1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
65                                                      CharUnits Align,
66                                                      const Twine &Name,
67                                                      llvm::Value *ArraySize) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getAsAlign());
70   return Address(Alloca, Align);
71 }
72 
73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
74 /// block. The alloca is casted to default address space if necessary.
75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
76                                           const Twine &Name,
77                                           llvm::Value *ArraySize,
78                                           Address *AllocaAddr) {
79   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
80   if (AllocaAddr)
81     *AllocaAddr = Alloca;
82   llvm::Value *V = Alloca.getPointer();
83   // Alloca always returns a pointer in alloca address space, which may
84   // be different from the type defined by the language. For example,
85   // in C++ the auto variables are in the default address space. Therefore
86   // cast alloca to the default address space when necessary.
87   if (getASTAllocaAddressSpace() != LangAS::Default) {
88     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
89     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
90     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
91     // otherwise alloca is inserted at the current insertion point of the
92     // builder.
93     if (!ArraySize)
94       Builder.SetInsertPoint(AllocaInsertPt);
95     V = getTargetHooks().performAddrSpaceCast(
96         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
97         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
98   }
99 
100   return Address(V, Align);
101 }
102 
103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
105 /// insertion point of the builder.
106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
107                                                     const Twine &Name,
108                                                     llvm::Value *ArraySize) {
109   if (ArraySize)
110     return Builder.CreateAlloca(Ty, ArraySize, Name);
111   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
112                               ArraySize, Name, AllocaInsertPt);
113 }
114 
115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
116 /// default alignment of the corresponding LLVM type, which is *not*
117 /// guaranteed to be related in any way to the expected alignment of
118 /// an AST type that might have been lowered to Ty.
119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
120                                                       const Twine &Name) {
121   CharUnits Align =
122     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
123   return CreateTempAlloca(Ty, Align, Name);
124 }
125 
126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
127   assert(isa<llvm::AllocaInst>(Var.getPointer()));
128   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
129   Store->setAlignment(Var.getAlignment().getAsAlign());
130   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
131   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
132 }
133 
134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
135   CharUnits Align = getContext().getTypeAlignInChars(Ty);
136   return CreateTempAlloca(ConvertType(Ty), Align, Name);
137 }
138 
139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
140                                        Address *Alloca) {
141   // FIXME: Should we prefer the preferred type alignment here?
142   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
143 }
144 
145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
146                                        const Twine &Name, Address *Alloca) {
147   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
148                           /*ArraySize=*/nullptr, Alloca);
149 }
150 
151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
152                                                   const Twine &Name) {
153   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
154 }
155 
156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
157                                                   const Twine &Name) {
158   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
159                                   Name);
160 }
161 
162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
163 /// expression and compare the result against zero, returning an Int1Ty value.
164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
165   PGO.setCurrentStmt(E);
166   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
167     llvm::Value *MemPtr = EmitScalarExpr(E);
168     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
169   }
170 
171   QualType BoolTy = getContext().BoolTy;
172   SourceLocation Loc = E->getExprLoc();
173   if (!E->getType()->isAnyComplexType())
174     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
175 
176   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
177                                        Loc);
178 }
179 
180 /// EmitIgnoredExpr - Emit code to compute the specified expression,
181 /// ignoring the result.
182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
183   if (E->isRValue())
184     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
185 
186   // Just emit it as an l-value and drop the result.
187   EmitLValue(E);
188 }
189 
190 /// EmitAnyExpr - Emit code to compute the specified expression which
191 /// can have any type.  The result is returned as an RValue struct.
192 /// If this is an aggregate expression, AggSlot indicates where the
193 /// result should be returned.
194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
195                                     AggValueSlot aggSlot,
196                                     bool ignoreResult) {
197   switch (getEvaluationKind(E->getType())) {
198   case TEK_Scalar:
199     return RValue::get(EmitScalarExpr(E, ignoreResult));
200   case TEK_Complex:
201     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
202   case TEK_Aggregate:
203     if (!ignoreResult && aggSlot.isIgnored())
204       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
205     EmitAggExpr(E, aggSlot);
206     return aggSlot.asRValue();
207   }
208   llvm_unreachable("bad evaluation kind");
209 }
210 
211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
212 /// always be accessible even if no aggregate location is provided.
213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
214   AggValueSlot AggSlot = AggValueSlot::ignored();
215 
216   if (hasAggregateEvaluationKind(E->getType()))
217     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
218   return EmitAnyExpr(E, AggSlot);
219 }
220 
221 /// EmitAnyExprToMem - Evaluate an expression into a given memory
222 /// location.
223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
224                                        Address Location,
225                                        Qualifiers Quals,
226                                        bool IsInit) {
227   // FIXME: This function should take an LValue as an argument.
228   switch (getEvaluationKind(E->getType())) {
229   case TEK_Complex:
230     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
231                               /*isInit*/ false);
232     return;
233 
234   case TEK_Aggregate: {
235     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
236                                          AggValueSlot::IsDestructed_t(IsInit),
237                                          AggValueSlot::DoesNotNeedGCBarriers,
238                                          AggValueSlot::IsAliased_t(!IsInit),
239                                          AggValueSlot::MayOverlap));
240     return;
241   }
242 
243   case TEK_Scalar: {
244     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
245     LValue LV = MakeAddrLValue(Location, E->getType());
246     EmitStoreThroughLValue(RV, LV);
247     return;
248   }
249   }
250   llvm_unreachable("bad evaluation kind");
251 }
252 
253 static void
254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
255                      const Expr *E, Address ReferenceTemporary) {
256   // Objective-C++ ARC:
257   //   If we are binding a reference to a temporary that has ownership, we
258   //   need to perform retain/release operations on the temporary.
259   //
260   // FIXME: This should be looking at E, not M.
261   if (auto Lifetime = M->getType().getObjCLifetime()) {
262     switch (Lifetime) {
263     case Qualifiers::OCL_None:
264     case Qualifiers::OCL_ExplicitNone:
265       // Carry on to normal cleanup handling.
266       break;
267 
268     case Qualifiers::OCL_Autoreleasing:
269       // Nothing to do; cleaned up by an autorelease pool.
270       return;
271 
272     case Qualifiers::OCL_Strong:
273     case Qualifiers::OCL_Weak:
274       switch (StorageDuration Duration = M->getStorageDuration()) {
275       case SD_Static:
276         // Note: we intentionally do not register a cleanup to release
277         // the object on program termination.
278         return;
279 
280       case SD_Thread:
281         // FIXME: We should probably register a cleanup in this case.
282         return;
283 
284       case SD_Automatic:
285       case SD_FullExpression:
286         CodeGenFunction::Destroyer *Destroy;
287         CleanupKind CleanupKind;
288         if (Lifetime == Qualifiers::OCL_Strong) {
289           const ValueDecl *VD = M->getExtendingDecl();
290           bool Precise =
291               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
292           CleanupKind = CGF.getARCCleanupKind();
293           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
294                             : &CodeGenFunction::destroyARCStrongImprecise;
295         } else {
296           // __weak objects always get EH cleanups; otherwise, exceptions
297           // could cause really nasty crashes instead of mere leaks.
298           CleanupKind = NormalAndEHCleanup;
299           Destroy = &CodeGenFunction::destroyARCWeak;
300         }
301         if (Duration == SD_FullExpression)
302           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
303                           M->getType(), *Destroy,
304                           CleanupKind & EHCleanup);
305         else
306           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
307                                           M->getType(),
308                                           *Destroy, CleanupKind & EHCleanup);
309         return;
310 
311       case SD_Dynamic:
312         llvm_unreachable("temporary cannot have dynamic storage duration");
313       }
314       llvm_unreachable("unknown storage duration");
315     }
316   }
317 
318   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
319   if (const RecordType *RT =
320           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
321     // Get the destructor for the reference temporary.
322     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
323     if (!ClassDecl->hasTrivialDestructor())
324       ReferenceTemporaryDtor = ClassDecl->getDestructor();
325   }
326 
327   if (!ReferenceTemporaryDtor)
328     return;
329 
330   // Call the destructor for the temporary.
331   switch (M->getStorageDuration()) {
332   case SD_Static:
333   case SD_Thread: {
334     llvm::FunctionCallee CleanupFn;
335     llvm::Constant *CleanupArg;
336     if (E->getType()->isArrayType()) {
337       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
338           ReferenceTemporary, E->getType(),
339           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
340           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
341       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
342     } else {
343       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
344           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
345       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
346     }
347     CGF.CGM.getCXXABI().registerGlobalDtor(
348         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
349     break;
350   }
351 
352   case SD_FullExpression:
353     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
354                     CodeGenFunction::destroyCXXObject,
355                     CGF.getLangOpts().Exceptions);
356     break;
357 
358   case SD_Automatic:
359     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
360                                     ReferenceTemporary, E->getType(),
361                                     CodeGenFunction::destroyCXXObject,
362                                     CGF.getLangOpts().Exceptions);
363     break;
364 
365   case SD_Dynamic:
366     llvm_unreachable("temporary cannot have dynamic storage duration");
367   }
368 }
369 
370 static Address createReferenceTemporary(CodeGenFunction &CGF,
371                                         const MaterializeTemporaryExpr *M,
372                                         const Expr *Inner,
373                                         Address *Alloca = nullptr) {
374   auto &TCG = CGF.getTargetHooks();
375   switch (M->getStorageDuration()) {
376   case SD_FullExpression:
377   case SD_Automatic: {
378     // If we have a constant temporary array or record try to promote it into a
379     // constant global under the same rules a normal constant would've been
380     // promoted. This is easier on the optimizer and generally emits fewer
381     // instructions.
382     QualType Ty = Inner->getType();
383     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
384         (Ty->isArrayType() || Ty->isRecordType()) &&
385         CGF.CGM.isTypeConstant(Ty, true))
386       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
387         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
388           auto AS = AddrSpace.getValue();
389           auto *GV = new llvm::GlobalVariable(
390               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
391               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
392               llvm::GlobalValue::NotThreadLocal,
393               CGF.getContext().getTargetAddressSpace(AS));
394           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
395           GV->setAlignment(alignment.getAsAlign());
396           llvm::Constant *C = GV;
397           if (AS != LangAS::Default)
398             C = TCG.performAddrSpaceCast(
399                 CGF.CGM, GV, AS, LangAS::Default,
400                 GV->getValueType()->getPointerTo(
401                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
402           // FIXME: Should we put the new global into a COMDAT?
403           return Address(C, alignment);
404         }
405       }
406     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
407   }
408   case SD_Thread:
409   case SD_Static:
410     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
411 
412   case SD_Dynamic:
413     llvm_unreachable("temporary can't have dynamic storage duration");
414   }
415   llvm_unreachable("unknown storage duration");
416 }
417 
418 LValue CodeGenFunction::
419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
420   const Expr *E = M->getSubExpr();
421 
422   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
423           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
424          "Reference should never be pseudo-strong!");
425 
426   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
427   // as that will cause the lifetime adjustment to be lost for ARC
428   auto ownership = M->getType().getObjCLifetime();
429   if (ownership != Qualifiers::OCL_None &&
430       ownership != Qualifiers::OCL_ExplicitNone) {
431     Address Object = createReferenceTemporary(*this, M, E);
432     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
433       Object = Address(llvm::ConstantExpr::getBitCast(Var,
434                            ConvertTypeForMem(E->getType())
435                              ->getPointerTo(Object.getAddressSpace())),
436                        Object.getAlignment());
437 
438       // createReferenceTemporary will promote the temporary to a global with a
439       // constant initializer if it can.  It can only do this to a value of
440       // ARC-manageable type if the value is global and therefore "immune" to
441       // ref-counting operations.  Therefore we have no need to emit either a
442       // dynamic initialization or a cleanup and we can just return the address
443       // of the temporary.
444       if (Var->hasInitializer())
445         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
446 
447       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
448     }
449     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
450                                        AlignmentSource::Decl);
451 
452     switch (getEvaluationKind(E->getType())) {
453     default: llvm_unreachable("expected scalar or aggregate expression");
454     case TEK_Scalar:
455       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
456       break;
457     case TEK_Aggregate: {
458       EmitAggExpr(E, AggValueSlot::forAddr(Object,
459                                            E->getType().getQualifiers(),
460                                            AggValueSlot::IsDestructed,
461                                            AggValueSlot::DoesNotNeedGCBarriers,
462                                            AggValueSlot::IsNotAliased,
463                                            AggValueSlot::DoesNotOverlap));
464       break;
465     }
466     }
467 
468     pushTemporaryCleanup(*this, M, E, Object);
469     return RefTempDst;
470   }
471 
472   SmallVector<const Expr *, 2> CommaLHSs;
473   SmallVector<SubobjectAdjustment, 2> Adjustments;
474   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
475 
476   for (const auto &Ignored : CommaLHSs)
477     EmitIgnoredExpr(Ignored);
478 
479   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
480     if (opaque->getType()->isRecordType()) {
481       assert(Adjustments.empty());
482       return EmitOpaqueValueLValue(opaque);
483     }
484   }
485 
486   // Create and initialize the reference temporary.
487   Address Alloca = Address::invalid();
488   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
489   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
490           Object.getPointer()->stripPointerCasts())) {
491     Object = Address(llvm::ConstantExpr::getBitCast(
492                          cast<llvm::Constant>(Object.getPointer()),
493                          ConvertTypeForMem(E->getType())->getPointerTo()),
494                      Object.getAlignment());
495     // If the temporary is a global and has a constant initializer or is a
496     // constant temporary that we promoted to a global, we may have already
497     // initialized it.
498     if (!Var->hasInitializer()) {
499       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
500       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
501     }
502   } else {
503     switch (M->getStorageDuration()) {
504     case SD_Automatic:
505       if (auto *Size = EmitLifetimeStart(
506               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
507               Alloca.getPointer())) {
508         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
509                                                   Alloca, Size);
510       }
511       break;
512 
513     case SD_FullExpression: {
514       if (!ShouldEmitLifetimeMarkers)
515         break;
516 
517       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
518       // marker. Instead, start the lifetime of a conditional temporary earlier
519       // so that it's unconditional. Don't do this with sanitizers which need
520       // more precise lifetime marks.
521       ConditionalEvaluation *OldConditional = nullptr;
522       CGBuilderTy::InsertPoint OldIP;
523       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
524           !SanOpts.has(SanitizerKind::HWAddress) &&
525           !SanOpts.has(SanitizerKind::Memory) &&
526           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
527         OldConditional = OutermostConditional;
528         OutermostConditional = nullptr;
529 
530         OldIP = Builder.saveIP();
531         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
532         Builder.restoreIP(CGBuilderTy::InsertPoint(
533             Block, llvm::BasicBlock::iterator(Block->back())));
534       }
535 
536       if (auto *Size = EmitLifetimeStart(
537               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
538               Alloca.getPointer())) {
539         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
540                                              Size);
541       }
542 
543       if (OldConditional) {
544         OutermostConditional = OldConditional;
545         Builder.restoreIP(OldIP);
546       }
547       break;
548     }
549 
550     default:
551       break;
552     }
553     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
554   }
555   pushTemporaryCleanup(*this, M, E, Object);
556 
557   // Perform derived-to-base casts and/or field accesses, to get from the
558   // temporary object we created (and, potentially, for which we extended
559   // the lifetime) to the subobject we're binding the reference to.
560   for (unsigned I = Adjustments.size(); I != 0; --I) {
561     SubobjectAdjustment &Adjustment = Adjustments[I-1];
562     switch (Adjustment.Kind) {
563     case SubobjectAdjustment::DerivedToBaseAdjustment:
564       Object =
565           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
566                                 Adjustment.DerivedToBase.BasePath->path_begin(),
567                                 Adjustment.DerivedToBase.BasePath->path_end(),
568                                 /*NullCheckValue=*/ false, E->getExprLoc());
569       break;
570 
571     case SubobjectAdjustment::FieldAdjustment: {
572       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
573       LV = EmitLValueForField(LV, Adjustment.Field);
574       assert(LV.isSimple() &&
575              "materialized temporary field is not a simple lvalue");
576       Object = LV.getAddress(*this);
577       break;
578     }
579 
580     case SubobjectAdjustment::MemberPointerAdjustment: {
581       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
582       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
583                                                Adjustment.Ptr.MPT);
584       break;
585     }
586     }
587   }
588 
589   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
590 }
591 
592 RValue
593 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
594   // Emit the expression as an lvalue.
595   LValue LV = EmitLValue(E);
596   assert(LV.isSimple());
597   llvm::Value *Value = LV.getPointer(*this);
598 
599   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
600     // C++11 [dcl.ref]p5 (as amended by core issue 453):
601     //   If a glvalue to which a reference is directly bound designates neither
602     //   an existing object or function of an appropriate type nor a region of
603     //   storage of suitable size and alignment to contain an object of the
604     //   reference's type, the behavior is undefined.
605     QualType Ty = E->getType();
606     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
607   }
608 
609   return RValue::get(Value);
610 }
611 
612 
613 /// getAccessedFieldNo - Given an encoded value and a result number, return the
614 /// input field number being accessed.
615 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
616                                              const llvm::Constant *Elts) {
617   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
618       ->getZExtValue();
619 }
620 
621 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
622 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
623                                     llvm::Value *High) {
624   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
625   llvm::Value *K47 = Builder.getInt64(47);
626   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
627   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
628   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
629   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
630   return Builder.CreateMul(B1, KMul);
631 }
632 
633 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
634   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
635          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
636 }
637 
638 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
639   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
640   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
641          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
642           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
643           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
644 }
645 
646 bool CodeGenFunction::sanitizePerformTypeCheck() const {
647   return SanOpts.has(SanitizerKind::Null) |
648          SanOpts.has(SanitizerKind::Alignment) |
649          SanOpts.has(SanitizerKind::ObjectSize) |
650          SanOpts.has(SanitizerKind::Vptr);
651 }
652 
653 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
654                                     llvm::Value *Ptr, QualType Ty,
655                                     CharUnits Alignment,
656                                     SanitizerSet SkippedChecks,
657                                     llvm::Value *ArraySize) {
658   if (!sanitizePerformTypeCheck())
659     return;
660 
661   // Don't check pointers outside the default address space. The null check
662   // isn't correct, the object-size check isn't supported by LLVM, and we can't
663   // communicate the addresses to the runtime handler for the vptr check.
664   if (Ptr->getType()->getPointerAddressSpace())
665     return;
666 
667   // Don't check pointers to volatile data. The behavior here is implementation-
668   // defined.
669   if (Ty.isVolatileQualified())
670     return;
671 
672   SanitizerScope SanScope(this);
673 
674   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
675   llvm::BasicBlock *Done = nullptr;
676 
677   // Quickly determine whether we have a pointer to an alloca. It's possible
678   // to skip null checks, and some alignment checks, for these pointers. This
679   // can reduce compile-time significantly.
680   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
681 
682   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
683   llvm::Value *IsNonNull = nullptr;
684   bool IsGuaranteedNonNull =
685       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
686   bool AllowNullPointers = isNullPointerAllowed(TCK);
687   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
688       !IsGuaranteedNonNull) {
689     // The glvalue must not be an empty glvalue.
690     IsNonNull = Builder.CreateIsNotNull(Ptr);
691 
692     // The IR builder can constant-fold the null check if the pointer points to
693     // a constant.
694     IsGuaranteedNonNull = IsNonNull == True;
695 
696     // Skip the null check if the pointer is known to be non-null.
697     if (!IsGuaranteedNonNull) {
698       if (AllowNullPointers) {
699         // When performing pointer casts, it's OK if the value is null.
700         // Skip the remaining checks in that case.
701         Done = createBasicBlock("null");
702         llvm::BasicBlock *Rest = createBasicBlock("not.null");
703         Builder.CreateCondBr(IsNonNull, Rest, Done);
704         EmitBlock(Rest);
705       } else {
706         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
707       }
708     }
709   }
710 
711   if (SanOpts.has(SanitizerKind::ObjectSize) &&
712       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
713       !Ty->isIncompleteType()) {
714     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
715     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
716     if (ArraySize)
717       Size = Builder.CreateMul(Size, ArraySize);
718 
719     // Degenerate case: new X[0] does not need an objectsize check.
720     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
721     if (!ConstantSize || !ConstantSize->isNullValue()) {
722       // The glvalue must refer to a large enough storage region.
723       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
724       //        to check this.
725       // FIXME: Get object address space
726       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
727       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
728       llvm::Value *Min = Builder.getFalse();
729       llvm::Value *NullIsUnknown = Builder.getFalse();
730       llvm::Value *Dynamic = Builder.getFalse();
731       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
732       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
733           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
734       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
735     }
736   }
737 
738   uint64_t AlignVal = 0;
739   llvm::Value *PtrAsInt = nullptr;
740 
741   if (SanOpts.has(SanitizerKind::Alignment) &&
742       !SkippedChecks.has(SanitizerKind::Alignment)) {
743     AlignVal = Alignment.getQuantity();
744     if (!Ty->isIncompleteType() && !AlignVal)
745       AlignVal =
746           getNaturalTypeAlignment(Ty, nullptr, nullptr, /*ForPointeeType=*/true)
747               .getQuantity();
748 
749     // The glvalue must be suitably aligned.
750     if (AlignVal > 1 &&
751         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
752       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
753       llvm::Value *Align = Builder.CreateAnd(
754           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
755       llvm::Value *Aligned =
756           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
757       if (Aligned != True)
758         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
759     }
760   }
761 
762   if (Checks.size() > 0) {
763     // Make sure we're not losing information. Alignment needs to be a power of
764     // 2
765     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
766     llvm::Constant *StaticData[] = {
767         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
768         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
769         llvm::ConstantInt::get(Int8Ty, TCK)};
770     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
771               PtrAsInt ? PtrAsInt : Ptr);
772   }
773 
774   // If possible, check that the vptr indicates that there is a subobject of
775   // type Ty at offset zero within this object.
776   //
777   // C++11 [basic.life]p5,6:
778   //   [For storage which does not refer to an object within its lifetime]
779   //   The program has undefined behavior if:
780   //    -- the [pointer or glvalue] is used to access a non-static data member
781   //       or call a non-static member function
782   if (SanOpts.has(SanitizerKind::Vptr) &&
783       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
784     // Ensure that the pointer is non-null before loading it. If there is no
785     // compile-time guarantee, reuse the run-time null check or emit a new one.
786     if (!IsGuaranteedNonNull) {
787       if (!IsNonNull)
788         IsNonNull = Builder.CreateIsNotNull(Ptr);
789       if (!Done)
790         Done = createBasicBlock("vptr.null");
791       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
792       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
793       EmitBlock(VptrNotNull);
794     }
795 
796     // Compute a hash of the mangled name of the type.
797     //
798     // FIXME: This is not guaranteed to be deterministic! Move to a
799     //        fingerprinting mechanism once LLVM provides one. For the time
800     //        being the implementation happens to be deterministic.
801     SmallString<64> MangledName;
802     llvm::raw_svector_ostream Out(MangledName);
803     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
804                                                      Out);
805 
806     // Blacklist based on the mangled type.
807     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
808             SanitizerKind::Vptr, Out.str())) {
809       llvm::hash_code TypeHash = hash_value(Out.str());
810 
811       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
812       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
813       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
814       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
815       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
816       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
817 
818       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
819       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
820 
821       // Look the hash up in our cache.
822       const int CacheSize = 128;
823       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
824       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
825                                                      "__ubsan_vptr_type_cache");
826       llvm::Value *Slot = Builder.CreateAnd(Hash,
827                                             llvm::ConstantInt::get(IntPtrTy,
828                                                                    CacheSize-1));
829       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
830       llvm::Value *CacheVal =
831         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
832                                   getPointerAlign());
833 
834       // If the hash isn't in the cache, call a runtime handler to perform the
835       // hard work of checking whether the vptr is for an object of the right
836       // type. This will either fill in the cache and return, or produce a
837       // diagnostic.
838       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
839       llvm::Constant *StaticData[] = {
840         EmitCheckSourceLocation(Loc),
841         EmitCheckTypeDescriptor(Ty),
842         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
843         llvm::ConstantInt::get(Int8Ty, TCK)
844       };
845       llvm::Value *DynamicData[] = { Ptr, Hash };
846       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
847                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
848                 DynamicData);
849     }
850   }
851 
852   if (Done) {
853     Builder.CreateBr(Done);
854     EmitBlock(Done);
855   }
856 }
857 
858 /// Determine whether this expression refers to a flexible array member in a
859 /// struct. We disable array bounds checks for such members.
860 static bool isFlexibleArrayMemberExpr(const Expr *E) {
861   // For compatibility with existing code, we treat arrays of length 0 or
862   // 1 as flexible array members.
863   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
864   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
865     if (CAT->getSize().ugt(1))
866       return false;
867   } else if (!isa<IncompleteArrayType>(AT))
868     return false;
869 
870   E = E->IgnoreParens();
871 
872   // A flexible array member must be the last member in the class.
873   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
874     // FIXME: If the base type of the member expr is not FD->getParent(),
875     // this should not be treated as a flexible array member access.
876     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
877       RecordDecl::field_iterator FI(
878           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
879       return ++FI == FD->getParent()->field_end();
880     }
881   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
882     return IRE->getDecl()->getNextIvar() == nullptr;
883   }
884 
885   return false;
886 }
887 
888 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
889                                                    QualType EltTy) {
890   ASTContext &C = getContext();
891   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
892   if (!EltSize)
893     return nullptr;
894 
895   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
896   if (!ArrayDeclRef)
897     return nullptr;
898 
899   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
900   if (!ParamDecl)
901     return nullptr;
902 
903   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
904   if (!POSAttr)
905     return nullptr;
906 
907   // Don't load the size if it's a lower bound.
908   int POSType = POSAttr->getType();
909   if (POSType != 0 && POSType != 1)
910     return nullptr;
911 
912   // Find the implicit size parameter.
913   auto PassedSizeIt = SizeArguments.find(ParamDecl);
914   if (PassedSizeIt == SizeArguments.end())
915     return nullptr;
916 
917   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
918   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
919   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
920   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
921                                               C.getSizeType(), E->getExprLoc());
922   llvm::Value *SizeOfElement =
923       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
924   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
925 }
926 
927 /// If Base is known to point to the start of an array, return the length of
928 /// that array. Return 0 if the length cannot be determined.
929 static llvm::Value *getArrayIndexingBound(
930     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
931   // For the vector indexing extension, the bound is the number of elements.
932   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
933     IndexedType = Base->getType();
934     return CGF.Builder.getInt32(VT->getNumElements());
935   }
936 
937   Base = Base->IgnoreParens();
938 
939   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
940     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
941         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
942       IndexedType = CE->getSubExpr()->getType();
943       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
944       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
945         return CGF.Builder.getInt(CAT->getSize());
946       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
947         return CGF.getVLASize(VAT).NumElts;
948       // Ignore pass_object_size here. It's not applicable on decayed pointers.
949     }
950   }
951 
952   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
953   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
954     IndexedType = Base->getType();
955     return POS;
956   }
957 
958   return nullptr;
959 }
960 
961 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
962                                       llvm::Value *Index, QualType IndexType,
963                                       bool Accessed) {
964   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
965          "should not be called unless adding bounds checks");
966   SanitizerScope SanScope(this);
967 
968   QualType IndexedType;
969   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
970   if (!Bound)
971     return;
972 
973   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
974   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
975   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
976 
977   llvm::Constant *StaticData[] = {
978     EmitCheckSourceLocation(E->getExprLoc()),
979     EmitCheckTypeDescriptor(IndexedType),
980     EmitCheckTypeDescriptor(IndexType)
981   };
982   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
983                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
984   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
985             SanitizerHandler::OutOfBounds, StaticData, Index);
986 }
987 
988 
989 CodeGenFunction::ComplexPairTy CodeGenFunction::
990 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
991                          bool isInc, bool isPre) {
992   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
993 
994   llvm::Value *NextVal;
995   if (isa<llvm::IntegerType>(InVal.first->getType())) {
996     uint64_t AmountVal = isInc ? 1 : -1;
997     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
998 
999     // Add the inc/dec to the real part.
1000     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1001   } else {
1002     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1003     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1004     if (!isInc)
1005       FVal.changeSign();
1006     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1007 
1008     // Add the inc/dec to the real part.
1009     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1010   }
1011 
1012   ComplexPairTy IncVal(NextVal, InVal.second);
1013 
1014   // Store the updated result through the lvalue.
1015   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1016   if (getLangOpts().OpenMP)
1017     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1018                                                               E->getSubExpr());
1019 
1020   // If this is a postinc, return the value read from memory, otherwise use the
1021   // updated value.
1022   return isPre ? IncVal : InVal;
1023 }
1024 
1025 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1026                                              CodeGenFunction *CGF) {
1027   // Bind VLAs in the cast type.
1028   if (CGF && E->getType()->isVariablyModifiedType())
1029     CGF->EmitVariablyModifiedType(E->getType());
1030 
1031   if (CGDebugInfo *DI = getModuleDebugInfo())
1032     DI->EmitExplicitCastType(E->getType());
1033 }
1034 
1035 //===----------------------------------------------------------------------===//
1036 //                         LValue Expression Emission
1037 //===----------------------------------------------------------------------===//
1038 
1039 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1040 /// derive a more accurate bound on the alignment of the pointer.
1041 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1042                                                   LValueBaseInfo *BaseInfo,
1043                                                   TBAAAccessInfo *TBAAInfo) {
1044   // We allow this with ObjC object pointers because of fragile ABIs.
1045   assert(E->getType()->isPointerType() ||
1046          E->getType()->isObjCObjectPointerType());
1047   E = E->IgnoreParens();
1048 
1049   // Casts:
1050   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1051     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1052       CGM.EmitExplicitCastExprType(ECE, this);
1053 
1054     switch (CE->getCastKind()) {
1055     // Non-converting casts (but not C's implicit conversion from void*).
1056     case CK_BitCast:
1057     case CK_NoOp:
1058     case CK_AddressSpaceConversion:
1059       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1060         if (PtrTy->getPointeeType()->isVoidType())
1061           break;
1062 
1063         LValueBaseInfo InnerBaseInfo;
1064         TBAAAccessInfo InnerTBAAInfo;
1065         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1066                                                 &InnerBaseInfo,
1067                                                 &InnerTBAAInfo);
1068         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1069         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1070 
1071         if (isa<ExplicitCastExpr>(CE)) {
1072           LValueBaseInfo TargetTypeBaseInfo;
1073           TBAAAccessInfo TargetTypeTBAAInfo;
1074           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1075                                                            &TargetTypeBaseInfo,
1076                                                            &TargetTypeTBAAInfo);
1077           if (TBAAInfo)
1078             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1079                                                  TargetTypeTBAAInfo);
1080           // If the source l-value is opaque, honor the alignment of the
1081           // casted-to type.
1082           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1083             if (BaseInfo)
1084               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1085             Addr = Address(Addr.getPointer(), Align);
1086           }
1087         }
1088 
1089         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1090             CE->getCastKind() == CK_BitCast) {
1091           if (auto PT = E->getType()->getAs<PointerType>())
1092             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1093                                       /*MayBeNull=*/true,
1094                                       CodeGenFunction::CFITCK_UnrelatedCast,
1095                                       CE->getBeginLoc());
1096         }
1097         return CE->getCastKind() != CK_AddressSpaceConversion
1098                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1099                    : Builder.CreateAddrSpaceCast(Addr,
1100                                                  ConvertType(E->getType()));
1101       }
1102       break;
1103 
1104     // Array-to-pointer decay.
1105     case CK_ArrayToPointerDecay:
1106       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1107 
1108     // Derived-to-base conversions.
1109     case CK_UncheckedDerivedToBase:
1110     case CK_DerivedToBase: {
1111       // TODO: Support accesses to members of base classes in TBAA. For now, we
1112       // conservatively pretend that the complete object is of the base class
1113       // type.
1114       if (TBAAInfo)
1115         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1116       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1117       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1118       return GetAddressOfBaseClass(Addr, Derived,
1119                                    CE->path_begin(), CE->path_end(),
1120                                    ShouldNullCheckClassCastValue(CE),
1121                                    CE->getExprLoc());
1122     }
1123 
1124     // TODO: Is there any reason to treat base-to-derived conversions
1125     // specially?
1126     default:
1127       break;
1128     }
1129   }
1130 
1131   // Unary &.
1132   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1133     if (UO->getOpcode() == UO_AddrOf) {
1134       LValue LV = EmitLValue(UO->getSubExpr());
1135       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1136       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1137       return LV.getAddress(*this);
1138     }
1139   }
1140 
1141   // TODO: conditional operators, comma.
1142 
1143   // Otherwise, use the alignment of the type.
1144   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1145                                                    TBAAInfo);
1146   return Address(EmitScalarExpr(E), Align);
1147 }
1148 
1149 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1150   if (Ty->isVoidType())
1151     return RValue::get(nullptr);
1152 
1153   switch (getEvaluationKind(Ty)) {
1154   case TEK_Complex: {
1155     llvm::Type *EltTy =
1156       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1157     llvm::Value *U = llvm::UndefValue::get(EltTy);
1158     return RValue::getComplex(std::make_pair(U, U));
1159   }
1160 
1161   // If this is a use of an undefined aggregate type, the aggregate must have an
1162   // identifiable address.  Just because the contents of the value are undefined
1163   // doesn't mean that the address can't be taken and compared.
1164   case TEK_Aggregate: {
1165     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1166     return RValue::getAggregate(DestPtr);
1167   }
1168 
1169   case TEK_Scalar:
1170     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1171   }
1172   llvm_unreachable("bad evaluation kind");
1173 }
1174 
1175 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1176                                               const char *Name) {
1177   ErrorUnsupported(E, Name);
1178   return GetUndefRValue(E->getType());
1179 }
1180 
1181 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1182                                               const char *Name) {
1183   ErrorUnsupported(E, Name);
1184   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1185   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1186                         E->getType());
1187 }
1188 
1189 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1190   const Expr *Base = Obj;
1191   while (!isa<CXXThisExpr>(Base)) {
1192     // The result of a dynamic_cast can be null.
1193     if (isa<CXXDynamicCastExpr>(Base))
1194       return false;
1195 
1196     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1197       Base = CE->getSubExpr();
1198     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1199       Base = PE->getSubExpr();
1200     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1201       if (UO->getOpcode() == UO_Extension)
1202         Base = UO->getSubExpr();
1203       else
1204         return false;
1205     } else {
1206       return false;
1207     }
1208   }
1209   return true;
1210 }
1211 
1212 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1213   LValue LV;
1214   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1215     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1216   else
1217     LV = EmitLValue(E);
1218   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1219     SanitizerSet SkippedChecks;
1220     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1221       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1222       if (IsBaseCXXThis)
1223         SkippedChecks.set(SanitizerKind::Alignment, true);
1224       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1225         SkippedChecks.set(SanitizerKind::Null, true);
1226     }
1227     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1228                   LV.getAlignment(), SkippedChecks);
1229   }
1230   return LV;
1231 }
1232 
1233 /// EmitLValue - Emit code to compute a designator that specifies the location
1234 /// of the expression.
1235 ///
1236 /// This can return one of two things: a simple address or a bitfield reference.
1237 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1238 /// an LLVM pointer type.
1239 ///
1240 /// If this returns a bitfield reference, nothing about the pointee type of the
1241 /// LLVM value is known: For example, it may not be a pointer to an integer.
1242 ///
1243 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1244 /// this method guarantees that the returned pointer type will point to an LLVM
1245 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1246 /// length type, this is not possible.
1247 ///
1248 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1249   ApplyDebugLocation DL(*this, E);
1250   switch (E->getStmtClass()) {
1251   default: return EmitUnsupportedLValue(E, "l-value expression");
1252 
1253   case Expr::ObjCPropertyRefExprClass:
1254     llvm_unreachable("cannot emit a property reference directly");
1255 
1256   case Expr::ObjCSelectorExprClass:
1257     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1258   case Expr::ObjCIsaExprClass:
1259     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1260   case Expr::BinaryOperatorClass:
1261     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1262   case Expr::CompoundAssignOperatorClass: {
1263     QualType Ty = E->getType();
1264     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1265       Ty = AT->getValueType();
1266     if (!Ty->isAnyComplexType())
1267       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1268     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1269   }
1270   case Expr::CallExprClass:
1271   case Expr::CXXMemberCallExprClass:
1272   case Expr::CXXOperatorCallExprClass:
1273   case Expr::UserDefinedLiteralClass:
1274     return EmitCallExprLValue(cast<CallExpr>(E));
1275   case Expr::CXXRewrittenBinaryOperatorClass:
1276     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1277   case Expr::VAArgExprClass:
1278     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1279   case Expr::DeclRefExprClass:
1280     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1281   case Expr::ConstantExprClass:
1282     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1283   case Expr::ParenExprClass:
1284     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1285   case Expr::GenericSelectionExprClass:
1286     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1287   case Expr::PredefinedExprClass:
1288     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1289   case Expr::StringLiteralClass:
1290     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1291   case Expr::ObjCEncodeExprClass:
1292     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1293   case Expr::PseudoObjectExprClass:
1294     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1295   case Expr::InitListExprClass:
1296     return EmitInitListLValue(cast<InitListExpr>(E));
1297   case Expr::CXXTemporaryObjectExprClass:
1298   case Expr::CXXConstructExprClass:
1299     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1300   case Expr::CXXBindTemporaryExprClass:
1301     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1302   case Expr::CXXUuidofExprClass:
1303     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1304   case Expr::LambdaExprClass:
1305     return EmitAggExprToLValue(E);
1306 
1307   case Expr::ExprWithCleanupsClass: {
1308     const auto *cleanups = cast<ExprWithCleanups>(E);
1309     enterFullExpression(cleanups);
1310     RunCleanupsScope Scope(*this);
1311     LValue LV = EmitLValue(cleanups->getSubExpr());
1312     if (LV.isSimple()) {
1313       // Defend against branches out of gnu statement expressions surrounded by
1314       // cleanups.
1315       llvm::Value *V = LV.getPointer(*this);
1316       Scope.ForceCleanup({&V});
1317       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1318                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1319     }
1320     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1321     // bitfield lvalue or some other non-simple lvalue?
1322     return LV;
1323   }
1324 
1325   case Expr::CXXDefaultArgExprClass: {
1326     auto *DAE = cast<CXXDefaultArgExpr>(E);
1327     CXXDefaultArgExprScope Scope(*this, DAE);
1328     return EmitLValue(DAE->getExpr());
1329   }
1330   case Expr::CXXDefaultInitExprClass: {
1331     auto *DIE = cast<CXXDefaultInitExpr>(E);
1332     CXXDefaultInitExprScope Scope(*this, DIE);
1333     return EmitLValue(DIE->getExpr());
1334   }
1335   case Expr::CXXTypeidExprClass:
1336     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1337 
1338   case Expr::ObjCMessageExprClass:
1339     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1340   case Expr::ObjCIvarRefExprClass:
1341     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1342   case Expr::StmtExprClass:
1343     return EmitStmtExprLValue(cast<StmtExpr>(E));
1344   case Expr::UnaryOperatorClass:
1345     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1346   case Expr::ArraySubscriptExprClass:
1347     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1348   case Expr::OMPArraySectionExprClass:
1349     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1350   case Expr::ExtVectorElementExprClass:
1351     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1352   case Expr::MemberExprClass:
1353     return EmitMemberExpr(cast<MemberExpr>(E));
1354   case Expr::CompoundLiteralExprClass:
1355     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1356   case Expr::ConditionalOperatorClass:
1357     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1358   case Expr::BinaryConditionalOperatorClass:
1359     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1360   case Expr::ChooseExprClass:
1361     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1362   case Expr::OpaqueValueExprClass:
1363     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1364   case Expr::SubstNonTypeTemplateParmExprClass:
1365     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1366   case Expr::ImplicitCastExprClass:
1367   case Expr::CStyleCastExprClass:
1368   case Expr::CXXFunctionalCastExprClass:
1369   case Expr::CXXStaticCastExprClass:
1370   case Expr::CXXDynamicCastExprClass:
1371   case Expr::CXXReinterpretCastExprClass:
1372   case Expr::CXXConstCastExprClass:
1373   case Expr::ObjCBridgedCastExprClass:
1374     return EmitCastLValue(cast<CastExpr>(E));
1375 
1376   case Expr::MaterializeTemporaryExprClass:
1377     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1378 
1379   case Expr::CoawaitExprClass:
1380     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1381   case Expr::CoyieldExprClass:
1382     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1383   }
1384 }
1385 
1386 /// Given an object of the given canonical type, can we safely copy a
1387 /// value out of it based on its initializer?
1388 static bool isConstantEmittableObjectType(QualType type) {
1389   assert(type.isCanonical());
1390   assert(!type->isReferenceType());
1391 
1392   // Must be const-qualified but non-volatile.
1393   Qualifiers qs = type.getLocalQualifiers();
1394   if (!qs.hasConst() || qs.hasVolatile()) return false;
1395 
1396   // Otherwise, all object types satisfy this except C++ classes with
1397   // mutable subobjects or non-trivial copy/destroy behavior.
1398   if (const auto *RT = dyn_cast<RecordType>(type))
1399     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1400       if (RD->hasMutableFields() || !RD->isTrivial())
1401         return false;
1402 
1403   return true;
1404 }
1405 
1406 /// Can we constant-emit a load of a reference to a variable of the
1407 /// given type?  This is different from predicates like
1408 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1409 /// in situations that don't necessarily satisfy the language's rules
1410 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1411 /// to do this with const float variables even if those variables
1412 /// aren't marked 'constexpr'.
1413 enum ConstantEmissionKind {
1414   CEK_None,
1415   CEK_AsReferenceOnly,
1416   CEK_AsValueOrReference,
1417   CEK_AsValueOnly
1418 };
1419 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1420   type = type.getCanonicalType();
1421   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1422     if (isConstantEmittableObjectType(ref->getPointeeType()))
1423       return CEK_AsValueOrReference;
1424     return CEK_AsReferenceOnly;
1425   }
1426   if (isConstantEmittableObjectType(type))
1427     return CEK_AsValueOnly;
1428   return CEK_None;
1429 }
1430 
1431 /// Try to emit a reference to the given value without producing it as
1432 /// an l-value.  This is just an optimization, but it avoids us needing
1433 /// to emit global copies of variables if they're named without triggering
1434 /// a formal use in a context where we can't emit a direct reference to them,
1435 /// for instance if a block or lambda or a member of a local class uses a
1436 /// const int variable or constexpr variable from an enclosing function.
1437 CodeGenFunction::ConstantEmission
1438 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1439   ValueDecl *value = refExpr->getDecl();
1440 
1441   // The value needs to be an enum constant or a constant variable.
1442   ConstantEmissionKind CEK;
1443   if (isa<ParmVarDecl>(value)) {
1444     CEK = CEK_None;
1445   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1446     CEK = checkVarTypeForConstantEmission(var->getType());
1447   } else if (isa<EnumConstantDecl>(value)) {
1448     CEK = CEK_AsValueOnly;
1449   } else {
1450     CEK = CEK_None;
1451   }
1452   if (CEK == CEK_None) return ConstantEmission();
1453 
1454   Expr::EvalResult result;
1455   bool resultIsReference;
1456   QualType resultType;
1457 
1458   // It's best to evaluate all the way as an r-value if that's permitted.
1459   if (CEK != CEK_AsReferenceOnly &&
1460       refExpr->EvaluateAsRValue(result, getContext())) {
1461     resultIsReference = false;
1462     resultType = refExpr->getType();
1463 
1464   // Otherwise, try to evaluate as an l-value.
1465   } else if (CEK != CEK_AsValueOnly &&
1466              refExpr->EvaluateAsLValue(result, getContext())) {
1467     resultIsReference = true;
1468     resultType = value->getType();
1469 
1470   // Failure.
1471   } else {
1472     return ConstantEmission();
1473   }
1474 
1475   // In any case, if the initializer has side-effects, abandon ship.
1476   if (result.HasSideEffects)
1477     return ConstantEmission();
1478 
1479   // Emit as a constant.
1480   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1481                                                result.Val, resultType);
1482 
1483   // Make sure we emit a debug reference to the global variable.
1484   // This should probably fire even for
1485   if (isa<VarDecl>(value)) {
1486     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1487       EmitDeclRefExprDbgValue(refExpr, result.Val);
1488   } else {
1489     assert(isa<EnumConstantDecl>(value));
1490     EmitDeclRefExprDbgValue(refExpr, result.Val);
1491   }
1492 
1493   // If we emitted a reference constant, we need to dereference that.
1494   if (resultIsReference)
1495     return ConstantEmission::forReference(C);
1496 
1497   return ConstantEmission::forValue(C);
1498 }
1499 
1500 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1501                                                         const MemberExpr *ME) {
1502   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1503     // Try to emit static variable member expressions as DREs.
1504     return DeclRefExpr::Create(
1505         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1506         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1507         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1508   }
1509   return nullptr;
1510 }
1511 
1512 CodeGenFunction::ConstantEmission
1513 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1514   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1515     return tryEmitAsConstant(DRE);
1516   return ConstantEmission();
1517 }
1518 
1519 llvm::Value *CodeGenFunction::emitScalarConstant(
1520     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1521   assert(Constant && "not a constant");
1522   if (Constant.isReference())
1523     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1524                             E->getExprLoc())
1525         .getScalarVal();
1526   return Constant.getValue();
1527 }
1528 
1529 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1530                                                SourceLocation Loc) {
1531   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1532                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1533                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1534 }
1535 
1536 static bool hasBooleanRepresentation(QualType Ty) {
1537   if (Ty->isBooleanType())
1538     return true;
1539 
1540   if (const EnumType *ET = Ty->getAs<EnumType>())
1541     return ET->getDecl()->getIntegerType()->isBooleanType();
1542 
1543   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1544     return hasBooleanRepresentation(AT->getValueType());
1545 
1546   return false;
1547 }
1548 
1549 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1550                             llvm::APInt &Min, llvm::APInt &End,
1551                             bool StrictEnums, bool IsBool) {
1552   const EnumType *ET = Ty->getAs<EnumType>();
1553   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1554                                 ET && !ET->getDecl()->isFixed();
1555   if (!IsBool && !IsRegularCPlusPlusEnum)
1556     return false;
1557 
1558   if (IsBool) {
1559     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1560     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1561   } else {
1562     const EnumDecl *ED = ET->getDecl();
1563     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1564     unsigned Bitwidth = LTy->getScalarSizeInBits();
1565     unsigned NumNegativeBits = ED->getNumNegativeBits();
1566     unsigned NumPositiveBits = ED->getNumPositiveBits();
1567 
1568     if (NumNegativeBits) {
1569       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1570       assert(NumBits <= Bitwidth);
1571       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1572       Min = -End;
1573     } else {
1574       assert(NumPositiveBits <= Bitwidth);
1575       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1576       Min = llvm::APInt(Bitwidth, 0);
1577     }
1578   }
1579   return true;
1580 }
1581 
1582 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1583   llvm::APInt Min, End;
1584   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1585                        hasBooleanRepresentation(Ty)))
1586     return nullptr;
1587 
1588   llvm::MDBuilder MDHelper(getLLVMContext());
1589   return MDHelper.createRange(Min, End);
1590 }
1591 
1592 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1593                                            SourceLocation Loc) {
1594   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1595   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1596   if (!HasBoolCheck && !HasEnumCheck)
1597     return false;
1598 
1599   bool IsBool = hasBooleanRepresentation(Ty) ||
1600                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1601   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1602   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1603   if (!NeedsBoolCheck && !NeedsEnumCheck)
1604     return false;
1605 
1606   // Single-bit booleans don't need to be checked. Special-case this to avoid
1607   // a bit width mismatch when handling bitfield values. This is handled by
1608   // EmitFromMemory for the non-bitfield case.
1609   if (IsBool &&
1610       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1611     return false;
1612 
1613   llvm::APInt Min, End;
1614   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1615     return true;
1616 
1617   auto &Ctx = getLLVMContext();
1618   SanitizerScope SanScope(this);
1619   llvm::Value *Check;
1620   --End;
1621   if (!Min) {
1622     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1623   } else {
1624     llvm::Value *Upper =
1625         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1626     llvm::Value *Lower =
1627         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1628     Check = Builder.CreateAnd(Upper, Lower);
1629   }
1630   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1631                                   EmitCheckTypeDescriptor(Ty)};
1632   SanitizerMask Kind =
1633       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1634   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1635             StaticArgs, EmitCheckValue(Value));
1636   return true;
1637 }
1638 
1639 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1640                                                QualType Ty,
1641                                                SourceLocation Loc,
1642                                                LValueBaseInfo BaseInfo,
1643                                                TBAAAccessInfo TBAAInfo,
1644                                                bool isNontemporal) {
1645   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1646     // For better performance, handle vector loads differently.
1647     if (Ty->isVectorType()) {
1648       const llvm::Type *EltTy = Addr.getElementType();
1649 
1650       const auto *VTy = cast<llvm::VectorType>(EltTy);
1651 
1652       // Handle vectors of size 3 like size 4 for better performance.
1653       if (VTy->getNumElements() == 3) {
1654 
1655         // Bitcast to vec4 type.
1656         llvm::VectorType *vec4Ty =
1657             llvm::VectorType::get(VTy->getElementType(), 4);
1658         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1659         // Now load value.
1660         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1661 
1662         // Shuffle vector to get vec3.
1663         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1664                                         {0, 1, 2}, "extractVec");
1665         return EmitFromMemory(V, Ty);
1666       }
1667     }
1668   }
1669 
1670   // Atomic operations have to be done on integral types.
1671   LValue AtomicLValue =
1672       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1673   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1674     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1675   }
1676 
1677   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1678   if (isNontemporal) {
1679     llvm::MDNode *Node = llvm::MDNode::get(
1680         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1681     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1682   }
1683 
1684   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1685 
1686   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1687     // In order to prevent the optimizer from throwing away the check, don't
1688     // attach range metadata to the load.
1689   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1690     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1691       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1692 
1693   return EmitFromMemory(Load, Ty);
1694 }
1695 
1696 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1697   // Bool has a different representation in memory than in registers.
1698   if (hasBooleanRepresentation(Ty)) {
1699     // This should really always be an i1, but sometimes it's already
1700     // an i8, and it's awkward to track those cases down.
1701     if (Value->getType()->isIntegerTy(1))
1702       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1703     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1704            "wrong value rep of bool");
1705   }
1706 
1707   return Value;
1708 }
1709 
1710 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1711   // Bool has a different representation in memory than in registers.
1712   if (hasBooleanRepresentation(Ty)) {
1713     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1714            "wrong value rep of bool");
1715     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1716   }
1717 
1718   return Value;
1719 }
1720 
1721 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1722                                         bool Volatile, QualType Ty,
1723                                         LValueBaseInfo BaseInfo,
1724                                         TBAAAccessInfo TBAAInfo,
1725                                         bool isInit, bool isNontemporal) {
1726   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1727     // Handle vectors differently to get better performance.
1728     if (Ty->isVectorType()) {
1729       llvm::Type *SrcTy = Value->getType();
1730       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1731       // Handle vec3 special.
1732       if (VecTy && VecTy->getNumElements() == 3) {
1733         // Our source is a vec3, do a shuffle vector to make it a vec4.
1734         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1735                                   Builder.getInt32(2),
1736                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1737         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1738         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1739                                             MaskV, "extractVec");
1740         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1741       }
1742       if (Addr.getElementType() != SrcTy) {
1743         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1744       }
1745     }
1746   }
1747 
1748   Value = EmitToMemory(Value, Ty);
1749 
1750   LValue AtomicLValue =
1751       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1752   if (Ty->isAtomicType() ||
1753       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1754     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1755     return;
1756   }
1757 
1758   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1759   if (isNontemporal) {
1760     llvm::MDNode *Node =
1761         llvm::MDNode::get(Store->getContext(),
1762                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1763     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1764   }
1765 
1766   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1767 }
1768 
1769 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1770                                         bool isInit) {
1771   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1772                     lvalue.getType(), lvalue.getBaseInfo(),
1773                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1774 }
1775 
1776 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1777 /// method emits the address of the lvalue, then loads the result as an rvalue,
1778 /// returning the rvalue.
1779 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1780   if (LV.isObjCWeak()) {
1781     // load of a __weak object.
1782     Address AddrWeakObj = LV.getAddress(*this);
1783     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1784                                                              AddrWeakObj));
1785   }
1786   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1787     // In MRC mode, we do a load+autorelease.
1788     if (!getLangOpts().ObjCAutoRefCount) {
1789       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1790     }
1791 
1792     // In ARC mode, we load retained and then consume the value.
1793     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1794     Object = EmitObjCConsumeObject(LV.getType(), Object);
1795     return RValue::get(Object);
1796   }
1797 
1798   if (LV.isSimple()) {
1799     assert(!LV.getType()->isFunctionType());
1800 
1801     // Everything needs a load.
1802     return RValue::get(EmitLoadOfScalar(LV, Loc));
1803   }
1804 
1805   if (LV.isVectorElt()) {
1806     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1807                                               LV.isVolatileQualified());
1808     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1809                                                     "vecext"));
1810   }
1811 
1812   // If this is a reference to a subset of the elements of a vector, either
1813   // shuffle the input or extract/insert them as appropriate.
1814   if (LV.isExtVectorElt())
1815     return EmitLoadOfExtVectorElementLValue(LV);
1816 
1817   // Global Register variables always invoke intrinsics
1818   if (LV.isGlobalReg())
1819     return EmitLoadOfGlobalRegLValue(LV);
1820 
1821   assert(LV.isBitField() && "Unknown LValue type!");
1822   return EmitLoadOfBitfieldLValue(LV, Loc);
1823 }
1824 
1825 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1826                                                  SourceLocation Loc) {
1827   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1828 
1829   // Get the output type.
1830   llvm::Type *ResLTy = ConvertType(LV.getType());
1831 
1832   Address Ptr = LV.getBitFieldAddress();
1833   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1834 
1835   if (Info.IsSigned) {
1836     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1837     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1838     if (HighBits)
1839       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1840     if (Info.Offset + HighBits)
1841       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1842   } else {
1843     if (Info.Offset)
1844       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1845     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1846       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1847                                                               Info.Size),
1848                               "bf.clear");
1849   }
1850   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1851   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1852   return RValue::get(Val);
1853 }
1854 
1855 // If this is a reference to a subset of the elements of a vector, create an
1856 // appropriate shufflevector.
1857 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1858   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1859                                         LV.isVolatileQualified());
1860 
1861   const llvm::Constant *Elts = LV.getExtVectorElts();
1862 
1863   // If the result of the expression is a non-vector type, we must be extracting
1864   // a single element.  Just codegen as an extractelement.
1865   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1866   if (!ExprVT) {
1867     unsigned InIdx = getAccessedFieldNo(0, Elts);
1868     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1869     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1870   }
1871 
1872   // Always use shuffle vector to try to retain the original program structure
1873   unsigned NumResultElts = ExprVT->getNumElements();
1874 
1875   SmallVector<llvm::Constant*, 4> Mask;
1876   for (unsigned i = 0; i != NumResultElts; ++i)
1877     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1878 
1879   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1880   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1881                                     MaskV);
1882   return RValue::get(Vec);
1883 }
1884 
1885 /// Generates lvalue for partial ext_vector access.
1886 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1887   Address VectorAddress = LV.getExtVectorAddress();
1888   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
1889   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1890 
1891   Address CastToPointerElement =
1892     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1893                                  "conv.ptr.element");
1894 
1895   const llvm::Constant *Elts = LV.getExtVectorElts();
1896   unsigned ix = getAccessedFieldNo(0, Elts);
1897 
1898   Address VectorBasePtrPlusIx =
1899     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1900                                    "vector.elt");
1901 
1902   return VectorBasePtrPlusIx;
1903 }
1904 
1905 /// Load of global gamed gegisters are always calls to intrinsics.
1906 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1907   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1908          "Bad type for register variable");
1909   llvm::MDNode *RegName = cast<llvm::MDNode>(
1910       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1911 
1912   // We accept integer and pointer types only
1913   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1914   llvm::Type *Ty = OrigTy;
1915   if (OrigTy->isPointerTy())
1916     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1917   llvm::Type *Types[] = { Ty };
1918 
1919   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1920   llvm::Value *Call = Builder.CreateCall(
1921       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1922   if (OrigTy->isPointerTy())
1923     Call = Builder.CreateIntToPtr(Call, OrigTy);
1924   return RValue::get(Call);
1925 }
1926 
1927 
1928 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1929 /// lvalue, where both are guaranteed to the have the same type, and that type
1930 /// is 'Ty'.
1931 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1932                                              bool isInit) {
1933   if (!Dst.isSimple()) {
1934     if (Dst.isVectorElt()) {
1935       // Read/modify/write the vector, inserting the new element.
1936       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1937                                             Dst.isVolatileQualified());
1938       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1939                                         Dst.getVectorIdx(), "vecins");
1940       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1941                           Dst.isVolatileQualified());
1942       return;
1943     }
1944 
1945     // If this is an update of extended vector elements, insert them as
1946     // appropriate.
1947     if (Dst.isExtVectorElt())
1948       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1949 
1950     if (Dst.isGlobalReg())
1951       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1952 
1953     assert(Dst.isBitField() && "Unknown LValue type");
1954     return EmitStoreThroughBitfieldLValue(Src, Dst);
1955   }
1956 
1957   // There's special magic for assigning into an ARC-qualified l-value.
1958   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1959     switch (Lifetime) {
1960     case Qualifiers::OCL_None:
1961       llvm_unreachable("present but none");
1962 
1963     case Qualifiers::OCL_ExplicitNone:
1964       // nothing special
1965       break;
1966 
1967     case Qualifiers::OCL_Strong:
1968       if (isInit) {
1969         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1970         break;
1971       }
1972       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1973       return;
1974 
1975     case Qualifiers::OCL_Weak:
1976       if (isInit)
1977         // Initialize and then skip the primitive store.
1978         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
1979       else
1980         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
1981                          /*ignore*/ true);
1982       return;
1983 
1984     case Qualifiers::OCL_Autoreleasing:
1985       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1986                                                      Src.getScalarVal()));
1987       // fall into the normal path
1988       break;
1989     }
1990   }
1991 
1992   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1993     // load of a __weak object.
1994     Address LvalueDst = Dst.getAddress(*this);
1995     llvm::Value *src = Src.getScalarVal();
1996      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1997     return;
1998   }
1999 
2000   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2001     // load of a __strong object.
2002     Address LvalueDst = Dst.getAddress(*this);
2003     llvm::Value *src = Src.getScalarVal();
2004     if (Dst.isObjCIvar()) {
2005       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2006       llvm::Type *ResultType = IntPtrTy;
2007       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2008       llvm::Value *RHS = dst.getPointer();
2009       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2010       llvm::Value *LHS =
2011         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2012                                "sub.ptr.lhs.cast");
2013       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2014       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2015                                               BytesBetween);
2016     } else if (Dst.isGlobalObjCRef()) {
2017       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2018                                                 Dst.isThreadLocalRef());
2019     }
2020     else
2021       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2022     return;
2023   }
2024 
2025   assert(Src.isScalar() && "Can't emit an agg store with this method");
2026   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2027 }
2028 
2029 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2030                                                      llvm::Value **Result) {
2031   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2032   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2033   Address Ptr = Dst.getBitFieldAddress();
2034 
2035   // Get the source value, truncated to the width of the bit-field.
2036   llvm::Value *SrcVal = Src.getScalarVal();
2037 
2038   // Cast the source to the storage type and shift it into place.
2039   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2040                                  /*isSigned=*/false);
2041   llvm::Value *MaskedVal = SrcVal;
2042 
2043   // See if there are other bits in the bitfield's storage we'll need to load
2044   // and mask together with source before storing.
2045   if (Info.StorageSize != Info.Size) {
2046     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2047     llvm::Value *Val =
2048       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2049 
2050     // Mask the source value as needed.
2051     if (!hasBooleanRepresentation(Dst.getType()))
2052       SrcVal = Builder.CreateAnd(SrcVal,
2053                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2054                                                             Info.Size),
2055                                  "bf.value");
2056     MaskedVal = SrcVal;
2057     if (Info.Offset)
2058       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2059 
2060     // Mask out the original value.
2061     Val = Builder.CreateAnd(Val,
2062                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2063                                                      Info.Offset,
2064                                                      Info.Offset + Info.Size),
2065                             "bf.clear");
2066 
2067     // Or together the unchanged values and the source value.
2068     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2069   } else {
2070     assert(Info.Offset == 0);
2071   }
2072 
2073   // Write the new value back out.
2074   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2075 
2076   // Return the new value of the bit-field, if requested.
2077   if (Result) {
2078     llvm::Value *ResultVal = MaskedVal;
2079 
2080     // Sign extend the value if needed.
2081     if (Info.IsSigned) {
2082       assert(Info.Size <= Info.StorageSize);
2083       unsigned HighBits = Info.StorageSize - Info.Size;
2084       if (HighBits) {
2085         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2086         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2087       }
2088     }
2089 
2090     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2091                                       "bf.result.cast");
2092     *Result = EmitFromMemory(ResultVal, Dst.getType());
2093   }
2094 }
2095 
2096 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2097                                                                LValue Dst) {
2098   // This access turns into a read/modify/write of the vector.  Load the input
2099   // value now.
2100   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2101                                         Dst.isVolatileQualified());
2102   const llvm::Constant *Elts = Dst.getExtVectorElts();
2103 
2104   llvm::Value *SrcVal = Src.getScalarVal();
2105 
2106   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2107     unsigned NumSrcElts = VTy->getNumElements();
2108     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2109     if (NumDstElts == NumSrcElts) {
2110       // Use shuffle vector is the src and destination are the same number of
2111       // elements and restore the vector mask since it is on the side it will be
2112       // stored.
2113       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2114       for (unsigned i = 0; i != NumSrcElts; ++i)
2115         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2116 
2117       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2118       Vec = Builder.CreateShuffleVector(SrcVal,
2119                                         llvm::UndefValue::get(Vec->getType()),
2120                                         MaskV);
2121     } else if (NumDstElts > NumSrcElts) {
2122       // Extended the source vector to the same length and then shuffle it
2123       // into the destination.
2124       // FIXME: since we're shuffling with undef, can we just use the indices
2125       //        into that?  This could be simpler.
2126       SmallVector<llvm::Constant*, 4> ExtMask;
2127       for (unsigned i = 0; i != NumSrcElts; ++i)
2128         ExtMask.push_back(Builder.getInt32(i));
2129       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2130       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2131       llvm::Value *ExtSrcVal =
2132         Builder.CreateShuffleVector(SrcVal,
2133                                     llvm::UndefValue::get(SrcVal->getType()),
2134                                     ExtMaskV);
2135       // build identity
2136       SmallVector<llvm::Constant*, 4> Mask;
2137       for (unsigned i = 0; i != NumDstElts; ++i)
2138         Mask.push_back(Builder.getInt32(i));
2139 
2140       // When the vector size is odd and .odd or .hi is used, the last element
2141       // of the Elts constant array will be one past the size of the vector.
2142       // Ignore the last element here, if it is greater than the mask size.
2143       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2144         NumSrcElts--;
2145 
2146       // modify when what gets shuffled in
2147       for (unsigned i = 0; i != NumSrcElts; ++i)
2148         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2149       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2150       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2151     } else {
2152       // We should never shorten the vector
2153       llvm_unreachable("unexpected shorten vector length");
2154     }
2155   } else {
2156     // If the Src is a scalar (not a vector) it must be updating one element.
2157     unsigned InIdx = getAccessedFieldNo(0, Elts);
2158     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2159     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2160   }
2161 
2162   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2163                       Dst.isVolatileQualified());
2164 }
2165 
2166 /// Store of global named registers are always calls to intrinsics.
2167 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2168   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2169          "Bad type for register variable");
2170   llvm::MDNode *RegName = cast<llvm::MDNode>(
2171       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2172   assert(RegName && "Register LValue is not metadata");
2173 
2174   // We accept integer and pointer types only
2175   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2176   llvm::Type *Ty = OrigTy;
2177   if (OrigTy->isPointerTy())
2178     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2179   llvm::Type *Types[] = { Ty };
2180 
2181   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2182   llvm::Value *Value = Src.getScalarVal();
2183   if (OrigTy->isPointerTy())
2184     Value = Builder.CreatePtrToInt(Value, Ty);
2185   Builder.CreateCall(
2186       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2187 }
2188 
2189 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2190 // generating write-barries API. It is currently a global, ivar,
2191 // or neither.
2192 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2193                                  LValue &LV,
2194                                  bool IsMemberAccess=false) {
2195   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2196     return;
2197 
2198   if (isa<ObjCIvarRefExpr>(E)) {
2199     QualType ExpTy = E->getType();
2200     if (IsMemberAccess && ExpTy->isPointerType()) {
2201       // If ivar is a structure pointer, assigning to field of
2202       // this struct follows gcc's behavior and makes it a non-ivar
2203       // writer-barrier conservatively.
2204       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2205       if (ExpTy->isRecordType()) {
2206         LV.setObjCIvar(false);
2207         return;
2208       }
2209     }
2210     LV.setObjCIvar(true);
2211     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2212     LV.setBaseIvarExp(Exp->getBase());
2213     LV.setObjCArray(E->getType()->isArrayType());
2214     return;
2215   }
2216 
2217   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2218     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2219       if (VD->hasGlobalStorage()) {
2220         LV.setGlobalObjCRef(true);
2221         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2222       }
2223     }
2224     LV.setObjCArray(E->getType()->isArrayType());
2225     return;
2226   }
2227 
2228   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2229     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2230     return;
2231   }
2232 
2233   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2234     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2235     if (LV.isObjCIvar()) {
2236       // If cast is to a structure pointer, follow gcc's behavior and make it
2237       // a non-ivar write-barrier.
2238       QualType ExpTy = E->getType();
2239       if (ExpTy->isPointerType())
2240         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2241       if (ExpTy->isRecordType())
2242         LV.setObjCIvar(false);
2243     }
2244     return;
2245   }
2246 
2247   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2248     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2249     return;
2250   }
2251 
2252   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2253     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2254     return;
2255   }
2256 
2257   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2258     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2259     return;
2260   }
2261 
2262   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2263     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2264     return;
2265   }
2266 
2267   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2268     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2269     if (LV.isObjCIvar() && !LV.isObjCArray())
2270       // Using array syntax to assigning to what an ivar points to is not
2271       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2272       LV.setObjCIvar(false);
2273     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2274       // Using array syntax to assigning to what global points to is not
2275       // same as assigning to the global itself. {id *G;} G[i] = 0;
2276       LV.setGlobalObjCRef(false);
2277     return;
2278   }
2279 
2280   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2281     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2282     // We don't know if member is an 'ivar', but this flag is looked at
2283     // only in the context of LV.isObjCIvar().
2284     LV.setObjCArray(E->getType()->isArrayType());
2285     return;
2286   }
2287 }
2288 
2289 static llvm::Value *
2290 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2291                                 llvm::Value *V, llvm::Type *IRType,
2292                                 StringRef Name = StringRef()) {
2293   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2294   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2295 }
2296 
2297 static LValue EmitThreadPrivateVarDeclLValue(
2298     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2299     llvm::Type *RealVarTy, SourceLocation Loc) {
2300   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2301   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2302   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2303 }
2304 
2305 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2306                                            const VarDecl *VD, QualType T) {
2307   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2308       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2309   // Return an invalid address if variable is MT_To and unified
2310   // memory is not enabled. For all other cases: MT_Link and
2311   // MT_To with unified memory, return a valid address.
2312   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2313                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2314     return Address::invalid();
2315   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2316           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2317            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2318          "Expected link clause OR to clause with unified memory enabled.");
2319   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2320   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2321   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2322 }
2323 
2324 Address
2325 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2326                                      LValueBaseInfo *PointeeBaseInfo,
2327                                      TBAAAccessInfo *PointeeTBAAInfo) {
2328   llvm::LoadInst *Load =
2329       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2330   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2331 
2332   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2333                                             PointeeBaseInfo, PointeeTBAAInfo,
2334                                             /* forPointeeType= */ true);
2335   return Address(Load, Align);
2336 }
2337 
2338 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2339   LValueBaseInfo PointeeBaseInfo;
2340   TBAAAccessInfo PointeeTBAAInfo;
2341   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2342                                             &PointeeTBAAInfo);
2343   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2344                         PointeeBaseInfo, PointeeTBAAInfo);
2345 }
2346 
2347 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2348                                            const PointerType *PtrTy,
2349                                            LValueBaseInfo *BaseInfo,
2350                                            TBAAAccessInfo *TBAAInfo) {
2351   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2352   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2353                                                BaseInfo, TBAAInfo,
2354                                                /*forPointeeType=*/true));
2355 }
2356 
2357 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2358                                                 const PointerType *PtrTy) {
2359   LValueBaseInfo BaseInfo;
2360   TBAAAccessInfo TBAAInfo;
2361   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2362   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2363 }
2364 
2365 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2366                                       const Expr *E, const VarDecl *VD) {
2367   QualType T = E->getType();
2368 
2369   // If it's thread_local, emit a call to its wrapper function instead.
2370   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2371       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2372     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2373   // Check if the variable is marked as declare target with link clause in
2374   // device codegen.
2375   if (CGF.getLangOpts().OpenMPIsDevice) {
2376     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2377     if (Addr.isValid())
2378       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2379   }
2380 
2381   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2382   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2383   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2384   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2385   Address Addr(V, Alignment);
2386   // Emit reference to the private copy of the variable if it is an OpenMP
2387   // threadprivate variable.
2388   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2389       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2390     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2391                                           E->getExprLoc());
2392   }
2393   LValue LV = VD->getType()->isReferenceType() ?
2394       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2395                                     AlignmentSource::Decl) :
2396       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2397   setObjCGCLValueClass(CGF.getContext(), E, LV);
2398   return LV;
2399 }
2400 
2401 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2402                                                const FunctionDecl *FD) {
2403   if (FD->hasAttr<WeakRefAttr>()) {
2404     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2405     return aliasee.getPointer();
2406   }
2407 
2408   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2409   if (!FD->hasPrototype()) {
2410     if (const FunctionProtoType *Proto =
2411             FD->getType()->getAs<FunctionProtoType>()) {
2412       // Ugly case: for a K&R-style definition, the type of the definition
2413       // isn't the same as the type of a use.  Correct for this with a
2414       // bitcast.
2415       QualType NoProtoType =
2416           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2417       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2418       V = llvm::ConstantExpr::getBitCast(V,
2419                                       CGM.getTypes().ConvertType(NoProtoType));
2420     }
2421   }
2422   return V;
2423 }
2424 
2425 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2426                                      const Expr *E, const FunctionDecl *FD) {
2427   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2428   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2429   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2430                             AlignmentSource::Decl);
2431 }
2432 
2433 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2434                                       llvm::Value *ThisValue) {
2435   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2436   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2437   return CGF.EmitLValueForField(LV, FD);
2438 }
2439 
2440 /// Named Registers are named metadata pointing to the register name
2441 /// which will be read from/written to as an argument to the intrinsic
2442 /// @llvm.read/write_register.
2443 /// So far, only the name is being passed down, but other options such as
2444 /// register type, allocation type or even optimization options could be
2445 /// passed down via the metadata node.
2446 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2447   SmallString<64> Name("llvm.named.register.");
2448   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2449   assert(Asm->getLabel().size() < 64-Name.size() &&
2450       "Register name too big");
2451   Name.append(Asm->getLabel());
2452   llvm::NamedMDNode *M =
2453     CGM.getModule().getOrInsertNamedMetadata(Name);
2454   if (M->getNumOperands() == 0) {
2455     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2456                                               Asm->getLabel());
2457     llvm::Metadata *Ops[] = {Str};
2458     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2459   }
2460 
2461   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2462 
2463   llvm::Value *Ptr =
2464     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2465   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2466 }
2467 
2468 /// Determine whether we can emit a reference to \p VD from the current
2469 /// context, despite not necessarily having seen an odr-use of the variable in
2470 /// this context.
2471 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2472                                                const DeclRefExpr *E,
2473                                                const VarDecl *VD,
2474                                                bool IsConstant) {
2475   // For a variable declared in an enclosing scope, do not emit a spurious
2476   // reference even if we have a capture, as that will emit an unwarranted
2477   // reference to our capture state, and will likely generate worse code than
2478   // emitting a local copy.
2479   if (E->refersToEnclosingVariableOrCapture())
2480     return false;
2481 
2482   // For a local declaration declared in this function, we can always reference
2483   // it even if we don't have an odr-use.
2484   if (VD->hasLocalStorage()) {
2485     return VD->getDeclContext() ==
2486            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2487   }
2488 
2489   // For a global declaration, we can emit a reference to it if we know
2490   // for sure that we are able to emit a definition of it.
2491   VD = VD->getDefinition(CGF.getContext());
2492   if (!VD)
2493     return false;
2494 
2495   // Don't emit a spurious reference if it might be to a variable that only
2496   // exists on a different device / target.
2497   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2498   // cross-target reference.
2499   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2500       CGF.getLangOpts().OpenCL) {
2501     return false;
2502   }
2503 
2504   // We can emit a spurious reference only if the linkage implies that we'll
2505   // be emitting a non-interposable symbol that will be retained until link
2506   // time.
2507   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2508   case llvm::GlobalValue::ExternalLinkage:
2509   case llvm::GlobalValue::LinkOnceODRLinkage:
2510   case llvm::GlobalValue::WeakODRLinkage:
2511   case llvm::GlobalValue::InternalLinkage:
2512   case llvm::GlobalValue::PrivateLinkage:
2513     return true;
2514   default:
2515     return false;
2516   }
2517 }
2518 
2519 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2520   const NamedDecl *ND = E->getDecl();
2521   QualType T = E->getType();
2522 
2523   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2524          "should not emit an unevaluated operand");
2525 
2526   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2527     // Global Named registers access via intrinsics only
2528     if (VD->getStorageClass() == SC_Register &&
2529         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2530       return EmitGlobalNamedRegister(VD, CGM);
2531 
2532     // If this DeclRefExpr does not constitute an odr-use of the variable,
2533     // we're not permitted to emit a reference to it in general, and it might
2534     // not be captured if capture would be necessary for a use. Emit the
2535     // constant value directly instead.
2536     if (E->isNonOdrUse() == NOUR_Constant &&
2537         (VD->getType()->isReferenceType() ||
2538          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2539       VD->getAnyInitializer(VD);
2540       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2541           E->getLocation(), *VD->evaluateValue(), VD->getType());
2542       assert(Val && "failed to emit constant expression");
2543 
2544       Address Addr = Address::invalid();
2545       if (!VD->getType()->isReferenceType()) {
2546         // Spill the constant value to a global.
2547         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2548                                            getContext().getDeclAlign(VD));
2549         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2550         auto *PTy = llvm::PointerType::get(
2551             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2552         if (PTy != Addr.getType())
2553           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2554       } else {
2555         // Should we be using the alignment of the constant pointer we emitted?
2556         CharUnits Alignment =
2557             getNaturalTypeAlignment(E->getType(),
2558                                     /* BaseInfo= */ nullptr,
2559                                     /* TBAAInfo= */ nullptr,
2560                                     /* forPointeeType= */ true);
2561         Addr = Address(Val, Alignment);
2562       }
2563       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2564     }
2565 
2566     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2567 
2568     // Check for captured variables.
2569     if (E->refersToEnclosingVariableOrCapture()) {
2570       VD = VD->getCanonicalDecl();
2571       if (auto *FD = LambdaCaptureFields.lookup(VD))
2572         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2573       if (CapturedStmtInfo) {
2574         auto I = LocalDeclMap.find(VD);
2575         if (I != LocalDeclMap.end()) {
2576           LValue CapLVal;
2577           if (VD->getType()->isReferenceType())
2578             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2579                                                 AlignmentSource::Decl);
2580           else
2581             CapLVal = MakeAddrLValue(I->second, T);
2582           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2583           // in simd context.
2584           if (getLangOpts().OpenMP &&
2585               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2586             CapLVal.setNontemporal(/*Value=*/true);
2587           return CapLVal;
2588         }
2589         LValue CapLVal =
2590             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2591                                     CapturedStmtInfo->getContextValue());
2592         CapLVal = MakeAddrLValue(
2593             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2594             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2595             CapLVal.getTBAAInfo());
2596         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2597         // in simd context.
2598         if (getLangOpts().OpenMP &&
2599             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2600           CapLVal.setNontemporal(/*Value=*/true);
2601         return CapLVal;
2602       }
2603 
2604       assert(isa<BlockDecl>(CurCodeDecl));
2605       Address addr = GetAddrOfBlockDecl(VD);
2606       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2607     }
2608   }
2609 
2610   // FIXME: We should be able to assert this for FunctionDecls as well!
2611   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2612   // those with a valid source location.
2613   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2614           !E->getLocation().isValid()) &&
2615          "Should not use decl without marking it used!");
2616 
2617   if (ND->hasAttr<WeakRefAttr>()) {
2618     const auto *VD = cast<ValueDecl>(ND);
2619     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2620     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2621   }
2622 
2623   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2624     // Check if this is a global variable.
2625     if (VD->hasLinkage() || VD->isStaticDataMember())
2626       return EmitGlobalVarDeclLValue(*this, E, VD);
2627 
2628     Address addr = Address::invalid();
2629 
2630     // The variable should generally be present in the local decl map.
2631     auto iter = LocalDeclMap.find(VD);
2632     if (iter != LocalDeclMap.end()) {
2633       addr = iter->second;
2634 
2635     // Otherwise, it might be static local we haven't emitted yet for
2636     // some reason; most likely, because it's in an outer function.
2637     } else if (VD->isStaticLocal()) {
2638       addr = Address(CGM.getOrCreateStaticVarDecl(
2639           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2640                      getContext().getDeclAlign(VD));
2641 
2642     // No other cases for now.
2643     } else {
2644       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2645     }
2646 
2647 
2648     // Check for OpenMP threadprivate variables.
2649     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2650         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2651       return EmitThreadPrivateVarDeclLValue(
2652           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2653           E->getExprLoc());
2654     }
2655 
2656     // Drill into block byref variables.
2657     bool isBlockByref = VD->isEscapingByref();
2658     if (isBlockByref) {
2659       addr = emitBlockByrefAddress(addr, VD);
2660     }
2661 
2662     // Drill into reference types.
2663     LValue LV = VD->getType()->isReferenceType() ?
2664         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2665         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2666 
2667     bool isLocalStorage = VD->hasLocalStorage();
2668 
2669     bool NonGCable = isLocalStorage &&
2670                      !VD->getType()->isReferenceType() &&
2671                      !isBlockByref;
2672     if (NonGCable) {
2673       LV.getQuals().removeObjCGCAttr();
2674       LV.setNonGC(true);
2675     }
2676 
2677     bool isImpreciseLifetime =
2678       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2679     if (isImpreciseLifetime)
2680       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2681     setObjCGCLValueClass(getContext(), E, LV);
2682     return LV;
2683   }
2684 
2685   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2686     return EmitFunctionDeclLValue(*this, E, FD);
2687 
2688   // FIXME: While we're emitting a binding from an enclosing scope, all other
2689   // DeclRefExprs we see should be implicitly treated as if they also refer to
2690   // an enclosing scope.
2691   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2692     return EmitLValue(BD->getBinding());
2693 
2694   llvm_unreachable("Unhandled DeclRefExpr");
2695 }
2696 
2697 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2698   // __extension__ doesn't affect lvalue-ness.
2699   if (E->getOpcode() == UO_Extension)
2700     return EmitLValue(E->getSubExpr());
2701 
2702   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2703   switch (E->getOpcode()) {
2704   default: llvm_unreachable("Unknown unary operator lvalue!");
2705   case UO_Deref: {
2706     QualType T = E->getSubExpr()->getType()->getPointeeType();
2707     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2708 
2709     LValueBaseInfo BaseInfo;
2710     TBAAAccessInfo TBAAInfo;
2711     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2712                                             &TBAAInfo);
2713     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2714     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2715 
2716     // We should not generate __weak write barrier on indirect reference
2717     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2718     // But, we continue to generate __strong write barrier on indirect write
2719     // into a pointer to object.
2720     if (getLangOpts().ObjC &&
2721         getLangOpts().getGC() != LangOptions::NonGC &&
2722         LV.isObjCWeak())
2723       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2724     return LV;
2725   }
2726   case UO_Real:
2727   case UO_Imag: {
2728     LValue LV = EmitLValue(E->getSubExpr());
2729     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2730 
2731     // __real is valid on scalars.  This is a faster way of testing that.
2732     // __imag can only produce an rvalue on scalars.
2733     if (E->getOpcode() == UO_Real &&
2734         !LV.getAddress(*this).getElementType()->isStructTy()) {
2735       assert(E->getSubExpr()->getType()->isArithmeticType());
2736       return LV;
2737     }
2738 
2739     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2740 
2741     Address Component =
2742         (E->getOpcode() == UO_Real
2743              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2744              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2745     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2746                                    CGM.getTBAAInfoForSubobject(LV, T));
2747     ElemLV.getQuals().addQualifiers(LV.getQuals());
2748     return ElemLV;
2749   }
2750   case UO_PreInc:
2751   case UO_PreDec: {
2752     LValue LV = EmitLValue(E->getSubExpr());
2753     bool isInc = E->getOpcode() == UO_PreInc;
2754 
2755     if (E->getType()->isAnyComplexType())
2756       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2757     else
2758       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2759     return LV;
2760   }
2761   }
2762 }
2763 
2764 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2765   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2766                         E->getType(), AlignmentSource::Decl);
2767 }
2768 
2769 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2770   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2771                         E->getType(), AlignmentSource::Decl);
2772 }
2773 
2774 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2775   auto SL = E->getFunctionName();
2776   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2777   StringRef FnName = CurFn->getName();
2778   if (FnName.startswith("\01"))
2779     FnName = FnName.substr(1);
2780   StringRef NameItems[] = {
2781       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2782   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2783   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2784     std::string Name = std::string(SL->getString());
2785     if (!Name.empty()) {
2786       unsigned Discriminator =
2787           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2788       if (Discriminator)
2789         Name += "_" + Twine(Discriminator + 1).str();
2790       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2791       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2792     } else {
2793       auto C =
2794           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2795       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2796     }
2797   }
2798   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2799   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2800 }
2801 
2802 /// Emit a type description suitable for use by a runtime sanitizer library. The
2803 /// format of a type descriptor is
2804 ///
2805 /// \code
2806 ///   { i16 TypeKind, i16 TypeInfo }
2807 /// \endcode
2808 ///
2809 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2810 /// integer, 1 for a floating point value, and -1 for anything else.
2811 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2812   // Only emit each type's descriptor once.
2813   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2814     return C;
2815 
2816   uint16_t TypeKind = -1;
2817   uint16_t TypeInfo = 0;
2818 
2819   if (T->isIntegerType()) {
2820     TypeKind = 0;
2821     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2822                (T->isSignedIntegerType() ? 1 : 0);
2823   } else if (T->isFloatingType()) {
2824     TypeKind = 1;
2825     TypeInfo = getContext().getTypeSize(T);
2826   }
2827 
2828   // Format the type name as if for a diagnostic, including quotes and
2829   // optionally an 'aka'.
2830   SmallString<32> Buffer;
2831   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2832                                     (intptr_t)T.getAsOpaquePtr(),
2833                                     StringRef(), StringRef(), None, Buffer,
2834                                     None);
2835 
2836   llvm::Constant *Components[] = {
2837     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2838     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2839   };
2840   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2841 
2842   auto *GV = new llvm::GlobalVariable(
2843       CGM.getModule(), Descriptor->getType(),
2844       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2845   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2846   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2847 
2848   // Remember the descriptor for this type.
2849   CGM.setTypeDescriptorInMap(T, GV);
2850 
2851   return GV;
2852 }
2853 
2854 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2855   llvm::Type *TargetTy = IntPtrTy;
2856 
2857   if (V->getType() == TargetTy)
2858     return V;
2859 
2860   // Floating-point types which fit into intptr_t are bitcast to integers
2861   // and then passed directly (after zero-extension, if necessary).
2862   if (V->getType()->isFloatingPointTy()) {
2863     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2864     if (Bits <= TargetTy->getIntegerBitWidth())
2865       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2866                                                          Bits));
2867   }
2868 
2869   // Integers which fit in intptr_t are zero-extended and passed directly.
2870   if (V->getType()->isIntegerTy() &&
2871       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2872     return Builder.CreateZExt(V, TargetTy);
2873 
2874   // Pointers are passed directly, everything else is passed by address.
2875   if (!V->getType()->isPointerTy()) {
2876     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2877     Builder.CreateStore(V, Ptr);
2878     V = Ptr.getPointer();
2879   }
2880   return Builder.CreatePtrToInt(V, TargetTy);
2881 }
2882 
2883 /// Emit a representation of a SourceLocation for passing to a handler
2884 /// in a sanitizer runtime library. The format for this data is:
2885 /// \code
2886 ///   struct SourceLocation {
2887 ///     const char *Filename;
2888 ///     int32_t Line, Column;
2889 ///   };
2890 /// \endcode
2891 /// For an invalid SourceLocation, the Filename pointer is null.
2892 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2893   llvm::Constant *Filename;
2894   int Line, Column;
2895 
2896   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2897   if (PLoc.isValid()) {
2898     StringRef FilenameString = PLoc.getFilename();
2899 
2900     int PathComponentsToStrip =
2901         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2902     if (PathComponentsToStrip < 0) {
2903       assert(PathComponentsToStrip != INT_MIN);
2904       int PathComponentsToKeep = -PathComponentsToStrip;
2905       auto I = llvm::sys::path::rbegin(FilenameString);
2906       auto E = llvm::sys::path::rend(FilenameString);
2907       while (I != E && --PathComponentsToKeep)
2908         ++I;
2909 
2910       FilenameString = FilenameString.substr(I - E);
2911     } else if (PathComponentsToStrip > 0) {
2912       auto I = llvm::sys::path::begin(FilenameString);
2913       auto E = llvm::sys::path::end(FilenameString);
2914       while (I != E && PathComponentsToStrip--)
2915         ++I;
2916 
2917       if (I != E)
2918         FilenameString =
2919             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2920       else
2921         FilenameString = llvm::sys::path::filename(FilenameString);
2922     }
2923 
2924     auto FilenameGV =
2925         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
2926     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2927                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2928     Filename = FilenameGV.getPointer();
2929     Line = PLoc.getLine();
2930     Column = PLoc.getColumn();
2931   } else {
2932     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2933     Line = Column = 0;
2934   }
2935 
2936   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2937                             Builder.getInt32(Column)};
2938 
2939   return llvm::ConstantStruct::getAnon(Data);
2940 }
2941 
2942 namespace {
2943 /// Specify under what conditions this check can be recovered
2944 enum class CheckRecoverableKind {
2945   /// Always terminate program execution if this check fails.
2946   Unrecoverable,
2947   /// Check supports recovering, runtime has both fatal (noreturn) and
2948   /// non-fatal handlers for this check.
2949   Recoverable,
2950   /// Runtime conditionally aborts, always need to support recovery.
2951   AlwaysRecoverable
2952 };
2953 }
2954 
2955 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2956   assert(Kind.countPopulation() == 1);
2957   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
2958     return CheckRecoverableKind::AlwaysRecoverable;
2959   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
2960     return CheckRecoverableKind::Unrecoverable;
2961   else
2962     return CheckRecoverableKind::Recoverable;
2963 }
2964 
2965 namespace {
2966 struct SanitizerHandlerInfo {
2967   char const *const Name;
2968   unsigned Version;
2969 };
2970 }
2971 
2972 const SanitizerHandlerInfo SanitizerHandlers[] = {
2973 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2974     LIST_SANITIZER_CHECKS
2975 #undef SANITIZER_CHECK
2976 };
2977 
2978 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2979                                  llvm::FunctionType *FnType,
2980                                  ArrayRef<llvm::Value *> FnArgs,
2981                                  SanitizerHandler CheckHandler,
2982                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2983                                  llvm::BasicBlock *ContBB) {
2984   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2985   Optional<ApplyDebugLocation> DL;
2986   if (!CGF.Builder.getCurrentDebugLocation()) {
2987     // Ensure that the call has at least an artificial debug location.
2988     DL.emplace(CGF, SourceLocation());
2989   }
2990   bool NeedsAbortSuffix =
2991       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2992   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2993   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2994   const StringRef CheckName = CheckInfo.Name;
2995   std::string FnName = "__ubsan_handle_" + CheckName.str();
2996   if (CheckInfo.Version && !MinimalRuntime)
2997     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2998   if (MinimalRuntime)
2999     FnName += "_minimal";
3000   if (NeedsAbortSuffix)
3001     FnName += "_abort";
3002   bool MayReturn =
3003       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3004 
3005   llvm::AttrBuilder B;
3006   if (!MayReturn) {
3007     B.addAttribute(llvm::Attribute::NoReturn)
3008         .addAttribute(llvm::Attribute::NoUnwind);
3009   }
3010   B.addAttribute(llvm::Attribute::UWTable);
3011 
3012   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3013       FnType, FnName,
3014       llvm::AttributeList::get(CGF.getLLVMContext(),
3015                                llvm::AttributeList::FunctionIndex, B),
3016       /*Local=*/true);
3017   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3018   if (!MayReturn) {
3019     HandlerCall->setDoesNotReturn();
3020     CGF.Builder.CreateUnreachable();
3021   } else {
3022     CGF.Builder.CreateBr(ContBB);
3023   }
3024 }
3025 
3026 void CodeGenFunction::EmitCheck(
3027     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3028     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3029     ArrayRef<llvm::Value *> DynamicArgs) {
3030   assert(IsSanitizerScope);
3031   assert(Checked.size() > 0);
3032   assert(CheckHandler >= 0 &&
3033          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3034   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3035 
3036   llvm::Value *FatalCond = nullptr;
3037   llvm::Value *RecoverableCond = nullptr;
3038   llvm::Value *TrapCond = nullptr;
3039   for (int i = 0, n = Checked.size(); i < n; ++i) {
3040     llvm::Value *Check = Checked[i].first;
3041     // -fsanitize-trap= overrides -fsanitize-recover=.
3042     llvm::Value *&Cond =
3043         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3044             ? TrapCond
3045             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3046                   ? RecoverableCond
3047                   : FatalCond;
3048     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3049   }
3050 
3051   if (TrapCond)
3052     EmitTrapCheck(TrapCond);
3053   if (!FatalCond && !RecoverableCond)
3054     return;
3055 
3056   llvm::Value *JointCond;
3057   if (FatalCond && RecoverableCond)
3058     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3059   else
3060     JointCond = FatalCond ? FatalCond : RecoverableCond;
3061   assert(JointCond);
3062 
3063   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3064   assert(SanOpts.has(Checked[0].second));
3065 #ifndef NDEBUG
3066   for (int i = 1, n = Checked.size(); i < n; ++i) {
3067     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3068            "All recoverable kinds in a single check must be same!");
3069     assert(SanOpts.has(Checked[i].second));
3070   }
3071 #endif
3072 
3073   llvm::BasicBlock *Cont = createBasicBlock("cont");
3074   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3075   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3076   // Give hint that we very much don't expect to execute the handler
3077   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3078   llvm::MDBuilder MDHelper(getLLVMContext());
3079   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3080   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3081   EmitBlock(Handlers);
3082 
3083   // Handler functions take an i8* pointing to the (handler-specific) static
3084   // information block, followed by a sequence of intptr_t arguments
3085   // representing operand values.
3086   SmallVector<llvm::Value *, 4> Args;
3087   SmallVector<llvm::Type *, 4> ArgTypes;
3088   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3089     Args.reserve(DynamicArgs.size() + 1);
3090     ArgTypes.reserve(DynamicArgs.size() + 1);
3091 
3092     // Emit handler arguments and create handler function type.
3093     if (!StaticArgs.empty()) {
3094       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3095       auto *InfoPtr =
3096           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3097                                    llvm::GlobalVariable::PrivateLinkage, Info);
3098       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3099       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3100       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3101       ArgTypes.push_back(Int8PtrTy);
3102     }
3103 
3104     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3105       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3106       ArgTypes.push_back(IntPtrTy);
3107     }
3108   }
3109 
3110   llvm::FunctionType *FnType =
3111     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3112 
3113   if (!FatalCond || !RecoverableCond) {
3114     // Simple case: we need to generate a single handler call, either
3115     // fatal, or non-fatal.
3116     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3117                          (FatalCond != nullptr), Cont);
3118   } else {
3119     // Emit two handler calls: first one for set of unrecoverable checks,
3120     // another one for recoverable.
3121     llvm::BasicBlock *NonFatalHandlerBB =
3122         createBasicBlock("non_fatal." + CheckName);
3123     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3124     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3125     EmitBlock(FatalHandlerBB);
3126     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3127                          NonFatalHandlerBB);
3128     EmitBlock(NonFatalHandlerBB);
3129     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3130                          Cont);
3131   }
3132 
3133   EmitBlock(Cont);
3134 }
3135 
3136 void CodeGenFunction::EmitCfiSlowPathCheck(
3137     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3138     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3139   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3140 
3141   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3142   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3143 
3144   llvm::MDBuilder MDHelper(getLLVMContext());
3145   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3146   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3147 
3148   EmitBlock(CheckBB);
3149 
3150   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3151 
3152   llvm::CallInst *CheckCall;
3153   llvm::FunctionCallee SlowPathFn;
3154   if (WithDiag) {
3155     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3156     auto *InfoPtr =
3157         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3158                                  llvm::GlobalVariable::PrivateLinkage, Info);
3159     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3160     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3161 
3162     SlowPathFn = CGM.getModule().getOrInsertFunction(
3163         "__cfi_slowpath_diag",
3164         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3165                                 false));
3166     CheckCall = Builder.CreateCall(
3167         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3168   } else {
3169     SlowPathFn = CGM.getModule().getOrInsertFunction(
3170         "__cfi_slowpath",
3171         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3172     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3173   }
3174 
3175   CGM.setDSOLocal(
3176       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3177   CheckCall->setDoesNotThrow();
3178 
3179   EmitBlock(Cont);
3180 }
3181 
3182 // Emit a stub for __cfi_check function so that the linker knows about this
3183 // symbol in LTO mode.
3184 void CodeGenFunction::EmitCfiCheckStub() {
3185   llvm::Module *M = &CGM.getModule();
3186   auto &Ctx = M->getContext();
3187   llvm::Function *F = llvm::Function::Create(
3188       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3189       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3190   CGM.setDSOLocal(F);
3191   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3192   // FIXME: consider emitting an intrinsic call like
3193   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3194   // which can be lowered in CrossDSOCFI pass to the actual contents of
3195   // __cfi_check. This would allow inlining of __cfi_check calls.
3196   llvm::CallInst::Create(
3197       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3198   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3199 }
3200 
3201 // This function is basically a switch over the CFI failure kind, which is
3202 // extracted from CFICheckFailData (1st function argument). Each case is either
3203 // llvm.trap or a call to one of the two runtime handlers, based on
3204 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3205 // failure kind) traps, but this should really never happen.  CFICheckFailData
3206 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3207 // check kind; in this case __cfi_check_fail traps as well.
3208 void CodeGenFunction::EmitCfiCheckFail() {
3209   SanitizerScope SanScope(this);
3210   FunctionArgList Args;
3211   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3212                             ImplicitParamDecl::Other);
3213   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3214                             ImplicitParamDecl::Other);
3215   Args.push_back(&ArgData);
3216   Args.push_back(&ArgAddr);
3217 
3218   const CGFunctionInfo &FI =
3219     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3220 
3221   llvm::Function *F = llvm::Function::Create(
3222       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3223       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3224 
3225   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
3226   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3227   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3228 
3229   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3230                 SourceLocation());
3231 
3232   // This function should not be affected by blacklist. This function does
3233   // not have a source location, but "src:*" would still apply. Revert any
3234   // changes to SanOpts made in StartFunction.
3235   SanOpts = CGM.getLangOpts().Sanitize;
3236 
3237   llvm::Value *Data =
3238       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3239                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3240   llvm::Value *Addr =
3241       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3242                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3243 
3244   // Data == nullptr means the calling module has trap behaviour for this check.
3245   llvm::Value *DataIsNotNullPtr =
3246       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3247   EmitTrapCheck(DataIsNotNullPtr);
3248 
3249   llvm::StructType *SourceLocationTy =
3250       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3251   llvm::StructType *CfiCheckFailDataTy =
3252       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3253 
3254   llvm::Value *V = Builder.CreateConstGEP2_32(
3255       CfiCheckFailDataTy,
3256       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3257       0);
3258   Address CheckKindAddr(V, getIntAlign());
3259   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3260 
3261   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3262       CGM.getLLVMContext(),
3263       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3264   llvm::Value *ValidVtable = Builder.CreateZExt(
3265       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3266                          {Addr, AllVtables}),
3267       IntPtrTy);
3268 
3269   const std::pair<int, SanitizerMask> CheckKinds[] = {
3270       {CFITCK_VCall, SanitizerKind::CFIVCall},
3271       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3272       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3273       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3274       {CFITCK_ICall, SanitizerKind::CFIICall}};
3275 
3276   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3277   for (auto CheckKindMaskPair : CheckKinds) {
3278     int Kind = CheckKindMaskPair.first;
3279     SanitizerMask Mask = CheckKindMaskPair.second;
3280     llvm::Value *Cond =
3281         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3282     if (CGM.getLangOpts().Sanitize.has(Mask))
3283       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3284                 {Data, Addr, ValidVtable});
3285     else
3286       EmitTrapCheck(Cond);
3287   }
3288 
3289   FinishFunction();
3290   // The only reference to this function will be created during LTO link.
3291   // Make sure it survives until then.
3292   CGM.addUsedGlobal(F);
3293 }
3294 
3295 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3296   if (SanOpts.has(SanitizerKind::Unreachable)) {
3297     SanitizerScope SanScope(this);
3298     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3299                              SanitizerKind::Unreachable),
3300               SanitizerHandler::BuiltinUnreachable,
3301               EmitCheckSourceLocation(Loc), None);
3302   }
3303   Builder.CreateUnreachable();
3304 }
3305 
3306 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3307   llvm::BasicBlock *Cont = createBasicBlock("cont");
3308 
3309   // If we're optimizing, collapse all calls to trap down to just one per
3310   // function to save on code size.
3311   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3312     TrapBB = createBasicBlock("trap");
3313     Builder.CreateCondBr(Checked, Cont, TrapBB);
3314     EmitBlock(TrapBB);
3315     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3316     TrapCall->setDoesNotReturn();
3317     TrapCall->setDoesNotThrow();
3318     Builder.CreateUnreachable();
3319   } else {
3320     Builder.CreateCondBr(Checked, Cont, TrapBB);
3321   }
3322 
3323   EmitBlock(Cont);
3324 }
3325 
3326 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3327   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3328 
3329   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3330     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3331                                   CGM.getCodeGenOpts().TrapFuncName);
3332     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3333   }
3334 
3335   return TrapCall;
3336 }
3337 
3338 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3339                                                  LValueBaseInfo *BaseInfo,
3340                                                  TBAAAccessInfo *TBAAInfo) {
3341   assert(E->getType()->isArrayType() &&
3342          "Array to pointer decay must have array source type!");
3343 
3344   // Expressions of array type can't be bitfields or vector elements.
3345   LValue LV = EmitLValue(E);
3346   Address Addr = LV.getAddress(*this);
3347 
3348   // If the array type was an incomplete type, we need to make sure
3349   // the decay ends up being the right type.
3350   llvm::Type *NewTy = ConvertType(E->getType());
3351   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3352 
3353   // Note that VLA pointers are always decayed, so we don't need to do
3354   // anything here.
3355   if (!E->getType()->isVariableArrayType()) {
3356     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3357            "Expected pointer to array");
3358     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3359   }
3360 
3361   // The result of this decay conversion points to an array element within the
3362   // base lvalue. However, since TBAA currently does not support representing
3363   // accesses to elements of member arrays, we conservatively represent accesses
3364   // to the pointee object as if it had no any base lvalue specified.
3365   // TODO: Support TBAA for member arrays.
3366   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3367   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3368   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3369 
3370   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3371 }
3372 
3373 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3374 /// array to pointer, return the array subexpression.
3375 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3376   // If this isn't just an array->pointer decay, bail out.
3377   const auto *CE = dyn_cast<CastExpr>(E);
3378   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3379     return nullptr;
3380 
3381   // If this is a decay from variable width array, bail out.
3382   const Expr *SubExpr = CE->getSubExpr();
3383   if (SubExpr->getType()->isVariableArrayType())
3384     return nullptr;
3385 
3386   return SubExpr;
3387 }
3388 
3389 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3390                                           llvm::Value *ptr,
3391                                           ArrayRef<llvm::Value*> indices,
3392                                           bool inbounds,
3393                                           bool signedIndices,
3394                                           SourceLocation loc,
3395                                     const llvm::Twine &name = "arrayidx") {
3396   if (inbounds) {
3397     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3398                                       CodeGenFunction::NotSubtraction, loc,
3399                                       name);
3400   } else {
3401     return CGF.Builder.CreateGEP(ptr, indices, name);
3402   }
3403 }
3404 
3405 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3406                                       llvm::Value *idx,
3407                                       CharUnits eltSize) {
3408   // If we have a constant index, we can use the exact offset of the
3409   // element we're accessing.
3410   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3411     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3412     return arrayAlign.alignmentAtOffset(offset);
3413 
3414   // Otherwise, use the worst-case alignment for any element.
3415   } else {
3416     return arrayAlign.alignmentOfArrayElement(eltSize);
3417   }
3418 }
3419 
3420 static QualType getFixedSizeElementType(const ASTContext &ctx,
3421                                         const VariableArrayType *vla) {
3422   QualType eltType;
3423   do {
3424     eltType = vla->getElementType();
3425   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3426   return eltType;
3427 }
3428 
3429 /// Given an array base, check whether its member access belongs to a record
3430 /// with preserve_access_index attribute or not.
3431 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3432   if (!ArrayBase || !CGF.getDebugInfo())
3433     return false;
3434 
3435   // Only support base as either a MemberExpr or DeclRefExpr.
3436   // DeclRefExpr to cover cases like:
3437   //    struct s { int a; int b[10]; };
3438   //    struct s *p;
3439   //    p[1].a
3440   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3441   // p->b[5] is a MemberExpr example.
3442   const Expr *E = ArrayBase->IgnoreImpCasts();
3443   if (const auto *ME = dyn_cast<MemberExpr>(E))
3444     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3445 
3446   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3447     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3448     if (!VarDef)
3449       return false;
3450 
3451     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3452     if (!PtrT)
3453       return false;
3454 
3455     const auto *PointeeT = PtrT->getPointeeType()
3456                              ->getUnqualifiedDesugaredType();
3457     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3458       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3459     return false;
3460   }
3461 
3462   return false;
3463 }
3464 
3465 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3466                                      ArrayRef<llvm::Value *> indices,
3467                                      QualType eltType, bool inbounds,
3468                                      bool signedIndices, SourceLocation loc,
3469                                      QualType *arrayType = nullptr,
3470                                      const Expr *Base = nullptr,
3471                                      const llvm::Twine &name = "arrayidx") {
3472   // All the indices except that last must be zero.
3473 #ifndef NDEBUG
3474   for (auto idx : indices.drop_back())
3475     assert(isa<llvm::ConstantInt>(idx) &&
3476            cast<llvm::ConstantInt>(idx)->isZero());
3477 #endif
3478 
3479   // Determine the element size of the statically-sized base.  This is
3480   // the thing that the indices are expressed in terms of.
3481   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3482     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3483   }
3484 
3485   // We can use that to compute the best alignment of the element.
3486   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3487   CharUnits eltAlign =
3488     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3489 
3490   llvm::Value *eltPtr;
3491   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3492   if (!LastIndex ||
3493       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3494     eltPtr = emitArraySubscriptGEP(
3495         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3496         loc, name);
3497   } else {
3498     // Remember the original array subscript for bpf target
3499     unsigned idx = LastIndex->getZExtValue();
3500     llvm::DIType *DbgInfo = nullptr;
3501     if (arrayType)
3502       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3503     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3504                                                         addr.getPointer(),
3505                                                         indices.size() - 1,
3506                                                         idx, DbgInfo);
3507   }
3508 
3509   return Address(eltPtr, eltAlign);
3510 }
3511 
3512 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3513                                                bool Accessed) {
3514   // The index must always be an integer, which is not an aggregate.  Emit it
3515   // in lexical order (this complexity is, sadly, required by C++17).
3516   llvm::Value *IdxPre =
3517       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3518   bool SignedIndices = false;
3519   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3520     auto *Idx = IdxPre;
3521     if (E->getLHS() != E->getIdx()) {
3522       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3523       Idx = EmitScalarExpr(E->getIdx());
3524     }
3525 
3526     QualType IdxTy = E->getIdx()->getType();
3527     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3528     SignedIndices |= IdxSigned;
3529 
3530     if (SanOpts.has(SanitizerKind::ArrayBounds))
3531       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3532 
3533     // Extend or truncate the index type to 32 or 64-bits.
3534     if (Promote && Idx->getType() != IntPtrTy)
3535       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3536 
3537     return Idx;
3538   };
3539   IdxPre = nullptr;
3540 
3541   // If the base is a vector type, then we are forming a vector element lvalue
3542   // with this subscript.
3543   if (E->getBase()->getType()->isVectorType() &&
3544       !isa<ExtVectorElementExpr>(E->getBase())) {
3545     // Emit the vector as an lvalue to get its address.
3546     LValue LHS = EmitLValue(E->getBase());
3547     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3548     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3549     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3550                                  E->getBase()->getType(), LHS.getBaseInfo(),
3551                                  TBAAAccessInfo());
3552   }
3553 
3554   // All the other cases basically behave like simple offsetting.
3555 
3556   // Handle the extvector case we ignored above.
3557   if (isa<ExtVectorElementExpr>(E->getBase())) {
3558     LValue LV = EmitLValue(E->getBase());
3559     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3560     Address Addr = EmitExtVectorElementLValue(LV);
3561 
3562     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3563     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3564                                  SignedIndices, E->getExprLoc());
3565     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3566                           CGM.getTBAAInfoForSubobject(LV, EltType));
3567   }
3568 
3569   LValueBaseInfo EltBaseInfo;
3570   TBAAAccessInfo EltTBAAInfo;
3571   Address Addr = Address::invalid();
3572   if (const VariableArrayType *vla =
3573            getContext().getAsVariableArrayType(E->getType())) {
3574     // The base must be a pointer, which is not an aggregate.  Emit
3575     // it.  It needs to be emitted first in case it's what captures
3576     // the VLA bounds.
3577     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3578     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3579 
3580     // The element count here is the total number of non-VLA elements.
3581     llvm::Value *numElements = getVLASize(vla).NumElts;
3582 
3583     // Effectively, the multiply by the VLA size is part of the GEP.
3584     // GEP indexes are signed, and scaling an index isn't permitted to
3585     // signed-overflow, so we use the same semantics for our explicit
3586     // multiply.  We suppress this if overflow is not undefined behavior.
3587     if (getLangOpts().isSignedOverflowDefined()) {
3588       Idx = Builder.CreateMul(Idx, numElements);
3589     } else {
3590       Idx = Builder.CreateNSWMul(Idx, numElements);
3591     }
3592 
3593     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3594                                  !getLangOpts().isSignedOverflowDefined(),
3595                                  SignedIndices, E->getExprLoc());
3596 
3597   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3598     // Indexing over an interface, as in "NSString *P; P[4];"
3599 
3600     // Emit the base pointer.
3601     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3602     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3603 
3604     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3605     llvm::Value *InterfaceSizeVal =
3606         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3607 
3608     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3609 
3610     // We don't necessarily build correct LLVM struct types for ObjC
3611     // interfaces, so we can't rely on GEP to do this scaling
3612     // correctly, so we need to cast to i8*.  FIXME: is this actually
3613     // true?  A lot of other things in the fragile ABI would break...
3614     llvm::Type *OrigBaseTy = Addr.getType();
3615     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3616 
3617     // Do the GEP.
3618     CharUnits EltAlign =
3619       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3620     llvm::Value *EltPtr =
3621         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3622                               SignedIndices, E->getExprLoc());
3623     Addr = Address(EltPtr, EltAlign);
3624 
3625     // Cast back.
3626     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3627   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3628     // If this is A[i] where A is an array, the frontend will have decayed the
3629     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3630     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3631     // "gep x, i" here.  Emit one "gep A, 0, i".
3632     assert(Array->getType()->isArrayType() &&
3633            "Array to pointer decay must have array source type!");
3634     LValue ArrayLV;
3635     // For simple multidimensional array indexing, set the 'accessed' flag for
3636     // better bounds-checking of the base expression.
3637     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3638       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3639     else
3640       ArrayLV = EmitLValue(Array);
3641     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3642 
3643     // Propagate the alignment from the array itself to the result.
3644     QualType arrayType = Array->getType();
3645     Addr = emitArraySubscriptGEP(
3646         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3647         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3648         E->getExprLoc(), &arrayType, E->getBase());
3649     EltBaseInfo = ArrayLV.getBaseInfo();
3650     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3651   } else {
3652     // The base must be a pointer; emit it with an estimate of its alignment.
3653     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3654     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3655     QualType ptrType = E->getBase()->getType();
3656     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3657                                  !getLangOpts().isSignedOverflowDefined(),
3658                                  SignedIndices, E->getExprLoc(), &ptrType,
3659                                  E->getBase());
3660   }
3661 
3662   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3663 
3664   if (getLangOpts().ObjC &&
3665       getLangOpts().getGC() != LangOptions::NonGC) {
3666     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3667     setObjCGCLValueClass(getContext(), E, LV);
3668   }
3669   return LV;
3670 }
3671 
3672 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3673                                        LValueBaseInfo &BaseInfo,
3674                                        TBAAAccessInfo &TBAAInfo,
3675                                        QualType BaseTy, QualType ElTy,
3676                                        bool IsLowerBound) {
3677   LValue BaseLVal;
3678   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3679     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3680     if (BaseTy->isArrayType()) {
3681       Address Addr = BaseLVal.getAddress(CGF);
3682       BaseInfo = BaseLVal.getBaseInfo();
3683 
3684       // If the array type was an incomplete type, we need to make sure
3685       // the decay ends up being the right type.
3686       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3687       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3688 
3689       // Note that VLA pointers are always decayed, so we don't need to do
3690       // anything here.
3691       if (!BaseTy->isVariableArrayType()) {
3692         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3693                "Expected pointer to array");
3694         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3695       }
3696 
3697       return CGF.Builder.CreateElementBitCast(Addr,
3698                                               CGF.ConvertTypeForMem(ElTy));
3699     }
3700     LValueBaseInfo TypeBaseInfo;
3701     TBAAAccessInfo TypeTBAAInfo;
3702     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3703                                                   &TypeTBAAInfo);
3704     BaseInfo.mergeForCast(TypeBaseInfo);
3705     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3706     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3707   }
3708   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3709 }
3710 
3711 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3712                                                 bool IsLowerBound) {
3713   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3714   QualType ResultExprTy;
3715   if (auto *AT = getContext().getAsArrayType(BaseTy))
3716     ResultExprTy = AT->getElementType();
3717   else
3718     ResultExprTy = BaseTy->getPointeeType();
3719   llvm::Value *Idx = nullptr;
3720   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3721     // Requesting lower bound or upper bound, but without provided length and
3722     // without ':' symbol for the default length -> length = 1.
3723     // Idx = LowerBound ?: 0;
3724     if (auto *LowerBound = E->getLowerBound()) {
3725       Idx = Builder.CreateIntCast(
3726           EmitScalarExpr(LowerBound), IntPtrTy,
3727           LowerBound->getType()->hasSignedIntegerRepresentation());
3728     } else
3729       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3730   } else {
3731     // Try to emit length or lower bound as constant. If this is possible, 1
3732     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3733     // IR (LB + Len) - 1.
3734     auto &C = CGM.getContext();
3735     auto *Length = E->getLength();
3736     llvm::APSInt ConstLength;
3737     if (Length) {
3738       // Idx = LowerBound + Length - 1;
3739       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3740         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3741         Length = nullptr;
3742       }
3743       auto *LowerBound = E->getLowerBound();
3744       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3745       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3746         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3747         LowerBound = nullptr;
3748       }
3749       if (!Length)
3750         --ConstLength;
3751       else if (!LowerBound)
3752         --ConstLowerBound;
3753 
3754       if (Length || LowerBound) {
3755         auto *LowerBoundVal =
3756             LowerBound
3757                 ? Builder.CreateIntCast(
3758                       EmitScalarExpr(LowerBound), IntPtrTy,
3759                       LowerBound->getType()->hasSignedIntegerRepresentation())
3760                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3761         auto *LengthVal =
3762             Length
3763                 ? Builder.CreateIntCast(
3764                       EmitScalarExpr(Length), IntPtrTy,
3765                       Length->getType()->hasSignedIntegerRepresentation())
3766                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3767         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3768                                 /*HasNUW=*/false,
3769                                 !getLangOpts().isSignedOverflowDefined());
3770         if (Length && LowerBound) {
3771           Idx = Builder.CreateSub(
3772               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3773               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3774         }
3775       } else
3776         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3777     } else {
3778       // Idx = ArraySize - 1;
3779       QualType ArrayTy = BaseTy->isPointerType()
3780                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3781                              : BaseTy;
3782       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3783         Length = VAT->getSizeExpr();
3784         if (Length->isIntegerConstantExpr(ConstLength, C))
3785           Length = nullptr;
3786       } else {
3787         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3788         ConstLength = CAT->getSize();
3789       }
3790       if (Length) {
3791         auto *LengthVal = Builder.CreateIntCast(
3792             EmitScalarExpr(Length), IntPtrTy,
3793             Length->getType()->hasSignedIntegerRepresentation());
3794         Idx = Builder.CreateSub(
3795             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3796             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3797       } else {
3798         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3799         --ConstLength;
3800         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3801       }
3802     }
3803   }
3804   assert(Idx);
3805 
3806   Address EltPtr = Address::invalid();
3807   LValueBaseInfo BaseInfo;
3808   TBAAAccessInfo TBAAInfo;
3809   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3810     // The base must be a pointer, which is not an aggregate.  Emit
3811     // it.  It needs to be emitted first in case it's what captures
3812     // the VLA bounds.
3813     Address Base =
3814         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3815                                 BaseTy, VLA->getElementType(), IsLowerBound);
3816     // The element count here is the total number of non-VLA elements.
3817     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3818 
3819     // Effectively, the multiply by the VLA size is part of the GEP.
3820     // GEP indexes are signed, and scaling an index isn't permitted to
3821     // signed-overflow, so we use the same semantics for our explicit
3822     // multiply.  We suppress this if overflow is not undefined behavior.
3823     if (getLangOpts().isSignedOverflowDefined())
3824       Idx = Builder.CreateMul(Idx, NumElements);
3825     else
3826       Idx = Builder.CreateNSWMul(Idx, NumElements);
3827     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3828                                    !getLangOpts().isSignedOverflowDefined(),
3829                                    /*signedIndices=*/false, E->getExprLoc());
3830   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3831     // If this is A[i] where A is an array, the frontend will have decayed the
3832     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3833     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3834     // "gep x, i" here.  Emit one "gep A, 0, i".
3835     assert(Array->getType()->isArrayType() &&
3836            "Array to pointer decay must have array source type!");
3837     LValue ArrayLV;
3838     // For simple multidimensional array indexing, set the 'accessed' flag for
3839     // better bounds-checking of the base expression.
3840     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3841       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3842     else
3843       ArrayLV = EmitLValue(Array);
3844 
3845     // Propagate the alignment from the array itself to the result.
3846     EltPtr = emitArraySubscriptGEP(
3847         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3848         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3849         /*signedIndices=*/false, E->getExprLoc());
3850     BaseInfo = ArrayLV.getBaseInfo();
3851     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3852   } else {
3853     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3854                                            TBAAInfo, BaseTy, ResultExprTy,
3855                                            IsLowerBound);
3856     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3857                                    !getLangOpts().isSignedOverflowDefined(),
3858                                    /*signedIndices=*/false, E->getExprLoc());
3859   }
3860 
3861   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3862 }
3863 
3864 LValue CodeGenFunction::
3865 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3866   // Emit the base vector as an l-value.
3867   LValue Base;
3868 
3869   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3870   if (E->isArrow()) {
3871     // If it is a pointer to a vector, emit the address and form an lvalue with
3872     // it.
3873     LValueBaseInfo BaseInfo;
3874     TBAAAccessInfo TBAAInfo;
3875     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3876     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
3877     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3878     Base.getQuals().removeObjCGCAttr();
3879   } else if (E->getBase()->isGLValue()) {
3880     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3881     // emit the base as an lvalue.
3882     assert(E->getBase()->getType()->isVectorType());
3883     Base = EmitLValue(E->getBase());
3884   } else {
3885     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3886     assert(E->getBase()->getType()->isVectorType() &&
3887            "Result must be a vector");
3888     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3889 
3890     // Store the vector to memory (because LValue wants an address).
3891     Address VecMem = CreateMemTemp(E->getBase()->getType());
3892     Builder.CreateStore(Vec, VecMem);
3893     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3894                           AlignmentSource::Decl);
3895   }
3896 
3897   QualType type =
3898     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3899 
3900   // Encode the element access list into a vector of unsigned indices.
3901   SmallVector<uint32_t, 4> Indices;
3902   E->getEncodedElementAccess(Indices);
3903 
3904   if (Base.isSimple()) {
3905     llvm::Constant *CV =
3906         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3907     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
3908                                     Base.getBaseInfo(), TBAAAccessInfo());
3909   }
3910   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3911 
3912   llvm::Constant *BaseElts = Base.getExtVectorElts();
3913   SmallVector<llvm::Constant *, 4> CElts;
3914 
3915   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3916     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3917   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3918   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3919                                   Base.getBaseInfo(), TBAAAccessInfo());
3920 }
3921 
3922 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3923   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3924     EmitIgnoredExpr(E->getBase());
3925     return EmitDeclRefLValue(DRE);
3926   }
3927 
3928   Expr *BaseExpr = E->getBase();
3929   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3930   LValue BaseLV;
3931   if (E->isArrow()) {
3932     LValueBaseInfo BaseInfo;
3933     TBAAAccessInfo TBAAInfo;
3934     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3935     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3936     SanitizerSet SkippedChecks;
3937     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3938     if (IsBaseCXXThis)
3939       SkippedChecks.set(SanitizerKind::Alignment, true);
3940     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3941       SkippedChecks.set(SanitizerKind::Null, true);
3942     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3943                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3944     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3945   } else
3946     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3947 
3948   NamedDecl *ND = E->getMemberDecl();
3949   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3950     LValue LV = EmitLValueForField(BaseLV, Field);
3951     setObjCGCLValueClass(getContext(), E, LV);
3952     if (getLangOpts().OpenMP) {
3953       // If the member was explicitly marked as nontemporal, mark it as
3954       // nontemporal. If the base lvalue is marked as nontemporal, mark access
3955       // to children as nontemporal too.
3956       if ((IsWrappedCXXThis(BaseExpr) &&
3957            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
3958           BaseLV.isNontemporal())
3959         LV.setNontemporal(/*Value=*/true);
3960     }
3961     return LV;
3962   }
3963 
3964   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3965     return EmitFunctionDeclLValue(*this, E, FD);
3966 
3967   llvm_unreachable("Unhandled member declaration!");
3968 }
3969 
3970 /// Given that we are currently emitting a lambda, emit an l-value for
3971 /// one of its members.
3972 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3973   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3974   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3975   QualType LambdaTagType =
3976     getContext().getTagDeclType(Field->getParent());
3977   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3978   return EmitLValueForField(LambdaLV, Field);
3979 }
3980 
3981 /// Get the field index in the debug info. The debug info structure/union
3982 /// will ignore the unnamed bitfields.
3983 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
3984                                              unsigned FieldIndex) {
3985   unsigned I = 0, Skipped = 0;
3986 
3987   for (auto F : Rec->getDefinition()->fields()) {
3988     if (I == FieldIndex)
3989       break;
3990     if (F->isUnnamedBitfield())
3991       Skipped++;
3992     I++;
3993   }
3994 
3995   return FieldIndex - Skipped;
3996 }
3997 
3998 /// Get the address of a zero-sized field within a record. The resulting
3999 /// address doesn't necessarily have the right type.
4000 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4001                                        const FieldDecl *Field) {
4002   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4003       CGF.getContext().getFieldOffset(Field));
4004   if (Offset.isZero())
4005     return Base;
4006   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4007   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4008 }
4009 
4010 /// Drill down to the storage of a field without walking into
4011 /// reference types.
4012 ///
4013 /// The resulting address doesn't necessarily have the right type.
4014 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4015                                       const FieldDecl *field) {
4016   if (field->isZeroSize(CGF.getContext()))
4017     return emitAddrOfZeroSizeField(CGF, base, field);
4018 
4019   const RecordDecl *rec = field->getParent();
4020 
4021   unsigned idx =
4022     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4023 
4024   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4025 }
4026 
4027 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4028                                         Address addr, const FieldDecl *field) {
4029   const RecordDecl *rec = field->getParent();
4030   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4031       base.getType(), rec->getLocation());
4032 
4033   unsigned idx =
4034       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4035 
4036   return CGF.Builder.CreatePreserveStructAccessIndex(
4037       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4038 }
4039 
4040 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4041   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4042   if (!RD)
4043     return false;
4044 
4045   if (RD->isDynamicClass())
4046     return true;
4047 
4048   for (const auto &Base : RD->bases())
4049     if (hasAnyVptr(Base.getType(), Context))
4050       return true;
4051 
4052   for (const FieldDecl *Field : RD->fields())
4053     if (hasAnyVptr(Field->getType(), Context))
4054       return true;
4055 
4056   return false;
4057 }
4058 
4059 LValue CodeGenFunction::EmitLValueForField(LValue base,
4060                                            const FieldDecl *field) {
4061   LValueBaseInfo BaseInfo = base.getBaseInfo();
4062 
4063   if (field->isBitField()) {
4064     const CGRecordLayout &RL =
4065       CGM.getTypes().getCGRecordLayout(field->getParent());
4066     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4067     Address Addr = base.getAddress(*this);
4068     unsigned Idx = RL.getLLVMFieldNo(field);
4069     const RecordDecl *rec = field->getParent();
4070     if (!IsInPreservedAIRegion &&
4071         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4072       if (Idx != 0)
4073         // For structs, we GEP to the field that the record layout suggests.
4074         Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4075     } else {
4076       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4077           getContext().getRecordType(rec), rec->getLocation());
4078       Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx,
4079           getDebugInfoFIndex(rec, field->getFieldIndex()),
4080           DbgInfo);
4081     }
4082 
4083     // Get the access type.
4084     llvm::Type *FieldIntTy =
4085       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
4086     if (Addr.getElementType() != FieldIntTy)
4087       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4088 
4089     QualType fieldType =
4090       field->getType().withCVRQualifiers(base.getVRQualifiers());
4091     // TODO: Support TBAA for bit fields.
4092     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4093     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4094                                 TBAAAccessInfo());
4095   }
4096 
4097   // Fields of may-alias structures are may-alias themselves.
4098   // FIXME: this should get propagated down through anonymous structs
4099   // and unions.
4100   QualType FieldType = field->getType();
4101   const RecordDecl *rec = field->getParent();
4102   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4103   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4104   TBAAAccessInfo FieldTBAAInfo;
4105   if (base.getTBAAInfo().isMayAlias() ||
4106           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4107     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4108   } else if (rec->isUnion()) {
4109     // TODO: Support TBAA for unions.
4110     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4111   } else {
4112     // If no base type been assigned for the base access, then try to generate
4113     // one for this base lvalue.
4114     FieldTBAAInfo = base.getTBAAInfo();
4115     if (!FieldTBAAInfo.BaseType) {
4116         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4117         assert(!FieldTBAAInfo.Offset &&
4118                "Nonzero offset for an access with no base type!");
4119     }
4120 
4121     // Adjust offset to be relative to the base type.
4122     const ASTRecordLayout &Layout =
4123         getContext().getASTRecordLayout(field->getParent());
4124     unsigned CharWidth = getContext().getCharWidth();
4125     if (FieldTBAAInfo.BaseType)
4126       FieldTBAAInfo.Offset +=
4127           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4128 
4129     // Update the final access type and size.
4130     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4131     FieldTBAAInfo.Size =
4132         getContext().getTypeSizeInChars(FieldType).getQuantity();
4133   }
4134 
4135   Address addr = base.getAddress(*this);
4136   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4137     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4138         ClassDef->isDynamicClass()) {
4139       // Getting to any field of dynamic object requires stripping dynamic
4140       // information provided by invariant.group.  This is because accessing
4141       // fields may leak the real address of dynamic object, which could result
4142       // in miscompilation when leaked pointer would be compared.
4143       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4144       addr = Address(stripped, addr.getAlignment());
4145     }
4146   }
4147 
4148   unsigned RecordCVR = base.getVRQualifiers();
4149   if (rec->isUnion()) {
4150     // For unions, there is no pointer adjustment.
4151     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4152         hasAnyVptr(FieldType, getContext()))
4153       // Because unions can easily skip invariant.barriers, we need to add
4154       // a barrier every time CXXRecord field with vptr is referenced.
4155       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4156                      addr.getAlignment());
4157 
4158     if (IsInPreservedAIRegion ||
4159         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4160       // Remember the original union field index
4161       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4162           rec->getLocation());
4163       addr = Address(
4164           Builder.CreatePreserveUnionAccessIndex(
4165               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4166           addr.getAlignment());
4167     }
4168 
4169     if (FieldType->isReferenceType())
4170       addr = Builder.CreateElementBitCast(
4171           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4172   } else {
4173     if (!IsInPreservedAIRegion &&
4174         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4175       // For structs, we GEP to the field that the record layout suggests.
4176       addr = emitAddrOfFieldStorage(*this, addr, field);
4177     else
4178       // Remember the original struct field index
4179       addr = emitPreserveStructAccess(*this, base, addr, field);
4180   }
4181 
4182   // If this is a reference field, load the reference right now.
4183   if (FieldType->isReferenceType()) {
4184     LValue RefLVal =
4185         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4186     if (RecordCVR & Qualifiers::Volatile)
4187       RefLVal.getQuals().addVolatile();
4188     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4189 
4190     // Qualifiers on the struct don't apply to the referencee.
4191     RecordCVR = 0;
4192     FieldType = FieldType->getPointeeType();
4193   }
4194 
4195   // Make sure that the address is pointing to the right type.  This is critical
4196   // for both unions and structs.  A union needs a bitcast, a struct element
4197   // will need a bitcast if the LLVM type laid out doesn't match the desired
4198   // type.
4199   addr = Builder.CreateElementBitCast(
4200       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4201 
4202   if (field->hasAttr<AnnotateAttr>())
4203     addr = EmitFieldAnnotations(field, addr);
4204 
4205   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4206   LV.getQuals().addCVRQualifiers(RecordCVR);
4207 
4208   // __weak attribute on a field is ignored.
4209   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4210     LV.getQuals().removeObjCGCAttr();
4211 
4212   return LV;
4213 }
4214 
4215 LValue
4216 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4217                                                   const FieldDecl *Field) {
4218   QualType FieldType = Field->getType();
4219 
4220   if (!FieldType->isReferenceType())
4221     return EmitLValueForField(Base, Field);
4222 
4223   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4224 
4225   // Make sure that the address is pointing to the right type.
4226   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4227   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4228 
4229   // TODO: Generate TBAA information that describes this access as a structure
4230   // member access and not just an access to an object of the field's type. This
4231   // should be similar to what we do in EmitLValueForField().
4232   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4233   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4234   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4235   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4236                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4237 }
4238 
4239 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4240   if (E->isFileScope()) {
4241     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4242     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4243   }
4244   if (E->getType()->isVariablyModifiedType())
4245     // make sure to emit the VLA size.
4246     EmitVariablyModifiedType(E->getType());
4247 
4248   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4249   const Expr *InitExpr = E->getInitializer();
4250   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4251 
4252   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4253                    /*Init*/ true);
4254 
4255   return Result;
4256 }
4257 
4258 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4259   if (!E->isGLValue())
4260     // Initializing an aggregate temporary in C++11: T{...}.
4261     return EmitAggExprToLValue(E);
4262 
4263   // An lvalue initializer list must be initializing a reference.
4264   assert(E->isTransparent() && "non-transparent glvalue init list");
4265   return EmitLValue(E->getInit(0));
4266 }
4267 
4268 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4269 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4270 /// LValue is returned and the current block has been terminated.
4271 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4272                                                     const Expr *Operand) {
4273   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4274     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4275     return None;
4276   }
4277 
4278   return CGF.EmitLValue(Operand);
4279 }
4280 
4281 LValue CodeGenFunction::
4282 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4283   if (!expr->isGLValue()) {
4284     // ?: here should be an aggregate.
4285     assert(hasAggregateEvaluationKind(expr->getType()) &&
4286            "Unexpected conditional operator!");
4287     return EmitAggExprToLValue(expr);
4288   }
4289 
4290   OpaqueValueMapping binding(*this, expr);
4291 
4292   const Expr *condExpr = expr->getCond();
4293   bool CondExprBool;
4294   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4295     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4296     if (!CondExprBool) std::swap(live, dead);
4297 
4298     if (!ContainsLabel(dead)) {
4299       // If the true case is live, we need to track its region.
4300       if (CondExprBool)
4301         incrementProfileCounter(expr);
4302       return EmitLValue(live);
4303     }
4304   }
4305 
4306   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4307   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4308   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4309 
4310   ConditionalEvaluation eval(*this);
4311   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4312 
4313   // Any temporaries created here are conditional.
4314   EmitBlock(lhsBlock);
4315   incrementProfileCounter(expr);
4316   eval.begin(*this);
4317   Optional<LValue> lhs =
4318       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4319   eval.end(*this);
4320 
4321   if (lhs && !lhs->isSimple())
4322     return EmitUnsupportedLValue(expr, "conditional operator");
4323 
4324   lhsBlock = Builder.GetInsertBlock();
4325   if (lhs)
4326     Builder.CreateBr(contBlock);
4327 
4328   // Any temporaries created here are conditional.
4329   EmitBlock(rhsBlock);
4330   eval.begin(*this);
4331   Optional<LValue> rhs =
4332       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4333   eval.end(*this);
4334   if (rhs && !rhs->isSimple())
4335     return EmitUnsupportedLValue(expr, "conditional operator");
4336   rhsBlock = Builder.GetInsertBlock();
4337 
4338   EmitBlock(contBlock);
4339 
4340   if (lhs && rhs) {
4341     llvm::PHINode *phi =
4342         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4343     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4344     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4345     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4346     AlignmentSource alignSource =
4347       std::max(lhs->getBaseInfo().getAlignmentSource(),
4348                rhs->getBaseInfo().getAlignmentSource());
4349     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4350         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4351     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4352                           TBAAInfo);
4353   } else {
4354     assert((lhs || rhs) &&
4355            "both operands of glvalue conditional are throw-expressions?");
4356     return lhs ? *lhs : *rhs;
4357   }
4358 }
4359 
4360 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4361 /// type. If the cast is to a reference, we can have the usual lvalue result,
4362 /// otherwise if a cast is needed by the code generator in an lvalue context,
4363 /// then it must mean that we need the address of an aggregate in order to
4364 /// access one of its members.  This can happen for all the reasons that casts
4365 /// are permitted with aggregate result, including noop aggregate casts, and
4366 /// cast from scalar to union.
4367 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4368   switch (E->getCastKind()) {
4369   case CK_ToVoid:
4370   case CK_BitCast:
4371   case CK_LValueToRValueBitCast:
4372   case CK_ArrayToPointerDecay:
4373   case CK_FunctionToPointerDecay:
4374   case CK_NullToMemberPointer:
4375   case CK_NullToPointer:
4376   case CK_IntegralToPointer:
4377   case CK_PointerToIntegral:
4378   case CK_PointerToBoolean:
4379   case CK_VectorSplat:
4380   case CK_IntegralCast:
4381   case CK_BooleanToSignedIntegral:
4382   case CK_IntegralToBoolean:
4383   case CK_IntegralToFloating:
4384   case CK_FloatingToIntegral:
4385   case CK_FloatingToBoolean:
4386   case CK_FloatingCast:
4387   case CK_FloatingRealToComplex:
4388   case CK_FloatingComplexToReal:
4389   case CK_FloatingComplexToBoolean:
4390   case CK_FloatingComplexCast:
4391   case CK_FloatingComplexToIntegralComplex:
4392   case CK_IntegralRealToComplex:
4393   case CK_IntegralComplexToReal:
4394   case CK_IntegralComplexToBoolean:
4395   case CK_IntegralComplexCast:
4396   case CK_IntegralComplexToFloatingComplex:
4397   case CK_DerivedToBaseMemberPointer:
4398   case CK_BaseToDerivedMemberPointer:
4399   case CK_MemberPointerToBoolean:
4400   case CK_ReinterpretMemberPointer:
4401   case CK_AnyPointerToBlockPointerCast:
4402   case CK_ARCProduceObject:
4403   case CK_ARCConsumeObject:
4404   case CK_ARCReclaimReturnedObject:
4405   case CK_ARCExtendBlockObject:
4406   case CK_CopyAndAutoreleaseBlockObject:
4407   case CK_IntToOCLSampler:
4408   case CK_FixedPointCast:
4409   case CK_FixedPointToBoolean:
4410   case CK_FixedPointToIntegral:
4411   case CK_IntegralToFixedPoint:
4412     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4413 
4414   case CK_Dependent:
4415     llvm_unreachable("dependent cast kind in IR gen!");
4416 
4417   case CK_BuiltinFnToFnPtr:
4418     llvm_unreachable("builtin functions are handled elsewhere");
4419 
4420   // These are never l-values; just use the aggregate emission code.
4421   case CK_NonAtomicToAtomic:
4422   case CK_AtomicToNonAtomic:
4423     return EmitAggExprToLValue(E);
4424 
4425   case CK_Dynamic: {
4426     LValue LV = EmitLValue(E->getSubExpr());
4427     Address V = LV.getAddress(*this);
4428     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4429     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4430   }
4431 
4432   case CK_ConstructorConversion:
4433   case CK_UserDefinedConversion:
4434   case CK_CPointerToObjCPointerCast:
4435   case CK_BlockPointerToObjCPointerCast:
4436   case CK_NoOp:
4437   case CK_LValueToRValue:
4438     return EmitLValue(E->getSubExpr());
4439 
4440   case CK_UncheckedDerivedToBase:
4441   case CK_DerivedToBase: {
4442     const auto *DerivedClassTy =
4443         E->getSubExpr()->getType()->castAs<RecordType>();
4444     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4445 
4446     LValue LV = EmitLValue(E->getSubExpr());
4447     Address This = LV.getAddress(*this);
4448 
4449     // Perform the derived-to-base conversion
4450     Address Base = GetAddressOfBaseClass(
4451         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4452         /*NullCheckValue=*/false, E->getExprLoc());
4453 
4454     // TODO: Support accesses to members of base classes in TBAA. For now, we
4455     // conservatively pretend that the complete object is of the base class
4456     // type.
4457     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4458                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4459   }
4460   case CK_ToUnion:
4461     return EmitAggExprToLValue(E);
4462   case CK_BaseToDerived: {
4463     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4464     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4465 
4466     LValue LV = EmitLValue(E->getSubExpr());
4467 
4468     // Perform the base-to-derived conversion
4469     Address Derived = GetAddressOfDerivedClass(
4470         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4471         /*NullCheckValue=*/false);
4472 
4473     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4474     // performed and the object is not of the derived type.
4475     if (sanitizePerformTypeCheck())
4476       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4477                     Derived.getPointer(), E->getType());
4478 
4479     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4480       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4481                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4482                                 E->getBeginLoc());
4483 
4484     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4485                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4486   }
4487   case CK_LValueBitCast: {
4488     // This must be a reinterpret_cast (or c-style equivalent).
4489     const auto *CE = cast<ExplicitCastExpr>(E);
4490 
4491     CGM.EmitExplicitCastExprType(CE, this);
4492     LValue LV = EmitLValue(E->getSubExpr());
4493     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4494                                       ConvertType(CE->getTypeAsWritten()));
4495 
4496     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4497       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4498                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4499                                 E->getBeginLoc());
4500 
4501     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4502                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4503   }
4504   case CK_AddressSpaceConversion: {
4505     LValue LV = EmitLValue(E->getSubExpr());
4506     QualType DestTy = getContext().getPointerType(E->getType());
4507     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4508         *this, LV.getPointer(*this),
4509         E->getSubExpr()->getType().getAddressSpace(),
4510         E->getType().getAddressSpace(), ConvertType(DestTy));
4511     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4512                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4513   }
4514   case CK_ObjCObjectLValueCast: {
4515     LValue LV = EmitLValue(E->getSubExpr());
4516     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4517                                              ConvertType(E->getType()));
4518     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4519                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4520   }
4521   case CK_ZeroToOCLOpaqueType:
4522     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4523   }
4524 
4525   llvm_unreachable("Unhandled lvalue cast kind?");
4526 }
4527 
4528 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4529   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4530   return getOrCreateOpaqueLValueMapping(e);
4531 }
4532 
4533 LValue
4534 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4535   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4536 
4537   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4538       it = OpaqueLValues.find(e);
4539 
4540   if (it != OpaqueLValues.end())
4541     return it->second;
4542 
4543   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4544   return EmitLValue(e->getSourceExpr());
4545 }
4546 
4547 RValue
4548 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4549   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4550 
4551   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4552       it = OpaqueRValues.find(e);
4553 
4554   if (it != OpaqueRValues.end())
4555     return it->second;
4556 
4557   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4558   return EmitAnyExpr(e->getSourceExpr());
4559 }
4560 
4561 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4562                                            const FieldDecl *FD,
4563                                            SourceLocation Loc) {
4564   QualType FT = FD->getType();
4565   LValue FieldLV = EmitLValueForField(LV, FD);
4566   switch (getEvaluationKind(FT)) {
4567   case TEK_Complex:
4568     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4569   case TEK_Aggregate:
4570     return FieldLV.asAggregateRValue(*this);
4571   case TEK_Scalar:
4572     // This routine is used to load fields one-by-one to perform a copy, so
4573     // don't load reference fields.
4574     if (FD->getType()->isReferenceType())
4575       return RValue::get(FieldLV.getPointer(*this));
4576     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4577     // primitive load.
4578     if (FieldLV.isBitField())
4579       return EmitLoadOfLValue(FieldLV, Loc);
4580     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4581   }
4582   llvm_unreachable("bad evaluation kind");
4583 }
4584 
4585 //===--------------------------------------------------------------------===//
4586 //                             Expression Emission
4587 //===--------------------------------------------------------------------===//
4588 
4589 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4590                                      ReturnValueSlot ReturnValue) {
4591   // Builtins never have block type.
4592   if (E->getCallee()->getType()->isBlockPointerType())
4593     return EmitBlockCallExpr(E, ReturnValue);
4594 
4595   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4596     return EmitCXXMemberCallExpr(CE, ReturnValue);
4597 
4598   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4599     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4600 
4601   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4602     if (const CXXMethodDecl *MD =
4603           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4604       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4605 
4606   CGCallee callee = EmitCallee(E->getCallee());
4607 
4608   if (callee.isBuiltin()) {
4609     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4610                            E, ReturnValue);
4611   }
4612 
4613   if (callee.isPseudoDestructor()) {
4614     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4615   }
4616 
4617   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4618 }
4619 
4620 /// Emit a CallExpr without considering whether it might be a subclass.
4621 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4622                                            ReturnValueSlot ReturnValue) {
4623   CGCallee Callee = EmitCallee(E->getCallee());
4624   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4625 }
4626 
4627 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4628 
4629   if (auto builtinID = FD->getBuiltinID()) {
4630     // Replaceable builtin provide their own implementation of a builtin. Unless
4631     // we are in the builtin implementation itself, don't call the actual
4632     // builtin. If we are in the builtin implementation, avoid trivial infinite
4633     // recursion.
4634     if (!FD->isInlineBuiltinDeclaration() ||
4635         CGF.CurFn->getName() == FD->getName())
4636       return CGCallee::forBuiltin(builtinID, FD);
4637   }
4638 
4639   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4640   return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4641 }
4642 
4643 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4644   E = E->IgnoreParens();
4645 
4646   // Look through function-to-pointer decay.
4647   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4648     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4649         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4650       return EmitCallee(ICE->getSubExpr());
4651     }
4652 
4653   // Resolve direct calls.
4654   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4655     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4656       return EmitDirectCallee(*this, FD);
4657     }
4658   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4659     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4660       EmitIgnoredExpr(ME->getBase());
4661       return EmitDirectCallee(*this, FD);
4662     }
4663 
4664   // Look through template substitutions.
4665   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4666     return EmitCallee(NTTP->getReplacement());
4667 
4668   // Treat pseudo-destructor calls differently.
4669   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4670     return CGCallee::forPseudoDestructor(PDE);
4671   }
4672 
4673   // Otherwise, we have an indirect reference.
4674   llvm::Value *calleePtr;
4675   QualType functionType;
4676   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4677     calleePtr = EmitScalarExpr(E);
4678     functionType = ptrType->getPointeeType();
4679   } else {
4680     functionType = E->getType();
4681     calleePtr = EmitLValue(E).getPointer(*this);
4682   }
4683   assert(functionType->isFunctionType());
4684 
4685   GlobalDecl GD;
4686   if (const auto *VD =
4687           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4688     GD = GlobalDecl(VD);
4689 
4690   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4691   CGCallee callee(calleeInfo, calleePtr);
4692   return callee;
4693 }
4694 
4695 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4696   // Comma expressions just emit their LHS then their RHS as an l-value.
4697   if (E->getOpcode() == BO_Comma) {
4698     EmitIgnoredExpr(E->getLHS());
4699     EnsureInsertPoint();
4700     return EmitLValue(E->getRHS());
4701   }
4702 
4703   if (E->getOpcode() == BO_PtrMemD ||
4704       E->getOpcode() == BO_PtrMemI)
4705     return EmitPointerToDataMemberBinaryExpr(E);
4706 
4707   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4708 
4709   // Note that in all of these cases, __block variables need the RHS
4710   // evaluated first just in case the variable gets moved by the RHS.
4711 
4712   switch (getEvaluationKind(E->getType())) {
4713   case TEK_Scalar: {
4714     switch (E->getLHS()->getType().getObjCLifetime()) {
4715     case Qualifiers::OCL_Strong:
4716       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4717 
4718     case Qualifiers::OCL_Autoreleasing:
4719       return EmitARCStoreAutoreleasing(E).first;
4720 
4721     // No reason to do any of these differently.
4722     case Qualifiers::OCL_None:
4723     case Qualifiers::OCL_ExplicitNone:
4724     case Qualifiers::OCL_Weak:
4725       break;
4726     }
4727 
4728     RValue RV = EmitAnyExpr(E->getRHS());
4729     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4730     if (RV.isScalar())
4731       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4732     EmitStoreThroughLValue(RV, LV);
4733     if (getLangOpts().OpenMP)
4734       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4735                                                                 E->getLHS());
4736     return LV;
4737   }
4738 
4739   case TEK_Complex:
4740     return EmitComplexAssignmentLValue(E);
4741 
4742   case TEK_Aggregate:
4743     return EmitAggExprToLValue(E);
4744   }
4745   llvm_unreachable("bad evaluation kind");
4746 }
4747 
4748 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4749   RValue RV = EmitCallExpr(E);
4750 
4751   if (!RV.isScalar())
4752     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4753                           AlignmentSource::Decl);
4754 
4755   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4756          "Can't have a scalar return unless the return type is a "
4757          "reference type!");
4758 
4759   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4760 }
4761 
4762 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4763   // FIXME: This shouldn't require another copy.
4764   return EmitAggExprToLValue(E);
4765 }
4766 
4767 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4768   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4769          && "binding l-value to type which needs a temporary");
4770   AggValueSlot Slot = CreateAggTemp(E->getType());
4771   EmitCXXConstructExpr(E, Slot);
4772   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4773 }
4774 
4775 LValue
4776 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4777   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4778 }
4779 
4780 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4781   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4782                                       ConvertType(E->getType()));
4783 }
4784 
4785 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4786   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4787                         AlignmentSource::Decl);
4788 }
4789 
4790 LValue
4791 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4792   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4793   Slot.setExternallyDestructed();
4794   EmitAggExpr(E->getSubExpr(), Slot);
4795   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4796   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4797 }
4798 
4799 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4800   RValue RV = EmitObjCMessageExpr(E);
4801 
4802   if (!RV.isScalar())
4803     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4804                           AlignmentSource::Decl);
4805 
4806   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4807          "Can't have a scalar return unless the return type is a "
4808          "reference type!");
4809 
4810   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4811 }
4812 
4813 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4814   Address V =
4815     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4816   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4817 }
4818 
4819 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4820                                              const ObjCIvarDecl *Ivar) {
4821   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4822 }
4823 
4824 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4825                                           llvm::Value *BaseValue,
4826                                           const ObjCIvarDecl *Ivar,
4827                                           unsigned CVRQualifiers) {
4828   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4829                                                    Ivar, CVRQualifiers);
4830 }
4831 
4832 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4833   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4834   llvm::Value *BaseValue = nullptr;
4835   const Expr *BaseExpr = E->getBase();
4836   Qualifiers BaseQuals;
4837   QualType ObjectTy;
4838   if (E->isArrow()) {
4839     BaseValue = EmitScalarExpr(BaseExpr);
4840     ObjectTy = BaseExpr->getType()->getPointeeType();
4841     BaseQuals = ObjectTy.getQualifiers();
4842   } else {
4843     LValue BaseLV = EmitLValue(BaseExpr);
4844     BaseValue = BaseLV.getPointer(*this);
4845     ObjectTy = BaseExpr->getType();
4846     BaseQuals = ObjectTy.getQualifiers();
4847   }
4848 
4849   LValue LV =
4850     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4851                       BaseQuals.getCVRQualifiers());
4852   setObjCGCLValueClass(getContext(), E, LV);
4853   return LV;
4854 }
4855 
4856 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4857   // Can only get l-value for message expression returning aggregate type
4858   RValue RV = EmitAnyExprToTemp(E);
4859   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4860                         AlignmentSource::Decl);
4861 }
4862 
4863 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4864                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4865                                  llvm::Value *Chain) {
4866   // Get the actual function type. The callee type will always be a pointer to
4867   // function type or a block pointer type.
4868   assert(CalleeType->isFunctionPointerType() &&
4869          "Call must have function pointer type!");
4870 
4871   const Decl *TargetDecl =
4872       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4873 
4874   CalleeType = getContext().getCanonicalType(CalleeType);
4875 
4876   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4877 
4878   CGCallee Callee = OrigCallee;
4879 
4880   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4881       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4882     if (llvm::Constant *PrefixSig =
4883             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4884       SanitizerScope SanScope(this);
4885       // Remove any (C++17) exception specifications, to allow calling e.g. a
4886       // noexcept function through a non-noexcept pointer.
4887       auto ProtoTy =
4888         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4889       llvm::Constant *FTRTTIConst =
4890           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4891       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4892       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4893           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4894 
4895       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4896 
4897       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4898           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4899       llvm::Value *CalleeSigPtr =
4900           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4901       llvm::Value *CalleeSig =
4902           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4903       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4904 
4905       llvm::BasicBlock *Cont = createBasicBlock("cont");
4906       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4907       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4908 
4909       EmitBlock(TypeCheck);
4910       llvm::Value *CalleeRTTIPtr =
4911           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4912       llvm::Value *CalleeRTTIEncoded =
4913           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4914       llvm::Value *CalleeRTTI =
4915           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4916       llvm::Value *CalleeRTTIMatch =
4917           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4918       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4919                                       EmitCheckTypeDescriptor(CalleeType)};
4920       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4921                 SanitizerHandler::FunctionTypeMismatch, StaticData,
4922                 {CalleePtr, CalleeRTTI, FTRTTIConst});
4923 
4924       Builder.CreateBr(Cont);
4925       EmitBlock(Cont);
4926     }
4927   }
4928 
4929   const auto *FnType = cast<FunctionType>(PointeeType);
4930 
4931   // If we are checking indirect calls and this call is indirect, check that the
4932   // function pointer is a member of the bit set for the function type.
4933   if (SanOpts.has(SanitizerKind::CFIICall) &&
4934       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4935     SanitizerScope SanScope(this);
4936     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4937 
4938     llvm::Metadata *MD;
4939     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4940       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4941     else
4942       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4943 
4944     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4945 
4946     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4947     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4948     llvm::Value *TypeTest = Builder.CreateCall(
4949         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4950 
4951     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4952     llvm::Constant *StaticData[] = {
4953         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4954         EmitCheckSourceLocation(E->getBeginLoc()),
4955         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4956     };
4957     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4958       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4959                            CastedCallee, StaticData);
4960     } else {
4961       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4962                 SanitizerHandler::CFICheckFail, StaticData,
4963                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4964     }
4965   }
4966 
4967   CallArgList Args;
4968   if (Chain)
4969     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4970              CGM.getContext().VoidPtrTy);
4971 
4972   // C++17 requires that we evaluate arguments to a call using assignment syntax
4973   // right-to-left, and that we evaluate arguments to certain other operators
4974   // left-to-right. Note that we allow this to override the order dictated by
4975   // the calling convention on the MS ABI, which means that parameter
4976   // destruction order is not necessarily reverse construction order.
4977   // FIXME: Revisit this based on C++ committee response to unimplementability.
4978   EvaluationOrder Order = EvaluationOrder::Default;
4979   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4980     if (OCE->isAssignmentOp())
4981       Order = EvaluationOrder::ForceRightToLeft;
4982     else {
4983       switch (OCE->getOperator()) {
4984       case OO_LessLess:
4985       case OO_GreaterGreater:
4986       case OO_AmpAmp:
4987       case OO_PipePipe:
4988       case OO_Comma:
4989       case OO_ArrowStar:
4990         Order = EvaluationOrder::ForceLeftToRight;
4991         break;
4992       default:
4993         break;
4994       }
4995     }
4996   }
4997 
4998   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4999                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5000 
5001   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5002       Args, FnType, /*ChainCall=*/Chain);
5003 
5004   // C99 6.5.2.2p6:
5005   //   If the expression that denotes the called function has a type
5006   //   that does not include a prototype, [the default argument
5007   //   promotions are performed]. If the number of arguments does not
5008   //   equal the number of parameters, the behavior is undefined. If
5009   //   the function is defined with a type that includes a prototype,
5010   //   and either the prototype ends with an ellipsis (, ...) or the
5011   //   types of the arguments after promotion are not compatible with
5012   //   the types of the parameters, the behavior is undefined. If the
5013   //   function is defined with a type that does not include a
5014   //   prototype, and the types of the arguments after promotion are
5015   //   not compatible with those of the parameters after promotion,
5016   //   the behavior is undefined [except in some trivial cases].
5017   // That is, in the general case, we should assume that a call
5018   // through an unprototyped function type works like a *non-variadic*
5019   // call.  The way we make this work is to cast to the exact type
5020   // of the promoted arguments.
5021   //
5022   // Chain calls use this same code path to add the invisible chain parameter
5023   // to the function type.
5024   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5025     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5026     CalleeTy = CalleeTy->getPointerTo();
5027 
5028     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5029     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5030     Callee.setFunctionPointer(CalleePtr);
5031   }
5032 
5033   llvm::CallBase *CallOrInvoke = nullptr;
5034   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5035                          E->getExprLoc());
5036 
5037   // Generate function declaration DISuprogram in order to be used
5038   // in debug info about call sites.
5039   if (CGDebugInfo *DI = getDebugInfo()) {
5040     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5041       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5042                                   CalleeDecl);
5043   }
5044 
5045   return Call;
5046 }
5047 
5048 LValue CodeGenFunction::
5049 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5050   Address BaseAddr = Address::invalid();
5051   if (E->getOpcode() == BO_PtrMemI) {
5052     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5053   } else {
5054     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5055   }
5056 
5057   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5058   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5059 
5060   LValueBaseInfo BaseInfo;
5061   TBAAAccessInfo TBAAInfo;
5062   Address MemberAddr =
5063     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5064                                     &TBAAInfo);
5065 
5066   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5067 }
5068 
5069 /// Given the address of a temporary variable, produce an r-value of
5070 /// its type.
5071 RValue CodeGenFunction::convertTempToRValue(Address addr,
5072                                             QualType type,
5073                                             SourceLocation loc) {
5074   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5075   switch (getEvaluationKind(type)) {
5076   case TEK_Complex:
5077     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5078   case TEK_Aggregate:
5079     return lvalue.asAggregateRValue(*this);
5080   case TEK_Scalar:
5081     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5082   }
5083   llvm_unreachable("bad evaluation kind");
5084 }
5085 
5086 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5087   assert(Val->getType()->isFPOrFPVectorTy());
5088   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5089     return;
5090 
5091   llvm::MDBuilder MDHelper(getLLVMContext());
5092   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5093 
5094   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5095 }
5096 
5097 namespace {
5098   struct LValueOrRValue {
5099     LValue LV;
5100     RValue RV;
5101   };
5102 }
5103 
5104 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5105                                            const PseudoObjectExpr *E,
5106                                            bool forLValue,
5107                                            AggValueSlot slot) {
5108   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5109 
5110   // Find the result expression, if any.
5111   const Expr *resultExpr = E->getResultExpr();
5112   LValueOrRValue result;
5113 
5114   for (PseudoObjectExpr::const_semantics_iterator
5115          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5116     const Expr *semantic = *i;
5117 
5118     // If this semantic expression is an opaque value, bind it
5119     // to the result of its source expression.
5120     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5121       // Skip unique OVEs.
5122       if (ov->isUnique()) {
5123         assert(ov != resultExpr &&
5124                "A unique OVE cannot be used as the result expression");
5125         continue;
5126       }
5127 
5128       // If this is the result expression, we may need to evaluate
5129       // directly into the slot.
5130       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5131       OVMA opaqueData;
5132       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5133           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5134         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5135         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5136                                        AlignmentSource::Decl);
5137         opaqueData = OVMA::bind(CGF, ov, LV);
5138         result.RV = slot.asRValue();
5139 
5140       // Otherwise, emit as normal.
5141       } else {
5142         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5143 
5144         // If this is the result, also evaluate the result now.
5145         if (ov == resultExpr) {
5146           if (forLValue)
5147             result.LV = CGF.EmitLValue(ov);
5148           else
5149             result.RV = CGF.EmitAnyExpr(ov, slot);
5150         }
5151       }
5152 
5153       opaques.push_back(opaqueData);
5154 
5155     // Otherwise, if the expression is the result, evaluate it
5156     // and remember the result.
5157     } else if (semantic == resultExpr) {
5158       if (forLValue)
5159         result.LV = CGF.EmitLValue(semantic);
5160       else
5161         result.RV = CGF.EmitAnyExpr(semantic, slot);
5162 
5163     // Otherwise, evaluate the expression in an ignored context.
5164     } else {
5165       CGF.EmitIgnoredExpr(semantic);
5166     }
5167   }
5168 
5169   // Unbind all the opaques now.
5170   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5171     opaques[i].unbind(CGF);
5172 
5173   return result;
5174 }
5175 
5176 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5177                                                AggValueSlot slot) {
5178   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5179 }
5180 
5181 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5182   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5183 }
5184