1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCall.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "llvm/ADT/Hashing.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/Support/ConvertUTF.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/Path.h" 40 #include "llvm/Transforms/Utils/SanitizerStats.h" 41 42 #include <string> 43 44 using namespace clang; 45 using namespace CodeGen; 46 47 //===--------------------------------------------------------------------===// 48 // Miscellaneous Helper Methods 49 //===--------------------------------------------------------------------===// 50 51 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 52 unsigned addressSpace = 53 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 54 55 llvm::PointerType *destType = Int8PtrTy; 56 if (addressSpace) 57 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 58 59 if (value->getType() == destType) return value; 60 return Builder.CreateBitCast(value, destType); 61 } 62 63 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 64 /// block. 65 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 66 CharUnits Align, 67 const Twine &Name, 68 llvm::Value *ArraySize) { 69 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 70 Alloca->setAlignment(Align.getAsAlign()); 71 return Address(Alloca, Align); 72 } 73 74 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 75 /// block. The alloca is casted to default address space if necessary. 76 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 77 const Twine &Name, 78 llvm::Value *ArraySize, 79 Address *AllocaAddr) { 80 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 81 if (AllocaAddr) 82 *AllocaAddr = Alloca; 83 llvm::Value *V = Alloca.getPointer(); 84 // Alloca always returns a pointer in alloca address space, which may 85 // be different from the type defined by the language. For example, 86 // in C++ the auto variables are in the default address space. Therefore 87 // cast alloca to the default address space when necessary. 88 if (getASTAllocaAddressSpace() != LangAS::Default) { 89 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 90 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 91 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 92 // otherwise alloca is inserted at the current insertion point of the 93 // builder. 94 if (!ArraySize) 95 Builder.SetInsertPoint(AllocaInsertPt); 96 V = getTargetHooks().performAddrSpaceCast( 97 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 98 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 99 } 100 101 return Address(V, Align); 102 } 103 104 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 105 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 106 /// insertion point of the builder. 107 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 108 const Twine &Name, 109 llvm::Value *ArraySize) { 110 if (ArraySize) 111 return Builder.CreateAlloca(Ty, ArraySize, Name); 112 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 113 ArraySize, Name, AllocaInsertPt); 114 } 115 116 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 117 /// default alignment of the corresponding LLVM type, which is *not* 118 /// guaranteed to be related in any way to the expected alignment of 119 /// an AST type that might have been lowered to Ty. 120 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 121 const Twine &Name) { 122 CharUnits Align = 123 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 124 return CreateTempAlloca(Ty, Align, Name); 125 } 126 127 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 128 assert(isa<llvm::AllocaInst>(Var.getPointer())); 129 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 130 Store->setAlignment(Var.getAlignment().getAsAlign()); 131 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 132 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 133 } 134 135 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 136 CharUnits Align = getContext().getTypeAlignInChars(Ty); 137 return CreateTempAlloca(ConvertType(Ty), Align, Name); 138 } 139 140 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 141 Address *Alloca) { 142 // FIXME: Should we prefer the preferred type alignment here? 143 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 144 } 145 146 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 147 const Twine &Name, Address *Alloca) { 148 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 149 /*ArraySize=*/nullptr, Alloca); 150 } 151 152 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 153 const Twine &Name) { 154 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 155 } 156 157 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 158 const Twine &Name) { 159 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 160 Name); 161 } 162 163 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 164 /// expression and compare the result against zero, returning an Int1Ty value. 165 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 166 PGO.setCurrentStmt(E); 167 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 168 llvm::Value *MemPtr = EmitScalarExpr(E); 169 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 170 } 171 172 QualType BoolTy = getContext().BoolTy; 173 SourceLocation Loc = E->getExprLoc(); 174 if (!E->getType()->isAnyComplexType()) 175 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 176 177 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 178 Loc); 179 } 180 181 /// EmitIgnoredExpr - Emit code to compute the specified expression, 182 /// ignoring the result. 183 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 184 if (E->isRValue()) 185 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 186 187 // Just emit it as an l-value and drop the result. 188 EmitLValue(E); 189 } 190 191 /// EmitAnyExpr - Emit code to compute the specified expression which 192 /// can have any type. The result is returned as an RValue struct. 193 /// If this is an aggregate expression, AggSlot indicates where the 194 /// result should be returned. 195 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 196 AggValueSlot aggSlot, 197 bool ignoreResult) { 198 switch (getEvaluationKind(E->getType())) { 199 case TEK_Scalar: 200 return RValue::get(EmitScalarExpr(E, ignoreResult)); 201 case TEK_Complex: 202 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 203 case TEK_Aggregate: 204 if (!ignoreResult && aggSlot.isIgnored()) 205 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 206 EmitAggExpr(E, aggSlot); 207 return aggSlot.asRValue(); 208 } 209 llvm_unreachable("bad evaluation kind"); 210 } 211 212 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 213 /// always be accessible even if no aggregate location is provided. 214 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 215 AggValueSlot AggSlot = AggValueSlot::ignored(); 216 217 if (hasAggregateEvaluationKind(E->getType())) 218 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 219 return EmitAnyExpr(E, AggSlot); 220 } 221 222 /// EmitAnyExprToMem - Evaluate an expression into a given memory 223 /// location. 224 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 225 Address Location, 226 Qualifiers Quals, 227 bool IsInit) { 228 // FIXME: This function should take an LValue as an argument. 229 switch (getEvaluationKind(E->getType())) { 230 case TEK_Complex: 231 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 232 /*isInit*/ false); 233 return; 234 235 case TEK_Aggregate: { 236 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 237 AggValueSlot::IsDestructed_t(IsInit), 238 AggValueSlot::DoesNotNeedGCBarriers, 239 AggValueSlot::IsAliased_t(!IsInit), 240 AggValueSlot::MayOverlap)); 241 return; 242 } 243 244 case TEK_Scalar: { 245 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 246 LValue LV = MakeAddrLValue(Location, E->getType()); 247 EmitStoreThroughLValue(RV, LV); 248 return; 249 } 250 } 251 llvm_unreachable("bad evaluation kind"); 252 } 253 254 static void 255 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 256 const Expr *E, Address ReferenceTemporary) { 257 // Objective-C++ ARC: 258 // If we are binding a reference to a temporary that has ownership, we 259 // need to perform retain/release operations on the temporary. 260 // 261 // FIXME: This should be looking at E, not M. 262 if (auto Lifetime = M->getType().getObjCLifetime()) { 263 switch (Lifetime) { 264 case Qualifiers::OCL_None: 265 case Qualifiers::OCL_ExplicitNone: 266 // Carry on to normal cleanup handling. 267 break; 268 269 case Qualifiers::OCL_Autoreleasing: 270 // Nothing to do; cleaned up by an autorelease pool. 271 return; 272 273 case Qualifiers::OCL_Strong: 274 case Qualifiers::OCL_Weak: 275 switch (StorageDuration Duration = M->getStorageDuration()) { 276 case SD_Static: 277 // Note: we intentionally do not register a cleanup to release 278 // the object on program termination. 279 return; 280 281 case SD_Thread: 282 // FIXME: We should probably register a cleanup in this case. 283 return; 284 285 case SD_Automatic: 286 case SD_FullExpression: 287 CodeGenFunction::Destroyer *Destroy; 288 CleanupKind CleanupKind; 289 if (Lifetime == Qualifiers::OCL_Strong) { 290 const ValueDecl *VD = M->getExtendingDecl(); 291 bool Precise = 292 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 293 CleanupKind = CGF.getARCCleanupKind(); 294 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 295 : &CodeGenFunction::destroyARCStrongImprecise; 296 } else { 297 // __weak objects always get EH cleanups; otherwise, exceptions 298 // could cause really nasty crashes instead of mere leaks. 299 CleanupKind = NormalAndEHCleanup; 300 Destroy = &CodeGenFunction::destroyARCWeak; 301 } 302 if (Duration == SD_FullExpression) 303 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 304 M->getType(), *Destroy, 305 CleanupKind & EHCleanup); 306 else 307 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 308 M->getType(), 309 *Destroy, CleanupKind & EHCleanup); 310 return; 311 312 case SD_Dynamic: 313 llvm_unreachable("temporary cannot have dynamic storage duration"); 314 } 315 llvm_unreachable("unknown storage duration"); 316 } 317 } 318 319 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 320 if (const RecordType *RT = 321 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 322 // Get the destructor for the reference temporary. 323 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 324 if (!ClassDecl->hasTrivialDestructor()) 325 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 326 } 327 328 if (!ReferenceTemporaryDtor) 329 return; 330 331 // Call the destructor for the temporary. 332 switch (M->getStorageDuration()) { 333 case SD_Static: 334 case SD_Thread: { 335 llvm::FunctionCallee CleanupFn; 336 llvm::Constant *CleanupArg; 337 if (E->getType()->isArrayType()) { 338 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 339 ReferenceTemporary, E->getType(), 340 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 341 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 342 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 343 } else { 344 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 345 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 346 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 347 } 348 CGF.CGM.getCXXABI().registerGlobalDtor( 349 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 350 break; 351 } 352 353 case SD_FullExpression: 354 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 355 CodeGenFunction::destroyCXXObject, 356 CGF.getLangOpts().Exceptions); 357 break; 358 359 case SD_Automatic: 360 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 361 ReferenceTemporary, E->getType(), 362 CodeGenFunction::destroyCXXObject, 363 CGF.getLangOpts().Exceptions); 364 break; 365 366 case SD_Dynamic: 367 llvm_unreachable("temporary cannot have dynamic storage duration"); 368 } 369 } 370 371 static Address createReferenceTemporary(CodeGenFunction &CGF, 372 const MaterializeTemporaryExpr *M, 373 const Expr *Inner, 374 Address *Alloca = nullptr) { 375 auto &TCG = CGF.getTargetHooks(); 376 switch (M->getStorageDuration()) { 377 case SD_FullExpression: 378 case SD_Automatic: { 379 // If we have a constant temporary array or record try to promote it into a 380 // constant global under the same rules a normal constant would've been 381 // promoted. This is easier on the optimizer and generally emits fewer 382 // instructions. 383 QualType Ty = Inner->getType(); 384 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 385 (Ty->isArrayType() || Ty->isRecordType()) && 386 CGF.CGM.isTypeConstant(Ty, true)) 387 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 388 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 389 auto AS = AddrSpace.getValue(); 390 auto *GV = new llvm::GlobalVariable( 391 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 392 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 393 llvm::GlobalValue::NotThreadLocal, 394 CGF.getContext().getTargetAddressSpace(AS)); 395 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 396 GV->setAlignment(alignment.getAsAlign()); 397 llvm::Constant *C = GV; 398 if (AS != LangAS::Default) 399 C = TCG.performAddrSpaceCast( 400 CGF.CGM, GV, AS, LangAS::Default, 401 GV->getValueType()->getPointerTo( 402 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 403 // FIXME: Should we put the new global into a COMDAT? 404 return Address(C, alignment); 405 } 406 } 407 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 408 } 409 case SD_Thread: 410 case SD_Static: 411 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 412 413 case SD_Dynamic: 414 llvm_unreachable("temporary can't have dynamic storage duration"); 415 } 416 llvm_unreachable("unknown storage duration"); 417 } 418 419 /// Helper method to check if the underlying ABI is AAPCS 420 static bool isAAPCS(const TargetInfo &TargetInfo) { 421 return TargetInfo.getABI().startswith("aapcs"); 422 } 423 424 LValue CodeGenFunction:: 425 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 426 const Expr *E = M->getSubExpr(); 427 428 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 429 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 430 "Reference should never be pseudo-strong!"); 431 432 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 433 // as that will cause the lifetime adjustment to be lost for ARC 434 auto ownership = M->getType().getObjCLifetime(); 435 if (ownership != Qualifiers::OCL_None && 436 ownership != Qualifiers::OCL_ExplicitNone) { 437 Address Object = createReferenceTemporary(*this, M, E); 438 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 439 Object = Address(llvm::ConstantExpr::getBitCast(Var, 440 ConvertTypeForMem(E->getType()) 441 ->getPointerTo(Object.getAddressSpace())), 442 Object.getAlignment()); 443 444 // createReferenceTemporary will promote the temporary to a global with a 445 // constant initializer if it can. It can only do this to a value of 446 // ARC-manageable type if the value is global and therefore "immune" to 447 // ref-counting operations. Therefore we have no need to emit either a 448 // dynamic initialization or a cleanup and we can just return the address 449 // of the temporary. 450 if (Var->hasInitializer()) 451 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 452 453 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 454 } 455 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 456 AlignmentSource::Decl); 457 458 switch (getEvaluationKind(E->getType())) { 459 default: llvm_unreachable("expected scalar or aggregate expression"); 460 case TEK_Scalar: 461 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 462 break; 463 case TEK_Aggregate: { 464 EmitAggExpr(E, AggValueSlot::forAddr(Object, 465 E->getType().getQualifiers(), 466 AggValueSlot::IsDestructed, 467 AggValueSlot::DoesNotNeedGCBarriers, 468 AggValueSlot::IsNotAliased, 469 AggValueSlot::DoesNotOverlap)); 470 break; 471 } 472 } 473 474 pushTemporaryCleanup(*this, M, E, Object); 475 return RefTempDst; 476 } 477 478 SmallVector<const Expr *, 2> CommaLHSs; 479 SmallVector<SubobjectAdjustment, 2> Adjustments; 480 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 481 482 for (const auto &Ignored : CommaLHSs) 483 EmitIgnoredExpr(Ignored); 484 485 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 486 if (opaque->getType()->isRecordType()) { 487 assert(Adjustments.empty()); 488 return EmitOpaqueValueLValue(opaque); 489 } 490 } 491 492 // Create and initialize the reference temporary. 493 Address Alloca = Address::invalid(); 494 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 495 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 496 Object.getPointer()->stripPointerCasts())) { 497 Object = Address(llvm::ConstantExpr::getBitCast( 498 cast<llvm::Constant>(Object.getPointer()), 499 ConvertTypeForMem(E->getType())->getPointerTo()), 500 Object.getAlignment()); 501 // If the temporary is a global and has a constant initializer or is a 502 // constant temporary that we promoted to a global, we may have already 503 // initialized it. 504 if (!Var->hasInitializer()) { 505 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 506 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 507 } 508 } else { 509 switch (M->getStorageDuration()) { 510 case SD_Automatic: 511 if (auto *Size = EmitLifetimeStart( 512 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 513 Alloca.getPointer())) { 514 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 515 Alloca, Size); 516 } 517 break; 518 519 case SD_FullExpression: { 520 if (!ShouldEmitLifetimeMarkers) 521 break; 522 523 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 524 // marker. Instead, start the lifetime of a conditional temporary earlier 525 // so that it's unconditional. Don't do this with sanitizers which need 526 // more precise lifetime marks. 527 ConditionalEvaluation *OldConditional = nullptr; 528 CGBuilderTy::InsertPoint OldIP; 529 if (isInConditionalBranch() && !E->getType().isDestructedType() && 530 !SanOpts.has(SanitizerKind::HWAddress) && 531 !SanOpts.has(SanitizerKind::Memory) && 532 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 533 OldConditional = OutermostConditional; 534 OutermostConditional = nullptr; 535 536 OldIP = Builder.saveIP(); 537 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 538 Builder.restoreIP(CGBuilderTy::InsertPoint( 539 Block, llvm::BasicBlock::iterator(Block->back()))); 540 } 541 542 if (auto *Size = EmitLifetimeStart( 543 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 544 Alloca.getPointer())) { 545 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 546 Size); 547 } 548 549 if (OldConditional) { 550 OutermostConditional = OldConditional; 551 Builder.restoreIP(OldIP); 552 } 553 break; 554 } 555 556 default: 557 break; 558 } 559 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 560 } 561 pushTemporaryCleanup(*this, M, E, Object); 562 563 // Perform derived-to-base casts and/or field accesses, to get from the 564 // temporary object we created (and, potentially, for which we extended 565 // the lifetime) to the subobject we're binding the reference to. 566 for (unsigned I = Adjustments.size(); I != 0; --I) { 567 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 568 switch (Adjustment.Kind) { 569 case SubobjectAdjustment::DerivedToBaseAdjustment: 570 Object = 571 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 572 Adjustment.DerivedToBase.BasePath->path_begin(), 573 Adjustment.DerivedToBase.BasePath->path_end(), 574 /*NullCheckValue=*/ false, E->getExprLoc()); 575 break; 576 577 case SubobjectAdjustment::FieldAdjustment: { 578 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 579 LV = EmitLValueForField(LV, Adjustment.Field); 580 assert(LV.isSimple() && 581 "materialized temporary field is not a simple lvalue"); 582 Object = LV.getAddress(*this); 583 break; 584 } 585 586 case SubobjectAdjustment::MemberPointerAdjustment: { 587 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 588 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 589 Adjustment.Ptr.MPT); 590 break; 591 } 592 } 593 } 594 595 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 596 } 597 598 RValue 599 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 600 // Emit the expression as an lvalue. 601 LValue LV = EmitLValue(E); 602 assert(LV.isSimple()); 603 llvm::Value *Value = LV.getPointer(*this); 604 605 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 606 // C++11 [dcl.ref]p5 (as amended by core issue 453): 607 // If a glvalue to which a reference is directly bound designates neither 608 // an existing object or function of an appropriate type nor a region of 609 // storage of suitable size and alignment to contain an object of the 610 // reference's type, the behavior is undefined. 611 QualType Ty = E->getType(); 612 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 613 } 614 615 return RValue::get(Value); 616 } 617 618 619 /// getAccessedFieldNo - Given an encoded value and a result number, return the 620 /// input field number being accessed. 621 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 622 const llvm::Constant *Elts) { 623 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 624 ->getZExtValue(); 625 } 626 627 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 628 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 629 llvm::Value *High) { 630 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 631 llvm::Value *K47 = Builder.getInt64(47); 632 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 633 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 634 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 635 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 636 return Builder.CreateMul(B1, KMul); 637 } 638 639 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 640 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 641 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 642 } 643 644 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 645 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 646 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 647 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 648 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 649 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 650 } 651 652 bool CodeGenFunction::sanitizePerformTypeCheck() const { 653 return SanOpts.has(SanitizerKind::Null) | 654 SanOpts.has(SanitizerKind::Alignment) | 655 SanOpts.has(SanitizerKind::ObjectSize) | 656 SanOpts.has(SanitizerKind::Vptr); 657 } 658 659 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 660 llvm::Value *Ptr, QualType Ty, 661 CharUnits Alignment, 662 SanitizerSet SkippedChecks, 663 llvm::Value *ArraySize) { 664 if (!sanitizePerformTypeCheck()) 665 return; 666 667 // Don't check pointers outside the default address space. The null check 668 // isn't correct, the object-size check isn't supported by LLVM, and we can't 669 // communicate the addresses to the runtime handler for the vptr check. 670 if (Ptr->getType()->getPointerAddressSpace()) 671 return; 672 673 // Don't check pointers to volatile data. The behavior here is implementation- 674 // defined. 675 if (Ty.isVolatileQualified()) 676 return; 677 678 SanitizerScope SanScope(this); 679 680 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 681 llvm::BasicBlock *Done = nullptr; 682 683 // Quickly determine whether we have a pointer to an alloca. It's possible 684 // to skip null checks, and some alignment checks, for these pointers. This 685 // can reduce compile-time significantly. 686 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 687 688 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 689 llvm::Value *IsNonNull = nullptr; 690 bool IsGuaranteedNonNull = 691 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 692 bool AllowNullPointers = isNullPointerAllowed(TCK); 693 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 694 !IsGuaranteedNonNull) { 695 // The glvalue must not be an empty glvalue. 696 IsNonNull = Builder.CreateIsNotNull(Ptr); 697 698 // The IR builder can constant-fold the null check if the pointer points to 699 // a constant. 700 IsGuaranteedNonNull = IsNonNull == True; 701 702 // Skip the null check if the pointer is known to be non-null. 703 if (!IsGuaranteedNonNull) { 704 if (AllowNullPointers) { 705 // When performing pointer casts, it's OK if the value is null. 706 // Skip the remaining checks in that case. 707 Done = createBasicBlock("null"); 708 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 709 Builder.CreateCondBr(IsNonNull, Rest, Done); 710 EmitBlock(Rest); 711 } else { 712 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 713 } 714 } 715 } 716 717 if (SanOpts.has(SanitizerKind::ObjectSize) && 718 !SkippedChecks.has(SanitizerKind::ObjectSize) && 719 !Ty->isIncompleteType()) { 720 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 721 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 722 if (ArraySize) 723 Size = Builder.CreateMul(Size, ArraySize); 724 725 // Degenerate case: new X[0] does not need an objectsize check. 726 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 727 if (!ConstantSize || !ConstantSize->isNullValue()) { 728 // The glvalue must refer to a large enough storage region. 729 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 730 // to check this. 731 // FIXME: Get object address space 732 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 733 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 734 llvm::Value *Min = Builder.getFalse(); 735 llvm::Value *NullIsUnknown = Builder.getFalse(); 736 llvm::Value *Dynamic = Builder.getFalse(); 737 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 738 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 739 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 740 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 741 } 742 } 743 744 uint64_t AlignVal = 0; 745 llvm::Value *PtrAsInt = nullptr; 746 747 if (SanOpts.has(SanitizerKind::Alignment) && 748 !SkippedChecks.has(SanitizerKind::Alignment)) { 749 AlignVal = Alignment.getQuantity(); 750 if (!Ty->isIncompleteType() && !AlignVal) 751 AlignVal = 752 getNaturalTypeAlignment(Ty, nullptr, nullptr, /*ForPointeeType=*/true) 753 .getQuantity(); 754 755 // The glvalue must be suitably aligned. 756 if (AlignVal > 1 && 757 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 758 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 759 llvm::Value *Align = Builder.CreateAnd( 760 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 761 llvm::Value *Aligned = 762 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 763 if (Aligned != True) 764 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 765 } 766 } 767 768 if (Checks.size() > 0) { 769 // Make sure we're not losing information. Alignment needs to be a power of 770 // 2 771 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 772 llvm::Constant *StaticData[] = { 773 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 774 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 775 llvm::ConstantInt::get(Int8Ty, TCK)}; 776 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 777 PtrAsInt ? PtrAsInt : Ptr); 778 } 779 780 // If possible, check that the vptr indicates that there is a subobject of 781 // type Ty at offset zero within this object. 782 // 783 // C++11 [basic.life]p5,6: 784 // [For storage which does not refer to an object within its lifetime] 785 // The program has undefined behavior if: 786 // -- the [pointer or glvalue] is used to access a non-static data member 787 // or call a non-static member function 788 if (SanOpts.has(SanitizerKind::Vptr) && 789 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 790 // Ensure that the pointer is non-null before loading it. If there is no 791 // compile-time guarantee, reuse the run-time null check or emit a new one. 792 if (!IsGuaranteedNonNull) { 793 if (!IsNonNull) 794 IsNonNull = Builder.CreateIsNotNull(Ptr); 795 if (!Done) 796 Done = createBasicBlock("vptr.null"); 797 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 798 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 799 EmitBlock(VptrNotNull); 800 } 801 802 // Compute a hash of the mangled name of the type. 803 // 804 // FIXME: This is not guaranteed to be deterministic! Move to a 805 // fingerprinting mechanism once LLVM provides one. For the time 806 // being the implementation happens to be deterministic. 807 SmallString<64> MangledName; 808 llvm::raw_svector_ostream Out(MangledName); 809 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 810 Out); 811 812 // Blacklist based on the mangled type. 813 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 814 SanitizerKind::Vptr, Out.str())) { 815 llvm::hash_code TypeHash = hash_value(Out.str()); 816 817 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 818 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 819 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 820 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 821 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 822 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 823 824 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 825 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 826 827 // Look the hash up in our cache. 828 const int CacheSize = 128; 829 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 830 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 831 "__ubsan_vptr_type_cache"); 832 llvm::Value *Slot = Builder.CreateAnd(Hash, 833 llvm::ConstantInt::get(IntPtrTy, 834 CacheSize-1)); 835 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 836 llvm::Value *CacheVal = 837 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 838 getPointerAlign()); 839 840 // If the hash isn't in the cache, call a runtime handler to perform the 841 // hard work of checking whether the vptr is for an object of the right 842 // type. This will either fill in the cache and return, or produce a 843 // diagnostic. 844 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 845 llvm::Constant *StaticData[] = { 846 EmitCheckSourceLocation(Loc), 847 EmitCheckTypeDescriptor(Ty), 848 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 849 llvm::ConstantInt::get(Int8Ty, TCK) 850 }; 851 llvm::Value *DynamicData[] = { Ptr, Hash }; 852 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 853 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 854 DynamicData); 855 } 856 } 857 858 if (Done) { 859 Builder.CreateBr(Done); 860 EmitBlock(Done); 861 } 862 } 863 864 /// Determine whether this expression refers to a flexible array member in a 865 /// struct. We disable array bounds checks for such members. 866 static bool isFlexibleArrayMemberExpr(const Expr *E) { 867 // For compatibility with existing code, we treat arrays of length 0 or 868 // 1 as flexible array members. 869 // FIXME: This is inconsistent with the warning code in SemaChecking. Unify 870 // the two mechanisms. 871 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 872 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 873 // FIXME: Sema doesn't treat [1] as a flexible array member if the bound 874 // was produced by macro expansion. 875 if (CAT->getSize().ugt(1)) 876 return false; 877 } else if (!isa<IncompleteArrayType>(AT)) 878 return false; 879 880 E = E->IgnoreParens(); 881 882 // A flexible array member must be the last member in the class. 883 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 884 // FIXME: If the base type of the member expr is not FD->getParent(), 885 // this should not be treated as a flexible array member access. 886 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 887 // FIXME: Sema doesn't treat a T[1] union member as a flexible array 888 // member, only a T[0] or T[] member gets that treatment. 889 if (FD->getParent()->isUnion()) 890 return true; 891 RecordDecl::field_iterator FI( 892 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 893 return ++FI == FD->getParent()->field_end(); 894 } 895 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 896 return IRE->getDecl()->getNextIvar() == nullptr; 897 } 898 899 return false; 900 } 901 902 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 903 QualType EltTy) { 904 ASTContext &C = getContext(); 905 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 906 if (!EltSize) 907 return nullptr; 908 909 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 910 if (!ArrayDeclRef) 911 return nullptr; 912 913 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 914 if (!ParamDecl) 915 return nullptr; 916 917 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 918 if (!POSAttr) 919 return nullptr; 920 921 // Don't load the size if it's a lower bound. 922 int POSType = POSAttr->getType(); 923 if (POSType != 0 && POSType != 1) 924 return nullptr; 925 926 // Find the implicit size parameter. 927 auto PassedSizeIt = SizeArguments.find(ParamDecl); 928 if (PassedSizeIt == SizeArguments.end()) 929 return nullptr; 930 931 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 932 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 933 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 934 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 935 C.getSizeType(), E->getExprLoc()); 936 llvm::Value *SizeOfElement = 937 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 938 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 939 } 940 941 /// If Base is known to point to the start of an array, return the length of 942 /// that array. Return 0 if the length cannot be determined. 943 static llvm::Value *getArrayIndexingBound( 944 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 945 // For the vector indexing extension, the bound is the number of elements. 946 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 947 IndexedType = Base->getType(); 948 return CGF.Builder.getInt32(VT->getNumElements()); 949 } 950 951 Base = Base->IgnoreParens(); 952 953 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 954 if (CE->getCastKind() == CK_ArrayToPointerDecay && 955 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 956 IndexedType = CE->getSubExpr()->getType(); 957 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 958 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 959 return CGF.Builder.getInt(CAT->getSize()); 960 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 961 return CGF.getVLASize(VAT).NumElts; 962 // Ignore pass_object_size here. It's not applicable on decayed pointers. 963 } 964 } 965 966 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 967 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 968 IndexedType = Base->getType(); 969 return POS; 970 } 971 972 return nullptr; 973 } 974 975 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 976 llvm::Value *Index, QualType IndexType, 977 bool Accessed) { 978 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 979 "should not be called unless adding bounds checks"); 980 SanitizerScope SanScope(this); 981 982 QualType IndexedType; 983 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 984 if (!Bound) 985 return; 986 987 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 988 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 989 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 990 991 llvm::Constant *StaticData[] = { 992 EmitCheckSourceLocation(E->getExprLoc()), 993 EmitCheckTypeDescriptor(IndexedType), 994 EmitCheckTypeDescriptor(IndexType) 995 }; 996 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 997 : Builder.CreateICmpULE(IndexVal, BoundVal); 998 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 999 SanitizerHandler::OutOfBounds, StaticData, Index); 1000 } 1001 1002 1003 CodeGenFunction::ComplexPairTy CodeGenFunction:: 1004 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1005 bool isInc, bool isPre) { 1006 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 1007 1008 llvm::Value *NextVal; 1009 if (isa<llvm::IntegerType>(InVal.first->getType())) { 1010 uint64_t AmountVal = isInc ? 1 : -1; 1011 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 1012 1013 // Add the inc/dec to the real part. 1014 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1015 } else { 1016 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1017 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1018 if (!isInc) 1019 FVal.changeSign(); 1020 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1021 1022 // Add the inc/dec to the real part. 1023 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1024 } 1025 1026 ComplexPairTy IncVal(NextVal, InVal.second); 1027 1028 // Store the updated result through the lvalue. 1029 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1030 if (getLangOpts().OpenMP) 1031 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1032 E->getSubExpr()); 1033 1034 // If this is a postinc, return the value read from memory, otherwise use the 1035 // updated value. 1036 return isPre ? IncVal : InVal; 1037 } 1038 1039 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1040 CodeGenFunction *CGF) { 1041 // Bind VLAs in the cast type. 1042 if (CGF && E->getType()->isVariablyModifiedType()) 1043 CGF->EmitVariablyModifiedType(E->getType()); 1044 1045 if (CGDebugInfo *DI = getModuleDebugInfo()) 1046 DI->EmitExplicitCastType(E->getType()); 1047 } 1048 1049 //===----------------------------------------------------------------------===// 1050 // LValue Expression Emission 1051 //===----------------------------------------------------------------------===// 1052 1053 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1054 /// derive a more accurate bound on the alignment of the pointer. 1055 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1056 LValueBaseInfo *BaseInfo, 1057 TBAAAccessInfo *TBAAInfo) { 1058 // We allow this with ObjC object pointers because of fragile ABIs. 1059 assert(E->getType()->isPointerType() || 1060 E->getType()->isObjCObjectPointerType()); 1061 E = E->IgnoreParens(); 1062 1063 // Casts: 1064 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1065 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1066 CGM.EmitExplicitCastExprType(ECE, this); 1067 1068 switch (CE->getCastKind()) { 1069 // Non-converting casts (but not C's implicit conversion from void*). 1070 case CK_BitCast: 1071 case CK_NoOp: 1072 case CK_AddressSpaceConversion: 1073 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1074 if (PtrTy->getPointeeType()->isVoidType()) 1075 break; 1076 1077 LValueBaseInfo InnerBaseInfo; 1078 TBAAAccessInfo InnerTBAAInfo; 1079 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1080 &InnerBaseInfo, 1081 &InnerTBAAInfo); 1082 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1083 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1084 1085 if (isa<ExplicitCastExpr>(CE)) { 1086 LValueBaseInfo TargetTypeBaseInfo; 1087 TBAAAccessInfo TargetTypeTBAAInfo; 1088 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1089 &TargetTypeBaseInfo, 1090 &TargetTypeTBAAInfo); 1091 if (TBAAInfo) 1092 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1093 TargetTypeTBAAInfo); 1094 // If the source l-value is opaque, honor the alignment of the 1095 // casted-to type. 1096 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1097 if (BaseInfo) 1098 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1099 Addr = Address(Addr.getPointer(), Align); 1100 } 1101 } 1102 1103 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1104 CE->getCastKind() == CK_BitCast) { 1105 if (auto PT = E->getType()->getAs<PointerType>()) 1106 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1107 /*MayBeNull=*/true, 1108 CodeGenFunction::CFITCK_UnrelatedCast, 1109 CE->getBeginLoc()); 1110 } 1111 return CE->getCastKind() != CK_AddressSpaceConversion 1112 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1113 : Builder.CreateAddrSpaceCast(Addr, 1114 ConvertType(E->getType())); 1115 } 1116 break; 1117 1118 // Array-to-pointer decay. 1119 case CK_ArrayToPointerDecay: 1120 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1121 1122 // Derived-to-base conversions. 1123 case CK_UncheckedDerivedToBase: 1124 case CK_DerivedToBase: { 1125 // TODO: Support accesses to members of base classes in TBAA. For now, we 1126 // conservatively pretend that the complete object is of the base class 1127 // type. 1128 if (TBAAInfo) 1129 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1130 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1131 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1132 return GetAddressOfBaseClass(Addr, Derived, 1133 CE->path_begin(), CE->path_end(), 1134 ShouldNullCheckClassCastValue(CE), 1135 CE->getExprLoc()); 1136 } 1137 1138 // TODO: Is there any reason to treat base-to-derived conversions 1139 // specially? 1140 default: 1141 break; 1142 } 1143 } 1144 1145 // Unary &. 1146 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1147 if (UO->getOpcode() == UO_AddrOf) { 1148 LValue LV = EmitLValue(UO->getSubExpr()); 1149 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1150 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1151 return LV.getAddress(*this); 1152 } 1153 } 1154 1155 // TODO: conditional operators, comma. 1156 1157 // Otherwise, use the alignment of the type. 1158 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1159 TBAAInfo); 1160 return Address(EmitScalarExpr(E), Align); 1161 } 1162 1163 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1164 if (Ty->isVoidType()) 1165 return RValue::get(nullptr); 1166 1167 switch (getEvaluationKind(Ty)) { 1168 case TEK_Complex: { 1169 llvm::Type *EltTy = 1170 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1171 llvm::Value *U = llvm::UndefValue::get(EltTy); 1172 return RValue::getComplex(std::make_pair(U, U)); 1173 } 1174 1175 // If this is a use of an undefined aggregate type, the aggregate must have an 1176 // identifiable address. Just because the contents of the value are undefined 1177 // doesn't mean that the address can't be taken and compared. 1178 case TEK_Aggregate: { 1179 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1180 return RValue::getAggregate(DestPtr); 1181 } 1182 1183 case TEK_Scalar: 1184 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1185 } 1186 llvm_unreachable("bad evaluation kind"); 1187 } 1188 1189 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1190 const char *Name) { 1191 ErrorUnsupported(E, Name); 1192 return GetUndefRValue(E->getType()); 1193 } 1194 1195 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1196 const char *Name) { 1197 ErrorUnsupported(E, Name); 1198 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1199 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1200 E->getType()); 1201 } 1202 1203 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1204 const Expr *Base = Obj; 1205 while (!isa<CXXThisExpr>(Base)) { 1206 // The result of a dynamic_cast can be null. 1207 if (isa<CXXDynamicCastExpr>(Base)) 1208 return false; 1209 1210 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1211 Base = CE->getSubExpr(); 1212 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1213 Base = PE->getSubExpr(); 1214 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1215 if (UO->getOpcode() == UO_Extension) 1216 Base = UO->getSubExpr(); 1217 else 1218 return false; 1219 } else { 1220 return false; 1221 } 1222 } 1223 return true; 1224 } 1225 1226 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1227 LValue LV; 1228 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1229 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1230 else 1231 LV = EmitLValue(E); 1232 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1233 SanitizerSet SkippedChecks; 1234 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1235 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1236 if (IsBaseCXXThis) 1237 SkippedChecks.set(SanitizerKind::Alignment, true); 1238 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1239 SkippedChecks.set(SanitizerKind::Null, true); 1240 } 1241 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1242 LV.getAlignment(), SkippedChecks); 1243 } 1244 return LV; 1245 } 1246 1247 /// EmitLValue - Emit code to compute a designator that specifies the location 1248 /// of the expression. 1249 /// 1250 /// This can return one of two things: a simple address or a bitfield reference. 1251 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1252 /// an LLVM pointer type. 1253 /// 1254 /// If this returns a bitfield reference, nothing about the pointee type of the 1255 /// LLVM value is known: For example, it may not be a pointer to an integer. 1256 /// 1257 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1258 /// this method guarantees that the returned pointer type will point to an LLVM 1259 /// type of the same size of the lvalue's type. If the lvalue has a variable 1260 /// length type, this is not possible. 1261 /// 1262 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1263 ApplyDebugLocation DL(*this, E); 1264 switch (E->getStmtClass()) { 1265 default: return EmitUnsupportedLValue(E, "l-value expression"); 1266 1267 case Expr::ObjCPropertyRefExprClass: 1268 llvm_unreachable("cannot emit a property reference directly"); 1269 1270 case Expr::ObjCSelectorExprClass: 1271 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1272 case Expr::ObjCIsaExprClass: 1273 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1274 case Expr::BinaryOperatorClass: 1275 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1276 case Expr::CompoundAssignOperatorClass: { 1277 QualType Ty = E->getType(); 1278 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1279 Ty = AT->getValueType(); 1280 if (!Ty->isAnyComplexType()) 1281 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1282 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1283 } 1284 case Expr::CallExprClass: 1285 case Expr::CXXMemberCallExprClass: 1286 case Expr::CXXOperatorCallExprClass: 1287 case Expr::UserDefinedLiteralClass: 1288 return EmitCallExprLValue(cast<CallExpr>(E)); 1289 case Expr::CXXRewrittenBinaryOperatorClass: 1290 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1291 case Expr::VAArgExprClass: 1292 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1293 case Expr::DeclRefExprClass: 1294 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1295 case Expr::ConstantExprClass: 1296 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1297 case Expr::ParenExprClass: 1298 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1299 case Expr::GenericSelectionExprClass: 1300 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1301 case Expr::PredefinedExprClass: 1302 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1303 case Expr::StringLiteralClass: 1304 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1305 case Expr::ObjCEncodeExprClass: 1306 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1307 case Expr::PseudoObjectExprClass: 1308 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1309 case Expr::InitListExprClass: 1310 return EmitInitListLValue(cast<InitListExpr>(E)); 1311 case Expr::CXXTemporaryObjectExprClass: 1312 case Expr::CXXConstructExprClass: 1313 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1314 case Expr::CXXBindTemporaryExprClass: 1315 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1316 case Expr::CXXUuidofExprClass: 1317 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1318 case Expr::LambdaExprClass: 1319 return EmitAggExprToLValue(E); 1320 1321 case Expr::ExprWithCleanupsClass: { 1322 const auto *cleanups = cast<ExprWithCleanups>(E); 1323 enterFullExpression(cleanups); 1324 RunCleanupsScope Scope(*this); 1325 LValue LV = EmitLValue(cleanups->getSubExpr()); 1326 if (LV.isSimple()) { 1327 // Defend against branches out of gnu statement expressions surrounded by 1328 // cleanups. 1329 llvm::Value *V = LV.getPointer(*this); 1330 Scope.ForceCleanup({&V}); 1331 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1332 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1333 } 1334 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1335 // bitfield lvalue or some other non-simple lvalue? 1336 return LV; 1337 } 1338 1339 case Expr::CXXDefaultArgExprClass: { 1340 auto *DAE = cast<CXXDefaultArgExpr>(E); 1341 CXXDefaultArgExprScope Scope(*this, DAE); 1342 return EmitLValue(DAE->getExpr()); 1343 } 1344 case Expr::CXXDefaultInitExprClass: { 1345 auto *DIE = cast<CXXDefaultInitExpr>(E); 1346 CXXDefaultInitExprScope Scope(*this, DIE); 1347 return EmitLValue(DIE->getExpr()); 1348 } 1349 case Expr::CXXTypeidExprClass: 1350 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1351 1352 case Expr::ObjCMessageExprClass: 1353 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1354 case Expr::ObjCIvarRefExprClass: 1355 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1356 case Expr::StmtExprClass: 1357 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1358 case Expr::UnaryOperatorClass: 1359 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1360 case Expr::ArraySubscriptExprClass: 1361 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1362 case Expr::OMPArraySectionExprClass: 1363 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1364 case Expr::ExtVectorElementExprClass: 1365 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1366 case Expr::MemberExprClass: 1367 return EmitMemberExpr(cast<MemberExpr>(E)); 1368 case Expr::CompoundLiteralExprClass: 1369 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1370 case Expr::ConditionalOperatorClass: 1371 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1372 case Expr::BinaryConditionalOperatorClass: 1373 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1374 case Expr::ChooseExprClass: 1375 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1376 case Expr::OpaqueValueExprClass: 1377 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1378 case Expr::SubstNonTypeTemplateParmExprClass: 1379 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1380 case Expr::ImplicitCastExprClass: 1381 case Expr::CStyleCastExprClass: 1382 case Expr::CXXFunctionalCastExprClass: 1383 case Expr::CXXStaticCastExprClass: 1384 case Expr::CXXDynamicCastExprClass: 1385 case Expr::CXXReinterpretCastExprClass: 1386 case Expr::CXXConstCastExprClass: 1387 case Expr::ObjCBridgedCastExprClass: 1388 return EmitCastLValue(cast<CastExpr>(E)); 1389 1390 case Expr::MaterializeTemporaryExprClass: 1391 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1392 1393 case Expr::CoawaitExprClass: 1394 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1395 case Expr::CoyieldExprClass: 1396 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1397 } 1398 } 1399 1400 /// Given an object of the given canonical type, can we safely copy a 1401 /// value out of it based on its initializer? 1402 static bool isConstantEmittableObjectType(QualType type) { 1403 assert(type.isCanonical()); 1404 assert(!type->isReferenceType()); 1405 1406 // Must be const-qualified but non-volatile. 1407 Qualifiers qs = type.getLocalQualifiers(); 1408 if (!qs.hasConst() || qs.hasVolatile()) return false; 1409 1410 // Otherwise, all object types satisfy this except C++ classes with 1411 // mutable subobjects or non-trivial copy/destroy behavior. 1412 if (const auto *RT = dyn_cast<RecordType>(type)) 1413 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1414 if (RD->hasMutableFields() || !RD->isTrivial()) 1415 return false; 1416 1417 return true; 1418 } 1419 1420 /// Can we constant-emit a load of a reference to a variable of the 1421 /// given type? This is different from predicates like 1422 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1423 /// in situations that don't necessarily satisfy the language's rules 1424 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1425 /// to do this with const float variables even if those variables 1426 /// aren't marked 'constexpr'. 1427 enum ConstantEmissionKind { 1428 CEK_None, 1429 CEK_AsReferenceOnly, 1430 CEK_AsValueOrReference, 1431 CEK_AsValueOnly 1432 }; 1433 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1434 type = type.getCanonicalType(); 1435 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1436 if (isConstantEmittableObjectType(ref->getPointeeType())) 1437 return CEK_AsValueOrReference; 1438 return CEK_AsReferenceOnly; 1439 } 1440 if (isConstantEmittableObjectType(type)) 1441 return CEK_AsValueOnly; 1442 return CEK_None; 1443 } 1444 1445 /// Try to emit a reference to the given value without producing it as 1446 /// an l-value. This is just an optimization, but it avoids us needing 1447 /// to emit global copies of variables if they're named without triggering 1448 /// a formal use in a context where we can't emit a direct reference to them, 1449 /// for instance if a block or lambda or a member of a local class uses a 1450 /// const int variable or constexpr variable from an enclosing function. 1451 CodeGenFunction::ConstantEmission 1452 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1453 ValueDecl *value = refExpr->getDecl(); 1454 1455 // The value needs to be an enum constant or a constant variable. 1456 ConstantEmissionKind CEK; 1457 if (isa<ParmVarDecl>(value)) { 1458 CEK = CEK_None; 1459 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1460 CEK = checkVarTypeForConstantEmission(var->getType()); 1461 } else if (isa<EnumConstantDecl>(value)) { 1462 CEK = CEK_AsValueOnly; 1463 } else { 1464 CEK = CEK_None; 1465 } 1466 if (CEK == CEK_None) return ConstantEmission(); 1467 1468 Expr::EvalResult result; 1469 bool resultIsReference; 1470 QualType resultType; 1471 1472 // It's best to evaluate all the way as an r-value if that's permitted. 1473 if (CEK != CEK_AsReferenceOnly && 1474 refExpr->EvaluateAsRValue(result, getContext())) { 1475 resultIsReference = false; 1476 resultType = refExpr->getType(); 1477 1478 // Otherwise, try to evaluate as an l-value. 1479 } else if (CEK != CEK_AsValueOnly && 1480 refExpr->EvaluateAsLValue(result, getContext())) { 1481 resultIsReference = true; 1482 resultType = value->getType(); 1483 1484 // Failure. 1485 } else { 1486 return ConstantEmission(); 1487 } 1488 1489 // In any case, if the initializer has side-effects, abandon ship. 1490 if (result.HasSideEffects) 1491 return ConstantEmission(); 1492 1493 // Emit as a constant. 1494 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1495 result.Val, resultType); 1496 1497 // Make sure we emit a debug reference to the global variable. 1498 // This should probably fire even for 1499 if (isa<VarDecl>(value)) { 1500 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1501 EmitDeclRefExprDbgValue(refExpr, result.Val); 1502 } else { 1503 assert(isa<EnumConstantDecl>(value)); 1504 EmitDeclRefExprDbgValue(refExpr, result.Val); 1505 } 1506 1507 // If we emitted a reference constant, we need to dereference that. 1508 if (resultIsReference) 1509 return ConstantEmission::forReference(C); 1510 1511 return ConstantEmission::forValue(C); 1512 } 1513 1514 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1515 const MemberExpr *ME) { 1516 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1517 // Try to emit static variable member expressions as DREs. 1518 return DeclRefExpr::Create( 1519 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1520 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1521 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1522 } 1523 return nullptr; 1524 } 1525 1526 CodeGenFunction::ConstantEmission 1527 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1528 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1529 return tryEmitAsConstant(DRE); 1530 return ConstantEmission(); 1531 } 1532 1533 llvm::Value *CodeGenFunction::emitScalarConstant( 1534 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1535 assert(Constant && "not a constant"); 1536 if (Constant.isReference()) 1537 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1538 E->getExprLoc()) 1539 .getScalarVal(); 1540 return Constant.getValue(); 1541 } 1542 1543 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1544 SourceLocation Loc) { 1545 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1546 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1547 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1548 } 1549 1550 static bool hasBooleanRepresentation(QualType Ty) { 1551 if (Ty->isBooleanType()) 1552 return true; 1553 1554 if (const EnumType *ET = Ty->getAs<EnumType>()) 1555 return ET->getDecl()->getIntegerType()->isBooleanType(); 1556 1557 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1558 return hasBooleanRepresentation(AT->getValueType()); 1559 1560 return false; 1561 } 1562 1563 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1564 llvm::APInt &Min, llvm::APInt &End, 1565 bool StrictEnums, bool IsBool) { 1566 const EnumType *ET = Ty->getAs<EnumType>(); 1567 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1568 ET && !ET->getDecl()->isFixed(); 1569 if (!IsBool && !IsRegularCPlusPlusEnum) 1570 return false; 1571 1572 if (IsBool) { 1573 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1574 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1575 } else { 1576 const EnumDecl *ED = ET->getDecl(); 1577 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1578 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1579 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1580 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1581 1582 if (NumNegativeBits) { 1583 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1584 assert(NumBits <= Bitwidth); 1585 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1586 Min = -End; 1587 } else { 1588 assert(NumPositiveBits <= Bitwidth); 1589 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1590 Min = llvm::APInt(Bitwidth, 0); 1591 } 1592 } 1593 return true; 1594 } 1595 1596 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1597 llvm::APInt Min, End; 1598 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1599 hasBooleanRepresentation(Ty))) 1600 return nullptr; 1601 1602 llvm::MDBuilder MDHelper(getLLVMContext()); 1603 return MDHelper.createRange(Min, End); 1604 } 1605 1606 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1607 SourceLocation Loc) { 1608 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1609 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1610 if (!HasBoolCheck && !HasEnumCheck) 1611 return false; 1612 1613 bool IsBool = hasBooleanRepresentation(Ty) || 1614 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1615 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1616 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1617 if (!NeedsBoolCheck && !NeedsEnumCheck) 1618 return false; 1619 1620 // Single-bit booleans don't need to be checked. Special-case this to avoid 1621 // a bit width mismatch when handling bitfield values. This is handled by 1622 // EmitFromMemory for the non-bitfield case. 1623 if (IsBool && 1624 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1625 return false; 1626 1627 llvm::APInt Min, End; 1628 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1629 return true; 1630 1631 auto &Ctx = getLLVMContext(); 1632 SanitizerScope SanScope(this); 1633 llvm::Value *Check; 1634 --End; 1635 if (!Min) { 1636 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1637 } else { 1638 llvm::Value *Upper = 1639 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1640 llvm::Value *Lower = 1641 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1642 Check = Builder.CreateAnd(Upper, Lower); 1643 } 1644 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1645 EmitCheckTypeDescriptor(Ty)}; 1646 SanitizerMask Kind = 1647 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1648 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1649 StaticArgs, EmitCheckValue(Value)); 1650 return true; 1651 } 1652 1653 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1654 QualType Ty, 1655 SourceLocation Loc, 1656 LValueBaseInfo BaseInfo, 1657 TBAAAccessInfo TBAAInfo, 1658 bool isNontemporal) { 1659 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1660 // For better performance, handle vector loads differently. 1661 if (Ty->isVectorType()) { 1662 const llvm::Type *EltTy = Addr.getElementType(); 1663 1664 const auto *VTy = cast<llvm::VectorType>(EltTy); 1665 1666 // Handle vectors of size 3 like size 4 for better performance. 1667 if (VTy->getNumElements() == 3) { 1668 1669 // Bitcast to vec4 type. 1670 llvm::VectorType *vec4Ty = 1671 llvm::VectorType::get(VTy->getElementType(), 4); 1672 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1673 // Now load value. 1674 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1675 1676 // Shuffle vector to get vec3. 1677 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1678 ArrayRef<int>{0, 1, 2}, "extractVec"); 1679 return EmitFromMemory(V, Ty); 1680 } 1681 } 1682 } 1683 1684 // Atomic operations have to be done on integral types. 1685 LValue AtomicLValue = 1686 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1687 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1688 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1689 } 1690 1691 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1692 if (isNontemporal) { 1693 llvm::MDNode *Node = llvm::MDNode::get( 1694 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1695 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1696 } 1697 1698 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1699 1700 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1701 // In order to prevent the optimizer from throwing away the check, don't 1702 // attach range metadata to the load. 1703 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1704 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1705 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1706 1707 return EmitFromMemory(Load, Ty); 1708 } 1709 1710 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1711 // Bool has a different representation in memory than in registers. 1712 if (hasBooleanRepresentation(Ty)) { 1713 // This should really always be an i1, but sometimes it's already 1714 // an i8, and it's awkward to track those cases down. 1715 if (Value->getType()->isIntegerTy(1)) 1716 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1717 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1718 "wrong value rep of bool"); 1719 } 1720 1721 return Value; 1722 } 1723 1724 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1725 // Bool has a different representation in memory than in registers. 1726 if (hasBooleanRepresentation(Ty)) { 1727 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1728 "wrong value rep of bool"); 1729 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1730 } 1731 1732 return Value; 1733 } 1734 1735 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1736 bool Volatile, QualType Ty, 1737 LValueBaseInfo BaseInfo, 1738 TBAAAccessInfo TBAAInfo, 1739 bool isInit, bool isNontemporal) { 1740 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1741 // Handle vectors differently to get better performance. 1742 if (Ty->isVectorType()) { 1743 llvm::Type *SrcTy = Value->getType(); 1744 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1745 // Handle vec3 special. 1746 if (VecTy && VecTy->getNumElements() == 3) { 1747 // Our source is a vec3, do a shuffle vector to make it a vec4. 1748 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1749 ArrayRef<int>{0, 1, 2, -1}, 1750 "extractVec"); 1751 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1752 } 1753 if (Addr.getElementType() != SrcTy) { 1754 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1755 } 1756 } 1757 } 1758 1759 Value = EmitToMemory(Value, Ty); 1760 1761 LValue AtomicLValue = 1762 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1763 if (Ty->isAtomicType() || 1764 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1765 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1766 return; 1767 } 1768 1769 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1770 if (isNontemporal) { 1771 llvm::MDNode *Node = 1772 llvm::MDNode::get(Store->getContext(), 1773 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1774 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1775 } 1776 1777 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1778 } 1779 1780 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1781 bool isInit) { 1782 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1783 lvalue.getType(), lvalue.getBaseInfo(), 1784 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1785 } 1786 1787 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1788 /// method emits the address of the lvalue, then loads the result as an rvalue, 1789 /// returning the rvalue. 1790 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1791 if (LV.isObjCWeak()) { 1792 // load of a __weak object. 1793 Address AddrWeakObj = LV.getAddress(*this); 1794 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1795 AddrWeakObj)); 1796 } 1797 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1798 // In MRC mode, we do a load+autorelease. 1799 if (!getLangOpts().ObjCAutoRefCount) { 1800 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1801 } 1802 1803 // In ARC mode, we load retained and then consume the value. 1804 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1805 Object = EmitObjCConsumeObject(LV.getType(), Object); 1806 return RValue::get(Object); 1807 } 1808 1809 if (LV.isSimple()) { 1810 assert(!LV.getType()->isFunctionType()); 1811 1812 // Everything needs a load. 1813 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1814 } 1815 1816 if (LV.isVectorElt()) { 1817 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1818 LV.isVolatileQualified()); 1819 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1820 "vecext")); 1821 } 1822 1823 // If this is a reference to a subset of the elements of a vector, either 1824 // shuffle the input or extract/insert them as appropriate. 1825 if (LV.isExtVectorElt()) 1826 return EmitLoadOfExtVectorElementLValue(LV); 1827 1828 // Global Register variables always invoke intrinsics 1829 if (LV.isGlobalReg()) 1830 return EmitLoadOfGlobalRegLValue(LV); 1831 1832 assert(LV.isBitField() && "Unknown LValue type!"); 1833 return EmitLoadOfBitfieldLValue(LV, Loc); 1834 } 1835 1836 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1837 SourceLocation Loc) { 1838 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1839 1840 // Get the output type. 1841 llvm::Type *ResLTy = ConvertType(LV.getType()); 1842 1843 Address Ptr = LV.getBitFieldAddress(); 1844 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1845 1846 if (Info.IsSigned) { 1847 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1848 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1849 if (HighBits) 1850 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1851 if (Info.Offset + HighBits) 1852 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1853 } else { 1854 if (Info.Offset) 1855 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1856 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1857 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1858 Info.Size), 1859 "bf.clear"); 1860 } 1861 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1862 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1863 return RValue::get(Val); 1864 } 1865 1866 // If this is a reference to a subset of the elements of a vector, create an 1867 // appropriate shufflevector. 1868 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1869 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1870 LV.isVolatileQualified()); 1871 1872 const llvm::Constant *Elts = LV.getExtVectorElts(); 1873 1874 // If the result of the expression is a non-vector type, we must be extracting 1875 // a single element. Just codegen as an extractelement. 1876 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1877 if (!ExprVT) { 1878 unsigned InIdx = getAccessedFieldNo(0, Elts); 1879 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1880 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1881 } 1882 1883 // Always use shuffle vector to try to retain the original program structure 1884 unsigned NumResultElts = ExprVT->getNumElements(); 1885 1886 SmallVector<int, 4> Mask; 1887 for (unsigned i = 0; i != NumResultElts; ++i) 1888 Mask.push_back(getAccessedFieldNo(i, Elts)); 1889 1890 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1891 Mask); 1892 return RValue::get(Vec); 1893 } 1894 1895 /// Generates lvalue for partial ext_vector access. 1896 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1897 Address VectorAddress = LV.getExtVectorAddress(); 1898 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 1899 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1900 1901 Address CastToPointerElement = 1902 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1903 "conv.ptr.element"); 1904 1905 const llvm::Constant *Elts = LV.getExtVectorElts(); 1906 unsigned ix = getAccessedFieldNo(0, Elts); 1907 1908 Address VectorBasePtrPlusIx = 1909 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1910 "vector.elt"); 1911 1912 return VectorBasePtrPlusIx; 1913 } 1914 1915 /// Load of global gamed gegisters are always calls to intrinsics. 1916 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1917 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1918 "Bad type for register variable"); 1919 llvm::MDNode *RegName = cast<llvm::MDNode>( 1920 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1921 1922 // We accept integer and pointer types only 1923 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1924 llvm::Type *Ty = OrigTy; 1925 if (OrigTy->isPointerTy()) 1926 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1927 llvm::Type *Types[] = { Ty }; 1928 1929 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1930 llvm::Value *Call = Builder.CreateCall( 1931 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1932 if (OrigTy->isPointerTy()) 1933 Call = Builder.CreateIntToPtr(Call, OrigTy); 1934 return RValue::get(Call); 1935 } 1936 1937 1938 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1939 /// lvalue, where both are guaranteed to the have the same type, and that type 1940 /// is 'Ty'. 1941 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1942 bool isInit) { 1943 if (!Dst.isSimple()) { 1944 if (Dst.isVectorElt()) { 1945 // Read/modify/write the vector, inserting the new element. 1946 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1947 Dst.isVolatileQualified()); 1948 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1949 Dst.getVectorIdx(), "vecins"); 1950 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1951 Dst.isVolatileQualified()); 1952 return; 1953 } 1954 1955 // If this is an update of extended vector elements, insert them as 1956 // appropriate. 1957 if (Dst.isExtVectorElt()) 1958 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1959 1960 if (Dst.isGlobalReg()) 1961 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1962 1963 assert(Dst.isBitField() && "Unknown LValue type"); 1964 return EmitStoreThroughBitfieldLValue(Src, Dst); 1965 } 1966 1967 // There's special magic for assigning into an ARC-qualified l-value. 1968 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1969 switch (Lifetime) { 1970 case Qualifiers::OCL_None: 1971 llvm_unreachable("present but none"); 1972 1973 case Qualifiers::OCL_ExplicitNone: 1974 // nothing special 1975 break; 1976 1977 case Qualifiers::OCL_Strong: 1978 if (isInit) { 1979 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1980 break; 1981 } 1982 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1983 return; 1984 1985 case Qualifiers::OCL_Weak: 1986 if (isInit) 1987 // Initialize and then skip the primitive store. 1988 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 1989 else 1990 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 1991 /*ignore*/ true); 1992 return; 1993 1994 case Qualifiers::OCL_Autoreleasing: 1995 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1996 Src.getScalarVal())); 1997 // fall into the normal path 1998 break; 1999 } 2000 } 2001 2002 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 2003 // load of a __weak object. 2004 Address LvalueDst = Dst.getAddress(*this); 2005 llvm::Value *src = Src.getScalarVal(); 2006 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2007 return; 2008 } 2009 2010 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2011 // load of a __strong object. 2012 Address LvalueDst = Dst.getAddress(*this); 2013 llvm::Value *src = Src.getScalarVal(); 2014 if (Dst.isObjCIvar()) { 2015 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2016 llvm::Type *ResultType = IntPtrTy; 2017 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2018 llvm::Value *RHS = dst.getPointer(); 2019 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2020 llvm::Value *LHS = 2021 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2022 "sub.ptr.lhs.cast"); 2023 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2024 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2025 BytesBetween); 2026 } else if (Dst.isGlobalObjCRef()) { 2027 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2028 Dst.isThreadLocalRef()); 2029 } 2030 else 2031 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2032 return; 2033 } 2034 2035 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2036 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2037 } 2038 2039 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2040 llvm::Value **Result) { 2041 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2042 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2043 Address Ptr = Dst.getBitFieldAddress(); 2044 2045 // Get the source value, truncated to the width of the bit-field. 2046 llvm::Value *SrcVal = Src.getScalarVal(); 2047 2048 // Cast the source to the storage type and shift it into place. 2049 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2050 /*isSigned=*/false); 2051 llvm::Value *MaskedVal = SrcVal; 2052 2053 // See if there are other bits in the bitfield's storage we'll need to load 2054 // and mask together with source before storing. 2055 if (Info.StorageSize != Info.Size) { 2056 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2057 llvm::Value *Val = 2058 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2059 2060 // Mask the source value as needed. 2061 if (!hasBooleanRepresentation(Dst.getType())) 2062 SrcVal = Builder.CreateAnd(SrcVal, 2063 llvm::APInt::getLowBitsSet(Info.StorageSize, 2064 Info.Size), 2065 "bf.value"); 2066 MaskedVal = SrcVal; 2067 if (Info.Offset) 2068 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2069 2070 // Mask out the original value. 2071 Val = Builder.CreateAnd(Val, 2072 ~llvm::APInt::getBitsSet(Info.StorageSize, 2073 Info.Offset, 2074 Info.Offset + Info.Size), 2075 "bf.clear"); 2076 2077 // Or together the unchanged values and the source value. 2078 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2079 } else { 2080 assert(Info.Offset == 0); 2081 // According to the AACPS: 2082 // When a volatile bit-field is written, and its container does not overlap 2083 // with any non-bit-field member, its container must be read exactly once and 2084 // written exactly once using the access width appropriate to the type of the 2085 // container. The two accesses are not atomic. 2086 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2087 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2088 Builder.CreateLoad(Ptr, true, "bf.load"); 2089 } 2090 2091 // Write the new value back out. 2092 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2093 2094 // Return the new value of the bit-field, if requested. 2095 if (Result) { 2096 llvm::Value *ResultVal = MaskedVal; 2097 2098 // Sign extend the value if needed. 2099 if (Info.IsSigned) { 2100 assert(Info.Size <= Info.StorageSize); 2101 unsigned HighBits = Info.StorageSize - Info.Size; 2102 if (HighBits) { 2103 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2104 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2105 } 2106 } 2107 2108 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2109 "bf.result.cast"); 2110 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2111 } 2112 } 2113 2114 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2115 LValue Dst) { 2116 // This access turns into a read/modify/write of the vector. Load the input 2117 // value now. 2118 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2119 Dst.isVolatileQualified()); 2120 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2121 2122 llvm::Value *SrcVal = Src.getScalarVal(); 2123 2124 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2125 unsigned NumSrcElts = VTy->getNumElements(); 2126 unsigned NumDstElts = 2127 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 2128 if (NumDstElts == NumSrcElts) { 2129 // Use shuffle vector is the src and destination are the same number of 2130 // elements and restore the vector mask since it is on the side it will be 2131 // stored. 2132 SmallVector<int, 4> Mask(NumDstElts); 2133 for (unsigned i = 0; i != NumSrcElts; ++i) 2134 Mask[getAccessedFieldNo(i, Elts)] = i; 2135 2136 Vec = Builder.CreateShuffleVector( 2137 SrcVal, llvm::UndefValue::get(Vec->getType()), Mask); 2138 } else if (NumDstElts > NumSrcElts) { 2139 // Extended the source vector to the same length and then shuffle it 2140 // into the destination. 2141 // FIXME: since we're shuffling with undef, can we just use the indices 2142 // into that? This could be simpler. 2143 SmallVector<int, 4> ExtMask; 2144 for (unsigned i = 0; i != NumSrcElts; ++i) 2145 ExtMask.push_back(i); 2146 ExtMask.resize(NumDstElts, -1); 2147 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector( 2148 SrcVal, llvm::UndefValue::get(SrcVal->getType()), ExtMask); 2149 // build identity 2150 SmallVector<int, 4> Mask; 2151 for (unsigned i = 0; i != NumDstElts; ++i) 2152 Mask.push_back(i); 2153 2154 // When the vector size is odd and .odd or .hi is used, the last element 2155 // of the Elts constant array will be one past the size of the vector. 2156 // Ignore the last element here, if it is greater than the mask size. 2157 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2158 NumSrcElts--; 2159 2160 // modify when what gets shuffled in 2161 for (unsigned i = 0; i != NumSrcElts; ++i) 2162 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts; 2163 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask); 2164 } else { 2165 // We should never shorten the vector 2166 llvm_unreachable("unexpected shorten vector length"); 2167 } 2168 } else { 2169 // If the Src is a scalar (not a vector) it must be updating one element. 2170 unsigned InIdx = getAccessedFieldNo(0, Elts); 2171 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2172 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2173 } 2174 2175 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2176 Dst.isVolatileQualified()); 2177 } 2178 2179 /// Store of global named registers are always calls to intrinsics. 2180 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2181 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2182 "Bad type for register variable"); 2183 llvm::MDNode *RegName = cast<llvm::MDNode>( 2184 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2185 assert(RegName && "Register LValue is not metadata"); 2186 2187 // We accept integer and pointer types only 2188 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2189 llvm::Type *Ty = OrigTy; 2190 if (OrigTy->isPointerTy()) 2191 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2192 llvm::Type *Types[] = { Ty }; 2193 2194 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2195 llvm::Value *Value = Src.getScalarVal(); 2196 if (OrigTy->isPointerTy()) 2197 Value = Builder.CreatePtrToInt(Value, Ty); 2198 Builder.CreateCall( 2199 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2200 } 2201 2202 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2203 // generating write-barries API. It is currently a global, ivar, 2204 // or neither. 2205 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2206 LValue &LV, 2207 bool IsMemberAccess=false) { 2208 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2209 return; 2210 2211 if (isa<ObjCIvarRefExpr>(E)) { 2212 QualType ExpTy = E->getType(); 2213 if (IsMemberAccess && ExpTy->isPointerType()) { 2214 // If ivar is a structure pointer, assigning to field of 2215 // this struct follows gcc's behavior and makes it a non-ivar 2216 // writer-barrier conservatively. 2217 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2218 if (ExpTy->isRecordType()) { 2219 LV.setObjCIvar(false); 2220 return; 2221 } 2222 } 2223 LV.setObjCIvar(true); 2224 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2225 LV.setBaseIvarExp(Exp->getBase()); 2226 LV.setObjCArray(E->getType()->isArrayType()); 2227 return; 2228 } 2229 2230 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2231 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2232 if (VD->hasGlobalStorage()) { 2233 LV.setGlobalObjCRef(true); 2234 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2235 } 2236 } 2237 LV.setObjCArray(E->getType()->isArrayType()); 2238 return; 2239 } 2240 2241 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2242 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2243 return; 2244 } 2245 2246 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2247 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2248 if (LV.isObjCIvar()) { 2249 // If cast is to a structure pointer, follow gcc's behavior and make it 2250 // a non-ivar write-barrier. 2251 QualType ExpTy = E->getType(); 2252 if (ExpTy->isPointerType()) 2253 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2254 if (ExpTy->isRecordType()) 2255 LV.setObjCIvar(false); 2256 } 2257 return; 2258 } 2259 2260 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2261 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2262 return; 2263 } 2264 2265 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2266 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2267 return; 2268 } 2269 2270 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2271 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2272 return; 2273 } 2274 2275 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2276 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2277 return; 2278 } 2279 2280 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2281 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2282 if (LV.isObjCIvar() && !LV.isObjCArray()) 2283 // Using array syntax to assigning to what an ivar points to is not 2284 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2285 LV.setObjCIvar(false); 2286 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2287 // Using array syntax to assigning to what global points to is not 2288 // same as assigning to the global itself. {id *G;} G[i] = 0; 2289 LV.setGlobalObjCRef(false); 2290 return; 2291 } 2292 2293 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2294 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2295 // We don't know if member is an 'ivar', but this flag is looked at 2296 // only in the context of LV.isObjCIvar(). 2297 LV.setObjCArray(E->getType()->isArrayType()); 2298 return; 2299 } 2300 } 2301 2302 static llvm::Value * 2303 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2304 llvm::Value *V, llvm::Type *IRType, 2305 StringRef Name = StringRef()) { 2306 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2307 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2308 } 2309 2310 static LValue EmitThreadPrivateVarDeclLValue( 2311 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2312 llvm::Type *RealVarTy, SourceLocation Loc) { 2313 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2314 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2315 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2316 } 2317 2318 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2319 const VarDecl *VD, QualType T) { 2320 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2321 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2322 // Return an invalid address if variable is MT_To and unified 2323 // memory is not enabled. For all other cases: MT_Link and 2324 // MT_To with unified memory, return a valid address. 2325 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2326 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2327 return Address::invalid(); 2328 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2329 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2330 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2331 "Expected link clause OR to clause with unified memory enabled."); 2332 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2333 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2334 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2335 } 2336 2337 Address 2338 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2339 LValueBaseInfo *PointeeBaseInfo, 2340 TBAAAccessInfo *PointeeTBAAInfo) { 2341 llvm::LoadInst *Load = 2342 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2343 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2344 2345 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2346 PointeeBaseInfo, PointeeTBAAInfo, 2347 /* forPointeeType= */ true); 2348 return Address(Load, Align); 2349 } 2350 2351 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2352 LValueBaseInfo PointeeBaseInfo; 2353 TBAAAccessInfo PointeeTBAAInfo; 2354 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2355 &PointeeTBAAInfo); 2356 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2357 PointeeBaseInfo, PointeeTBAAInfo); 2358 } 2359 2360 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2361 const PointerType *PtrTy, 2362 LValueBaseInfo *BaseInfo, 2363 TBAAAccessInfo *TBAAInfo) { 2364 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2365 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2366 BaseInfo, TBAAInfo, 2367 /*forPointeeType=*/true)); 2368 } 2369 2370 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2371 const PointerType *PtrTy) { 2372 LValueBaseInfo BaseInfo; 2373 TBAAAccessInfo TBAAInfo; 2374 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2375 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2376 } 2377 2378 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2379 const Expr *E, const VarDecl *VD) { 2380 QualType T = E->getType(); 2381 2382 // If it's thread_local, emit a call to its wrapper function instead. 2383 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2384 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2385 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2386 // Check if the variable is marked as declare target with link clause in 2387 // device codegen. 2388 if (CGF.getLangOpts().OpenMPIsDevice) { 2389 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2390 if (Addr.isValid()) 2391 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2392 } 2393 2394 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2395 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2396 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2397 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2398 Address Addr(V, Alignment); 2399 // Emit reference to the private copy of the variable if it is an OpenMP 2400 // threadprivate variable. 2401 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2402 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2403 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2404 E->getExprLoc()); 2405 } 2406 LValue LV = VD->getType()->isReferenceType() ? 2407 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2408 AlignmentSource::Decl) : 2409 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2410 setObjCGCLValueClass(CGF.getContext(), E, LV); 2411 return LV; 2412 } 2413 2414 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2415 GlobalDecl GD) { 2416 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2417 if (FD->hasAttr<WeakRefAttr>()) { 2418 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2419 return aliasee.getPointer(); 2420 } 2421 2422 llvm::Constant *V = CGM.GetAddrOfFunction(GD); 2423 if (!FD->hasPrototype()) { 2424 if (const FunctionProtoType *Proto = 2425 FD->getType()->getAs<FunctionProtoType>()) { 2426 // Ugly case: for a K&R-style definition, the type of the definition 2427 // isn't the same as the type of a use. Correct for this with a 2428 // bitcast. 2429 QualType NoProtoType = 2430 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2431 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2432 V = llvm::ConstantExpr::getBitCast(V, 2433 CGM.getTypes().ConvertType(NoProtoType)); 2434 } 2435 } 2436 return V; 2437 } 2438 2439 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, 2440 GlobalDecl GD) { 2441 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2442 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD); 2443 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2444 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2445 AlignmentSource::Decl); 2446 } 2447 2448 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2449 llvm::Value *ThisValue) { 2450 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2451 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2452 return CGF.EmitLValueForField(LV, FD); 2453 } 2454 2455 /// Named Registers are named metadata pointing to the register name 2456 /// which will be read from/written to as an argument to the intrinsic 2457 /// @llvm.read/write_register. 2458 /// So far, only the name is being passed down, but other options such as 2459 /// register type, allocation type or even optimization options could be 2460 /// passed down via the metadata node. 2461 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2462 SmallString<64> Name("llvm.named.register."); 2463 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2464 assert(Asm->getLabel().size() < 64-Name.size() && 2465 "Register name too big"); 2466 Name.append(Asm->getLabel()); 2467 llvm::NamedMDNode *M = 2468 CGM.getModule().getOrInsertNamedMetadata(Name); 2469 if (M->getNumOperands() == 0) { 2470 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2471 Asm->getLabel()); 2472 llvm::Metadata *Ops[] = {Str}; 2473 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2474 } 2475 2476 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2477 2478 llvm::Value *Ptr = 2479 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2480 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2481 } 2482 2483 /// Determine whether we can emit a reference to \p VD from the current 2484 /// context, despite not necessarily having seen an odr-use of the variable in 2485 /// this context. 2486 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2487 const DeclRefExpr *E, 2488 const VarDecl *VD, 2489 bool IsConstant) { 2490 // For a variable declared in an enclosing scope, do not emit a spurious 2491 // reference even if we have a capture, as that will emit an unwarranted 2492 // reference to our capture state, and will likely generate worse code than 2493 // emitting a local copy. 2494 if (E->refersToEnclosingVariableOrCapture()) 2495 return false; 2496 2497 // For a local declaration declared in this function, we can always reference 2498 // it even if we don't have an odr-use. 2499 if (VD->hasLocalStorage()) { 2500 return VD->getDeclContext() == 2501 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2502 } 2503 2504 // For a global declaration, we can emit a reference to it if we know 2505 // for sure that we are able to emit a definition of it. 2506 VD = VD->getDefinition(CGF.getContext()); 2507 if (!VD) 2508 return false; 2509 2510 // Don't emit a spurious reference if it might be to a variable that only 2511 // exists on a different device / target. 2512 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2513 // cross-target reference. 2514 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2515 CGF.getLangOpts().OpenCL) { 2516 return false; 2517 } 2518 2519 // We can emit a spurious reference only if the linkage implies that we'll 2520 // be emitting a non-interposable symbol that will be retained until link 2521 // time. 2522 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2523 case llvm::GlobalValue::ExternalLinkage: 2524 case llvm::GlobalValue::LinkOnceODRLinkage: 2525 case llvm::GlobalValue::WeakODRLinkage: 2526 case llvm::GlobalValue::InternalLinkage: 2527 case llvm::GlobalValue::PrivateLinkage: 2528 return true; 2529 default: 2530 return false; 2531 } 2532 } 2533 2534 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2535 const NamedDecl *ND = E->getDecl(); 2536 QualType T = E->getType(); 2537 2538 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2539 "should not emit an unevaluated operand"); 2540 2541 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2542 // Global Named registers access via intrinsics only 2543 if (VD->getStorageClass() == SC_Register && 2544 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2545 return EmitGlobalNamedRegister(VD, CGM); 2546 2547 // If this DeclRefExpr does not constitute an odr-use of the variable, 2548 // we're not permitted to emit a reference to it in general, and it might 2549 // not be captured if capture would be necessary for a use. Emit the 2550 // constant value directly instead. 2551 if (E->isNonOdrUse() == NOUR_Constant && 2552 (VD->getType()->isReferenceType() || 2553 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2554 VD->getAnyInitializer(VD); 2555 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2556 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2557 assert(Val && "failed to emit constant expression"); 2558 2559 Address Addr = Address::invalid(); 2560 if (!VD->getType()->isReferenceType()) { 2561 // Spill the constant value to a global. 2562 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2563 getContext().getDeclAlign(VD)); 2564 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2565 auto *PTy = llvm::PointerType::get( 2566 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2567 if (PTy != Addr.getType()) 2568 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); 2569 } else { 2570 // Should we be using the alignment of the constant pointer we emitted? 2571 CharUnits Alignment = 2572 getNaturalTypeAlignment(E->getType(), 2573 /* BaseInfo= */ nullptr, 2574 /* TBAAInfo= */ nullptr, 2575 /* forPointeeType= */ true); 2576 Addr = Address(Val, Alignment); 2577 } 2578 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2579 } 2580 2581 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2582 2583 // Check for captured variables. 2584 if (E->refersToEnclosingVariableOrCapture()) { 2585 VD = VD->getCanonicalDecl(); 2586 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2587 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2588 if (CapturedStmtInfo) { 2589 auto I = LocalDeclMap.find(VD); 2590 if (I != LocalDeclMap.end()) { 2591 LValue CapLVal; 2592 if (VD->getType()->isReferenceType()) 2593 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2594 AlignmentSource::Decl); 2595 else 2596 CapLVal = MakeAddrLValue(I->second, T); 2597 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2598 // in simd context. 2599 if (getLangOpts().OpenMP && 2600 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2601 CapLVal.setNontemporal(/*Value=*/true); 2602 return CapLVal; 2603 } 2604 LValue CapLVal = 2605 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2606 CapturedStmtInfo->getContextValue()); 2607 CapLVal = MakeAddrLValue( 2608 Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)), 2609 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2610 CapLVal.getTBAAInfo()); 2611 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2612 // in simd context. 2613 if (getLangOpts().OpenMP && 2614 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2615 CapLVal.setNontemporal(/*Value=*/true); 2616 return CapLVal; 2617 } 2618 2619 assert(isa<BlockDecl>(CurCodeDecl)); 2620 Address addr = GetAddrOfBlockDecl(VD); 2621 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2622 } 2623 } 2624 2625 // FIXME: We should be able to assert this for FunctionDecls as well! 2626 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2627 // those with a valid source location. 2628 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2629 !E->getLocation().isValid()) && 2630 "Should not use decl without marking it used!"); 2631 2632 if (ND->hasAttr<WeakRefAttr>()) { 2633 const auto *VD = cast<ValueDecl>(ND); 2634 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2635 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2636 } 2637 2638 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2639 // Check if this is a global variable. 2640 if (VD->hasLinkage() || VD->isStaticDataMember()) 2641 return EmitGlobalVarDeclLValue(*this, E, VD); 2642 2643 Address addr = Address::invalid(); 2644 2645 // The variable should generally be present in the local decl map. 2646 auto iter = LocalDeclMap.find(VD); 2647 if (iter != LocalDeclMap.end()) { 2648 addr = iter->second; 2649 2650 // Otherwise, it might be static local we haven't emitted yet for 2651 // some reason; most likely, because it's in an outer function. 2652 } else if (VD->isStaticLocal()) { 2653 addr = Address(CGM.getOrCreateStaticVarDecl( 2654 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)), 2655 getContext().getDeclAlign(VD)); 2656 2657 // No other cases for now. 2658 } else { 2659 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2660 } 2661 2662 2663 // Check for OpenMP threadprivate variables. 2664 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2665 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2666 return EmitThreadPrivateVarDeclLValue( 2667 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2668 E->getExprLoc()); 2669 } 2670 2671 // Drill into block byref variables. 2672 bool isBlockByref = VD->isEscapingByref(); 2673 if (isBlockByref) { 2674 addr = emitBlockByrefAddress(addr, VD); 2675 } 2676 2677 // Drill into reference types. 2678 LValue LV = VD->getType()->isReferenceType() ? 2679 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2680 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2681 2682 bool isLocalStorage = VD->hasLocalStorage(); 2683 2684 bool NonGCable = isLocalStorage && 2685 !VD->getType()->isReferenceType() && 2686 !isBlockByref; 2687 if (NonGCable) { 2688 LV.getQuals().removeObjCGCAttr(); 2689 LV.setNonGC(true); 2690 } 2691 2692 bool isImpreciseLifetime = 2693 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2694 if (isImpreciseLifetime) 2695 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2696 setObjCGCLValueClass(getContext(), E, LV); 2697 return LV; 2698 } 2699 2700 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2701 return EmitFunctionDeclLValue(*this, E, FD); 2702 2703 // FIXME: While we're emitting a binding from an enclosing scope, all other 2704 // DeclRefExprs we see should be implicitly treated as if they also refer to 2705 // an enclosing scope. 2706 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2707 return EmitLValue(BD->getBinding()); 2708 2709 llvm_unreachable("Unhandled DeclRefExpr"); 2710 } 2711 2712 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2713 // __extension__ doesn't affect lvalue-ness. 2714 if (E->getOpcode() == UO_Extension) 2715 return EmitLValue(E->getSubExpr()); 2716 2717 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2718 switch (E->getOpcode()) { 2719 default: llvm_unreachable("Unknown unary operator lvalue!"); 2720 case UO_Deref: { 2721 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2722 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2723 2724 LValueBaseInfo BaseInfo; 2725 TBAAAccessInfo TBAAInfo; 2726 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2727 &TBAAInfo); 2728 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2729 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2730 2731 // We should not generate __weak write barrier on indirect reference 2732 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2733 // But, we continue to generate __strong write barrier on indirect write 2734 // into a pointer to object. 2735 if (getLangOpts().ObjC && 2736 getLangOpts().getGC() != LangOptions::NonGC && 2737 LV.isObjCWeak()) 2738 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2739 return LV; 2740 } 2741 case UO_Real: 2742 case UO_Imag: { 2743 LValue LV = EmitLValue(E->getSubExpr()); 2744 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2745 2746 // __real is valid on scalars. This is a faster way of testing that. 2747 // __imag can only produce an rvalue on scalars. 2748 if (E->getOpcode() == UO_Real && 2749 !LV.getAddress(*this).getElementType()->isStructTy()) { 2750 assert(E->getSubExpr()->getType()->isArithmeticType()); 2751 return LV; 2752 } 2753 2754 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2755 2756 Address Component = 2757 (E->getOpcode() == UO_Real 2758 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2759 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2760 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2761 CGM.getTBAAInfoForSubobject(LV, T)); 2762 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2763 return ElemLV; 2764 } 2765 case UO_PreInc: 2766 case UO_PreDec: { 2767 LValue LV = EmitLValue(E->getSubExpr()); 2768 bool isInc = E->getOpcode() == UO_PreInc; 2769 2770 if (E->getType()->isAnyComplexType()) 2771 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2772 else 2773 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2774 return LV; 2775 } 2776 } 2777 } 2778 2779 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2780 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2781 E->getType(), AlignmentSource::Decl); 2782 } 2783 2784 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2785 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2786 E->getType(), AlignmentSource::Decl); 2787 } 2788 2789 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2790 auto SL = E->getFunctionName(); 2791 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2792 StringRef FnName = CurFn->getName(); 2793 if (FnName.startswith("\01")) 2794 FnName = FnName.substr(1); 2795 StringRef NameItems[] = { 2796 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2797 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2798 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2799 std::string Name = std::string(SL->getString()); 2800 if (!Name.empty()) { 2801 unsigned Discriminator = 2802 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2803 if (Discriminator) 2804 Name += "_" + Twine(Discriminator + 1).str(); 2805 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2806 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2807 } else { 2808 auto C = 2809 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 2810 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2811 } 2812 } 2813 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2814 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2815 } 2816 2817 /// Emit a type description suitable for use by a runtime sanitizer library. The 2818 /// format of a type descriptor is 2819 /// 2820 /// \code 2821 /// { i16 TypeKind, i16 TypeInfo } 2822 /// \endcode 2823 /// 2824 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2825 /// integer, 1 for a floating point value, and -1 for anything else. 2826 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2827 // Only emit each type's descriptor once. 2828 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2829 return C; 2830 2831 uint16_t TypeKind = -1; 2832 uint16_t TypeInfo = 0; 2833 2834 if (T->isIntegerType()) { 2835 TypeKind = 0; 2836 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2837 (T->isSignedIntegerType() ? 1 : 0); 2838 } else if (T->isFloatingType()) { 2839 TypeKind = 1; 2840 TypeInfo = getContext().getTypeSize(T); 2841 } 2842 2843 // Format the type name as if for a diagnostic, including quotes and 2844 // optionally an 'aka'. 2845 SmallString<32> Buffer; 2846 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2847 (intptr_t)T.getAsOpaquePtr(), 2848 StringRef(), StringRef(), None, Buffer, 2849 None); 2850 2851 llvm::Constant *Components[] = { 2852 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2853 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2854 }; 2855 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2856 2857 auto *GV = new llvm::GlobalVariable( 2858 CGM.getModule(), Descriptor->getType(), 2859 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2860 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2861 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2862 2863 // Remember the descriptor for this type. 2864 CGM.setTypeDescriptorInMap(T, GV); 2865 2866 return GV; 2867 } 2868 2869 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2870 llvm::Type *TargetTy = IntPtrTy; 2871 2872 if (V->getType() == TargetTy) 2873 return V; 2874 2875 // Floating-point types which fit into intptr_t are bitcast to integers 2876 // and then passed directly (after zero-extension, if necessary). 2877 if (V->getType()->isFloatingPointTy()) { 2878 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2879 if (Bits <= TargetTy->getIntegerBitWidth()) 2880 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2881 Bits)); 2882 } 2883 2884 // Integers which fit in intptr_t are zero-extended and passed directly. 2885 if (V->getType()->isIntegerTy() && 2886 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2887 return Builder.CreateZExt(V, TargetTy); 2888 2889 // Pointers are passed directly, everything else is passed by address. 2890 if (!V->getType()->isPointerTy()) { 2891 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2892 Builder.CreateStore(V, Ptr); 2893 V = Ptr.getPointer(); 2894 } 2895 return Builder.CreatePtrToInt(V, TargetTy); 2896 } 2897 2898 /// Emit a representation of a SourceLocation for passing to a handler 2899 /// in a sanitizer runtime library. The format for this data is: 2900 /// \code 2901 /// struct SourceLocation { 2902 /// const char *Filename; 2903 /// int32_t Line, Column; 2904 /// }; 2905 /// \endcode 2906 /// For an invalid SourceLocation, the Filename pointer is null. 2907 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2908 llvm::Constant *Filename; 2909 int Line, Column; 2910 2911 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2912 if (PLoc.isValid()) { 2913 StringRef FilenameString = PLoc.getFilename(); 2914 2915 int PathComponentsToStrip = 2916 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2917 if (PathComponentsToStrip < 0) { 2918 assert(PathComponentsToStrip != INT_MIN); 2919 int PathComponentsToKeep = -PathComponentsToStrip; 2920 auto I = llvm::sys::path::rbegin(FilenameString); 2921 auto E = llvm::sys::path::rend(FilenameString); 2922 while (I != E && --PathComponentsToKeep) 2923 ++I; 2924 2925 FilenameString = FilenameString.substr(I - E); 2926 } else if (PathComponentsToStrip > 0) { 2927 auto I = llvm::sys::path::begin(FilenameString); 2928 auto E = llvm::sys::path::end(FilenameString); 2929 while (I != E && PathComponentsToStrip--) 2930 ++I; 2931 2932 if (I != E) 2933 FilenameString = 2934 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2935 else 2936 FilenameString = llvm::sys::path::filename(FilenameString); 2937 } 2938 2939 auto FilenameGV = 2940 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 2941 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2942 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2943 Filename = FilenameGV.getPointer(); 2944 Line = PLoc.getLine(); 2945 Column = PLoc.getColumn(); 2946 } else { 2947 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2948 Line = Column = 0; 2949 } 2950 2951 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2952 Builder.getInt32(Column)}; 2953 2954 return llvm::ConstantStruct::getAnon(Data); 2955 } 2956 2957 namespace { 2958 /// Specify under what conditions this check can be recovered 2959 enum class CheckRecoverableKind { 2960 /// Always terminate program execution if this check fails. 2961 Unrecoverable, 2962 /// Check supports recovering, runtime has both fatal (noreturn) and 2963 /// non-fatal handlers for this check. 2964 Recoverable, 2965 /// Runtime conditionally aborts, always need to support recovery. 2966 AlwaysRecoverable 2967 }; 2968 } 2969 2970 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2971 assert(Kind.countPopulation() == 1); 2972 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 2973 return CheckRecoverableKind::AlwaysRecoverable; 2974 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 2975 return CheckRecoverableKind::Unrecoverable; 2976 else 2977 return CheckRecoverableKind::Recoverable; 2978 } 2979 2980 namespace { 2981 struct SanitizerHandlerInfo { 2982 char const *const Name; 2983 unsigned Version; 2984 }; 2985 } 2986 2987 const SanitizerHandlerInfo SanitizerHandlers[] = { 2988 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2989 LIST_SANITIZER_CHECKS 2990 #undef SANITIZER_CHECK 2991 }; 2992 2993 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2994 llvm::FunctionType *FnType, 2995 ArrayRef<llvm::Value *> FnArgs, 2996 SanitizerHandler CheckHandler, 2997 CheckRecoverableKind RecoverKind, bool IsFatal, 2998 llvm::BasicBlock *ContBB) { 2999 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 3000 Optional<ApplyDebugLocation> DL; 3001 if (!CGF.Builder.getCurrentDebugLocation()) { 3002 // Ensure that the call has at least an artificial debug location. 3003 DL.emplace(CGF, SourceLocation()); 3004 } 3005 bool NeedsAbortSuffix = 3006 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3007 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3008 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3009 const StringRef CheckName = CheckInfo.Name; 3010 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3011 if (CheckInfo.Version && !MinimalRuntime) 3012 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3013 if (MinimalRuntime) 3014 FnName += "_minimal"; 3015 if (NeedsAbortSuffix) 3016 FnName += "_abort"; 3017 bool MayReturn = 3018 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3019 3020 llvm::AttrBuilder B; 3021 if (!MayReturn) { 3022 B.addAttribute(llvm::Attribute::NoReturn) 3023 .addAttribute(llvm::Attribute::NoUnwind); 3024 } 3025 B.addAttribute(llvm::Attribute::UWTable); 3026 3027 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3028 FnType, FnName, 3029 llvm::AttributeList::get(CGF.getLLVMContext(), 3030 llvm::AttributeList::FunctionIndex, B), 3031 /*Local=*/true); 3032 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3033 if (!MayReturn) { 3034 HandlerCall->setDoesNotReturn(); 3035 CGF.Builder.CreateUnreachable(); 3036 } else { 3037 CGF.Builder.CreateBr(ContBB); 3038 } 3039 } 3040 3041 void CodeGenFunction::EmitCheck( 3042 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3043 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3044 ArrayRef<llvm::Value *> DynamicArgs) { 3045 assert(IsSanitizerScope); 3046 assert(Checked.size() > 0); 3047 assert(CheckHandler >= 0 && 3048 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3049 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3050 3051 llvm::Value *FatalCond = nullptr; 3052 llvm::Value *RecoverableCond = nullptr; 3053 llvm::Value *TrapCond = nullptr; 3054 for (int i = 0, n = Checked.size(); i < n; ++i) { 3055 llvm::Value *Check = Checked[i].first; 3056 // -fsanitize-trap= overrides -fsanitize-recover=. 3057 llvm::Value *&Cond = 3058 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3059 ? TrapCond 3060 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3061 ? RecoverableCond 3062 : FatalCond; 3063 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3064 } 3065 3066 if (TrapCond) 3067 EmitTrapCheck(TrapCond); 3068 if (!FatalCond && !RecoverableCond) 3069 return; 3070 3071 llvm::Value *JointCond; 3072 if (FatalCond && RecoverableCond) 3073 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3074 else 3075 JointCond = FatalCond ? FatalCond : RecoverableCond; 3076 assert(JointCond); 3077 3078 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3079 assert(SanOpts.has(Checked[0].second)); 3080 #ifndef NDEBUG 3081 for (int i = 1, n = Checked.size(); i < n; ++i) { 3082 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3083 "All recoverable kinds in a single check must be same!"); 3084 assert(SanOpts.has(Checked[i].second)); 3085 } 3086 #endif 3087 3088 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3089 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3090 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3091 // Give hint that we very much don't expect to execute the handler 3092 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3093 llvm::MDBuilder MDHelper(getLLVMContext()); 3094 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3095 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3096 EmitBlock(Handlers); 3097 3098 // Handler functions take an i8* pointing to the (handler-specific) static 3099 // information block, followed by a sequence of intptr_t arguments 3100 // representing operand values. 3101 SmallVector<llvm::Value *, 4> Args; 3102 SmallVector<llvm::Type *, 4> ArgTypes; 3103 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3104 Args.reserve(DynamicArgs.size() + 1); 3105 ArgTypes.reserve(DynamicArgs.size() + 1); 3106 3107 // Emit handler arguments and create handler function type. 3108 if (!StaticArgs.empty()) { 3109 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3110 auto *InfoPtr = 3111 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3112 llvm::GlobalVariable::PrivateLinkage, Info); 3113 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3114 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3115 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3116 ArgTypes.push_back(Int8PtrTy); 3117 } 3118 3119 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3120 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3121 ArgTypes.push_back(IntPtrTy); 3122 } 3123 } 3124 3125 llvm::FunctionType *FnType = 3126 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3127 3128 if (!FatalCond || !RecoverableCond) { 3129 // Simple case: we need to generate a single handler call, either 3130 // fatal, or non-fatal. 3131 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3132 (FatalCond != nullptr), Cont); 3133 } else { 3134 // Emit two handler calls: first one for set of unrecoverable checks, 3135 // another one for recoverable. 3136 llvm::BasicBlock *NonFatalHandlerBB = 3137 createBasicBlock("non_fatal." + CheckName); 3138 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3139 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3140 EmitBlock(FatalHandlerBB); 3141 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3142 NonFatalHandlerBB); 3143 EmitBlock(NonFatalHandlerBB); 3144 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3145 Cont); 3146 } 3147 3148 EmitBlock(Cont); 3149 } 3150 3151 void CodeGenFunction::EmitCfiSlowPathCheck( 3152 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3153 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3154 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3155 3156 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3157 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3158 3159 llvm::MDBuilder MDHelper(getLLVMContext()); 3160 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3161 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3162 3163 EmitBlock(CheckBB); 3164 3165 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3166 3167 llvm::CallInst *CheckCall; 3168 llvm::FunctionCallee SlowPathFn; 3169 if (WithDiag) { 3170 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3171 auto *InfoPtr = 3172 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3173 llvm::GlobalVariable::PrivateLinkage, Info); 3174 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3175 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3176 3177 SlowPathFn = CGM.getModule().getOrInsertFunction( 3178 "__cfi_slowpath_diag", 3179 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3180 false)); 3181 CheckCall = Builder.CreateCall( 3182 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3183 } else { 3184 SlowPathFn = CGM.getModule().getOrInsertFunction( 3185 "__cfi_slowpath", 3186 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3187 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3188 } 3189 3190 CGM.setDSOLocal( 3191 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3192 CheckCall->setDoesNotThrow(); 3193 3194 EmitBlock(Cont); 3195 } 3196 3197 // Emit a stub for __cfi_check function so that the linker knows about this 3198 // symbol in LTO mode. 3199 void CodeGenFunction::EmitCfiCheckStub() { 3200 llvm::Module *M = &CGM.getModule(); 3201 auto &Ctx = M->getContext(); 3202 llvm::Function *F = llvm::Function::Create( 3203 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3204 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3205 CGM.setDSOLocal(F); 3206 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3207 // FIXME: consider emitting an intrinsic call like 3208 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3209 // which can be lowered in CrossDSOCFI pass to the actual contents of 3210 // __cfi_check. This would allow inlining of __cfi_check calls. 3211 llvm::CallInst::Create( 3212 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3213 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3214 } 3215 3216 // This function is basically a switch over the CFI failure kind, which is 3217 // extracted from CFICheckFailData (1st function argument). Each case is either 3218 // llvm.trap or a call to one of the two runtime handlers, based on 3219 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3220 // failure kind) traps, but this should really never happen. CFICheckFailData 3221 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3222 // check kind; in this case __cfi_check_fail traps as well. 3223 void CodeGenFunction::EmitCfiCheckFail() { 3224 SanitizerScope SanScope(this); 3225 FunctionArgList Args; 3226 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3227 ImplicitParamDecl::Other); 3228 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3229 ImplicitParamDecl::Other); 3230 Args.push_back(&ArgData); 3231 Args.push_back(&ArgAddr); 3232 3233 const CGFunctionInfo &FI = 3234 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3235 3236 llvm::Function *F = llvm::Function::Create( 3237 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3238 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3239 3240 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F); 3241 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3242 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3243 3244 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3245 SourceLocation()); 3246 3247 // This function should not be affected by blacklist. This function does 3248 // not have a source location, but "src:*" would still apply. Revert any 3249 // changes to SanOpts made in StartFunction. 3250 SanOpts = CGM.getLangOpts().Sanitize; 3251 3252 llvm::Value *Data = 3253 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3254 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3255 llvm::Value *Addr = 3256 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3257 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3258 3259 // Data == nullptr means the calling module has trap behaviour for this check. 3260 llvm::Value *DataIsNotNullPtr = 3261 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3262 EmitTrapCheck(DataIsNotNullPtr); 3263 3264 llvm::StructType *SourceLocationTy = 3265 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3266 llvm::StructType *CfiCheckFailDataTy = 3267 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3268 3269 llvm::Value *V = Builder.CreateConstGEP2_32( 3270 CfiCheckFailDataTy, 3271 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3272 0); 3273 Address CheckKindAddr(V, getIntAlign()); 3274 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3275 3276 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3277 CGM.getLLVMContext(), 3278 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3279 llvm::Value *ValidVtable = Builder.CreateZExt( 3280 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3281 {Addr, AllVtables}), 3282 IntPtrTy); 3283 3284 const std::pair<int, SanitizerMask> CheckKinds[] = { 3285 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3286 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3287 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3288 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3289 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3290 3291 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3292 for (auto CheckKindMaskPair : CheckKinds) { 3293 int Kind = CheckKindMaskPair.first; 3294 SanitizerMask Mask = CheckKindMaskPair.second; 3295 llvm::Value *Cond = 3296 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3297 if (CGM.getLangOpts().Sanitize.has(Mask)) 3298 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3299 {Data, Addr, ValidVtable}); 3300 else 3301 EmitTrapCheck(Cond); 3302 } 3303 3304 FinishFunction(); 3305 // The only reference to this function will be created during LTO link. 3306 // Make sure it survives until then. 3307 CGM.addUsedGlobal(F); 3308 } 3309 3310 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3311 if (SanOpts.has(SanitizerKind::Unreachable)) { 3312 SanitizerScope SanScope(this); 3313 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3314 SanitizerKind::Unreachable), 3315 SanitizerHandler::BuiltinUnreachable, 3316 EmitCheckSourceLocation(Loc), None); 3317 } 3318 Builder.CreateUnreachable(); 3319 } 3320 3321 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3322 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3323 3324 // If we're optimizing, collapse all calls to trap down to just one per 3325 // function to save on code size. 3326 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3327 TrapBB = createBasicBlock("trap"); 3328 Builder.CreateCondBr(Checked, Cont, TrapBB); 3329 EmitBlock(TrapBB); 3330 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3331 TrapCall->setDoesNotReturn(); 3332 TrapCall->setDoesNotThrow(); 3333 Builder.CreateUnreachable(); 3334 } else { 3335 Builder.CreateCondBr(Checked, Cont, TrapBB); 3336 } 3337 3338 EmitBlock(Cont); 3339 } 3340 3341 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3342 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3343 3344 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3345 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3346 CGM.getCodeGenOpts().TrapFuncName); 3347 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3348 } 3349 3350 return TrapCall; 3351 } 3352 3353 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3354 LValueBaseInfo *BaseInfo, 3355 TBAAAccessInfo *TBAAInfo) { 3356 assert(E->getType()->isArrayType() && 3357 "Array to pointer decay must have array source type!"); 3358 3359 // Expressions of array type can't be bitfields or vector elements. 3360 LValue LV = EmitLValue(E); 3361 Address Addr = LV.getAddress(*this); 3362 3363 // If the array type was an incomplete type, we need to make sure 3364 // the decay ends up being the right type. 3365 llvm::Type *NewTy = ConvertType(E->getType()); 3366 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3367 3368 // Note that VLA pointers are always decayed, so we don't need to do 3369 // anything here. 3370 if (!E->getType()->isVariableArrayType()) { 3371 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3372 "Expected pointer to array"); 3373 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3374 } 3375 3376 // The result of this decay conversion points to an array element within the 3377 // base lvalue. However, since TBAA currently does not support representing 3378 // accesses to elements of member arrays, we conservatively represent accesses 3379 // to the pointee object as if it had no any base lvalue specified. 3380 // TODO: Support TBAA for member arrays. 3381 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3382 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3383 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3384 3385 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3386 } 3387 3388 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3389 /// array to pointer, return the array subexpression. 3390 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3391 // If this isn't just an array->pointer decay, bail out. 3392 const auto *CE = dyn_cast<CastExpr>(E); 3393 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3394 return nullptr; 3395 3396 // If this is a decay from variable width array, bail out. 3397 const Expr *SubExpr = CE->getSubExpr(); 3398 if (SubExpr->getType()->isVariableArrayType()) 3399 return nullptr; 3400 3401 return SubExpr; 3402 } 3403 3404 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3405 llvm::Value *ptr, 3406 ArrayRef<llvm::Value*> indices, 3407 bool inbounds, 3408 bool signedIndices, 3409 SourceLocation loc, 3410 const llvm::Twine &name = "arrayidx") { 3411 if (inbounds) { 3412 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3413 CodeGenFunction::NotSubtraction, loc, 3414 name); 3415 } else { 3416 return CGF.Builder.CreateGEP(ptr, indices, name); 3417 } 3418 } 3419 3420 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3421 llvm::Value *idx, 3422 CharUnits eltSize) { 3423 // If we have a constant index, we can use the exact offset of the 3424 // element we're accessing. 3425 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3426 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3427 return arrayAlign.alignmentAtOffset(offset); 3428 3429 // Otherwise, use the worst-case alignment for any element. 3430 } else { 3431 return arrayAlign.alignmentOfArrayElement(eltSize); 3432 } 3433 } 3434 3435 static QualType getFixedSizeElementType(const ASTContext &ctx, 3436 const VariableArrayType *vla) { 3437 QualType eltType; 3438 do { 3439 eltType = vla->getElementType(); 3440 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3441 return eltType; 3442 } 3443 3444 /// Given an array base, check whether its member access belongs to a record 3445 /// with preserve_access_index attribute or not. 3446 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3447 if (!ArrayBase || !CGF.getDebugInfo()) 3448 return false; 3449 3450 // Only support base as either a MemberExpr or DeclRefExpr. 3451 // DeclRefExpr to cover cases like: 3452 // struct s { int a; int b[10]; }; 3453 // struct s *p; 3454 // p[1].a 3455 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3456 // p->b[5] is a MemberExpr example. 3457 const Expr *E = ArrayBase->IgnoreImpCasts(); 3458 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3459 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3460 3461 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3462 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3463 if (!VarDef) 3464 return false; 3465 3466 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3467 if (!PtrT) 3468 return false; 3469 3470 const auto *PointeeT = PtrT->getPointeeType() 3471 ->getUnqualifiedDesugaredType(); 3472 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3473 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3474 return false; 3475 } 3476 3477 return false; 3478 } 3479 3480 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3481 ArrayRef<llvm::Value *> indices, 3482 QualType eltType, bool inbounds, 3483 bool signedIndices, SourceLocation loc, 3484 QualType *arrayType = nullptr, 3485 const Expr *Base = nullptr, 3486 const llvm::Twine &name = "arrayidx") { 3487 // All the indices except that last must be zero. 3488 #ifndef NDEBUG 3489 for (auto idx : indices.drop_back()) 3490 assert(isa<llvm::ConstantInt>(idx) && 3491 cast<llvm::ConstantInt>(idx)->isZero()); 3492 #endif 3493 3494 // Determine the element size of the statically-sized base. This is 3495 // the thing that the indices are expressed in terms of. 3496 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3497 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3498 } 3499 3500 // We can use that to compute the best alignment of the element. 3501 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3502 CharUnits eltAlign = 3503 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3504 3505 llvm::Value *eltPtr; 3506 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3507 if (!LastIndex || 3508 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3509 eltPtr = emitArraySubscriptGEP( 3510 CGF, addr.getPointer(), indices, inbounds, signedIndices, 3511 loc, name); 3512 } else { 3513 // Remember the original array subscript for bpf target 3514 unsigned idx = LastIndex->getZExtValue(); 3515 llvm::DIType *DbgInfo = nullptr; 3516 if (arrayType) 3517 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3518 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3519 addr.getPointer(), 3520 indices.size() - 1, 3521 idx, DbgInfo); 3522 } 3523 3524 return Address(eltPtr, eltAlign); 3525 } 3526 3527 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3528 bool Accessed) { 3529 // The index must always be an integer, which is not an aggregate. Emit it 3530 // in lexical order (this complexity is, sadly, required by C++17). 3531 llvm::Value *IdxPre = 3532 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3533 bool SignedIndices = false; 3534 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3535 auto *Idx = IdxPre; 3536 if (E->getLHS() != E->getIdx()) { 3537 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3538 Idx = EmitScalarExpr(E->getIdx()); 3539 } 3540 3541 QualType IdxTy = E->getIdx()->getType(); 3542 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3543 SignedIndices |= IdxSigned; 3544 3545 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3546 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3547 3548 // Extend or truncate the index type to 32 or 64-bits. 3549 if (Promote && Idx->getType() != IntPtrTy) 3550 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3551 3552 return Idx; 3553 }; 3554 IdxPre = nullptr; 3555 3556 // If the base is a vector type, then we are forming a vector element lvalue 3557 // with this subscript. 3558 if (E->getBase()->getType()->isVectorType() && 3559 !isa<ExtVectorElementExpr>(E->getBase())) { 3560 // Emit the vector as an lvalue to get its address. 3561 LValue LHS = EmitLValue(E->getBase()); 3562 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3563 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3564 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3565 E->getBase()->getType(), LHS.getBaseInfo(), 3566 TBAAAccessInfo()); 3567 } 3568 3569 // All the other cases basically behave like simple offsetting. 3570 3571 // Handle the extvector case we ignored above. 3572 if (isa<ExtVectorElementExpr>(E->getBase())) { 3573 LValue LV = EmitLValue(E->getBase()); 3574 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3575 Address Addr = EmitExtVectorElementLValue(LV); 3576 3577 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3578 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3579 SignedIndices, E->getExprLoc()); 3580 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3581 CGM.getTBAAInfoForSubobject(LV, EltType)); 3582 } 3583 3584 LValueBaseInfo EltBaseInfo; 3585 TBAAAccessInfo EltTBAAInfo; 3586 Address Addr = Address::invalid(); 3587 if (const VariableArrayType *vla = 3588 getContext().getAsVariableArrayType(E->getType())) { 3589 // The base must be a pointer, which is not an aggregate. Emit 3590 // it. It needs to be emitted first in case it's what captures 3591 // the VLA bounds. 3592 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3593 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3594 3595 // The element count here is the total number of non-VLA elements. 3596 llvm::Value *numElements = getVLASize(vla).NumElts; 3597 3598 // Effectively, the multiply by the VLA size is part of the GEP. 3599 // GEP indexes are signed, and scaling an index isn't permitted to 3600 // signed-overflow, so we use the same semantics for our explicit 3601 // multiply. We suppress this if overflow is not undefined behavior. 3602 if (getLangOpts().isSignedOverflowDefined()) { 3603 Idx = Builder.CreateMul(Idx, numElements); 3604 } else { 3605 Idx = Builder.CreateNSWMul(Idx, numElements); 3606 } 3607 3608 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3609 !getLangOpts().isSignedOverflowDefined(), 3610 SignedIndices, E->getExprLoc()); 3611 3612 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3613 // Indexing over an interface, as in "NSString *P; P[4];" 3614 3615 // Emit the base pointer. 3616 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3617 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3618 3619 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3620 llvm::Value *InterfaceSizeVal = 3621 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3622 3623 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3624 3625 // We don't necessarily build correct LLVM struct types for ObjC 3626 // interfaces, so we can't rely on GEP to do this scaling 3627 // correctly, so we need to cast to i8*. FIXME: is this actually 3628 // true? A lot of other things in the fragile ABI would break... 3629 llvm::Type *OrigBaseTy = Addr.getType(); 3630 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3631 3632 // Do the GEP. 3633 CharUnits EltAlign = 3634 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3635 llvm::Value *EltPtr = 3636 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3637 SignedIndices, E->getExprLoc()); 3638 Addr = Address(EltPtr, EltAlign); 3639 3640 // Cast back. 3641 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3642 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3643 // If this is A[i] where A is an array, the frontend will have decayed the 3644 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3645 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3646 // "gep x, i" here. Emit one "gep A, 0, i". 3647 assert(Array->getType()->isArrayType() && 3648 "Array to pointer decay must have array source type!"); 3649 LValue ArrayLV; 3650 // For simple multidimensional array indexing, set the 'accessed' flag for 3651 // better bounds-checking of the base expression. 3652 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3653 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3654 else 3655 ArrayLV = EmitLValue(Array); 3656 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3657 3658 // Propagate the alignment from the array itself to the result. 3659 QualType arrayType = Array->getType(); 3660 Addr = emitArraySubscriptGEP( 3661 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3662 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3663 E->getExprLoc(), &arrayType, E->getBase()); 3664 EltBaseInfo = ArrayLV.getBaseInfo(); 3665 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3666 } else { 3667 // The base must be a pointer; emit it with an estimate of its alignment. 3668 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3669 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3670 QualType ptrType = E->getBase()->getType(); 3671 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3672 !getLangOpts().isSignedOverflowDefined(), 3673 SignedIndices, E->getExprLoc(), &ptrType, 3674 E->getBase()); 3675 } 3676 3677 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3678 3679 if (getLangOpts().ObjC && 3680 getLangOpts().getGC() != LangOptions::NonGC) { 3681 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3682 setObjCGCLValueClass(getContext(), E, LV); 3683 } 3684 return LV; 3685 } 3686 3687 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3688 LValueBaseInfo &BaseInfo, 3689 TBAAAccessInfo &TBAAInfo, 3690 QualType BaseTy, QualType ElTy, 3691 bool IsLowerBound) { 3692 LValue BaseLVal; 3693 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3694 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3695 if (BaseTy->isArrayType()) { 3696 Address Addr = BaseLVal.getAddress(CGF); 3697 BaseInfo = BaseLVal.getBaseInfo(); 3698 3699 // If the array type was an incomplete type, we need to make sure 3700 // the decay ends up being the right type. 3701 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3702 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3703 3704 // Note that VLA pointers are always decayed, so we don't need to do 3705 // anything here. 3706 if (!BaseTy->isVariableArrayType()) { 3707 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3708 "Expected pointer to array"); 3709 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3710 } 3711 3712 return CGF.Builder.CreateElementBitCast(Addr, 3713 CGF.ConvertTypeForMem(ElTy)); 3714 } 3715 LValueBaseInfo TypeBaseInfo; 3716 TBAAAccessInfo TypeTBAAInfo; 3717 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3718 &TypeTBAAInfo); 3719 BaseInfo.mergeForCast(TypeBaseInfo); 3720 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3721 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align); 3722 } 3723 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3724 } 3725 3726 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3727 bool IsLowerBound) { 3728 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3729 QualType ResultExprTy; 3730 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3731 ResultExprTy = AT->getElementType(); 3732 else 3733 ResultExprTy = BaseTy->getPointeeType(); 3734 llvm::Value *Idx = nullptr; 3735 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3736 // Requesting lower bound or upper bound, but without provided length and 3737 // without ':' symbol for the default length -> length = 1. 3738 // Idx = LowerBound ?: 0; 3739 if (auto *LowerBound = E->getLowerBound()) { 3740 Idx = Builder.CreateIntCast( 3741 EmitScalarExpr(LowerBound), IntPtrTy, 3742 LowerBound->getType()->hasSignedIntegerRepresentation()); 3743 } else 3744 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3745 } else { 3746 // Try to emit length or lower bound as constant. If this is possible, 1 3747 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3748 // IR (LB + Len) - 1. 3749 auto &C = CGM.getContext(); 3750 auto *Length = E->getLength(); 3751 llvm::APSInt ConstLength; 3752 if (Length) { 3753 // Idx = LowerBound + Length - 1; 3754 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3755 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3756 Length = nullptr; 3757 } 3758 auto *LowerBound = E->getLowerBound(); 3759 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3760 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3761 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3762 LowerBound = nullptr; 3763 } 3764 if (!Length) 3765 --ConstLength; 3766 else if (!LowerBound) 3767 --ConstLowerBound; 3768 3769 if (Length || LowerBound) { 3770 auto *LowerBoundVal = 3771 LowerBound 3772 ? Builder.CreateIntCast( 3773 EmitScalarExpr(LowerBound), IntPtrTy, 3774 LowerBound->getType()->hasSignedIntegerRepresentation()) 3775 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3776 auto *LengthVal = 3777 Length 3778 ? Builder.CreateIntCast( 3779 EmitScalarExpr(Length), IntPtrTy, 3780 Length->getType()->hasSignedIntegerRepresentation()) 3781 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3782 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3783 /*HasNUW=*/false, 3784 !getLangOpts().isSignedOverflowDefined()); 3785 if (Length && LowerBound) { 3786 Idx = Builder.CreateSub( 3787 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3788 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3789 } 3790 } else 3791 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3792 } else { 3793 // Idx = ArraySize - 1; 3794 QualType ArrayTy = BaseTy->isPointerType() 3795 ? E->getBase()->IgnoreParenImpCasts()->getType() 3796 : BaseTy; 3797 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3798 Length = VAT->getSizeExpr(); 3799 if (Length->isIntegerConstantExpr(ConstLength, C)) 3800 Length = nullptr; 3801 } else { 3802 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3803 ConstLength = CAT->getSize(); 3804 } 3805 if (Length) { 3806 auto *LengthVal = Builder.CreateIntCast( 3807 EmitScalarExpr(Length), IntPtrTy, 3808 Length->getType()->hasSignedIntegerRepresentation()); 3809 Idx = Builder.CreateSub( 3810 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3811 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3812 } else { 3813 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3814 --ConstLength; 3815 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3816 } 3817 } 3818 } 3819 assert(Idx); 3820 3821 Address EltPtr = Address::invalid(); 3822 LValueBaseInfo BaseInfo; 3823 TBAAAccessInfo TBAAInfo; 3824 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3825 // The base must be a pointer, which is not an aggregate. Emit 3826 // it. It needs to be emitted first in case it's what captures 3827 // the VLA bounds. 3828 Address Base = 3829 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3830 BaseTy, VLA->getElementType(), IsLowerBound); 3831 // The element count here is the total number of non-VLA elements. 3832 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3833 3834 // Effectively, the multiply by the VLA size is part of the GEP. 3835 // GEP indexes are signed, and scaling an index isn't permitted to 3836 // signed-overflow, so we use the same semantics for our explicit 3837 // multiply. We suppress this if overflow is not undefined behavior. 3838 if (getLangOpts().isSignedOverflowDefined()) 3839 Idx = Builder.CreateMul(Idx, NumElements); 3840 else 3841 Idx = Builder.CreateNSWMul(Idx, NumElements); 3842 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3843 !getLangOpts().isSignedOverflowDefined(), 3844 /*signedIndices=*/false, E->getExprLoc()); 3845 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3846 // If this is A[i] where A is an array, the frontend will have decayed the 3847 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3848 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3849 // "gep x, i" here. Emit one "gep A, 0, i". 3850 assert(Array->getType()->isArrayType() && 3851 "Array to pointer decay must have array source type!"); 3852 LValue ArrayLV; 3853 // For simple multidimensional array indexing, set the 'accessed' flag for 3854 // better bounds-checking of the base expression. 3855 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3856 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3857 else 3858 ArrayLV = EmitLValue(Array); 3859 3860 // Propagate the alignment from the array itself to the result. 3861 EltPtr = emitArraySubscriptGEP( 3862 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3863 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3864 /*signedIndices=*/false, E->getExprLoc()); 3865 BaseInfo = ArrayLV.getBaseInfo(); 3866 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3867 } else { 3868 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3869 TBAAInfo, BaseTy, ResultExprTy, 3870 IsLowerBound); 3871 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3872 !getLangOpts().isSignedOverflowDefined(), 3873 /*signedIndices=*/false, E->getExprLoc()); 3874 } 3875 3876 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3877 } 3878 3879 LValue CodeGenFunction:: 3880 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3881 // Emit the base vector as an l-value. 3882 LValue Base; 3883 3884 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3885 if (E->isArrow()) { 3886 // If it is a pointer to a vector, emit the address and form an lvalue with 3887 // it. 3888 LValueBaseInfo BaseInfo; 3889 TBAAAccessInfo TBAAInfo; 3890 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3891 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 3892 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3893 Base.getQuals().removeObjCGCAttr(); 3894 } else if (E->getBase()->isGLValue()) { 3895 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3896 // emit the base as an lvalue. 3897 assert(E->getBase()->getType()->isVectorType()); 3898 Base = EmitLValue(E->getBase()); 3899 } else { 3900 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3901 assert(E->getBase()->getType()->isVectorType() && 3902 "Result must be a vector"); 3903 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3904 3905 // Store the vector to memory (because LValue wants an address). 3906 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3907 Builder.CreateStore(Vec, VecMem); 3908 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3909 AlignmentSource::Decl); 3910 } 3911 3912 QualType type = 3913 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3914 3915 // Encode the element access list into a vector of unsigned indices. 3916 SmallVector<uint32_t, 4> Indices; 3917 E->getEncodedElementAccess(Indices); 3918 3919 if (Base.isSimple()) { 3920 llvm::Constant *CV = 3921 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3922 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 3923 Base.getBaseInfo(), TBAAAccessInfo()); 3924 } 3925 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3926 3927 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3928 SmallVector<llvm::Constant *, 4> CElts; 3929 3930 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3931 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3932 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3933 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3934 Base.getBaseInfo(), TBAAAccessInfo()); 3935 } 3936 3937 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3938 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3939 EmitIgnoredExpr(E->getBase()); 3940 return EmitDeclRefLValue(DRE); 3941 } 3942 3943 Expr *BaseExpr = E->getBase(); 3944 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3945 LValue BaseLV; 3946 if (E->isArrow()) { 3947 LValueBaseInfo BaseInfo; 3948 TBAAAccessInfo TBAAInfo; 3949 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3950 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3951 SanitizerSet SkippedChecks; 3952 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3953 if (IsBaseCXXThis) 3954 SkippedChecks.set(SanitizerKind::Alignment, true); 3955 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3956 SkippedChecks.set(SanitizerKind::Null, true); 3957 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3958 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3959 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3960 } else 3961 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3962 3963 NamedDecl *ND = E->getMemberDecl(); 3964 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3965 LValue LV = EmitLValueForField(BaseLV, Field); 3966 setObjCGCLValueClass(getContext(), E, LV); 3967 if (getLangOpts().OpenMP) { 3968 // If the member was explicitly marked as nontemporal, mark it as 3969 // nontemporal. If the base lvalue is marked as nontemporal, mark access 3970 // to children as nontemporal too. 3971 if ((IsWrappedCXXThis(BaseExpr) && 3972 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 3973 BaseLV.isNontemporal()) 3974 LV.setNontemporal(/*Value=*/true); 3975 } 3976 return LV; 3977 } 3978 3979 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3980 return EmitFunctionDeclLValue(*this, E, FD); 3981 3982 llvm_unreachable("Unhandled member declaration!"); 3983 } 3984 3985 /// Given that we are currently emitting a lambda, emit an l-value for 3986 /// one of its members. 3987 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3988 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3989 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3990 QualType LambdaTagType = 3991 getContext().getTagDeclType(Field->getParent()); 3992 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3993 return EmitLValueForField(LambdaLV, Field); 3994 } 3995 3996 /// Get the field index in the debug info. The debug info structure/union 3997 /// will ignore the unnamed bitfields. 3998 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 3999 unsigned FieldIndex) { 4000 unsigned I = 0, Skipped = 0; 4001 4002 for (auto F : Rec->getDefinition()->fields()) { 4003 if (I == FieldIndex) 4004 break; 4005 if (F->isUnnamedBitfield()) 4006 Skipped++; 4007 I++; 4008 } 4009 4010 return FieldIndex - Skipped; 4011 } 4012 4013 /// Get the address of a zero-sized field within a record. The resulting 4014 /// address doesn't necessarily have the right type. 4015 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4016 const FieldDecl *Field) { 4017 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4018 CGF.getContext().getFieldOffset(Field)); 4019 if (Offset.isZero()) 4020 return Base; 4021 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4022 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4023 } 4024 4025 /// Drill down to the storage of a field without walking into 4026 /// reference types. 4027 /// 4028 /// The resulting address doesn't necessarily have the right type. 4029 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4030 const FieldDecl *field) { 4031 if (field->isZeroSize(CGF.getContext())) 4032 return emitAddrOfZeroSizeField(CGF, base, field); 4033 4034 const RecordDecl *rec = field->getParent(); 4035 4036 unsigned idx = 4037 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4038 4039 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4040 } 4041 4042 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4043 Address addr, const FieldDecl *field) { 4044 const RecordDecl *rec = field->getParent(); 4045 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4046 base.getType(), rec->getLocation()); 4047 4048 unsigned idx = 4049 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4050 4051 return CGF.Builder.CreatePreserveStructAccessIndex( 4052 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4053 } 4054 4055 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4056 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4057 if (!RD) 4058 return false; 4059 4060 if (RD->isDynamicClass()) 4061 return true; 4062 4063 for (const auto &Base : RD->bases()) 4064 if (hasAnyVptr(Base.getType(), Context)) 4065 return true; 4066 4067 for (const FieldDecl *Field : RD->fields()) 4068 if (hasAnyVptr(Field->getType(), Context)) 4069 return true; 4070 4071 return false; 4072 } 4073 4074 LValue CodeGenFunction::EmitLValueForField(LValue base, 4075 const FieldDecl *field) { 4076 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4077 4078 if (field->isBitField()) { 4079 const CGRecordLayout &RL = 4080 CGM.getTypes().getCGRecordLayout(field->getParent()); 4081 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4082 Address Addr = base.getAddress(*this); 4083 unsigned Idx = RL.getLLVMFieldNo(field); 4084 const RecordDecl *rec = field->getParent(); 4085 if (!IsInPreservedAIRegion && 4086 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4087 if (Idx != 0) 4088 // For structs, we GEP to the field that the record layout suggests. 4089 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4090 } else { 4091 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4092 getContext().getRecordType(rec), rec->getLocation()); 4093 Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx, 4094 getDebugInfoFIndex(rec, field->getFieldIndex()), 4095 DbgInfo); 4096 } 4097 4098 // Get the access type. 4099 llvm::Type *FieldIntTy = 4100 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 4101 if (Addr.getElementType() != FieldIntTy) 4102 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4103 4104 QualType fieldType = 4105 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4106 // TODO: Support TBAA for bit fields. 4107 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4108 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4109 TBAAAccessInfo()); 4110 } 4111 4112 // Fields of may-alias structures are may-alias themselves. 4113 // FIXME: this should get propagated down through anonymous structs 4114 // and unions. 4115 QualType FieldType = field->getType(); 4116 const RecordDecl *rec = field->getParent(); 4117 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4118 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4119 TBAAAccessInfo FieldTBAAInfo; 4120 if (base.getTBAAInfo().isMayAlias() || 4121 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4122 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4123 } else if (rec->isUnion()) { 4124 // TODO: Support TBAA for unions. 4125 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4126 } else { 4127 // If no base type been assigned for the base access, then try to generate 4128 // one for this base lvalue. 4129 FieldTBAAInfo = base.getTBAAInfo(); 4130 if (!FieldTBAAInfo.BaseType) { 4131 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4132 assert(!FieldTBAAInfo.Offset && 4133 "Nonzero offset for an access with no base type!"); 4134 } 4135 4136 // Adjust offset to be relative to the base type. 4137 const ASTRecordLayout &Layout = 4138 getContext().getASTRecordLayout(field->getParent()); 4139 unsigned CharWidth = getContext().getCharWidth(); 4140 if (FieldTBAAInfo.BaseType) 4141 FieldTBAAInfo.Offset += 4142 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4143 4144 // Update the final access type and size. 4145 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4146 FieldTBAAInfo.Size = 4147 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4148 } 4149 4150 Address addr = base.getAddress(*this); 4151 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4152 if (CGM.getCodeGenOpts().StrictVTablePointers && 4153 ClassDef->isDynamicClass()) { 4154 // Getting to any field of dynamic object requires stripping dynamic 4155 // information provided by invariant.group. This is because accessing 4156 // fields may leak the real address of dynamic object, which could result 4157 // in miscompilation when leaked pointer would be compared. 4158 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4159 addr = Address(stripped, addr.getAlignment()); 4160 } 4161 } 4162 4163 unsigned RecordCVR = base.getVRQualifiers(); 4164 if (rec->isUnion()) { 4165 // For unions, there is no pointer adjustment. 4166 if (CGM.getCodeGenOpts().StrictVTablePointers && 4167 hasAnyVptr(FieldType, getContext())) 4168 // Because unions can easily skip invariant.barriers, we need to add 4169 // a barrier every time CXXRecord field with vptr is referenced. 4170 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 4171 addr.getAlignment()); 4172 4173 if (IsInPreservedAIRegion || 4174 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4175 // Remember the original union field index 4176 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4177 rec->getLocation()); 4178 addr = Address( 4179 Builder.CreatePreserveUnionAccessIndex( 4180 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4181 addr.getAlignment()); 4182 } 4183 4184 if (FieldType->isReferenceType()) 4185 addr = Builder.CreateElementBitCast( 4186 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4187 } else { 4188 if (!IsInPreservedAIRegion && 4189 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4190 // For structs, we GEP to the field that the record layout suggests. 4191 addr = emitAddrOfFieldStorage(*this, addr, field); 4192 else 4193 // Remember the original struct field index 4194 addr = emitPreserveStructAccess(*this, base, addr, field); 4195 } 4196 4197 // If this is a reference field, load the reference right now. 4198 if (FieldType->isReferenceType()) { 4199 LValue RefLVal = 4200 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4201 if (RecordCVR & Qualifiers::Volatile) 4202 RefLVal.getQuals().addVolatile(); 4203 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4204 4205 // Qualifiers on the struct don't apply to the referencee. 4206 RecordCVR = 0; 4207 FieldType = FieldType->getPointeeType(); 4208 } 4209 4210 // Make sure that the address is pointing to the right type. This is critical 4211 // for both unions and structs. A union needs a bitcast, a struct element 4212 // will need a bitcast if the LLVM type laid out doesn't match the desired 4213 // type. 4214 addr = Builder.CreateElementBitCast( 4215 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4216 4217 if (field->hasAttr<AnnotateAttr>()) 4218 addr = EmitFieldAnnotations(field, addr); 4219 4220 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4221 LV.getQuals().addCVRQualifiers(RecordCVR); 4222 4223 // __weak attribute on a field is ignored. 4224 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4225 LV.getQuals().removeObjCGCAttr(); 4226 4227 return LV; 4228 } 4229 4230 LValue 4231 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4232 const FieldDecl *Field) { 4233 QualType FieldType = Field->getType(); 4234 4235 if (!FieldType->isReferenceType()) 4236 return EmitLValueForField(Base, Field); 4237 4238 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4239 4240 // Make sure that the address is pointing to the right type. 4241 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4242 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4243 4244 // TODO: Generate TBAA information that describes this access as a structure 4245 // member access and not just an access to an object of the field's type. This 4246 // should be similar to what we do in EmitLValueForField(). 4247 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4248 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4249 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4250 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4251 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4252 } 4253 4254 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4255 if (E->isFileScope()) { 4256 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4257 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4258 } 4259 if (E->getType()->isVariablyModifiedType()) 4260 // make sure to emit the VLA size. 4261 EmitVariablyModifiedType(E->getType()); 4262 4263 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4264 const Expr *InitExpr = E->getInitializer(); 4265 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4266 4267 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4268 /*Init*/ true); 4269 4270 // Block-scope compound literals are destroyed at the end of the enclosing 4271 // scope in C. 4272 if (!getLangOpts().CPlusPlus) 4273 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 4274 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr, 4275 E->getType(), getDestroyer(DtorKind), 4276 DtorKind & EHCleanup); 4277 4278 return Result; 4279 } 4280 4281 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4282 if (!E->isGLValue()) 4283 // Initializing an aggregate temporary in C++11: T{...}. 4284 return EmitAggExprToLValue(E); 4285 4286 // An lvalue initializer list must be initializing a reference. 4287 assert(E->isTransparent() && "non-transparent glvalue init list"); 4288 return EmitLValue(E->getInit(0)); 4289 } 4290 4291 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4292 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4293 /// LValue is returned and the current block has been terminated. 4294 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4295 const Expr *Operand) { 4296 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4297 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4298 return None; 4299 } 4300 4301 return CGF.EmitLValue(Operand); 4302 } 4303 4304 LValue CodeGenFunction:: 4305 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4306 if (!expr->isGLValue()) { 4307 // ?: here should be an aggregate. 4308 assert(hasAggregateEvaluationKind(expr->getType()) && 4309 "Unexpected conditional operator!"); 4310 return EmitAggExprToLValue(expr); 4311 } 4312 4313 OpaqueValueMapping binding(*this, expr); 4314 4315 const Expr *condExpr = expr->getCond(); 4316 bool CondExprBool; 4317 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4318 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4319 if (!CondExprBool) std::swap(live, dead); 4320 4321 if (!ContainsLabel(dead)) { 4322 // If the true case is live, we need to track its region. 4323 if (CondExprBool) 4324 incrementProfileCounter(expr); 4325 // If a throw expression we emit it and return an undefined lvalue 4326 // because it can't be used. 4327 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) { 4328 EmitCXXThrowExpr(ThrowExpr); 4329 llvm::Type *Ty = 4330 llvm::PointerType::getUnqual(ConvertType(dead->getType())); 4331 return MakeAddrLValue( 4332 Address(llvm::UndefValue::get(Ty), CharUnits::One()), 4333 dead->getType()); 4334 } 4335 return EmitLValue(live); 4336 } 4337 } 4338 4339 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4340 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4341 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4342 4343 ConditionalEvaluation eval(*this); 4344 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4345 4346 // Any temporaries created here are conditional. 4347 EmitBlock(lhsBlock); 4348 incrementProfileCounter(expr); 4349 eval.begin(*this); 4350 Optional<LValue> lhs = 4351 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4352 eval.end(*this); 4353 4354 if (lhs && !lhs->isSimple()) 4355 return EmitUnsupportedLValue(expr, "conditional operator"); 4356 4357 lhsBlock = Builder.GetInsertBlock(); 4358 if (lhs) 4359 Builder.CreateBr(contBlock); 4360 4361 // Any temporaries created here are conditional. 4362 EmitBlock(rhsBlock); 4363 eval.begin(*this); 4364 Optional<LValue> rhs = 4365 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4366 eval.end(*this); 4367 if (rhs && !rhs->isSimple()) 4368 return EmitUnsupportedLValue(expr, "conditional operator"); 4369 rhsBlock = Builder.GetInsertBlock(); 4370 4371 EmitBlock(contBlock); 4372 4373 if (lhs && rhs) { 4374 llvm::PHINode *phi = 4375 Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue"); 4376 phi->addIncoming(lhs->getPointer(*this), lhsBlock); 4377 phi->addIncoming(rhs->getPointer(*this), rhsBlock); 4378 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4379 AlignmentSource alignSource = 4380 std::max(lhs->getBaseInfo().getAlignmentSource(), 4381 rhs->getBaseInfo().getAlignmentSource()); 4382 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4383 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4384 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4385 TBAAInfo); 4386 } else { 4387 assert((lhs || rhs) && 4388 "both operands of glvalue conditional are throw-expressions?"); 4389 return lhs ? *lhs : *rhs; 4390 } 4391 } 4392 4393 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4394 /// type. If the cast is to a reference, we can have the usual lvalue result, 4395 /// otherwise if a cast is needed by the code generator in an lvalue context, 4396 /// then it must mean that we need the address of an aggregate in order to 4397 /// access one of its members. This can happen for all the reasons that casts 4398 /// are permitted with aggregate result, including noop aggregate casts, and 4399 /// cast from scalar to union. 4400 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4401 switch (E->getCastKind()) { 4402 case CK_ToVoid: 4403 case CK_BitCast: 4404 case CK_LValueToRValueBitCast: 4405 case CK_ArrayToPointerDecay: 4406 case CK_FunctionToPointerDecay: 4407 case CK_NullToMemberPointer: 4408 case CK_NullToPointer: 4409 case CK_IntegralToPointer: 4410 case CK_PointerToIntegral: 4411 case CK_PointerToBoolean: 4412 case CK_VectorSplat: 4413 case CK_IntegralCast: 4414 case CK_BooleanToSignedIntegral: 4415 case CK_IntegralToBoolean: 4416 case CK_IntegralToFloating: 4417 case CK_FloatingToIntegral: 4418 case CK_FloatingToBoolean: 4419 case CK_FloatingCast: 4420 case CK_FloatingRealToComplex: 4421 case CK_FloatingComplexToReal: 4422 case CK_FloatingComplexToBoolean: 4423 case CK_FloatingComplexCast: 4424 case CK_FloatingComplexToIntegralComplex: 4425 case CK_IntegralRealToComplex: 4426 case CK_IntegralComplexToReal: 4427 case CK_IntegralComplexToBoolean: 4428 case CK_IntegralComplexCast: 4429 case CK_IntegralComplexToFloatingComplex: 4430 case CK_DerivedToBaseMemberPointer: 4431 case CK_BaseToDerivedMemberPointer: 4432 case CK_MemberPointerToBoolean: 4433 case CK_ReinterpretMemberPointer: 4434 case CK_AnyPointerToBlockPointerCast: 4435 case CK_ARCProduceObject: 4436 case CK_ARCConsumeObject: 4437 case CK_ARCReclaimReturnedObject: 4438 case CK_ARCExtendBlockObject: 4439 case CK_CopyAndAutoreleaseBlockObject: 4440 case CK_IntToOCLSampler: 4441 case CK_FixedPointCast: 4442 case CK_FixedPointToBoolean: 4443 case CK_FixedPointToIntegral: 4444 case CK_IntegralToFixedPoint: 4445 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4446 4447 case CK_Dependent: 4448 llvm_unreachable("dependent cast kind in IR gen!"); 4449 4450 case CK_BuiltinFnToFnPtr: 4451 llvm_unreachable("builtin functions are handled elsewhere"); 4452 4453 // These are never l-values; just use the aggregate emission code. 4454 case CK_NonAtomicToAtomic: 4455 case CK_AtomicToNonAtomic: 4456 return EmitAggExprToLValue(E); 4457 4458 case CK_Dynamic: { 4459 LValue LV = EmitLValue(E->getSubExpr()); 4460 Address V = LV.getAddress(*this); 4461 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4462 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4463 } 4464 4465 case CK_ConstructorConversion: 4466 case CK_UserDefinedConversion: 4467 case CK_CPointerToObjCPointerCast: 4468 case CK_BlockPointerToObjCPointerCast: 4469 case CK_NoOp: 4470 case CK_LValueToRValue: 4471 return EmitLValue(E->getSubExpr()); 4472 4473 case CK_UncheckedDerivedToBase: 4474 case CK_DerivedToBase: { 4475 const auto *DerivedClassTy = 4476 E->getSubExpr()->getType()->castAs<RecordType>(); 4477 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4478 4479 LValue LV = EmitLValue(E->getSubExpr()); 4480 Address This = LV.getAddress(*this); 4481 4482 // Perform the derived-to-base conversion 4483 Address Base = GetAddressOfBaseClass( 4484 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4485 /*NullCheckValue=*/false, E->getExprLoc()); 4486 4487 // TODO: Support accesses to members of base classes in TBAA. For now, we 4488 // conservatively pretend that the complete object is of the base class 4489 // type. 4490 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4491 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4492 } 4493 case CK_ToUnion: 4494 return EmitAggExprToLValue(E); 4495 case CK_BaseToDerived: { 4496 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4497 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4498 4499 LValue LV = EmitLValue(E->getSubExpr()); 4500 4501 // Perform the base-to-derived conversion 4502 Address Derived = GetAddressOfDerivedClass( 4503 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4504 /*NullCheckValue=*/false); 4505 4506 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4507 // performed and the object is not of the derived type. 4508 if (sanitizePerformTypeCheck()) 4509 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4510 Derived.getPointer(), E->getType()); 4511 4512 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4513 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4514 /*MayBeNull=*/false, CFITCK_DerivedCast, 4515 E->getBeginLoc()); 4516 4517 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4518 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4519 } 4520 case CK_LValueBitCast: { 4521 // This must be a reinterpret_cast (or c-style equivalent). 4522 const auto *CE = cast<ExplicitCastExpr>(E); 4523 4524 CGM.EmitExplicitCastExprType(CE, this); 4525 LValue LV = EmitLValue(E->getSubExpr()); 4526 Address V = Builder.CreateBitCast(LV.getAddress(*this), 4527 ConvertType(CE->getTypeAsWritten())); 4528 4529 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4530 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4531 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4532 E->getBeginLoc()); 4533 4534 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4535 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4536 } 4537 case CK_AddressSpaceConversion: { 4538 LValue LV = EmitLValue(E->getSubExpr()); 4539 QualType DestTy = getContext().getPointerType(E->getType()); 4540 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4541 *this, LV.getPointer(*this), 4542 E->getSubExpr()->getType().getAddressSpace(), 4543 E->getType().getAddressSpace(), ConvertType(DestTy)); 4544 return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()), 4545 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4546 } 4547 case CK_ObjCObjectLValueCast: { 4548 LValue LV = EmitLValue(E->getSubExpr()); 4549 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4550 ConvertType(E->getType())); 4551 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4552 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4553 } 4554 case CK_ZeroToOCLOpaqueType: 4555 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4556 } 4557 4558 llvm_unreachable("Unhandled lvalue cast kind?"); 4559 } 4560 4561 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4562 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4563 return getOrCreateOpaqueLValueMapping(e); 4564 } 4565 4566 LValue 4567 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4568 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4569 4570 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4571 it = OpaqueLValues.find(e); 4572 4573 if (it != OpaqueLValues.end()) 4574 return it->second; 4575 4576 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4577 return EmitLValue(e->getSourceExpr()); 4578 } 4579 4580 RValue 4581 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4582 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4583 4584 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4585 it = OpaqueRValues.find(e); 4586 4587 if (it != OpaqueRValues.end()) 4588 return it->second; 4589 4590 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4591 return EmitAnyExpr(e->getSourceExpr()); 4592 } 4593 4594 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4595 const FieldDecl *FD, 4596 SourceLocation Loc) { 4597 QualType FT = FD->getType(); 4598 LValue FieldLV = EmitLValueForField(LV, FD); 4599 switch (getEvaluationKind(FT)) { 4600 case TEK_Complex: 4601 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4602 case TEK_Aggregate: 4603 return FieldLV.asAggregateRValue(*this); 4604 case TEK_Scalar: 4605 // This routine is used to load fields one-by-one to perform a copy, so 4606 // don't load reference fields. 4607 if (FD->getType()->isReferenceType()) 4608 return RValue::get(FieldLV.getPointer(*this)); 4609 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4610 // primitive load. 4611 if (FieldLV.isBitField()) 4612 return EmitLoadOfLValue(FieldLV, Loc); 4613 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4614 } 4615 llvm_unreachable("bad evaluation kind"); 4616 } 4617 4618 //===--------------------------------------------------------------------===// 4619 // Expression Emission 4620 //===--------------------------------------------------------------------===// 4621 4622 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4623 ReturnValueSlot ReturnValue) { 4624 // Builtins never have block type. 4625 if (E->getCallee()->getType()->isBlockPointerType()) 4626 return EmitBlockCallExpr(E, ReturnValue); 4627 4628 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4629 return EmitCXXMemberCallExpr(CE, ReturnValue); 4630 4631 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4632 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4633 4634 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4635 if (const CXXMethodDecl *MD = 4636 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4637 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4638 4639 CGCallee callee = EmitCallee(E->getCallee()); 4640 4641 if (callee.isBuiltin()) { 4642 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4643 E, ReturnValue); 4644 } 4645 4646 if (callee.isPseudoDestructor()) { 4647 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4648 } 4649 4650 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4651 } 4652 4653 /// Emit a CallExpr without considering whether it might be a subclass. 4654 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4655 ReturnValueSlot ReturnValue) { 4656 CGCallee Callee = EmitCallee(E->getCallee()); 4657 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4658 } 4659 4660 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) { 4661 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4662 4663 if (auto builtinID = FD->getBuiltinID()) { 4664 // Replaceable builtin provide their own implementation of a builtin. Unless 4665 // we are in the builtin implementation itself, don't call the actual 4666 // builtin. If we are in the builtin implementation, avoid trivial infinite 4667 // recursion. 4668 if (!FD->isInlineBuiltinDeclaration() || 4669 CGF.CurFn->getName() == FD->getName()) 4670 return CGCallee::forBuiltin(builtinID, FD); 4671 } 4672 4673 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 4674 return CGCallee::forDirect(calleePtr, GD); 4675 } 4676 4677 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4678 E = E->IgnoreParens(); 4679 4680 // Look through function-to-pointer decay. 4681 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4682 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4683 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4684 return EmitCallee(ICE->getSubExpr()); 4685 } 4686 4687 // Resolve direct calls. 4688 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4689 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4690 return EmitDirectCallee(*this, FD); 4691 } 4692 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4693 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4694 EmitIgnoredExpr(ME->getBase()); 4695 return EmitDirectCallee(*this, FD); 4696 } 4697 4698 // Look through template substitutions. 4699 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4700 return EmitCallee(NTTP->getReplacement()); 4701 4702 // Treat pseudo-destructor calls differently. 4703 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4704 return CGCallee::forPseudoDestructor(PDE); 4705 } 4706 4707 // Otherwise, we have an indirect reference. 4708 llvm::Value *calleePtr; 4709 QualType functionType; 4710 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4711 calleePtr = EmitScalarExpr(E); 4712 functionType = ptrType->getPointeeType(); 4713 } else { 4714 functionType = E->getType(); 4715 calleePtr = EmitLValue(E).getPointer(*this); 4716 } 4717 assert(functionType->isFunctionType()); 4718 4719 GlobalDecl GD; 4720 if (const auto *VD = 4721 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4722 GD = GlobalDecl(VD); 4723 4724 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4725 CGCallee callee(calleeInfo, calleePtr); 4726 return callee; 4727 } 4728 4729 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4730 // Comma expressions just emit their LHS then their RHS as an l-value. 4731 if (E->getOpcode() == BO_Comma) { 4732 EmitIgnoredExpr(E->getLHS()); 4733 EnsureInsertPoint(); 4734 return EmitLValue(E->getRHS()); 4735 } 4736 4737 if (E->getOpcode() == BO_PtrMemD || 4738 E->getOpcode() == BO_PtrMemI) 4739 return EmitPointerToDataMemberBinaryExpr(E); 4740 4741 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4742 4743 // Note that in all of these cases, __block variables need the RHS 4744 // evaluated first just in case the variable gets moved by the RHS. 4745 4746 switch (getEvaluationKind(E->getType())) { 4747 case TEK_Scalar: { 4748 switch (E->getLHS()->getType().getObjCLifetime()) { 4749 case Qualifiers::OCL_Strong: 4750 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4751 4752 case Qualifiers::OCL_Autoreleasing: 4753 return EmitARCStoreAutoreleasing(E).first; 4754 4755 // No reason to do any of these differently. 4756 case Qualifiers::OCL_None: 4757 case Qualifiers::OCL_ExplicitNone: 4758 case Qualifiers::OCL_Weak: 4759 break; 4760 } 4761 4762 RValue RV = EmitAnyExpr(E->getRHS()); 4763 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4764 if (RV.isScalar()) 4765 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4766 EmitStoreThroughLValue(RV, LV); 4767 if (getLangOpts().OpenMP) 4768 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 4769 E->getLHS()); 4770 return LV; 4771 } 4772 4773 case TEK_Complex: 4774 return EmitComplexAssignmentLValue(E); 4775 4776 case TEK_Aggregate: 4777 return EmitAggExprToLValue(E); 4778 } 4779 llvm_unreachable("bad evaluation kind"); 4780 } 4781 4782 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4783 RValue RV = EmitCallExpr(E); 4784 4785 if (!RV.isScalar()) 4786 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4787 AlignmentSource::Decl); 4788 4789 assert(E->getCallReturnType(getContext())->isReferenceType() && 4790 "Can't have a scalar return unless the return type is a " 4791 "reference type!"); 4792 4793 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4794 } 4795 4796 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4797 // FIXME: This shouldn't require another copy. 4798 return EmitAggExprToLValue(E); 4799 } 4800 4801 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4802 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4803 && "binding l-value to type which needs a temporary"); 4804 AggValueSlot Slot = CreateAggTemp(E->getType()); 4805 EmitCXXConstructExpr(E, Slot); 4806 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4807 } 4808 4809 LValue 4810 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4811 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4812 } 4813 4814 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4815 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4816 ConvertType(E->getType())); 4817 } 4818 4819 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4820 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4821 AlignmentSource::Decl); 4822 } 4823 4824 LValue 4825 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4826 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4827 Slot.setExternallyDestructed(); 4828 EmitAggExpr(E->getSubExpr(), Slot); 4829 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4830 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4831 } 4832 4833 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4834 RValue RV = EmitObjCMessageExpr(E); 4835 4836 if (!RV.isScalar()) 4837 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4838 AlignmentSource::Decl); 4839 4840 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4841 "Can't have a scalar return unless the return type is a " 4842 "reference type!"); 4843 4844 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4845 } 4846 4847 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4848 Address V = 4849 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4850 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4851 } 4852 4853 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4854 const ObjCIvarDecl *Ivar) { 4855 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4856 } 4857 4858 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4859 llvm::Value *BaseValue, 4860 const ObjCIvarDecl *Ivar, 4861 unsigned CVRQualifiers) { 4862 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4863 Ivar, CVRQualifiers); 4864 } 4865 4866 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4867 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4868 llvm::Value *BaseValue = nullptr; 4869 const Expr *BaseExpr = E->getBase(); 4870 Qualifiers BaseQuals; 4871 QualType ObjectTy; 4872 if (E->isArrow()) { 4873 BaseValue = EmitScalarExpr(BaseExpr); 4874 ObjectTy = BaseExpr->getType()->getPointeeType(); 4875 BaseQuals = ObjectTy.getQualifiers(); 4876 } else { 4877 LValue BaseLV = EmitLValue(BaseExpr); 4878 BaseValue = BaseLV.getPointer(*this); 4879 ObjectTy = BaseExpr->getType(); 4880 BaseQuals = ObjectTy.getQualifiers(); 4881 } 4882 4883 LValue LV = 4884 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4885 BaseQuals.getCVRQualifiers()); 4886 setObjCGCLValueClass(getContext(), E, LV); 4887 return LV; 4888 } 4889 4890 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4891 // Can only get l-value for message expression returning aggregate type 4892 RValue RV = EmitAnyExprToTemp(E); 4893 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4894 AlignmentSource::Decl); 4895 } 4896 4897 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4898 const CallExpr *E, ReturnValueSlot ReturnValue, 4899 llvm::Value *Chain) { 4900 // Get the actual function type. The callee type will always be a pointer to 4901 // function type or a block pointer type. 4902 assert(CalleeType->isFunctionPointerType() && 4903 "Call must have function pointer type!"); 4904 4905 const Decl *TargetDecl = 4906 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4907 4908 CalleeType = getContext().getCanonicalType(CalleeType); 4909 4910 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4911 4912 CGCallee Callee = OrigCallee; 4913 4914 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4915 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4916 if (llvm::Constant *PrefixSig = 4917 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4918 SanitizerScope SanScope(this); 4919 // Remove any (C++17) exception specifications, to allow calling e.g. a 4920 // noexcept function through a non-noexcept pointer. 4921 auto ProtoTy = 4922 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4923 llvm::Constant *FTRTTIConst = 4924 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4925 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4926 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4927 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4928 4929 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4930 4931 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4932 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4933 llvm::Value *CalleeSigPtr = 4934 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4935 llvm::Value *CalleeSig = 4936 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4937 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4938 4939 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4940 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4941 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4942 4943 EmitBlock(TypeCheck); 4944 llvm::Value *CalleeRTTIPtr = 4945 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4946 llvm::Value *CalleeRTTIEncoded = 4947 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4948 llvm::Value *CalleeRTTI = 4949 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4950 llvm::Value *CalleeRTTIMatch = 4951 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4952 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4953 EmitCheckTypeDescriptor(CalleeType)}; 4954 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4955 SanitizerHandler::FunctionTypeMismatch, StaticData, 4956 {CalleePtr, CalleeRTTI, FTRTTIConst}); 4957 4958 Builder.CreateBr(Cont); 4959 EmitBlock(Cont); 4960 } 4961 } 4962 4963 const auto *FnType = cast<FunctionType>(PointeeType); 4964 4965 // If we are checking indirect calls and this call is indirect, check that the 4966 // function pointer is a member of the bit set for the function type. 4967 if (SanOpts.has(SanitizerKind::CFIICall) && 4968 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4969 SanitizerScope SanScope(this); 4970 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4971 4972 llvm::Metadata *MD; 4973 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4974 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4975 else 4976 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4977 4978 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4979 4980 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4981 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4982 llvm::Value *TypeTest = Builder.CreateCall( 4983 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4984 4985 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4986 llvm::Constant *StaticData[] = { 4987 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4988 EmitCheckSourceLocation(E->getBeginLoc()), 4989 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4990 }; 4991 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4992 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4993 CastedCallee, StaticData); 4994 } else { 4995 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4996 SanitizerHandler::CFICheckFail, StaticData, 4997 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4998 } 4999 } 5000 5001 CallArgList Args; 5002 if (Chain) 5003 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 5004 CGM.getContext().VoidPtrTy); 5005 5006 // C++17 requires that we evaluate arguments to a call using assignment syntax 5007 // right-to-left, and that we evaluate arguments to certain other operators 5008 // left-to-right. Note that we allow this to override the order dictated by 5009 // the calling convention on the MS ABI, which means that parameter 5010 // destruction order is not necessarily reverse construction order. 5011 // FIXME: Revisit this based on C++ committee response to unimplementability. 5012 EvaluationOrder Order = EvaluationOrder::Default; 5013 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 5014 if (OCE->isAssignmentOp()) 5015 Order = EvaluationOrder::ForceRightToLeft; 5016 else { 5017 switch (OCE->getOperator()) { 5018 case OO_LessLess: 5019 case OO_GreaterGreater: 5020 case OO_AmpAmp: 5021 case OO_PipePipe: 5022 case OO_Comma: 5023 case OO_ArrowStar: 5024 Order = EvaluationOrder::ForceLeftToRight; 5025 break; 5026 default: 5027 break; 5028 } 5029 } 5030 } 5031 5032 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5033 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5034 5035 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5036 Args, FnType, /*ChainCall=*/Chain); 5037 5038 // C99 6.5.2.2p6: 5039 // If the expression that denotes the called function has a type 5040 // that does not include a prototype, [the default argument 5041 // promotions are performed]. If the number of arguments does not 5042 // equal the number of parameters, the behavior is undefined. If 5043 // the function is defined with a type that includes a prototype, 5044 // and either the prototype ends with an ellipsis (, ...) or the 5045 // types of the arguments after promotion are not compatible with 5046 // the types of the parameters, the behavior is undefined. If the 5047 // function is defined with a type that does not include a 5048 // prototype, and the types of the arguments after promotion are 5049 // not compatible with those of the parameters after promotion, 5050 // the behavior is undefined [except in some trivial cases]. 5051 // That is, in the general case, we should assume that a call 5052 // through an unprototyped function type works like a *non-variadic* 5053 // call. The way we make this work is to cast to the exact type 5054 // of the promoted arguments. 5055 // 5056 // Chain calls use this same code path to add the invisible chain parameter 5057 // to the function type. 5058 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5059 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5060 CalleeTy = CalleeTy->getPointerTo(); 5061 5062 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5063 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5064 Callee.setFunctionPointer(CalleePtr); 5065 } 5066 5067 llvm::CallBase *CallOrInvoke = nullptr; 5068 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5069 E->getExprLoc()); 5070 5071 // Generate function declaration DISuprogram in order to be used 5072 // in debug info about call sites. 5073 if (CGDebugInfo *DI = getDebugInfo()) { 5074 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 5075 DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0), 5076 CalleeDecl); 5077 } 5078 5079 return Call; 5080 } 5081 5082 LValue CodeGenFunction:: 5083 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5084 Address BaseAddr = Address::invalid(); 5085 if (E->getOpcode() == BO_PtrMemI) { 5086 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5087 } else { 5088 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5089 } 5090 5091 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5092 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5093 5094 LValueBaseInfo BaseInfo; 5095 TBAAAccessInfo TBAAInfo; 5096 Address MemberAddr = 5097 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5098 &TBAAInfo); 5099 5100 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5101 } 5102 5103 /// Given the address of a temporary variable, produce an r-value of 5104 /// its type. 5105 RValue CodeGenFunction::convertTempToRValue(Address addr, 5106 QualType type, 5107 SourceLocation loc) { 5108 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5109 switch (getEvaluationKind(type)) { 5110 case TEK_Complex: 5111 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5112 case TEK_Aggregate: 5113 return lvalue.asAggregateRValue(*this); 5114 case TEK_Scalar: 5115 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5116 } 5117 llvm_unreachable("bad evaluation kind"); 5118 } 5119 5120 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5121 assert(Val->getType()->isFPOrFPVectorTy()); 5122 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5123 return; 5124 5125 llvm::MDBuilder MDHelper(getLLVMContext()); 5126 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5127 5128 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5129 } 5130 5131 namespace { 5132 struct LValueOrRValue { 5133 LValue LV; 5134 RValue RV; 5135 }; 5136 } 5137 5138 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5139 const PseudoObjectExpr *E, 5140 bool forLValue, 5141 AggValueSlot slot) { 5142 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5143 5144 // Find the result expression, if any. 5145 const Expr *resultExpr = E->getResultExpr(); 5146 LValueOrRValue result; 5147 5148 for (PseudoObjectExpr::const_semantics_iterator 5149 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5150 const Expr *semantic = *i; 5151 5152 // If this semantic expression is an opaque value, bind it 5153 // to the result of its source expression. 5154 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5155 // Skip unique OVEs. 5156 if (ov->isUnique()) { 5157 assert(ov != resultExpr && 5158 "A unique OVE cannot be used as the result expression"); 5159 continue; 5160 } 5161 5162 // If this is the result expression, we may need to evaluate 5163 // directly into the slot. 5164 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5165 OVMA opaqueData; 5166 if (ov == resultExpr && ov->isRValue() && !forLValue && 5167 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5168 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5169 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5170 AlignmentSource::Decl); 5171 opaqueData = OVMA::bind(CGF, ov, LV); 5172 result.RV = slot.asRValue(); 5173 5174 // Otherwise, emit as normal. 5175 } else { 5176 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5177 5178 // If this is the result, also evaluate the result now. 5179 if (ov == resultExpr) { 5180 if (forLValue) 5181 result.LV = CGF.EmitLValue(ov); 5182 else 5183 result.RV = CGF.EmitAnyExpr(ov, slot); 5184 } 5185 } 5186 5187 opaques.push_back(opaqueData); 5188 5189 // Otherwise, if the expression is the result, evaluate it 5190 // and remember the result. 5191 } else if (semantic == resultExpr) { 5192 if (forLValue) 5193 result.LV = CGF.EmitLValue(semantic); 5194 else 5195 result.RV = CGF.EmitAnyExpr(semantic, slot); 5196 5197 // Otherwise, evaluate the expression in an ignored context. 5198 } else { 5199 CGF.EmitIgnoredExpr(semantic); 5200 } 5201 } 5202 5203 // Unbind all the opaques now. 5204 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5205 opaques[i].unbind(CGF); 5206 5207 return result; 5208 } 5209 5210 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5211 AggValueSlot slot) { 5212 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5213 } 5214 5215 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5216 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5217 } 5218