1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "llvm/ADT/Hashing.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/Support/ConvertUTF.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/Path.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 #include <string>
43 
44 using namespace clang;
45 using namespace CodeGen;
46 
47 //===--------------------------------------------------------------------===//
48 //                        Miscellaneous Helper Methods
49 //===--------------------------------------------------------------------===//
50 
51 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
52   unsigned addressSpace =
53       cast<llvm::PointerType>(value->getType())->getAddressSpace();
54 
55   llvm::PointerType *destType = Int8PtrTy;
56   if (addressSpace)
57     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
58 
59   if (value->getType() == destType) return value;
60   return Builder.CreateBitCast(value, destType);
61 }
62 
63 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
64 /// block.
65 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
66                                                      CharUnits Align,
67                                                      const Twine &Name,
68                                                      llvm::Value *ArraySize) {
69   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
70   Alloca->setAlignment(Align.getAsAlign());
71   return Address(Alloca, Align);
72 }
73 
74 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
75 /// block. The alloca is casted to default address space if necessary.
76 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
77                                           const Twine &Name,
78                                           llvm::Value *ArraySize,
79                                           Address *AllocaAddr) {
80   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
81   if (AllocaAddr)
82     *AllocaAddr = Alloca;
83   llvm::Value *V = Alloca.getPointer();
84   // Alloca always returns a pointer in alloca address space, which may
85   // be different from the type defined by the language. For example,
86   // in C++ the auto variables are in the default address space. Therefore
87   // cast alloca to the default address space when necessary.
88   if (getASTAllocaAddressSpace() != LangAS::Default) {
89     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
90     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
91     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
92     // otherwise alloca is inserted at the current insertion point of the
93     // builder.
94     if (!ArraySize)
95       Builder.SetInsertPoint(AllocaInsertPt);
96     V = getTargetHooks().performAddrSpaceCast(
97         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
98         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
99   }
100 
101   return Address(V, Align);
102 }
103 
104 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
105 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
106 /// insertion point of the builder.
107 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
108                                                     const Twine &Name,
109                                                     llvm::Value *ArraySize) {
110   if (ArraySize)
111     return Builder.CreateAlloca(Ty, ArraySize, Name);
112   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
113                               ArraySize, Name, AllocaInsertPt);
114 }
115 
116 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
117 /// default alignment of the corresponding LLVM type, which is *not*
118 /// guaranteed to be related in any way to the expected alignment of
119 /// an AST type that might have been lowered to Ty.
120 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
121                                                       const Twine &Name) {
122   CharUnits Align =
123     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
124   return CreateTempAlloca(Ty, Align, Name);
125 }
126 
127 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
128   assert(isa<llvm::AllocaInst>(Var.getPointer()));
129   auto *Store = new llvm::StoreInst(Init, Var.getPointer(), /*volatile*/ false,
130                                     Var.getAlignment().getAsAlign());
131   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
132   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
133 }
134 
135 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
136   CharUnits Align = getContext().getTypeAlignInChars(Ty);
137   return CreateTempAlloca(ConvertType(Ty), Align, Name);
138 }
139 
140 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
141                                        Address *Alloca) {
142   // FIXME: Should we prefer the preferred type alignment here?
143   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
144 }
145 
146 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
147                                        const Twine &Name, Address *Alloca) {
148   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
149                                     /*ArraySize=*/nullptr, Alloca);
150 
151   if (Ty->isConstantMatrixType()) {
152     auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
153     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
154                                                 ArrayTy->getNumElements());
155 
156     Result = Address(
157         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
158         Result.getAlignment());
159   }
160   return Result;
161 }
162 
163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
164                                                   const Twine &Name) {
165   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
166 }
167 
168 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
169                                                   const Twine &Name) {
170   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
171                                   Name);
172 }
173 
174 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
175 /// expression and compare the result against zero, returning an Int1Ty value.
176 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
177   PGO.setCurrentStmt(E);
178   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
179     llvm::Value *MemPtr = EmitScalarExpr(E);
180     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
181   }
182 
183   QualType BoolTy = getContext().BoolTy;
184   SourceLocation Loc = E->getExprLoc();
185   if (!E->getType()->isAnyComplexType())
186     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
187 
188   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
189                                        Loc);
190 }
191 
192 /// EmitIgnoredExpr - Emit code to compute the specified expression,
193 /// ignoring the result.
194 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
195   if (E->isRValue())
196     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
197 
198   // Just emit it as an l-value and drop the result.
199   EmitLValue(E);
200 }
201 
202 /// EmitAnyExpr - Emit code to compute the specified expression which
203 /// can have any type.  The result is returned as an RValue struct.
204 /// If this is an aggregate expression, AggSlot indicates where the
205 /// result should be returned.
206 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
207                                     AggValueSlot aggSlot,
208                                     bool ignoreResult) {
209   switch (getEvaluationKind(E->getType())) {
210   case TEK_Scalar:
211     return RValue::get(EmitScalarExpr(E, ignoreResult));
212   case TEK_Complex:
213     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
214   case TEK_Aggregate:
215     if (!ignoreResult && aggSlot.isIgnored())
216       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
217     EmitAggExpr(E, aggSlot);
218     return aggSlot.asRValue();
219   }
220   llvm_unreachable("bad evaluation kind");
221 }
222 
223 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
224 /// always be accessible even if no aggregate location is provided.
225 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
226   AggValueSlot AggSlot = AggValueSlot::ignored();
227 
228   if (hasAggregateEvaluationKind(E->getType()))
229     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
230   return EmitAnyExpr(E, AggSlot);
231 }
232 
233 /// EmitAnyExprToMem - Evaluate an expression into a given memory
234 /// location.
235 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
236                                        Address Location,
237                                        Qualifiers Quals,
238                                        bool IsInit) {
239   // FIXME: This function should take an LValue as an argument.
240   switch (getEvaluationKind(E->getType())) {
241   case TEK_Complex:
242     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
243                               /*isInit*/ false);
244     return;
245 
246   case TEK_Aggregate: {
247     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
248                                          AggValueSlot::IsDestructed_t(IsInit),
249                                          AggValueSlot::DoesNotNeedGCBarriers,
250                                          AggValueSlot::IsAliased_t(!IsInit),
251                                          AggValueSlot::MayOverlap));
252     return;
253   }
254 
255   case TEK_Scalar: {
256     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
257     LValue LV = MakeAddrLValue(Location, E->getType());
258     EmitStoreThroughLValue(RV, LV);
259     return;
260   }
261   }
262   llvm_unreachable("bad evaluation kind");
263 }
264 
265 static void
266 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
267                      const Expr *E, Address ReferenceTemporary) {
268   // Objective-C++ ARC:
269   //   If we are binding a reference to a temporary that has ownership, we
270   //   need to perform retain/release operations on the temporary.
271   //
272   // FIXME: This should be looking at E, not M.
273   if (auto Lifetime = M->getType().getObjCLifetime()) {
274     switch (Lifetime) {
275     case Qualifiers::OCL_None:
276     case Qualifiers::OCL_ExplicitNone:
277       // Carry on to normal cleanup handling.
278       break;
279 
280     case Qualifiers::OCL_Autoreleasing:
281       // Nothing to do; cleaned up by an autorelease pool.
282       return;
283 
284     case Qualifiers::OCL_Strong:
285     case Qualifiers::OCL_Weak:
286       switch (StorageDuration Duration = M->getStorageDuration()) {
287       case SD_Static:
288         // Note: we intentionally do not register a cleanup to release
289         // the object on program termination.
290         return;
291 
292       case SD_Thread:
293         // FIXME: We should probably register a cleanup in this case.
294         return;
295 
296       case SD_Automatic:
297       case SD_FullExpression:
298         CodeGenFunction::Destroyer *Destroy;
299         CleanupKind CleanupKind;
300         if (Lifetime == Qualifiers::OCL_Strong) {
301           const ValueDecl *VD = M->getExtendingDecl();
302           bool Precise =
303               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
304           CleanupKind = CGF.getARCCleanupKind();
305           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
306                             : &CodeGenFunction::destroyARCStrongImprecise;
307         } else {
308           // __weak objects always get EH cleanups; otherwise, exceptions
309           // could cause really nasty crashes instead of mere leaks.
310           CleanupKind = NormalAndEHCleanup;
311           Destroy = &CodeGenFunction::destroyARCWeak;
312         }
313         if (Duration == SD_FullExpression)
314           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
315                           M->getType(), *Destroy,
316                           CleanupKind & EHCleanup);
317         else
318           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
319                                           M->getType(),
320                                           *Destroy, CleanupKind & EHCleanup);
321         return;
322 
323       case SD_Dynamic:
324         llvm_unreachable("temporary cannot have dynamic storage duration");
325       }
326       llvm_unreachable("unknown storage duration");
327     }
328   }
329 
330   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
331   if (const RecordType *RT =
332           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
333     // Get the destructor for the reference temporary.
334     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
335     if (!ClassDecl->hasTrivialDestructor())
336       ReferenceTemporaryDtor = ClassDecl->getDestructor();
337   }
338 
339   if (!ReferenceTemporaryDtor)
340     return;
341 
342   // Call the destructor for the temporary.
343   switch (M->getStorageDuration()) {
344   case SD_Static:
345   case SD_Thread: {
346     llvm::FunctionCallee CleanupFn;
347     llvm::Constant *CleanupArg;
348     if (E->getType()->isArrayType()) {
349       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
350           ReferenceTemporary, E->getType(),
351           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
352           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
353       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
354     } else {
355       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
356           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
357       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
358     }
359     CGF.CGM.getCXXABI().registerGlobalDtor(
360         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
361     break;
362   }
363 
364   case SD_FullExpression:
365     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
366                     CodeGenFunction::destroyCXXObject,
367                     CGF.getLangOpts().Exceptions);
368     break;
369 
370   case SD_Automatic:
371     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
372                                     ReferenceTemporary, E->getType(),
373                                     CodeGenFunction::destroyCXXObject,
374                                     CGF.getLangOpts().Exceptions);
375     break;
376 
377   case SD_Dynamic:
378     llvm_unreachable("temporary cannot have dynamic storage duration");
379   }
380 }
381 
382 static Address createReferenceTemporary(CodeGenFunction &CGF,
383                                         const MaterializeTemporaryExpr *M,
384                                         const Expr *Inner,
385                                         Address *Alloca = nullptr) {
386   auto &TCG = CGF.getTargetHooks();
387   switch (M->getStorageDuration()) {
388   case SD_FullExpression:
389   case SD_Automatic: {
390     // If we have a constant temporary array or record try to promote it into a
391     // constant global under the same rules a normal constant would've been
392     // promoted. This is easier on the optimizer and generally emits fewer
393     // instructions.
394     QualType Ty = Inner->getType();
395     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
396         (Ty->isArrayType() || Ty->isRecordType()) &&
397         CGF.CGM.isTypeConstant(Ty, true))
398       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
399         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
400           auto AS = AddrSpace.getValue();
401           auto *GV = new llvm::GlobalVariable(
402               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
403               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
404               llvm::GlobalValue::NotThreadLocal,
405               CGF.getContext().getTargetAddressSpace(AS));
406           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
407           GV->setAlignment(alignment.getAsAlign());
408           llvm::Constant *C = GV;
409           if (AS != LangAS::Default)
410             C = TCG.performAddrSpaceCast(
411                 CGF.CGM, GV, AS, LangAS::Default,
412                 GV->getValueType()->getPointerTo(
413                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
414           // FIXME: Should we put the new global into a COMDAT?
415           return Address(C, alignment);
416         }
417       }
418     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
419   }
420   case SD_Thread:
421   case SD_Static:
422     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
423 
424   case SD_Dynamic:
425     llvm_unreachable("temporary can't have dynamic storage duration");
426   }
427   llvm_unreachable("unknown storage duration");
428 }
429 
430 /// Helper method to check if the underlying ABI is AAPCS
431 static bool isAAPCS(const TargetInfo &TargetInfo) {
432   return TargetInfo.getABI().startswith("aapcs");
433 }
434 
435 LValue CodeGenFunction::
436 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
437   const Expr *E = M->getSubExpr();
438 
439   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
440           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
441          "Reference should never be pseudo-strong!");
442 
443   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
444   // as that will cause the lifetime adjustment to be lost for ARC
445   auto ownership = M->getType().getObjCLifetime();
446   if (ownership != Qualifiers::OCL_None &&
447       ownership != Qualifiers::OCL_ExplicitNone) {
448     Address Object = createReferenceTemporary(*this, M, E);
449     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
450       Object = Address(llvm::ConstantExpr::getBitCast(Var,
451                            ConvertTypeForMem(E->getType())
452                              ->getPointerTo(Object.getAddressSpace())),
453                        Object.getAlignment());
454 
455       // createReferenceTemporary will promote the temporary to a global with a
456       // constant initializer if it can.  It can only do this to a value of
457       // ARC-manageable type if the value is global and therefore "immune" to
458       // ref-counting operations.  Therefore we have no need to emit either a
459       // dynamic initialization or a cleanup and we can just return the address
460       // of the temporary.
461       if (Var->hasInitializer())
462         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
463 
464       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
465     }
466     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
467                                        AlignmentSource::Decl);
468 
469     switch (getEvaluationKind(E->getType())) {
470     default: llvm_unreachable("expected scalar or aggregate expression");
471     case TEK_Scalar:
472       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
473       break;
474     case TEK_Aggregate: {
475       EmitAggExpr(E, AggValueSlot::forAddr(Object,
476                                            E->getType().getQualifiers(),
477                                            AggValueSlot::IsDestructed,
478                                            AggValueSlot::DoesNotNeedGCBarriers,
479                                            AggValueSlot::IsNotAliased,
480                                            AggValueSlot::DoesNotOverlap));
481       break;
482     }
483     }
484 
485     pushTemporaryCleanup(*this, M, E, Object);
486     return RefTempDst;
487   }
488 
489   SmallVector<const Expr *, 2> CommaLHSs;
490   SmallVector<SubobjectAdjustment, 2> Adjustments;
491   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
492 
493   for (const auto &Ignored : CommaLHSs)
494     EmitIgnoredExpr(Ignored);
495 
496   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
497     if (opaque->getType()->isRecordType()) {
498       assert(Adjustments.empty());
499       return EmitOpaqueValueLValue(opaque);
500     }
501   }
502 
503   // Create and initialize the reference temporary.
504   Address Alloca = Address::invalid();
505   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
506   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
507           Object.getPointer()->stripPointerCasts())) {
508     Object = Address(llvm::ConstantExpr::getBitCast(
509                          cast<llvm::Constant>(Object.getPointer()),
510                          ConvertTypeForMem(E->getType())->getPointerTo()),
511                      Object.getAlignment());
512     // If the temporary is a global and has a constant initializer or is a
513     // constant temporary that we promoted to a global, we may have already
514     // initialized it.
515     if (!Var->hasInitializer()) {
516       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
517       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
518     }
519   } else {
520     switch (M->getStorageDuration()) {
521     case SD_Automatic:
522       if (auto *Size = EmitLifetimeStart(
523               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
524               Alloca.getPointer())) {
525         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
526                                                   Alloca, Size);
527       }
528       break;
529 
530     case SD_FullExpression: {
531       if (!ShouldEmitLifetimeMarkers)
532         break;
533 
534       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
535       // marker. Instead, start the lifetime of a conditional temporary earlier
536       // so that it's unconditional. Don't do this with sanitizers which need
537       // more precise lifetime marks.
538       ConditionalEvaluation *OldConditional = nullptr;
539       CGBuilderTy::InsertPoint OldIP;
540       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
541           !SanOpts.has(SanitizerKind::HWAddress) &&
542           !SanOpts.has(SanitizerKind::Memory) &&
543           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
544         OldConditional = OutermostConditional;
545         OutermostConditional = nullptr;
546 
547         OldIP = Builder.saveIP();
548         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
549         Builder.restoreIP(CGBuilderTy::InsertPoint(
550             Block, llvm::BasicBlock::iterator(Block->back())));
551       }
552 
553       if (auto *Size = EmitLifetimeStart(
554               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
555               Alloca.getPointer())) {
556         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
557                                              Size);
558       }
559 
560       if (OldConditional) {
561         OutermostConditional = OldConditional;
562         Builder.restoreIP(OldIP);
563       }
564       break;
565     }
566 
567     default:
568       break;
569     }
570     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
571   }
572   pushTemporaryCleanup(*this, M, E, Object);
573 
574   // Perform derived-to-base casts and/or field accesses, to get from the
575   // temporary object we created (and, potentially, for which we extended
576   // the lifetime) to the subobject we're binding the reference to.
577   for (unsigned I = Adjustments.size(); I != 0; --I) {
578     SubobjectAdjustment &Adjustment = Adjustments[I-1];
579     switch (Adjustment.Kind) {
580     case SubobjectAdjustment::DerivedToBaseAdjustment:
581       Object =
582           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
583                                 Adjustment.DerivedToBase.BasePath->path_begin(),
584                                 Adjustment.DerivedToBase.BasePath->path_end(),
585                                 /*NullCheckValue=*/ false, E->getExprLoc());
586       break;
587 
588     case SubobjectAdjustment::FieldAdjustment: {
589       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
590       LV = EmitLValueForField(LV, Adjustment.Field);
591       assert(LV.isSimple() &&
592              "materialized temporary field is not a simple lvalue");
593       Object = LV.getAddress(*this);
594       break;
595     }
596 
597     case SubobjectAdjustment::MemberPointerAdjustment: {
598       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
599       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
600                                                Adjustment.Ptr.MPT);
601       break;
602     }
603     }
604   }
605 
606   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
607 }
608 
609 RValue
610 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
611   // Emit the expression as an lvalue.
612   LValue LV = EmitLValue(E);
613   assert(LV.isSimple());
614   llvm::Value *Value = LV.getPointer(*this);
615 
616   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
617     // C++11 [dcl.ref]p5 (as amended by core issue 453):
618     //   If a glvalue to which a reference is directly bound designates neither
619     //   an existing object or function of an appropriate type nor a region of
620     //   storage of suitable size and alignment to contain an object of the
621     //   reference's type, the behavior is undefined.
622     QualType Ty = E->getType();
623     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
624   }
625 
626   return RValue::get(Value);
627 }
628 
629 
630 /// getAccessedFieldNo - Given an encoded value and a result number, return the
631 /// input field number being accessed.
632 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
633                                              const llvm::Constant *Elts) {
634   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
635       ->getZExtValue();
636 }
637 
638 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
639 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
640                                     llvm::Value *High) {
641   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
642   llvm::Value *K47 = Builder.getInt64(47);
643   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
644   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
645   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
646   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
647   return Builder.CreateMul(B1, KMul);
648 }
649 
650 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
651   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
652          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
653 }
654 
655 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
656   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
657   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
658          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
659           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
660           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
661 }
662 
663 bool CodeGenFunction::sanitizePerformTypeCheck() const {
664   return SanOpts.has(SanitizerKind::Null) |
665          SanOpts.has(SanitizerKind::Alignment) |
666          SanOpts.has(SanitizerKind::ObjectSize) |
667          SanOpts.has(SanitizerKind::Vptr);
668 }
669 
670 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
671                                     llvm::Value *Ptr, QualType Ty,
672                                     CharUnits Alignment,
673                                     SanitizerSet SkippedChecks,
674                                     llvm::Value *ArraySize) {
675   if (!sanitizePerformTypeCheck())
676     return;
677 
678   // Don't check pointers outside the default address space. The null check
679   // isn't correct, the object-size check isn't supported by LLVM, and we can't
680   // communicate the addresses to the runtime handler for the vptr check.
681   if (Ptr->getType()->getPointerAddressSpace())
682     return;
683 
684   // Don't check pointers to volatile data. The behavior here is implementation-
685   // defined.
686   if (Ty.isVolatileQualified())
687     return;
688 
689   SanitizerScope SanScope(this);
690 
691   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
692   llvm::BasicBlock *Done = nullptr;
693 
694   // Quickly determine whether we have a pointer to an alloca. It's possible
695   // to skip null checks, and some alignment checks, for these pointers. This
696   // can reduce compile-time significantly.
697   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
698 
699   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
700   llvm::Value *IsNonNull = nullptr;
701   bool IsGuaranteedNonNull =
702       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
703   bool AllowNullPointers = isNullPointerAllowed(TCK);
704   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
705       !IsGuaranteedNonNull) {
706     // The glvalue must not be an empty glvalue.
707     IsNonNull = Builder.CreateIsNotNull(Ptr);
708 
709     // The IR builder can constant-fold the null check if the pointer points to
710     // a constant.
711     IsGuaranteedNonNull = IsNonNull == True;
712 
713     // Skip the null check if the pointer is known to be non-null.
714     if (!IsGuaranteedNonNull) {
715       if (AllowNullPointers) {
716         // When performing pointer casts, it's OK if the value is null.
717         // Skip the remaining checks in that case.
718         Done = createBasicBlock("null");
719         llvm::BasicBlock *Rest = createBasicBlock("not.null");
720         Builder.CreateCondBr(IsNonNull, Rest, Done);
721         EmitBlock(Rest);
722       } else {
723         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
724       }
725     }
726   }
727 
728   if (SanOpts.has(SanitizerKind::ObjectSize) &&
729       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
730       !Ty->isIncompleteType()) {
731     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
732     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
733     if (ArraySize)
734       Size = Builder.CreateMul(Size, ArraySize);
735 
736     // Degenerate case: new X[0] does not need an objectsize check.
737     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
738     if (!ConstantSize || !ConstantSize->isNullValue()) {
739       // The glvalue must refer to a large enough storage region.
740       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
741       //        to check this.
742       // FIXME: Get object address space
743       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
744       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
745       llvm::Value *Min = Builder.getFalse();
746       llvm::Value *NullIsUnknown = Builder.getFalse();
747       llvm::Value *Dynamic = Builder.getFalse();
748       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
749       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
750           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
751       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
752     }
753   }
754 
755   uint64_t AlignVal = 0;
756   llvm::Value *PtrAsInt = nullptr;
757 
758   if (SanOpts.has(SanitizerKind::Alignment) &&
759       !SkippedChecks.has(SanitizerKind::Alignment)) {
760     AlignVal = Alignment.getQuantity();
761     if (!Ty->isIncompleteType() && !AlignVal)
762       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
763                                              /*ForPointeeType=*/true)
764                      .getQuantity();
765 
766     // The glvalue must be suitably aligned.
767     if (AlignVal > 1 &&
768         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
769       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
770       llvm::Value *Align = Builder.CreateAnd(
771           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
772       llvm::Value *Aligned =
773           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
774       if (Aligned != True)
775         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
776     }
777   }
778 
779   if (Checks.size() > 0) {
780     // Make sure we're not losing information. Alignment needs to be a power of
781     // 2
782     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
783     llvm::Constant *StaticData[] = {
784         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
785         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
786         llvm::ConstantInt::get(Int8Ty, TCK)};
787     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
788               PtrAsInt ? PtrAsInt : Ptr);
789   }
790 
791   // If possible, check that the vptr indicates that there is a subobject of
792   // type Ty at offset zero within this object.
793   //
794   // C++11 [basic.life]p5,6:
795   //   [For storage which does not refer to an object within its lifetime]
796   //   The program has undefined behavior if:
797   //    -- the [pointer or glvalue] is used to access a non-static data member
798   //       or call a non-static member function
799   if (SanOpts.has(SanitizerKind::Vptr) &&
800       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
801     // Ensure that the pointer is non-null before loading it. If there is no
802     // compile-time guarantee, reuse the run-time null check or emit a new one.
803     if (!IsGuaranteedNonNull) {
804       if (!IsNonNull)
805         IsNonNull = Builder.CreateIsNotNull(Ptr);
806       if (!Done)
807         Done = createBasicBlock("vptr.null");
808       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
809       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
810       EmitBlock(VptrNotNull);
811     }
812 
813     // Compute a hash of the mangled name of the type.
814     //
815     // FIXME: This is not guaranteed to be deterministic! Move to a
816     //        fingerprinting mechanism once LLVM provides one. For the time
817     //        being the implementation happens to be deterministic.
818     SmallString<64> MangledName;
819     llvm::raw_svector_ostream Out(MangledName);
820     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
821                                                      Out);
822 
823     // Blacklist based on the mangled type.
824     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
825             SanitizerKind::Vptr, Out.str())) {
826       llvm::hash_code TypeHash = hash_value(Out.str());
827 
828       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
829       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
830       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
831       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
832       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
833       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
834 
835       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
836       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
837 
838       // Look the hash up in our cache.
839       const int CacheSize = 128;
840       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
841       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
842                                                      "__ubsan_vptr_type_cache");
843       llvm::Value *Slot = Builder.CreateAnd(Hash,
844                                             llvm::ConstantInt::get(IntPtrTy,
845                                                                    CacheSize-1));
846       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
847       llvm::Value *CacheVal =
848         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
849                                   getPointerAlign());
850 
851       // If the hash isn't in the cache, call a runtime handler to perform the
852       // hard work of checking whether the vptr is for an object of the right
853       // type. This will either fill in the cache and return, or produce a
854       // diagnostic.
855       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
856       llvm::Constant *StaticData[] = {
857         EmitCheckSourceLocation(Loc),
858         EmitCheckTypeDescriptor(Ty),
859         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
860         llvm::ConstantInt::get(Int8Ty, TCK)
861       };
862       llvm::Value *DynamicData[] = { Ptr, Hash };
863       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
864                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
865                 DynamicData);
866     }
867   }
868 
869   if (Done) {
870     Builder.CreateBr(Done);
871     EmitBlock(Done);
872   }
873 }
874 
875 /// Determine whether this expression refers to a flexible array member in a
876 /// struct. We disable array bounds checks for such members.
877 static bool isFlexibleArrayMemberExpr(const Expr *E) {
878   // For compatibility with existing code, we treat arrays of length 0 or
879   // 1 as flexible array members.
880   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
881   // the two mechanisms.
882   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
883   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
884     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
885     // was produced by macro expansion.
886     if (CAT->getSize().ugt(1))
887       return false;
888   } else if (!isa<IncompleteArrayType>(AT))
889     return false;
890 
891   E = E->IgnoreParens();
892 
893   // A flexible array member must be the last member in the class.
894   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
895     // FIXME: If the base type of the member expr is not FD->getParent(),
896     // this should not be treated as a flexible array member access.
897     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
898       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
899       // member, only a T[0] or T[] member gets that treatment.
900       if (FD->getParent()->isUnion())
901         return true;
902       RecordDecl::field_iterator FI(
903           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
904       return ++FI == FD->getParent()->field_end();
905     }
906   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
907     return IRE->getDecl()->getNextIvar() == nullptr;
908   }
909 
910   return false;
911 }
912 
913 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
914                                                    QualType EltTy) {
915   ASTContext &C = getContext();
916   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
917   if (!EltSize)
918     return nullptr;
919 
920   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
921   if (!ArrayDeclRef)
922     return nullptr;
923 
924   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
925   if (!ParamDecl)
926     return nullptr;
927 
928   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
929   if (!POSAttr)
930     return nullptr;
931 
932   // Don't load the size if it's a lower bound.
933   int POSType = POSAttr->getType();
934   if (POSType != 0 && POSType != 1)
935     return nullptr;
936 
937   // Find the implicit size parameter.
938   auto PassedSizeIt = SizeArguments.find(ParamDecl);
939   if (PassedSizeIt == SizeArguments.end())
940     return nullptr;
941 
942   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
943   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
944   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
945   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
946                                               C.getSizeType(), E->getExprLoc());
947   llvm::Value *SizeOfElement =
948       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
949   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
950 }
951 
952 /// If Base is known to point to the start of an array, return the length of
953 /// that array. Return 0 if the length cannot be determined.
954 static llvm::Value *getArrayIndexingBound(
955     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
956   // For the vector indexing extension, the bound is the number of elements.
957   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
958     IndexedType = Base->getType();
959     return CGF.Builder.getInt32(VT->getNumElements());
960   }
961 
962   Base = Base->IgnoreParens();
963 
964   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
965     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
966         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
967       IndexedType = CE->getSubExpr()->getType();
968       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
969       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
970         return CGF.Builder.getInt(CAT->getSize());
971       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
972         return CGF.getVLASize(VAT).NumElts;
973       // Ignore pass_object_size here. It's not applicable on decayed pointers.
974     }
975   }
976 
977   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
978   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
979     IndexedType = Base->getType();
980     return POS;
981   }
982 
983   return nullptr;
984 }
985 
986 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
987                                       llvm::Value *Index, QualType IndexType,
988                                       bool Accessed) {
989   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
990          "should not be called unless adding bounds checks");
991   SanitizerScope SanScope(this);
992 
993   QualType IndexedType;
994   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
995   if (!Bound)
996     return;
997 
998   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
999   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1000   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1001 
1002   llvm::Constant *StaticData[] = {
1003     EmitCheckSourceLocation(E->getExprLoc()),
1004     EmitCheckTypeDescriptor(IndexedType),
1005     EmitCheckTypeDescriptor(IndexType)
1006   };
1007   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1008                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1009   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1010             SanitizerHandler::OutOfBounds, StaticData, Index);
1011 }
1012 
1013 
1014 CodeGenFunction::ComplexPairTy CodeGenFunction::
1015 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1016                          bool isInc, bool isPre) {
1017   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1018 
1019   llvm::Value *NextVal;
1020   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1021     uint64_t AmountVal = isInc ? 1 : -1;
1022     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1023 
1024     // Add the inc/dec to the real part.
1025     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1026   } else {
1027     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1028     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1029     if (!isInc)
1030       FVal.changeSign();
1031     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1032 
1033     // Add the inc/dec to the real part.
1034     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1035   }
1036 
1037   ComplexPairTy IncVal(NextVal, InVal.second);
1038 
1039   // Store the updated result through the lvalue.
1040   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1041   if (getLangOpts().OpenMP)
1042     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1043                                                               E->getSubExpr());
1044 
1045   // If this is a postinc, return the value read from memory, otherwise use the
1046   // updated value.
1047   return isPre ? IncVal : InVal;
1048 }
1049 
1050 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1051                                              CodeGenFunction *CGF) {
1052   // Bind VLAs in the cast type.
1053   if (CGF && E->getType()->isVariablyModifiedType())
1054     CGF->EmitVariablyModifiedType(E->getType());
1055 
1056   if (CGDebugInfo *DI = getModuleDebugInfo())
1057     DI->EmitExplicitCastType(E->getType());
1058 }
1059 
1060 //===----------------------------------------------------------------------===//
1061 //                         LValue Expression Emission
1062 //===----------------------------------------------------------------------===//
1063 
1064 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1065 /// derive a more accurate bound on the alignment of the pointer.
1066 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1067                                                   LValueBaseInfo *BaseInfo,
1068                                                   TBAAAccessInfo *TBAAInfo) {
1069   // We allow this with ObjC object pointers because of fragile ABIs.
1070   assert(E->getType()->isPointerType() ||
1071          E->getType()->isObjCObjectPointerType());
1072   E = E->IgnoreParens();
1073 
1074   // Casts:
1075   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1076     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1077       CGM.EmitExplicitCastExprType(ECE, this);
1078 
1079     switch (CE->getCastKind()) {
1080     // Non-converting casts (but not C's implicit conversion from void*).
1081     case CK_BitCast:
1082     case CK_NoOp:
1083     case CK_AddressSpaceConversion:
1084       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1085         if (PtrTy->getPointeeType()->isVoidType())
1086           break;
1087 
1088         LValueBaseInfo InnerBaseInfo;
1089         TBAAAccessInfo InnerTBAAInfo;
1090         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1091                                                 &InnerBaseInfo,
1092                                                 &InnerTBAAInfo);
1093         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1094         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1095 
1096         if (isa<ExplicitCastExpr>(CE)) {
1097           LValueBaseInfo TargetTypeBaseInfo;
1098           TBAAAccessInfo TargetTypeTBAAInfo;
1099           CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1100               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1101           if (TBAAInfo)
1102             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1103                                                  TargetTypeTBAAInfo);
1104           // If the source l-value is opaque, honor the alignment of the
1105           // casted-to type.
1106           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1107             if (BaseInfo)
1108               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1109             Addr = Address(Addr.getPointer(), Align);
1110           }
1111         }
1112 
1113         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1114             CE->getCastKind() == CK_BitCast) {
1115           if (auto PT = E->getType()->getAs<PointerType>())
1116             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1117                                       /*MayBeNull=*/true,
1118                                       CodeGenFunction::CFITCK_UnrelatedCast,
1119                                       CE->getBeginLoc());
1120         }
1121         return CE->getCastKind() != CK_AddressSpaceConversion
1122                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1123                    : Builder.CreateAddrSpaceCast(Addr,
1124                                                  ConvertType(E->getType()));
1125       }
1126       break;
1127 
1128     // Array-to-pointer decay.
1129     case CK_ArrayToPointerDecay:
1130       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1131 
1132     // Derived-to-base conversions.
1133     case CK_UncheckedDerivedToBase:
1134     case CK_DerivedToBase: {
1135       // TODO: Support accesses to members of base classes in TBAA. For now, we
1136       // conservatively pretend that the complete object is of the base class
1137       // type.
1138       if (TBAAInfo)
1139         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1140       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1141       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1142       return GetAddressOfBaseClass(Addr, Derived,
1143                                    CE->path_begin(), CE->path_end(),
1144                                    ShouldNullCheckClassCastValue(CE),
1145                                    CE->getExprLoc());
1146     }
1147 
1148     // TODO: Is there any reason to treat base-to-derived conversions
1149     // specially?
1150     default:
1151       break;
1152     }
1153   }
1154 
1155   // Unary &.
1156   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1157     if (UO->getOpcode() == UO_AddrOf) {
1158       LValue LV = EmitLValue(UO->getSubExpr());
1159       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1160       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1161       return LV.getAddress(*this);
1162     }
1163   }
1164 
1165   // TODO: conditional operators, comma.
1166 
1167   // Otherwise, use the alignment of the type.
1168   CharUnits Align =
1169       CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1170   return Address(EmitScalarExpr(E), Align);
1171 }
1172 
1173 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1174   if (Ty->isVoidType())
1175     return RValue::get(nullptr);
1176 
1177   switch (getEvaluationKind(Ty)) {
1178   case TEK_Complex: {
1179     llvm::Type *EltTy =
1180       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1181     llvm::Value *U = llvm::UndefValue::get(EltTy);
1182     return RValue::getComplex(std::make_pair(U, U));
1183   }
1184 
1185   // If this is a use of an undefined aggregate type, the aggregate must have an
1186   // identifiable address.  Just because the contents of the value are undefined
1187   // doesn't mean that the address can't be taken and compared.
1188   case TEK_Aggregate: {
1189     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1190     return RValue::getAggregate(DestPtr);
1191   }
1192 
1193   case TEK_Scalar:
1194     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1195   }
1196   llvm_unreachable("bad evaluation kind");
1197 }
1198 
1199 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1200                                               const char *Name) {
1201   ErrorUnsupported(E, Name);
1202   return GetUndefRValue(E->getType());
1203 }
1204 
1205 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1206                                               const char *Name) {
1207   ErrorUnsupported(E, Name);
1208   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1209   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1210                         E->getType());
1211 }
1212 
1213 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1214   const Expr *Base = Obj;
1215   while (!isa<CXXThisExpr>(Base)) {
1216     // The result of a dynamic_cast can be null.
1217     if (isa<CXXDynamicCastExpr>(Base))
1218       return false;
1219 
1220     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1221       Base = CE->getSubExpr();
1222     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1223       Base = PE->getSubExpr();
1224     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1225       if (UO->getOpcode() == UO_Extension)
1226         Base = UO->getSubExpr();
1227       else
1228         return false;
1229     } else {
1230       return false;
1231     }
1232   }
1233   return true;
1234 }
1235 
1236 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1237   LValue LV;
1238   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1239     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1240   else
1241     LV = EmitLValue(E);
1242   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1243     SanitizerSet SkippedChecks;
1244     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1245       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1246       if (IsBaseCXXThis)
1247         SkippedChecks.set(SanitizerKind::Alignment, true);
1248       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1249         SkippedChecks.set(SanitizerKind::Null, true);
1250     }
1251     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1252                   LV.getAlignment(), SkippedChecks);
1253   }
1254   return LV;
1255 }
1256 
1257 /// EmitLValue - Emit code to compute a designator that specifies the location
1258 /// of the expression.
1259 ///
1260 /// This can return one of two things: a simple address or a bitfield reference.
1261 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1262 /// an LLVM pointer type.
1263 ///
1264 /// If this returns a bitfield reference, nothing about the pointee type of the
1265 /// LLVM value is known: For example, it may not be a pointer to an integer.
1266 ///
1267 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1268 /// this method guarantees that the returned pointer type will point to an LLVM
1269 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1270 /// length type, this is not possible.
1271 ///
1272 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1273   ApplyDebugLocation DL(*this, E);
1274   switch (E->getStmtClass()) {
1275   default: return EmitUnsupportedLValue(E, "l-value expression");
1276 
1277   case Expr::ObjCPropertyRefExprClass:
1278     llvm_unreachable("cannot emit a property reference directly");
1279 
1280   case Expr::ObjCSelectorExprClass:
1281     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1282   case Expr::ObjCIsaExprClass:
1283     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1284   case Expr::BinaryOperatorClass:
1285     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1286   case Expr::CompoundAssignOperatorClass: {
1287     QualType Ty = E->getType();
1288     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1289       Ty = AT->getValueType();
1290     if (!Ty->isAnyComplexType())
1291       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1292     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1293   }
1294   case Expr::CallExprClass:
1295   case Expr::CXXMemberCallExprClass:
1296   case Expr::CXXOperatorCallExprClass:
1297   case Expr::UserDefinedLiteralClass:
1298     return EmitCallExprLValue(cast<CallExpr>(E));
1299   case Expr::CXXRewrittenBinaryOperatorClass:
1300     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1301   case Expr::VAArgExprClass:
1302     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1303   case Expr::DeclRefExprClass:
1304     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1305   case Expr::ConstantExprClass:
1306     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1307   case Expr::ParenExprClass:
1308     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1309   case Expr::GenericSelectionExprClass:
1310     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1311   case Expr::PredefinedExprClass:
1312     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1313   case Expr::StringLiteralClass:
1314     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1315   case Expr::ObjCEncodeExprClass:
1316     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1317   case Expr::PseudoObjectExprClass:
1318     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1319   case Expr::InitListExprClass:
1320     return EmitInitListLValue(cast<InitListExpr>(E));
1321   case Expr::CXXTemporaryObjectExprClass:
1322   case Expr::CXXConstructExprClass:
1323     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1324   case Expr::CXXBindTemporaryExprClass:
1325     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1326   case Expr::CXXUuidofExprClass:
1327     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1328   case Expr::LambdaExprClass:
1329     return EmitAggExprToLValue(E);
1330 
1331   case Expr::ExprWithCleanupsClass: {
1332     const auto *cleanups = cast<ExprWithCleanups>(E);
1333     enterFullExpression(cleanups);
1334     RunCleanupsScope Scope(*this);
1335     LValue LV = EmitLValue(cleanups->getSubExpr());
1336     if (LV.isSimple()) {
1337       // Defend against branches out of gnu statement expressions surrounded by
1338       // cleanups.
1339       llvm::Value *V = LV.getPointer(*this);
1340       Scope.ForceCleanup({&V});
1341       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1342                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1343     }
1344     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1345     // bitfield lvalue or some other non-simple lvalue?
1346     return LV;
1347   }
1348 
1349   case Expr::CXXDefaultArgExprClass: {
1350     auto *DAE = cast<CXXDefaultArgExpr>(E);
1351     CXXDefaultArgExprScope Scope(*this, DAE);
1352     return EmitLValue(DAE->getExpr());
1353   }
1354   case Expr::CXXDefaultInitExprClass: {
1355     auto *DIE = cast<CXXDefaultInitExpr>(E);
1356     CXXDefaultInitExprScope Scope(*this, DIE);
1357     return EmitLValue(DIE->getExpr());
1358   }
1359   case Expr::CXXTypeidExprClass:
1360     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1361 
1362   case Expr::ObjCMessageExprClass:
1363     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1364   case Expr::ObjCIvarRefExprClass:
1365     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1366   case Expr::StmtExprClass:
1367     return EmitStmtExprLValue(cast<StmtExpr>(E));
1368   case Expr::UnaryOperatorClass:
1369     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1370   case Expr::ArraySubscriptExprClass:
1371     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1372   case Expr::OMPArraySectionExprClass:
1373     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1374   case Expr::ExtVectorElementExprClass:
1375     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1376   case Expr::MemberExprClass:
1377     return EmitMemberExpr(cast<MemberExpr>(E));
1378   case Expr::CompoundLiteralExprClass:
1379     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1380   case Expr::ConditionalOperatorClass:
1381     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1382   case Expr::BinaryConditionalOperatorClass:
1383     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1384   case Expr::ChooseExprClass:
1385     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1386   case Expr::OpaqueValueExprClass:
1387     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1388   case Expr::SubstNonTypeTemplateParmExprClass:
1389     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1390   case Expr::ImplicitCastExprClass:
1391   case Expr::CStyleCastExprClass:
1392   case Expr::CXXFunctionalCastExprClass:
1393   case Expr::CXXStaticCastExprClass:
1394   case Expr::CXXDynamicCastExprClass:
1395   case Expr::CXXReinterpretCastExprClass:
1396   case Expr::CXXConstCastExprClass:
1397   case Expr::CXXAddrspaceCastExprClass:
1398   case Expr::ObjCBridgedCastExprClass:
1399     return EmitCastLValue(cast<CastExpr>(E));
1400 
1401   case Expr::MaterializeTemporaryExprClass:
1402     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1403 
1404   case Expr::CoawaitExprClass:
1405     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1406   case Expr::CoyieldExprClass:
1407     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1408   }
1409 }
1410 
1411 /// Given an object of the given canonical type, can we safely copy a
1412 /// value out of it based on its initializer?
1413 static bool isConstantEmittableObjectType(QualType type) {
1414   assert(type.isCanonical());
1415   assert(!type->isReferenceType());
1416 
1417   // Must be const-qualified but non-volatile.
1418   Qualifiers qs = type.getLocalQualifiers();
1419   if (!qs.hasConst() || qs.hasVolatile()) return false;
1420 
1421   // Otherwise, all object types satisfy this except C++ classes with
1422   // mutable subobjects or non-trivial copy/destroy behavior.
1423   if (const auto *RT = dyn_cast<RecordType>(type))
1424     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1425       if (RD->hasMutableFields() || !RD->isTrivial())
1426         return false;
1427 
1428   return true;
1429 }
1430 
1431 /// Can we constant-emit a load of a reference to a variable of the
1432 /// given type?  This is different from predicates like
1433 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1434 /// in situations that don't necessarily satisfy the language's rules
1435 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1436 /// to do this with const float variables even if those variables
1437 /// aren't marked 'constexpr'.
1438 enum ConstantEmissionKind {
1439   CEK_None,
1440   CEK_AsReferenceOnly,
1441   CEK_AsValueOrReference,
1442   CEK_AsValueOnly
1443 };
1444 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1445   type = type.getCanonicalType();
1446   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1447     if (isConstantEmittableObjectType(ref->getPointeeType()))
1448       return CEK_AsValueOrReference;
1449     return CEK_AsReferenceOnly;
1450   }
1451   if (isConstantEmittableObjectType(type))
1452     return CEK_AsValueOnly;
1453   return CEK_None;
1454 }
1455 
1456 /// Try to emit a reference to the given value without producing it as
1457 /// an l-value.  This is just an optimization, but it avoids us needing
1458 /// to emit global copies of variables if they're named without triggering
1459 /// a formal use in a context where we can't emit a direct reference to them,
1460 /// for instance if a block or lambda or a member of a local class uses a
1461 /// const int variable or constexpr variable from an enclosing function.
1462 CodeGenFunction::ConstantEmission
1463 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1464   ValueDecl *value = refExpr->getDecl();
1465 
1466   // The value needs to be an enum constant or a constant variable.
1467   ConstantEmissionKind CEK;
1468   if (isa<ParmVarDecl>(value)) {
1469     CEK = CEK_None;
1470   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1471     CEK = checkVarTypeForConstantEmission(var->getType());
1472   } else if (isa<EnumConstantDecl>(value)) {
1473     CEK = CEK_AsValueOnly;
1474   } else {
1475     CEK = CEK_None;
1476   }
1477   if (CEK == CEK_None) return ConstantEmission();
1478 
1479   Expr::EvalResult result;
1480   bool resultIsReference;
1481   QualType resultType;
1482 
1483   // It's best to evaluate all the way as an r-value if that's permitted.
1484   if (CEK != CEK_AsReferenceOnly &&
1485       refExpr->EvaluateAsRValue(result, getContext())) {
1486     resultIsReference = false;
1487     resultType = refExpr->getType();
1488 
1489   // Otherwise, try to evaluate as an l-value.
1490   } else if (CEK != CEK_AsValueOnly &&
1491              refExpr->EvaluateAsLValue(result, getContext())) {
1492     resultIsReference = true;
1493     resultType = value->getType();
1494 
1495   // Failure.
1496   } else {
1497     return ConstantEmission();
1498   }
1499 
1500   // In any case, if the initializer has side-effects, abandon ship.
1501   if (result.HasSideEffects)
1502     return ConstantEmission();
1503 
1504   // Emit as a constant.
1505   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1506                                                result.Val, resultType);
1507 
1508   // Make sure we emit a debug reference to the global variable.
1509   // This should probably fire even for
1510   if (isa<VarDecl>(value)) {
1511     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1512       EmitDeclRefExprDbgValue(refExpr, result.Val);
1513   } else {
1514     assert(isa<EnumConstantDecl>(value));
1515     EmitDeclRefExprDbgValue(refExpr, result.Val);
1516   }
1517 
1518   // If we emitted a reference constant, we need to dereference that.
1519   if (resultIsReference)
1520     return ConstantEmission::forReference(C);
1521 
1522   return ConstantEmission::forValue(C);
1523 }
1524 
1525 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1526                                                         const MemberExpr *ME) {
1527   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1528     // Try to emit static variable member expressions as DREs.
1529     return DeclRefExpr::Create(
1530         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1531         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1532         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1533   }
1534   return nullptr;
1535 }
1536 
1537 CodeGenFunction::ConstantEmission
1538 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1539   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1540     return tryEmitAsConstant(DRE);
1541   return ConstantEmission();
1542 }
1543 
1544 llvm::Value *CodeGenFunction::emitScalarConstant(
1545     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1546   assert(Constant && "not a constant");
1547   if (Constant.isReference())
1548     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1549                             E->getExprLoc())
1550         .getScalarVal();
1551   return Constant.getValue();
1552 }
1553 
1554 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1555                                                SourceLocation Loc) {
1556   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1557                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1558                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1559 }
1560 
1561 static bool hasBooleanRepresentation(QualType Ty) {
1562   if (Ty->isBooleanType())
1563     return true;
1564 
1565   if (const EnumType *ET = Ty->getAs<EnumType>())
1566     return ET->getDecl()->getIntegerType()->isBooleanType();
1567 
1568   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1569     return hasBooleanRepresentation(AT->getValueType());
1570 
1571   return false;
1572 }
1573 
1574 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1575                             llvm::APInt &Min, llvm::APInt &End,
1576                             bool StrictEnums, bool IsBool) {
1577   const EnumType *ET = Ty->getAs<EnumType>();
1578   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1579                                 ET && !ET->getDecl()->isFixed();
1580   if (!IsBool && !IsRegularCPlusPlusEnum)
1581     return false;
1582 
1583   if (IsBool) {
1584     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1585     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1586   } else {
1587     const EnumDecl *ED = ET->getDecl();
1588     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1589     unsigned Bitwidth = LTy->getScalarSizeInBits();
1590     unsigned NumNegativeBits = ED->getNumNegativeBits();
1591     unsigned NumPositiveBits = ED->getNumPositiveBits();
1592 
1593     if (NumNegativeBits) {
1594       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1595       assert(NumBits <= Bitwidth);
1596       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1597       Min = -End;
1598     } else {
1599       assert(NumPositiveBits <= Bitwidth);
1600       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1601       Min = llvm::APInt(Bitwidth, 0);
1602     }
1603   }
1604   return true;
1605 }
1606 
1607 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1608   llvm::APInt Min, End;
1609   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1610                        hasBooleanRepresentation(Ty)))
1611     return nullptr;
1612 
1613   llvm::MDBuilder MDHelper(getLLVMContext());
1614   return MDHelper.createRange(Min, End);
1615 }
1616 
1617 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1618                                            SourceLocation Loc) {
1619   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1620   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1621   if (!HasBoolCheck && !HasEnumCheck)
1622     return false;
1623 
1624   bool IsBool = hasBooleanRepresentation(Ty) ||
1625                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1626   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1627   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1628   if (!NeedsBoolCheck && !NeedsEnumCheck)
1629     return false;
1630 
1631   // Single-bit booleans don't need to be checked. Special-case this to avoid
1632   // a bit width mismatch when handling bitfield values. This is handled by
1633   // EmitFromMemory for the non-bitfield case.
1634   if (IsBool &&
1635       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1636     return false;
1637 
1638   llvm::APInt Min, End;
1639   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1640     return true;
1641 
1642   auto &Ctx = getLLVMContext();
1643   SanitizerScope SanScope(this);
1644   llvm::Value *Check;
1645   --End;
1646   if (!Min) {
1647     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1648   } else {
1649     llvm::Value *Upper =
1650         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1651     llvm::Value *Lower =
1652         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1653     Check = Builder.CreateAnd(Upper, Lower);
1654   }
1655   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1656                                   EmitCheckTypeDescriptor(Ty)};
1657   SanitizerMask Kind =
1658       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1659   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1660             StaticArgs, EmitCheckValue(Value));
1661   return true;
1662 }
1663 
1664 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1665                                                QualType Ty,
1666                                                SourceLocation Loc,
1667                                                LValueBaseInfo BaseInfo,
1668                                                TBAAAccessInfo TBAAInfo,
1669                                                bool isNontemporal) {
1670   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1671     // For better performance, handle vector loads differently.
1672     if (Ty->isVectorType()) {
1673       const llvm::Type *EltTy = Addr.getElementType();
1674 
1675       const auto *VTy = cast<llvm::VectorType>(EltTy);
1676 
1677       // Handle vectors of size 3 like size 4 for better performance.
1678       if (VTy->getNumElements() == 3) {
1679 
1680         // Bitcast to vec4 type.
1681         auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
1682         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1683         // Now load value.
1684         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1685 
1686         // Shuffle vector to get vec3.
1687         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1688                                         ArrayRef<int>{0, 1, 2}, "extractVec");
1689         return EmitFromMemory(V, Ty);
1690       }
1691     }
1692   }
1693 
1694   // Atomic operations have to be done on integral types.
1695   LValue AtomicLValue =
1696       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1697   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1698     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1699   }
1700 
1701   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1702   if (isNontemporal) {
1703     llvm::MDNode *Node = llvm::MDNode::get(
1704         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1705     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1706   }
1707 
1708   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1709 
1710   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1711     // In order to prevent the optimizer from throwing away the check, don't
1712     // attach range metadata to the load.
1713   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1714     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1715       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1716 
1717   return EmitFromMemory(Load, Ty);
1718 }
1719 
1720 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1721   // Bool has a different representation in memory than in registers.
1722   if (hasBooleanRepresentation(Ty)) {
1723     // This should really always be an i1, but sometimes it's already
1724     // an i8, and it's awkward to track those cases down.
1725     if (Value->getType()->isIntegerTy(1))
1726       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1727     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1728            "wrong value rep of bool");
1729   }
1730 
1731   return Value;
1732 }
1733 
1734 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1735   // Bool has a different representation in memory than in registers.
1736   if (hasBooleanRepresentation(Ty)) {
1737     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1738            "wrong value rep of bool");
1739     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1740   }
1741 
1742   return Value;
1743 }
1744 
1745 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1746 // MatrixType), if it points to a array (the memory type of MatrixType).
1747 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1748                                          bool IsVector = true) {
1749   auto *ArrayTy = dyn_cast<llvm::ArrayType>(
1750       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1751   if (ArrayTy && IsVector) {
1752     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1753                                                 ArrayTy->getNumElements());
1754 
1755     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1756   }
1757   auto *VectorTy = dyn_cast<llvm::VectorType>(
1758       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1759   if (VectorTy && !IsVector) {
1760     auto *ArrayTy = llvm::ArrayType::get(VectorTy->getElementType(),
1761                                          VectorTy->getNumElements());
1762 
1763     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1764   }
1765 
1766   return Addr;
1767 }
1768 
1769 // Emit a store of a matrix LValue. This may require casting the original
1770 // pointer to memory address (ArrayType) to a pointer to the value type
1771 // (VectorType).
1772 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1773                                     bool isInit, CodeGenFunction &CGF) {
1774   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1775                                            value->getType()->isVectorTy());
1776   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1777                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1778                         lvalue.isNontemporal());
1779 }
1780 
1781 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1782                                         bool Volatile, QualType Ty,
1783                                         LValueBaseInfo BaseInfo,
1784                                         TBAAAccessInfo TBAAInfo,
1785                                         bool isInit, bool isNontemporal) {
1786   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1787     // Handle vectors differently to get better performance.
1788     if (Ty->isVectorType()) {
1789       llvm::Type *SrcTy = Value->getType();
1790       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1791       // Handle vec3 special.
1792       if (VecTy && VecTy->getNumElements() == 3) {
1793         // Our source is a vec3, do a shuffle vector to make it a vec4.
1794         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1795                                             ArrayRef<int>{0, 1, 2, -1},
1796                                             "extractVec");
1797         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1798       }
1799       if (Addr.getElementType() != SrcTy) {
1800         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1801       }
1802     }
1803   }
1804 
1805   Value = EmitToMemory(Value, Ty);
1806 
1807   LValue AtomicLValue =
1808       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1809   if (Ty->isAtomicType() ||
1810       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1811     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1812     return;
1813   }
1814 
1815   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1816   if (isNontemporal) {
1817     llvm::MDNode *Node =
1818         llvm::MDNode::get(Store->getContext(),
1819                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1820     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1821   }
1822 
1823   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1824 }
1825 
1826 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1827                                         bool isInit) {
1828   if (lvalue.getType()->isConstantMatrixType()) {
1829     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1830     return;
1831   }
1832 
1833   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1834                     lvalue.getType(), lvalue.getBaseInfo(),
1835                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1836 }
1837 
1838 // Emit a load of a LValue of matrix type. This may require casting the pointer
1839 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1840 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1841                                      CodeGenFunction &CGF) {
1842   assert(LV.getType()->isConstantMatrixType());
1843   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1844   LV.setAddress(Addr);
1845   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1846 }
1847 
1848 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1849 /// method emits the address of the lvalue, then loads the result as an rvalue,
1850 /// returning the rvalue.
1851 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1852   if (LV.isObjCWeak()) {
1853     // load of a __weak object.
1854     Address AddrWeakObj = LV.getAddress(*this);
1855     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1856                                                              AddrWeakObj));
1857   }
1858   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1859     // In MRC mode, we do a load+autorelease.
1860     if (!getLangOpts().ObjCAutoRefCount) {
1861       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1862     }
1863 
1864     // In ARC mode, we load retained and then consume the value.
1865     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1866     Object = EmitObjCConsumeObject(LV.getType(), Object);
1867     return RValue::get(Object);
1868   }
1869 
1870   if (LV.isSimple()) {
1871     assert(!LV.getType()->isFunctionType());
1872 
1873     if (LV.getType()->isConstantMatrixType())
1874       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1875 
1876     // Everything needs a load.
1877     return RValue::get(EmitLoadOfScalar(LV, Loc));
1878   }
1879 
1880   if (LV.isVectorElt()) {
1881     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1882                                               LV.isVolatileQualified());
1883     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1884                                                     "vecext"));
1885   }
1886 
1887   // If this is a reference to a subset of the elements of a vector, either
1888   // shuffle the input or extract/insert them as appropriate.
1889   if (LV.isExtVectorElt())
1890     return EmitLoadOfExtVectorElementLValue(LV);
1891 
1892   // Global Register variables always invoke intrinsics
1893   if (LV.isGlobalReg())
1894     return EmitLoadOfGlobalRegLValue(LV);
1895 
1896   assert(LV.isBitField() && "Unknown LValue type!");
1897   return EmitLoadOfBitfieldLValue(LV, Loc);
1898 }
1899 
1900 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1901                                                  SourceLocation Loc) {
1902   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1903 
1904   // Get the output type.
1905   llvm::Type *ResLTy = ConvertType(LV.getType());
1906 
1907   Address Ptr = LV.getBitFieldAddress();
1908   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1909 
1910   if (Info.IsSigned) {
1911     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1912     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1913     if (HighBits)
1914       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1915     if (Info.Offset + HighBits)
1916       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1917   } else {
1918     if (Info.Offset)
1919       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1920     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1921       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1922                                                               Info.Size),
1923                               "bf.clear");
1924   }
1925   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1926   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1927   return RValue::get(Val);
1928 }
1929 
1930 // If this is a reference to a subset of the elements of a vector, create an
1931 // appropriate shufflevector.
1932 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1933   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1934                                         LV.isVolatileQualified());
1935 
1936   const llvm::Constant *Elts = LV.getExtVectorElts();
1937 
1938   // If the result of the expression is a non-vector type, we must be extracting
1939   // a single element.  Just codegen as an extractelement.
1940   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1941   if (!ExprVT) {
1942     unsigned InIdx = getAccessedFieldNo(0, Elts);
1943     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1944     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1945   }
1946 
1947   // Always use shuffle vector to try to retain the original program structure
1948   unsigned NumResultElts = ExprVT->getNumElements();
1949 
1950   SmallVector<int, 4> Mask;
1951   for (unsigned i = 0; i != NumResultElts; ++i)
1952     Mask.push_back(getAccessedFieldNo(i, Elts));
1953 
1954   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1955                                     Mask);
1956   return RValue::get(Vec);
1957 }
1958 
1959 /// Generates lvalue for partial ext_vector access.
1960 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1961   Address VectorAddress = LV.getExtVectorAddress();
1962   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
1963   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1964 
1965   Address CastToPointerElement =
1966     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1967                                  "conv.ptr.element");
1968 
1969   const llvm::Constant *Elts = LV.getExtVectorElts();
1970   unsigned ix = getAccessedFieldNo(0, Elts);
1971 
1972   Address VectorBasePtrPlusIx =
1973     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1974                                    "vector.elt");
1975 
1976   return VectorBasePtrPlusIx;
1977 }
1978 
1979 /// Load of global gamed gegisters are always calls to intrinsics.
1980 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1981   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1982          "Bad type for register variable");
1983   llvm::MDNode *RegName = cast<llvm::MDNode>(
1984       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1985 
1986   // We accept integer and pointer types only
1987   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1988   llvm::Type *Ty = OrigTy;
1989   if (OrigTy->isPointerTy())
1990     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1991   llvm::Type *Types[] = { Ty };
1992 
1993   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1994   llvm::Value *Call = Builder.CreateCall(
1995       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1996   if (OrigTy->isPointerTy())
1997     Call = Builder.CreateIntToPtr(Call, OrigTy);
1998   return RValue::get(Call);
1999 }
2000 
2001 
2002 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2003 /// lvalue, where both are guaranteed to the have the same type, and that type
2004 /// is 'Ty'.
2005 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2006                                              bool isInit) {
2007   if (!Dst.isSimple()) {
2008     if (Dst.isVectorElt()) {
2009       // Read/modify/write the vector, inserting the new element.
2010       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2011                                             Dst.isVolatileQualified());
2012       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2013                                         Dst.getVectorIdx(), "vecins");
2014       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2015                           Dst.isVolatileQualified());
2016       return;
2017     }
2018 
2019     // If this is an update of extended vector elements, insert them as
2020     // appropriate.
2021     if (Dst.isExtVectorElt())
2022       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2023 
2024     if (Dst.isGlobalReg())
2025       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2026 
2027     assert(Dst.isBitField() && "Unknown LValue type");
2028     return EmitStoreThroughBitfieldLValue(Src, Dst);
2029   }
2030 
2031   // There's special magic for assigning into an ARC-qualified l-value.
2032   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2033     switch (Lifetime) {
2034     case Qualifiers::OCL_None:
2035       llvm_unreachable("present but none");
2036 
2037     case Qualifiers::OCL_ExplicitNone:
2038       // nothing special
2039       break;
2040 
2041     case Qualifiers::OCL_Strong:
2042       if (isInit) {
2043         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2044         break;
2045       }
2046       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2047       return;
2048 
2049     case Qualifiers::OCL_Weak:
2050       if (isInit)
2051         // Initialize and then skip the primitive store.
2052         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2053       else
2054         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2055                          /*ignore*/ true);
2056       return;
2057 
2058     case Qualifiers::OCL_Autoreleasing:
2059       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2060                                                      Src.getScalarVal()));
2061       // fall into the normal path
2062       break;
2063     }
2064   }
2065 
2066   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2067     // load of a __weak object.
2068     Address LvalueDst = Dst.getAddress(*this);
2069     llvm::Value *src = Src.getScalarVal();
2070      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2071     return;
2072   }
2073 
2074   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2075     // load of a __strong object.
2076     Address LvalueDst = Dst.getAddress(*this);
2077     llvm::Value *src = Src.getScalarVal();
2078     if (Dst.isObjCIvar()) {
2079       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2080       llvm::Type *ResultType = IntPtrTy;
2081       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2082       llvm::Value *RHS = dst.getPointer();
2083       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2084       llvm::Value *LHS =
2085         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2086                                "sub.ptr.lhs.cast");
2087       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2088       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2089                                               BytesBetween);
2090     } else if (Dst.isGlobalObjCRef()) {
2091       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2092                                                 Dst.isThreadLocalRef());
2093     }
2094     else
2095       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2096     return;
2097   }
2098 
2099   assert(Src.isScalar() && "Can't emit an agg store with this method");
2100   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2101 }
2102 
2103 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2104                                                      llvm::Value **Result) {
2105   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2106   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2107   Address Ptr = Dst.getBitFieldAddress();
2108 
2109   // Get the source value, truncated to the width of the bit-field.
2110   llvm::Value *SrcVal = Src.getScalarVal();
2111 
2112   // Cast the source to the storage type and shift it into place.
2113   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2114                                  /*isSigned=*/false);
2115   llvm::Value *MaskedVal = SrcVal;
2116 
2117   // See if there are other bits in the bitfield's storage we'll need to load
2118   // and mask together with source before storing.
2119   if (Info.StorageSize != Info.Size) {
2120     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2121     llvm::Value *Val =
2122       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2123 
2124     // Mask the source value as needed.
2125     if (!hasBooleanRepresentation(Dst.getType()))
2126       SrcVal = Builder.CreateAnd(SrcVal,
2127                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2128                                                             Info.Size),
2129                                  "bf.value");
2130     MaskedVal = SrcVal;
2131     if (Info.Offset)
2132       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2133 
2134     // Mask out the original value.
2135     Val = Builder.CreateAnd(Val,
2136                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2137                                                      Info.Offset,
2138                                                      Info.Offset + Info.Size),
2139                             "bf.clear");
2140 
2141     // Or together the unchanged values and the source value.
2142     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2143   } else {
2144     assert(Info.Offset == 0);
2145     // According to the AACPS:
2146     // When a volatile bit-field is written, and its container does not overlap
2147     // with any non-bit-field member, its container must be read exactly once and
2148     // written exactly once using the access width appropriate to the type of the
2149     // container. The two accesses are not atomic.
2150     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2151         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2152       Builder.CreateLoad(Ptr, true, "bf.load");
2153   }
2154 
2155   // Write the new value back out.
2156   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2157 
2158   // Return the new value of the bit-field, if requested.
2159   if (Result) {
2160     llvm::Value *ResultVal = MaskedVal;
2161 
2162     // Sign extend the value if needed.
2163     if (Info.IsSigned) {
2164       assert(Info.Size <= Info.StorageSize);
2165       unsigned HighBits = Info.StorageSize - Info.Size;
2166       if (HighBits) {
2167         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2168         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2169       }
2170     }
2171 
2172     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2173                                       "bf.result.cast");
2174     *Result = EmitFromMemory(ResultVal, Dst.getType());
2175   }
2176 }
2177 
2178 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2179                                                                LValue Dst) {
2180   // This access turns into a read/modify/write of the vector.  Load the input
2181   // value now.
2182   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2183                                         Dst.isVolatileQualified());
2184   const llvm::Constant *Elts = Dst.getExtVectorElts();
2185 
2186   llvm::Value *SrcVal = Src.getScalarVal();
2187 
2188   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2189     unsigned NumSrcElts = VTy->getNumElements();
2190     unsigned NumDstElts =
2191         cast<llvm::VectorType>(Vec->getType())->getNumElements();
2192     if (NumDstElts == NumSrcElts) {
2193       // Use shuffle vector is the src and destination are the same number of
2194       // elements and restore the vector mask since it is on the side it will be
2195       // stored.
2196       SmallVector<int, 4> Mask(NumDstElts);
2197       for (unsigned i = 0; i != NumSrcElts; ++i)
2198         Mask[getAccessedFieldNo(i, Elts)] = i;
2199 
2200       Vec = Builder.CreateShuffleVector(
2201           SrcVal, llvm::UndefValue::get(Vec->getType()), Mask);
2202     } else if (NumDstElts > NumSrcElts) {
2203       // Extended the source vector to the same length and then shuffle it
2204       // into the destination.
2205       // FIXME: since we're shuffling with undef, can we just use the indices
2206       //        into that?  This could be simpler.
2207       SmallVector<int, 4> ExtMask;
2208       for (unsigned i = 0; i != NumSrcElts; ++i)
2209         ExtMask.push_back(i);
2210       ExtMask.resize(NumDstElts, -1);
2211       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(
2212           SrcVal, llvm::UndefValue::get(SrcVal->getType()), ExtMask);
2213       // build identity
2214       SmallVector<int, 4> Mask;
2215       for (unsigned i = 0; i != NumDstElts; ++i)
2216         Mask.push_back(i);
2217 
2218       // When the vector size is odd and .odd or .hi is used, the last element
2219       // of the Elts constant array will be one past the size of the vector.
2220       // Ignore the last element here, if it is greater than the mask size.
2221       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2222         NumSrcElts--;
2223 
2224       // modify when what gets shuffled in
2225       for (unsigned i = 0; i != NumSrcElts; ++i)
2226         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2227       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2228     } else {
2229       // We should never shorten the vector
2230       llvm_unreachable("unexpected shorten vector length");
2231     }
2232   } else {
2233     // If the Src is a scalar (not a vector) it must be updating one element.
2234     unsigned InIdx = getAccessedFieldNo(0, Elts);
2235     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2236     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2237   }
2238 
2239   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2240                       Dst.isVolatileQualified());
2241 }
2242 
2243 /// Store of global named registers are always calls to intrinsics.
2244 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2245   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2246          "Bad type for register variable");
2247   llvm::MDNode *RegName = cast<llvm::MDNode>(
2248       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2249   assert(RegName && "Register LValue is not metadata");
2250 
2251   // We accept integer and pointer types only
2252   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2253   llvm::Type *Ty = OrigTy;
2254   if (OrigTy->isPointerTy())
2255     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2256   llvm::Type *Types[] = { Ty };
2257 
2258   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2259   llvm::Value *Value = Src.getScalarVal();
2260   if (OrigTy->isPointerTy())
2261     Value = Builder.CreatePtrToInt(Value, Ty);
2262   Builder.CreateCall(
2263       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2264 }
2265 
2266 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2267 // generating write-barries API. It is currently a global, ivar,
2268 // or neither.
2269 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2270                                  LValue &LV,
2271                                  bool IsMemberAccess=false) {
2272   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2273     return;
2274 
2275   if (isa<ObjCIvarRefExpr>(E)) {
2276     QualType ExpTy = E->getType();
2277     if (IsMemberAccess && ExpTy->isPointerType()) {
2278       // If ivar is a structure pointer, assigning to field of
2279       // this struct follows gcc's behavior and makes it a non-ivar
2280       // writer-barrier conservatively.
2281       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2282       if (ExpTy->isRecordType()) {
2283         LV.setObjCIvar(false);
2284         return;
2285       }
2286     }
2287     LV.setObjCIvar(true);
2288     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2289     LV.setBaseIvarExp(Exp->getBase());
2290     LV.setObjCArray(E->getType()->isArrayType());
2291     return;
2292   }
2293 
2294   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2295     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2296       if (VD->hasGlobalStorage()) {
2297         LV.setGlobalObjCRef(true);
2298         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2299       }
2300     }
2301     LV.setObjCArray(E->getType()->isArrayType());
2302     return;
2303   }
2304 
2305   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2306     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2307     return;
2308   }
2309 
2310   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2311     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2312     if (LV.isObjCIvar()) {
2313       // If cast is to a structure pointer, follow gcc's behavior and make it
2314       // a non-ivar write-barrier.
2315       QualType ExpTy = E->getType();
2316       if (ExpTy->isPointerType())
2317         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2318       if (ExpTy->isRecordType())
2319         LV.setObjCIvar(false);
2320     }
2321     return;
2322   }
2323 
2324   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2325     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2326     return;
2327   }
2328 
2329   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2330     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2331     return;
2332   }
2333 
2334   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2335     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2336     return;
2337   }
2338 
2339   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2340     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2341     return;
2342   }
2343 
2344   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2345     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2346     if (LV.isObjCIvar() && !LV.isObjCArray())
2347       // Using array syntax to assigning to what an ivar points to is not
2348       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2349       LV.setObjCIvar(false);
2350     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2351       // Using array syntax to assigning to what global points to is not
2352       // same as assigning to the global itself. {id *G;} G[i] = 0;
2353       LV.setGlobalObjCRef(false);
2354     return;
2355   }
2356 
2357   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2358     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2359     // We don't know if member is an 'ivar', but this flag is looked at
2360     // only in the context of LV.isObjCIvar().
2361     LV.setObjCArray(E->getType()->isArrayType());
2362     return;
2363   }
2364 }
2365 
2366 static llvm::Value *
2367 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2368                                 llvm::Value *V, llvm::Type *IRType,
2369                                 StringRef Name = StringRef()) {
2370   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2371   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2372 }
2373 
2374 static LValue EmitThreadPrivateVarDeclLValue(
2375     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2376     llvm::Type *RealVarTy, SourceLocation Loc) {
2377   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2378   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2379   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2380 }
2381 
2382 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2383                                            const VarDecl *VD, QualType T) {
2384   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2385       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2386   // Return an invalid address if variable is MT_To and unified
2387   // memory is not enabled. For all other cases: MT_Link and
2388   // MT_To with unified memory, return a valid address.
2389   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2390                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2391     return Address::invalid();
2392   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2393           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2394            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2395          "Expected link clause OR to clause with unified memory enabled.");
2396   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2397   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2398   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2399 }
2400 
2401 Address
2402 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2403                                      LValueBaseInfo *PointeeBaseInfo,
2404                                      TBAAAccessInfo *PointeeTBAAInfo) {
2405   llvm::LoadInst *Load =
2406       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2407   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2408 
2409   CharUnits Align = CGM.getNaturalTypeAlignment(
2410       RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo,
2411       /* forPointeeType= */ true);
2412   return Address(Load, Align);
2413 }
2414 
2415 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2416   LValueBaseInfo PointeeBaseInfo;
2417   TBAAAccessInfo PointeeTBAAInfo;
2418   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2419                                             &PointeeTBAAInfo);
2420   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2421                         PointeeBaseInfo, PointeeTBAAInfo);
2422 }
2423 
2424 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2425                                            const PointerType *PtrTy,
2426                                            LValueBaseInfo *BaseInfo,
2427                                            TBAAAccessInfo *TBAAInfo) {
2428   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2429   return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
2430                                                    BaseInfo, TBAAInfo,
2431                                                    /*forPointeeType=*/true));
2432 }
2433 
2434 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2435                                                 const PointerType *PtrTy) {
2436   LValueBaseInfo BaseInfo;
2437   TBAAAccessInfo TBAAInfo;
2438   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2439   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2440 }
2441 
2442 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2443                                       const Expr *E, const VarDecl *VD) {
2444   QualType T = E->getType();
2445 
2446   // If it's thread_local, emit a call to its wrapper function instead.
2447   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2448       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2449     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2450   // Check if the variable is marked as declare target with link clause in
2451   // device codegen.
2452   if (CGF.getLangOpts().OpenMPIsDevice) {
2453     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2454     if (Addr.isValid())
2455       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2456   }
2457 
2458   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2459   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2460   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2461   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2462   Address Addr(V, Alignment);
2463   // Emit reference to the private copy of the variable if it is an OpenMP
2464   // threadprivate variable.
2465   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2466       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2467     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2468                                           E->getExprLoc());
2469   }
2470   LValue LV = VD->getType()->isReferenceType() ?
2471       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2472                                     AlignmentSource::Decl) :
2473       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2474   setObjCGCLValueClass(CGF.getContext(), E, LV);
2475   return LV;
2476 }
2477 
2478 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2479                                                GlobalDecl GD) {
2480   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2481   if (FD->hasAttr<WeakRefAttr>()) {
2482     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2483     return aliasee.getPointer();
2484   }
2485 
2486   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2487   if (!FD->hasPrototype()) {
2488     if (const FunctionProtoType *Proto =
2489             FD->getType()->getAs<FunctionProtoType>()) {
2490       // Ugly case: for a K&R-style definition, the type of the definition
2491       // isn't the same as the type of a use.  Correct for this with a
2492       // bitcast.
2493       QualType NoProtoType =
2494           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2495       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2496       V = llvm::ConstantExpr::getBitCast(V,
2497                                       CGM.getTypes().ConvertType(NoProtoType));
2498     }
2499   }
2500   return V;
2501 }
2502 
2503 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2504                                      GlobalDecl GD) {
2505   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2506   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2507   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2508   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2509                             AlignmentSource::Decl);
2510 }
2511 
2512 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2513                                       llvm::Value *ThisValue) {
2514   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2515   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2516   return CGF.EmitLValueForField(LV, FD);
2517 }
2518 
2519 /// Named Registers are named metadata pointing to the register name
2520 /// which will be read from/written to as an argument to the intrinsic
2521 /// @llvm.read/write_register.
2522 /// So far, only the name is being passed down, but other options such as
2523 /// register type, allocation type or even optimization options could be
2524 /// passed down via the metadata node.
2525 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2526   SmallString<64> Name("llvm.named.register.");
2527   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2528   assert(Asm->getLabel().size() < 64-Name.size() &&
2529       "Register name too big");
2530   Name.append(Asm->getLabel());
2531   llvm::NamedMDNode *M =
2532     CGM.getModule().getOrInsertNamedMetadata(Name);
2533   if (M->getNumOperands() == 0) {
2534     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2535                                               Asm->getLabel());
2536     llvm::Metadata *Ops[] = {Str};
2537     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2538   }
2539 
2540   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2541 
2542   llvm::Value *Ptr =
2543     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2544   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2545 }
2546 
2547 /// Determine whether we can emit a reference to \p VD from the current
2548 /// context, despite not necessarily having seen an odr-use of the variable in
2549 /// this context.
2550 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2551                                                const DeclRefExpr *E,
2552                                                const VarDecl *VD,
2553                                                bool IsConstant) {
2554   // For a variable declared in an enclosing scope, do not emit a spurious
2555   // reference even if we have a capture, as that will emit an unwarranted
2556   // reference to our capture state, and will likely generate worse code than
2557   // emitting a local copy.
2558   if (E->refersToEnclosingVariableOrCapture())
2559     return false;
2560 
2561   // For a local declaration declared in this function, we can always reference
2562   // it even if we don't have an odr-use.
2563   if (VD->hasLocalStorage()) {
2564     return VD->getDeclContext() ==
2565            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2566   }
2567 
2568   // For a global declaration, we can emit a reference to it if we know
2569   // for sure that we are able to emit a definition of it.
2570   VD = VD->getDefinition(CGF.getContext());
2571   if (!VD)
2572     return false;
2573 
2574   // Don't emit a spurious reference if it might be to a variable that only
2575   // exists on a different device / target.
2576   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2577   // cross-target reference.
2578   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2579       CGF.getLangOpts().OpenCL) {
2580     return false;
2581   }
2582 
2583   // We can emit a spurious reference only if the linkage implies that we'll
2584   // be emitting a non-interposable symbol that will be retained until link
2585   // time.
2586   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2587   case llvm::GlobalValue::ExternalLinkage:
2588   case llvm::GlobalValue::LinkOnceODRLinkage:
2589   case llvm::GlobalValue::WeakODRLinkage:
2590   case llvm::GlobalValue::InternalLinkage:
2591   case llvm::GlobalValue::PrivateLinkage:
2592     return true;
2593   default:
2594     return false;
2595   }
2596 }
2597 
2598 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2599   const NamedDecl *ND = E->getDecl();
2600   QualType T = E->getType();
2601 
2602   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2603          "should not emit an unevaluated operand");
2604 
2605   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2606     // Global Named registers access via intrinsics only
2607     if (VD->getStorageClass() == SC_Register &&
2608         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2609       return EmitGlobalNamedRegister(VD, CGM);
2610 
2611     // If this DeclRefExpr does not constitute an odr-use of the variable,
2612     // we're not permitted to emit a reference to it in general, and it might
2613     // not be captured if capture would be necessary for a use. Emit the
2614     // constant value directly instead.
2615     if (E->isNonOdrUse() == NOUR_Constant &&
2616         (VD->getType()->isReferenceType() ||
2617          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2618       VD->getAnyInitializer(VD);
2619       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2620           E->getLocation(), *VD->evaluateValue(), VD->getType());
2621       assert(Val && "failed to emit constant expression");
2622 
2623       Address Addr = Address::invalid();
2624       if (!VD->getType()->isReferenceType()) {
2625         // Spill the constant value to a global.
2626         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2627                                            getContext().getDeclAlign(VD));
2628         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2629         auto *PTy = llvm::PointerType::get(
2630             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2631         if (PTy != Addr.getType())
2632           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2633       } else {
2634         // Should we be using the alignment of the constant pointer we emitted?
2635         CharUnits Alignment =
2636             CGM.getNaturalTypeAlignment(E->getType(),
2637                                         /* BaseInfo= */ nullptr,
2638                                         /* TBAAInfo= */ nullptr,
2639                                         /* forPointeeType= */ true);
2640         Addr = Address(Val, Alignment);
2641       }
2642       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2643     }
2644 
2645     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2646 
2647     // Check for captured variables.
2648     if (E->refersToEnclosingVariableOrCapture()) {
2649       VD = VD->getCanonicalDecl();
2650       if (auto *FD = LambdaCaptureFields.lookup(VD))
2651         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2652       if (CapturedStmtInfo) {
2653         auto I = LocalDeclMap.find(VD);
2654         if (I != LocalDeclMap.end()) {
2655           LValue CapLVal;
2656           if (VD->getType()->isReferenceType())
2657             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2658                                                 AlignmentSource::Decl);
2659           else
2660             CapLVal = MakeAddrLValue(I->second, T);
2661           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2662           // in simd context.
2663           if (getLangOpts().OpenMP &&
2664               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2665             CapLVal.setNontemporal(/*Value=*/true);
2666           return CapLVal;
2667         }
2668         LValue CapLVal =
2669             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2670                                     CapturedStmtInfo->getContextValue());
2671         CapLVal = MakeAddrLValue(
2672             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2673             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2674             CapLVal.getTBAAInfo());
2675         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2676         // in simd context.
2677         if (getLangOpts().OpenMP &&
2678             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2679           CapLVal.setNontemporal(/*Value=*/true);
2680         return CapLVal;
2681       }
2682 
2683       assert(isa<BlockDecl>(CurCodeDecl));
2684       Address addr = GetAddrOfBlockDecl(VD);
2685       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2686     }
2687   }
2688 
2689   // FIXME: We should be able to assert this for FunctionDecls as well!
2690   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2691   // those with a valid source location.
2692   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2693           !E->getLocation().isValid()) &&
2694          "Should not use decl without marking it used!");
2695 
2696   if (ND->hasAttr<WeakRefAttr>()) {
2697     const auto *VD = cast<ValueDecl>(ND);
2698     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2699     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2700   }
2701 
2702   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2703     // Check if this is a global variable.
2704     if (VD->hasLinkage() || VD->isStaticDataMember())
2705       return EmitGlobalVarDeclLValue(*this, E, VD);
2706 
2707     Address addr = Address::invalid();
2708 
2709     // The variable should generally be present in the local decl map.
2710     auto iter = LocalDeclMap.find(VD);
2711     if (iter != LocalDeclMap.end()) {
2712       addr = iter->second;
2713 
2714     // Otherwise, it might be static local we haven't emitted yet for
2715     // some reason; most likely, because it's in an outer function.
2716     } else if (VD->isStaticLocal()) {
2717       addr = Address(CGM.getOrCreateStaticVarDecl(
2718           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2719                      getContext().getDeclAlign(VD));
2720 
2721     // No other cases for now.
2722     } else {
2723       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2724     }
2725 
2726 
2727     // Check for OpenMP threadprivate variables.
2728     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2729         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2730       return EmitThreadPrivateVarDeclLValue(
2731           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2732           E->getExprLoc());
2733     }
2734 
2735     // Drill into block byref variables.
2736     bool isBlockByref = VD->isEscapingByref();
2737     if (isBlockByref) {
2738       addr = emitBlockByrefAddress(addr, VD);
2739     }
2740 
2741     // Drill into reference types.
2742     LValue LV = VD->getType()->isReferenceType() ?
2743         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2744         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2745 
2746     bool isLocalStorage = VD->hasLocalStorage();
2747 
2748     bool NonGCable = isLocalStorage &&
2749                      !VD->getType()->isReferenceType() &&
2750                      !isBlockByref;
2751     if (NonGCable) {
2752       LV.getQuals().removeObjCGCAttr();
2753       LV.setNonGC(true);
2754     }
2755 
2756     bool isImpreciseLifetime =
2757       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2758     if (isImpreciseLifetime)
2759       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2760     setObjCGCLValueClass(getContext(), E, LV);
2761     return LV;
2762   }
2763 
2764   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2765     return EmitFunctionDeclLValue(*this, E, FD);
2766 
2767   // FIXME: While we're emitting a binding from an enclosing scope, all other
2768   // DeclRefExprs we see should be implicitly treated as if they also refer to
2769   // an enclosing scope.
2770   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2771     return EmitLValue(BD->getBinding());
2772 
2773   // We can form DeclRefExprs naming GUID declarations when reconstituting
2774   // non-type template parameters into expressions.
2775   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2776     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2777                           AlignmentSource::Decl);
2778 
2779   llvm_unreachable("Unhandled DeclRefExpr");
2780 }
2781 
2782 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2783   // __extension__ doesn't affect lvalue-ness.
2784   if (E->getOpcode() == UO_Extension)
2785     return EmitLValue(E->getSubExpr());
2786 
2787   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2788   switch (E->getOpcode()) {
2789   default: llvm_unreachable("Unknown unary operator lvalue!");
2790   case UO_Deref: {
2791     QualType T = E->getSubExpr()->getType()->getPointeeType();
2792     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2793 
2794     LValueBaseInfo BaseInfo;
2795     TBAAAccessInfo TBAAInfo;
2796     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2797                                             &TBAAInfo);
2798     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2799     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2800 
2801     // We should not generate __weak write barrier on indirect reference
2802     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2803     // But, we continue to generate __strong write barrier on indirect write
2804     // into a pointer to object.
2805     if (getLangOpts().ObjC &&
2806         getLangOpts().getGC() != LangOptions::NonGC &&
2807         LV.isObjCWeak())
2808       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2809     return LV;
2810   }
2811   case UO_Real:
2812   case UO_Imag: {
2813     LValue LV = EmitLValue(E->getSubExpr());
2814     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2815 
2816     // __real is valid on scalars.  This is a faster way of testing that.
2817     // __imag can only produce an rvalue on scalars.
2818     if (E->getOpcode() == UO_Real &&
2819         !LV.getAddress(*this).getElementType()->isStructTy()) {
2820       assert(E->getSubExpr()->getType()->isArithmeticType());
2821       return LV;
2822     }
2823 
2824     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2825 
2826     Address Component =
2827         (E->getOpcode() == UO_Real
2828              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2829              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2830     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2831                                    CGM.getTBAAInfoForSubobject(LV, T));
2832     ElemLV.getQuals().addQualifiers(LV.getQuals());
2833     return ElemLV;
2834   }
2835   case UO_PreInc:
2836   case UO_PreDec: {
2837     LValue LV = EmitLValue(E->getSubExpr());
2838     bool isInc = E->getOpcode() == UO_PreInc;
2839 
2840     if (E->getType()->isAnyComplexType())
2841       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2842     else
2843       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2844     return LV;
2845   }
2846   }
2847 }
2848 
2849 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2850   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2851                         E->getType(), AlignmentSource::Decl);
2852 }
2853 
2854 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2855   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2856                         E->getType(), AlignmentSource::Decl);
2857 }
2858 
2859 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2860   auto SL = E->getFunctionName();
2861   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2862   StringRef FnName = CurFn->getName();
2863   if (FnName.startswith("\01"))
2864     FnName = FnName.substr(1);
2865   StringRef NameItems[] = {
2866       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2867   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2868   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2869     std::string Name = std::string(SL->getString());
2870     if (!Name.empty()) {
2871       unsigned Discriminator =
2872           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2873       if (Discriminator)
2874         Name += "_" + Twine(Discriminator + 1).str();
2875       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2876       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2877     } else {
2878       auto C =
2879           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2880       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2881     }
2882   }
2883   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2884   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2885 }
2886 
2887 /// Emit a type description suitable for use by a runtime sanitizer library. The
2888 /// format of a type descriptor is
2889 ///
2890 /// \code
2891 ///   { i16 TypeKind, i16 TypeInfo }
2892 /// \endcode
2893 ///
2894 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2895 /// integer, 1 for a floating point value, and -1 for anything else.
2896 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2897   // Only emit each type's descriptor once.
2898   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2899     return C;
2900 
2901   uint16_t TypeKind = -1;
2902   uint16_t TypeInfo = 0;
2903 
2904   if (T->isIntegerType()) {
2905     TypeKind = 0;
2906     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2907                (T->isSignedIntegerType() ? 1 : 0);
2908   } else if (T->isFloatingType()) {
2909     TypeKind = 1;
2910     TypeInfo = getContext().getTypeSize(T);
2911   }
2912 
2913   // Format the type name as if for a diagnostic, including quotes and
2914   // optionally an 'aka'.
2915   SmallString<32> Buffer;
2916   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2917                                     (intptr_t)T.getAsOpaquePtr(),
2918                                     StringRef(), StringRef(), None, Buffer,
2919                                     None);
2920 
2921   llvm::Constant *Components[] = {
2922     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2923     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2924   };
2925   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2926 
2927   auto *GV = new llvm::GlobalVariable(
2928       CGM.getModule(), Descriptor->getType(),
2929       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2930   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2931   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2932 
2933   // Remember the descriptor for this type.
2934   CGM.setTypeDescriptorInMap(T, GV);
2935 
2936   return GV;
2937 }
2938 
2939 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2940   llvm::Type *TargetTy = IntPtrTy;
2941 
2942   if (V->getType() == TargetTy)
2943     return V;
2944 
2945   // Floating-point types which fit into intptr_t are bitcast to integers
2946   // and then passed directly (after zero-extension, if necessary).
2947   if (V->getType()->isFloatingPointTy()) {
2948     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2949     if (Bits <= TargetTy->getIntegerBitWidth())
2950       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2951                                                          Bits));
2952   }
2953 
2954   // Integers which fit in intptr_t are zero-extended and passed directly.
2955   if (V->getType()->isIntegerTy() &&
2956       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2957     return Builder.CreateZExt(V, TargetTy);
2958 
2959   // Pointers are passed directly, everything else is passed by address.
2960   if (!V->getType()->isPointerTy()) {
2961     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2962     Builder.CreateStore(V, Ptr);
2963     V = Ptr.getPointer();
2964   }
2965   return Builder.CreatePtrToInt(V, TargetTy);
2966 }
2967 
2968 /// Emit a representation of a SourceLocation for passing to a handler
2969 /// in a sanitizer runtime library. The format for this data is:
2970 /// \code
2971 ///   struct SourceLocation {
2972 ///     const char *Filename;
2973 ///     int32_t Line, Column;
2974 ///   };
2975 /// \endcode
2976 /// For an invalid SourceLocation, the Filename pointer is null.
2977 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2978   llvm::Constant *Filename;
2979   int Line, Column;
2980 
2981   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2982   if (PLoc.isValid()) {
2983     StringRef FilenameString = PLoc.getFilename();
2984 
2985     int PathComponentsToStrip =
2986         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2987     if (PathComponentsToStrip < 0) {
2988       assert(PathComponentsToStrip != INT_MIN);
2989       int PathComponentsToKeep = -PathComponentsToStrip;
2990       auto I = llvm::sys::path::rbegin(FilenameString);
2991       auto E = llvm::sys::path::rend(FilenameString);
2992       while (I != E && --PathComponentsToKeep)
2993         ++I;
2994 
2995       FilenameString = FilenameString.substr(I - E);
2996     } else if (PathComponentsToStrip > 0) {
2997       auto I = llvm::sys::path::begin(FilenameString);
2998       auto E = llvm::sys::path::end(FilenameString);
2999       while (I != E && PathComponentsToStrip--)
3000         ++I;
3001 
3002       if (I != E)
3003         FilenameString =
3004             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3005       else
3006         FilenameString = llvm::sys::path::filename(FilenameString);
3007     }
3008 
3009     auto FilenameGV =
3010         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3011     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3012                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3013     Filename = FilenameGV.getPointer();
3014     Line = PLoc.getLine();
3015     Column = PLoc.getColumn();
3016   } else {
3017     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3018     Line = Column = 0;
3019   }
3020 
3021   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3022                             Builder.getInt32(Column)};
3023 
3024   return llvm::ConstantStruct::getAnon(Data);
3025 }
3026 
3027 namespace {
3028 /// Specify under what conditions this check can be recovered
3029 enum class CheckRecoverableKind {
3030   /// Always terminate program execution if this check fails.
3031   Unrecoverable,
3032   /// Check supports recovering, runtime has both fatal (noreturn) and
3033   /// non-fatal handlers for this check.
3034   Recoverable,
3035   /// Runtime conditionally aborts, always need to support recovery.
3036   AlwaysRecoverable
3037 };
3038 }
3039 
3040 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3041   assert(Kind.countPopulation() == 1);
3042   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3043     return CheckRecoverableKind::AlwaysRecoverable;
3044   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3045     return CheckRecoverableKind::Unrecoverable;
3046   else
3047     return CheckRecoverableKind::Recoverable;
3048 }
3049 
3050 namespace {
3051 struct SanitizerHandlerInfo {
3052   char const *const Name;
3053   unsigned Version;
3054 };
3055 }
3056 
3057 const SanitizerHandlerInfo SanitizerHandlers[] = {
3058 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3059     LIST_SANITIZER_CHECKS
3060 #undef SANITIZER_CHECK
3061 };
3062 
3063 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3064                                  llvm::FunctionType *FnType,
3065                                  ArrayRef<llvm::Value *> FnArgs,
3066                                  SanitizerHandler CheckHandler,
3067                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3068                                  llvm::BasicBlock *ContBB) {
3069   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3070   Optional<ApplyDebugLocation> DL;
3071   if (!CGF.Builder.getCurrentDebugLocation()) {
3072     // Ensure that the call has at least an artificial debug location.
3073     DL.emplace(CGF, SourceLocation());
3074   }
3075   bool NeedsAbortSuffix =
3076       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3077   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3078   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3079   const StringRef CheckName = CheckInfo.Name;
3080   std::string FnName = "__ubsan_handle_" + CheckName.str();
3081   if (CheckInfo.Version && !MinimalRuntime)
3082     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3083   if (MinimalRuntime)
3084     FnName += "_minimal";
3085   if (NeedsAbortSuffix)
3086     FnName += "_abort";
3087   bool MayReturn =
3088       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3089 
3090   llvm::AttrBuilder B;
3091   if (!MayReturn) {
3092     B.addAttribute(llvm::Attribute::NoReturn)
3093         .addAttribute(llvm::Attribute::NoUnwind);
3094   }
3095   B.addAttribute(llvm::Attribute::UWTable);
3096 
3097   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3098       FnType, FnName,
3099       llvm::AttributeList::get(CGF.getLLVMContext(),
3100                                llvm::AttributeList::FunctionIndex, B),
3101       /*Local=*/true);
3102   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3103   if (!MayReturn) {
3104     HandlerCall->setDoesNotReturn();
3105     CGF.Builder.CreateUnreachable();
3106   } else {
3107     CGF.Builder.CreateBr(ContBB);
3108   }
3109 }
3110 
3111 void CodeGenFunction::EmitCheck(
3112     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3113     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3114     ArrayRef<llvm::Value *> DynamicArgs) {
3115   assert(IsSanitizerScope);
3116   assert(Checked.size() > 0);
3117   assert(CheckHandler >= 0 &&
3118          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3119   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3120 
3121   llvm::Value *FatalCond = nullptr;
3122   llvm::Value *RecoverableCond = nullptr;
3123   llvm::Value *TrapCond = nullptr;
3124   for (int i = 0, n = Checked.size(); i < n; ++i) {
3125     llvm::Value *Check = Checked[i].first;
3126     // -fsanitize-trap= overrides -fsanitize-recover=.
3127     llvm::Value *&Cond =
3128         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3129             ? TrapCond
3130             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3131                   ? RecoverableCond
3132                   : FatalCond;
3133     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3134   }
3135 
3136   if (TrapCond)
3137     EmitTrapCheck(TrapCond);
3138   if (!FatalCond && !RecoverableCond)
3139     return;
3140 
3141   llvm::Value *JointCond;
3142   if (FatalCond && RecoverableCond)
3143     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3144   else
3145     JointCond = FatalCond ? FatalCond : RecoverableCond;
3146   assert(JointCond);
3147 
3148   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3149   assert(SanOpts.has(Checked[0].second));
3150 #ifndef NDEBUG
3151   for (int i = 1, n = Checked.size(); i < n; ++i) {
3152     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3153            "All recoverable kinds in a single check must be same!");
3154     assert(SanOpts.has(Checked[i].second));
3155   }
3156 #endif
3157 
3158   llvm::BasicBlock *Cont = createBasicBlock("cont");
3159   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3160   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3161   // Give hint that we very much don't expect to execute the handler
3162   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3163   llvm::MDBuilder MDHelper(getLLVMContext());
3164   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3165   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3166   EmitBlock(Handlers);
3167 
3168   // Handler functions take an i8* pointing to the (handler-specific) static
3169   // information block, followed by a sequence of intptr_t arguments
3170   // representing operand values.
3171   SmallVector<llvm::Value *, 4> Args;
3172   SmallVector<llvm::Type *, 4> ArgTypes;
3173   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3174     Args.reserve(DynamicArgs.size() + 1);
3175     ArgTypes.reserve(DynamicArgs.size() + 1);
3176 
3177     // Emit handler arguments and create handler function type.
3178     if (!StaticArgs.empty()) {
3179       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3180       auto *InfoPtr =
3181           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3182                                    llvm::GlobalVariable::PrivateLinkage, Info);
3183       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3184       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3185       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3186       ArgTypes.push_back(Int8PtrTy);
3187     }
3188 
3189     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3190       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3191       ArgTypes.push_back(IntPtrTy);
3192     }
3193   }
3194 
3195   llvm::FunctionType *FnType =
3196     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3197 
3198   if (!FatalCond || !RecoverableCond) {
3199     // Simple case: we need to generate a single handler call, either
3200     // fatal, or non-fatal.
3201     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3202                          (FatalCond != nullptr), Cont);
3203   } else {
3204     // Emit two handler calls: first one for set of unrecoverable checks,
3205     // another one for recoverable.
3206     llvm::BasicBlock *NonFatalHandlerBB =
3207         createBasicBlock("non_fatal." + CheckName);
3208     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3209     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3210     EmitBlock(FatalHandlerBB);
3211     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3212                          NonFatalHandlerBB);
3213     EmitBlock(NonFatalHandlerBB);
3214     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3215                          Cont);
3216   }
3217 
3218   EmitBlock(Cont);
3219 }
3220 
3221 void CodeGenFunction::EmitCfiSlowPathCheck(
3222     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3223     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3224   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3225 
3226   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3227   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3228 
3229   llvm::MDBuilder MDHelper(getLLVMContext());
3230   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3231   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3232 
3233   EmitBlock(CheckBB);
3234 
3235   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3236 
3237   llvm::CallInst *CheckCall;
3238   llvm::FunctionCallee SlowPathFn;
3239   if (WithDiag) {
3240     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3241     auto *InfoPtr =
3242         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3243                                  llvm::GlobalVariable::PrivateLinkage, Info);
3244     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3245     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3246 
3247     SlowPathFn = CGM.getModule().getOrInsertFunction(
3248         "__cfi_slowpath_diag",
3249         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3250                                 false));
3251     CheckCall = Builder.CreateCall(
3252         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3253   } else {
3254     SlowPathFn = CGM.getModule().getOrInsertFunction(
3255         "__cfi_slowpath",
3256         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3257     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3258   }
3259 
3260   CGM.setDSOLocal(
3261       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3262   CheckCall->setDoesNotThrow();
3263 
3264   EmitBlock(Cont);
3265 }
3266 
3267 // Emit a stub for __cfi_check function so that the linker knows about this
3268 // symbol in LTO mode.
3269 void CodeGenFunction::EmitCfiCheckStub() {
3270   llvm::Module *M = &CGM.getModule();
3271   auto &Ctx = M->getContext();
3272   llvm::Function *F = llvm::Function::Create(
3273       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3274       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3275   CGM.setDSOLocal(F);
3276   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3277   // FIXME: consider emitting an intrinsic call like
3278   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3279   // which can be lowered in CrossDSOCFI pass to the actual contents of
3280   // __cfi_check. This would allow inlining of __cfi_check calls.
3281   llvm::CallInst::Create(
3282       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3283   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3284 }
3285 
3286 // This function is basically a switch over the CFI failure kind, which is
3287 // extracted from CFICheckFailData (1st function argument). Each case is either
3288 // llvm.trap or a call to one of the two runtime handlers, based on
3289 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3290 // failure kind) traps, but this should really never happen.  CFICheckFailData
3291 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3292 // check kind; in this case __cfi_check_fail traps as well.
3293 void CodeGenFunction::EmitCfiCheckFail() {
3294   SanitizerScope SanScope(this);
3295   FunctionArgList Args;
3296   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3297                             ImplicitParamDecl::Other);
3298   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3299                             ImplicitParamDecl::Other);
3300   Args.push_back(&ArgData);
3301   Args.push_back(&ArgAddr);
3302 
3303   const CGFunctionInfo &FI =
3304     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3305 
3306   llvm::Function *F = llvm::Function::Create(
3307       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3308       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3309 
3310   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
3311   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3312   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3313 
3314   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3315                 SourceLocation());
3316 
3317   // This function should not be affected by blacklist. This function does
3318   // not have a source location, but "src:*" would still apply. Revert any
3319   // changes to SanOpts made in StartFunction.
3320   SanOpts = CGM.getLangOpts().Sanitize;
3321 
3322   llvm::Value *Data =
3323       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3324                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3325   llvm::Value *Addr =
3326       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3327                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3328 
3329   // Data == nullptr means the calling module has trap behaviour for this check.
3330   llvm::Value *DataIsNotNullPtr =
3331       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3332   EmitTrapCheck(DataIsNotNullPtr);
3333 
3334   llvm::StructType *SourceLocationTy =
3335       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3336   llvm::StructType *CfiCheckFailDataTy =
3337       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3338 
3339   llvm::Value *V = Builder.CreateConstGEP2_32(
3340       CfiCheckFailDataTy,
3341       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3342       0);
3343   Address CheckKindAddr(V, getIntAlign());
3344   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3345 
3346   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3347       CGM.getLLVMContext(),
3348       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3349   llvm::Value *ValidVtable = Builder.CreateZExt(
3350       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3351                          {Addr, AllVtables}),
3352       IntPtrTy);
3353 
3354   const std::pair<int, SanitizerMask> CheckKinds[] = {
3355       {CFITCK_VCall, SanitizerKind::CFIVCall},
3356       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3357       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3358       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3359       {CFITCK_ICall, SanitizerKind::CFIICall}};
3360 
3361   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3362   for (auto CheckKindMaskPair : CheckKinds) {
3363     int Kind = CheckKindMaskPair.first;
3364     SanitizerMask Mask = CheckKindMaskPair.second;
3365     llvm::Value *Cond =
3366         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3367     if (CGM.getLangOpts().Sanitize.has(Mask))
3368       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3369                 {Data, Addr, ValidVtable});
3370     else
3371       EmitTrapCheck(Cond);
3372   }
3373 
3374   FinishFunction();
3375   // The only reference to this function will be created during LTO link.
3376   // Make sure it survives until then.
3377   CGM.addUsedGlobal(F);
3378 }
3379 
3380 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3381   if (SanOpts.has(SanitizerKind::Unreachable)) {
3382     SanitizerScope SanScope(this);
3383     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3384                              SanitizerKind::Unreachable),
3385               SanitizerHandler::BuiltinUnreachable,
3386               EmitCheckSourceLocation(Loc), None);
3387   }
3388   Builder.CreateUnreachable();
3389 }
3390 
3391 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3392   llvm::BasicBlock *Cont = createBasicBlock("cont");
3393 
3394   // If we're optimizing, collapse all calls to trap down to just one per
3395   // function to save on code size.
3396   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3397     TrapBB = createBasicBlock("trap");
3398     Builder.CreateCondBr(Checked, Cont, TrapBB);
3399     EmitBlock(TrapBB);
3400     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3401     TrapCall->setDoesNotReturn();
3402     TrapCall->setDoesNotThrow();
3403     Builder.CreateUnreachable();
3404   } else {
3405     Builder.CreateCondBr(Checked, Cont, TrapBB);
3406   }
3407 
3408   EmitBlock(Cont);
3409 }
3410 
3411 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3412   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3413 
3414   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3415     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3416                                   CGM.getCodeGenOpts().TrapFuncName);
3417     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3418   }
3419 
3420   return TrapCall;
3421 }
3422 
3423 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3424                                                  LValueBaseInfo *BaseInfo,
3425                                                  TBAAAccessInfo *TBAAInfo) {
3426   assert(E->getType()->isArrayType() &&
3427          "Array to pointer decay must have array source type!");
3428 
3429   // Expressions of array type can't be bitfields or vector elements.
3430   LValue LV = EmitLValue(E);
3431   Address Addr = LV.getAddress(*this);
3432 
3433   // If the array type was an incomplete type, we need to make sure
3434   // the decay ends up being the right type.
3435   llvm::Type *NewTy = ConvertType(E->getType());
3436   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3437 
3438   // Note that VLA pointers are always decayed, so we don't need to do
3439   // anything here.
3440   if (!E->getType()->isVariableArrayType()) {
3441     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3442            "Expected pointer to array");
3443     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3444   }
3445 
3446   // The result of this decay conversion points to an array element within the
3447   // base lvalue. However, since TBAA currently does not support representing
3448   // accesses to elements of member arrays, we conservatively represent accesses
3449   // to the pointee object as if it had no any base lvalue specified.
3450   // TODO: Support TBAA for member arrays.
3451   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3452   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3453   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3454 
3455   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3456 }
3457 
3458 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3459 /// array to pointer, return the array subexpression.
3460 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3461   // If this isn't just an array->pointer decay, bail out.
3462   const auto *CE = dyn_cast<CastExpr>(E);
3463   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3464     return nullptr;
3465 
3466   // If this is a decay from variable width array, bail out.
3467   const Expr *SubExpr = CE->getSubExpr();
3468   if (SubExpr->getType()->isVariableArrayType())
3469     return nullptr;
3470 
3471   return SubExpr;
3472 }
3473 
3474 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3475                                           llvm::Value *ptr,
3476                                           ArrayRef<llvm::Value*> indices,
3477                                           bool inbounds,
3478                                           bool signedIndices,
3479                                           SourceLocation loc,
3480                                     const llvm::Twine &name = "arrayidx") {
3481   if (inbounds) {
3482     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3483                                       CodeGenFunction::NotSubtraction, loc,
3484                                       name);
3485   } else {
3486     return CGF.Builder.CreateGEP(ptr, indices, name);
3487   }
3488 }
3489 
3490 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3491                                       llvm::Value *idx,
3492                                       CharUnits eltSize) {
3493   // If we have a constant index, we can use the exact offset of the
3494   // element we're accessing.
3495   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3496     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3497     return arrayAlign.alignmentAtOffset(offset);
3498 
3499   // Otherwise, use the worst-case alignment for any element.
3500   } else {
3501     return arrayAlign.alignmentOfArrayElement(eltSize);
3502   }
3503 }
3504 
3505 static QualType getFixedSizeElementType(const ASTContext &ctx,
3506                                         const VariableArrayType *vla) {
3507   QualType eltType;
3508   do {
3509     eltType = vla->getElementType();
3510   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3511   return eltType;
3512 }
3513 
3514 /// Given an array base, check whether its member access belongs to a record
3515 /// with preserve_access_index attribute or not.
3516 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3517   if (!ArrayBase || !CGF.getDebugInfo())
3518     return false;
3519 
3520   // Only support base as either a MemberExpr or DeclRefExpr.
3521   // DeclRefExpr to cover cases like:
3522   //    struct s { int a; int b[10]; };
3523   //    struct s *p;
3524   //    p[1].a
3525   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3526   // p->b[5] is a MemberExpr example.
3527   const Expr *E = ArrayBase->IgnoreImpCasts();
3528   if (const auto *ME = dyn_cast<MemberExpr>(E))
3529     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3530 
3531   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3532     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3533     if (!VarDef)
3534       return false;
3535 
3536     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3537     if (!PtrT)
3538       return false;
3539 
3540     const auto *PointeeT = PtrT->getPointeeType()
3541                              ->getUnqualifiedDesugaredType();
3542     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3543       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3544     return false;
3545   }
3546 
3547   return false;
3548 }
3549 
3550 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3551                                      ArrayRef<llvm::Value *> indices,
3552                                      QualType eltType, bool inbounds,
3553                                      bool signedIndices, SourceLocation loc,
3554                                      QualType *arrayType = nullptr,
3555                                      const Expr *Base = nullptr,
3556                                      const llvm::Twine &name = "arrayidx") {
3557   // All the indices except that last must be zero.
3558 #ifndef NDEBUG
3559   for (auto idx : indices.drop_back())
3560     assert(isa<llvm::ConstantInt>(idx) &&
3561            cast<llvm::ConstantInt>(idx)->isZero());
3562 #endif
3563 
3564   // Determine the element size of the statically-sized base.  This is
3565   // the thing that the indices are expressed in terms of.
3566   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3567     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3568   }
3569 
3570   // We can use that to compute the best alignment of the element.
3571   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3572   CharUnits eltAlign =
3573     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3574 
3575   llvm::Value *eltPtr;
3576   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3577   if (!LastIndex ||
3578       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3579     eltPtr = emitArraySubscriptGEP(
3580         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3581         loc, name);
3582   } else {
3583     // Remember the original array subscript for bpf target
3584     unsigned idx = LastIndex->getZExtValue();
3585     llvm::DIType *DbgInfo = nullptr;
3586     if (arrayType)
3587       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3588     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3589                                                         addr.getPointer(),
3590                                                         indices.size() - 1,
3591                                                         idx, DbgInfo);
3592   }
3593 
3594   return Address(eltPtr, eltAlign);
3595 }
3596 
3597 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3598                                                bool Accessed) {
3599   // The index must always be an integer, which is not an aggregate.  Emit it
3600   // in lexical order (this complexity is, sadly, required by C++17).
3601   llvm::Value *IdxPre =
3602       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3603   bool SignedIndices = false;
3604   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3605     auto *Idx = IdxPre;
3606     if (E->getLHS() != E->getIdx()) {
3607       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3608       Idx = EmitScalarExpr(E->getIdx());
3609     }
3610 
3611     QualType IdxTy = E->getIdx()->getType();
3612     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3613     SignedIndices |= IdxSigned;
3614 
3615     if (SanOpts.has(SanitizerKind::ArrayBounds))
3616       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3617 
3618     // Extend or truncate the index type to 32 or 64-bits.
3619     if (Promote && Idx->getType() != IntPtrTy)
3620       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3621 
3622     return Idx;
3623   };
3624   IdxPre = nullptr;
3625 
3626   // If the base is a vector type, then we are forming a vector element lvalue
3627   // with this subscript.
3628   if (E->getBase()->getType()->isVectorType() &&
3629       !isa<ExtVectorElementExpr>(E->getBase())) {
3630     // Emit the vector as an lvalue to get its address.
3631     LValue LHS = EmitLValue(E->getBase());
3632     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3633     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3634     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3635                                  E->getBase()->getType(), LHS.getBaseInfo(),
3636                                  TBAAAccessInfo());
3637   }
3638 
3639   // All the other cases basically behave like simple offsetting.
3640 
3641   // Handle the extvector case we ignored above.
3642   if (isa<ExtVectorElementExpr>(E->getBase())) {
3643     LValue LV = EmitLValue(E->getBase());
3644     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3645     Address Addr = EmitExtVectorElementLValue(LV);
3646 
3647     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3648     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3649                                  SignedIndices, E->getExprLoc());
3650     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3651                           CGM.getTBAAInfoForSubobject(LV, EltType));
3652   }
3653 
3654   LValueBaseInfo EltBaseInfo;
3655   TBAAAccessInfo EltTBAAInfo;
3656   Address Addr = Address::invalid();
3657   if (const VariableArrayType *vla =
3658            getContext().getAsVariableArrayType(E->getType())) {
3659     // The base must be a pointer, which is not an aggregate.  Emit
3660     // it.  It needs to be emitted first in case it's what captures
3661     // the VLA bounds.
3662     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3663     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3664 
3665     // The element count here is the total number of non-VLA elements.
3666     llvm::Value *numElements = getVLASize(vla).NumElts;
3667 
3668     // Effectively, the multiply by the VLA size is part of the GEP.
3669     // GEP indexes are signed, and scaling an index isn't permitted to
3670     // signed-overflow, so we use the same semantics for our explicit
3671     // multiply.  We suppress this if overflow is not undefined behavior.
3672     if (getLangOpts().isSignedOverflowDefined()) {
3673       Idx = Builder.CreateMul(Idx, numElements);
3674     } else {
3675       Idx = Builder.CreateNSWMul(Idx, numElements);
3676     }
3677 
3678     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3679                                  !getLangOpts().isSignedOverflowDefined(),
3680                                  SignedIndices, E->getExprLoc());
3681 
3682   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3683     // Indexing over an interface, as in "NSString *P; P[4];"
3684 
3685     // Emit the base pointer.
3686     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3687     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3688 
3689     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3690     llvm::Value *InterfaceSizeVal =
3691         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3692 
3693     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3694 
3695     // We don't necessarily build correct LLVM struct types for ObjC
3696     // interfaces, so we can't rely on GEP to do this scaling
3697     // correctly, so we need to cast to i8*.  FIXME: is this actually
3698     // true?  A lot of other things in the fragile ABI would break...
3699     llvm::Type *OrigBaseTy = Addr.getType();
3700     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3701 
3702     // Do the GEP.
3703     CharUnits EltAlign =
3704       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3705     llvm::Value *EltPtr =
3706         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3707                               SignedIndices, E->getExprLoc());
3708     Addr = Address(EltPtr, EltAlign);
3709 
3710     // Cast back.
3711     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3712   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3713     // If this is A[i] where A is an array, the frontend will have decayed the
3714     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3715     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3716     // "gep x, i" here.  Emit one "gep A, 0, i".
3717     assert(Array->getType()->isArrayType() &&
3718            "Array to pointer decay must have array source type!");
3719     LValue ArrayLV;
3720     // For simple multidimensional array indexing, set the 'accessed' flag for
3721     // better bounds-checking of the base expression.
3722     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3723       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3724     else
3725       ArrayLV = EmitLValue(Array);
3726     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3727 
3728     // Propagate the alignment from the array itself to the result.
3729     QualType arrayType = Array->getType();
3730     Addr = emitArraySubscriptGEP(
3731         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3732         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3733         E->getExprLoc(), &arrayType, E->getBase());
3734     EltBaseInfo = ArrayLV.getBaseInfo();
3735     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3736   } else {
3737     // The base must be a pointer; emit it with an estimate of its alignment.
3738     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3739     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3740     QualType ptrType = E->getBase()->getType();
3741     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3742                                  !getLangOpts().isSignedOverflowDefined(),
3743                                  SignedIndices, E->getExprLoc(), &ptrType,
3744                                  E->getBase());
3745   }
3746 
3747   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3748 
3749   if (getLangOpts().ObjC &&
3750       getLangOpts().getGC() != LangOptions::NonGC) {
3751     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3752     setObjCGCLValueClass(getContext(), E, LV);
3753   }
3754   return LV;
3755 }
3756 
3757 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3758                                        LValueBaseInfo &BaseInfo,
3759                                        TBAAAccessInfo &TBAAInfo,
3760                                        QualType BaseTy, QualType ElTy,
3761                                        bool IsLowerBound) {
3762   LValue BaseLVal;
3763   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3764     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3765     if (BaseTy->isArrayType()) {
3766       Address Addr = BaseLVal.getAddress(CGF);
3767       BaseInfo = BaseLVal.getBaseInfo();
3768 
3769       // If the array type was an incomplete type, we need to make sure
3770       // the decay ends up being the right type.
3771       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3772       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3773 
3774       // Note that VLA pointers are always decayed, so we don't need to do
3775       // anything here.
3776       if (!BaseTy->isVariableArrayType()) {
3777         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3778                "Expected pointer to array");
3779         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3780       }
3781 
3782       return CGF.Builder.CreateElementBitCast(Addr,
3783                                               CGF.ConvertTypeForMem(ElTy));
3784     }
3785     LValueBaseInfo TypeBaseInfo;
3786     TBAAAccessInfo TypeTBAAInfo;
3787     CharUnits Align =
3788         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3789     BaseInfo.mergeForCast(TypeBaseInfo);
3790     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3791     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3792   }
3793   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3794 }
3795 
3796 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3797                                                 bool IsLowerBound) {
3798   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3799   QualType ResultExprTy;
3800   if (auto *AT = getContext().getAsArrayType(BaseTy))
3801     ResultExprTy = AT->getElementType();
3802   else
3803     ResultExprTy = BaseTy->getPointeeType();
3804   llvm::Value *Idx = nullptr;
3805   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3806     // Requesting lower bound or upper bound, but without provided length and
3807     // without ':' symbol for the default length -> length = 1.
3808     // Idx = LowerBound ?: 0;
3809     if (auto *LowerBound = E->getLowerBound()) {
3810       Idx = Builder.CreateIntCast(
3811           EmitScalarExpr(LowerBound), IntPtrTy,
3812           LowerBound->getType()->hasSignedIntegerRepresentation());
3813     } else
3814       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3815   } else {
3816     // Try to emit length or lower bound as constant. If this is possible, 1
3817     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3818     // IR (LB + Len) - 1.
3819     auto &C = CGM.getContext();
3820     auto *Length = E->getLength();
3821     llvm::APSInt ConstLength;
3822     if (Length) {
3823       // Idx = LowerBound + Length - 1;
3824       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3825         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3826         Length = nullptr;
3827       }
3828       auto *LowerBound = E->getLowerBound();
3829       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3830       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3831         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3832         LowerBound = nullptr;
3833       }
3834       if (!Length)
3835         --ConstLength;
3836       else if (!LowerBound)
3837         --ConstLowerBound;
3838 
3839       if (Length || LowerBound) {
3840         auto *LowerBoundVal =
3841             LowerBound
3842                 ? Builder.CreateIntCast(
3843                       EmitScalarExpr(LowerBound), IntPtrTy,
3844                       LowerBound->getType()->hasSignedIntegerRepresentation())
3845                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3846         auto *LengthVal =
3847             Length
3848                 ? Builder.CreateIntCast(
3849                       EmitScalarExpr(Length), IntPtrTy,
3850                       Length->getType()->hasSignedIntegerRepresentation())
3851                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3852         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3853                                 /*HasNUW=*/false,
3854                                 !getLangOpts().isSignedOverflowDefined());
3855         if (Length && LowerBound) {
3856           Idx = Builder.CreateSub(
3857               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3858               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3859         }
3860       } else
3861         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3862     } else {
3863       // Idx = ArraySize - 1;
3864       QualType ArrayTy = BaseTy->isPointerType()
3865                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3866                              : BaseTy;
3867       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3868         Length = VAT->getSizeExpr();
3869         if (Length->isIntegerConstantExpr(ConstLength, C))
3870           Length = nullptr;
3871       } else {
3872         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3873         ConstLength = CAT->getSize();
3874       }
3875       if (Length) {
3876         auto *LengthVal = Builder.CreateIntCast(
3877             EmitScalarExpr(Length), IntPtrTy,
3878             Length->getType()->hasSignedIntegerRepresentation());
3879         Idx = Builder.CreateSub(
3880             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3881             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3882       } else {
3883         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3884         --ConstLength;
3885         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3886       }
3887     }
3888   }
3889   assert(Idx);
3890 
3891   Address EltPtr = Address::invalid();
3892   LValueBaseInfo BaseInfo;
3893   TBAAAccessInfo TBAAInfo;
3894   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3895     // The base must be a pointer, which is not an aggregate.  Emit
3896     // it.  It needs to be emitted first in case it's what captures
3897     // the VLA bounds.
3898     Address Base =
3899         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3900                                 BaseTy, VLA->getElementType(), IsLowerBound);
3901     // The element count here is the total number of non-VLA elements.
3902     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3903 
3904     // Effectively, the multiply by the VLA size is part of the GEP.
3905     // GEP indexes are signed, and scaling an index isn't permitted to
3906     // signed-overflow, so we use the same semantics for our explicit
3907     // multiply.  We suppress this if overflow is not undefined behavior.
3908     if (getLangOpts().isSignedOverflowDefined())
3909       Idx = Builder.CreateMul(Idx, NumElements);
3910     else
3911       Idx = Builder.CreateNSWMul(Idx, NumElements);
3912     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3913                                    !getLangOpts().isSignedOverflowDefined(),
3914                                    /*signedIndices=*/false, E->getExprLoc());
3915   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3916     // If this is A[i] where A is an array, the frontend will have decayed the
3917     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3918     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3919     // "gep x, i" here.  Emit one "gep A, 0, i".
3920     assert(Array->getType()->isArrayType() &&
3921            "Array to pointer decay must have array source type!");
3922     LValue ArrayLV;
3923     // For simple multidimensional array indexing, set the 'accessed' flag for
3924     // better bounds-checking of the base expression.
3925     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3926       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3927     else
3928       ArrayLV = EmitLValue(Array);
3929 
3930     // Propagate the alignment from the array itself to the result.
3931     EltPtr = emitArraySubscriptGEP(
3932         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3933         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3934         /*signedIndices=*/false, E->getExprLoc());
3935     BaseInfo = ArrayLV.getBaseInfo();
3936     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3937   } else {
3938     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3939                                            TBAAInfo, BaseTy, ResultExprTy,
3940                                            IsLowerBound);
3941     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3942                                    !getLangOpts().isSignedOverflowDefined(),
3943                                    /*signedIndices=*/false, E->getExprLoc());
3944   }
3945 
3946   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3947 }
3948 
3949 LValue CodeGenFunction::
3950 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3951   // Emit the base vector as an l-value.
3952   LValue Base;
3953 
3954   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3955   if (E->isArrow()) {
3956     // If it is a pointer to a vector, emit the address and form an lvalue with
3957     // it.
3958     LValueBaseInfo BaseInfo;
3959     TBAAAccessInfo TBAAInfo;
3960     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3961     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
3962     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3963     Base.getQuals().removeObjCGCAttr();
3964   } else if (E->getBase()->isGLValue()) {
3965     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3966     // emit the base as an lvalue.
3967     assert(E->getBase()->getType()->isVectorType());
3968     Base = EmitLValue(E->getBase());
3969   } else {
3970     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3971     assert(E->getBase()->getType()->isVectorType() &&
3972            "Result must be a vector");
3973     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3974 
3975     // Store the vector to memory (because LValue wants an address).
3976     Address VecMem = CreateMemTemp(E->getBase()->getType());
3977     Builder.CreateStore(Vec, VecMem);
3978     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3979                           AlignmentSource::Decl);
3980   }
3981 
3982   QualType type =
3983     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3984 
3985   // Encode the element access list into a vector of unsigned indices.
3986   SmallVector<uint32_t, 4> Indices;
3987   E->getEncodedElementAccess(Indices);
3988 
3989   if (Base.isSimple()) {
3990     llvm::Constant *CV =
3991         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3992     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
3993                                     Base.getBaseInfo(), TBAAAccessInfo());
3994   }
3995   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3996 
3997   llvm::Constant *BaseElts = Base.getExtVectorElts();
3998   SmallVector<llvm::Constant *, 4> CElts;
3999 
4000   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4001     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4002   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4003   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4004                                   Base.getBaseInfo(), TBAAAccessInfo());
4005 }
4006 
4007 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4008   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4009     EmitIgnoredExpr(E->getBase());
4010     return EmitDeclRefLValue(DRE);
4011   }
4012 
4013   Expr *BaseExpr = E->getBase();
4014   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4015   LValue BaseLV;
4016   if (E->isArrow()) {
4017     LValueBaseInfo BaseInfo;
4018     TBAAAccessInfo TBAAInfo;
4019     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4020     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4021     SanitizerSet SkippedChecks;
4022     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4023     if (IsBaseCXXThis)
4024       SkippedChecks.set(SanitizerKind::Alignment, true);
4025     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4026       SkippedChecks.set(SanitizerKind::Null, true);
4027     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4028                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4029     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4030   } else
4031     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4032 
4033   NamedDecl *ND = E->getMemberDecl();
4034   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4035     LValue LV = EmitLValueForField(BaseLV, Field);
4036     setObjCGCLValueClass(getContext(), E, LV);
4037     if (getLangOpts().OpenMP) {
4038       // If the member was explicitly marked as nontemporal, mark it as
4039       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4040       // to children as nontemporal too.
4041       if ((IsWrappedCXXThis(BaseExpr) &&
4042            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4043           BaseLV.isNontemporal())
4044         LV.setNontemporal(/*Value=*/true);
4045     }
4046     return LV;
4047   }
4048 
4049   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4050     return EmitFunctionDeclLValue(*this, E, FD);
4051 
4052   llvm_unreachable("Unhandled member declaration!");
4053 }
4054 
4055 /// Given that we are currently emitting a lambda, emit an l-value for
4056 /// one of its members.
4057 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4058   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4059   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4060   QualType LambdaTagType =
4061     getContext().getTagDeclType(Field->getParent());
4062   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4063   return EmitLValueForField(LambdaLV, Field);
4064 }
4065 
4066 /// Get the field index in the debug info. The debug info structure/union
4067 /// will ignore the unnamed bitfields.
4068 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4069                                              unsigned FieldIndex) {
4070   unsigned I = 0, Skipped = 0;
4071 
4072   for (auto F : Rec->getDefinition()->fields()) {
4073     if (I == FieldIndex)
4074       break;
4075     if (F->isUnnamedBitfield())
4076       Skipped++;
4077     I++;
4078   }
4079 
4080   return FieldIndex - Skipped;
4081 }
4082 
4083 /// Get the address of a zero-sized field within a record. The resulting
4084 /// address doesn't necessarily have the right type.
4085 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4086                                        const FieldDecl *Field) {
4087   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4088       CGF.getContext().getFieldOffset(Field));
4089   if (Offset.isZero())
4090     return Base;
4091   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4092   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4093 }
4094 
4095 /// Drill down to the storage of a field without walking into
4096 /// reference types.
4097 ///
4098 /// The resulting address doesn't necessarily have the right type.
4099 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4100                                       const FieldDecl *field) {
4101   if (field->isZeroSize(CGF.getContext()))
4102     return emitAddrOfZeroSizeField(CGF, base, field);
4103 
4104   const RecordDecl *rec = field->getParent();
4105 
4106   unsigned idx =
4107     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4108 
4109   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4110 }
4111 
4112 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4113                                         Address addr, const FieldDecl *field) {
4114   const RecordDecl *rec = field->getParent();
4115   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4116       base.getType(), rec->getLocation());
4117 
4118   unsigned idx =
4119       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4120 
4121   return CGF.Builder.CreatePreserveStructAccessIndex(
4122       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4123 }
4124 
4125 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4126   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4127   if (!RD)
4128     return false;
4129 
4130   if (RD->isDynamicClass())
4131     return true;
4132 
4133   for (const auto &Base : RD->bases())
4134     if (hasAnyVptr(Base.getType(), Context))
4135       return true;
4136 
4137   for (const FieldDecl *Field : RD->fields())
4138     if (hasAnyVptr(Field->getType(), Context))
4139       return true;
4140 
4141   return false;
4142 }
4143 
4144 LValue CodeGenFunction::EmitLValueForField(LValue base,
4145                                            const FieldDecl *field) {
4146   LValueBaseInfo BaseInfo = base.getBaseInfo();
4147 
4148   if (field->isBitField()) {
4149     const CGRecordLayout &RL =
4150       CGM.getTypes().getCGRecordLayout(field->getParent());
4151     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4152     Address Addr = base.getAddress(*this);
4153     unsigned Idx = RL.getLLVMFieldNo(field);
4154     const RecordDecl *rec = field->getParent();
4155     if (!IsInPreservedAIRegion &&
4156         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4157       if (Idx != 0)
4158         // For structs, we GEP to the field that the record layout suggests.
4159         Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4160     } else {
4161       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4162           getContext().getRecordType(rec), rec->getLocation());
4163       Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx,
4164           getDebugInfoFIndex(rec, field->getFieldIndex()),
4165           DbgInfo);
4166     }
4167 
4168     // Get the access type.
4169     llvm::Type *FieldIntTy =
4170       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
4171     if (Addr.getElementType() != FieldIntTy)
4172       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4173 
4174     QualType fieldType =
4175       field->getType().withCVRQualifiers(base.getVRQualifiers());
4176     // TODO: Support TBAA for bit fields.
4177     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4178     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4179                                 TBAAAccessInfo());
4180   }
4181 
4182   // Fields of may-alias structures are may-alias themselves.
4183   // FIXME: this should get propagated down through anonymous structs
4184   // and unions.
4185   QualType FieldType = field->getType();
4186   const RecordDecl *rec = field->getParent();
4187   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4188   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4189   TBAAAccessInfo FieldTBAAInfo;
4190   if (base.getTBAAInfo().isMayAlias() ||
4191           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4192     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4193   } else if (rec->isUnion()) {
4194     // TODO: Support TBAA for unions.
4195     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4196   } else {
4197     // If no base type been assigned for the base access, then try to generate
4198     // one for this base lvalue.
4199     FieldTBAAInfo = base.getTBAAInfo();
4200     if (!FieldTBAAInfo.BaseType) {
4201         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4202         assert(!FieldTBAAInfo.Offset &&
4203                "Nonzero offset for an access with no base type!");
4204     }
4205 
4206     // Adjust offset to be relative to the base type.
4207     const ASTRecordLayout &Layout =
4208         getContext().getASTRecordLayout(field->getParent());
4209     unsigned CharWidth = getContext().getCharWidth();
4210     if (FieldTBAAInfo.BaseType)
4211       FieldTBAAInfo.Offset +=
4212           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4213 
4214     // Update the final access type and size.
4215     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4216     FieldTBAAInfo.Size =
4217         getContext().getTypeSizeInChars(FieldType).getQuantity();
4218   }
4219 
4220   Address addr = base.getAddress(*this);
4221   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4222     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4223         ClassDef->isDynamicClass()) {
4224       // Getting to any field of dynamic object requires stripping dynamic
4225       // information provided by invariant.group.  This is because accessing
4226       // fields may leak the real address of dynamic object, which could result
4227       // in miscompilation when leaked pointer would be compared.
4228       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4229       addr = Address(stripped, addr.getAlignment());
4230     }
4231   }
4232 
4233   unsigned RecordCVR = base.getVRQualifiers();
4234   if (rec->isUnion()) {
4235     // For unions, there is no pointer adjustment.
4236     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4237         hasAnyVptr(FieldType, getContext()))
4238       // Because unions can easily skip invariant.barriers, we need to add
4239       // a barrier every time CXXRecord field with vptr is referenced.
4240       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4241                      addr.getAlignment());
4242 
4243     if (IsInPreservedAIRegion ||
4244         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4245       // Remember the original union field index
4246       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4247           rec->getLocation());
4248       addr = Address(
4249           Builder.CreatePreserveUnionAccessIndex(
4250               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4251           addr.getAlignment());
4252     }
4253 
4254     if (FieldType->isReferenceType())
4255       addr = Builder.CreateElementBitCast(
4256           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4257   } else {
4258     if (!IsInPreservedAIRegion &&
4259         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4260       // For structs, we GEP to the field that the record layout suggests.
4261       addr = emitAddrOfFieldStorage(*this, addr, field);
4262     else
4263       // Remember the original struct field index
4264       addr = emitPreserveStructAccess(*this, base, addr, field);
4265   }
4266 
4267   // If this is a reference field, load the reference right now.
4268   if (FieldType->isReferenceType()) {
4269     LValue RefLVal =
4270         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4271     if (RecordCVR & Qualifiers::Volatile)
4272       RefLVal.getQuals().addVolatile();
4273     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4274 
4275     // Qualifiers on the struct don't apply to the referencee.
4276     RecordCVR = 0;
4277     FieldType = FieldType->getPointeeType();
4278   }
4279 
4280   // Make sure that the address is pointing to the right type.  This is critical
4281   // for both unions and structs.  A union needs a bitcast, a struct element
4282   // will need a bitcast if the LLVM type laid out doesn't match the desired
4283   // type.
4284   addr = Builder.CreateElementBitCast(
4285       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4286 
4287   if (field->hasAttr<AnnotateAttr>())
4288     addr = EmitFieldAnnotations(field, addr);
4289 
4290   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4291   LV.getQuals().addCVRQualifiers(RecordCVR);
4292 
4293   // __weak attribute on a field is ignored.
4294   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4295     LV.getQuals().removeObjCGCAttr();
4296 
4297   return LV;
4298 }
4299 
4300 LValue
4301 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4302                                                   const FieldDecl *Field) {
4303   QualType FieldType = Field->getType();
4304 
4305   if (!FieldType->isReferenceType())
4306     return EmitLValueForField(Base, Field);
4307 
4308   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4309 
4310   // Make sure that the address is pointing to the right type.
4311   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4312   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4313 
4314   // TODO: Generate TBAA information that describes this access as a structure
4315   // member access and not just an access to an object of the field's type. This
4316   // should be similar to what we do in EmitLValueForField().
4317   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4318   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4319   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4320   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4321                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4322 }
4323 
4324 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4325   if (E->isFileScope()) {
4326     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4327     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4328   }
4329   if (E->getType()->isVariablyModifiedType())
4330     // make sure to emit the VLA size.
4331     EmitVariablyModifiedType(E->getType());
4332 
4333   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4334   const Expr *InitExpr = E->getInitializer();
4335   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4336 
4337   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4338                    /*Init*/ true);
4339 
4340   // Block-scope compound literals are destroyed at the end of the enclosing
4341   // scope in C.
4342   if (!getLangOpts().CPlusPlus)
4343     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4344       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4345                                   E->getType(), getDestroyer(DtorKind),
4346                                   DtorKind & EHCleanup);
4347 
4348   return Result;
4349 }
4350 
4351 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4352   if (!E->isGLValue())
4353     // Initializing an aggregate temporary in C++11: T{...}.
4354     return EmitAggExprToLValue(E);
4355 
4356   // An lvalue initializer list must be initializing a reference.
4357   assert(E->isTransparent() && "non-transparent glvalue init list");
4358   return EmitLValue(E->getInit(0));
4359 }
4360 
4361 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4362 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4363 /// LValue is returned and the current block has been terminated.
4364 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4365                                                     const Expr *Operand) {
4366   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4367     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4368     return None;
4369   }
4370 
4371   return CGF.EmitLValue(Operand);
4372 }
4373 
4374 LValue CodeGenFunction::
4375 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4376   if (!expr->isGLValue()) {
4377     // ?: here should be an aggregate.
4378     assert(hasAggregateEvaluationKind(expr->getType()) &&
4379            "Unexpected conditional operator!");
4380     return EmitAggExprToLValue(expr);
4381   }
4382 
4383   OpaqueValueMapping binding(*this, expr);
4384 
4385   const Expr *condExpr = expr->getCond();
4386   bool CondExprBool;
4387   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4388     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4389     if (!CondExprBool) std::swap(live, dead);
4390 
4391     if (!ContainsLabel(dead)) {
4392       // If the true case is live, we need to track its region.
4393       if (CondExprBool)
4394         incrementProfileCounter(expr);
4395       // If a throw expression we emit it and return an undefined lvalue
4396       // because it can't be used.
4397       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4398         EmitCXXThrowExpr(ThrowExpr);
4399         llvm::Type *Ty =
4400             llvm::PointerType::getUnqual(ConvertType(dead->getType()));
4401         return MakeAddrLValue(
4402             Address(llvm::UndefValue::get(Ty), CharUnits::One()),
4403             dead->getType());
4404       }
4405       return EmitLValue(live);
4406     }
4407   }
4408 
4409   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4410   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4411   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4412 
4413   ConditionalEvaluation eval(*this);
4414   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4415 
4416   // Any temporaries created here are conditional.
4417   EmitBlock(lhsBlock);
4418   incrementProfileCounter(expr);
4419   eval.begin(*this);
4420   Optional<LValue> lhs =
4421       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4422   eval.end(*this);
4423 
4424   if (lhs && !lhs->isSimple())
4425     return EmitUnsupportedLValue(expr, "conditional operator");
4426 
4427   lhsBlock = Builder.GetInsertBlock();
4428   if (lhs)
4429     Builder.CreateBr(contBlock);
4430 
4431   // Any temporaries created here are conditional.
4432   EmitBlock(rhsBlock);
4433   eval.begin(*this);
4434   Optional<LValue> rhs =
4435       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4436   eval.end(*this);
4437   if (rhs && !rhs->isSimple())
4438     return EmitUnsupportedLValue(expr, "conditional operator");
4439   rhsBlock = Builder.GetInsertBlock();
4440 
4441   EmitBlock(contBlock);
4442 
4443   if (lhs && rhs) {
4444     llvm::PHINode *phi =
4445         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4446     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4447     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4448     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4449     AlignmentSource alignSource =
4450       std::max(lhs->getBaseInfo().getAlignmentSource(),
4451                rhs->getBaseInfo().getAlignmentSource());
4452     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4453         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4454     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4455                           TBAAInfo);
4456   } else {
4457     assert((lhs || rhs) &&
4458            "both operands of glvalue conditional are throw-expressions?");
4459     return lhs ? *lhs : *rhs;
4460   }
4461 }
4462 
4463 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4464 /// type. If the cast is to a reference, we can have the usual lvalue result,
4465 /// otherwise if a cast is needed by the code generator in an lvalue context,
4466 /// then it must mean that we need the address of an aggregate in order to
4467 /// access one of its members.  This can happen for all the reasons that casts
4468 /// are permitted with aggregate result, including noop aggregate casts, and
4469 /// cast from scalar to union.
4470 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4471   switch (E->getCastKind()) {
4472   case CK_ToVoid:
4473   case CK_BitCast:
4474   case CK_LValueToRValueBitCast:
4475   case CK_ArrayToPointerDecay:
4476   case CK_FunctionToPointerDecay:
4477   case CK_NullToMemberPointer:
4478   case CK_NullToPointer:
4479   case CK_IntegralToPointer:
4480   case CK_PointerToIntegral:
4481   case CK_PointerToBoolean:
4482   case CK_VectorSplat:
4483   case CK_IntegralCast:
4484   case CK_BooleanToSignedIntegral:
4485   case CK_IntegralToBoolean:
4486   case CK_IntegralToFloating:
4487   case CK_FloatingToIntegral:
4488   case CK_FloatingToBoolean:
4489   case CK_FloatingCast:
4490   case CK_FloatingRealToComplex:
4491   case CK_FloatingComplexToReal:
4492   case CK_FloatingComplexToBoolean:
4493   case CK_FloatingComplexCast:
4494   case CK_FloatingComplexToIntegralComplex:
4495   case CK_IntegralRealToComplex:
4496   case CK_IntegralComplexToReal:
4497   case CK_IntegralComplexToBoolean:
4498   case CK_IntegralComplexCast:
4499   case CK_IntegralComplexToFloatingComplex:
4500   case CK_DerivedToBaseMemberPointer:
4501   case CK_BaseToDerivedMemberPointer:
4502   case CK_MemberPointerToBoolean:
4503   case CK_ReinterpretMemberPointer:
4504   case CK_AnyPointerToBlockPointerCast:
4505   case CK_ARCProduceObject:
4506   case CK_ARCConsumeObject:
4507   case CK_ARCReclaimReturnedObject:
4508   case CK_ARCExtendBlockObject:
4509   case CK_CopyAndAutoreleaseBlockObject:
4510   case CK_IntToOCLSampler:
4511   case CK_FixedPointCast:
4512   case CK_FixedPointToBoolean:
4513   case CK_FixedPointToIntegral:
4514   case CK_IntegralToFixedPoint:
4515     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4516 
4517   case CK_Dependent:
4518     llvm_unreachable("dependent cast kind in IR gen!");
4519 
4520   case CK_BuiltinFnToFnPtr:
4521     llvm_unreachable("builtin functions are handled elsewhere");
4522 
4523   // These are never l-values; just use the aggregate emission code.
4524   case CK_NonAtomicToAtomic:
4525   case CK_AtomicToNonAtomic:
4526     return EmitAggExprToLValue(E);
4527 
4528   case CK_Dynamic: {
4529     LValue LV = EmitLValue(E->getSubExpr());
4530     Address V = LV.getAddress(*this);
4531     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4532     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4533   }
4534 
4535   case CK_ConstructorConversion:
4536   case CK_UserDefinedConversion:
4537   case CK_CPointerToObjCPointerCast:
4538   case CK_BlockPointerToObjCPointerCast:
4539   case CK_NoOp:
4540   case CK_LValueToRValue:
4541     return EmitLValue(E->getSubExpr());
4542 
4543   case CK_UncheckedDerivedToBase:
4544   case CK_DerivedToBase: {
4545     const auto *DerivedClassTy =
4546         E->getSubExpr()->getType()->castAs<RecordType>();
4547     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4548 
4549     LValue LV = EmitLValue(E->getSubExpr());
4550     Address This = LV.getAddress(*this);
4551 
4552     // Perform the derived-to-base conversion
4553     Address Base = GetAddressOfBaseClass(
4554         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4555         /*NullCheckValue=*/false, E->getExprLoc());
4556 
4557     // TODO: Support accesses to members of base classes in TBAA. For now, we
4558     // conservatively pretend that the complete object is of the base class
4559     // type.
4560     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4561                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4562   }
4563   case CK_ToUnion:
4564     return EmitAggExprToLValue(E);
4565   case CK_BaseToDerived: {
4566     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4567     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4568 
4569     LValue LV = EmitLValue(E->getSubExpr());
4570 
4571     // Perform the base-to-derived conversion
4572     Address Derived = GetAddressOfDerivedClass(
4573         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4574         /*NullCheckValue=*/false);
4575 
4576     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4577     // performed and the object is not of the derived type.
4578     if (sanitizePerformTypeCheck())
4579       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4580                     Derived.getPointer(), E->getType());
4581 
4582     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4583       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4584                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4585                                 E->getBeginLoc());
4586 
4587     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4588                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4589   }
4590   case CK_LValueBitCast: {
4591     // This must be a reinterpret_cast (or c-style equivalent).
4592     const auto *CE = cast<ExplicitCastExpr>(E);
4593 
4594     CGM.EmitExplicitCastExprType(CE, this);
4595     LValue LV = EmitLValue(E->getSubExpr());
4596     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4597                                       ConvertType(CE->getTypeAsWritten()));
4598 
4599     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4600       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4601                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4602                                 E->getBeginLoc());
4603 
4604     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4605                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4606   }
4607   case CK_AddressSpaceConversion: {
4608     LValue LV = EmitLValue(E->getSubExpr());
4609     QualType DestTy = getContext().getPointerType(E->getType());
4610     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4611         *this, LV.getPointer(*this),
4612         E->getSubExpr()->getType().getAddressSpace(),
4613         E->getType().getAddressSpace(), ConvertType(DestTy));
4614     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4615                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4616   }
4617   case CK_ObjCObjectLValueCast: {
4618     LValue LV = EmitLValue(E->getSubExpr());
4619     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4620                                              ConvertType(E->getType()));
4621     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4622                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4623   }
4624   case CK_ZeroToOCLOpaqueType:
4625     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4626   }
4627 
4628   llvm_unreachable("Unhandled lvalue cast kind?");
4629 }
4630 
4631 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4632   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4633   return getOrCreateOpaqueLValueMapping(e);
4634 }
4635 
4636 LValue
4637 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4638   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4639 
4640   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4641       it = OpaqueLValues.find(e);
4642 
4643   if (it != OpaqueLValues.end())
4644     return it->second;
4645 
4646   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4647   return EmitLValue(e->getSourceExpr());
4648 }
4649 
4650 RValue
4651 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4652   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4653 
4654   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4655       it = OpaqueRValues.find(e);
4656 
4657   if (it != OpaqueRValues.end())
4658     return it->second;
4659 
4660   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4661   return EmitAnyExpr(e->getSourceExpr());
4662 }
4663 
4664 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4665                                            const FieldDecl *FD,
4666                                            SourceLocation Loc) {
4667   QualType FT = FD->getType();
4668   LValue FieldLV = EmitLValueForField(LV, FD);
4669   switch (getEvaluationKind(FT)) {
4670   case TEK_Complex:
4671     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4672   case TEK_Aggregate:
4673     return FieldLV.asAggregateRValue(*this);
4674   case TEK_Scalar:
4675     // This routine is used to load fields one-by-one to perform a copy, so
4676     // don't load reference fields.
4677     if (FD->getType()->isReferenceType())
4678       return RValue::get(FieldLV.getPointer(*this));
4679     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4680     // primitive load.
4681     if (FieldLV.isBitField())
4682       return EmitLoadOfLValue(FieldLV, Loc);
4683     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4684   }
4685   llvm_unreachable("bad evaluation kind");
4686 }
4687 
4688 //===--------------------------------------------------------------------===//
4689 //                             Expression Emission
4690 //===--------------------------------------------------------------------===//
4691 
4692 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4693                                      ReturnValueSlot ReturnValue) {
4694   // Builtins never have block type.
4695   if (E->getCallee()->getType()->isBlockPointerType())
4696     return EmitBlockCallExpr(E, ReturnValue);
4697 
4698   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4699     return EmitCXXMemberCallExpr(CE, ReturnValue);
4700 
4701   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4702     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4703 
4704   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4705     if (const CXXMethodDecl *MD =
4706           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4707       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4708 
4709   CGCallee callee = EmitCallee(E->getCallee());
4710 
4711   if (callee.isBuiltin()) {
4712     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4713                            E, ReturnValue);
4714   }
4715 
4716   if (callee.isPseudoDestructor()) {
4717     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4718   }
4719 
4720   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4721 }
4722 
4723 /// Emit a CallExpr without considering whether it might be a subclass.
4724 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4725                                            ReturnValueSlot ReturnValue) {
4726   CGCallee Callee = EmitCallee(E->getCallee());
4727   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4728 }
4729 
4730 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4731   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4732 
4733   if (auto builtinID = FD->getBuiltinID()) {
4734     // Replaceable builtin provide their own implementation of a builtin. Unless
4735     // we are in the builtin implementation itself, don't call the actual
4736     // builtin. If we are in the builtin implementation, avoid trivial infinite
4737     // recursion.
4738     if (!FD->isInlineBuiltinDeclaration() ||
4739         CGF.CurFn->getName() == FD->getName())
4740       return CGCallee::forBuiltin(builtinID, FD);
4741   }
4742 
4743   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4744   return CGCallee::forDirect(calleePtr, GD);
4745 }
4746 
4747 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4748   E = E->IgnoreParens();
4749 
4750   // Look through function-to-pointer decay.
4751   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4752     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4753         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4754       return EmitCallee(ICE->getSubExpr());
4755     }
4756 
4757   // Resolve direct calls.
4758   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4759     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4760       return EmitDirectCallee(*this, FD);
4761     }
4762   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4763     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4764       EmitIgnoredExpr(ME->getBase());
4765       return EmitDirectCallee(*this, FD);
4766     }
4767 
4768   // Look through template substitutions.
4769   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4770     return EmitCallee(NTTP->getReplacement());
4771 
4772   // Treat pseudo-destructor calls differently.
4773   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4774     return CGCallee::forPseudoDestructor(PDE);
4775   }
4776 
4777   // Otherwise, we have an indirect reference.
4778   llvm::Value *calleePtr;
4779   QualType functionType;
4780   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4781     calleePtr = EmitScalarExpr(E);
4782     functionType = ptrType->getPointeeType();
4783   } else {
4784     functionType = E->getType();
4785     calleePtr = EmitLValue(E).getPointer(*this);
4786   }
4787   assert(functionType->isFunctionType());
4788 
4789   GlobalDecl GD;
4790   if (const auto *VD =
4791           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4792     GD = GlobalDecl(VD);
4793 
4794   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4795   CGCallee callee(calleeInfo, calleePtr);
4796   return callee;
4797 }
4798 
4799 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4800   // Comma expressions just emit their LHS then their RHS as an l-value.
4801   if (E->getOpcode() == BO_Comma) {
4802     EmitIgnoredExpr(E->getLHS());
4803     EnsureInsertPoint();
4804     return EmitLValue(E->getRHS());
4805   }
4806 
4807   if (E->getOpcode() == BO_PtrMemD ||
4808       E->getOpcode() == BO_PtrMemI)
4809     return EmitPointerToDataMemberBinaryExpr(E);
4810 
4811   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4812 
4813   // Note that in all of these cases, __block variables need the RHS
4814   // evaluated first just in case the variable gets moved by the RHS.
4815 
4816   switch (getEvaluationKind(E->getType())) {
4817   case TEK_Scalar: {
4818     switch (E->getLHS()->getType().getObjCLifetime()) {
4819     case Qualifiers::OCL_Strong:
4820       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4821 
4822     case Qualifiers::OCL_Autoreleasing:
4823       return EmitARCStoreAutoreleasing(E).first;
4824 
4825     // No reason to do any of these differently.
4826     case Qualifiers::OCL_None:
4827     case Qualifiers::OCL_ExplicitNone:
4828     case Qualifiers::OCL_Weak:
4829       break;
4830     }
4831 
4832     RValue RV = EmitAnyExpr(E->getRHS());
4833     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4834     if (RV.isScalar())
4835       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4836     EmitStoreThroughLValue(RV, LV);
4837     if (getLangOpts().OpenMP)
4838       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4839                                                                 E->getLHS());
4840     return LV;
4841   }
4842 
4843   case TEK_Complex:
4844     return EmitComplexAssignmentLValue(E);
4845 
4846   case TEK_Aggregate:
4847     return EmitAggExprToLValue(E);
4848   }
4849   llvm_unreachable("bad evaluation kind");
4850 }
4851 
4852 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4853   RValue RV = EmitCallExpr(E);
4854 
4855   if (!RV.isScalar())
4856     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4857                           AlignmentSource::Decl);
4858 
4859   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4860          "Can't have a scalar return unless the return type is a "
4861          "reference type!");
4862 
4863   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4864 }
4865 
4866 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4867   // FIXME: This shouldn't require another copy.
4868   return EmitAggExprToLValue(E);
4869 }
4870 
4871 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4872   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4873          && "binding l-value to type which needs a temporary");
4874   AggValueSlot Slot = CreateAggTemp(E->getType());
4875   EmitCXXConstructExpr(E, Slot);
4876   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4877 }
4878 
4879 LValue
4880 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4881   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4882 }
4883 
4884 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4885   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
4886                                       ConvertType(E->getType()));
4887 }
4888 
4889 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4890   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4891                         AlignmentSource::Decl);
4892 }
4893 
4894 LValue
4895 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4896   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4897   Slot.setExternallyDestructed();
4898   EmitAggExpr(E->getSubExpr(), Slot);
4899   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4900   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4901 }
4902 
4903 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4904   RValue RV = EmitObjCMessageExpr(E);
4905 
4906   if (!RV.isScalar())
4907     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4908                           AlignmentSource::Decl);
4909 
4910   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4911          "Can't have a scalar return unless the return type is a "
4912          "reference type!");
4913 
4914   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4915 }
4916 
4917 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4918   Address V =
4919     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4920   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4921 }
4922 
4923 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4924                                              const ObjCIvarDecl *Ivar) {
4925   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4926 }
4927 
4928 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4929                                           llvm::Value *BaseValue,
4930                                           const ObjCIvarDecl *Ivar,
4931                                           unsigned CVRQualifiers) {
4932   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4933                                                    Ivar, CVRQualifiers);
4934 }
4935 
4936 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4937   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4938   llvm::Value *BaseValue = nullptr;
4939   const Expr *BaseExpr = E->getBase();
4940   Qualifiers BaseQuals;
4941   QualType ObjectTy;
4942   if (E->isArrow()) {
4943     BaseValue = EmitScalarExpr(BaseExpr);
4944     ObjectTy = BaseExpr->getType()->getPointeeType();
4945     BaseQuals = ObjectTy.getQualifiers();
4946   } else {
4947     LValue BaseLV = EmitLValue(BaseExpr);
4948     BaseValue = BaseLV.getPointer(*this);
4949     ObjectTy = BaseExpr->getType();
4950     BaseQuals = ObjectTy.getQualifiers();
4951   }
4952 
4953   LValue LV =
4954     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4955                       BaseQuals.getCVRQualifiers());
4956   setObjCGCLValueClass(getContext(), E, LV);
4957   return LV;
4958 }
4959 
4960 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4961   // Can only get l-value for message expression returning aggregate type
4962   RValue RV = EmitAnyExprToTemp(E);
4963   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4964                         AlignmentSource::Decl);
4965 }
4966 
4967 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4968                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4969                                  llvm::Value *Chain) {
4970   // Get the actual function type. The callee type will always be a pointer to
4971   // function type or a block pointer type.
4972   assert(CalleeType->isFunctionPointerType() &&
4973          "Call must have function pointer type!");
4974 
4975   const Decl *TargetDecl =
4976       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4977 
4978   CalleeType = getContext().getCanonicalType(CalleeType);
4979 
4980   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4981 
4982   CGCallee Callee = OrigCallee;
4983 
4984   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4985       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4986     if (llvm::Constant *PrefixSig =
4987             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4988       SanitizerScope SanScope(this);
4989       // Remove any (C++17) exception specifications, to allow calling e.g. a
4990       // noexcept function through a non-noexcept pointer.
4991       auto ProtoTy =
4992         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4993       llvm::Constant *FTRTTIConst =
4994           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4995       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4996       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4997           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4998 
4999       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5000 
5001       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5002           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5003       llvm::Value *CalleeSigPtr =
5004           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5005       llvm::Value *CalleeSig =
5006           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
5007       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5008 
5009       llvm::BasicBlock *Cont = createBasicBlock("cont");
5010       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5011       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5012 
5013       EmitBlock(TypeCheck);
5014       llvm::Value *CalleeRTTIPtr =
5015           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5016       llvm::Value *CalleeRTTIEncoded =
5017           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
5018       llvm::Value *CalleeRTTI =
5019           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5020       llvm::Value *CalleeRTTIMatch =
5021           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5022       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5023                                       EmitCheckTypeDescriptor(CalleeType)};
5024       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5025                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5026                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5027 
5028       Builder.CreateBr(Cont);
5029       EmitBlock(Cont);
5030     }
5031   }
5032 
5033   const auto *FnType = cast<FunctionType>(PointeeType);
5034 
5035   // If we are checking indirect calls and this call is indirect, check that the
5036   // function pointer is a member of the bit set for the function type.
5037   if (SanOpts.has(SanitizerKind::CFIICall) &&
5038       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5039     SanitizerScope SanScope(this);
5040     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5041 
5042     llvm::Metadata *MD;
5043     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5044       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5045     else
5046       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5047 
5048     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5049 
5050     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5051     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5052     llvm::Value *TypeTest = Builder.CreateCall(
5053         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5054 
5055     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5056     llvm::Constant *StaticData[] = {
5057         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5058         EmitCheckSourceLocation(E->getBeginLoc()),
5059         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5060     };
5061     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5062       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5063                            CastedCallee, StaticData);
5064     } else {
5065       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5066                 SanitizerHandler::CFICheckFail, StaticData,
5067                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5068     }
5069   }
5070 
5071   CallArgList Args;
5072   if (Chain)
5073     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5074              CGM.getContext().VoidPtrTy);
5075 
5076   // C++17 requires that we evaluate arguments to a call using assignment syntax
5077   // right-to-left, and that we evaluate arguments to certain other operators
5078   // left-to-right. Note that we allow this to override the order dictated by
5079   // the calling convention on the MS ABI, which means that parameter
5080   // destruction order is not necessarily reverse construction order.
5081   // FIXME: Revisit this based on C++ committee response to unimplementability.
5082   EvaluationOrder Order = EvaluationOrder::Default;
5083   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5084     if (OCE->isAssignmentOp())
5085       Order = EvaluationOrder::ForceRightToLeft;
5086     else {
5087       switch (OCE->getOperator()) {
5088       case OO_LessLess:
5089       case OO_GreaterGreater:
5090       case OO_AmpAmp:
5091       case OO_PipePipe:
5092       case OO_Comma:
5093       case OO_ArrowStar:
5094         Order = EvaluationOrder::ForceLeftToRight;
5095         break;
5096       default:
5097         break;
5098       }
5099     }
5100   }
5101 
5102   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5103                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5104 
5105   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5106       Args, FnType, /*ChainCall=*/Chain);
5107 
5108   // C99 6.5.2.2p6:
5109   //   If the expression that denotes the called function has a type
5110   //   that does not include a prototype, [the default argument
5111   //   promotions are performed]. If the number of arguments does not
5112   //   equal the number of parameters, the behavior is undefined. If
5113   //   the function is defined with a type that includes a prototype,
5114   //   and either the prototype ends with an ellipsis (, ...) or the
5115   //   types of the arguments after promotion are not compatible with
5116   //   the types of the parameters, the behavior is undefined. If the
5117   //   function is defined with a type that does not include a
5118   //   prototype, and the types of the arguments after promotion are
5119   //   not compatible with those of the parameters after promotion,
5120   //   the behavior is undefined [except in some trivial cases].
5121   // That is, in the general case, we should assume that a call
5122   // through an unprototyped function type works like a *non-variadic*
5123   // call.  The way we make this work is to cast to the exact type
5124   // of the promoted arguments.
5125   //
5126   // Chain calls use this same code path to add the invisible chain parameter
5127   // to the function type.
5128   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5129     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5130     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5131     CalleeTy = CalleeTy->getPointerTo(AS);
5132 
5133     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5134     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5135     Callee.setFunctionPointer(CalleePtr);
5136   }
5137 
5138   llvm::CallBase *CallOrInvoke = nullptr;
5139   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5140                          E->getExprLoc());
5141 
5142   // Generate function declaration DISuprogram in order to be used
5143   // in debug info about call sites.
5144   if (CGDebugInfo *DI = getDebugInfo()) {
5145     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5146       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5147                                   CalleeDecl);
5148   }
5149 
5150   return Call;
5151 }
5152 
5153 LValue CodeGenFunction::
5154 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5155   Address BaseAddr = Address::invalid();
5156   if (E->getOpcode() == BO_PtrMemI) {
5157     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5158   } else {
5159     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5160   }
5161 
5162   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5163   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5164 
5165   LValueBaseInfo BaseInfo;
5166   TBAAAccessInfo TBAAInfo;
5167   Address MemberAddr =
5168     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5169                                     &TBAAInfo);
5170 
5171   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5172 }
5173 
5174 /// Given the address of a temporary variable, produce an r-value of
5175 /// its type.
5176 RValue CodeGenFunction::convertTempToRValue(Address addr,
5177                                             QualType type,
5178                                             SourceLocation loc) {
5179   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5180   switch (getEvaluationKind(type)) {
5181   case TEK_Complex:
5182     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5183   case TEK_Aggregate:
5184     return lvalue.asAggregateRValue(*this);
5185   case TEK_Scalar:
5186     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5187   }
5188   llvm_unreachable("bad evaluation kind");
5189 }
5190 
5191 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5192   assert(Val->getType()->isFPOrFPVectorTy());
5193   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5194     return;
5195 
5196   llvm::MDBuilder MDHelper(getLLVMContext());
5197   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5198 
5199   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5200 }
5201 
5202 namespace {
5203   struct LValueOrRValue {
5204     LValue LV;
5205     RValue RV;
5206   };
5207 }
5208 
5209 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5210                                            const PseudoObjectExpr *E,
5211                                            bool forLValue,
5212                                            AggValueSlot slot) {
5213   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5214 
5215   // Find the result expression, if any.
5216   const Expr *resultExpr = E->getResultExpr();
5217   LValueOrRValue result;
5218 
5219   for (PseudoObjectExpr::const_semantics_iterator
5220          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5221     const Expr *semantic = *i;
5222 
5223     // If this semantic expression is an opaque value, bind it
5224     // to the result of its source expression.
5225     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5226       // Skip unique OVEs.
5227       if (ov->isUnique()) {
5228         assert(ov != resultExpr &&
5229                "A unique OVE cannot be used as the result expression");
5230         continue;
5231       }
5232 
5233       // If this is the result expression, we may need to evaluate
5234       // directly into the slot.
5235       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5236       OVMA opaqueData;
5237       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5238           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5239         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5240         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5241                                        AlignmentSource::Decl);
5242         opaqueData = OVMA::bind(CGF, ov, LV);
5243         result.RV = slot.asRValue();
5244 
5245       // Otherwise, emit as normal.
5246       } else {
5247         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5248 
5249         // If this is the result, also evaluate the result now.
5250         if (ov == resultExpr) {
5251           if (forLValue)
5252             result.LV = CGF.EmitLValue(ov);
5253           else
5254             result.RV = CGF.EmitAnyExpr(ov, slot);
5255         }
5256       }
5257 
5258       opaques.push_back(opaqueData);
5259 
5260     // Otherwise, if the expression is the result, evaluate it
5261     // and remember the result.
5262     } else if (semantic == resultExpr) {
5263       if (forLValue)
5264         result.LV = CGF.EmitLValue(semantic);
5265       else
5266         result.RV = CGF.EmitAnyExpr(semantic, slot);
5267 
5268     // Otherwise, evaluate the expression in an ignored context.
5269     } else {
5270       CGF.EmitIgnoredExpr(semantic);
5271     }
5272   }
5273 
5274   // Unbind all the opaques now.
5275   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5276     opaques[i].unbind(CGF);
5277 
5278   return result;
5279 }
5280 
5281 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5282                                                AggValueSlot slot) {
5283   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5284 }
5285 
5286 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5287   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5288 }
5289