr::StmtExprClass:
1336     return EmitStmtExprLValue(cast<StmtExpr>(E));
1337   case Expr::UnaryOperatorClass:
1338     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1339   case Expr::ArraySubscriptExprClass:
1340     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1341   case Expr::OMPArraySectionExprClass:
1342     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1343   case Expr::ExtVectorElementExprClass:
1344     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1345   case Expr::MemberExprClass:
1346     return EmitMemberExpr(cast<MemberExpr>(E));
1347   case Expr::CompoundLiteralExprClass:
1348     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1349   case Expr::ConditionalOperatorClass:
1350     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1351   case Expr::BinaryConditionalOperatorClass:
1352     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1353   case Expr::ChooseExprClass:
1354     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1355   case Expr::OpaqueValueExprClass:
1356     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1357   case Expr::SubstNonTypeTemplateParmExprClass:
1358     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1359   case Expr::ImplicitCastExprClass:
1360   case Expr::CStyleCastExprClass:
1361   case Expr::CXXFunctionalCastExprClass:
1362   case Expr::CXXStaticCastExprClass:
1363   case Expr::CXXDynamicCastExprClass:
1364   case Expr::CXXReinterpretCastExprClass:
1365   case Expr::CXXConstCastExprClass:
1366   case Expr::ObjCBridgedCastExprClass:
1367     return EmitCastLValue(cast<CastExpr>(E));
1368 
1369   case Expr::MaterializeTemporaryExprClass:
1370     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1371 
1372   case Expr::CoawaitExprClass:
1373     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1374   case Expr::CoyieldExprClass:
1375     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1376   }
1377 }
1378 
1379 /// Given an object of the given canonical type, can we safely copy a
1380 /// value out of it based on its initializer?
1381 static bool isConstantEmittableObjectType(QualType type) {
1382   assert(type.isCanonical());
1383   assert(!type->isReferenceType());
1384 
1385   // Must be const-qualified but non-volatile.
1386   Qualifiers qs = type.getLocalQualifiers();
1387   if (!qs.hasConst() || qs.hasVolatile()) return false;
1388 
1389   // Otherwise, all object types satisfy this except C++ classes with
1390   // mutable subobjects or non-trivial copy/destroy behavior.
1391   if (const auto *RT = dyn_cast<RecordType>(type))
1392     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1393       if (RD->hasMutableFields() || !RD->isTrivial())
1394         return false;
1395 
1396   return true;
1397 }
1398 
1399 /// Can we constant-emit a load of a reference to a variable of the
1400 /// given type?  This is different from predicates like
1401 /// Decl::isUsableInConstantExpressions because we do want it to apply
1402 /// in situations that don't necessarily satisfy the language's rules
1403 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1404 /// to do this with const float variables even if those variables
1405 /// aren't marked 'constexpr'.
1406 enum ConstantEmissionKind {
1407   CEK_None,
1408   CEK_AsReferenceOnly,
1409   CEK_AsValueOrReference,
1410   CEK_AsValueOnly
1411 };
1412 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1413   type = type.getCanonicalType();
1414   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1415     if (isConstantEmittableObjectType(ref->getPointeeType()))
1416       return CEK_AsValueOrReference;
1417     return CEK_AsReferenceOnly;
1418   }
1419   if (isConstantEmittableObjectType(type))
1420     return CEK_AsValueOnly;
1421   return CEK_None;
1422 }
1423 
1424 /// Try to emit a reference to the given value without producing it as
1425 /// an l-value.  This is actually more than an optimization: we can't
1426 /// produce an l-value for variables that we never actually captured
1427 /// in a block or lambda, which means const int variables or constexpr
1428 /// literals or similar.
1429 CodeGenFunction::ConstantEmission
1430 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1431   ValueDecl *value = refExpr->getDecl();
1432 
1433   // The value needs to be an enum constant or a constant variable.
1434   ConstantEmissionKind CEK;
1435   if (isa<ParmVarDecl>(value)) {
1436     CEK = CEK_None;
1437   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1438     CEK = checkVarTypeForConstantEmission(var->getType());
1439   } else if (isa<EnumConstantDecl>(value)) {
1440     CEK = CEK_AsValueOnly;
1441   } else {
1442     CEK = CEK_None;
1443   }
1444   if (CEK == CEK_None) return ConstantEmission();
1445 
1446   Expr::EvalResult result;
1447   bool resultIsReference;
1448   QualType resultType;
1449 
1450   // It's best to evaluate all the way as an r-value if that's permitted.
1451   if (CEK != CEK_AsReferenceOnly &&
1452       refExpr->EvaluateAsRValue(result, getContext())) {
1453     resultIsReference = false;
1454     resultType = refExpr->getType();
1455 
1456   // Otherwise, try to evaluate as an l-value.
1457   } else if (CEK != CEK_AsValueOnly &&
1458              refExpr->EvaluateAsLValue(result, getContext())) {
1459     resultIsReference = true;
1460     resultType = value->getType();
1461 
1462   // Failure.
1463   } else {
1464     return ConstantEmission();
1465   }
1466 
1467   // In any case, if the initializer has side-effects, abandon ship.
1468   if (result.HasSideEffects)
1469     return ConstantEmission();
1470 
1471   // Emit as a constant.
1472   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1473                                                result.Val, resultType);
1474 
1475   // Make sure we emit a debug reference to the global variable.
1476   // This should probably fire even for
1477   if (isa<VarDecl>(value)) {
1478     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1479       EmitDeclRefExprDbgValue(refExpr, result.Val);
1480   } else {
1481     assert(isa<EnumConstantDecl>(value));
1482     EmitDeclRefExprDbgValue(refExpr, result.Val);
1483   }
1484 
1485   // If we emitted a reference constant, we need to dereference that.
1486   if (resultIsReference)
1487     return ConstantEmission::forReference(C);
1488 
1489   return ConstantEmission::forValue(C);
1490 }
1491 
1492 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1493                                                         const MemberExpr *ME) {
1494   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1495     // Try to emit static variable member expressions as DREs.
1496     return DeclRefExpr::Create(
1497         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1498         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1499         ME->getType(), ME->getValueKind());
1500   }
1501   return nullptr;
1502 }
1503 
1504 CodeGenFunction::ConstantEmission
1505 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1506   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1507     return tryEmitAsConstant(DRE);
1508   return ConstantEmission();
1509 }
1510 
1511 llvm::Value *CodeGenFunction::emitScalarConstant(
1512     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1513   assert(Constant && "not a constant");
1514   if (Constant.isReference())
1515     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1516                             E->getExprLoc())
1517         .getScalarVal();
1518   return Constant.getValue();
1519 }
1520 
1521 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1522                                                SourceLocation Loc) {
1523   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1524                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1525                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1526 }
1527 
1528 static bool hasBooleanRepresentation(QualType Ty) {
1529   if (Ty->isBooleanType())
1530     return true;
1531 
1532   if (const EnumType *ET = Ty->getAs<EnumType>())
1533     return ET->getDecl()->getIntegerType()->isBooleanType();
1534 
1535   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1536     return hasBooleanRepresentation(AT->getValueType());
1537 
1538   return false;
1539 }
1540 
1541 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1542                             llvm::APInt &Min, llvm::APInt &End,
1543                             bool StrictEnums, bool IsBool) {
1544   const EnumType *ET = Ty->getAs<EnumType>();
1545   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1546                                 ET && !ET->getDecl()->isFixed();
1547   if (!IsBool && !IsRegularCPlusPlusEnum)
1548     return false;
1549 
1550   if (IsBool) {
1551     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1552     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1553   } else {
1554     const EnumDecl *ED = ET->getDecl();
1555     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1556     unsigned Bitwidth = LTy->getScalarSizeInBits();
1557     unsigned NumNegativeBits = ED->getNumNegativeBits();
1558     unsigned NumPositiveBits = ED->getNumPositiveBits();
1559 
1560     if (NumNegativeBits) {
1561       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1562       assert(NumBits <= Bitwidth);
1563       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1564       Min = -End;
1565     } else {
1566       assert(NumPositiveBits <= Bitwidth);
1567       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1568       Min = llvm::APInt(Bitwidth, 0);
1569     }
1570   }
1571   return true;
1572 }
1573 
1574 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1575   llvm::APInt Min, End;
1576   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1577                        hasBooleanRepresentation(Ty)))
1578     return nullptr;
1579 
1580   llvm::MDBuilder MDHelper(getLLVMContext());
1581   return MDHelper.createRange(Min, End);
1582 }
1583 
1584 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1585                                            SourceLocation Loc) {
1586   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1587   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1588   if (!HasBoolCheck && !HasEnumCheck)
1589     return false;
1590 
1591   bool IsBool = hasBooleanRepresentation(Ty) ||
1592                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1593   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1594   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1595   if (!NeedsBoolCheck && !NeedsEnumCheck)
1596     return false;
1597 
1598   // Single-bit booleans don't need to be checked. Special-case this to avoid
1599   // a bit width mismatch when handling bitfield values. This is handled by
1600   // EmitFromMemory for the non-bitfield case.
1601   if (IsBool &&
1602       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1603     return false;
1604 
1605   llvm::APInt Min, End;
1606   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1607     return true;
1608 
1609   auto &Ctx = getLLVMContext();
1610   SanitizerScope SanScope(this);
1611   llvm::Value *Check;
1612   --End;
1613   if (!Min) {
1614     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1615   } else {
1616     llvm::Value *Upper =
1617         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1618     llvm::Value *Lower =
1619         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1620     Check = Builder.CreateAnd(Upper, Lower);
1621   }
1622   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1623                                   EmitCheckTypeDescriptor(Ty)};
1624   SanitizerMask Kind =
1625       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1626   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1627             StaticArgs, EmitCheckValue(Value));
1628   return true;
1629 }
1630 
1631 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1632                                                QualType Ty,
1633                                                SourceLocation Loc,
1634                                                LValueBaseInfo BaseInfo,
1635                                                TBAAAccessInfo TBAAInfo,
1636                                                bool isNontemporal) {
1637   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1638     // For better performance, handle vector loads differently.
1639     if (Ty->isVectorType()) {
1640       const llvm::Type *EltTy = Addr.getElementType();
1641 
1642       const auto *VTy = cast<llvm::VectorType>(EltTy);
1643 
1644       // Handle vectors of size 3 like size 4 for better performance.
1645       if (VTy->getNumElements() == 3) {
1646 
1647         // Bitcast to vec4 type.
1648         llvm::VectorType *vec4Ty =
1649             llvm::VectorType::get(VTy->getElementType(), 4);
1650         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1651         // Now load value.
1652         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1653 
1654         // Shuffle vector to get vec3.
1655         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1656                                         {0, 1, 2}, "extractVec");
1657         return EmitFromMemory(V, Ty);
1658       }
1659     }
1660   }
1661 
1662   // Atomic operations have to be done on integral types.
1663   LValue AtomicLValue =
1664       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1665   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1666     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1667   }
1668 
1669   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1670   if (isNontemporal) {
1671     llvm::MDNode *Node = llvm::MDNode::get(
1672         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1673     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1674   }
1675 
1676   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1677 
1678   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1679     // In order to prevent the optimizer from throwing away the check, don't
1680     // attach range metadata to the load.
1681   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1682     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1683       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1684 
1685   return EmitFromMemory(Load, Ty);
1686 }
1687 
1688 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1689   // Bool has a different representation in memory than in registers.
1690   if (hasBooleanRepresentation(Ty)) {
1691     // This should really always be an i1, but sometimes it's already
1692     // an i8, and it's awkward to track those cases down.
1693     if (Value->getType()->isIntegerTy(1))
1694       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1695     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1696            "wrong value rep of bool");
1697   }
1698 
1699   return Value;
1700 }
1701 
1702 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1703   // Bool has a different representation in memory than in registers.
1704   if (hasBooleanRepresentation(Ty)) {
1705     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1706            "wrong value rep of bool");
1707     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1708   }
1709 
1710   return Value;
1711 }
1712 
1713 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1714                                         bool Volatile, QualType Ty,
1715                                         LValueBaseInfo BaseInfo,
1716                                         TBAAAccessInfo TBAAInfo,
1717                                         bool isInit, bool isNontemporal) {
1718   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1719     // Handle vectors differently to get better performance.
1720     if (Ty->isVectorType()) {
1721       llvm::Type *SrcTy = Value->getType();
1722       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1723       // Handle vec3 special.
1724       if (VecTy && VecTy->getNumElements() == 3) {
1725         // Our source is a vec3, do a shuffle vector to make it a vec4.
1726         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1727                                   Builder.getInt32(2),
1728                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1729         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1730         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1731                                             MaskV, "extractVec");
1732         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1733       }
1734       if (Addr.getElementType() != SrcTy) {
1735         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1736       }
1737     }
1738   }
1739 
1740   Value = EmitToMemory(Value, Ty);
1741 
1742   LValue AtomicLValue =
1743       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1744   if (Ty->isAtomicType() ||
1745       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1746     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1747     return;
1748   }
1749 
1750   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1751   if (isNontemporal) {
1752     llvm::MDNode *Node =
1753         llvm::MDNode::get(Store->getContext(),
1754                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1755     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1756   }
1757 
1758   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1759 }
1760 
1761 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1762                                         bool isInit) {
1763   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1764                     lvalue.getType(), lvalue.getBaseInfo(),
1765                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1766 }
1767 
1768 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1769 /// method emits the address of the lvalue, then loads the result as an rvalue,
1770 /// returning the rvalue.
1771 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1772   if (LV.isObjCWeak()) {
1773     // load of a __weak object.
1774     Address AddrWeakObj = LV.getAddress();
1775     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1776                                                              AddrWeakObj));
1777   }
1778   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1779     // In MRC mode, we do a load+autorelease.
1780     if (!getLangOpts().ObjCAutoRefCount) {
1781       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1782     }
1783 
1784     // In ARC mode, we load retained and then consume the value.
1785     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1786     Object = EmitObjCConsumeObject(LV.getType(), Object);
1787     return RValue::get(Object);
1788   }
1789 
1790   if (LV.isSimple()) {
1791     assert(!LV.getType()->isFunctionType());
1792 
1793     // Everything needs a load.
1794     return RValue::get(EmitLoadOfScalar(LV, Loc));
1795   }
1796 
1797   if (LV.isVectorElt()) {
1798     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1799                                               LV.isVolatileQualified());
1800     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1801                                                     "vecext"));
1802   }
1803 
1804   // If this is a reference to a subset of the elements of a vector, either
1805   // shuffle the input or extract/insert them as appropriate.
1806   if (LV.isExtVectorElt())
1807     return EmitLoadOfExtVectorElementLValue(LV);
1808 
1809   // Global Register variables always invoke intrinsics
1810   if (LV.isGlobalReg())
1811     return EmitLoadOfGlobalRegLValue(LV);
1812 
1813   assert(LV.isBitField() && "Unknown LValue type!");
1814   return EmitLoadOfBitfieldLValue(LV, Loc);
1815 }
1816 
1817 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1818                                                  SourceLocation Loc) {
1819   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1820 
1821   // Get the output type.
1822   llvm::Type *ResLTy = ConvertType(LV.getType());
1823 
1824   Address Ptr = LV.getBitFieldAddress();
1825   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1826 
1827   if (Info.IsSigned) {
1828     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1829     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1830     if (HighBits)
1831       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1832     if (Info.Offset + HighBits)
1833       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1834   } else {
1835     if (Info.Offset)
1836       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1837     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1838       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1839                                                               Info.Size),
1840                               "bf.clear");
1841   }
1842   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1843   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1844   return RValue::get(Val);
1845 }
1846 
1847 // If this is a reference to a subset of the elements of a vector, create an
1848 // appropriate shufflevector.
1849 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1850   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1851                                         LV.isVolatileQualified());
1852 
1853   const llvm::Constant *Elts = LV.getExtVectorElts();
1854 
1855   // If the result of the expression is a non-vector type, we must be extracting
1856   // a single element.  Just codegen as an extractelement.
1857   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1858   if (!ExprVT) {
1859     unsigned InIdx = getAccessedFieldNo(0, Elts);
1860     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1861     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1862   }
1863 
1864   // Always use shuffle vector to try to retain the original program structure
1865   unsigned NumResultElts = ExprVT->getNumElements();
1866 
1867   SmallVector<llvm::Constant*, 4> Mask;
1868   for (unsigned i = 0; i != NumResultElts; ++i)
1869     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1870 
1871   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1872   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1873                                     MaskV);
1874   return RValue::get(Vec);
1875 }
1876 
1877 /// Generates lvalue for partial ext_vector access.
1878 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1879   Address VectorAddress = LV.getExtVectorAddress();
1880   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1881   QualType EQT = ExprVT->getElementType();
1882   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1883 
1884   Address CastToPointerElement =
1885     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1886                                  "conv.ptr.element");
1887 
1888   const llvm::Constant *Elts = LV.getExtVectorElts();
1889   unsigned ix = getAccessedFieldNo(0, Elts);
1890 
1891   Address VectorBasePtrPlusIx =
1892     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1893                                    "vector.elt");
1894 
1895   return VectorBasePtrPlusIx;
1896 }
1897 
1898 /// Load of global gamed gegisters are always calls to intrinsics.
1899 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1900   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1901          "Bad type for register variable");
1902   llvm::MDNode *RegName = cast<llvm::MDNode>(
1903       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1904 
1905   // We accept integer and pointer types only
1906   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1907   llvm::Type *Ty = OrigTy;
1908   if (OrigTy->isPointerTy())
1909     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1910   llvm::Type *Types[] = { Ty };
1911 
1912   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1913   llvm::Value *Call = Builder.CreateCall(
1914       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1915   if (OrigTy->isPointerTy())
1916     Call = Builder.CreateIntToPtr(Call, OrigTy);
1917   return RValue::get(Call);
1918 }
1919 
1920 
1921 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1922 /// lvalue, where both are guaranteed to the have the same type, and that type
1923 /// is 'Ty'.
1924 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1925                                              bool isInit) {
1926   if (!Dst.isSimple()) {
1927     if (Dst.isVectorElt()) {
1928       // Read/modify/write the vector, inserting the new element.
1929       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1930                                             Dst.isVolatileQualified());
1931       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1932                                         Dst.getVectorIdx(), "vecins");
1933       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1934                           Dst.isVolatileQualified());
1935       return;
1936     }
1937 
1938     // If this is an update of extended vector elements, insert them as
1939     // appropriate.
1940     if (Dst.isExtVectorElt())
1941       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1942 
1943     if (Dst.isGlobalReg())
1944       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1945 
1946     assert(Dst.isBitField() && "Unknown LValue type");
1947     return EmitStoreThroughBitfieldLValue(Src, Dst);
1948   }
1949 
1950   // There's special magic for assigning into an ARC-qualified l-value.
1951   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1952     switch (Lifetime) {
1953     case Qualifiers::OCL_None:
1954       llvm_unreachable("present but none");
1955 
1956     case Qualifiers::OCL_ExplicitNone:
1957       // nothing special
1958       break;
1959 
1960     case Qualifiers::OCL_Strong:
1961       if (isInit) {
1962         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1963         break;
1964       }
1965       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1966       return;
1967 
1968     case Qualifiers::OCL_Weak:
1969       if (isInit)
1970         // Initialize and then skip the primitive store.
1971         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1972       else
1973         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1974       return;
1975 
1976     case Qualifiers::OCL_Autoreleasing:
1977       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1978                                                      Src.getScalarVal()));
1979       // fall into the normal path
1980       break;
1981     }
1982   }
1983 
1984   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1985     // load of a __weak object.
1986     Address LvalueDst = Dst.getAddress();
1987     llvm::Value *src = Src.getScalarVal();
1988      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1989     return;
1990   }
1991 
1992   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1993     // load of a __strong object.
1994     Address LvalueDst = Dst.getAddress();
1995     llvm::Value *src = Src.getScalarVal();
1996     if (Dst.isObjCIvar()) {
1997       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1998       llvm::Type *ResultType = IntPtrTy;
1999       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2000       llvm::Value *RHS = dst.getPointer();
2001       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2002       llvm::Value *LHS =
2003         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2004                                "sub.ptr.lhs.cast");
2005       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2006       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2007                                               BytesBetween);
2008     } else if (Dst.isGlobalObjCRef()) {
2009       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2010                                                 Dst.isThreadLocalRef());
2011     }
2012     else
2013       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2014     return;
2015   }
2016 
2017   assert(Src.isScalar() && "Can't emit an agg store with this method");
2018   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2019 }
2020 
2021 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2022                                                      llvm::Value **Result) {
2023   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2024   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2025   Address Ptr = Dst.getBitFieldAddress();
2026 
2027   // Get the source value, truncated to the width of the bit-field.
2028   llvm::Value *SrcVal = Src.getScalarVal();
2029 
2030   // Cast the source to the storage type and shift it into place.
2031   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2032                                  /*IsSigned=*/false);
2033   llvm::Value *MaskedVal = SrcVal;
2034 
2035   // See if there are other bits in the bitfield's storage we'll need to load
2036   // and mask together with source before storing.
2037   if (Info.StorageSize != Info.Size) {
2038     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2039     llvm::Value *Val =
2040       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2041 
2042     // Mask the source value as needed.
2043     if (!hasBooleanRepresentation(Dst.getType()))
2044       SrcVal = Builder.CreateAnd(SrcVal,
2045                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2046                                                             Info.Size),
2047                                  "bf.value");
2048     MaskedVal = SrcVal;
2049     if (Info.Offset)
2050       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2051 
2052     // Mask out the original value.
2053     Val = Builder.CreateAnd(Val,
2054                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2055                                                      Info.Offset,
2056                                                      Info.Offset + Info.Size),
2057                             "bf.clear");
2058 
2059     // Or together the unchanged values and the source value.
2060     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2061   } else {
2062     assert(Info.Offset == 0);
2063   }
2064 
2065   // Write the new value back out.
2066   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2067 
2068   // Return the new value of the bit-field, if requested.
2069   if (Result) {
2070     llvm::Value *ResultVal = MaskedVal;
2071 
2072     // Sign extend the value if needed.
2073     if (Info.IsSigned) {
2074       assert(Info.Size <= Info.StorageSize);
2075       unsigned HighBits = Info.StorageSize - Info.Size;
2076       if (HighBits) {
2077         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2078         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2079       }
2080     }
2081 
2082     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2083                                       "bf.result.cast");
2084     *Result = EmitFromMemory(ResultVal, Dst.getType());
2085   }
2086 }
2087 
2088 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2089                                                                LValue Dst) {
2090   // This access turns into a read/modify/write of the vector.  Load the input
2091   // value now.
2092   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2093                                         Dst.isVolatileQualified());
2094   const llvm::Constant *Elts = Dst.getExtVectorElts();
2095 
2096   llvm::Value *SrcVal = Src.getScalarVal();
2097 
2098   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2099     unsigned NumSrcElts = VTy->getNumElements();
2100     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2101     if (NumDstElts == NumSrcElts) {
2102       // Use shuffle vector is the src and destination are the same number of
2103       // elements and restore the vector mask since it is on the side it will be
2104       // stored.
2105       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2106       for (unsigned i = 0; i != NumSrcElts; ++i)
2107         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2108 
2109       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2110       Vec = Builder.CreateShuffleVector(SrcVal,
2111                                         llvm::UndefValue::get(Vec->getType()),
2112                                         MaskV);
2113     } else if (NumDstElts > NumSrcElts) {
2114       // Extended the source vector to the same length and then shuffle it
2115       // into the destination.
2116       // FIXME: since we're shuffling with undef, can we just use the indices
2117       //        into that?  This could be simpler.
2118       SmallVector<llvm::Constant*, 4> ExtMask;
2119       for (unsigned i = 0; i != NumSrcElts; ++i)
2120         ExtMask.push_back(Builder.getInt32(i));
2121       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2122       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2123       llvm::Value *ExtSrcVal =
2124         Builder.CreateShuffleVector(SrcVal,
2125                                     llvm::UndefValue::get(SrcVal->getType()),
2126                                     ExtMaskV);
2127       // build identity
2128       SmallVector<llvm::Constant*, 4> Mask;
2129       for (unsigned i = 0; i != NumDstElts; ++i)
2130         Mask.push_back(Builder.getInt32(i));
2131 
2132       // When the vector size is odd and .odd or .hi is used, the last element
2133       // of the Elts constant array will be one past the size of the vector.
2134       // Ignore the last element here, if it is greater than the mask size.
2135       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2136         NumSrcElts--;
2137 
2138       // modify when what gets shuffled in
2139       for (unsigned i = 0; i != NumSrcElts; ++i)
2140         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2141       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2142       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2143     } else {
2144       // We should never shorten the vector
2145       llvm_unreachable("unexpected shorten vector length");
2146     }
2147   } else {
2148     // If the Src is a scalar (not a vector) it must be updating one element.
2149     unsigned InIdx = getAccessedFieldNo(0, Elts);
2150     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2151     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2152   }
2153 
2154   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2155                       Dst.isVolatileQualified());
2156 }
2157 
2158 /// Store of global named registers are always calls to intrinsics.
2159 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2160   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2161          "Bad type for register variable");
2162   llvm::MDNode *RegName = cast<llvm::MDNode>(
2163       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2164   assert(RegName && "Register LValue is not metadata");
2165 
2166   // We accept integer and pointer types only
2167   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2168   llvm::Type *Ty = OrigTy;
2169   if (OrigTy->isPointerTy())
2170     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2171   llvm::Type *Types[] = { Ty };
2172 
2173   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2174   llvm::Value *Value = Src.getScalarVal();
2175   if (OrigTy->isPointerTy())
2176     Value = Builder.CreatePtrToInt(Value, Ty);
2177   Builder.CreateCall(
2178       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2179 }
2180 
2181 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2182 // generating write-barries API. It is currently a global, ivar,
2183 // or neither.
2184 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2185                                  LValue &LV,
2186                                  bool IsMemberAccess=false) {
2187   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2188     return;
2189 
2190   if (isa<ObjCIvarRefExpr>(E)) {
2191     QualType ExpTy = E->getType();
2192     if (IsMemberAccess && ExpTy->isPointerType()) {
2193       // If ivar is a structure pointer, assigning to field of
2194       // this struct follows gcc's behavior and makes it a non-ivar
2195       // writer-barrier conservatively.
2196       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2197       if (ExpTy->isRecordType()) {
2198         LV.setObjCIvar(false);
2199         return;
2200       }
2201     }
2202     LV.setObjCIvar(true);
2203     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2204     LV.setBaseIvarExp(Exp->getBase());
2205     LV.setObjCArray(E->getType()->isArrayType());
2206     return;
2207   }
2208 
2209   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2210     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2211       if (VD->hasGlobalStorage()) {
2212         LV.setGlobalObjCRef(true);
2213         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2214       }
2215     }
2216     LV.setObjCArray(E->getType()->isArrayType());
2217     return;
2218   }
2219 
2220   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2221     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2222     return;
2223   }
2224 
2225   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2226     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2227     if (LV.isObjCIvar()) {
2228       // If cast is to a structure pointer, follow gcc's behavior and make it
2229       // a non-ivar write-barrier.
2230       QualType ExpTy = E->getType();
2231       if (ExpTy->isPointerType())
2232         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2233       if (ExpTy->isRecordType())
2234         LV.setObjCIvar(false);
2235     }
2236     return;
2237   }
2238 
2239   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2240     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2241     return;
2242   }
2243 
2244   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2245     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2246     return;
2247   }
2248 
2249   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2250     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2251     return;
2252   }
2253 
2254   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2255     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2256     return;
2257   }
2258 
2259   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2260     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2261     if (LV.isObjCIvar() && !LV.isObjCArray())
2262       // Using array syntax to assigning to what an ivar points to is not
2263       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2264       LV.setObjCIvar(false);
2265     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2266       // Using array syntax to assigning to what global points to is not
2267       // same as assigning to the global itself. {id *G;} G[i] = 0;
2268       LV.setGlobalObjCRef(false);
2269     return;
2270   }
2271 
2272   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2273     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2274     // We don't know if member is an 'ivar', but this flag is looked at
2275     // only in the context of LV.isObjCIvar().
2276     LV.setObjCArray(E->getType()->isArrayType());
2277     return;
2278   }
2279 }
2280 
2281 static llvm::Value *
2282 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2283                                 llvm::Value *V, llvm::Type *IRType,
2284                                 StringRef Name = StringRef()) {
2285   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2286   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2287 }
2288 
2289 static LValue EmitThreadPrivateVarDeclLValue(
2290     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2291     llvm::Type *RealVarTy, SourceLocation Loc) {
2292   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2293   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2294   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2295 }
2296 
2297 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF,
2298                                                const VarDecl *VD, QualType T) {
2299   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2300       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2301   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To)
2302     return Address::invalid();
2303   assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause");
2304   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2305   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2306   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2307 }
2308 
2309 Address
2310 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2311                                      LValueBaseInfo *PointeeBaseInfo,
2312                                      TBAAAccessInfo *PointeeTBAAInfo) {
2313   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2314                                             RefLVal.isVolatile());
2315   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2316 
2317   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2318                                             PointeeBaseInfo, PointeeTBAAInfo,
2319                                             /* forPointeeType= */ true);
2320   return Address(Load, Align);
2321 }
2322 
2323 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2324   LValueBaseInfo PointeeBaseInfo;
2325   TBAAAccessInfo PointeeTBAAInfo;
2326   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2327                                             &PointeeTBAAInfo);
2328   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2329                         PointeeBaseInfo, PointeeTBAAInfo);
2330 }
2331 
2332 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2333                                            const PointerType *PtrTy,
2334                                            LValueBaseInfo *BaseInfo,
2335                                            TBAAAccessInfo *TBAAInfo) {
2336   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2337   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2338                                                BaseInfo, TBAAInfo,
2339                                                /*forPointeeType=*/true));
2340 }
2341 
2342 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2343                                                 const PointerType *PtrTy) {
2344   LValueBaseInfo BaseInfo;
2345   TBAAAccessInfo TBAAInfo;
2346   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2347   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2348 }
2349 
2350 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2351                                       const Expr *E, const VarDecl *VD) {
2352   QualType T = E->getType();
2353 
2354   // If it's thread_local, emit a call to its wrapper function instead.
2355   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2356       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2357     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2358   // Check if the variable is marked as declare target with link clause in
2359   // device codegen.
2360   if (CGF.getLangOpts().OpenMPIsDevice) {
2361     Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T);
2362     if (Addr.isValid())
2363       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2364   }
2365 
2366   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2367   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2368   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2369   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2370   Address Addr(V, Alignment);
2371   // Emit reference to the private copy of the variable if it is an OpenMP
2372   // threadprivate variable.
2373   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2374       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2375     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2376                                           E->getExprLoc());
2377   }
2378   LValue LV = VD->getType()->isReferenceType() ?
2379       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2380                                     AlignmentSource::Decl) :
2381       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2382   setObjCGCLValueClass(CGF.getContext(), E, LV);
2383   return LV;
2384 }
2385 
2386 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2387                                                const FunctionDecl *FD) {
2388   if (FD->hasAttr<WeakRefAttr>()) {
2389     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2390     return aliasee.getPointer();
2391   }
2392 
2393   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2394   if (!FD->hasPrototype()) {
2395     if (const FunctionProtoType *Proto =
2396             FD->getType()->getAs<FunctionProtoType>()) {
2397       // Ugly case: for a K&R-style definition, the type of the definition
2398       // isn't the same as the type of a use.  Correct for this with a
2399       // bitcast.
2400       QualType NoProtoType =
2401           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2402       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2403       V = llvm::ConstantExpr::getBitCast(V,
2404                                       CGM.getTypes().ConvertType(NoProtoType));
2405     }
2406   }
2407   return V;
2408 }
2409 
2410 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2411                                      const Expr *E, const FunctionDecl *FD) {
2412   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2413   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2414   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2415                             AlignmentSource::Decl);
2416 }
2417 
2418 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2419                                       llvm::Value *ThisValue) {
2420   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2421   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2422   return CGF.EmitLValueForField(LV, FD);
2423 }
2424 
2425 /// Named Registers are named metadata pointing to the register name
2426 /// which will be read from/written to as an argument to the intrinsic
2427 /// @llvm.read/write_register.
2428 /// So far, only the name is being passed down, but other options such as
2429 /// register type, allocation type or even optimization options could be
2430 /// passed down via the metadata node.
2431 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2432   SmallString<64> Name("llvm.named.register.");
2433   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2434   assert(Asm->getLabel().size() < 64-Name.size() &&
2435       "Register name too big");
2436   Name.append(Asm->getLabel());
2437   llvm::NamedMDNode *M =
2438     CGM.getModule().getOrInsertNamedMetadata(Name);
2439   if (M->getNumOperands() == 0) {
2440     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2441                                               Asm->getLabel());
2442     llvm::Metadata *Ops[] = {Str};
2443     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2444   }
2445 
2446   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2447 
2448   llvm::Value *Ptr =
2449     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2450   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2451 }
2452 
2453 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2454   const NamedDecl *ND = E->getDecl();
2455   QualType T = E->getType();
2456 
2457   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2458     // Global Named registers access via intrinsics only
2459     if (VD->getStorageClass() == SC_Register &&
2460         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2461       return EmitGlobalNamedRegister(VD, CGM);
2462 
2463     // A DeclRefExpr for a reference initialized by a constant expression can
2464     // appear without being odr-used. Directly emit the constant initializer.
2465     const Expr *Init = VD->getAnyInitializer(VD);
2466     const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl);
2467     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2468         VD->isUsableInConstantExpressions(getContext()) &&
2469         VD->checkInitIsICE() &&
2470         // Do not emit if it is private OpenMP variable.
2471         !(E->refersToEnclosingVariableOrCapture() &&
2472           ((CapturedStmtInfo &&
2473             (LocalDeclMap.count(VD->getCanonicalDecl()) ||
2474              CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
2475            LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
2476            (BD && BD->capturesVariable(VD))))) {
2477       llvm::Constant *Val =
2478         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2479                                             *VD->evaluateValue(),
2480                                             VD->getType());
2481       assert(Val && "failed to emit reference constant expression");
2482       // FIXME: Eventually we will want to emit vector element references.
2483 
2484       // Should we be using the alignment of the constant pointer we emitted?
2485       CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
2486                                                     /* BaseInfo= */ nullptr,
2487                                                     /* TBAAInfo= */ nullptr,
2488                                                     /* forPointeeType= */ true);
2489       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2490     }
2491 
2492     // Check for captured variables.
2493     if (E->refersToEnclosingVariableOrCapture()) {
2494       VD = VD->getCanonicalDecl();
2495       if (auto *FD = LambdaCaptureFields.lookup(VD))
2496         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2497       else if (CapturedStmtInfo) {
2498         auto I = LocalDeclMap.find(VD);
2499         if (I != LocalDeclMap.end()) {
2500           if (VD->getType()->isReferenceType())
2501             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2502                                              AlignmentSource::Decl);
2503           return MakeAddrLValue(I->second, T);
2504         }
2505         LValue CapLVal =
2506             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2507                                     CapturedStmtInfo->getContextValue());
2508         return MakeAddrLValue(
2509             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2510             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2511             CapLVal.getTBAAInfo());
2512       }
2513 
2514       assert(isa<BlockDecl>(CurCodeDecl));
2515       Address addr = GetAddrOfBlockDecl(VD);
2516       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2517     }
2518   }
2519 
2520   // FIXME: We should be able to assert this for FunctionDecls as well!
2521   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2522   // those with a valid source location.
2523   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2524           !E->getLocation().isValid()) &&
2525          "Should not use decl without marking it used!");
2526 
2527   if (ND->hasAttr<WeakRefAttr>()) {
2528     const auto *VD = cast<ValueDecl>(ND);
2529     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2530     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2531   }
2532 
2533   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2534     // Check if this is a global variable.
2535     if (VD->hasLinkage() || VD->isStaticDataMember())
2536       return EmitGlobalVarDeclLValue(*this, E, VD);
2537 
2538     Address addr = Address::invalid();
2539 
2540     // The variable should generally be present in the local decl map.
2541     auto iter = LocalDeclMap.find(VD);
2542     if (iter != LocalDeclMap.end()) {
2543       addr = iter->second;
2544 
2545     // Otherwise, it might be static local we haven't emitted yet for
2546     // some reason; most likely, because it's in an outer function.
2547     } else if (VD->isStaticLocal()) {
2548       addr = Address(CGM.getOrCreateStaticVarDecl(
2549           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2550                      getContext().getDeclAlign(VD));
2551 
2552     // No other cases for now.
2553     } else {
2554       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2555     }
2556 
2557 
2558     // Check for OpenMP threadprivate variables.
2559     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2560         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2561       return EmitThreadPrivateVarDeclLValue(
2562           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2563           E->getExprLoc());
2564     }
2565 
2566     // Drill into block byref variables.
2567     bool isBlockByref = VD->isEscapingByref();
2568     if (isBlockByref) {
2569       addr = emitBlockByrefAddress(addr, VD);
2570     }
2571 
2572     // Drill into reference types.
2573     LValue LV = VD->getType()->isReferenceType() ?
2574         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2575         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2576 
2577     bool isLocalStorage = VD->hasLocalStorage();
2578 
2579     bool NonGCable = isLocalStorage &&
2580                      !VD->getType()->isReferenceType() &&
2581                      !isBlockByref;
2582     if (NonGCable) {
2583       LV.getQuals().removeObjCGCAttr();
2584       LV.setNonGC(true);
2585     }
2586 
2587     bool isImpreciseLifetime =
2588       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2589     if (isImpreciseLifetime)
2590       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2591     setObjCGCLValueClass(getContext(), E, LV);
2592     return LV;
2593   }
2594 
2595   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2596     return EmitFunctionDeclLValue(*this, E, FD);
2597 
2598   // FIXME: While we're emitting a binding from an enclosing scope, all other
2599   // DeclRefExprs we see should be implicitly treated as if they also refer to
2600   // an enclosing scope.
2601   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2602     return EmitLValue(BD->getBinding());
2603 
2604   llvm_unreachable("Unhandled DeclRefExpr");
2605 }
2606 
2607 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2608   // __extension__ doesn't affect lvalue-ness.
2609   if (E->getOpcode() == UO_Extension)
2610     return EmitLValue(E->getSubExpr());
2611 
2612   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2613   switch (E->getOpcode()) {
2614   default: llvm_unreachable("Unknown unary operator lvalue!");
2615   case UO_Deref: {
2616     QualType T = E->getSubExpr()->getType()->getPointeeType();
2617     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2618 
2619     LValueBaseInfo BaseInfo;
2620     TBAAAccessInfo TBAAInfo;
2621     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2622                                             &TBAAInfo);
2623     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2624     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2625 
2626     // We should not generate __weak write barrier on indirect reference
2627     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2628     // But, we continue to generate __strong write barrier on indirect write
2629     // into a pointer to object.
2630     if (getLangOpts().ObjC &&
2631         getLangOpts().getGC() != LangOptions::NonGC &&
2632         LV.isObjCWeak())
2633       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2634     return LV;
2635   }
2636   case UO_Real:
2637   case UO_Imag: {
2638     LValue LV = EmitLValue(E->getSubExpr());
2639     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2640 
2641     // __real is valid on scalars.  This is a faster way of testing that.
2642     // __imag can only produce an rvalue on scalars.
2643     if (E->getOpcode() == UO_Real &&
2644         !LV.getAddress().getElementType()->isStructTy()) {
2645       assert(E->getSubExpr()->getType()->isArithmeticType());
2646       return LV;
2647     }
2648 
2649     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2650 
2651     Address Component =
2652       (E->getOpcode() == UO_Real
2653          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2654          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2655     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2656                                    CGM.getTBAAInfoForSubobject(LV, T));
2657     ElemLV.getQuals().addQualifiers(LV.getQuals());
2658     return ElemLV;
2659   }
2660   case UO_PreInc:
2661   case UO_PreDec: {
2662     LValue LV = EmitLValue(E->getSubExpr());
2663     bool isInc = E->getOpcode() == UO_PreInc;
2664 
2665     if (E->getType()->isAnyComplexType())
2666       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2667     else
2668       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2669     return LV;
2670   }
2671   }
2672 }
2673 
2674 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2675   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2676                         E->getType(), AlignmentSource::Decl);
2677 }
2678 
2679 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2680   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2681                         E->getType(), AlignmentSource::Decl);
2682 }
2683 
2684 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2685   auto SL = E->getFunctionName();
2686   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2687   StringRef FnName = CurFn->getName();
2688   if (FnName.startswith("\01"))
2689     FnName = FnName.substr(1);
2690   StringRef NameItems[] = {
2691       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2692   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2693   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2694     std::string Name = SL->getString();
2695     if (!Name.empty()) {
2696       unsigned Discriminator =
2697           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2698       if (Discriminator)
2699         Name += "_" + Twine(Discriminator + 1).str();
2700       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2701       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2702     } else {
2703       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2704       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2705     }
2706   }
2707   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2708   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2709 }
2710 
2711 /// Emit a type description suitable for use by a runtime sanitizer library. The
2712 /// format of a type descriptor is
2713 ///
2714 /// \code
2715 ///   { i16 TypeKind, i16 TypeInfo }
2716 /// \endcode
2717 ///
2718 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2719 /// integer, 1 for a floating point value, and -1 for anything else.
2720 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2721   // Only emit each type's descriptor once.
2722   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2723     return C;
2724 
2725   uint16_t TypeKind = -1;
2726   uint16_t TypeInfo = 0;
2727 
2728   if (T->isIntegerType()) {
2729     TypeKind = 0;
2730     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2731                (T->isSignedIntegerType() ? 1 : 0);
2732   } else if (T->isFloatingType()) {
2733     TypeKind = 1;
2734     TypeInfo = getContext().getTypeSize(T);
2735   }
2736 
2737   // Format the type name as if for a diagnostic, including quotes and
2738   // optionally an 'aka'.
2739   SmallString<32> Buffer;
2740   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2741                                     (intptr_t)T.getAsOpaquePtr(),
2742                                     StringRef(), StringRef(), None, Buffer,
2743                                     None);
2744 
2745   llvm::Constant *Components[] = {
2746     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2747     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2748   };
2749   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2750 
2751   auto *GV = new llvm::GlobalVariable(
2752       CGM.getModule(), Descriptor->getType(),
2753       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2754   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2755   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2756 
2757   // Remember the descriptor for this type.
2758   CGM.setTypeDescriptorInMap(T, GV);
2759 
2760   return GV;
2761 }
2762 
2763 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2764   llvm::Type *TargetTy = IntPtrTy;
2765 
2766   if (V->getType() == TargetTy)
2767     return V;
2768 
2769   // Floating-point types which fit into intptr_t are bitcast to integers
2770   // and then passed directly (after zero-extension, if necessary).
2771   if (V->getType()->isFloatingPointTy()) {
2772     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2773     if (Bits <= TargetTy->getIntegerBitWidth())
2774       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2775                                                          Bits));
2776   }
2777 
2778   // Integers which fit in intptr_t are zero-extended and passed directly.
2779   if (V->getType()->isIntegerTy() &&
2780       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2781     return Builder.CreateZExt(V, TargetTy);
2782 
2783   // Pointers are passed directly, everything else is passed by address.
2784   if (!V->getType()->isPointerTy()) {
2785     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2786     Builder.CreateStore(V, Ptr);
2787     V = Ptr.getPointer();
2788   }
2789   return Builder.CreatePtrToInt(V, TargetTy);
2790 }
2791 
2792 /// Emit a representation of a SourceLocation for passing to a handler
2793 /// in a sanitizer runtime library. The format for this data is:
2794 /// \code
2795 ///   struct SourceLocation {
2796 ///     const char *Filename;
2797 ///     int32_t Line, Column;
2798 ///   };
2799 /// \endcode
2800 /// For an invalid SourceLocation, the Filename pointer is null.
2801 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2802   llvm::Constant *Filename;
2803   int Line, Column;
2804 
2805   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2806   if (PLoc.isValid()) {
2807     StringRef FilenameString = PLoc.getFilename();
2808 
2809     int PathComponentsToStrip =
2810         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2811     if (PathComponentsToStrip < 0) {
2812       assert(PathComponentsToStrip != INT_MIN);
2813       int PathComponentsToKeep = -PathComponentsToStrip;
2814       auto I = llvm::sys::path::rbegin(FilenameString);
2815       auto E = llvm::sys::path::rend(FilenameString);
2816       while (I != E && --PathComponentsToKeep)
2817         ++I;
2818 
2819       FilenameString = FilenameString.substr(I - E);
2820     } else if (PathComponentsToStrip > 0) {
2821       auto I = llvm::sys::path::begin(FilenameString);
2822       auto E = llvm::sys::path::end(FilenameString);
2823       while (I != E && PathComponentsToStrip--)
2824         ++I;
2825 
2826       if (I != E)
2827         FilenameString =
2828             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2829       else
2830         FilenameString = llvm::sys::path::filename(FilenameString);
2831     }
2832 
2833     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2834     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2835                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2836     Filename = FilenameGV.getPointer();
2837     Line = PLoc.getLine();
2838     Column = PLoc.getColumn();
2839   } else {
2840     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2841     Line = Column = 0;
2842   }
2843 
2844   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2845                             Builder.getInt32(Column)};
2846 
2847   return llvm::ConstantStruct::getAnon(Data);
2848 }
2849 
2850 namespace {
2851 /// Specify under what conditions this check can be recovered
2852 enum class CheckRecoverableKind {
2853   /// Always terminate program execution if this check fails.
2854   Unrecoverable,
2855   /// Check supports recovering, runtime has both fatal (noreturn) and
2856   /// non-fatal handlers for this check.
2857   Recoverable,
2858   /// Runtime conditionally aborts, always need to support recovery.
2859   AlwaysRecoverable
2860 };
2861 }
2862 
2863 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2864   assert(Kind.countPopulation() == 1);
2865   if (Kind == SanitizerKind::Vptr)
2866     return CheckRecoverableKind::AlwaysRecoverable;
2867   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
2868     return CheckRecoverableKind::Unrecoverable;
2869   else
2870     return CheckRecoverableKind::Recoverable;
2871 }
2872 
2873 namespace {
2874 struct SanitizerHandlerInfo {
2875   char const *const Name;
2876   unsigned Version;
2877 };
2878 }
2879 
2880 const SanitizerHandlerInfo SanitizerHandlers[] = {
2881 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2882     LIST_SANITIZER_CHECKS
2883 #undef SANITIZER_CHECK
2884 };
2885 
2886 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2887                                  llvm::FunctionType *FnType,
2888                                  ArrayRef<llvm::Value *> FnArgs,
2889                                  SanitizerHandler CheckHandler,
2890                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2891                                  llvm::BasicBlock *ContBB) {
2892   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2893   Optional<ApplyDebugLocation> DL;
2894   if (!CGF.Builder.getCurrentDebugLocation()) {
2895     // Ensure that the call has at least an artificial debug location.
2896     DL.emplace(CGF, SourceLocation());
2897   }
2898   bool NeedsAbortSuffix =
2899       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2900   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2901   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2902   const StringRef CheckName = CheckInfo.Name;
2903   std::string FnName = "__ubsan_handle_" + CheckName.str();
2904   if (CheckInfo.Version && !MinimalRuntime)
2905     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2906   if (MinimalRuntime)
2907     FnName += "_minimal";
2908   if (NeedsAbortSuffix)
2909     FnName += "_abort";
2910   bool MayReturn =
2911       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2912 
2913   llvm::AttrBuilder B;
2914   if (!MayReturn) {
2915     B.addAttribute(llvm::Attribute::NoReturn)
2916         .addAttribute(llvm::Attribute::NoUnwind);
2917   }
2918   B.addAttribute(llvm::Attribute::UWTable);
2919 
2920   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
2921       FnType, FnName,
2922       llvm::AttributeList::get(CGF.getLLVMContext(),
2923                                llvm::AttributeList::FunctionIndex, B),
2924       /*Local=*/true);
2925   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2926   if (!MayReturn) {
2927     HandlerCall->setDoesNotReturn();
2928     CGF.Builder.CreateUnreachable();
2929   } else {
2930     CGF.Builder.CreateBr(ContBB);
2931   }
2932 }
2933 
2934 void CodeGenFunction::EmitCheck(
2935     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2936     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2937     ArrayRef<llvm::Value *> DynamicArgs) {
2938   assert(IsSanitizerScope);
2939   assert(Checked.size() > 0);
2940   assert(CheckHandler >= 0 &&
2941          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
2942   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2943 
2944   llvm::Value *FatalCond = nullptr;
2945   llvm::Value *RecoverableCond = nullptr;
2946   llvm::Value *TrapCond = nullptr;
2947   for (int i = 0, n = Checked.size(); i < n; ++i) {
2948     llvm::Value *Check = Checked[i].first;
2949     // -fsanitize-trap= overrides -fsanitize-recover=.
2950     llvm::Value *&Cond =
2951         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2952             ? TrapCond
2953             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2954                   ? RecoverableCond
2955                   : FatalCond;
2956     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2957   }
2958 
2959   if (TrapCond)
2960     EmitTrapCheck(TrapCond);
2961   if (!FatalCond && !RecoverableCond)
2962     return;
2963 
2964   llvm::Value *JointCond;
2965   if (FatalCond && RecoverableCond)
2966     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2967   else
2968     JointCond = FatalCond ? FatalCond : RecoverableCond;
2969   assert(JointCond);
2970 
2971   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2972   assert(SanOpts.has(Checked[0].second));
2973 #ifndef NDEBUG
2974   for (int i = 1, n = Checked.size(); i < n; ++i) {
2975     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2976            "All recoverable kinds in a single check must be same!");
2977     assert(SanOpts.has(Checked[i].second));
2978   }
2979 #endif
2980 
2981   llvm::BasicBlock *Cont = createBasicBlock("cont");
2982   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2983   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2984   // Give hint that we very much don't expect to execute the handler
2985   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2986   llvm::MDBuilder MDHelper(getLLVMContext());
2987   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2988   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2989   EmitBlock(Handlers);
2990 
2991   // Handler functions take an i8* pointing to the (handler-specific) static
2992   // information block, followed by a sequence of intptr_t arguments
2993   // representing operand values.
2994   SmallVector<llvm::Value *, 4> Args;
2995   SmallVector<llvm::Type *, 4> ArgTypes;
2996   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2997     Args.reserve(DynamicArgs.size() + 1);
2998     ArgTypes.reserve(DynamicArgs.size() + 1);
2999 
3000     // Emit handler arguments and create handler function type.
3001     if (!StaticArgs.empty()) {
3002       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3003       auto *InfoPtr =
3004           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3005                                    llvm::GlobalVariable::PrivateLinkage, Info);
3006       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3007       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3008       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3009       ArgTypes.push_back(Int8PtrTy);
3010     }
3011 
3012     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3013       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3014       ArgTypes.push_back(IntPtrTy);
3015     }
3016   }
3017 
3018   llvm::FunctionType *FnType =
3019     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3020 
3021   if (!FatalCond || !RecoverableCond) {
3022     // Simple case: we need to generate a single handler call, either
3023     // fatal, or non-fatal.
3024     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3025                          (FatalCond != nullptr), Cont);
3026   } else {
3027     // Emit two handler calls: first one for set of unrecoverable checks,
3028     // another one for recoverable.
3029     llvm::BasicBlock *NonFatalHandlerBB =
3030         createBasicBlock("non_fatal." + CheckName);
3031     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3032     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3033     EmitBlock(FatalHandlerBB);
3034     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3035                          NonFatalHandlerBB);
3036     EmitBlock(NonFatalHandlerBB);
3037     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3038                          Cont);
3039   }
3040 
3041   EmitBlock(Cont);
3042 }
3043 
3044 void CodeGenFunction::EmitCfiSlowPathCheck(
3045     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3046     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3047   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3048 
3049   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3050   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3051 
3052   llvm::MDBuilder MDHelper(getLLVMContext());
3053   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3054   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3055 
3056   EmitBlock(CheckBB);
3057 
3058   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3059 
3060   llvm::CallInst *CheckCall;
3061   llvm::FunctionCallee SlowPathFn;
3062   if (WithDiag) {
3063     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3064     auto *InfoPtr =
3065         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3066                                  llvm::GlobalVariable::PrivateLinkage, Info);
3067     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3068     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3069 
3070     SlowPathFn = CGM.getModule().getOrInsertFunction(
3071         "__cfi_slowpath_diag",
3072         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3073                                 false));
3074     CheckCall = Builder.CreateCall(
3075         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3076   } else {
3077     SlowPathFn = CGM.getModule().getOrInsertFunction(
3078         "__cfi_slowpath",
3079         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3080     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3081   }
3082 
3083   CGM.setDSOLocal(
3084       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3085   CheckCall->setDoesNotThrow();
3086 
3087   EmitBlock(Cont);
3088 }
3089 
3090 // Emit a stub for __cfi_check function so that the linker knows about this
3091 // symbol in LTO mode.
3092 void CodeGenFunction::EmitCfiCheckStub() {
3093   llvm::Module *M = &CGM.getModule();
3094   auto &Ctx = M->getContext();
3095   llvm::Function *F = llvm::Function::Create(
3096       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3097       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3098   CGM.setDSOLocal(F);
3099   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3100   // FIXME: consider emitting an intrinsic call like
3101   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3102   // which can be lowered in CrossDSOCFI pass to the actual contents of
3103   // __cfi_check. This would allow inlining of __cfi_check calls.
3104   llvm::CallInst::Create(
3105       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3106   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3107 }
3108 
3109 // This function is basically a switch over the CFI failure kind, which is
3110 // extracted from CFICheckFailData (1st function argument). Each case is either
3111 // llvm.trap or a call to one of the two runtime handlers, based on
3112 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3113 // failure kind) traps, but this should really never happen.  CFICheckFailData
3114 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3115 // check kind; in this case __cfi_check_fail traps as well.
3116 void CodeGenFunction::EmitCfiCheckFail() {
3117   SanitizerScope SanScope(this);
3118   FunctionArgList Args;
3119   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3120                             ImplicitParamDecl::Other);
3121   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3122                             ImplicitParamDecl::Other);
3123   Args.push_back(&ArgData);
3124   Args.push_back(&ArgAddr);
3125 
3126   const CGFunctionInfo &FI =
3127     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3128 
3129   llvm::Function *F = llvm::Function::Create(
3130       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3131       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3132   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3133 
3134   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3135                 SourceLocation());
3136 
3137   // This function should not be affected by blacklist. This function does
3138   // not have a source location, but "src:*" would still apply. Revert any
3139   // changes to SanOpts made in StartFunction.
3140   SanOpts = CGM.getLangOpts().Sanitize;
3141 
3142   llvm::Value *Data =
3143       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3144                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3145   llvm::Value *Addr =
3146       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3147                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3148 
3149   // Data == nullptr means the calling module has trap behaviour for this check.
3150   llvm::Value *DataIsNotNullPtr =
3151       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3152   EmitTrapCheck(DataIsNotNullPtr);
3153 
3154   llvm::StructType *SourceLocationTy =
3155       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3156   llvm::StructType *CfiCheckFailDataTy =
3157       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3158 
3159   llvm::Value *V = Builder.CreateConstGEP2_32(
3160       CfiCheckFailDataTy,
3161       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3162       0);
3163   Address CheckKindAddr(V, getIntAlign());
3164   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3165 
3166   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3167       CGM.getLLVMContext(),
3168       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3169   llvm::Value *ValidVtable = Builder.CreateZExt(
3170       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3171                          {Addr, AllVtables}),
3172       IntPtrTy);
3173 
3174   const std::pair<int, SanitizerMask> CheckKinds[] = {
3175       {CFITCK_VCall, SanitizerKind::CFIVCall},
3176       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3177       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3178       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3179       {CFITCK_ICall, SanitizerKind::CFIICall}};
3180 
3181   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3182   for (auto CheckKindMaskPair : CheckKinds) {
3183     int Kind = CheckKindMaskPair.first;
3184     SanitizerMask Mask = CheckKindMaskPair.second;
3185     llvm::Value *Cond =
3186         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3187     if (CGM.getLangOpts().Sanitize.has(Mask))
3188       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3189                 {Data, Addr, ValidVtable});
3190     else
3191       EmitTrapCheck(Cond);
3192   }
3193 
3194   FinishFunction();
3195   // The only reference to this function will be created during LTO link.
3196   // Make sure it survives until then.
3197   CGM.addUsedGlobal(F);
3198 }
3199 
3200 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3201   if (SanOpts.has(SanitizerKind::Unreachable)) {
3202     SanitizerScope SanScope(this);
3203     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3204                              SanitizerKind::Unreachable),
3205               SanitizerHandler::BuiltinUnreachable,
3206               EmitCheckSourceLocation(Loc), None);
3207   }
3208   Builder.CreateUnreachable();
3209 }
3210 
3211 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3212   llvm::BasicBlock *Cont = createBasicBlock("cont");
3213 
3214   // If we're optimizing, collapse all calls to trap down to just one per
3215   // function to save on code size.
3216   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3217     TrapBB = createBasicBlock("trap");
3218     Builder.CreateCondBr(Checked, Cont, TrapBB);
3219     EmitBlock(TrapBB);
3220     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3221     TrapCall->setDoesNotReturn();
3222     TrapCall->setDoesNotThrow();
3223     Builder.CreateUnreachable();
3224   } else {
3225     Builder.CreateCondBr(Checked, Cont, TrapBB);
3226   }
3227 
3228   EmitBlock(Cont);
3229 }
3230 
3231 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3232   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3233 
3234   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3235     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3236                                   CGM.getCodeGenOpts().TrapFuncName);
3237     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3238   }
3239 
3240   return TrapCall;
3241 }
3242 
3243 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3244                                                  LValueBaseInfo *BaseInfo,
3245                                                  TBAAAccessInfo *TBAAInfo) {
3246   assert(E->getType()->isArrayType() &&
3247          "Array to pointer decay must have array source type!");
3248 
3249   // Expressions of array type can't be bitfields or vector elements.
3250   LValue LV = EmitLValue(E);
3251   Address Addr = LV.getAddress();
3252 
3253   // If the array type was an incomplete type, we need to make sure
3254   // the decay ends up being the right type.
3255   llvm::Type *NewTy = ConvertType(E->getType());
3256   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3257 
3258   // Note that VLA pointers are always decayed, so we don't need to do
3259   // anything here.
3260   if (!E->getType()->isVariableArrayType()) {
3261     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3262            "Expected pointer to array");
3263     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3264   }
3265 
3266   // The result of this decay conversion points to an array element within the
3267   // base lvalue. However, since TBAA currently does not support representing
3268   // accesses to elements of member arrays, we conservatively represent accesses
3269   // to the pointee object as if it had no any base lvalue specified.
3270   // TODO: Support TBAA for member arrays.
3271   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3272   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3273   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3274 
3275   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3276 }
3277 
3278 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3279 /// array to pointer, return the array subexpression.
3280 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3281   // If this isn't just an array->pointer decay, bail out.
3282   const auto *CE = dyn_cast<CastExpr>(E);
3283   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3284     return nullptr;
3285 
3286   // If this is a decay from variable width array, bail out.
3287   const Expr *SubExpr = CE->getSubExpr();
3288   if (SubExpr->getType()->isVariableArrayType())
3289     return nullptr;
3290 
3291   return SubExpr;
3292 }
3293 
3294 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3295                                           llvm::Value *ptr,
3296                                           ArrayRef<llvm::Value*> indices,
3297                                           bool inbounds,
3298                                           bool signedIndices,
3299                                           SourceLocation loc,
3300                                     const llvm::Twine &name = "arrayidx") {
3301   if (inbounds) {
3302     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3303                                       CodeGenFunction::NotSubtraction, loc,
3304                                       name);
3305   } else {
3306     return CGF.Builder.CreateGEP(ptr, indices, name);
3307   }
3308 }
3309 
3310 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3311                                       llvm::Value *idx,
3312                                       CharUnits eltSize) {
3313   // If we have a constant index, we can use the exact offset of the
3314   // element we're accessing.
3315   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3316     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3317     return arrayAlign.alignmentAtOffset(offset);
3318 
3319   // Otherwise, use the worst-case alignment for any element.
3320   } else {
3321     return arrayAlign.alignmentOfArrayElement(eltSize);
3322   }
3323 }
3324 
3325 static QualType getFixedSizeElementType(const ASTContext &ctx,
3326                                         const VariableArrayType *vla) {
3327   QualType eltType;
3328   do {
3329     eltType = vla->getElementType();
3330   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3331   return eltType;
3332 }
3333 
3334 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3335                                      ArrayRef<llvm::Value *> indices,
3336                                      QualType eltType, bool inbounds,
3337                                      bool signedIndices, SourceLocation loc,
3338                                      const llvm::Twine &name = "arrayidx") {
3339   // All the indices except that last must be zero.
3340 #ifndef NDEBUG
3341   for (auto idx : indices.drop_back())
3342     assert(isa<llvm::ConstantInt>(idx) &&
3343            cast<llvm::ConstantInt>(idx)->isZero());
3344 #endif
3345 
3346   // Determine the element size of the statically-sized base.  This is
3347   // the thing that the indices are expressed in terms of.
3348   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3349     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3350   }
3351 
3352   // We can use that to compute the best alignment of the element.
3353   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3354   CharUnits eltAlign =
3355     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3356 
3357   llvm::Value *eltPtr = emitArraySubscriptGEP(
3358       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3359   return Address(eltPtr, eltAlign);
3360 }
3361 
3362 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3363                                                bool Accessed) {
3364   // The index must always be an integer, which is not an aggregate.  Emit it
3365   // in lexical order (this complexity is, sadly, required by C++17).
3366   llvm::Value *IdxPre =
3367       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3368   bool SignedIndices = false;
3369   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3370     auto *Idx = IdxPre;
3371     if (E->getLHS() != E->getIdx()) {
3372       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3373       Idx = EmitScalarExpr(E->getIdx());
3374     }
3375 
3376     QualType IdxTy = E->getIdx()->getType();
3377     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3378     SignedIndices |= IdxSigned;
3379 
3380     if (SanOpts.has(SanitizerKind::ArrayBounds))
3381       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3382 
3383     // Extend or truncate the index type to 32 or 64-bits.
3384     if (Promote && Idx->getType() != IntPtrTy)
3385       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3386 
3387     return Idx;
3388   };
3389   IdxPre = nullptr;
3390 
3391   // If the base is a vector type, then we are forming a vector element lvalue
3392   // with this subscript.
3393   if (E->getBase()->getType()->isVectorType() &&
3394       !isa<ExtVectorElementExpr>(E->getBase())) {
3395     // Emit the vector as an lvalue to get its address.
3396     LValue LHS = EmitLValue(E->getBase());
3397     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3398     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3399     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3400                                  LHS.getBaseInfo(), TBAAAccessInfo());
3401   }
3402 
3403   // All the other cases basically behave like simple offsetting.
3404 
3405   // Handle the extvector case we ignored above.
3406   if (isa<ExtVectorElementExpr>(E->getBase())) {
3407     LValue LV = EmitLValue(E->getBase());
3408     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3409     Address Addr = EmitExtVectorElementLValue(LV);
3410 
3411     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3412     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3413                                  SignedIndices, E->getExprLoc());
3414     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3415                           CGM.getTBAAInfoForSubobject(LV, EltType));
3416   }
3417 
3418   LValueBaseInfo EltBaseInfo;
3419   TBAAAccessInfo EltTBAAInfo;
3420   Address Addr = Address::invalid();
3421   if (const VariableArrayType *vla =
3422            getContext().getAsVariableArrayType(E->getType())) {
3423     // The base must be a pointer, which is not an aggregate.  Emit
3424     // it.  It needs to be emitted first in case it's what captures
3425     // the VLA bounds.
3426     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3427     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3428 
3429     // The element count here is the total number of non-VLA elements.
3430     llvm::Value *numElements = getVLASize(vla).NumElts;
3431 
3432     // Effectively, the multiply by the VLA size is part of the GEP.
3433     // GEP indexes are signed, and scaling an index isn't permitted to
3434     // signed-overflow, so we use the same semantics for our explicit
3435     // multiply.  We suppress this if overflow is not undefined behavior.
3436     if (getLangOpts().isSignedOverflowDefined()) {
3437       Idx = Builder.CreateMul(Idx, numElements);
3438     } else {
3439       Idx = Builder.CreateNSWMul(Idx, numElements);
3440     }
3441 
3442     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3443                                  !getLangOpts().isSignedOverflowDefined(),
3444                                  SignedIndices, E->getExprLoc());
3445 
3446   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3447     // Indexing over an interface, as in "NSString *P; P[4];"
3448 
3449     // Emit the base pointer.
3450     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3451     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3452 
3453     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3454     llvm::Value *InterfaceSizeVal =
3455         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3456 
3457     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3458 
3459     // We don't necessarily build correct LLVM struct types for ObjC
3460     // interfaces, so we can't rely on GEP to do this scaling
3461     // correctly, so we need to cast to i8*.  FIXME: is this actually
3462     // true?  A lot of other things in the fragile ABI would break...
3463     llvm::Type *OrigBaseTy = Addr.getType();
3464     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3465 
3466     // Do the GEP.
3467     CharUnits EltAlign =
3468       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3469     llvm::Value *EltPtr =
3470         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3471                               SignedIndices, E->getExprLoc());
3472     Addr = Address(EltPtr, EltAlign);
3473 
3474     // Cast back.
3475     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3476   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3477     // If this is A[i] where A is an array, the frontend will have decayed the
3478     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3479     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3480     // "gep x, i" here.  Emit one "gep A, 0, i".
3481     assert(Array->getType()->isArrayType() &&
3482            "Array to pointer decay must have array source type!");
3483     LValue ArrayLV;
3484     // For simple multidimensional array indexing, set the 'accessed' flag for
3485     // better bounds-checking of the base expression.
3486     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3487       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3488     else
3489       ArrayLV = EmitLValue(Array);
3490     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3491 
3492     // Propagate the alignment from the array itself to the result.
3493     Addr = emitArraySubscriptGEP(
3494         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3495         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3496         E->getExprLoc());
3497     EltBaseInfo = ArrayLV.getBaseInfo();
3498     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3499   } else {
3500     // The base must be a pointer; emit it with an estimate of its alignment.
3501     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3502     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3503     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3504                                  !getLangOpts().isSignedOverflowDefined(),
3505                                  SignedIndices, E->getExprLoc());
3506   }
3507 
3508   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3509 
3510   if (getLangOpts().ObjC &&
3511       getLangOpts().getGC() != LangOptions::NonGC) {
3512     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3513     setObjCGCLValueClass(getContext(), E, LV);
3514   }
3515   return LV;
3516 }
3517 
3518 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3519                                        LValueBaseInfo &BaseInfo,
3520                                        TBAAAccessInfo &TBAAInfo,
3521                                        QualType BaseTy, QualType ElTy,
3522                                        bool IsLowerBound) {
3523   LValue BaseLVal;
3524   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3525     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3526     if (BaseTy->isArrayType()) {
3527       Address Addr = BaseLVal.getAddress();
3528       BaseInfo = BaseLVal.getBaseInfo();
3529 
3530       // If the array type was an incomplete type, we need to make sure
3531       // the decay ends up being the right type.
3532       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3533       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3534 
3535       // Note that VLA pointers are always decayed, so we don't need to do
3536       // anything here.
3537       if (!BaseTy->isVariableArrayType()) {
3538         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3539                "Expected pointer to array");
3540         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3541       }
3542 
3543       return CGF.Builder.CreateElementBitCast(Addr,
3544                                               CGF.ConvertTypeForMem(ElTy));
3545     }
3546     LValueBaseInfo TypeBaseInfo;
3547     TBAAAccessInfo TypeTBAAInfo;
3548     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3549                                                   &TypeTBAAInfo);
3550     BaseInfo.mergeForCast(TypeBaseInfo);
3551     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3552     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3553   }
3554   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3555 }
3556 
3557 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3558                                                 bool IsLowerBound) {
3559   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3560   QualType ResultExprTy;
3561   if (auto *AT = getContext().getAsArrayType(BaseTy))
3562     ResultExprTy = AT->getElementType();
3563   else
3564     ResultExprTy = BaseTy->getPointeeType();
3565   llvm::Value *Idx = nullptr;
3566   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3567     // Requesting lower bound or upper bound, but without provided length and
3568     // without ':' symbol for the default length -> length = 1.
3569     // Idx = LowerBound ?: 0;
3570     if (auto *LowerBound = E->getLowerBound()) {
3571       Idx = Builder.CreateIntCast(
3572           EmitScalarExpr(LowerBound), IntPtrTy,
3573           LowerBound->getType()->hasSignedIntegerRepresentation());
3574     } else
3575       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3576   } else {
3577     // Try to emit length or lower bound as constant. If this is possible, 1
3578     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3579     // IR (LB + Len) - 1.
3580     auto &C = CGM.getContext();
3581     auto *Length = E->getLength();
3582     llvm::APSInt ConstLength;
3583     if (Length) {
3584       // Idx = LowerBound + Length - 1;
3585       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3586         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3587         Length = nullptr;
3588       }
3589       auto *LowerBound = E->getLowerBound();
3590       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3591       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3592         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3593         LowerBound = nullptr;
3594       }
3595       if (!Length)
3596         --ConstLength;
3597       else if (!LowerBound)
3598         --ConstLowerBound;
3599 
3600       if (Length || LowerBound) {
3601         auto *LowerBoundVal =
3602             LowerBound
3603                 ? Builder.CreateIntCast(
3604                       EmitScalarExpr(LowerBound), IntPtrTy,
3605                       LowerBound->getType()->hasSignedIntegerRepresentation())
3606                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3607         auto *LengthVal =
3608             Length
3609                 ? Builder.CreateIntCast(
3610                       EmitScalarExpr(Length), IntPtrTy,
3611                       Length->getType()->hasSignedIntegerRepresentation())
3612                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3613         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3614                                 /*HasNUW=*/false,
3615                                 !getLangOpts().isSignedOverflowDefined());
3616         if (Length && LowerBound) {
3617           Idx = Builder.CreateSub(
3618               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3619               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3620         }
3621       } else
3622         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3623     } else {
3624       // Idx = ArraySize - 1;
3625       QualType ArrayTy = BaseTy->isPointerType()
3626                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3627                              : BaseTy;
3628       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3629         Length = VAT->getSizeExpr();
3630         if (Length->isIntegerConstantExpr(ConstLength, C))
3631           Length = nullptr;
3632       } else {
3633         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3634         ConstLength = CAT->getSize();
3635       }
3636       if (Length) {
3637         auto *LengthVal = Builder.CreateIntCast(
3638             EmitScalarExpr(Length), IntPtrTy,
3639             Length->getType()->hasSignedIntegerRepresentation());
3640         Idx = Builder.CreateSub(
3641             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3642             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3643       } else {
3644         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3645         --ConstLength;
3646         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3647       }
3648     }
3649   }
3650   assert(Idx);
3651 
3652   Address EltPtr = Address::invalid();
3653   LValueBaseInfo BaseInfo;
3654   TBAAAccessInfo TBAAInfo;
3655   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3656     // The base must be a pointer, which is not an aggregate.  Emit
3657     // it.  It needs to be emitted first in case it's what captures
3658     // the VLA bounds.
3659     Address Base =
3660         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3661                                 BaseTy, VLA->getElementType(), IsLowerBound);
3662     // The element count here is the total number of non-VLA elements.
3663     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3664 
3665     // Effectively, the multiply by the VLA size is part of the GEP.
3666     // GEP indexes are signed, and scaling an index isn't permitted to
3667     // signed-overflow, so we use the same semantics for our explicit
3668     // multiply.  We suppress this if overflow is not undefined behavior.
3669     if (getLangOpts().isSignedOverflowDefined())
3670       Idx = Builder.CreateMul(Idx, NumElements);
3671     else
3672       Idx = Builder.CreateNSWMul(Idx, NumElements);
3673     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3674                                    !getLangOpts().isSignedOverflowDefined(),
3675                                    /*SignedIndices=*/false, E->getExprLoc());
3676   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3677     // If this is A[i] where A is an array, the frontend will have decayed the
3678     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3679     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3680     // "gep x, i" here.  Emit one "gep A, 0, i".
3681     assert(Array->getType()->isArrayType() &&
3682            "Array to pointer decay must have array source type!");
3683     LValue ArrayLV;
3684     // For simple multidimensional array indexing, set the 'accessed' flag for
3685     // better bounds-checking of the base expression.
3686     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3687       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3688     else
3689       ArrayLV = EmitLValue(Array);
3690 
3691     // Propagate the alignment from the array itself to the result.
3692     EltPtr = emitArraySubscriptGEP(
3693         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3694         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3695         /*SignedIndices=*/false, E->getExprLoc());
3696     BaseInfo = ArrayLV.getBaseInfo();
3697     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3698   } else {
3699     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3700                                            TBAAInfo, BaseTy, ResultExprTy,
3701                                            IsLowerBound);
3702     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3703                                    !getLangOpts().isSignedOverflowDefined(),
3704                                    /*SignedIndices=*/false, E->getExprLoc());
3705   }
3706 
3707   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3708 }
3709 
3710 LValue CodeGenFunction::
3711 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3712   // Emit the base vector as an l-value.
3713   LValue Base;
3714 
3715   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3716   if (E->isArrow()) {
3717     // If it is a pointer to a vector, emit the address and form an lvalue with
3718     // it.
3719     LValueBaseInfo BaseInfo;
3720     TBAAAccessInfo TBAAInfo;
3721     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3722     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3723     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3724     Base.getQuals().removeObjCGCAttr();
3725   } else if (E->getBase()->isGLValue()) {
3726     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3727     // emit the base as an lvalue.
3728     assert(E->getBase()->getType()->isVectorType());
3729     Base = EmitLValue(E->getBase());
3730   } else {
3731     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3732     assert(E->getBase()->getType()->isVectorType() &&
3733            "Result must be a vector");
3734     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3735 
3736     // Store the vector to memory (because LValue wants an address).
3737     Address VecMem = CreateMemTemp(E->getBase()->getType());
3738     Builder.CreateStore(Vec, VecMem);
3739     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3740                           AlignmentSource::Decl);
3741   }
3742 
3743   QualType type =
3744     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3745 
3746   // Encode the element access list into a vector of unsigned indices.
3747   SmallVector<uint32_t, 4> Indices;
3748   E->getEncodedElementAccess(Indices);
3749 
3750   if (Base.isSimple()) {
3751     llvm::Constant *CV =
3752         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3753     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3754                                     Base.getBaseInfo(), TBAAAccessInfo());
3755   }
3756   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3757 
3758   llvm::Constant *BaseElts = Base.getExtVectorElts();
3759   SmallVector<llvm::Constant *, 4> CElts;
3760 
3761   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3762     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3763   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3764   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3765                                   Base.getBaseInfo(), TBAAAccessInfo());
3766 }
3767 
3768 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3769   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3770     EmitIgnoredExpr(E->getBase());
3771     return EmitDeclRefLValue(DRE);
3772   }
3773 
3774   Expr *BaseExpr = E->getBase();
3775   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3776   LValue BaseLV;
3777   if (E->isArrow()) {
3778     LValueBaseInfo BaseInfo;
3779     TBAAAccessInfo TBAAInfo;
3780     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3781     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3782     SanitizerSet SkippedChecks;
3783     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3784     if (IsBaseCXXThis)
3785       SkippedChecks.set(SanitizerKind::Alignment, true);
3786     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3787       SkippedChecks.set(SanitizerKind::Null, true);
3788     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3789                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3790     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3791   } else
3792     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3793 
3794   NamedDecl *ND = E->getMemberDecl();
3795   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3796     LValue LV = EmitLValueForField(BaseLV, Field);
3797     setObjCGCLValueClass(getContext(), E, LV);
3798     return LV;
3799   }
3800 
3801   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3802     return EmitFunctionDeclLValue(*this, E, FD);
3803 
3804   llvm_unreachable("Unhandled member declaration!");
3805 }
3806 
3807 /// Given that we are currently emitting a lambda, emit an l-value for
3808 /// one of its members.
3809 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3810   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3811   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3812   QualType LambdaTagType =
3813     getContext().getTagDeclType(Field->getParent());
3814   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3815   return EmitLValueForField(LambdaLV, Field);
3816 }
3817 
3818 /// Drill down to the storage of a field without walking into
3819 /// reference types.
3820 ///
3821 /// The resulting address doesn't necessarily have the right type.
3822 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3823                                       const FieldDecl *field) {
3824   const RecordDecl *rec = field->getParent();
3825 
3826   unsigned idx =
3827     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3828 
3829   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
3830 }
3831 
3832 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3833   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3834   if (!RD)
3835     return false;
3836 
3837   if (RD->isDynamicClass())
3838     return true;
3839 
3840   for (const auto &Base : RD->bases())
3841     if (hasAnyVptr(Base.getType(), Context))
3842       return true;
3843 
3844   for (const FieldDecl *Field : RD->fields())
3845     if (hasAnyVptr(Field->getType(), Context))
3846       return true;
3847 
3848   return false;
3849 }
3850 
3851 LValue CodeGenFunction::EmitLValueForField(LValue base,
3852                                            const FieldDecl *field) {
3853   LValueBaseInfo BaseInfo = base.getBaseInfo();
3854 
3855   if (field->isBitField()) {
3856     const CGRecordLayout &RL =
3857       CGM.getTypes().getCGRecordLayout(field->getParent());
3858     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3859     Address Addr = base.getAddress();
3860     unsigned Idx = RL.getLLVMFieldNo(field);
3861     if (Idx != 0)
3862       // For structs, we GEP to the field that the record layout suggests.
3863       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
3864     // Get the access type.
3865     llvm::Type *FieldIntTy =
3866       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3867     if (Addr.getElementType() != FieldIntTy)
3868       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3869 
3870     QualType fieldType =
3871       field->getType().withCVRQualifiers(base.getVRQualifiers());
3872     // TODO: Support TBAA for bit fields.
3873     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
3874     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3875                                 TBAAAccessInfo());
3876   }
3877 
3878   // Fields of may-alias structures are may-alias themselves.
3879   // FIXME: this should get propagated down through anonymous structs
3880   // and unions.
3881   QualType FieldType = field->getType();
3882   const RecordDecl *rec = field->getParent();
3883   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3884   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
3885   TBAAAccessInfo FieldTBAAInfo;
3886   if (base.getTBAAInfo().isMayAlias() ||
3887           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
3888     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3889   } else if (rec->isUnion()) {
3890     // TODO: Support TBAA for unions.
3891     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3892   } else {
3893     // If no base type been assigned for the base access, then try to generate
3894     // one for this base lvalue.
3895     FieldTBAAInfo = base.getTBAAInfo();
3896     if (!FieldTBAAInfo.BaseType) {
3897         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3898         assert(!FieldTBAAInfo.Offset &&
3899                "Nonzero offset for an access with no base type!");
3900     }
3901 
3902     // Adjust offset to be relative to the base type.
3903     const ASTRecordLayout &Layout =
3904         getContext().getASTRecordLayout(field->getParent());
3905     unsigned CharWidth = getContext().getCharWidth();
3906     if (FieldTBAAInfo.BaseType)
3907       FieldTBAAInfo.Offset +=
3908           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3909 
3910     // Update the final access type and size.
3911     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3912     FieldTBAAInfo.Size =
3913         getContext().getTypeSizeInChars(FieldType).getQuantity();
3914   }
3915 
3916   Address addr = base.getAddress();
3917   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
3918     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3919         ClassDef->isDynamicClass()) {
3920       // Getting to any field of dynamic object requires stripping dynamic
3921       // information provided by invariant.group.  This is because accessing
3922       // fields may leak the real address of dynamic object, which could result
3923       // in miscompilation when leaked pointer would be compared.
3924       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
3925       addr = Address(stripped, addr.getAlignment());
3926     }
3927   }
3928 
3929   unsigned RecordCVR = base.getVRQualifiers();
3930   if (rec->isUnion()) {
3931     // For unions, there is no pointer adjustment.
3932     assert(!FieldType->isReferenceType() && "union has reference member");
3933     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3934         hasAnyVptr(FieldType, getContext()))
3935       // Because unions can easily skip invariant.barriers, we need to add
3936       // a barrier every time CXXRecord field with vptr is referenced.
3937       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
3938                      addr.getAlignment());
3939   } else {
3940     // For structs, we GEP to the field that the record layout suggests.
3941     addr = emitAddrOfFieldStorage(*this, addr, field);
3942 
3943     // If this is a reference field, load the reference right now.
3944     if (FieldType->isReferenceType()) {
3945       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
3946                                       FieldTBAAInfo);
3947       if (RecordCVR & Qualifiers::Volatile)
3948         RefLVal.getQuals().addVolatile();
3949       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
3950 
3951       // Qualifiers on the struct don't apply to the referencee.
3952       RecordCVR = 0;
3953       FieldType = FieldType->getPointeeType();
3954     }
3955   }
3956 
3957   // Make sure that the address is pointing to the right type.  This is critical
3958   // for both unions and structs.  A union needs a bitcast, a struct element
3959   // will need a bitcast if the LLVM type laid out doesn't match the desired
3960   // type.
3961   addr = Builder.CreateElementBitCast(
3962       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
3963 
3964   if (field->hasAttr<AnnotateAttr>())
3965     addr = EmitFieldAnnotations(field, addr);
3966 
3967   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
3968   LV.getQuals().addCVRQualifiers(RecordCVR);
3969 
3970   // __weak attribute on a field is ignored.
3971   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3972     LV.getQuals().removeObjCGCAttr();
3973 
3974   return LV;
3975 }
3976 
3977 LValue
3978 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3979                                                   const FieldDecl *Field) {
3980   QualType FieldType = Field->getType();
3981 
3982   if (!FieldType->isReferenceType())
3983     return EmitLValueForField(Base, Field);
3984 
3985   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3986 
3987   // Make sure that the address is pointing to the right type.
3988   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3989   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3990 
3991   // TODO: Generate TBAA information that describes this access as a structure
3992   // member access and not just an access to an object of the field's type. This
3993   // should be similar to what we do in EmitLValueForField().
3994   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3995   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
3996   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
3997   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
3998                         CGM.getTBAAInfoForSubobject(Base, FieldType));
3999 }
4000 
4001 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4002   if (E->isFileScope()) {
4003     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4004     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4005   }
4006   if (E->getType()->isVariablyModifiedType())
4007     // make sure to emit the VLA size.
4008     EmitVariablyModifiedType(E->getType());
4009 
4010   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4011   const Expr *InitExpr = E->getInitializer();
4012   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4013 
4014   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4015                    /*Init*/ true);
4016 
4017   return Result;
4018 }
4019 
4020 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4021   if (!E->isGLValue())
4022     // Initializing an aggregate temporary in C++11: T{...}.
4023     return EmitAggExprToLValue(E);
4024 
4025   // An lvalue initializer list must be initializing a reference.
4026   assert(E->isTransparent() && "non-transparent glvalue init list");
4027   return EmitLValue(E->getInit(0));
4028 }
4029 
4030 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4031 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4032 /// LValue is returned and the current block has been terminated.
4033 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4034                                                     const Expr *Operand) {
4035   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4036     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4037     return None;
4038   }
4039 
4040   return CGF.EmitLValue(Operand);
4041 }
4042 
4043 LValue CodeGenFunction::
4044 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4045   if (!expr->isGLValue()) {
4046     // ?: here should be an aggregate.
4047     assert(hasAggregateEvaluationKind(expr->getType()) &&
4048            "Unexpected conditional operator!");
4049     return EmitAggExprToLValue(expr);
4050   }
4051 
4052   OpaqueValueMapping binding(*this, expr);
4053 
4054   const Expr *condExpr = expr->getCond();
4055   bool CondExprBool;
4056   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4057     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4058     if (!CondExprBool) std::swap(live, dead);
4059 
4060     if (!ContainsLabel(dead)) {
4061       // If the true case is live, we need to track its region.
4062       if (CondExprBool)
4063         incrementProfileCounter(expr);
4064       return EmitLValue(live);
4065     }
4066   }
4067 
4068   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4069   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4070   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4071 
4072   ConditionalEvaluation eval(*this);
4073   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4074 
4075   // Any temporaries created here are conditional.
4076   EmitBlock(lhsBlock);
4077   incrementProfileCounter(expr);
4078   eval.begin(*this);
4079   Optional<LValue> lhs =
4080       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4081   eval.end(*this);
4082 
4083   if (lhs && !lhs->isSimple())
4084     return EmitUnsupportedLValue(expr, "conditional operator");
4085 
4086   lhsBlock = Builder.GetInsertBlock();
4087   if (lhs)
4088     Builder.CreateBr(contBlock);
4089 
4090   // Any temporaries created here are conditional.
4091   EmitBlock(rhsBlock);
4092   eval.begin(*this);
4093   Optional<LValue> rhs =
4094       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4095   eval.end(*this);
4096   if (rhs && !rhs->isSimple())
4097     return EmitUnsupportedLValue(expr, "conditional operator");
4098   rhsBlock = Builder.GetInsertBlock();
4099 
4100   EmitBlock(contBlock);
4101 
4102   if (lhs && rhs) {
4103     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4104                                            2, "cond-lvalue");
4105     phi->addIncoming(lhs->getPointer(), lhsBlock);
4106     phi->addIncoming(rhs->getPointer(), rhsBlock);
4107     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4108     AlignmentSource alignSource =
4109       std::max(lhs->getBaseInfo().getAlignmentSource(),
4110                rhs->getBaseInfo().getAlignmentSource());
4111     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4112         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4113     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4114                           TBAAInfo);
4115   } else {
4116     assert((lhs || rhs) &&
4117            "both operands of glvalue conditional are throw-expressions?");
4118     return lhs ? *lhs : *rhs;
4119   }
4120 }
4121 
4122 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4123 /// type. If the cast is to a reference, we can have the usual lvalue result,
4124 /// otherwise if a cast is needed by the code generator in an lvalue context,
4125 /// then it must mean that we need the address of an aggregate in order to
4126 /// access one of its members.  This can happen for all the reasons that casts
4127 /// are permitted with aggregate result, including noop aggregate casts, and
4128 /// cast from scalar to union.
4129 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4130   switch (E->getCastKind()) {
4131   case CK_ToVoid:
4132   case CK_BitCast:
4133   case CK_ArrayToPointerDecay:
4134   case CK_FunctionToPointerDecay:
4135   case CK_NullToMemberPointer:
4136   case CK_NullToPointer:
4137   case CK_IntegralToPointer:
4138   case CK_PointerToIntegral:
4139   case CK_PointerToBoolean:
4140   case CK_VectorSplat:
4141   case CK_IntegralCast:
4142   case CK_BooleanToSignedIntegral:
4143   case CK_IntegralToBoolean:
4144   case CK_IntegralToFloating:
4145   case CK_FloatingToIntegral:
4146   case CK_FloatingToBoolean:
4147   case CK_FloatingCast:
4148   case CK_FloatingRealToComplex:
4149   case CK_FloatingComplexToReal:
4150   case CK_FloatingComplexToBoolean:
4151   case CK_FloatingComplexCast:
4152   case CK_FloatingComplexToIntegralComplex:
4153   case CK_IntegralRealToComplex:
4154   case CK_IntegralComplexToReal:
4155   case CK_IntegralComplexToBoolean:
4156   case CK_IntegralComplexCast:
4157   case CK_IntegralComplexToFloatingComplex:
4158   case CK_DerivedToBaseMemberPointer:
4159   case CK_BaseToDerivedMemberPointer:
4160   case CK_MemberPointerToBoolean:
4161   case CK_ReinterpretMemberPointer:
4162   case CK_AnyPointerToBlockPointerCast:
4163   case CK_ARCProduceObject:
4164   case CK_ARCConsumeObject:
4165   case CK_ARCReclaimReturnedObject:
4166   case CK_ARCExtendBlockObject:
4167   case CK_CopyAndAutoreleaseBlockObject:
4168   case CK_IntToOCLSampler:
4169   case CK_FixedPointCast:
4170   case CK_FixedPointToBoolean:
4171   case CK_FixedPointToIntegral:
4172   case CK_IntegralToFixedPoint:
4173     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4174 
4175   case CK_Dependent:
4176     llvm_unreachable("dependent cast kind in IR gen!");
4177 
4178   case CK_BuiltinFnToFnPtr:
4179     llvm_unreachable("builtin functions are handled elsewhere");
4180 
4181   // These are never l-values; just use the aggregate emission code.
4182   case CK_NonAtomicToAtomic:
4183   case CK_AtomicToNonAtomic:
4184     return EmitAggExprToLValue(E);
4185 
4186   case CK_Dynamic: {
4187     LValue LV = EmitLValue(E->getSubExpr());
4188     Address V = LV.getAddress();
4189     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4190     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4191   }
4192 
4193   case CK_ConstructorConversion:
4194   case CK_UserDefinedConversion:
4195   case CK_CPointerToObjCPointerCast:
4196   case CK_BlockPointerToObjCPointerCast:
4197   case CK_NoOp:
4198   case CK_LValueToRValue:
4199     return EmitLValue(E->getSubExpr());
4200 
4201   case CK_UncheckedDerivedToBase:
4202   case CK_DerivedToBase: {
4203     const RecordType *DerivedClassTy =
4204       E->getSubExpr()->getType()->getAs<RecordType>();
4205     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4206 
4207     LValue LV = EmitLValue(E->getSubExpr());
4208     Address This = LV.getAddress();
4209 
4210     // Perform the derived-to-base conversion
4211     Address Base = GetAddressOfBaseClass(
4212         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4213         /*NullCheckValue=*/false, E->getExprLoc());
4214 
4215     // TODO: Support accesses to members of base classes in TBAA. For now, we
4216     // conservatively pretend that the complete object is of the base class
4217     // type.
4218     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4219                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4220   }
4221   case CK_ToUnion:
4222     return EmitAggExprToLValue(E);
4223   case CK_BaseToDerived: {
4224     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4225     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4226 
4227     LValue LV = EmitLValue(E->getSubExpr());
4228 
4229     // Perform the base-to-derived conversion
4230     Address Derived =
4231       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4232                                E->path_begin(), E->path_end(),
4233                                /*NullCheckValue=*/false);
4234 
4235     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4236     // performed and the object is not of the derived type.
4237     if (sanitizePerformTypeCheck())
4238       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4239                     Derived.getPointer(), E->getType());
4240 
4241     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4242       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4243                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4244                                 E->getBeginLoc());
4245 
4246     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4247                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4248   }
4249   case CK_LValueBitCast: {
4250     // This must be a reinterpret_cast (or c-style equivalent).
4251     const auto *CE = cast<ExplicitCastExpr>(E);
4252 
4253     CGM.EmitExplicitCastExprType(CE, this);
4254     LValue LV = EmitLValue(E->getSubExpr());
4255     Address V = Builder.CreateBitCast(LV.getAddress(),
4256                                       ConvertType(CE->getTypeAsWritten()));
4257 
4258     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4259       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4260                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4261                                 E->getBeginLoc());
4262 
4263     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4264                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4265   }
4266   case CK_AddressSpaceConversion: {
4267     LValue LV = EmitLValue(E->getSubExpr());
4268     QualType DestTy = getContext().getPointerType(E->getType());
4269     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4270         *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(),
4271         E->getType().getAddressSpace(), ConvertType(DestTy));
4272     return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()),
4273                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4274   }
4275   case CK_ObjCObjectLValueCast: {
4276     LValue LV = EmitLValue(E->getSubExpr());
4277     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4278                                              ConvertType(E->getType()));
4279     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4280                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4281   }
4282   case CK_ZeroToOCLOpaqueType:
4283     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4284   }
4285 
4286   llvm_unreachable("Unhandled lvalue cast kind?");
4287 }
4288 
4289 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4290   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4291   return getOrCreateOpaqueLValueMapping(e);
4292 }
4293 
4294 LValue
4295 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4296   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4297 
4298   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4299       it = OpaqueLValues.find(e);
4300 
4301   if (it != OpaqueLValues.end())
4302     return it->second;
4303 
4304   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4305   return EmitLValue(e->getSourceExpr());
4306 }
4307 
4308 RValue
4309 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4310   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4311 
4312   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4313       it = OpaqueRValues.find(e);
4314 
4315   if (it != OpaqueRValues.end())
4316     return it->second;
4317 
4318   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4319   return EmitAnyExpr(e->getSourceExpr());
4320 }
4321 
4322 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4323                                            const FieldDecl *FD,
4324                                            SourceLocation Loc) {
4325   QualType FT = FD->getType();
4326   LValue FieldLV = EmitLValueForField(LV, FD);
4327   switch (getEvaluationKind(FT)) {
4328   case TEK_Complex:
4329     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4330   case TEK_Aggregate:
4331     return FieldLV.asAggregateRValue();
4332   case TEK_Scalar:
4333     // This routine is used to load fields one-by-one to perform a copy, so
4334     // don't load reference fields.
4335     if (FD->getType()->isReferenceType())
4336       return RValue::get(FieldLV.getPointer());
4337     return EmitLoadOfLValue(FieldLV, Loc);
4338   }
4339   llvm_unreachable("bad evaluation kind");
4340 }
4341 
4342 //===--------------------------------------------------------------------===//
4343 //                             Expression Emission
4344 //===--------------------------------------------------------------------===//
4345 
4346 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4347                                      ReturnValueSlot ReturnValue) {
4348   // Builtins never have block type.
4349   if (E->getCallee()->getType()->isBlockPointerType())
4350     return EmitBlockCallExpr(E, ReturnValue);
4351 
4352   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4353     return EmitCXXMemberCallExpr(CE, ReturnValue);
4354 
4355   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4356     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4357 
4358   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4359     if (const CXXMethodDecl *MD =
4360           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4361       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4362 
4363   CGCallee callee = EmitCallee(E->getCallee());
4364 
4365   if (callee.isBuiltin()) {
4366     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4367                            E, ReturnValue);
4368   }
4369 
4370   if (callee.isPseudoDestructor()) {
4371     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4372   }
4373 
4374   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4375 }
4376 
4377 /// Emit a CallExpr without considering whether it might be a subclass.
4378 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4379                                            ReturnValueSlot ReturnValue) {
4380   CGCallee Callee = EmitCallee(E->getCallee());
4381   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4382 }
4383 
4384 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4385   if (auto builtinID = FD->getBuiltinID()) {
4386     return CGCallee::forBuiltin(builtinID, FD);
4387   }
4388 
4389   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4390   return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4391 }
4392 
4393 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4394   E = E->IgnoreParens();
4395 
4396   // Look through function-to-pointer decay.
4397   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4398     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4399         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4400       return EmitCallee(ICE->getSubExpr());
4401     }
4402 
4403   // Resolve direct calls.
4404   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4405     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4406       return EmitDirectCallee(*this, FD);
4407     }
4408   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4409     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4410       EmitIgnoredExpr(ME->getBase());
4411       return EmitDirectCallee(*this, FD);
4412     }
4413 
4414   // Look through template substitutions.
4415   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4416     return EmitCallee(NTTP->getReplacement());
4417 
4418   // Treat pseudo-destructor calls differently.
4419   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4420     return CGCallee::forPseudoDestructor(PDE);
4421   }
4422 
4423   // Otherwise, we have an indirect reference.
4424   llvm::Value *calleePtr;
4425   QualType functionType;
4426   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4427     calleePtr = EmitScalarExpr(E);
4428     functionType = ptrType->getPointeeType();
4429   } else {
4430     functionType = E->getType();
4431     calleePtr = EmitLValue(E).getPointer();
4432   }
4433   assert(functionType->isFunctionType());
4434 
4435   GlobalDecl GD;
4436   if (const auto *VD =
4437           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4438     GD = GlobalDecl(VD);
4439 
4440   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4441   CGCallee callee(calleeInfo, calleePtr);
4442   return callee;
4443 }
4444 
4445 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4446   // Comma expressions just emit their LHS then their RHS as an l-value.
4447   if (E->getOpcode() == BO_Comma) {
4448     EmitIgnoredExpr(E->getLHS());
4449     EnsureInsertPoint();
4450     return EmitLValue(E->getRHS());
4451   }
4452 
4453   if (E->getOpcode() == BO_PtrMemD ||
4454       E->getOpcode() == BO_PtrMemI)
4455     return EmitPointerToDataMemberBinaryExpr(E);
4456 
4457   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4458 
4459   // Note that in all of these cases, __block variables need the RHS
4460   // evaluated first just in case the variable gets moved by the RHS.
4461 
4462   switch (getEvaluationKind(E->getType())) {
4463   case TEK_Scalar: {
4464     switch (E->getLHS()->getType().getObjCLifetime()) {
4465     case Qualifiers::OCL_Strong:
4466       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4467 
4468     case Qualifiers::OCL_Autoreleasing:
4469       return EmitARCStoreAutoreleasing(E).first;
4470 
4471     // No reason to do any of these differently.
4472     case Qualifiers::OCL_None:
4473     case Qualifiers::OCL_ExplicitNone:
4474     case Qualifiers::OCL_Weak:
4475       break;
4476     }
4477 
4478     RValue RV = EmitAnyExpr(E->getRHS());
4479     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4480     if (RV.isScalar())
4481       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4482     EmitStoreThroughLValue(RV, LV);
4483     return LV;
4484   }
4485 
4486   case TEK_Complex:
4487     return EmitComplexAssignmentLValue(E);
4488 
4489   case TEK_Aggregate:
4490     return EmitAggExprToLValue(E);
4491   }
4492   llvm_unreachable("bad evaluation kind");
4493 }
4494 
4495 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4496   RValue RV = EmitCallExpr(E);
4497 
4498   if (!RV.isScalar())
4499     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4500                           AlignmentSource::Decl);
4501 
4502   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4503          "Can't have a scalar return unless the return type is a "
4504          "reference type!");
4505 
4506   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4507 }
4508 
4509 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4510   // FIXME: This shouldn't require another copy.
4511   return EmitAggExprToLValue(E);
4512 }
4513 
4514 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4515   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4516          && "binding l-value to type which needs a temporary");
4517   AggValueSlot Slot = CreateAggTemp(E->getType());
4518   EmitCXXConstructExpr(E, Slot);
4519   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4520 }
4521 
4522 LValue
4523 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4524   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4525 }
4526 
4527 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4528   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4529                                       ConvertType(E->getType()));
4530 }
4531 
4532 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4533   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4534                         AlignmentSource::Decl);
4535 }
4536 
4537 LValue
4538 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4539   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4540   Slot.setExternallyDestructed();
4541   EmitAggExpr(E->getSubExpr(), Slot);
4542   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4543   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4544 }
4545 
4546 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4547   RValue RV = EmitObjCMessageExpr(E);
4548 
4549   if (!RV.isScalar())
4550     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4551                           AlignmentSource::Decl);
4552 
4553   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4554          "Can't have a scalar return unless the return type is a "
4555          "reference type!");
4556 
4557   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4558 }
4559 
4560 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4561   Address V =
4562     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4563   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4564 }
4565 
4566 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4567                                              const ObjCIvarDecl *Ivar) {
4568   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4569 }
4570 
4571 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4572                                           llvm::Value *BaseValue,
4573                                           const ObjCIvarDecl *Ivar,
4574                                           unsigned CVRQualifiers) {
4575   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4576                                                    Ivar, CVRQualifiers);
4577 }
4578 
4579 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4580   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4581   llvm::Value *BaseValue = nullptr;
4582   const Expr *BaseExpr = E->getBase();
4583   Qualifiers BaseQuals;
4584   QualType ObjectTy;
4585   if (E->isArrow()) {
4586     BaseValue = EmitScalarExpr(BaseExpr);
4587     ObjectTy = BaseExpr->getType()->getPointeeType();
4588     BaseQuals = ObjectTy.getQualifiers();
4589   } else {
4590     LValue BaseLV = EmitLValue(BaseExpr);
4591     BaseValue = BaseLV.getPointer();
4592     ObjectTy = BaseExpr->getType();
4593     BaseQuals = ObjectTy.getQualifiers();
4594   }
4595 
4596   LValue LV =
4597     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4598                       BaseQuals.getCVRQualifiers());
4599   setObjCGCLValueClass(getContext(), E, LV);
4600   return LV;
4601 }
4602 
4603 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4604   // Can only get l-value for message expression returning aggregate type
4605   RValue RV = EmitAnyExprToTemp(E);
4606   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4607                         AlignmentSource::Decl);
4608 }
4609 
4610 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4611                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4612                                  llvm::Value *Chain) {
4613   // Get the actual function type. The callee type will always be a pointer to
4614   // function type or a block pointer type.
4615   assert(CalleeType->isFunctionPointerType() &&
4616          "Call must have function pointer type!");
4617 
4618   const Decl *TargetDecl =
4619       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4620 
4621   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4622     // We can only guarantee that a function is called from the correct
4623     // context/function based on the appropriate target attributes,
4624     // so only check in the case where we have both always_inline and target
4625     // since otherwise we could be making a conditional call after a check for
4626     // the proper cpu features (and it won't cause code generation issues due to
4627     // function based code generation).
4628     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4629         TargetDecl->hasAttr<TargetAttr>())
4630       checkTargetFeatures(E, FD);
4631 
4632   CalleeType = getContext().getCanonicalType(CalleeType);
4633 
4634   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4635 
4636   CGCallee Callee = OrigCallee;
4637 
4638   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4639       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4640     if (llvm::Constant *PrefixSig =
4641             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4642       SanitizerScope SanScope(this);
4643       // Remove any (C++17) exception specifications, to allow calling e.g. a
4644       // noexcept function through a non-noexcept pointer.
4645       auto ProtoTy =
4646         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4647       llvm::Constant *FTRTTIConst =
4648           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4649       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4650       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4651           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4652 
4653       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4654 
4655       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4656           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4657       llvm::Value *CalleeSigPtr =
4658           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4659       llvm::Value *CalleeSig =
4660           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4661       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4662 
4663       llvm::BasicBlock *Cont = createBasicBlock("cont");
4664       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4665       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4666 
4667       EmitBlock(TypeCheck);
4668       llvm::Value *CalleeRTTIPtr =
4669           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4670       llvm::Value *CalleeRTTIEncoded =
4671           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4672       llvm::Value *CalleeRTTI =
4673           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4674       llvm::Value *CalleeRTTIMatch =
4675           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4676       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4677                                       EmitCheckTypeDescriptor(CalleeType)};
4678       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4679                 SanitizerHandler::FunctionTypeMismatch, StaticData,
4680                 {CalleePtr, CalleeRTTI, FTRTTIConst});
4681 
4682       Builder.CreateBr(Cont);
4683       EmitBlock(Cont);
4684     }
4685   }
4686 
4687   const auto *FnType = cast<FunctionType>(PointeeType);
4688 
4689   // If we are checking indirect calls and this call is indirect, check that the
4690   // function pointer is a member of the bit set for the function type.
4691   if (SanOpts.has(SanitizerKind::CFIICall) &&
4692       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4693     SanitizerScope SanScope(this);
4694     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4695 
4696     llvm::Metadata *MD;
4697     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4698       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4699     else
4700       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4701 
4702     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4703 
4704     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4705     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4706     llvm::Value *TypeTest = Builder.CreateCall(
4707         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4708 
4709     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4710     llvm::Constant *StaticData[] = {
4711         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4712         EmitCheckSourceLocation(E->getBeginLoc()),
4713         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4714     };
4715     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4716       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4717                            CastedCallee, StaticData);
4718     } else {
4719       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4720                 SanitizerHandler::CFICheckFail, StaticData,
4721                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4722     }
4723   }
4724 
4725   CallArgList Args;
4726   if (Chain)
4727     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4728              CGM.getContext().VoidPtrTy);
4729 
4730   // C++17 requires that we evaluate arguments to a call using assignment syntax
4731   // right-to-left, and that we evaluate arguments to certain other operators
4732   // left-to-right. Note that we allow this to override the order dictated by
4733   // the calling convention on the MS ABI, which means that parameter
4734   // destruction order is not necessarily reverse construction order.
4735   // FIXME: Revisit this based on C++ committee response to unimplementability.
4736   EvaluationOrder Order = EvaluationOrder::Default;
4737   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4738     if (OCE->isAssignmentOp())
4739       Order = EvaluationOrder::ForceRightToLeft;
4740     else {
4741       switch (OCE->getOperator()) {
4742       case OO_LessLess:
4743       case OO_GreaterGreater:
4744       case OO_AmpAmp:
4745       case OO_PipePipe:
4746       case OO_Comma:
4747       case OO_ArrowStar:
4748         Order = EvaluationOrder::ForceLeftToRight;
4749         break;
4750       default:
4751         break;
4752       }
4753     }
4754   }
4755 
4756   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4757                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4758 
4759   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4760       Args, FnType, /*isChainCall=*/Chain);
4761 
4762   // C99 6.5.2.2p6:
4763   //   If the expression that denotes the called function has a type
4764   //   that does not include a prototype, [the default argument
4765   //   promotions are performed]. If the number of arguments does not
4766   //   equal the number of parameters, the behavior is undefined. If
4767   //   the function is defined with a type that includes a prototype,
4768   //   and either the prototype ends with an ellipsis (, ...) or the
4769   //   types of the arguments after promotion are not compatible with
4770   //   the types of the parameters, the behavior is undefined. If the
4771   //   function is defined with a type that does not include a
4772   //   prototype, and the types of the arguments after promotion are
4773   //   not compatible with those of the parameters after promotion,
4774   //   the behavior is undefined [except in some trivial cases].
4775   // That is, in the general case, we should assume that a call
4776   // through an unprototyped function type works like a *non-variadic*
4777   // call.  The way we make this work is to cast to the exact type
4778   // of the promoted arguments.
4779   //
4780   // Chain calls use this same code path to add the invisible chain parameter
4781   // to the function type.
4782   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4783     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4784     CalleeTy = CalleeTy->getPointerTo();
4785 
4786     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4787     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4788     Callee.setFunctionPointer(CalleePtr);
4789   }
4790 
4791   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc());
4792 }
4793 
4794 LValue CodeGenFunction::
4795 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4796   Address BaseAddr = Address::invalid();
4797   if (E->getOpcode() == BO_PtrMemI) {
4798     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4799   } else {
4800     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4801   }
4802 
4803   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4804 
4805   const MemberPointerType *MPT
4806     = E->getRHS()->getType()->getAs<MemberPointerType>();
4807 
4808   LValueBaseInfo BaseInfo;
4809   TBAAAccessInfo TBAAInfo;
4810   Address MemberAddr =
4811     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4812                                     &TBAAInfo);
4813 
4814   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4815 }
4816 
4817 /// Given the address of a temporary variable, produce an r-value of
4818 /// its type.
4819 RValue CodeGenFunction::convertTempToRValue(Address addr,
4820                                             QualType type,
4821                                             SourceLocation loc) {
4822   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4823   switch (getEvaluationKind(type)) {
4824   case TEK_Complex:
4825     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4826   case TEK_Aggregate:
4827     return lvalue.asAggregateRValue();
4828   case TEK_Scalar:
4829     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4830   }
4831   llvm_unreachable("bad evaluation kind");
4832 }
4833 
4834 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4835   assert(Val->getType()->isFPOrFPVectorTy());
4836   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4837     return;
4838 
4839   llvm::MDBuilder MDHelper(getLLVMContext());
4840   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4841 
4842   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4843 }
4844 
4845 namespace {
4846   struct LValueOrRValue {
4847     LValue LV;
4848     RValue RV;
4849   };
4850 }
4851 
4852 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4853                                            const PseudoObjectExpr *E,
4854                                            bool forLValue,
4855                                            AggValueSlot slot) {
4856   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4857 
4858   // Find the result expression, if any.
4859   const Expr *resultExpr = E->getResultExpr();
4860   LValueOrRValue result;
4861 
4862   for (PseudoObjectExpr::const_semantics_iterator
4863          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4864     const Expr *semantic = *i;
4865 
4866     // If this semantic expression is an opaque value, bind it
4867     // to the result of its source expression.
4868     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4869       // Skip unique OVEs.
4870       if (ov->isUnique()) {
4871         assert(ov != resultExpr &&
4872                "A unique OVE cannot be used as the result expression");
4873         continue;
4874       }
4875 
4876       // If this is the result expression, we may need to evaluate
4877       // directly into the slot.
4878       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4879       OVMA opaqueData;
4880       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4881           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4882         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4883         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4884                                        AlignmentSource::Decl);
4885         opaqueData = OVMA::bind(CGF, ov, LV);
4886         result.RV = slot.asRValue();
4887 
4888       // Otherwise, emit as normal.
4889       } else {
4890         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4891 
4892         // If this is the result, also evaluate the result now.
4893         if (ov == resultExpr) {
4894           if (forLValue)
4895             result.LV = CGF.EmitLValue(ov);
4896           else
4897             result.RV = CGF.EmitAnyExpr(ov, slot);
4898         }
4899       }
4900 
4901       opaques.push_back(opaqueData);
4902 
4903     // Otherwise, if the expression is the result, evaluate it
4904     // and remember the result.
4905     } else if (semantic == resultExpr) {
4906       if (forLValue)
4907         result.LV = CGF.EmitLValue(semantic);
4908       else
4909         result.RV = CGF.EmitAnyExpr(semantic, slot);
4910 
4911     // Otherwise, evaluate the expression in an ignored context.
4912     } else {
4913       CGF.EmitIgnoredExpr(semantic);
4914     }
4915   }
4916 
4917   // Unbind all the opaques now.
4918   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4919     opaques[i].unbind(CGF);
4920 
4921   return result;
4922 }
4923 
4924 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4925                                                AggValueSlot slot) {
4926   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4927 }
4928 
4929 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4930   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4931 }
4932