1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 65 CharUnits Align, 66 const Twine &Name, 67 llvm::Value *ArraySize) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getQuantity()); 70 return Address(Alloca, Align); 71 } 72 73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 74 /// block. The alloca is casted to default address space if necessary. 75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 76 const Twine &Name, 77 llvm::Value *ArraySize, 78 Address *AllocaAddr) { 79 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 80 if (AllocaAddr) 81 *AllocaAddr = Alloca; 82 llvm::Value *V = Alloca.getPointer(); 83 // Alloca always returns a pointer in alloca address space, which may 84 // be different from the type defined by the language. For example, 85 // in C++ the auto variables are in the default address space. Therefore 86 // cast alloca to the default address space when necessary. 87 if (getASTAllocaAddressSpace() != LangAS::Default) { 88 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 89 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 90 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 91 // otherwise alloca is inserted at the current insertion point of the 92 // builder. 93 if (!ArraySize) 94 Builder.SetInsertPoint(AllocaInsertPt); 95 V = getTargetHooks().performAddrSpaceCast( 96 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 97 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 98 } 99 100 return Address(V, Align); 101 } 102 103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 105 /// insertion point of the builder. 106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 107 const Twine &Name, 108 llvm::Value *ArraySize) { 109 if (ArraySize) 110 return Builder.CreateAlloca(Ty, ArraySize, Name); 111 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 112 ArraySize, Name, AllocaInsertPt); 113 } 114 115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 116 /// default alignment of the corresponding LLVM type, which is *not* 117 /// guaranteed to be related in any way to the expected alignment of 118 /// an AST type that might have been lowered to Ty. 119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 120 const Twine &Name) { 121 CharUnits Align = 122 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 123 return CreateTempAlloca(Ty, Align, Name); 124 } 125 126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 127 assert(isa<llvm::AllocaInst>(Var.getPointer())); 128 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 129 Store->setAlignment(Var.getAlignment().getQuantity()); 130 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 131 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 132 } 133 134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 135 CharUnits Align = getContext().getTypeAlignInChars(Ty); 136 return CreateTempAlloca(ConvertType(Ty), Align, Name); 137 } 138 139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 140 Address *Alloca) { 141 // FIXME: Should we prefer the preferred type alignment here? 142 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 143 } 144 145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 146 const Twine &Name, Address *Alloca) { 147 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 148 /*ArraySize=*/nullptr, Alloca); 149 } 150 151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 152 const Twine &Name) { 153 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 154 } 155 156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 157 const Twine &Name) { 158 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 159 Name); 160 } 161 162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 163 /// expression and compare the result against zero, returning an Int1Ty value. 164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 165 PGO.setCurrentStmt(E); 166 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 167 llvm::Value *MemPtr = EmitScalarExpr(E); 168 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 169 } 170 171 QualType BoolTy = getContext().BoolTy; 172 SourceLocation Loc = E->getExprLoc(); 173 if (!E->getType()->isAnyComplexType()) 174 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 175 176 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 177 Loc); 178 } 179 180 /// EmitIgnoredExpr - Emit code to compute the specified expression, 181 /// ignoring the result. 182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 183 if (E->isRValue()) 184 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 185 186 // Just emit it as an l-value and drop the result. 187 EmitLValue(E); 188 } 189 190 /// EmitAnyExpr - Emit code to compute the specified expression which 191 /// can have any type. The result is returned as an RValue struct. 192 /// If this is an aggregate expression, AggSlot indicates where the 193 /// result should be returned. 194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 195 AggValueSlot aggSlot, 196 bool ignoreResult) { 197 switch (getEvaluationKind(E->getType())) { 198 case TEK_Scalar: 199 return RValue::get(EmitScalarExpr(E, ignoreResult)); 200 case TEK_Complex: 201 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 202 case TEK_Aggregate: 203 if (!ignoreResult && aggSlot.isIgnored()) 204 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 205 EmitAggExpr(E, aggSlot); 206 return aggSlot.asRValue(); 207 } 208 llvm_unreachable("bad evaluation kind"); 209 } 210 211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 212 /// always be accessible even if no aggregate location is provided. 213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 214 AggValueSlot AggSlot = AggValueSlot::ignored(); 215 216 if (hasAggregateEvaluationKind(E->getType())) 217 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 218 return EmitAnyExpr(E, AggSlot); 219 } 220 221 /// EmitAnyExprToMem - Evaluate an expression into a given memory 222 /// location. 223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 224 Address Location, 225 Qualifiers Quals, 226 bool IsInit) { 227 // FIXME: This function should take an LValue as an argument. 228 switch (getEvaluationKind(E->getType())) { 229 case TEK_Complex: 230 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 231 /*isInit*/ false); 232 return; 233 234 case TEK_Aggregate: { 235 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 236 AggValueSlot::IsDestructed_t(IsInit), 237 AggValueSlot::DoesNotNeedGCBarriers, 238 AggValueSlot::IsAliased_t(!IsInit), 239 AggValueSlot::MayOverlap)); 240 return; 241 } 242 243 case TEK_Scalar: { 244 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 245 LValue LV = MakeAddrLValue(Location, E->getType()); 246 EmitStoreThroughLValue(RV, LV); 247 return; 248 } 249 } 250 llvm_unreachable("bad evaluation kind"); 251 } 252 253 static void 254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 255 const Expr *E, Address ReferenceTemporary) { 256 // Objective-C++ ARC: 257 // If we are binding a reference to a temporary that has ownership, we 258 // need to perform retain/release operations on the temporary. 259 // 260 // FIXME: This should be looking at E, not M. 261 if (auto Lifetime = M->getType().getObjCLifetime()) { 262 switch (Lifetime) { 263 case Qualifiers::OCL_None: 264 case Qualifiers::OCL_ExplicitNone: 265 // Carry on to normal cleanup handling. 266 break; 267 268 case Qualifiers::OCL_Autoreleasing: 269 // Nothing to do; cleaned up by an autorelease pool. 270 return; 271 272 case Qualifiers::OCL_Strong: 273 case Qualifiers::OCL_Weak: 274 switch (StorageDuration Duration = M->getStorageDuration()) { 275 case SD_Static: 276 // Note: we intentionally do not register a cleanup to release 277 // the object on program termination. 278 return; 279 280 case SD_Thread: 281 // FIXME: We should probably register a cleanup in this case. 282 return; 283 284 case SD_Automatic: 285 case SD_FullExpression: 286 CodeGenFunction::Destroyer *Destroy; 287 CleanupKind CleanupKind; 288 if (Lifetime == Qualifiers::OCL_Strong) { 289 const ValueDecl *VD = M->getExtendingDecl(); 290 bool Precise = 291 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 292 CleanupKind = CGF.getARCCleanupKind(); 293 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 294 : &CodeGenFunction::destroyARCStrongImprecise; 295 } else { 296 // __weak objects always get EH cleanups; otherwise, exceptions 297 // could cause really nasty crashes instead of mere leaks. 298 CleanupKind = NormalAndEHCleanup; 299 Destroy = &CodeGenFunction::destroyARCWeak; 300 } 301 if (Duration == SD_FullExpression) 302 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 303 M->getType(), *Destroy, 304 CleanupKind & EHCleanup); 305 else 306 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 307 M->getType(), 308 *Destroy, CleanupKind & EHCleanup); 309 return; 310 311 case SD_Dynamic: 312 llvm_unreachable("temporary cannot have dynamic storage duration"); 313 } 314 llvm_unreachable("unknown storage duration"); 315 } 316 } 317 318 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 319 if (const RecordType *RT = 320 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 321 // Get the destructor for the reference temporary. 322 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 323 if (!ClassDecl->hasTrivialDestructor()) 324 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 325 } 326 327 if (!ReferenceTemporaryDtor) 328 return; 329 330 // Call the destructor for the temporary. 331 switch (M->getStorageDuration()) { 332 case SD_Static: 333 case SD_Thread: { 334 llvm::Constant *CleanupFn; 335 llvm::Constant *CleanupArg; 336 if (E->getType()->isArrayType()) { 337 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 338 ReferenceTemporary, E->getType(), 339 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 340 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 341 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 342 } else { 343 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 344 StructorType::Complete); 345 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 346 } 347 CGF.CGM.getCXXABI().registerGlobalDtor( 348 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 349 break; 350 } 351 352 case SD_FullExpression: 353 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 354 CodeGenFunction::destroyCXXObject, 355 CGF.getLangOpts().Exceptions); 356 break; 357 358 case SD_Automatic: 359 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 360 ReferenceTemporary, E->getType(), 361 CodeGenFunction::destroyCXXObject, 362 CGF.getLangOpts().Exceptions); 363 break; 364 365 case SD_Dynamic: 366 llvm_unreachable("temporary cannot have dynamic storage duration"); 367 } 368 } 369 370 static Address createReferenceTemporary(CodeGenFunction &CGF, 371 const MaterializeTemporaryExpr *M, 372 const Expr *Inner, 373 Address *Alloca = nullptr) { 374 auto &TCG = CGF.getTargetHooks(); 375 switch (M->getStorageDuration()) { 376 case SD_FullExpression: 377 case SD_Automatic: { 378 // If we have a constant temporary array or record try to promote it into a 379 // constant global under the same rules a normal constant would've been 380 // promoted. This is easier on the optimizer and generally emits fewer 381 // instructions. 382 QualType Ty = Inner->getType(); 383 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 384 (Ty->isArrayType() || Ty->isRecordType()) && 385 CGF.CGM.isTypeConstant(Ty, true)) 386 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 387 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 388 auto AS = AddrSpace.getValue(); 389 auto *GV = new llvm::GlobalVariable( 390 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 391 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 392 llvm::GlobalValue::NotThreadLocal, 393 CGF.getContext().getTargetAddressSpace(AS)); 394 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 395 GV->setAlignment(alignment.getQuantity()); 396 llvm::Constant *C = GV; 397 if (AS != LangAS::Default) 398 C = TCG.performAddrSpaceCast( 399 CGF.CGM, GV, AS, LangAS::Default, 400 GV->getValueType()->getPointerTo( 401 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 402 // FIXME: Should we put the new global into a COMDAT? 403 return Address(C, alignment); 404 } 405 } 406 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 407 } 408 case SD_Thread: 409 case SD_Static: 410 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 411 412 case SD_Dynamic: 413 llvm_unreachable("temporary can't have dynamic storage duration"); 414 } 415 llvm_unreachable("unknown storage duration"); 416 } 417 418 LValue CodeGenFunction:: 419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 420 const Expr *E = M->GetTemporaryExpr(); 421 422 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 423 // as that will cause the lifetime adjustment to be lost for ARC 424 auto ownership = M->getType().getObjCLifetime(); 425 if (ownership != Qualifiers::OCL_None && 426 ownership != Qualifiers::OCL_ExplicitNone) { 427 Address Object = createReferenceTemporary(*this, M, E); 428 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 429 Object = Address(llvm::ConstantExpr::getBitCast(Var, 430 ConvertTypeForMem(E->getType()) 431 ->getPointerTo(Object.getAddressSpace())), 432 Object.getAlignment()); 433 434 // createReferenceTemporary will promote the temporary to a global with a 435 // constant initializer if it can. It can only do this to a value of 436 // ARC-manageable type if the value is global and therefore "immune" to 437 // ref-counting operations. Therefore we have no need to emit either a 438 // dynamic initialization or a cleanup and we can just return the address 439 // of the temporary. 440 if (Var->hasInitializer()) 441 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 442 443 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 444 } 445 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 446 AlignmentSource::Decl); 447 448 switch (getEvaluationKind(E->getType())) { 449 default: llvm_unreachable("expected scalar or aggregate expression"); 450 case TEK_Scalar: 451 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 452 break; 453 case TEK_Aggregate: { 454 EmitAggExpr(E, AggValueSlot::forAddr(Object, 455 E->getType().getQualifiers(), 456 AggValueSlot::IsDestructed, 457 AggValueSlot::DoesNotNeedGCBarriers, 458 AggValueSlot::IsNotAliased, 459 AggValueSlot::DoesNotOverlap)); 460 break; 461 } 462 } 463 464 pushTemporaryCleanup(*this, M, E, Object); 465 return RefTempDst; 466 } 467 468 SmallVector<const Expr *, 2> CommaLHSs; 469 SmallVector<SubobjectAdjustment, 2> Adjustments; 470 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 471 472 for (const auto &Ignored : CommaLHSs) 473 EmitIgnoredExpr(Ignored); 474 475 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 476 if (opaque->getType()->isRecordType()) { 477 assert(Adjustments.empty()); 478 return EmitOpaqueValueLValue(opaque); 479 } 480 } 481 482 // Create and initialize the reference temporary. 483 Address Alloca = Address::invalid(); 484 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 485 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 486 Object.getPointer()->stripPointerCasts())) { 487 Object = Address(llvm::ConstantExpr::getBitCast( 488 cast<llvm::Constant>(Object.getPointer()), 489 ConvertTypeForMem(E->getType())->getPointerTo()), 490 Object.getAlignment()); 491 // If the temporary is a global and has a constant initializer or is a 492 // constant temporary that we promoted to a global, we may have already 493 // initialized it. 494 if (!Var->hasInitializer()) { 495 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 496 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 497 } 498 } else { 499 switch (M->getStorageDuration()) { 500 case SD_Automatic: 501 if (auto *Size = EmitLifetimeStart( 502 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 503 Alloca.getPointer())) { 504 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 505 Alloca, Size); 506 } 507 break; 508 509 case SD_FullExpression: { 510 if (!ShouldEmitLifetimeMarkers) 511 break; 512 513 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 514 // marker. Instead, start the lifetime of a conditional temporary earlier 515 // so that it's unconditional. Don't do this in ASan's use-after-scope 516 // mode so that it gets the more precise lifetime marks. If the type has 517 // a non-trivial destructor, we'll have a cleanup block for it anyway, 518 // so this typically doesn't help; skip it in that case. 519 ConditionalEvaluation *OldConditional = nullptr; 520 CGBuilderTy::InsertPoint OldIP; 521 if (isInConditionalBranch() && !E->getType().isDestructedType() && 522 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 523 OldConditional = OutermostConditional; 524 OutermostConditional = nullptr; 525 526 OldIP = Builder.saveIP(); 527 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 528 Builder.restoreIP(CGBuilderTy::InsertPoint( 529 Block, llvm::BasicBlock::iterator(Block->back()))); 530 } 531 532 if (auto *Size = EmitLifetimeStart( 533 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 534 Alloca.getPointer())) { 535 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 536 Size); 537 } 538 539 if (OldConditional) { 540 OutermostConditional = OldConditional; 541 Builder.restoreIP(OldIP); 542 } 543 break; 544 } 545 546 default: 547 break; 548 } 549 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 550 } 551 pushTemporaryCleanup(*this, M, E, Object); 552 553 // Perform derived-to-base casts and/or field accesses, to get from the 554 // temporary object we created (and, potentially, for which we extended 555 // the lifetime) to the subobject we're binding the reference to. 556 for (unsigned I = Adjustments.size(); I != 0; --I) { 557 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 558 switch (Adjustment.Kind) { 559 case SubobjectAdjustment::DerivedToBaseAdjustment: 560 Object = 561 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 562 Adjustment.DerivedToBase.BasePath->path_begin(), 563 Adjustment.DerivedToBase.BasePath->path_end(), 564 /*NullCheckValue=*/ false, E->getExprLoc()); 565 break; 566 567 case SubobjectAdjustment::FieldAdjustment: { 568 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 569 LV = EmitLValueForField(LV, Adjustment.Field); 570 assert(LV.isSimple() && 571 "materialized temporary field is not a simple lvalue"); 572 Object = LV.getAddress(); 573 break; 574 } 575 576 case SubobjectAdjustment::MemberPointerAdjustment: { 577 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 578 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 579 Adjustment.Ptr.MPT); 580 break; 581 } 582 } 583 } 584 585 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 586 } 587 588 RValue 589 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 590 // Emit the expression as an lvalue. 591 LValue LV = EmitLValue(E); 592 assert(LV.isSimple()); 593 llvm::Value *Value = LV.getPointer(); 594 595 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 596 // C++11 [dcl.ref]p5 (as amended by core issue 453): 597 // If a glvalue to which a reference is directly bound designates neither 598 // an existing object or function of an appropriate type nor a region of 599 // storage of suitable size and alignment to contain an object of the 600 // reference's type, the behavior is undefined. 601 QualType Ty = E->getType(); 602 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 603 } 604 605 return RValue::get(Value); 606 } 607 608 609 /// getAccessedFieldNo - Given an encoded value and a result number, return the 610 /// input field number being accessed. 611 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 612 const llvm::Constant *Elts) { 613 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 614 ->getZExtValue(); 615 } 616 617 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 618 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 619 llvm::Value *High) { 620 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 621 llvm::Value *K47 = Builder.getInt64(47); 622 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 623 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 624 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 625 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 626 return Builder.CreateMul(B1, KMul); 627 } 628 629 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 630 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 631 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 632 } 633 634 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 635 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 636 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 637 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 638 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 639 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 640 } 641 642 bool CodeGenFunction::sanitizePerformTypeCheck() const { 643 return SanOpts.has(SanitizerKind::Null) | 644 SanOpts.has(SanitizerKind::Alignment) | 645 SanOpts.has(SanitizerKind::ObjectSize) | 646 SanOpts.has(SanitizerKind::Vptr); 647 } 648 649 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 650 llvm::Value *Ptr, QualType Ty, 651 CharUnits Alignment, 652 SanitizerSet SkippedChecks) { 653 if (!sanitizePerformTypeCheck()) 654 return; 655 656 // Don't check pointers outside the default address space. The null check 657 // isn't correct, the object-size check isn't supported by LLVM, and we can't 658 // communicate the addresses to the runtime handler for the vptr check. 659 if (Ptr->getType()->getPointerAddressSpace()) 660 return; 661 662 // Don't check pointers to volatile data. The behavior here is implementation- 663 // defined. 664 if (Ty.isVolatileQualified()) 665 return; 666 667 SanitizerScope SanScope(this); 668 669 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 670 llvm::BasicBlock *Done = nullptr; 671 672 // Quickly determine whether we have a pointer to an alloca. It's possible 673 // to skip null checks, and some alignment checks, for these pointers. This 674 // can reduce compile-time significantly. 675 auto PtrToAlloca = 676 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 677 678 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 679 llvm::Value *IsNonNull = nullptr; 680 bool IsGuaranteedNonNull = 681 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 682 bool AllowNullPointers = isNullPointerAllowed(TCK); 683 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 684 !IsGuaranteedNonNull) { 685 // The glvalue must not be an empty glvalue. 686 IsNonNull = Builder.CreateIsNotNull(Ptr); 687 688 // The IR builder can constant-fold the null check if the pointer points to 689 // a constant. 690 IsGuaranteedNonNull = IsNonNull == True; 691 692 // Skip the null check if the pointer is known to be non-null. 693 if (!IsGuaranteedNonNull) { 694 if (AllowNullPointers) { 695 // When performing pointer casts, it's OK if the value is null. 696 // Skip the remaining checks in that case. 697 Done = createBasicBlock("null"); 698 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 699 Builder.CreateCondBr(IsNonNull, Rest, Done); 700 EmitBlock(Rest); 701 } else { 702 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 703 } 704 } 705 } 706 707 if (SanOpts.has(SanitizerKind::ObjectSize) && 708 !SkippedChecks.has(SanitizerKind::ObjectSize) && 709 !Ty->isIncompleteType()) { 710 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 711 712 // The glvalue must refer to a large enough storage region. 713 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 714 // to check this. 715 // FIXME: Get object address space 716 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 717 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 718 llvm::Value *Min = Builder.getFalse(); 719 llvm::Value *NullIsUnknown = Builder.getFalse(); 720 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 721 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 722 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 723 llvm::ConstantInt::get(IntPtrTy, Size)); 724 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 725 } 726 727 uint64_t AlignVal = 0; 728 llvm::Value *PtrAsInt = nullptr; 729 730 if (SanOpts.has(SanitizerKind::Alignment) && 731 !SkippedChecks.has(SanitizerKind::Alignment)) { 732 AlignVal = Alignment.getQuantity(); 733 if (!Ty->isIncompleteType() && !AlignVal) 734 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 735 736 // The glvalue must be suitably aligned. 737 if (AlignVal > 1 && 738 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 739 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 740 llvm::Value *Align = Builder.CreateAnd( 741 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 742 llvm::Value *Aligned = 743 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 744 if (Aligned != True) 745 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 746 } 747 } 748 749 if (Checks.size() > 0) { 750 // Make sure we're not losing information. Alignment needs to be a power of 751 // 2 752 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 753 llvm::Constant *StaticData[] = { 754 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 755 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 756 llvm::ConstantInt::get(Int8Ty, TCK)}; 757 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 758 PtrAsInt ? PtrAsInt : Ptr); 759 } 760 761 // If possible, check that the vptr indicates that there is a subobject of 762 // type Ty at offset zero within this object. 763 // 764 // C++11 [basic.life]p5,6: 765 // [For storage which does not refer to an object within its lifetime] 766 // The program has undefined behavior if: 767 // -- the [pointer or glvalue] is used to access a non-static data member 768 // or call a non-static member function 769 if (SanOpts.has(SanitizerKind::Vptr) && 770 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 771 // Ensure that the pointer is non-null before loading it. If there is no 772 // compile-time guarantee, reuse the run-time null check or emit a new one. 773 if (!IsGuaranteedNonNull) { 774 if (!IsNonNull) 775 IsNonNull = Builder.CreateIsNotNull(Ptr); 776 if (!Done) 777 Done = createBasicBlock("vptr.null"); 778 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 779 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 780 EmitBlock(VptrNotNull); 781 } 782 783 // Compute a hash of the mangled name of the type. 784 // 785 // FIXME: This is not guaranteed to be deterministic! Move to a 786 // fingerprinting mechanism once LLVM provides one. For the time 787 // being the implementation happens to be deterministic. 788 SmallString<64> MangledName; 789 llvm::raw_svector_ostream Out(MangledName); 790 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 791 Out); 792 793 // Blacklist based on the mangled type. 794 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 795 SanitizerKind::Vptr, Out.str())) { 796 llvm::hash_code TypeHash = hash_value(Out.str()); 797 798 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 799 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 800 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 801 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 802 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 803 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 804 805 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 806 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 807 808 // Look the hash up in our cache. 809 const int CacheSize = 128; 810 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 811 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 812 "__ubsan_vptr_type_cache"); 813 llvm::Value *Slot = Builder.CreateAnd(Hash, 814 llvm::ConstantInt::get(IntPtrTy, 815 CacheSize-1)); 816 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 817 llvm::Value *CacheVal = 818 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 819 getPointerAlign()); 820 821 // If the hash isn't in the cache, call a runtime handler to perform the 822 // hard work of checking whether the vptr is for an object of the right 823 // type. This will either fill in the cache and return, or produce a 824 // diagnostic. 825 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 826 llvm::Constant *StaticData[] = { 827 EmitCheckSourceLocation(Loc), 828 EmitCheckTypeDescriptor(Ty), 829 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 830 llvm::ConstantInt::get(Int8Ty, TCK) 831 }; 832 llvm::Value *DynamicData[] = { Ptr, Hash }; 833 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 834 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 835 DynamicData); 836 } 837 } 838 839 if (Done) { 840 Builder.CreateBr(Done); 841 EmitBlock(Done); 842 } 843 } 844 845 /// Determine whether this expression refers to a flexible array member in a 846 /// struct. We disable array bounds checks for such members. 847 static bool isFlexibleArrayMemberExpr(const Expr *E) { 848 // For compatibility with existing code, we treat arrays of length 0 or 849 // 1 as flexible array members. 850 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 851 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 852 if (CAT->getSize().ugt(1)) 853 return false; 854 } else if (!isa<IncompleteArrayType>(AT)) 855 return false; 856 857 E = E->IgnoreParens(); 858 859 // A flexible array member must be the last member in the class. 860 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 861 // FIXME: If the base type of the member expr is not FD->getParent(), 862 // this should not be treated as a flexible array member access. 863 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 864 RecordDecl::field_iterator FI( 865 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 866 return ++FI == FD->getParent()->field_end(); 867 } 868 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 869 return IRE->getDecl()->getNextIvar() == nullptr; 870 } 871 872 return false; 873 } 874 875 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 876 QualType EltTy) { 877 ASTContext &C = getContext(); 878 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 879 if (!EltSize) 880 return nullptr; 881 882 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 883 if (!ArrayDeclRef) 884 return nullptr; 885 886 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 887 if (!ParamDecl) 888 return nullptr; 889 890 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 891 if (!POSAttr) 892 return nullptr; 893 894 // Don't load the size if it's a lower bound. 895 int POSType = POSAttr->getType(); 896 if (POSType != 0 && POSType != 1) 897 return nullptr; 898 899 // Find the implicit size parameter. 900 auto PassedSizeIt = SizeArguments.find(ParamDecl); 901 if (PassedSizeIt == SizeArguments.end()) 902 return nullptr; 903 904 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 905 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 906 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 907 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 908 C.getSizeType(), E->getExprLoc()); 909 llvm::Value *SizeOfElement = 910 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 911 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 912 } 913 914 /// If Base is known to point to the start of an array, return the length of 915 /// that array. Return 0 if the length cannot be determined. 916 static llvm::Value *getArrayIndexingBound( 917 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 918 // For the vector indexing extension, the bound is the number of elements. 919 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 920 IndexedType = Base->getType(); 921 return CGF.Builder.getInt32(VT->getNumElements()); 922 } 923 924 Base = Base->IgnoreParens(); 925 926 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 927 if (CE->getCastKind() == CK_ArrayToPointerDecay && 928 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 929 IndexedType = CE->getSubExpr()->getType(); 930 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 931 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 932 return CGF.Builder.getInt(CAT->getSize()); 933 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 934 return CGF.getVLASize(VAT).NumElts; 935 // Ignore pass_object_size here. It's not applicable on decayed pointers. 936 } 937 } 938 939 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 940 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 941 IndexedType = Base->getType(); 942 return POS; 943 } 944 945 return nullptr; 946 } 947 948 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 949 llvm::Value *Index, QualType IndexType, 950 bool Accessed) { 951 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 952 "should not be called unless adding bounds checks"); 953 SanitizerScope SanScope(this); 954 955 QualType IndexedType; 956 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 957 if (!Bound) 958 return; 959 960 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 961 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 962 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 963 964 llvm::Constant *StaticData[] = { 965 EmitCheckSourceLocation(E->getExprLoc()), 966 EmitCheckTypeDescriptor(IndexedType), 967 EmitCheckTypeDescriptor(IndexType) 968 }; 969 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 970 : Builder.CreateICmpULE(IndexVal, BoundVal); 971 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 972 SanitizerHandler::OutOfBounds, StaticData, Index); 973 } 974 975 976 CodeGenFunction::ComplexPairTy CodeGenFunction:: 977 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 978 bool isInc, bool isPre) { 979 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 980 981 llvm::Value *NextVal; 982 if (isa<llvm::IntegerType>(InVal.first->getType())) { 983 uint64_t AmountVal = isInc ? 1 : -1; 984 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 985 986 // Add the inc/dec to the real part. 987 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 988 } else { 989 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 990 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 991 if (!isInc) 992 FVal.changeSign(); 993 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 994 995 // Add the inc/dec to the real part. 996 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 997 } 998 999 ComplexPairTy IncVal(NextVal, InVal.second); 1000 1001 // Store the updated result through the lvalue. 1002 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1003 1004 // If this is a postinc, return the value read from memory, otherwise use the 1005 // updated value. 1006 return isPre ? IncVal : InVal; 1007 } 1008 1009 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1010 CodeGenFunction *CGF) { 1011 // Bind VLAs in the cast type. 1012 if (CGF && E->getType()->isVariablyModifiedType()) 1013 CGF->EmitVariablyModifiedType(E->getType()); 1014 1015 if (CGDebugInfo *DI = getModuleDebugInfo()) 1016 DI->EmitExplicitCastType(E->getType()); 1017 } 1018 1019 //===----------------------------------------------------------------------===// 1020 // LValue Expression Emission 1021 //===----------------------------------------------------------------------===// 1022 1023 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1024 /// derive a more accurate bound on the alignment of the pointer. 1025 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1026 LValueBaseInfo *BaseInfo, 1027 TBAAAccessInfo *TBAAInfo) { 1028 // We allow this with ObjC object pointers because of fragile ABIs. 1029 assert(E->getType()->isPointerType() || 1030 E->getType()->isObjCObjectPointerType()); 1031 E = E->IgnoreParens(); 1032 1033 // Casts: 1034 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1035 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1036 CGM.EmitExplicitCastExprType(ECE, this); 1037 1038 switch (CE->getCastKind()) { 1039 // Non-converting casts (but not C's implicit conversion from void*). 1040 case CK_BitCast: 1041 case CK_NoOp: 1042 case CK_AddressSpaceConversion: 1043 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1044 if (PtrTy->getPointeeType()->isVoidType()) 1045 break; 1046 1047 LValueBaseInfo InnerBaseInfo; 1048 TBAAAccessInfo InnerTBAAInfo; 1049 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1050 &InnerBaseInfo, 1051 &InnerTBAAInfo); 1052 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1053 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1054 1055 if (isa<ExplicitCastExpr>(CE)) { 1056 LValueBaseInfo TargetTypeBaseInfo; 1057 TBAAAccessInfo TargetTypeTBAAInfo; 1058 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1059 &TargetTypeBaseInfo, 1060 &TargetTypeTBAAInfo); 1061 if (TBAAInfo) 1062 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1063 TargetTypeTBAAInfo); 1064 // If the source l-value is opaque, honor the alignment of the 1065 // casted-to type. 1066 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1067 if (BaseInfo) 1068 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1069 Addr = Address(Addr.getPointer(), Align); 1070 } 1071 } 1072 1073 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1074 CE->getCastKind() == CK_BitCast) { 1075 if (auto PT = E->getType()->getAs<PointerType>()) 1076 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1077 /*MayBeNull=*/true, 1078 CodeGenFunction::CFITCK_UnrelatedCast, 1079 CE->getBeginLoc()); 1080 } 1081 return CE->getCastKind() != CK_AddressSpaceConversion 1082 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1083 : Builder.CreateAddrSpaceCast(Addr, 1084 ConvertType(E->getType())); 1085 } 1086 break; 1087 1088 // Array-to-pointer decay. 1089 case CK_ArrayToPointerDecay: 1090 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1091 1092 // Derived-to-base conversions. 1093 case CK_UncheckedDerivedToBase: 1094 case CK_DerivedToBase: { 1095 // TODO: Support accesses to members of base classes in TBAA. For now, we 1096 // conservatively pretend that the complete object is of the base class 1097 // type. 1098 if (TBAAInfo) 1099 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1100 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1101 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1102 return GetAddressOfBaseClass(Addr, Derived, 1103 CE->path_begin(), CE->path_end(), 1104 ShouldNullCheckClassCastValue(CE), 1105 CE->getExprLoc()); 1106 } 1107 1108 // TODO: Is there any reason to treat base-to-derived conversions 1109 // specially? 1110 default: 1111 break; 1112 } 1113 } 1114 1115 // Unary &. 1116 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1117 if (UO->getOpcode() == UO_AddrOf) { 1118 LValue LV = EmitLValue(UO->getSubExpr()); 1119 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1120 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1121 return LV.getAddress(); 1122 } 1123 } 1124 1125 // TODO: conditional operators, comma. 1126 1127 // Otherwise, use the alignment of the type. 1128 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1129 TBAAInfo); 1130 return Address(EmitScalarExpr(E), Align); 1131 } 1132 1133 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1134 if (Ty->isVoidType()) 1135 return RValue::get(nullptr); 1136 1137 switch (getEvaluationKind(Ty)) { 1138 case TEK_Complex: { 1139 llvm::Type *EltTy = 1140 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1141 llvm::Value *U = llvm::UndefValue::get(EltTy); 1142 return RValue::getComplex(std::make_pair(U, U)); 1143 } 1144 1145 // If this is a use of an undefined aggregate type, the aggregate must have an 1146 // identifiable address. Just because the contents of the value are undefined 1147 // doesn't mean that the address can't be taken and compared. 1148 case TEK_Aggregate: { 1149 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1150 return RValue::getAggregate(DestPtr); 1151 } 1152 1153 case TEK_Scalar: 1154 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1155 } 1156 llvm_unreachable("bad evaluation kind"); 1157 } 1158 1159 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1160 const char *Name) { 1161 ErrorUnsupported(E, Name); 1162 return GetUndefRValue(E->getType()); 1163 } 1164 1165 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1166 const char *Name) { 1167 ErrorUnsupported(E, Name); 1168 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1169 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1170 E->getType()); 1171 } 1172 1173 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1174 const Expr *Base = Obj; 1175 while (!isa<CXXThisExpr>(Base)) { 1176 // The result of a dynamic_cast can be null. 1177 if (isa<CXXDynamicCastExpr>(Base)) 1178 return false; 1179 1180 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1181 Base = CE->getSubExpr(); 1182 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1183 Base = PE->getSubExpr(); 1184 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1185 if (UO->getOpcode() == UO_Extension) 1186 Base = UO->getSubExpr(); 1187 else 1188 return false; 1189 } else { 1190 return false; 1191 } 1192 } 1193 return true; 1194 } 1195 1196 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1197 LValue LV; 1198 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1199 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1200 else 1201 LV = EmitLValue(E); 1202 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1203 SanitizerSet SkippedChecks; 1204 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1205 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1206 if (IsBaseCXXThis) 1207 SkippedChecks.set(SanitizerKind::Alignment, true); 1208 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1209 SkippedChecks.set(SanitizerKind::Null, true); 1210 } 1211 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1212 E->getType(), LV.getAlignment(), SkippedChecks); 1213 } 1214 return LV; 1215 } 1216 1217 /// EmitLValue - Emit code to compute a designator that specifies the location 1218 /// of the expression. 1219 /// 1220 /// This can return one of two things: a simple address or a bitfield reference. 1221 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1222 /// an LLVM pointer type. 1223 /// 1224 /// If this returns a bitfield reference, nothing about the pointee type of the 1225 /// LLVM value is known: For example, it may not be a pointer to an integer. 1226 /// 1227 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1228 /// this method guarantees that the returned pointer type will point to an LLVM 1229 /// type of the same size of the lvalue's type. If the lvalue has a variable 1230 /// length type, this is not possible. 1231 /// 1232 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1233 ApplyDebugLocation DL(*this, E); 1234 switch (E->getStmtClass()) { 1235 default: return EmitUnsupportedLValue(E, "l-value expression"); 1236 1237 case Expr::ObjCPropertyRefExprClass: 1238 llvm_unreachable("cannot emit a property reference directly"); 1239 1240 case Expr::ObjCSelectorExprClass: 1241 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1242 case Expr::ObjCIsaExprClass: 1243 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1244 case Expr::BinaryOperatorClass: 1245 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1246 case Expr::CompoundAssignOperatorClass: { 1247 QualType Ty = E->getType(); 1248 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1249 Ty = AT->getValueType(); 1250 if (!Ty->isAnyComplexType()) 1251 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1252 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1253 } 1254 case Expr::CallExprClass: 1255 case Expr::CXXMemberCallExprClass: 1256 case Expr::CXXOperatorCallExprClass: 1257 case Expr::UserDefinedLiteralClass: 1258 return EmitCallExprLValue(cast<CallExpr>(E)); 1259 case Expr::VAArgExprClass: 1260 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1261 case Expr::DeclRefExprClass: 1262 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1263 case Expr::ConstantExprClass: 1264 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1265 case Expr::ParenExprClass: 1266 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1267 case Expr::GenericSelectionExprClass: 1268 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1269 case Expr::PredefinedExprClass: 1270 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1271 case Expr::StringLiteralClass: 1272 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1273 case Expr::ObjCEncodeExprClass: 1274 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1275 case Expr::PseudoObjectExprClass: 1276 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1277 case Expr::InitListExprClass: 1278 return EmitInitListLValue(cast<InitListExpr>(E)); 1279 case Expr::CXXTemporaryObjectExprClass: 1280 case Expr::CXXConstructExprClass: 1281 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1282 case Expr::CXXBindTemporaryExprClass: 1283 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1284 case Expr::CXXUuidofExprClass: 1285 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1286 case Expr::LambdaExprClass: 1287 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1288 1289 case Expr::ExprWithCleanupsClass: { 1290 const auto *cleanups = cast<ExprWithCleanups>(E); 1291 enterFullExpression(cleanups); 1292 RunCleanupsScope Scope(*this); 1293 LValue LV = EmitLValue(cleanups->getSubExpr()); 1294 if (LV.isSimple()) { 1295 // Defend against branches out of gnu statement expressions surrounded by 1296 // cleanups. 1297 llvm::Value *V = LV.getPointer(); 1298 Scope.ForceCleanup({&V}); 1299 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1300 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1301 } 1302 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1303 // bitfield lvalue or some other non-simple lvalue? 1304 return LV; 1305 } 1306 1307 case Expr::CXXDefaultArgExprClass: 1308 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1309 case Expr::CXXDefaultInitExprClass: { 1310 CXXDefaultInitExprScope Scope(*this); 1311 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1312 } 1313 case Expr::CXXTypeidExprClass: 1314 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1315 1316 case Expr::ObjCMessageExprClass: 1317 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1318 case Expr::ObjCIvarRefExprClass: 1319 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1320 case Expr::StmtExprClass: 1321 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1322 case Expr::UnaryOperatorClass: 1323 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1324 case Expr::ArraySubscriptExprClass: 1325 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1326 case Expr::OMPArraySectionExprClass: 1327 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1328 case Expr::ExtVectorElementExprClass: 1329 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1330 case Expr::MemberExprClass: 1331 return EmitMemberExpr(cast<MemberExpr>(E)); 1332 case Expr::CompoundLiteralExprClass: 1333 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1334 case Expr::ConditionalOperatorClass: 1335 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1336 case Expr::BinaryConditionalOperatorClass: 1337 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1338 case Expr::ChooseExprClass: 1339 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1340 case Expr::OpaqueValueExprClass: 1341 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1342 case Expr::SubstNonTypeTemplateParmExprClass: 1343 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1344 case Expr::ImplicitCastExprClass: 1345 case Expr::CStyleCastExprClass: 1346 case Expr::CXXFunctionalCastExprClass: 1347 case Expr::CXXStaticCastExprClass: 1348 case Expr::CXXDynamicCastExprClass: 1349 case Expr::CXXReinterpretCastExprClass: 1350 case Expr::CXXConstCastExprClass: 1351 case Expr::ObjCBridgedCastExprClass: 1352 return EmitCastLValue(cast<CastExpr>(E)); 1353 1354 case Expr::MaterializeTemporaryExprClass: 1355 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1356 1357 case Expr::CoawaitExprClass: 1358 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1359 case Expr::CoyieldExprClass: 1360 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1361 } 1362 } 1363 1364 /// Given an object of the given canonical type, can we safely copy a 1365 /// value out of it based on its initializer? 1366 static bool isConstantEmittableObjectType(QualType type) { 1367 assert(type.isCanonical()); 1368 assert(!type->isReferenceType()); 1369 1370 // Must be const-qualified but non-volatile. 1371 Qualifiers qs = type.getLocalQualifiers(); 1372 if (!qs.hasConst() || qs.hasVolatile()) return false; 1373 1374 // Otherwise, all object types satisfy this except C++ classes with 1375 // mutable subobjects or non-trivial copy/destroy behavior. 1376 if (const auto *RT = dyn_cast<RecordType>(type)) 1377 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1378 if (RD->hasMutableFields() || !RD->isTrivial()) 1379 return false; 1380 1381 return true; 1382 } 1383 1384 /// Can we constant-emit a load of a reference to a variable of the 1385 /// given type? This is different from predicates like 1386 /// Decl::isUsableInConstantExpressions because we do want it to apply 1387 /// in situations that don't necessarily satisfy the language's rules 1388 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1389 /// to do this with const float variables even if those variables 1390 /// aren't marked 'constexpr'. 1391 enum ConstantEmissionKind { 1392 CEK_None, 1393 CEK_AsReferenceOnly, 1394 CEK_AsValueOrReference, 1395 CEK_AsValueOnly 1396 }; 1397 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1398 type = type.getCanonicalType(); 1399 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1400 if (isConstantEmittableObjectType(ref->getPointeeType())) 1401 return CEK_AsValueOrReference; 1402 return CEK_AsReferenceOnly; 1403 } 1404 if (isConstantEmittableObjectType(type)) 1405 return CEK_AsValueOnly; 1406 return CEK_None; 1407 } 1408 1409 /// Try to emit a reference to the given value without producing it as 1410 /// an l-value. This is actually more than an optimization: we can't 1411 /// produce an l-value for variables that we never actually captured 1412 /// in a block or lambda, which means const int variables or constexpr 1413 /// literals or similar. 1414 CodeGenFunction::ConstantEmission 1415 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1416 ValueDecl *value = refExpr->getDecl(); 1417 1418 // The value needs to be an enum constant or a constant variable. 1419 ConstantEmissionKind CEK; 1420 if (isa<ParmVarDecl>(value)) { 1421 CEK = CEK_None; 1422 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1423 CEK = checkVarTypeForConstantEmission(var->getType()); 1424 } else if (isa<EnumConstantDecl>(value)) { 1425 CEK = CEK_AsValueOnly; 1426 } else { 1427 CEK = CEK_None; 1428 } 1429 if (CEK == CEK_None) return ConstantEmission(); 1430 1431 Expr::EvalResult result; 1432 bool resultIsReference; 1433 QualType resultType; 1434 1435 // It's best to evaluate all the way as an r-value if that's permitted. 1436 if (CEK != CEK_AsReferenceOnly && 1437 refExpr->EvaluateAsRValue(result, getContext())) { 1438 resultIsReference = false; 1439 resultType = refExpr->getType(); 1440 1441 // Otherwise, try to evaluate as an l-value. 1442 } else if (CEK != CEK_AsValueOnly && 1443 refExpr->EvaluateAsLValue(result, getContext())) { 1444 resultIsReference = true; 1445 resultType = value->getType(); 1446 1447 // Failure. 1448 } else { 1449 return ConstantEmission(); 1450 } 1451 1452 // In any case, if the initializer has side-effects, abandon ship. 1453 if (result.HasSideEffects) 1454 return ConstantEmission(); 1455 1456 // Emit as a constant. 1457 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1458 result.Val, resultType); 1459 1460 // Make sure we emit a debug reference to the global variable. 1461 // This should probably fire even for 1462 if (isa<VarDecl>(value)) { 1463 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1464 EmitDeclRefExprDbgValue(refExpr, result.Val); 1465 } else { 1466 assert(isa<EnumConstantDecl>(value)); 1467 EmitDeclRefExprDbgValue(refExpr, result.Val); 1468 } 1469 1470 // If we emitted a reference constant, we need to dereference that. 1471 if (resultIsReference) 1472 return ConstantEmission::forReference(C); 1473 1474 return ConstantEmission::forValue(C); 1475 } 1476 1477 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1478 const MemberExpr *ME) { 1479 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1480 // Try to emit static variable member expressions as DREs. 1481 return DeclRefExpr::Create( 1482 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1483 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1484 ME->getType(), ME->getValueKind()); 1485 } 1486 return nullptr; 1487 } 1488 1489 CodeGenFunction::ConstantEmission 1490 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1491 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1492 return tryEmitAsConstant(DRE); 1493 return ConstantEmission(); 1494 } 1495 1496 llvm::Value *CodeGenFunction::emitScalarConstant( 1497 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1498 assert(Constant && "not a constant"); 1499 if (Constant.isReference()) 1500 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1501 E->getExprLoc()) 1502 .getScalarVal(); 1503 return Constant.getValue(); 1504 } 1505 1506 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1507 SourceLocation Loc) { 1508 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1509 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1510 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1511 } 1512 1513 static bool hasBooleanRepresentation(QualType Ty) { 1514 if (Ty->isBooleanType()) 1515 return true; 1516 1517 if (const EnumType *ET = Ty->getAs<EnumType>()) 1518 return ET->getDecl()->getIntegerType()->isBooleanType(); 1519 1520 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1521 return hasBooleanRepresentation(AT->getValueType()); 1522 1523 return false; 1524 } 1525 1526 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1527 llvm::APInt &Min, llvm::APInt &End, 1528 bool StrictEnums, bool IsBool) { 1529 const EnumType *ET = Ty->getAs<EnumType>(); 1530 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1531 ET && !ET->getDecl()->isFixed(); 1532 if (!IsBool && !IsRegularCPlusPlusEnum) 1533 return false; 1534 1535 if (IsBool) { 1536 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1537 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1538 } else { 1539 const EnumDecl *ED = ET->getDecl(); 1540 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1541 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1542 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1543 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1544 1545 if (NumNegativeBits) { 1546 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1547 assert(NumBits <= Bitwidth); 1548 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1549 Min = -End; 1550 } else { 1551 assert(NumPositiveBits <= Bitwidth); 1552 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1553 Min = llvm::APInt(Bitwidth, 0); 1554 } 1555 } 1556 return true; 1557 } 1558 1559 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1560 llvm::APInt Min, End; 1561 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1562 hasBooleanRepresentation(Ty))) 1563 return nullptr; 1564 1565 llvm::MDBuilder MDHelper(getLLVMContext()); 1566 return MDHelper.createRange(Min, End); 1567 } 1568 1569 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1570 SourceLocation Loc) { 1571 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1572 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1573 if (!HasBoolCheck && !HasEnumCheck) 1574 return false; 1575 1576 bool IsBool = hasBooleanRepresentation(Ty) || 1577 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1578 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1579 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1580 if (!NeedsBoolCheck && !NeedsEnumCheck) 1581 return false; 1582 1583 // Single-bit booleans don't need to be checked. Special-case this to avoid 1584 // a bit width mismatch when handling bitfield values. This is handled by 1585 // EmitFromMemory for the non-bitfield case. 1586 if (IsBool && 1587 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1588 return false; 1589 1590 llvm::APInt Min, End; 1591 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1592 return true; 1593 1594 auto &Ctx = getLLVMContext(); 1595 SanitizerScope SanScope(this); 1596 llvm::Value *Check; 1597 --End; 1598 if (!Min) { 1599 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1600 } else { 1601 llvm::Value *Upper = 1602 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1603 llvm::Value *Lower = 1604 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1605 Check = Builder.CreateAnd(Upper, Lower); 1606 } 1607 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1608 EmitCheckTypeDescriptor(Ty)}; 1609 SanitizerMask Kind = 1610 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1611 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1612 StaticArgs, EmitCheckValue(Value)); 1613 return true; 1614 } 1615 1616 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1617 QualType Ty, 1618 SourceLocation Loc, 1619 LValueBaseInfo BaseInfo, 1620 TBAAAccessInfo TBAAInfo, 1621 bool isNontemporal) { 1622 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1623 // For better performance, handle vector loads differently. 1624 if (Ty->isVectorType()) { 1625 const llvm::Type *EltTy = Addr.getElementType(); 1626 1627 const auto *VTy = cast<llvm::VectorType>(EltTy); 1628 1629 // Handle vectors of size 3 like size 4 for better performance. 1630 if (VTy->getNumElements() == 3) { 1631 1632 // Bitcast to vec4 type. 1633 llvm::VectorType *vec4Ty = 1634 llvm::VectorType::get(VTy->getElementType(), 4); 1635 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1636 // Now load value. 1637 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1638 1639 // Shuffle vector to get vec3. 1640 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1641 {0, 1, 2}, "extractVec"); 1642 return EmitFromMemory(V, Ty); 1643 } 1644 } 1645 } 1646 1647 // Atomic operations have to be done on integral types. 1648 LValue AtomicLValue = 1649 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1650 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1651 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1652 } 1653 1654 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1655 if (isNontemporal) { 1656 llvm::MDNode *Node = llvm::MDNode::get( 1657 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1658 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1659 } 1660 1661 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1662 1663 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1664 // In order to prevent the optimizer from throwing away the check, don't 1665 // attach range metadata to the load. 1666 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1667 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1668 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1669 1670 return EmitFromMemory(Load, Ty); 1671 } 1672 1673 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1674 // Bool has a different representation in memory than in registers. 1675 if (hasBooleanRepresentation(Ty)) { 1676 // This should really always be an i1, but sometimes it's already 1677 // an i8, and it's awkward to track those cases down. 1678 if (Value->getType()->isIntegerTy(1)) 1679 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1680 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1681 "wrong value rep of bool"); 1682 } 1683 1684 return Value; 1685 } 1686 1687 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1688 // Bool has a different representation in memory than in registers. 1689 if (hasBooleanRepresentation(Ty)) { 1690 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1691 "wrong value rep of bool"); 1692 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1693 } 1694 1695 return Value; 1696 } 1697 1698 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1699 bool Volatile, QualType Ty, 1700 LValueBaseInfo BaseInfo, 1701 TBAAAccessInfo TBAAInfo, 1702 bool isInit, bool isNontemporal) { 1703 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1704 // Handle vectors differently to get better performance. 1705 if (Ty->isVectorType()) { 1706 llvm::Type *SrcTy = Value->getType(); 1707 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1708 // Handle vec3 special. 1709 if (VecTy && VecTy->getNumElements() == 3) { 1710 // Our source is a vec3, do a shuffle vector to make it a vec4. 1711 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1712 Builder.getInt32(2), 1713 llvm::UndefValue::get(Builder.getInt32Ty())}; 1714 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1715 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1716 MaskV, "extractVec"); 1717 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1718 } 1719 if (Addr.getElementType() != SrcTy) { 1720 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1721 } 1722 } 1723 } 1724 1725 Value = EmitToMemory(Value, Ty); 1726 1727 LValue AtomicLValue = 1728 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1729 if (Ty->isAtomicType() || 1730 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1731 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1732 return; 1733 } 1734 1735 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1736 if (isNontemporal) { 1737 llvm::MDNode *Node = 1738 llvm::MDNode::get(Store->getContext(), 1739 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1740 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1741 } 1742 1743 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1744 } 1745 1746 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1747 bool isInit) { 1748 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1749 lvalue.getType(), lvalue.getBaseInfo(), 1750 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1751 } 1752 1753 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1754 /// method emits the address of the lvalue, then loads the result as an rvalue, 1755 /// returning the rvalue. 1756 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1757 if (LV.isObjCWeak()) { 1758 // load of a __weak object. 1759 Address AddrWeakObj = LV.getAddress(); 1760 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1761 AddrWeakObj)); 1762 } 1763 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1764 // In MRC mode, we do a load+autorelease. 1765 if (!getLangOpts().ObjCAutoRefCount) { 1766 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1767 } 1768 1769 // In ARC mode, we load retained and then consume the value. 1770 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1771 Object = EmitObjCConsumeObject(LV.getType(), Object); 1772 return RValue::get(Object); 1773 } 1774 1775 if (LV.isSimple()) { 1776 assert(!LV.getType()->isFunctionType()); 1777 1778 // Everything needs a load. 1779 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1780 } 1781 1782 if (LV.isVectorElt()) { 1783 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1784 LV.isVolatileQualified()); 1785 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1786 "vecext")); 1787 } 1788 1789 // If this is a reference to a subset of the elements of a vector, either 1790 // shuffle the input or extract/insert them as appropriate. 1791 if (LV.isExtVectorElt()) 1792 return EmitLoadOfExtVectorElementLValue(LV); 1793 1794 // Global Register variables always invoke intrinsics 1795 if (LV.isGlobalReg()) 1796 return EmitLoadOfGlobalRegLValue(LV); 1797 1798 assert(LV.isBitField() && "Unknown LValue type!"); 1799 return EmitLoadOfBitfieldLValue(LV, Loc); 1800 } 1801 1802 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1803 SourceLocation Loc) { 1804 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1805 1806 // Get the output type. 1807 llvm::Type *ResLTy = ConvertType(LV.getType()); 1808 1809 Address Ptr = LV.getBitFieldAddress(); 1810 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1811 1812 if (Info.IsSigned) { 1813 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1814 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1815 if (HighBits) 1816 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1817 if (Info.Offset + HighBits) 1818 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1819 } else { 1820 if (Info.Offset) 1821 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1822 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1823 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1824 Info.Size), 1825 "bf.clear"); 1826 } 1827 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1828 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1829 return RValue::get(Val); 1830 } 1831 1832 // If this is a reference to a subset of the elements of a vector, create an 1833 // appropriate shufflevector. 1834 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1835 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1836 LV.isVolatileQualified()); 1837 1838 const llvm::Constant *Elts = LV.getExtVectorElts(); 1839 1840 // If the result of the expression is a non-vector type, we must be extracting 1841 // a single element. Just codegen as an extractelement. 1842 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1843 if (!ExprVT) { 1844 unsigned InIdx = getAccessedFieldNo(0, Elts); 1845 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1846 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1847 } 1848 1849 // Always use shuffle vector to try to retain the original program structure 1850 unsigned NumResultElts = ExprVT->getNumElements(); 1851 1852 SmallVector<llvm::Constant*, 4> Mask; 1853 for (unsigned i = 0; i != NumResultElts; ++i) 1854 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1855 1856 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1857 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1858 MaskV); 1859 return RValue::get(Vec); 1860 } 1861 1862 /// Generates lvalue for partial ext_vector access. 1863 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1864 Address VectorAddress = LV.getExtVectorAddress(); 1865 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1866 QualType EQT = ExprVT->getElementType(); 1867 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1868 1869 Address CastToPointerElement = 1870 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1871 "conv.ptr.element"); 1872 1873 const llvm::Constant *Elts = LV.getExtVectorElts(); 1874 unsigned ix = getAccessedFieldNo(0, Elts); 1875 1876 Address VectorBasePtrPlusIx = 1877 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1878 getContext().getTypeSizeInChars(EQT), 1879 "vector.elt"); 1880 1881 return VectorBasePtrPlusIx; 1882 } 1883 1884 /// Load of global gamed gegisters are always calls to intrinsics. 1885 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1886 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1887 "Bad type for register variable"); 1888 llvm::MDNode *RegName = cast<llvm::MDNode>( 1889 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1890 1891 // We accept integer and pointer types only 1892 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1893 llvm::Type *Ty = OrigTy; 1894 if (OrigTy->isPointerTy()) 1895 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1896 llvm::Type *Types[] = { Ty }; 1897 1898 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1899 llvm::Value *Call = Builder.CreateCall( 1900 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1901 if (OrigTy->isPointerTy()) 1902 Call = Builder.CreateIntToPtr(Call, OrigTy); 1903 return RValue::get(Call); 1904 } 1905 1906 1907 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1908 /// lvalue, where both are guaranteed to the have the same type, and that type 1909 /// is 'Ty'. 1910 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1911 bool isInit) { 1912 if (!Dst.isSimple()) { 1913 if (Dst.isVectorElt()) { 1914 // Read/modify/write the vector, inserting the new element. 1915 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1916 Dst.isVolatileQualified()); 1917 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1918 Dst.getVectorIdx(), "vecins"); 1919 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1920 Dst.isVolatileQualified()); 1921 return; 1922 } 1923 1924 // If this is an update of extended vector elements, insert them as 1925 // appropriate. 1926 if (Dst.isExtVectorElt()) 1927 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1928 1929 if (Dst.isGlobalReg()) 1930 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1931 1932 assert(Dst.isBitField() && "Unknown LValue type"); 1933 return EmitStoreThroughBitfieldLValue(Src, Dst); 1934 } 1935 1936 // There's special magic for assigning into an ARC-qualified l-value. 1937 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1938 switch (Lifetime) { 1939 case Qualifiers::OCL_None: 1940 llvm_unreachable("present but none"); 1941 1942 case Qualifiers::OCL_ExplicitNone: 1943 // nothing special 1944 break; 1945 1946 case Qualifiers::OCL_Strong: 1947 if (isInit) { 1948 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1949 break; 1950 } 1951 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1952 return; 1953 1954 case Qualifiers::OCL_Weak: 1955 if (isInit) 1956 // Initialize and then skip the primitive store. 1957 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1958 else 1959 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1960 return; 1961 1962 case Qualifiers::OCL_Autoreleasing: 1963 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1964 Src.getScalarVal())); 1965 // fall into the normal path 1966 break; 1967 } 1968 } 1969 1970 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1971 // load of a __weak object. 1972 Address LvalueDst = Dst.getAddress(); 1973 llvm::Value *src = Src.getScalarVal(); 1974 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1975 return; 1976 } 1977 1978 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1979 // load of a __strong object. 1980 Address LvalueDst = Dst.getAddress(); 1981 llvm::Value *src = Src.getScalarVal(); 1982 if (Dst.isObjCIvar()) { 1983 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1984 llvm::Type *ResultType = IntPtrTy; 1985 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1986 llvm::Value *RHS = dst.getPointer(); 1987 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1988 llvm::Value *LHS = 1989 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1990 "sub.ptr.lhs.cast"); 1991 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1992 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1993 BytesBetween); 1994 } else if (Dst.isGlobalObjCRef()) { 1995 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1996 Dst.isThreadLocalRef()); 1997 } 1998 else 1999 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2000 return; 2001 } 2002 2003 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2004 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2005 } 2006 2007 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2008 llvm::Value **Result) { 2009 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2010 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2011 Address Ptr = Dst.getBitFieldAddress(); 2012 2013 // Get the source value, truncated to the width of the bit-field. 2014 llvm::Value *SrcVal = Src.getScalarVal(); 2015 2016 // Cast the source to the storage type and shift it into place. 2017 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2018 /*IsSigned=*/false); 2019 llvm::Value *MaskedVal = SrcVal; 2020 2021 // See if there are other bits in the bitfield's storage we'll need to load 2022 // and mask together with source before storing. 2023 if (Info.StorageSize != Info.Size) { 2024 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2025 llvm::Value *Val = 2026 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2027 2028 // Mask the source value as needed. 2029 if (!hasBooleanRepresentation(Dst.getType())) 2030 SrcVal = Builder.CreateAnd(SrcVal, 2031 llvm::APInt::getLowBitsSet(Info.StorageSize, 2032 Info.Size), 2033 "bf.value"); 2034 MaskedVal = SrcVal; 2035 if (Info.Offset) 2036 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2037 2038 // Mask out the original value. 2039 Val = Builder.CreateAnd(Val, 2040 ~llvm::APInt::getBitsSet(Info.StorageSize, 2041 Info.Offset, 2042 Info.Offset + Info.Size), 2043 "bf.clear"); 2044 2045 // Or together the unchanged values and the source value. 2046 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2047 } else { 2048 assert(Info.Offset == 0); 2049 } 2050 2051 // Write the new value back out. 2052 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2053 2054 // Return the new value of the bit-field, if requested. 2055 if (Result) { 2056 llvm::Value *ResultVal = MaskedVal; 2057 2058 // Sign extend the value if needed. 2059 if (Info.IsSigned) { 2060 assert(Info.Size <= Info.StorageSize); 2061 unsigned HighBits = Info.StorageSize - Info.Size; 2062 if (HighBits) { 2063 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2064 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2065 } 2066 } 2067 2068 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2069 "bf.result.cast"); 2070 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2071 } 2072 } 2073 2074 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2075 LValue Dst) { 2076 // This access turns into a read/modify/write of the vector. Load the input 2077 // value now. 2078 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2079 Dst.isVolatileQualified()); 2080 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2081 2082 llvm::Value *SrcVal = Src.getScalarVal(); 2083 2084 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2085 unsigned NumSrcElts = VTy->getNumElements(); 2086 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2087 if (NumDstElts == NumSrcElts) { 2088 // Use shuffle vector is the src and destination are the same number of 2089 // elements and restore the vector mask since it is on the side it will be 2090 // stored. 2091 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2092 for (unsigned i = 0; i != NumSrcElts; ++i) 2093 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2094 2095 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2096 Vec = Builder.CreateShuffleVector(SrcVal, 2097 llvm::UndefValue::get(Vec->getType()), 2098 MaskV); 2099 } else if (NumDstElts > NumSrcElts) { 2100 // Extended the source vector to the same length and then shuffle it 2101 // into the destination. 2102 // FIXME: since we're shuffling with undef, can we just use the indices 2103 // into that? This could be simpler. 2104 SmallVector<llvm::Constant*, 4> ExtMask; 2105 for (unsigned i = 0; i != NumSrcElts; ++i) 2106 ExtMask.push_back(Builder.getInt32(i)); 2107 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2108 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2109 llvm::Value *ExtSrcVal = 2110 Builder.CreateShuffleVector(SrcVal, 2111 llvm::UndefValue::get(SrcVal->getType()), 2112 ExtMaskV); 2113 // build identity 2114 SmallVector<llvm::Constant*, 4> Mask; 2115 for (unsigned i = 0; i != NumDstElts; ++i) 2116 Mask.push_back(Builder.getInt32(i)); 2117 2118 // When the vector size is odd and .odd or .hi is used, the last element 2119 // of the Elts constant array will be one past the size of the vector. 2120 // Ignore the last element here, if it is greater than the mask size. 2121 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2122 NumSrcElts--; 2123 2124 // modify when what gets shuffled in 2125 for (unsigned i = 0; i != NumSrcElts; ++i) 2126 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2127 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2128 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2129 } else { 2130 // We should never shorten the vector 2131 llvm_unreachable("unexpected shorten vector length"); 2132 } 2133 } else { 2134 // If the Src is a scalar (not a vector) it must be updating one element. 2135 unsigned InIdx = getAccessedFieldNo(0, Elts); 2136 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2137 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2138 } 2139 2140 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2141 Dst.isVolatileQualified()); 2142 } 2143 2144 /// Store of global named registers are always calls to intrinsics. 2145 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2146 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2147 "Bad type for register variable"); 2148 llvm::MDNode *RegName = cast<llvm::MDNode>( 2149 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2150 assert(RegName && "Register LValue is not metadata"); 2151 2152 // We accept integer and pointer types only 2153 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2154 llvm::Type *Ty = OrigTy; 2155 if (OrigTy->isPointerTy()) 2156 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2157 llvm::Type *Types[] = { Ty }; 2158 2159 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2160 llvm::Value *Value = Src.getScalarVal(); 2161 if (OrigTy->isPointerTy()) 2162 Value = Builder.CreatePtrToInt(Value, Ty); 2163 Builder.CreateCall( 2164 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2165 } 2166 2167 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2168 // generating write-barries API. It is currently a global, ivar, 2169 // or neither. 2170 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2171 LValue &LV, 2172 bool IsMemberAccess=false) { 2173 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2174 return; 2175 2176 if (isa<ObjCIvarRefExpr>(E)) { 2177 QualType ExpTy = E->getType(); 2178 if (IsMemberAccess && ExpTy->isPointerType()) { 2179 // If ivar is a structure pointer, assigning to field of 2180 // this struct follows gcc's behavior and makes it a non-ivar 2181 // writer-barrier conservatively. 2182 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2183 if (ExpTy->isRecordType()) { 2184 LV.setObjCIvar(false); 2185 return; 2186 } 2187 } 2188 LV.setObjCIvar(true); 2189 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2190 LV.setBaseIvarExp(Exp->getBase()); 2191 LV.setObjCArray(E->getType()->isArrayType()); 2192 return; 2193 } 2194 2195 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2196 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2197 if (VD->hasGlobalStorage()) { 2198 LV.setGlobalObjCRef(true); 2199 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2200 } 2201 } 2202 LV.setObjCArray(E->getType()->isArrayType()); 2203 return; 2204 } 2205 2206 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2207 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2208 return; 2209 } 2210 2211 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2212 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2213 if (LV.isObjCIvar()) { 2214 // If cast is to a structure pointer, follow gcc's behavior and make it 2215 // a non-ivar write-barrier. 2216 QualType ExpTy = E->getType(); 2217 if (ExpTy->isPointerType()) 2218 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2219 if (ExpTy->isRecordType()) 2220 LV.setObjCIvar(false); 2221 } 2222 return; 2223 } 2224 2225 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2226 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2227 return; 2228 } 2229 2230 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2231 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2232 return; 2233 } 2234 2235 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2236 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2237 return; 2238 } 2239 2240 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2241 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2242 return; 2243 } 2244 2245 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2246 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2247 if (LV.isObjCIvar() && !LV.isObjCArray()) 2248 // Using array syntax to assigning to what an ivar points to is not 2249 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2250 LV.setObjCIvar(false); 2251 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2252 // Using array syntax to assigning to what global points to is not 2253 // same as assigning to the global itself. {id *G;} G[i] = 0; 2254 LV.setGlobalObjCRef(false); 2255 return; 2256 } 2257 2258 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2259 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2260 // We don't know if member is an 'ivar', but this flag is looked at 2261 // only in the context of LV.isObjCIvar(). 2262 LV.setObjCArray(E->getType()->isArrayType()); 2263 return; 2264 } 2265 } 2266 2267 static llvm::Value * 2268 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2269 llvm::Value *V, llvm::Type *IRType, 2270 StringRef Name = StringRef()) { 2271 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2272 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2273 } 2274 2275 static LValue EmitThreadPrivateVarDeclLValue( 2276 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2277 llvm::Type *RealVarTy, SourceLocation Loc) { 2278 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2279 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2280 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2281 } 2282 2283 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF, 2284 const VarDecl *VD, QualType T) { 2285 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2286 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2287 if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To) 2288 return Address::invalid(); 2289 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause"); 2290 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2291 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2292 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2293 } 2294 2295 Address 2296 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2297 LValueBaseInfo *PointeeBaseInfo, 2298 TBAAAccessInfo *PointeeTBAAInfo) { 2299 llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), 2300 RefLVal.isVolatile()); 2301 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2302 2303 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2304 PointeeBaseInfo, PointeeTBAAInfo, 2305 /* forPointeeType= */ true); 2306 return Address(Load, Align); 2307 } 2308 2309 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2310 LValueBaseInfo PointeeBaseInfo; 2311 TBAAAccessInfo PointeeTBAAInfo; 2312 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2313 &PointeeTBAAInfo); 2314 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2315 PointeeBaseInfo, PointeeTBAAInfo); 2316 } 2317 2318 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2319 const PointerType *PtrTy, 2320 LValueBaseInfo *BaseInfo, 2321 TBAAAccessInfo *TBAAInfo) { 2322 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2323 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2324 BaseInfo, TBAAInfo, 2325 /*forPointeeType=*/true)); 2326 } 2327 2328 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2329 const PointerType *PtrTy) { 2330 LValueBaseInfo BaseInfo; 2331 TBAAAccessInfo TBAAInfo; 2332 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2333 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2334 } 2335 2336 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2337 const Expr *E, const VarDecl *VD) { 2338 QualType T = E->getType(); 2339 2340 // If it's thread_local, emit a call to its wrapper function instead. 2341 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2342 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2343 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2344 // Check if the variable is marked as declare target with link clause in 2345 // device codegen. 2346 if (CGF.getLangOpts().OpenMPIsDevice) { 2347 Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T); 2348 if (Addr.isValid()) 2349 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2350 } 2351 2352 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2353 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2354 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2355 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2356 Address Addr(V, Alignment); 2357 // Emit reference to the private copy of the variable if it is an OpenMP 2358 // threadprivate variable. 2359 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2360 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2361 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2362 E->getExprLoc()); 2363 } 2364 LValue LV = VD->getType()->isReferenceType() ? 2365 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2366 AlignmentSource::Decl) : 2367 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2368 setObjCGCLValueClass(CGF.getContext(), E, LV); 2369 return LV; 2370 } 2371 2372 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2373 const FunctionDecl *FD) { 2374 if (FD->hasAttr<WeakRefAttr>()) { 2375 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2376 return aliasee.getPointer(); 2377 } 2378 2379 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2380 if (!FD->hasPrototype()) { 2381 if (const FunctionProtoType *Proto = 2382 FD->getType()->getAs<FunctionProtoType>()) { 2383 // Ugly case: for a K&R-style definition, the type of the definition 2384 // isn't the same as the type of a use. Correct for this with a 2385 // bitcast. 2386 QualType NoProtoType = 2387 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2388 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2389 V = llvm::ConstantExpr::getBitCast(V, 2390 CGM.getTypes().ConvertType(NoProtoType)); 2391 } 2392 } 2393 return V; 2394 } 2395 2396 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2397 const Expr *E, const FunctionDecl *FD) { 2398 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2399 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2400 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2401 AlignmentSource::Decl); 2402 } 2403 2404 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2405 llvm::Value *ThisValue) { 2406 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2407 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2408 return CGF.EmitLValueForField(LV, FD); 2409 } 2410 2411 /// Named Registers are named metadata pointing to the register name 2412 /// which will be read from/written to as an argument to the intrinsic 2413 /// @llvm.read/write_register. 2414 /// So far, only the name is being passed down, but other options such as 2415 /// register type, allocation type or even optimization options could be 2416 /// passed down via the metadata node. 2417 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2418 SmallString<64> Name("llvm.named.register."); 2419 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2420 assert(Asm->getLabel().size() < 64-Name.size() && 2421 "Register name too big"); 2422 Name.append(Asm->getLabel()); 2423 llvm::NamedMDNode *M = 2424 CGM.getModule().getOrInsertNamedMetadata(Name); 2425 if (M->getNumOperands() == 0) { 2426 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2427 Asm->getLabel()); 2428 llvm::Metadata *Ops[] = {Str}; 2429 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2430 } 2431 2432 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2433 2434 llvm::Value *Ptr = 2435 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2436 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2437 } 2438 2439 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2440 const NamedDecl *ND = E->getDecl(); 2441 QualType T = E->getType(); 2442 2443 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2444 // Global Named registers access via intrinsics only 2445 if (VD->getStorageClass() == SC_Register && 2446 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2447 return EmitGlobalNamedRegister(VD, CGM); 2448 2449 // A DeclRefExpr for a reference initialized by a constant expression can 2450 // appear without being odr-used. Directly emit the constant initializer. 2451 const Expr *Init = VD->getAnyInitializer(VD); 2452 const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl); 2453 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2454 VD->isUsableInConstantExpressions(getContext()) && 2455 VD->checkInitIsICE() && 2456 // Do not emit if it is private OpenMP variable. 2457 !(E->refersToEnclosingVariableOrCapture() && 2458 ((CapturedStmtInfo && 2459 (LocalDeclMap.count(VD->getCanonicalDecl()) || 2460 CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || 2461 LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || 2462 (BD && BD->capturesVariable(VD))))) { 2463 llvm::Constant *Val = 2464 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2465 *VD->evaluateValue(), 2466 VD->getType()); 2467 assert(Val && "failed to emit reference constant expression"); 2468 // FIXME: Eventually we will want to emit vector element references. 2469 2470 // Should we be using the alignment of the constant pointer we emitted? 2471 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), 2472 /* BaseInfo= */ nullptr, 2473 /* TBAAInfo= */ nullptr, 2474 /* forPointeeType= */ true); 2475 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2476 } 2477 2478 // Check for captured variables. 2479 if (E->refersToEnclosingVariableOrCapture()) { 2480 VD = VD->getCanonicalDecl(); 2481 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2482 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2483 else if (CapturedStmtInfo) { 2484 auto I = LocalDeclMap.find(VD); 2485 if (I != LocalDeclMap.end()) { 2486 if (VD->getType()->isReferenceType()) 2487 return EmitLoadOfReferenceLValue(I->second, VD->getType(), 2488 AlignmentSource::Decl); 2489 return MakeAddrLValue(I->second, T); 2490 } 2491 LValue CapLVal = 2492 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2493 CapturedStmtInfo->getContextValue()); 2494 return MakeAddrLValue( 2495 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2496 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2497 CapLVal.getTBAAInfo()); 2498 } 2499 2500 assert(isa<BlockDecl>(CurCodeDecl)); 2501 Address addr = GetAddrOfBlockDecl(VD); 2502 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2503 } 2504 } 2505 2506 // FIXME: We should be able to assert this for FunctionDecls as well! 2507 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2508 // those with a valid source location. 2509 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2510 !E->getLocation().isValid()) && 2511 "Should not use decl without marking it used!"); 2512 2513 if (ND->hasAttr<WeakRefAttr>()) { 2514 const auto *VD = cast<ValueDecl>(ND); 2515 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2516 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2517 } 2518 2519 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2520 // Check if this is a global variable. 2521 if (VD->hasLinkage() || VD->isStaticDataMember()) 2522 return EmitGlobalVarDeclLValue(*this, E, VD); 2523 2524 Address addr = Address::invalid(); 2525 2526 // The variable should generally be present in the local decl map. 2527 auto iter = LocalDeclMap.find(VD); 2528 if (iter != LocalDeclMap.end()) { 2529 addr = iter->second; 2530 2531 // Otherwise, it might be static local we haven't emitted yet for 2532 // some reason; most likely, because it's in an outer function. 2533 } else if (VD->isStaticLocal()) { 2534 addr = Address(CGM.getOrCreateStaticVarDecl( 2535 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2536 getContext().getDeclAlign(VD)); 2537 2538 // No other cases for now. 2539 } else { 2540 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2541 } 2542 2543 2544 // Check for OpenMP threadprivate variables. 2545 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2546 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2547 return EmitThreadPrivateVarDeclLValue( 2548 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2549 E->getExprLoc()); 2550 } 2551 2552 // Drill into block byref variables. 2553 bool isBlockByref = VD->isEscapingByref(); 2554 if (isBlockByref) { 2555 addr = emitBlockByrefAddress(addr, VD); 2556 } 2557 2558 // Drill into reference types. 2559 LValue LV = VD->getType()->isReferenceType() ? 2560 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2561 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2562 2563 bool isLocalStorage = VD->hasLocalStorage(); 2564 2565 bool NonGCable = isLocalStorage && 2566 !VD->getType()->isReferenceType() && 2567 !isBlockByref; 2568 if (NonGCable) { 2569 LV.getQuals().removeObjCGCAttr(); 2570 LV.setNonGC(true); 2571 } 2572 2573 bool isImpreciseLifetime = 2574 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2575 if (isImpreciseLifetime) 2576 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2577 setObjCGCLValueClass(getContext(), E, LV); 2578 return LV; 2579 } 2580 2581 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2582 return EmitFunctionDeclLValue(*this, E, FD); 2583 2584 // FIXME: While we're emitting a binding from an enclosing scope, all other 2585 // DeclRefExprs we see should be implicitly treated as if they also refer to 2586 // an enclosing scope. 2587 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2588 return EmitLValue(BD->getBinding()); 2589 2590 llvm_unreachable("Unhandled DeclRefExpr"); 2591 } 2592 2593 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2594 // __extension__ doesn't affect lvalue-ness. 2595 if (E->getOpcode() == UO_Extension) 2596 return EmitLValue(E->getSubExpr()); 2597 2598 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2599 switch (E->getOpcode()) { 2600 default: llvm_unreachable("Unknown unary operator lvalue!"); 2601 case UO_Deref: { 2602 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2603 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2604 2605 LValueBaseInfo BaseInfo; 2606 TBAAAccessInfo TBAAInfo; 2607 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2608 &TBAAInfo); 2609 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2610 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2611 2612 // We should not generate __weak write barrier on indirect reference 2613 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2614 // But, we continue to generate __strong write barrier on indirect write 2615 // into a pointer to object. 2616 if (getLangOpts().ObjC && 2617 getLangOpts().getGC() != LangOptions::NonGC && 2618 LV.isObjCWeak()) 2619 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2620 return LV; 2621 } 2622 case UO_Real: 2623 case UO_Imag: { 2624 LValue LV = EmitLValue(E->getSubExpr()); 2625 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2626 2627 // __real is valid on scalars. This is a faster way of testing that. 2628 // __imag can only produce an rvalue on scalars. 2629 if (E->getOpcode() == UO_Real && 2630 !LV.getAddress().getElementType()->isStructTy()) { 2631 assert(E->getSubExpr()->getType()->isArithmeticType()); 2632 return LV; 2633 } 2634 2635 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2636 2637 Address Component = 2638 (E->getOpcode() == UO_Real 2639 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2640 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2641 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2642 CGM.getTBAAInfoForSubobject(LV, T)); 2643 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2644 return ElemLV; 2645 } 2646 case UO_PreInc: 2647 case UO_PreDec: { 2648 LValue LV = EmitLValue(E->getSubExpr()); 2649 bool isInc = E->getOpcode() == UO_PreInc; 2650 2651 if (E->getType()->isAnyComplexType()) 2652 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2653 else 2654 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2655 return LV; 2656 } 2657 } 2658 } 2659 2660 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2661 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2662 E->getType(), AlignmentSource::Decl); 2663 } 2664 2665 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2666 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2667 E->getType(), AlignmentSource::Decl); 2668 } 2669 2670 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2671 auto SL = E->getFunctionName(); 2672 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2673 StringRef FnName = CurFn->getName(); 2674 if (FnName.startswith("\01")) 2675 FnName = FnName.substr(1); 2676 StringRef NameItems[] = { 2677 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2678 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2679 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2680 std::string Name = SL->getString(); 2681 if (!Name.empty()) { 2682 unsigned Discriminator = 2683 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2684 if (Discriminator) 2685 Name += "_" + Twine(Discriminator + 1).str(); 2686 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2687 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2688 } else { 2689 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2690 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2691 } 2692 } 2693 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2694 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2695 } 2696 2697 /// Emit a type description suitable for use by a runtime sanitizer library. The 2698 /// format of a type descriptor is 2699 /// 2700 /// \code 2701 /// { i16 TypeKind, i16 TypeInfo } 2702 /// \endcode 2703 /// 2704 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2705 /// integer, 1 for a floating point value, and -1 for anything else. 2706 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2707 // Only emit each type's descriptor once. 2708 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2709 return C; 2710 2711 uint16_t TypeKind = -1; 2712 uint16_t TypeInfo = 0; 2713 2714 if (T->isIntegerType()) { 2715 TypeKind = 0; 2716 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2717 (T->isSignedIntegerType() ? 1 : 0); 2718 } else if (T->isFloatingType()) { 2719 TypeKind = 1; 2720 TypeInfo = getContext().getTypeSize(T); 2721 } 2722 2723 // Format the type name as if for a diagnostic, including quotes and 2724 // optionally an 'aka'. 2725 SmallString<32> Buffer; 2726 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2727 (intptr_t)T.getAsOpaquePtr(), 2728 StringRef(), StringRef(), None, Buffer, 2729 None); 2730 2731 llvm::Constant *Components[] = { 2732 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2733 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2734 }; 2735 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2736 2737 auto *GV = new llvm::GlobalVariable( 2738 CGM.getModule(), Descriptor->getType(), 2739 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2740 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2741 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2742 2743 // Remember the descriptor for this type. 2744 CGM.setTypeDescriptorInMap(T, GV); 2745 2746 return GV; 2747 } 2748 2749 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2750 llvm::Type *TargetTy = IntPtrTy; 2751 2752 if (V->getType() == TargetTy) 2753 return V; 2754 2755 // Floating-point types which fit into intptr_t are bitcast to integers 2756 // and then passed directly (after zero-extension, if necessary). 2757 if (V->getType()->isFloatingPointTy()) { 2758 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2759 if (Bits <= TargetTy->getIntegerBitWidth()) 2760 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2761 Bits)); 2762 } 2763 2764 // Integers which fit in intptr_t are zero-extended and passed directly. 2765 if (V->getType()->isIntegerTy() && 2766 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2767 return Builder.CreateZExt(V, TargetTy); 2768 2769 // Pointers are passed directly, everything else is passed by address. 2770 if (!V->getType()->isPointerTy()) { 2771 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2772 Builder.CreateStore(V, Ptr); 2773 V = Ptr.getPointer(); 2774 } 2775 return Builder.CreatePtrToInt(V, TargetTy); 2776 } 2777 2778 /// Emit a representation of a SourceLocation for passing to a handler 2779 /// in a sanitizer runtime library. The format for this data is: 2780 /// \code 2781 /// struct SourceLocation { 2782 /// const char *Filename; 2783 /// int32_t Line, Column; 2784 /// }; 2785 /// \endcode 2786 /// For an invalid SourceLocation, the Filename pointer is null. 2787 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2788 llvm::Constant *Filename; 2789 int Line, Column; 2790 2791 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2792 if (PLoc.isValid()) { 2793 StringRef FilenameString = PLoc.getFilename(); 2794 2795 int PathComponentsToStrip = 2796 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2797 if (PathComponentsToStrip < 0) { 2798 assert(PathComponentsToStrip != INT_MIN); 2799 int PathComponentsToKeep = -PathComponentsToStrip; 2800 auto I = llvm::sys::path::rbegin(FilenameString); 2801 auto E = llvm::sys::path::rend(FilenameString); 2802 while (I != E && --PathComponentsToKeep) 2803 ++I; 2804 2805 FilenameString = FilenameString.substr(I - E); 2806 } else if (PathComponentsToStrip > 0) { 2807 auto I = llvm::sys::path::begin(FilenameString); 2808 auto E = llvm::sys::path::end(FilenameString); 2809 while (I != E && PathComponentsToStrip--) 2810 ++I; 2811 2812 if (I != E) 2813 FilenameString = 2814 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2815 else 2816 FilenameString = llvm::sys::path::filename(FilenameString); 2817 } 2818 2819 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2820 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2821 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2822 Filename = FilenameGV.getPointer(); 2823 Line = PLoc.getLine(); 2824 Column = PLoc.getColumn(); 2825 } else { 2826 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2827 Line = Column = 0; 2828 } 2829 2830 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2831 Builder.getInt32(Column)}; 2832 2833 return llvm::ConstantStruct::getAnon(Data); 2834 } 2835 2836 namespace { 2837 /// Specify under what conditions this check can be recovered 2838 enum class CheckRecoverableKind { 2839 /// Always terminate program execution if this check fails. 2840 Unrecoverable, 2841 /// Check supports recovering, runtime has both fatal (noreturn) and 2842 /// non-fatal handlers for this check. 2843 Recoverable, 2844 /// Runtime conditionally aborts, always need to support recovery. 2845 AlwaysRecoverable 2846 }; 2847 } 2848 2849 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2850 assert(llvm::countPopulation(Kind) == 1); 2851 switch (Kind) { 2852 case SanitizerKind::Vptr: 2853 return CheckRecoverableKind::AlwaysRecoverable; 2854 case SanitizerKind::Return: 2855 case SanitizerKind::Unreachable: 2856 return CheckRecoverableKind::Unrecoverable; 2857 default: 2858 return CheckRecoverableKind::Recoverable; 2859 } 2860 } 2861 2862 namespace { 2863 struct SanitizerHandlerInfo { 2864 char const *const Name; 2865 unsigned Version; 2866 }; 2867 } 2868 2869 const SanitizerHandlerInfo SanitizerHandlers[] = { 2870 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2871 LIST_SANITIZER_CHECKS 2872 #undef SANITIZER_CHECK 2873 }; 2874 2875 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2876 llvm::FunctionType *FnType, 2877 ArrayRef<llvm::Value *> FnArgs, 2878 SanitizerHandler CheckHandler, 2879 CheckRecoverableKind RecoverKind, bool IsFatal, 2880 llvm::BasicBlock *ContBB) { 2881 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2882 Optional<ApplyDebugLocation> DL; 2883 if (!CGF.Builder.getCurrentDebugLocation()) { 2884 // Ensure that the call has at least an artificial debug location. 2885 DL.emplace(CGF, SourceLocation()); 2886 } 2887 bool NeedsAbortSuffix = 2888 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2889 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2890 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2891 const StringRef CheckName = CheckInfo.Name; 2892 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2893 if (CheckInfo.Version && !MinimalRuntime) 2894 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2895 if (MinimalRuntime) 2896 FnName += "_minimal"; 2897 if (NeedsAbortSuffix) 2898 FnName += "_abort"; 2899 bool MayReturn = 2900 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2901 2902 llvm::AttrBuilder B; 2903 if (!MayReturn) { 2904 B.addAttribute(llvm::Attribute::NoReturn) 2905 .addAttribute(llvm::Attribute::NoUnwind); 2906 } 2907 B.addAttribute(llvm::Attribute::UWTable); 2908 2909 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2910 FnType, FnName, 2911 llvm::AttributeList::get(CGF.getLLVMContext(), 2912 llvm::AttributeList::FunctionIndex, B), 2913 /*Local=*/true); 2914 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2915 if (!MayReturn) { 2916 HandlerCall->setDoesNotReturn(); 2917 CGF.Builder.CreateUnreachable(); 2918 } else { 2919 CGF.Builder.CreateBr(ContBB); 2920 } 2921 } 2922 2923 void CodeGenFunction::EmitCheck( 2924 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2925 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2926 ArrayRef<llvm::Value *> DynamicArgs) { 2927 assert(IsSanitizerScope); 2928 assert(Checked.size() > 0); 2929 assert(CheckHandler >= 0 && 2930 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 2931 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2932 2933 llvm::Value *FatalCond = nullptr; 2934 llvm::Value *RecoverableCond = nullptr; 2935 llvm::Value *TrapCond = nullptr; 2936 for (int i = 0, n = Checked.size(); i < n; ++i) { 2937 llvm::Value *Check = Checked[i].first; 2938 // -fsanitize-trap= overrides -fsanitize-recover=. 2939 llvm::Value *&Cond = 2940 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2941 ? TrapCond 2942 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2943 ? RecoverableCond 2944 : FatalCond; 2945 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2946 } 2947 2948 if (TrapCond) 2949 EmitTrapCheck(TrapCond); 2950 if (!FatalCond && !RecoverableCond) 2951 return; 2952 2953 llvm::Value *JointCond; 2954 if (FatalCond && RecoverableCond) 2955 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2956 else 2957 JointCond = FatalCond ? FatalCond : RecoverableCond; 2958 assert(JointCond); 2959 2960 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2961 assert(SanOpts.has(Checked[0].second)); 2962 #ifndef NDEBUG 2963 for (int i = 1, n = Checked.size(); i < n; ++i) { 2964 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2965 "All recoverable kinds in a single check must be same!"); 2966 assert(SanOpts.has(Checked[i].second)); 2967 } 2968 #endif 2969 2970 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2971 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2972 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2973 // Give hint that we very much don't expect to execute the handler 2974 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2975 llvm::MDBuilder MDHelper(getLLVMContext()); 2976 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2977 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2978 EmitBlock(Handlers); 2979 2980 // Handler functions take an i8* pointing to the (handler-specific) static 2981 // information block, followed by a sequence of intptr_t arguments 2982 // representing operand values. 2983 SmallVector<llvm::Value *, 4> Args; 2984 SmallVector<llvm::Type *, 4> ArgTypes; 2985 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2986 Args.reserve(DynamicArgs.size() + 1); 2987 ArgTypes.reserve(DynamicArgs.size() + 1); 2988 2989 // Emit handler arguments and create handler function type. 2990 if (!StaticArgs.empty()) { 2991 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2992 auto *InfoPtr = 2993 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2994 llvm::GlobalVariable::PrivateLinkage, Info); 2995 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2996 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2997 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2998 ArgTypes.push_back(Int8PtrTy); 2999 } 3000 3001 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3002 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3003 ArgTypes.push_back(IntPtrTy); 3004 } 3005 } 3006 3007 llvm::FunctionType *FnType = 3008 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3009 3010 if (!FatalCond || !RecoverableCond) { 3011 // Simple case: we need to generate a single handler call, either 3012 // fatal, or non-fatal. 3013 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3014 (FatalCond != nullptr), Cont); 3015 } else { 3016 // Emit two handler calls: first one for set of unrecoverable checks, 3017 // another one for recoverable. 3018 llvm::BasicBlock *NonFatalHandlerBB = 3019 createBasicBlock("non_fatal." + CheckName); 3020 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3021 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3022 EmitBlock(FatalHandlerBB); 3023 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3024 NonFatalHandlerBB); 3025 EmitBlock(NonFatalHandlerBB); 3026 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3027 Cont); 3028 } 3029 3030 EmitBlock(Cont); 3031 } 3032 3033 void CodeGenFunction::EmitCfiSlowPathCheck( 3034 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3035 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3036 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3037 3038 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3039 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3040 3041 llvm::MDBuilder MDHelper(getLLVMContext()); 3042 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3043 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3044 3045 EmitBlock(CheckBB); 3046 3047 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3048 3049 llvm::CallInst *CheckCall; 3050 llvm::Constant *SlowPathFn; 3051 if (WithDiag) { 3052 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3053 auto *InfoPtr = 3054 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3055 llvm::GlobalVariable::PrivateLinkage, Info); 3056 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3057 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3058 3059 SlowPathFn = CGM.getModule().getOrInsertFunction( 3060 "__cfi_slowpath_diag", 3061 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3062 false)); 3063 CheckCall = Builder.CreateCall( 3064 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3065 } else { 3066 SlowPathFn = CGM.getModule().getOrInsertFunction( 3067 "__cfi_slowpath", 3068 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3069 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3070 } 3071 3072 CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts())); 3073 CheckCall->setDoesNotThrow(); 3074 3075 EmitBlock(Cont); 3076 } 3077 3078 // Emit a stub for __cfi_check function so that the linker knows about this 3079 // symbol in LTO mode. 3080 void CodeGenFunction::EmitCfiCheckStub() { 3081 llvm::Module *M = &CGM.getModule(); 3082 auto &Ctx = M->getContext(); 3083 llvm::Function *F = llvm::Function::Create( 3084 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3085 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3086 CGM.setDSOLocal(F); 3087 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3088 // FIXME: consider emitting an intrinsic call like 3089 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3090 // which can be lowered in CrossDSOCFI pass to the actual contents of 3091 // __cfi_check. This would allow inlining of __cfi_check calls. 3092 llvm::CallInst::Create( 3093 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3094 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3095 } 3096 3097 // This function is basically a switch over the CFI failure kind, which is 3098 // extracted from CFICheckFailData (1st function argument). Each case is either 3099 // llvm.trap or a call to one of the two runtime handlers, based on 3100 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3101 // failure kind) traps, but this should really never happen. CFICheckFailData 3102 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3103 // check kind; in this case __cfi_check_fail traps as well. 3104 void CodeGenFunction::EmitCfiCheckFail() { 3105 SanitizerScope SanScope(this); 3106 FunctionArgList Args; 3107 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3108 ImplicitParamDecl::Other); 3109 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3110 ImplicitParamDecl::Other); 3111 Args.push_back(&ArgData); 3112 Args.push_back(&ArgAddr); 3113 3114 const CGFunctionInfo &FI = 3115 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3116 3117 llvm::Function *F = llvm::Function::Create( 3118 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3119 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3120 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3121 3122 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3123 SourceLocation()); 3124 3125 // This function should not be affected by blacklist. This function does 3126 // not have a source location, but "src:*" would still apply. Revert any 3127 // changes to SanOpts made in StartFunction. 3128 SanOpts = CGM.getLangOpts().Sanitize; 3129 3130 llvm::Value *Data = 3131 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3132 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3133 llvm::Value *Addr = 3134 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3135 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3136 3137 // Data == nullptr means the calling module has trap behaviour for this check. 3138 llvm::Value *DataIsNotNullPtr = 3139 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3140 EmitTrapCheck(DataIsNotNullPtr); 3141 3142 llvm::StructType *SourceLocationTy = 3143 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3144 llvm::StructType *CfiCheckFailDataTy = 3145 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3146 3147 llvm::Value *V = Builder.CreateConstGEP2_32( 3148 CfiCheckFailDataTy, 3149 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3150 0); 3151 Address CheckKindAddr(V, getIntAlign()); 3152 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3153 3154 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3155 CGM.getLLVMContext(), 3156 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3157 llvm::Value *ValidVtable = Builder.CreateZExt( 3158 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3159 {Addr, AllVtables}), 3160 IntPtrTy); 3161 3162 const std::pair<int, SanitizerMask> CheckKinds[] = { 3163 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3164 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3165 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3166 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3167 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3168 3169 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3170 for (auto CheckKindMaskPair : CheckKinds) { 3171 int Kind = CheckKindMaskPair.first; 3172 SanitizerMask Mask = CheckKindMaskPair.second; 3173 llvm::Value *Cond = 3174 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3175 if (CGM.getLangOpts().Sanitize.has(Mask)) 3176 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3177 {Data, Addr, ValidVtable}); 3178 else 3179 EmitTrapCheck(Cond); 3180 } 3181 3182 FinishFunction(); 3183 // The only reference to this function will be created during LTO link. 3184 // Make sure it survives until then. 3185 CGM.addUsedGlobal(F); 3186 } 3187 3188 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3189 if (SanOpts.has(SanitizerKind::Unreachable)) { 3190 SanitizerScope SanScope(this); 3191 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3192 SanitizerKind::Unreachable), 3193 SanitizerHandler::BuiltinUnreachable, 3194 EmitCheckSourceLocation(Loc), None); 3195 } 3196 Builder.CreateUnreachable(); 3197 } 3198 3199 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3200 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3201 3202 // If we're optimizing, collapse all calls to trap down to just one per 3203 // function to save on code size. 3204 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3205 TrapBB = createBasicBlock("trap"); 3206 Builder.CreateCondBr(Checked, Cont, TrapBB); 3207 EmitBlock(TrapBB); 3208 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3209 TrapCall->setDoesNotReturn(); 3210 TrapCall->setDoesNotThrow(); 3211 Builder.CreateUnreachable(); 3212 } else { 3213 Builder.CreateCondBr(Checked, Cont, TrapBB); 3214 } 3215 3216 EmitBlock(Cont); 3217 } 3218 3219 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3220 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3221 3222 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3223 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3224 CGM.getCodeGenOpts().TrapFuncName); 3225 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3226 } 3227 3228 return TrapCall; 3229 } 3230 3231 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3232 LValueBaseInfo *BaseInfo, 3233 TBAAAccessInfo *TBAAInfo) { 3234 assert(E->getType()->isArrayType() && 3235 "Array to pointer decay must have array source type!"); 3236 3237 // Expressions of array type can't be bitfields or vector elements. 3238 LValue LV = EmitLValue(E); 3239 Address Addr = LV.getAddress(); 3240 3241 // If the array type was an incomplete type, we need to make sure 3242 // the decay ends up being the right type. 3243 llvm::Type *NewTy = ConvertType(E->getType()); 3244 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3245 3246 // Note that VLA pointers are always decayed, so we don't need to do 3247 // anything here. 3248 if (!E->getType()->isVariableArrayType()) { 3249 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3250 "Expected pointer to array"); 3251 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3252 } 3253 3254 // The result of this decay conversion points to an array element within the 3255 // base lvalue. However, since TBAA currently does not support representing 3256 // accesses to elements of member arrays, we conservatively represent accesses 3257 // to the pointee object as if it had no any base lvalue specified. 3258 // TODO: Support TBAA for member arrays. 3259 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3260 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3261 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3262 3263 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3264 } 3265 3266 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3267 /// array to pointer, return the array subexpression. 3268 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3269 // If this isn't just an array->pointer decay, bail out. 3270 const auto *CE = dyn_cast<CastExpr>(E); 3271 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3272 return nullptr; 3273 3274 // If this is a decay from variable width array, bail out. 3275 const Expr *SubExpr = CE->getSubExpr(); 3276 if (SubExpr->getType()->isVariableArrayType()) 3277 return nullptr; 3278 3279 return SubExpr; 3280 } 3281 3282 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3283 llvm::Value *ptr, 3284 ArrayRef<llvm::Value*> indices, 3285 bool inbounds, 3286 bool signedIndices, 3287 SourceLocation loc, 3288 const llvm::Twine &name = "arrayidx") { 3289 if (inbounds) { 3290 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3291 CodeGenFunction::NotSubtraction, loc, 3292 name); 3293 } else { 3294 return CGF.Builder.CreateGEP(ptr, indices, name); 3295 } 3296 } 3297 3298 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3299 llvm::Value *idx, 3300 CharUnits eltSize) { 3301 // If we have a constant index, we can use the exact offset of the 3302 // element we're accessing. 3303 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3304 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3305 return arrayAlign.alignmentAtOffset(offset); 3306 3307 // Otherwise, use the worst-case alignment for any element. 3308 } else { 3309 return arrayAlign.alignmentOfArrayElement(eltSize); 3310 } 3311 } 3312 3313 static QualType getFixedSizeElementType(const ASTContext &ctx, 3314 const VariableArrayType *vla) { 3315 QualType eltType; 3316 do { 3317 eltType = vla->getElementType(); 3318 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3319 return eltType; 3320 } 3321 3322 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3323 ArrayRef<llvm::Value *> indices, 3324 QualType eltType, bool inbounds, 3325 bool signedIndices, SourceLocation loc, 3326 const llvm::Twine &name = "arrayidx") { 3327 // All the indices except that last must be zero. 3328 #ifndef NDEBUG 3329 for (auto idx : indices.drop_back()) 3330 assert(isa<llvm::ConstantInt>(idx) && 3331 cast<llvm::ConstantInt>(idx)->isZero()); 3332 #endif 3333 3334 // Determine the element size of the statically-sized base. This is 3335 // the thing that the indices are expressed in terms of. 3336 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3337 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3338 } 3339 3340 // We can use that to compute the best alignment of the element. 3341 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3342 CharUnits eltAlign = 3343 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3344 3345 llvm::Value *eltPtr = emitArraySubscriptGEP( 3346 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3347 return Address(eltPtr, eltAlign); 3348 } 3349 3350 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3351 bool Accessed) { 3352 // The index must always be an integer, which is not an aggregate. Emit it 3353 // in lexical order (this complexity is, sadly, required by C++17). 3354 llvm::Value *IdxPre = 3355 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3356 bool SignedIndices = false; 3357 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3358 auto *Idx = IdxPre; 3359 if (E->getLHS() != E->getIdx()) { 3360 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3361 Idx = EmitScalarExpr(E->getIdx()); 3362 } 3363 3364 QualType IdxTy = E->getIdx()->getType(); 3365 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3366 SignedIndices |= IdxSigned; 3367 3368 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3369 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3370 3371 // Extend or truncate the index type to 32 or 64-bits. 3372 if (Promote && Idx->getType() != IntPtrTy) 3373 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3374 3375 return Idx; 3376 }; 3377 IdxPre = nullptr; 3378 3379 // If the base is a vector type, then we are forming a vector element lvalue 3380 // with this subscript. 3381 if (E->getBase()->getType()->isVectorType() && 3382 !isa<ExtVectorElementExpr>(E->getBase())) { 3383 // Emit the vector as an lvalue to get its address. 3384 LValue LHS = EmitLValue(E->getBase()); 3385 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3386 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3387 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3388 LHS.getBaseInfo(), TBAAAccessInfo()); 3389 } 3390 3391 // All the other cases basically behave like simple offsetting. 3392 3393 // Handle the extvector case we ignored above. 3394 if (isa<ExtVectorElementExpr>(E->getBase())) { 3395 LValue LV = EmitLValue(E->getBase()); 3396 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3397 Address Addr = EmitExtVectorElementLValue(LV); 3398 3399 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3400 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3401 SignedIndices, E->getExprLoc()); 3402 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3403 CGM.getTBAAInfoForSubobject(LV, EltType)); 3404 } 3405 3406 LValueBaseInfo EltBaseInfo; 3407 TBAAAccessInfo EltTBAAInfo; 3408 Address Addr = Address::invalid(); 3409 if (const VariableArrayType *vla = 3410 getContext().getAsVariableArrayType(E->getType())) { 3411 // The base must be a pointer, which is not an aggregate. Emit 3412 // it. It needs to be emitted first in case it's what captures 3413 // the VLA bounds. 3414 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3415 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3416 3417 // The element count here is the total number of non-VLA elements. 3418 llvm::Value *numElements = getVLASize(vla).NumElts; 3419 3420 // Effectively, the multiply by the VLA size is part of the GEP. 3421 // GEP indexes are signed, and scaling an index isn't permitted to 3422 // signed-overflow, so we use the same semantics for our explicit 3423 // multiply. We suppress this if overflow is not undefined behavior. 3424 if (getLangOpts().isSignedOverflowDefined()) { 3425 Idx = Builder.CreateMul(Idx, numElements); 3426 } else { 3427 Idx = Builder.CreateNSWMul(Idx, numElements); 3428 } 3429 3430 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3431 !getLangOpts().isSignedOverflowDefined(), 3432 SignedIndices, E->getExprLoc()); 3433 3434 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3435 // Indexing over an interface, as in "NSString *P; P[4];" 3436 3437 // Emit the base pointer. 3438 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3439 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3440 3441 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3442 llvm::Value *InterfaceSizeVal = 3443 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3444 3445 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3446 3447 // We don't necessarily build correct LLVM struct types for ObjC 3448 // interfaces, so we can't rely on GEP to do this scaling 3449 // correctly, so we need to cast to i8*. FIXME: is this actually 3450 // true? A lot of other things in the fragile ABI would break... 3451 llvm::Type *OrigBaseTy = Addr.getType(); 3452 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3453 3454 // Do the GEP. 3455 CharUnits EltAlign = 3456 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3457 llvm::Value *EltPtr = 3458 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3459 SignedIndices, E->getExprLoc()); 3460 Addr = Address(EltPtr, EltAlign); 3461 3462 // Cast back. 3463 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3464 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3465 // If this is A[i] where A is an array, the frontend will have decayed the 3466 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3467 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3468 // "gep x, i" here. Emit one "gep A, 0, i". 3469 assert(Array->getType()->isArrayType() && 3470 "Array to pointer decay must have array source type!"); 3471 LValue ArrayLV; 3472 // For simple multidimensional array indexing, set the 'accessed' flag for 3473 // better bounds-checking of the base expression. 3474 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3475 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3476 else 3477 ArrayLV = EmitLValue(Array); 3478 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3479 3480 // Propagate the alignment from the array itself to the result. 3481 Addr = emitArraySubscriptGEP( 3482 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3483 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3484 E->getExprLoc()); 3485 EltBaseInfo = ArrayLV.getBaseInfo(); 3486 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3487 } else { 3488 // The base must be a pointer; emit it with an estimate of its alignment. 3489 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3490 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3491 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3492 !getLangOpts().isSignedOverflowDefined(), 3493 SignedIndices, E->getExprLoc()); 3494 } 3495 3496 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3497 3498 if (getLangOpts().ObjC && 3499 getLangOpts().getGC() != LangOptions::NonGC) { 3500 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3501 setObjCGCLValueClass(getContext(), E, LV); 3502 } 3503 return LV; 3504 } 3505 3506 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3507 LValueBaseInfo &BaseInfo, 3508 TBAAAccessInfo &TBAAInfo, 3509 QualType BaseTy, QualType ElTy, 3510 bool IsLowerBound) { 3511 LValue BaseLVal; 3512 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3513 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3514 if (BaseTy->isArrayType()) { 3515 Address Addr = BaseLVal.getAddress(); 3516 BaseInfo = BaseLVal.getBaseInfo(); 3517 3518 // If the array type was an incomplete type, we need to make sure 3519 // the decay ends up being the right type. 3520 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3521 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3522 3523 // Note that VLA pointers are always decayed, so we don't need to do 3524 // anything here. 3525 if (!BaseTy->isVariableArrayType()) { 3526 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3527 "Expected pointer to array"); 3528 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3529 "arraydecay"); 3530 } 3531 3532 return CGF.Builder.CreateElementBitCast(Addr, 3533 CGF.ConvertTypeForMem(ElTy)); 3534 } 3535 LValueBaseInfo TypeBaseInfo; 3536 TBAAAccessInfo TypeTBAAInfo; 3537 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3538 &TypeTBAAInfo); 3539 BaseInfo.mergeForCast(TypeBaseInfo); 3540 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3541 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3542 } 3543 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3544 } 3545 3546 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3547 bool IsLowerBound) { 3548 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3549 QualType ResultExprTy; 3550 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3551 ResultExprTy = AT->getElementType(); 3552 else 3553 ResultExprTy = BaseTy->getPointeeType(); 3554 llvm::Value *Idx = nullptr; 3555 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3556 // Requesting lower bound or upper bound, but without provided length and 3557 // without ':' symbol for the default length -> length = 1. 3558 // Idx = LowerBound ?: 0; 3559 if (auto *LowerBound = E->getLowerBound()) { 3560 Idx = Builder.CreateIntCast( 3561 EmitScalarExpr(LowerBound), IntPtrTy, 3562 LowerBound->getType()->hasSignedIntegerRepresentation()); 3563 } else 3564 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3565 } else { 3566 // Try to emit length or lower bound as constant. If this is possible, 1 3567 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3568 // IR (LB + Len) - 1. 3569 auto &C = CGM.getContext(); 3570 auto *Length = E->getLength(); 3571 llvm::APSInt ConstLength; 3572 if (Length) { 3573 // Idx = LowerBound + Length - 1; 3574 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3575 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3576 Length = nullptr; 3577 } 3578 auto *LowerBound = E->getLowerBound(); 3579 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3580 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3581 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3582 LowerBound = nullptr; 3583 } 3584 if (!Length) 3585 --ConstLength; 3586 else if (!LowerBound) 3587 --ConstLowerBound; 3588 3589 if (Length || LowerBound) { 3590 auto *LowerBoundVal = 3591 LowerBound 3592 ? Builder.CreateIntCast( 3593 EmitScalarExpr(LowerBound), IntPtrTy, 3594 LowerBound->getType()->hasSignedIntegerRepresentation()) 3595 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3596 auto *LengthVal = 3597 Length 3598 ? Builder.CreateIntCast( 3599 EmitScalarExpr(Length), IntPtrTy, 3600 Length->getType()->hasSignedIntegerRepresentation()) 3601 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3602 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3603 /*HasNUW=*/false, 3604 !getLangOpts().isSignedOverflowDefined()); 3605 if (Length && LowerBound) { 3606 Idx = Builder.CreateSub( 3607 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3608 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3609 } 3610 } else 3611 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3612 } else { 3613 // Idx = ArraySize - 1; 3614 QualType ArrayTy = BaseTy->isPointerType() 3615 ? E->getBase()->IgnoreParenImpCasts()->getType() 3616 : BaseTy; 3617 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3618 Length = VAT->getSizeExpr(); 3619 if (Length->isIntegerConstantExpr(ConstLength, C)) 3620 Length = nullptr; 3621 } else { 3622 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3623 ConstLength = CAT->getSize(); 3624 } 3625 if (Length) { 3626 auto *LengthVal = Builder.CreateIntCast( 3627 EmitScalarExpr(Length), IntPtrTy, 3628 Length->getType()->hasSignedIntegerRepresentation()); 3629 Idx = Builder.CreateSub( 3630 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3631 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3632 } else { 3633 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3634 --ConstLength; 3635 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3636 } 3637 } 3638 } 3639 assert(Idx); 3640 3641 Address EltPtr = Address::invalid(); 3642 LValueBaseInfo BaseInfo; 3643 TBAAAccessInfo TBAAInfo; 3644 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3645 // The base must be a pointer, which is not an aggregate. Emit 3646 // it. It needs to be emitted first in case it's what captures 3647 // the VLA bounds. 3648 Address Base = 3649 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3650 BaseTy, VLA->getElementType(), IsLowerBound); 3651 // The element count here is the total number of non-VLA elements. 3652 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3653 3654 // Effectively, the multiply by the VLA size is part of the GEP. 3655 // GEP indexes are signed, and scaling an index isn't permitted to 3656 // signed-overflow, so we use the same semantics for our explicit 3657 // multiply. We suppress this if overflow is not undefined behavior. 3658 if (getLangOpts().isSignedOverflowDefined()) 3659 Idx = Builder.CreateMul(Idx, NumElements); 3660 else 3661 Idx = Builder.CreateNSWMul(Idx, NumElements); 3662 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3663 !getLangOpts().isSignedOverflowDefined(), 3664 /*SignedIndices=*/false, E->getExprLoc()); 3665 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3666 // If this is A[i] where A is an array, the frontend will have decayed the 3667 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3668 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3669 // "gep x, i" here. Emit one "gep A, 0, i". 3670 assert(Array->getType()->isArrayType() && 3671 "Array to pointer decay must have array source type!"); 3672 LValue ArrayLV; 3673 // For simple multidimensional array indexing, set the 'accessed' flag for 3674 // better bounds-checking of the base expression. 3675 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3676 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3677 else 3678 ArrayLV = EmitLValue(Array); 3679 3680 // Propagate the alignment from the array itself to the result. 3681 EltPtr = emitArraySubscriptGEP( 3682 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3683 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3684 /*SignedIndices=*/false, E->getExprLoc()); 3685 BaseInfo = ArrayLV.getBaseInfo(); 3686 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3687 } else { 3688 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3689 TBAAInfo, BaseTy, ResultExprTy, 3690 IsLowerBound); 3691 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3692 !getLangOpts().isSignedOverflowDefined(), 3693 /*SignedIndices=*/false, E->getExprLoc()); 3694 } 3695 3696 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3697 } 3698 3699 LValue CodeGenFunction:: 3700 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3701 // Emit the base vector as an l-value. 3702 LValue Base; 3703 3704 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3705 if (E->isArrow()) { 3706 // If it is a pointer to a vector, emit the address and form an lvalue with 3707 // it. 3708 LValueBaseInfo BaseInfo; 3709 TBAAAccessInfo TBAAInfo; 3710 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3711 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3712 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3713 Base.getQuals().removeObjCGCAttr(); 3714 } else if (E->getBase()->isGLValue()) { 3715 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3716 // emit the base as an lvalue. 3717 assert(E->getBase()->getType()->isVectorType()); 3718 Base = EmitLValue(E->getBase()); 3719 } else { 3720 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3721 assert(E->getBase()->getType()->isVectorType() && 3722 "Result must be a vector"); 3723 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3724 3725 // Store the vector to memory (because LValue wants an address). 3726 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3727 Builder.CreateStore(Vec, VecMem); 3728 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3729 AlignmentSource::Decl); 3730 } 3731 3732 QualType type = 3733 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3734 3735 // Encode the element access list into a vector of unsigned indices. 3736 SmallVector<uint32_t, 4> Indices; 3737 E->getEncodedElementAccess(Indices); 3738 3739 if (Base.isSimple()) { 3740 llvm::Constant *CV = 3741 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3742 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3743 Base.getBaseInfo(), TBAAAccessInfo()); 3744 } 3745 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3746 3747 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3748 SmallVector<llvm::Constant *, 4> CElts; 3749 3750 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3751 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3752 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3753 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3754 Base.getBaseInfo(), TBAAAccessInfo()); 3755 } 3756 3757 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3758 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3759 EmitIgnoredExpr(E->getBase()); 3760 return EmitDeclRefLValue(DRE); 3761 } 3762 3763 Expr *BaseExpr = E->getBase(); 3764 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3765 LValue BaseLV; 3766 if (E->isArrow()) { 3767 LValueBaseInfo BaseInfo; 3768 TBAAAccessInfo TBAAInfo; 3769 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3770 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3771 SanitizerSet SkippedChecks; 3772 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3773 if (IsBaseCXXThis) 3774 SkippedChecks.set(SanitizerKind::Alignment, true); 3775 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3776 SkippedChecks.set(SanitizerKind::Null, true); 3777 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3778 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3779 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3780 } else 3781 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3782 3783 NamedDecl *ND = E->getMemberDecl(); 3784 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3785 LValue LV = EmitLValueForField(BaseLV, Field); 3786 setObjCGCLValueClass(getContext(), E, LV); 3787 return LV; 3788 } 3789 3790 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3791 return EmitFunctionDeclLValue(*this, E, FD); 3792 3793 llvm_unreachable("Unhandled member declaration!"); 3794 } 3795 3796 /// Given that we are currently emitting a lambda, emit an l-value for 3797 /// one of its members. 3798 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3799 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3800 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3801 QualType LambdaTagType = 3802 getContext().getTagDeclType(Field->getParent()); 3803 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3804 return EmitLValueForField(LambdaLV, Field); 3805 } 3806 3807 /// Drill down to the storage of a field without walking into 3808 /// reference types. 3809 /// 3810 /// The resulting address doesn't necessarily have the right type. 3811 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3812 const FieldDecl *field) { 3813 const RecordDecl *rec = field->getParent(); 3814 3815 unsigned idx = 3816 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3817 3818 CharUnits offset; 3819 // Adjust the alignment down to the given offset. 3820 // As a special case, if the LLVM field index is 0, we know that this 3821 // is zero. 3822 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3823 .getFieldOffset(field->getFieldIndex()) == 0) && 3824 "LLVM field at index zero had non-zero offset?"); 3825 if (idx != 0) { 3826 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3827 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3828 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3829 } 3830 3831 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3832 } 3833 3834 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3835 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3836 if (!RD) 3837 return false; 3838 3839 if (RD->isDynamicClass()) 3840 return true; 3841 3842 for (const auto &Base : RD->bases()) 3843 if (hasAnyVptr(Base.getType(), Context)) 3844 return true; 3845 3846 for (const FieldDecl *Field : RD->fields()) 3847 if (hasAnyVptr(Field->getType(), Context)) 3848 return true; 3849 3850 return false; 3851 } 3852 3853 LValue CodeGenFunction::EmitLValueForField(LValue base, 3854 const FieldDecl *field) { 3855 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3856 3857 if (field->isBitField()) { 3858 const CGRecordLayout &RL = 3859 CGM.getTypes().getCGRecordLayout(field->getParent()); 3860 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3861 Address Addr = base.getAddress(); 3862 unsigned Idx = RL.getLLVMFieldNo(field); 3863 if (Idx != 0) 3864 // For structs, we GEP to the field that the record layout suggests. 3865 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3866 field->getName()); 3867 // Get the access type. 3868 llvm::Type *FieldIntTy = 3869 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3870 if (Addr.getElementType() != FieldIntTy) 3871 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3872 3873 QualType fieldType = 3874 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3875 // TODO: Support TBAA for bit fields. 3876 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 3877 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 3878 TBAAAccessInfo()); 3879 } 3880 3881 // Fields of may-alias structures are may-alias themselves. 3882 // FIXME: this should get propagated down through anonymous structs 3883 // and unions. 3884 QualType FieldType = field->getType(); 3885 const RecordDecl *rec = field->getParent(); 3886 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 3887 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 3888 TBAAAccessInfo FieldTBAAInfo; 3889 if (base.getTBAAInfo().isMayAlias() || 3890 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 3891 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3892 } else if (rec->isUnion()) { 3893 // TODO: Support TBAA for unions. 3894 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3895 } else { 3896 // If no base type been assigned for the base access, then try to generate 3897 // one for this base lvalue. 3898 FieldTBAAInfo = base.getTBAAInfo(); 3899 if (!FieldTBAAInfo.BaseType) { 3900 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3901 assert(!FieldTBAAInfo.Offset && 3902 "Nonzero offset for an access with no base type!"); 3903 } 3904 3905 // Adjust offset to be relative to the base type. 3906 const ASTRecordLayout &Layout = 3907 getContext().getASTRecordLayout(field->getParent()); 3908 unsigned CharWidth = getContext().getCharWidth(); 3909 if (FieldTBAAInfo.BaseType) 3910 FieldTBAAInfo.Offset += 3911 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3912 3913 // Update the final access type and size. 3914 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 3915 FieldTBAAInfo.Size = 3916 getContext().getTypeSizeInChars(FieldType).getQuantity(); 3917 } 3918 3919 Address addr = base.getAddress(); 3920 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 3921 if (CGM.getCodeGenOpts().StrictVTablePointers && 3922 ClassDef->isDynamicClass()) { 3923 // Getting to any field of dynamic object requires stripping dynamic 3924 // information provided by invariant.group. This is because accessing 3925 // fields may leak the real address of dynamic object, which could result 3926 // in miscompilation when leaked pointer would be compared. 3927 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 3928 addr = Address(stripped, addr.getAlignment()); 3929 } 3930 } 3931 3932 unsigned RecordCVR = base.getVRQualifiers(); 3933 if (rec->isUnion()) { 3934 // For unions, there is no pointer adjustment. 3935 assert(!FieldType->isReferenceType() && "union has reference member"); 3936 if (CGM.getCodeGenOpts().StrictVTablePointers && 3937 hasAnyVptr(FieldType, getContext())) 3938 // Because unions can easily skip invariant.barriers, we need to add 3939 // a barrier every time CXXRecord field with vptr is referenced. 3940 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 3941 addr.getAlignment()); 3942 } else { 3943 // For structs, we GEP to the field that the record layout suggests. 3944 addr = emitAddrOfFieldStorage(*this, addr, field); 3945 3946 // If this is a reference field, load the reference right now. 3947 if (FieldType->isReferenceType()) { 3948 LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo, 3949 FieldTBAAInfo); 3950 if (RecordCVR & Qualifiers::Volatile) 3951 RefLVal.getQuals().setVolatile(true); 3952 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 3953 3954 // Qualifiers on the struct don't apply to the referencee. 3955 RecordCVR = 0; 3956 FieldType = FieldType->getPointeeType(); 3957 } 3958 } 3959 3960 // Make sure that the address is pointing to the right type. This is critical 3961 // for both unions and structs. A union needs a bitcast, a struct element 3962 // will need a bitcast if the LLVM type laid out doesn't match the desired 3963 // type. 3964 addr = Builder.CreateElementBitCast( 3965 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 3966 3967 if (field->hasAttr<AnnotateAttr>()) 3968 addr = EmitFieldAnnotations(field, addr); 3969 3970 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 3971 LV.getQuals().addCVRQualifiers(RecordCVR); 3972 3973 // __weak attribute on a field is ignored. 3974 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3975 LV.getQuals().removeObjCGCAttr(); 3976 3977 return LV; 3978 } 3979 3980 LValue 3981 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3982 const FieldDecl *Field) { 3983 QualType FieldType = Field->getType(); 3984 3985 if (!FieldType->isReferenceType()) 3986 return EmitLValueForField(Base, Field); 3987 3988 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3989 3990 // Make sure that the address is pointing to the right type. 3991 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3992 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3993 3994 // TODO: Generate TBAA information that describes this access as a structure 3995 // member access and not just an access to an object of the field's type. This 3996 // should be similar to what we do in EmitLValueForField(). 3997 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3998 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 3999 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4000 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4001 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4002 } 4003 4004 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4005 if (E->isFileScope()) { 4006 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4007 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4008 } 4009 if (E->getType()->isVariablyModifiedType()) 4010 // make sure to emit the VLA size. 4011 EmitVariablyModifiedType(E->getType()); 4012 4013 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4014 const Expr *InitExpr = E->getInitializer(); 4015 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4016 4017 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4018 /*Init*/ true); 4019 4020 return Result; 4021 } 4022 4023 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4024 if (!E->isGLValue()) 4025 // Initializing an aggregate temporary in C++11: T{...}. 4026 return EmitAggExprToLValue(E); 4027 4028 // An lvalue initializer list must be initializing a reference. 4029 assert(E->isTransparent() && "non-transparent glvalue init list"); 4030 return EmitLValue(E->getInit(0)); 4031 } 4032 4033 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4034 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4035 /// LValue is returned and the current block has been terminated. 4036 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4037 const Expr *Operand) { 4038 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4039 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4040 return None; 4041 } 4042 4043 return CGF.EmitLValue(Operand); 4044 } 4045 4046 LValue CodeGenFunction:: 4047 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4048 if (!expr->isGLValue()) { 4049 // ?: here should be an aggregate. 4050 assert(hasAggregateEvaluationKind(expr->getType()) && 4051 "Unexpected conditional operator!"); 4052 return EmitAggExprToLValue(expr); 4053 } 4054 4055 OpaqueValueMapping binding(*this, expr); 4056 4057 const Expr *condExpr = expr->getCond(); 4058 bool CondExprBool; 4059 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4060 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4061 if (!CondExprBool) std::swap(live, dead); 4062 4063 if (!ContainsLabel(dead)) { 4064 // If the true case is live, we need to track its region. 4065 if (CondExprBool) 4066 incrementProfileCounter(expr); 4067 return EmitLValue(live); 4068 } 4069 } 4070 4071 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4072 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4073 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4074 4075 ConditionalEvaluation eval(*this); 4076 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4077 4078 // Any temporaries created here are conditional. 4079 EmitBlock(lhsBlock); 4080 incrementProfileCounter(expr); 4081 eval.begin(*this); 4082 Optional<LValue> lhs = 4083 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4084 eval.end(*this); 4085 4086 if (lhs && !lhs->isSimple()) 4087 return EmitUnsupportedLValue(expr, "conditional operator"); 4088 4089 lhsBlock = Builder.GetInsertBlock(); 4090 if (lhs) 4091 Builder.CreateBr(contBlock); 4092 4093 // Any temporaries created here are conditional. 4094 EmitBlock(rhsBlock); 4095 eval.begin(*this); 4096 Optional<LValue> rhs = 4097 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4098 eval.end(*this); 4099 if (rhs && !rhs->isSimple()) 4100 return EmitUnsupportedLValue(expr, "conditional operator"); 4101 rhsBlock = Builder.GetInsertBlock(); 4102 4103 EmitBlock(contBlock); 4104 4105 if (lhs && rhs) { 4106 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 4107 2, "cond-lvalue"); 4108 phi->addIncoming(lhs->getPointer(), lhsBlock); 4109 phi->addIncoming(rhs->getPointer(), rhsBlock); 4110 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4111 AlignmentSource alignSource = 4112 std::max(lhs->getBaseInfo().getAlignmentSource(), 4113 rhs->getBaseInfo().getAlignmentSource()); 4114 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4115 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4116 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4117 TBAAInfo); 4118 } else { 4119 assert((lhs || rhs) && 4120 "both operands of glvalue conditional are throw-expressions?"); 4121 return lhs ? *lhs : *rhs; 4122 } 4123 } 4124 4125 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4126 /// type. If the cast is to a reference, we can have the usual lvalue result, 4127 /// otherwise if a cast is needed by the code generator in an lvalue context, 4128 /// then it must mean that we need the address of an aggregate in order to 4129 /// access one of its members. This can happen for all the reasons that casts 4130 /// are permitted with aggregate result, including noop aggregate casts, and 4131 /// cast from scalar to union. 4132 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4133 switch (E->getCastKind()) { 4134 case CK_ToVoid: 4135 case CK_BitCast: 4136 case CK_ArrayToPointerDecay: 4137 case CK_FunctionToPointerDecay: 4138 case CK_NullToMemberPointer: 4139 case CK_NullToPointer: 4140 case CK_IntegralToPointer: 4141 case CK_PointerToIntegral: 4142 case CK_PointerToBoolean: 4143 case CK_VectorSplat: 4144 case CK_IntegralCast: 4145 case CK_BooleanToSignedIntegral: 4146 case CK_IntegralToBoolean: 4147 case CK_IntegralToFloating: 4148 case CK_FloatingToIntegral: 4149 case CK_FloatingToBoolean: 4150 case CK_FloatingCast: 4151 case CK_FloatingRealToComplex: 4152 case CK_FloatingComplexToReal: 4153 case CK_FloatingComplexToBoolean: 4154 case CK_FloatingComplexCast: 4155 case CK_FloatingComplexToIntegralComplex: 4156 case CK_IntegralRealToComplex: 4157 case CK_IntegralComplexToReal: 4158 case CK_IntegralComplexToBoolean: 4159 case CK_IntegralComplexCast: 4160 case CK_IntegralComplexToFloatingComplex: 4161 case CK_DerivedToBaseMemberPointer: 4162 case CK_BaseToDerivedMemberPointer: 4163 case CK_MemberPointerToBoolean: 4164 case CK_ReinterpretMemberPointer: 4165 case CK_AnyPointerToBlockPointerCast: 4166 case CK_ARCProduceObject: 4167 case CK_ARCConsumeObject: 4168 case CK_ARCReclaimReturnedObject: 4169 case CK_ARCExtendBlockObject: 4170 case CK_CopyAndAutoreleaseBlockObject: 4171 case CK_IntToOCLSampler: 4172 case CK_FixedPointCast: 4173 case CK_FixedPointToBoolean: 4174 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4175 4176 case CK_Dependent: 4177 llvm_unreachable("dependent cast kind in IR gen!"); 4178 4179 case CK_BuiltinFnToFnPtr: 4180 llvm_unreachable("builtin functions are handled elsewhere"); 4181 4182 // These are never l-values; just use the aggregate emission code. 4183 case CK_NonAtomicToAtomic: 4184 case CK_AtomicToNonAtomic: 4185 return EmitAggExprToLValue(E); 4186 4187 case CK_Dynamic: { 4188 LValue LV = EmitLValue(E->getSubExpr()); 4189 Address V = LV.getAddress(); 4190 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4191 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4192 } 4193 4194 case CK_ConstructorConversion: 4195 case CK_UserDefinedConversion: 4196 case CK_CPointerToObjCPointerCast: 4197 case CK_BlockPointerToObjCPointerCast: 4198 case CK_NoOp: 4199 case CK_LValueToRValue: 4200 return EmitLValue(E->getSubExpr()); 4201 4202 case CK_UncheckedDerivedToBase: 4203 case CK_DerivedToBase: { 4204 const RecordType *DerivedClassTy = 4205 E->getSubExpr()->getType()->getAs<RecordType>(); 4206 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4207 4208 LValue LV = EmitLValue(E->getSubExpr()); 4209 Address This = LV.getAddress(); 4210 4211 // Perform the derived-to-base conversion 4212 Address Base = GetAddressOfBaseClass( 4213 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4214 /*NullCheckValue=*/false, E->getExprLoc()); 4215 4216 // TODO: Support accesses to members of base classes in TBAA. For now, we 4217 // conservatively pretend that the complete object is of the base class 4218 // type. 4219 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4220 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4221 } 4222 case CK_ToUnion: 4223 return EmitAggExprToLValue(E); 4224 case CK_BaseToDerived: { 4225 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4226 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4227 4228 LValue LV = EmitLValue(E->getSubExpr()); 4229 4230 // Perform the base-to-derived conversion 4231 Address Derived = 4232 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4233 E->path_begin(), E->path_end(), 4234 /*NullCheckValue=*/false); 4235 4236 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4237 // performed and the object is not of the derived type. 4238 if (sanitizePerformTypeCheck()) 4239 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4240 Derived.getPointer(), E->getType()); 4241 4242 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4243 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4244 /*MayBeNull=*/false, CFITCK_DerivedCast, 4245 E->getBeginLoc()); 4246 4247 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4248 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4249 } 4250 case CK_LValueBitCast: { 4251 // This must be a reinterpret_cast (or c-style equivalent). 4252 const auto *CE = cast<ExplicitCastExpr>(E); 4253 4254 CGM.EmitExplicitCastExprType(CE, this); 4255 LValue LV = EmitLValue(E->getSubExpr()); 4256 Address V = Builder.CreateBitCast(LV.getAddress(), 4257 ConvertType(CE->getTypeAsWritten())); 4258 4259 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4260 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4261 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4262 E->getBeginLoc()); 4263 4264 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4265 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4266 } 4267 case CK_AddressSpaceConversion: { 4268 LValue LV = EmitLValue(E->getSubExpr()); 4269 QualType DestTy = getContext().getPointerType(E->getType()); 4270 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4271 *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(), 4272 DestTy.getAddressSpace(), ConvertType(DestTy)); 4273 return MakeNaturalAlignPointeeAddrLValue(V, DestTy); 4274 } 4275 case CK_ObjCObjectLValueCast: { 4276 LValue LV = EmitLValue(E->getSubExpr()); 4277 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4278 ConvertType(E->getType())); 4279 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4280 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4281 } 4282 case CK_ZeroToOCLOpaqueType: 4283 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4284 } 4285 4286 llvm_unreachable("Unhandled lvalue cast kind?"); 4287 } 4288 4289 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4290 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4291 return getOrCreateOpaqueLValueMapping(e); 4292 } 4293 4294 LValue 4295 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4296 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4297 4298 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4299 it = OpaqueLValues.find(e); 4300 4301 if (it != OpaqueLValues.end()) 4302 return it->second; 4303 4304 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4305 return EmitLValue(e->getSourceExpr()); 4306 } 4307 4308 RValue 4309 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4310 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4311 4312 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4313 it = OpaqueRValues.find(e); 4314 4315 if (it != OpaqueRValues.end()) 4316 return it->second; 4317 4318 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4319 return EmitAnyExpr(e->getSourceExpr()); 4320 } 4321 4322 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4323 const FieldDecl *FD, 4324 SourceLocation Loc) { 4325 QualType FT = FD->getType(); 4326 LValue FieldLV = EmitLValueForField(LV, FD); 4327 switch (getEvaluationKind(FT)) { 4328 case TEK_Complex: 4329 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4330 case TEK_Aggregate: 4331 return FieldLV.asAggregateRValue(); 4332 case TEK_Scalar: 4333 // This routine is used to load fields one-by-one to perform a copy, so 4334 // don't load reference fields. 4335 if (FD->getType()->isReferenceType()) 4336 return RValue::get(FieldLV.getPointer()); 4337 return EmitLoadOfLValue(FieldLV, Loc); 4338 } 4339 llvm_unreachable("bad evaluation kind"); 4340 } 4341 4342 //===--------------------------------------------------------------------===// 4343 // Expression Emission 4344 //===--------------------------------------------------------------------===// 4345 4346 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4347 ReturnValueSlot ReturnValue) { 4348 // Builtins never have block type. 4349 if (E->getCallee()->getType()->isBlockPointerType()) 4350 return EmitBlockCallExpr(E, ReturnValue); 4351 4352 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4353 return EmitCXXMemberCallExpr(CE, ReturnValue); 4354 4355 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4356 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4357 4358 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4359 if (const CXXMethodDecl *MD = 4360 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4361 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4362 4363 CGCallee callee = EmitCallee(E->getCallee()); 4364 4365 if (callee.isBuiltin()) { 4366 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4367 E, ReturnValue); 4368 } 4369 4370 if (callee.isPseudoDestructor()) { 4371 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4372 } 4373 4374 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4375 } 4376 4377 /// Emit a CallExpr without considering whether it might be a subclass. 4378 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4379 ReturnValueSlot ReturnValue) { 4380 CGCallee Callee = EmitCallee(E->getCallee()); 4381 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4382 } 4383 4384 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4385 if (auto builtinID = FD->getBuiltinID()) { 4386 return CGCallee::forBuiltin(builtinID, FD); 4387 } 4388 4389 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4390 return CGCallee::forDirect(calleePtr, GlobalDecl(FD)); 4391 } 4392 4393 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4394 E = E->IgnoreParens(); 4395 4396 // Look through function-to-pointer decay. 4397 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4398 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4399 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4400 return EmitCallee(ICE->getSubExpr()); 4401 } 4402 4403 // Resolve direct calls. 4404 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4405 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4406 return EmitDirectCallee(*this, FD); 4407 } 4408 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4409 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4410 EmitIgnoredExpr(ME->getBase()); 4411 return EmitDirectCallee(*this, FD); 4412 } 4413 4414 // Look through template substitutions. 4415 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4416 return EmitCallee(NTTP->getReplacement()); 4417 4418 // Treat pseudo-destructor calls differently. 4419 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4420 return CGCallee::forPseudoDestructor(PDE); 4421 } 4422 4423 // Otherwise, we have an indirect reference. 4424 llvm::Value *calleePtr; 4425 QualType functionType; 4426 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4427 calleePtr = EmitScalarExpr(E); 4428 functionType = ptrType->getPointeeType(); 4429 } else { 4430 functionType = E->getType(); 4431 calleePtr = EmitLValue(E).getPointer(); 4432 } 4433 assert(functionType->isFunctionType()); 4434 4435 GlobalDecl GD; 4436 if (const auto *VD = 4437 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4438 GD = GlobalDecl(VD); 4439 4440 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4441 CGCallee callee(calleeInfo, calleePtr); 4442 return callee; 4443 } 4444 4445 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4446 // Comma expressions just emit their LHS then their RHS as an l-value. 4447 if (E->getOpcode() == BO_Comma) { 4448 EmitIgnoredExpr(E->getLHS()); 4449 EnsureInsertPoint(); 4450 return EmitLValue(E->getRHS()); 4451 } 4452 4453 if (E->getOpcode() == BO_PtrMemD || 4454 E->getOpcode() == BO_PtrMemI) 4455 return EmitPointerToDataMemberBinaryExpr(E); 4456 4457 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4458 4459 // Note that in all of these cases, __block variables need the RHS 4460 // evaluated first just in case the variable gets moved by the RHS. 4461 4462 switch (getEvaluationKind(E->getType())) { 4463 case TEK_Scalar: { 4464 switch (E->getLHS()->getType().getObjCLifetime()) { 4465 case Qualifiers::OCL_Strong: 4466 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4467 4468 case Qualifiers::OCL_Autoreleasing: 4469 return EmitARCStoreAutoreleasing(E).first; 4470 4471 // No reason to do any of these differently. 4472 case Qualifiers::OCL_None: 4473 case Qualifiers::OCL_ExplicitNone: 4474 case Qualifiers::OCL_Weak: 4475 break; 4476 } 4477 4478 RValue RV = EmitAnyExpr(E->getRHS()); 4479 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4480 if (RV.isScalar()) 4481 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4482 EmitStoreThroughLValue(RV, LV); 4483 return LV; 4484 } 4485 4486 case TEK_Complex: 4487 return EmitComplexAssignmentLValue(E); 4488 4489 case TEK_Aggregate: 4490 return EmitAggExprToLValue(E); 4491 } 4492 llvm_unreachable("bad evaluation kind"); 4493 } 4494 4495 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4496 RValue RV = EmitCallExpr(E); 4497 4498 if (!RV.isScalar()) 4499 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4500 AlignmentSource::Decl); 4501 4502 assert(E->getCallReturnType(getContext())->isReferenceType() && 4503 "Can't have a scalar return unless the return type is a " 4504 "reference type!"); 4505 4506 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4507 } 4508 4509 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4510 // FIXME: This shouldn't require another copy. 4511 return EmitAggExprToLValue(E); 4512 } 4513 4514 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4515 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4516 && "binding l-value to type which needs a temporary"); 4517 AggValueSlot Slot = CreateAggTemp(E->getType()); 4518 EmitCXXConstructExpr(E, Slot); 4519 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4520 } 4521 4522 LValue 4523 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4524 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4525 } 4526 4527 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4528 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4529 ConvertType(E->getType())); 4530 } 4531 4532 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4533 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4534 AlignmentSource::Decl); 4535 } 4536 4537 LValue 4538 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4539 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4540 Slot.setExternallyDestructed(); 4541 EmitAggExpr(E->getSubExpr(), Slot); 4542 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4543 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4544 } 4545 4546 LValue 4547 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4548 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4549 EmitLambdaExpr(E, Slot); 4550 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4551 } 4552 4553 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4554 RValue RV = EmitObjCMessageExpr(E); 4555 4556 if (!RV.isScalar()) 4557 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4558 AlignmentSource::Decl); 4559 4560 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4561 "Can't have a scalar return unless the return type is a " 4562 "reference type!"); 4563 4564 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4565 } 4566 4567 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4568 Address V = 4569 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4570 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4571 } 4572 4573 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4574 const ObjCIvarDecl *Ivar) { 4575 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4576 } 4577 4578 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4579 llvm::Value *BaseValue, 4580 const ObjCIvarDecl *Ivar, 4581 unsigned CVRQualifiers) { 4582 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4583 Ivar, CVRQualifiers); 4584 } 4585 4586 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4587 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4588 llvm::Value *BaseValue = nullptr; 4589 const Expr *BaseExpr = E->getBase(); 4590 Qualifiers BaseQuals; 4591 QualType ObjectTy; 4592 if (E->isArrow()) { 4593 BaseValue = EmitScalarExpr(BaseExpr); 4594 ObjectTy = BaseExpr->getType()->getPointeeType(); 4595 BaseQuals = ObjectTy.getQualifiers(); 4596 } else { 4597 LValue BaseLV = EmitLValue(BaseExpr); 4598 BaseValue = BaseLV.getPointer(); 4599 ObjectTy = BaseExpr->getType(); 4600 BaseQuals = ObjectTy.getQualifiers(); 4601 } 4602 4603 LValue LV = 4604 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4605 BaseQuals.getCVRQualifiers()); 4606 setObjCGCLValueClass(getContext(), E, LV); 4607 return LV; 4608 } 4609 4610 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4611 // Can only get l-value for message expression returning aggregate type 4612 RValue RV = EmitAnyExprToTemp(E); 4613 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4614 AlignmentSource::Decl); 4615 } 4616 4617 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4618 const CallExpr *E, ReturnValueSlot ReturnValue, 4619 llvm::Value *Chain) { 4620 // Get the actual function type. The callee type will always be a pointer to 4621 // function type or a block pointer type. 4622 assert(CalleeType->isFunctionPointerType() && 4623 "Call must have function pointer type!"); 4624 4625 const Decl *TargetDecl = 4626 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4627 4628 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4629 // We can only guarantee that a function is called from the correct 4630 // context/function based on the appropriate target attributes, 4631 // so only check in the case where we have both always_inline and target 4632 // since otherwise we could be making a conditional call after a check for 4633 // the proper cpu features (and it won't cause code generation issues due to 4634 // function based code generation). 4635 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4636 TargetDecl->hasAttr<TargetAttr>()) 4637 checkTargetFeatures(E, FD); 4638 4639 CalleeType = getContext().getCanonicalType(CalleeType); 4640 4641 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4642 4643 CGCallee Callee = OrigCallee; 4644 4645 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4646 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4647 if (llvm::Constant *PrefixSig = 4648 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4649 SanitizerScope SanScope(this); 4650 // Remove any (C++17) exception specifications, to allow calling e.g. a 4651 // noexcept function through a non-noexcept pointer. 4652 auto ProtoTy = 4653 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4654 llvm::Constant *FTRTTIConst = 4655 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4656 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4657 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4658 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4659 4660 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4661 4662 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4663 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4664 llvm::Value *CalleeSigPtr = 4665 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4666 llvm::Value *CalleeSig = 4667 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4668 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4669 4670 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4671 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4672 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4673 4674 EmitBlock(TypeCheck); 4675 llvm::Value *CalleeRTTIPtr = 4676 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4677 llvm::Value *CalleeRTTIEncoded = 4678 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4679 llvm::Value *CalleeRTTI = 4680 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4681 llvm::Value *CalleeRTTIMatch = 4682 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4683 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4684 EmitCheckTypeDescriptor(CalleeType)}; 4685 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4686 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4687 4688 Builder.CreateBr(Cont); 4689 EmitBlock(Cont); 4690 } 4691 } 4692 4693 const auto *FnType = cast<FunctionType>(PointeeType); 4694 4695 // If we are checking indirect calls and this call is indirect, check that the 4696 // function pointer is a member of the bit set for the function type. 4697 if (SanOpts.has(SanitizerKind::CFIICall) && 4698 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4699 SanitizerScope SanScope(this); 4700 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4701 4702 llvm::Metadata *MD; 4703 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4704 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4705 else 4706 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4707 4708 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4709 4710 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4711 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4712 llvm::Value *TypeTest = Builder.CreateCall( 4713 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4714 4715 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4716 llvm::Constant *StaticData[] = { 4717 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4718 EmitCheckSourceLocation(E->getBeginLoc()), 4719 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4720 }; 4721 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4722 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4723 CastedCallee, StaticData); 4724 } else { 4725 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4726 SanitizerHandler::CFICheckFail, StaticData, 4727 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4728 } 4729 } 4730 4731 CallArgList Args; 4732 if (Chain) 4733 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4734 CGM.getContext().VoidPtrTy); 4735 4736 // C++17 requires that we evaluate arguments to a call using assignment syntax 4737 // right-to-left, and that we evaluate arguments to certain other operators 4738 // left-to-right. Note that we allow this to override the order dictated by 4739 // the calling convention on the MS ABI, which means that parameter 4740 // destruction order is not necessarily reverse construction order. 4741 // FIXME: Revisit this based on C++ committee response to unimplementability. 4742 EvaluationOrder Order = EvaluationOrder::Default; 4743 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4744 if (OCE->isAssignmentOp()) 4745 Order = EvaluationOrder::ForceRightToLeft; 4746 else { 4747 switch (OCE->getOperator()) { 4748 case OO_LessLess: 4749 case OO_GreaterGreater: 4750 case OO_AmpAmp: 4751 case OO_PipePipe: 4752 case OO_Comma: 4753 case OO_ArrowStar: 4754 Order = EvaluationOrder::ForceLeftToRight; 4755 break; 4756 default: 4757 break; 4758 } 4759 } 4760 } 4761 4762 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4763 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4764 4765 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4766 Args, FnType, /*isChainCall=*/Chain); 4767 4768 // C99 6.5.2.2p6: 4769 // If the expression that denotes the called function has a type 4770 // that does not include a prototype, [the default argument 4771 // promotions are performed]. If the number of arguments does not 4772 // equal the number of parameters, the behavior is undefined. If 4773 // the function is defined with a type that includes a prototype, 4774 // and either the prototype ends with an ellipsis (, ...) or the 4775 // types of the arguments after promotion are not compatible with 4776 // the types of the parameters, the behavior is undefined. If the 4777 // function is defined with a type that does not include a 4778 // prototype, and the types of the arguments after promotion are 4779 // not compatible with those of the parameters after promotion, 4780 // the behavior is undefined [except in some trivial cases]. 4781 // That is, in the general case, we should assume that a call 4782 // through an unprototyped function type works like a *non-variadic* 4783 // call. The way we make this work is to cast to the exact type 4784 // of the promoted arguments. 4785 // 4786 // Chain calls use this same code path to add the invisible chain parameter 4787 // to the function type. 4788 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4789 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4790 CalleeTy = CalleeTy->getPointerTo(); 4791 4792 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4793 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4794 Callee.setFunctionPointer(CalleePtr); 4795 } 4796 4797 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 4798 } 4799 4800 LValue CodeGenFunction:: 4801 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4802 Address BaseAddr = Address::invalid(); 4803 if (E->getOpcode() == BO_PtrMemI) { 4804 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4805 } else { 4806 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4807 } 4808 4809 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4810 4811 const MemberPointerType *MPT 4812 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4813 4814 LValueBaseInfo BaseInfo; 4815 TBAAAccessInfo TBAAInfo; 4816 Address MemberAddr = 4817 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4818 &TBAAInfo); 4819 4820 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4821 } 4822 4823 /// Given the address of a temporary variable, produce an r-value of 4824 /// its type. 4825 RValue CodeGenFunction::convertTempToRValue(Address addr, 4826 QualType type, 4827 SourceLocation loc) { 4828 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4829 switch (getEvaluationKind(type)) { 4830 case TEK_Complex: 4831 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4832 case TEK_Aggregate: 4833 return lvalue.asAggregateRValue(); 4834 case TEK_Scalar: 4835 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4836 } 4837 llvm_unreachable("bad evaluation kind"); 4838 } 4839 4840 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4841 assert(Val->getType()->isFPOrFPVectorTy()); 4842 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4843 return; 4844 4845 llvm::MDBuilder MDHelper(getLLVMContext()); 4846 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4847 4848 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4849 } 4850 4851 namespace { 4852 struct LValueOrRValue { 4853 LValue LV; 4854 RValue RV; 4855 }; 4856 } 4857 4858 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4859 const PseudoObjectExpr *E, 4860 bool forLValue, 4861 AggValueSlot slot) { 4862 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4863 4864 // Find the result expression, if any. 4865 const Expr *resultExpr = E->getResultExpr(); 4866 LValueOrRValue result; 4867 4868 for (PseudoObjectExpr::const_semantics_iterator 4869 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4870 const Expr *semantic = *i; 4871 4872 // If this semantic expression is an opaque value, bind it 4873 // to the result of its source expression. 4874 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4875 // Skip unique OVEs. 4876 if (ov->isUnique()) { 4877 assert(ov != resultExpr && 4878 "A unique OVE cannot be used as the result expression"); 4879 continue; 4880 } 4881 4882 // If this is the result expression, we may need to evaluate 4883 // directly into the slot. 4884 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4885 OVMA opaqueData; 4886 if (ov == resultExpr && ov->isRValue() && !forLValue && 4887 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4888 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4889 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4890 AlignmentSource::Decl); 4891 opaqueData = OVMA::bind(CGF, ov, LV); 4892 result.RV = slot.asRValue(); 4893 4894 // Otherwise, emit as normal. 4895 } else { 4896 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4897 4898 // If this is the result, also evaluate the result now. 4899 if (ov == resultExpr) { 4900 if (forLValue) 4901 result.LV = CGF.EmitLValue(ov); 4902 else 4903 result.RV = CGF.EmitAnyExpr(ov, slot); 4904 } 4905 } 4906 4907 opaques.push_back(opaqueData); 4908 4909 // Otherwise, if the expression is the result, evaluate it 4910 // and remember the result. 4911 } else if (semantic == resultExpr) { 4912 if (forLValue) 4913 result.LV = CGF.EmitLValue(semantic); 4914 else 4915 result.RV = CGF.EmitAnyExpr(semantic, slot); 4916 4917 // Otherwise, evaluate the expression in an ignored context. 4918 } else { 4919 CGF.EmitIgnoredExpr(semantic); 4920 } 4921 } 4922 4923 // Unbind all the opaques now. 4924 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4925 opaques[i].unbind(CGF); 4926 4927 return result; 4928 } 4929 4930 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4931 AggValueSlot slot) { 4932 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4933 } 4934 4935 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4936 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4937 } 4938