1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/ADT/Hashing.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/Support/ConvertUTF.h"
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 //===--------------------------------------------------------------------===//
37 //                        Miscellaneous Helper Methods
38 //===--------------------------------------------------------------------===//
39 
40 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
41   unsigned addressSpace =
42     cast<llvm::PointerType>(value->getType())->getAddressSpace();
43 
44   llvm::PointerType *destType = Int8PtrTy;
45   if (addressSpace)
46     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
47 
48   if (value->getType() == destType) return value;
49   return Builder.CreateBitCast(value, destType);
50 }
51 
52 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
53 /// block.
54 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
55                                                     const Twine &Name) {
56   if (!Builder.isNamePreserving())
57     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
58   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
59 }
60 
61 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
62                                      llvm::Value *Init) {
63   auto *Store = new llvm::StoreInst(Init, Var);
64   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
65   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
66 }
67 
68 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
69                                                 const Twine &Name) {
70   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
71   // FIXME: Should we prefer the preferred type alignment here?
72   CharUnits Align = getContext().getTypeAlignInChars(Ty);
73   Alloc->setAlignment(Align.getQuantity());
74   return Alloc;
75 }
76 
77 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
78                                                  const Twine &Name) {
79   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
80   // FIXME: Should we prefer the preferred type alignment here?
81   CharUnits Align = getContext().getTypeAlignInChars(Ty);
82   Alloc->setAlignment(Align.getQuantity());
83   return Alloc;
84 }
85 
86 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
87 /// expression and compare the result against zero, returning an Int1Ty value.
88 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
89   PGO.setCurrentStmt(E);
90   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
91     llvm::Value *MemPtr = EmitScalarExpr(E);
92     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
93   }
94 
95   QualType BoolTy = getContext().BoolTy;
96   if (!E->getType()->isAnyComplexType())
97     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
98 
99   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
100 }
101 
102 /// EmitIgnoredExpr - Emit code to compute the specified expression,
103 /// ignoring the result.
104 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
105   if (E->isRValue())
106     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
107 
108   // Just emit it as an l-value and drop the result.
109   EmitLValue(E);
110 }
111 
112 /// EmitAnyExpr - Emit code to compute the specified expression which
113 /// can have any type.  The result is returned as an RValue struct.
114 /// If this is an aggregate expression, AggSlot indicates where the
115 /// result should be returned.
116 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
117                                     AggValueSlot aggSlot,
118                                     bool ignoreResult) {
119   switch (getEvaluationKind(E->getType())) {
120   case TEK_Scalar:
121     return RValue::get(EmitScalarExpr(E, ignoreResult));
122   case TEK_Complex:
123     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
124   case TEK_Aggregate:
125     if (!ignoreResult && aggSlot.isIgnored())
126       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
127     EmitAggExpr(E, aggSlot);
128     return aggSlot.asRValue();
129   }
130   llvm_unreachable("bad evaluation kind");
131 }
132 
133 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
134 /// always be accessible even if no aggregate location is provided.
135 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
136   AggValueSlot AggSlot = AggValueSlot::ignored();
137 
138   if (hasAggregateEvaluationKind(E->getType()))
139     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
140   return EmitAnyExpr(E, AggSlot);
141 }
142 
143 /// EmitAnyExprToMem - Evaluate an expression into a given memory
144 /// location.
145 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
146                                        llvm::Value *Location,
147                                        Qualifiers Quals,
148                                        bool IsInit) {
149   // FIXME: This function should take an LValue as an argument.
150   switch (getEvaluationKind(E->getType())) {
151   case TEK_Complex:
152     EmitComplexExprIntoLValue(E,
153                          MakeNaturalAlignAddrLValue(Location, E->getType()),
154                               /*isInit*/ false);
155     return;
156 
157   case TEK_Aggregate: {
158     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
159     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
160                                          AggValueSlot::IsDestructed_t(IsInit),
161                                          AggValueSlot::DoesNotNeedGCBarriers,
162                                          AggValueSlot::IsAliased_t(!IsInit)));
163     return;
164   }
165 
166   case TEK_Scalar: {
167     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
168     LValue LV = MakeAddrLValue(Location, E->getType());
169     EmitStoreThroughLValue(RV, LV);
170     return;
171   }
172   }
173   llvm_unreachable("bad evaluation kind");
174 }
175 
176 static void
177 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
178                      const Expr *E, llvm::Value *ReferenceTemporary) {
179   // Objective-C++ ARC:
180   //   If we are binding a reference to a temporary that has ownership, we
181   //   need to perform retain/release operations on the temporary.
182   //
183   // FIXME: This should be looking at E, not M.
184   if (CGF.getLangOpts().ObjCAutoRefCount &&
185       M->getType()->isObjCLifetimeType()) {
186     QualType ObjCARCReferenceLifetimeType = M->getType();
187     switch (Qualifiers::ObjCLifetime Lifetime =
188                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
189     case Qualifiers::OCL_None:
190     case Qualifiers::OCL_ExplicitNone:
191       // Carry on to normal cleanup handling.
192       break;
193 
194     case Qualifiers::OCL_Autoreleasing:
195       // Nothing to do; cleaned up by an autorelease pool.
196       return;
197 
198     case Qualifiers::OCL_Strong:
199     case Qualifiers::OCL_Weak:
200       switch (StorageDuration Duration = M->getStorageDuration()) {
201       case SD_Static:
202         // Note: we intentionally do not register a cleanup to release
203         // the object on program termination.
204         return;
205 
206       case SD_Thread:
207         // FIXME: We should probably register a cleanup in this case.
208         return;
209 
210       case SD_Automatic:
211       case SD_FullExpression:
212         assert(!ObjCARCReferenceLifetimeType->isArrayType());
213         CodeGenFunction::Destroyer *Destroy;
214         CleanupKind CleanupKind;
215         if (Lifetime == Qualifiers::OCL_Strong) {
216           const ValueDecl *VD = M->getExtendingDecl();
217           bool Precise =
218               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
219           CleanupKind = CGF.getARCCleanupKind();
220           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
221                             : &CodeGenFunction::destroyARCStrongImprecise;
222         } else {
223           // __weak objects always get EH cleanups; otherwise, exceptions
224           // could cause really nasty crashes instead of mere leaks.
225           CleanupKind = NormalAndEHCleanup;
226           Destroy = &CodeGenFunction::destroyARCWeak;
227         }
228         if (Duration == SD_FullExpression)
229           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
230                           ObjCARCReferenceLifetimeType, *Destroy,
231                           CleanupKind & EHCleanup);
232         else
233           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
234                                           ObjCARCReferenceLifetimeType,
235                                           *Destroy, CleanupKind & EHCleanup);
236         return;
237 
238       case SD_Dynamic:
239         llvm_unreachable("temporary cannot have dynamic storage duration");
240       }
241       llvm_unreachable("unknown storage duration");
242     }
243   }
244 
245   CXXDestructorDecl *ReferenceTemporaryDtor = 0;
246   if (const RecordType *RT =
247           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
248     // Get the destructor for the reference temporary.
249     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
250     if (!ClassDecl->hasTrivialDestructor())
251       ReferenceTemporaryDtor = ClassDecl->getDestructor();
252   }
253 
254   if (!ReferenceTemporaryDtor)
255     return;
256 
257   // Call the destructor for the temporary.
258   switch (M->getStorageDuration()) {
259   case SD_Static:
260   case SD_Thread: {
261     llvm::Constant *CleanupFn;
262     llvm::Constant *CleanupArg;
263     if (E->getType()->isArrayType()) {
264       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
265           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
266           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
267           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
268       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
269     } else {
270       CleanupFn =
271         CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
272       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
273     }
274     CGF.CGM.getCXXABI().registerGlobalDtor(
275         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
276     break;
277   }
278 
279   case SD_FullExpression:
280     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
281                     CodeGenFunction::destroyCXXObject,
282                     CGF.getLangOpts().Exceptions);
283     break;
284 
285   case SD_Automatic:
286     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
287                                     ReferenceTemporary, E->getType(),
288                                     CodeGenFunction::destroyCXXObject,
289                                     CGF.getLangOpts().Exceptions);
290     break;
291 
292   case SD_Dynamic:
293     llvm_unreachable("temporary cannot have dynamic storage duration");
294   }
295 }
296 
297 static llvm::Value *
298 createReferenceTemporary(CodeGenFunction &CGF,
299                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
300   switch (M->getStorageDuration()) {
301   case SD_FullExpression:
302   case SD_Automatic:
303     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
304 
305   case SD_Thread:
306   case SD_Static:
307     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
308 
309   case SD_Dynamic:
310     llvm_unreachable("temporary can't have dynamic storage duration");
311   }
312   llvm_unreachable("unknown storage duration");
313 }
314 
315 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
316                                            const MaterializeTemporaryExpr *M) {
317   const Expr *E = M->GetTemporaryExpr();
318 
319   if (getLangOpts().ObjCAutoRefCount &&
320       M->getType()->isObjCLifetimeType() &&
321       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
322       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
323     // FIXME: Fold this into the general case below.
324     llvm::Value *Object = createReferenceTemporary(*this, M, E);
325     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
326 
327     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
328       // We should not have emitted the initializer for this temporary as a
329       // constant.
330       assert(!Var->hasInitializer());
331       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
332     }
333 
334     EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
335 
336     pushTemporaryCleanup(*this, M, E, Object);
337     return RefTempDst;
338   }
339 
340   SmallVector<const Expr *, 2> CommaLHSs;
341   SmallVector<SubobjectAdjustment, 2> Adjustments;
342   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
343 
344   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
345     EmitIgnoredExpr(CommaLHSs[I]);
346 
347   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
348     if (opaque->getType()->isRecordType()) {
349       assert(Adjustments.empty());
350       return EmitOpaqueValueLValue(opaque);
351     }
352   }
353 
354   // Create and initialize the reference temporary.
355   llvm::Value *Object = createReferenceTemporary(*this, M, E);
356   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
357     // If the temporary is a global and has a constant initializer, we may
358     // have already initialized it.
359     if (!Var->hasInitializer()) {
360       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
361       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
362     }
363   } else {
364     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
365   }
366   pushTemporaryCleanup(*this, M, E, Object);
367 
368   // Perform derived-to-base casts and/or field accesses, to get from the
369   // temporary object we created (and, potentially, for which we extended
370   // the lifetime) to the subobject we're binding the reference to.
371   for (unsigned I = Adjustments.size(); I != 0; --I) {
372     SubobjectAdjustment &Adjustment = Adjustments[I-1];
373     switch (Adjustment.Kind) {
374     case SubobjectAdjustment::DerivedToBaseAdjustment:
375       Object =
376           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
377                                 Adjustment.DerivedToBase.BasePath->path_begin(),
378                                 Adjustment.DerivedToBase.BasePath->path_end(),
379                                 /*NullCheckValue=*/ false);
380       break;
381 
382     case SubobjectAdjustment::FieldAdjustment: {
383       LValue LV = MakeAddrLValue(Object, E->getType());
384       LV = EmitLValueForField(LV, Adjustment.Field);
385       assert(LV.isSimple() &&
386              "materialized temporary field is not a simple lvalue");
387       Object = LV.getAddress();
388       break;
389     }
390 
391     case SubobjectAdjustment::MemberPointerAdjustment: {
392       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
393       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
394           *this, E, Object, Ptr, Adjustment.Ptr.MPT);
395       break;
396     }
397     }
398   }
399 
400   return MakeAddrLValue(Object, M->getType());
401 }
402 
403 RValue
404 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
405   // Emit the expression as an lvalue.
406   LValue LV = EmitLValue(E);
407   assert(LV.isSimple());
408   llvm::Value *Value = LV.getAddress();
409 
410   if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
411     // C++11 [dcl.ref]p5 (as amended by core issue 453):
412     //   If a glvalue to which a reference is directly bound designates neither
413     //   an existing object or function of an appropriate type nor a region of
414     //   storage of suitable size and alignment to contain an object of the
415     //   reference's type, the behavior is undefined.
416     QualType Ty = E->getType();
417     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
418   }
419 
420   return RValue::get(Value);
421 }
422 
423 
424 /// getAccessedFieldNo - Given an encoded value and a result number, return the
425 /// input field number being accessed.
426 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
427                                              const llvm::Constant *Elts) {
428   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
429       ->getZExtValue();
430 }
431 
432 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
433 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
434                                     llvm::Value *High) {
435   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
436   llvm::Value *K47 = Builder.getInt64(47);
437   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
438   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
439   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
440   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
441   return Builder.CreateMul(B1, KMul);
442 }
443 
444 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
445                                     llvm::Value *Address,
446                                     QualType Ty, CharUnits Alignment) {
447   if (!SanitizePerformTypeCheck)
448     return;
449 
450   // Don't check pointers outside the default address space. The null check
451   // isn't correct, the object-size check isn't supported by LLVM, and we can't
452   // communicate the addresses to the runtime handler for the vptr check.
453   if (Address->getType()->getPointerAddressSpace())
454     return;
455 
456   llvm::Value *Cond = 0;
457   llvm::BasicBlock *Done = 0;
458 
459   if (SanOpts->Null) {
460     // The glvalue must not be an empty glvalue.
461     Cond = Builder.CreateICmpNE(
462         Address, llvm::Constant::getNullValue(Address->getType()));
463 
464     if (TCK == TCK_DowncastPointer) {
465       // When performing a pointer downcast, it's OK if the value is null.
466       // Skip the remaining checks in that case.
467       Done = createBasicBlock("null");
468       llvm::BasicBlock *Rest = createBasicBlock("not.null");
469       Builder.CreateCondBr(Cond, Rest, Done);
470       EmitBlock(Rest);
471       Cond = 0;
472     }
473   }
474 
475   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
476     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
477 
478     // The glvalue must refer to a large enough storage region.
479     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
480     //        to check this.
481     // FIXME: Get object address space
482     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
483     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
484     llvm::Value *Min = Builder.getFalse();
485     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
486     llvm::Value *LargeEnough =
487         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
488                               llvm::ConstantInt::get(IntPtrTy, Size));
489     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
490   }
491 
492   uint64_t AlignVal = 0;
493 
494   if (SanOpts->Alignment) {
495     AlignVal = Alignment.getQuantity();
496     if (!Ty->isIncompleteType() && !AlignVal)
497       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
498 
499     // The glvalue must be suitably aligned.
500     if (AlignVal) {
501       llvm::Value *Align =
502           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
503                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
504       llvm::Value *Aligned =
505         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
506       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
507     }
508   }
509 
510   if (Cond) {
511     llvm::Constant *StaticData[] = {
512       EmitCheckSourceLocation(Loc),
513       EmitCheckTypeDescriptor(Ty),
514       llvm::ConstantInt::get(SizeTy, AlignVal),
515       llvm::ConstantInt::get(Int8Ty, TCK)
516     };
517     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
518   }
519 
520   // If possible, check that the vptr indicates that there is a subobject of
521   // type Ty at offset zero within this object.
522   //
523   // C++11 [basic.life]p5,6:
524   //   [For storage which does not refer to an object within its lifetime]
525   //   The program has undefined behavior if:
526   //    -- the [pointer or glvalue] is used to access a non-static data member
527   //       or call a non-static member function
528   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
529   if (SanOpts->Vptr &&
530       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
531        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
532       RD && RD->hasDefinition() && RD->isDynamicClass()) {
533     // Compute a hash of the mangled name of the type.
534     //
535     // FIXME: This is not guaranteed to be deterministic! Move to a
536     //        fingerprinting mechanism once LLVM provides one. For the time
537     //        being the implementation happens to be deterministic.
538     SmallString<64> MangledName;
539     llvm::raw_svector_ostream Out(MangledName);
540     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
541                                                      Out);
542     llvm::hash_code TypeHash = hash_value(Out.str());
543 
544     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
545     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
546     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
547     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
548     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
549     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
550 
551     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
552     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
553 
554     // Look the hash up in our cache.
555     const int CacheSize = 128;
556     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
557     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
558                                                    "__ubsan_vptr_type_cache");
559     llvm::Value *Slot = Builder.CreateAnd(Hash,
560                                           llvm::ConstantInt::get(IntPtrTy,
561                                                                  CacheSize-1));
562     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
563     llvm::Value *CacheVal =
564       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
565 
566     // If the hash isn't in the cache, call a runtime handler to perform the
567     // hard work of checking whether the vptr is for an object of the right
568     // type. This will either fill in the cache and return, or produce a
569     // diagnostic.
570     llvm::Constant *StaticData[] = {
571       EmitCheckSourceLocation(Loc),
572       EmitCheckTypeDescriptor(Ty),
573       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
574       llvm::ConstantInt::get(Int8Ty, TCK)
575     };
576     llvm::Value *DynamicData[] = { Address, Hash };
577     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
578               "dynamic_type_cache_miss", StaticData, DynamicData,
579               CRK_AlwaysRecoverable);
580   }
581 
582   if (Done) {
583     Builder.CreateBr(Done);
584     EmitBlock(Done);
585   }
586 }
587 
588 /// Determine whether this expression refers to a flexible array member in a
589 /// struct. We disable array bounds checks for such members.
590 static bool isFlexibleArrayMemberExpr(const Expr *E) {
591   // For compatibility with existing code, we treat arrays of length 0 or
592   // 1 as flexible array members.
593   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
594   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
595     if (CAT->getSize().ugt(1))
596       return false;
597   } else if (!isa<IncompleteArrayType>(AT))
598     return false;
599 
600   E = E->IgnoreParens();
601 
602   // A flexible array member must be the last member in the class.
603   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
604     // FIXME: If the base type of the member expr is not FD->getParent(),
605     // this should not be treated as a flexible array member access.
606     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
607       RecordDecl::field_iterator FI(
608           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
609       return ++FI == FD->getParent()->field_end();
610     }
611   }
612 
613   return false;
614 }
615 
616 /// If Base is known to point to the start of an array, return the length of
617 /// that array. Return 0 if the length cannot be determined.
618 static llvm::Value *getArrayIndexingBound(
619     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
620   // For the vector indexing extension, the bound is the number of elements.
621   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
622     IndexedType = Base->getType();
623     return CGF.Builder.getInt32(VT->getNumElements());
624   }
625 
626   Base = Base->IgnoreParens();
627 
628   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
629     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
630         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
631       IndexedType = CE->getSubExpr()->getType();
632       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
633       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
634         return CGF.Builder.getInt(CAT->getSize());
635       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
636         return CGF.getVLASize(VAT).first;
637     }
638   }
639 
640   return 0;
641 }
642 
643 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
644                                       llvm::Value *Index, QualType IndexType,
645                                       bool Accessed) {
646   assert(SanOpts->ArrayBounds &&
647          "should not be called unless adding bounds checks");
648 
649   QualType IndexedType;
650   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
651   if (!Bound)
652     return;
653 
654   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
655   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
656   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
657 
658   llvm::Constant *StaticData[] = {
659     EmitCheckSourceLocation(E->getExprLoc()),
660     EmitCheckTypeDescriptor(IndexedType),
661     EmitCheckTypeDescriptor(IndexType)
662   };
663   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
664                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
665   EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
666 }
667 
668 
669 CodeGenFunction::ComplexPairTy CodeGenFunction::
670 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
671                          bool isInc, bool isPre) {
672   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
673 
674   llvm::Value *NextVal;
675   if (isa<llvm::IntegerType>(InVal.first->getType())) {
676     uint64_t AmountVal = isInc ? 1 : -1;
677     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
678 
679     // Add the inc/dec to the real part.
680     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
681   } else {
682     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
683     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
684     if (!isInc)
685       FVal.changeSign();
686     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
687 
688     // Add the inc/dec to the real part.
689     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
690   }
691 
692   ComplexPairTy IncVal(NextVal, InVal.second);
693 
694   // Store the updated result through the lvalue.
695   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
696 
697   // If this is a postinc, return the value read from memory, otherwise use the
698   // updated value.
699   return isPre ? IncVal : InVal;
700 }
701 
702 
703 //===----------------------------------------------------------------------===//
704 //                         LValue Expression Emission
705 //===----------------------------------------------------------------------===//
706 
707 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
708   if (Ty->isVoidType())
709     return RValue::get(0);
710 
711   switch (getEvaluationKind(Ty)) {
712   case TEK_Complex: {
713     llvm::Type *EltTy =
714       ConvertType(Ty->castAs<ComplexType>()->getElementType());
715     llvm::Value *U = llvm::UndefValue::get(EltTy);
716     return RValue::getComplex(std::make_pair(U, U));
717   }
718 
719   // If this is a use of an undefined aggregate type, the aggregate must have an
720   // identifiable address.  Just because the contents of the value are undefined
721   // doesn't mean that the address can't be taken and compared.
722   case TEK_Aggregate: {
723     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
724     return RValue::getAggregate(DestPtr);
725   }
726 
727   case TEK_Scalar:
728     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
729   }
730   llvm_unreachable("bad evaluation kind");
731 }
732 
733 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
734                                               const char *Name) {
735   ErrorUnsupported(E, Name);
736   return GetUndefRValue(E->getType());
737 }
738 
739 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
740                                               const char *Name) {
741   ErrorUnsupported(E, Name);
742   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
743   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
744 }
745 
746 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
747   LValue LV;
748   if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E))
749     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
750   else
751     LV = EmitLValue(E);
752   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
753     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
754                   E->getType(), LV.getAlignment());
755   return LV;
756 }
757 
758 /// EmitLValue - Emit code to compute a designator that specifies the location
759 /// of the expression.
760 ///
761 /// This can return one of two things: a simple address or a bitfield reference.
762 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
763 /// an LLVM pointer type.
764 ///
765 /// If this returns a bitfield reference, nothing about the pointee type of the
766 /// LLVM value is known: For example, it may not be a pointer to an integer.
767 ///
768 /// If this returns a normal address, and if the lvalue's C type is fixed size,
769 /// this method guarantees that the returned pointer type will point to an LLVM
770 /// type of the same size of the lvalue's type.  If the lvalue has a variable
771 /// length type, this is not possible.
772 ///
773 LValue CodeGenFunction::EmitLValue(const Expr *E) {
774   switch (E->getStmtClass()) {
775   default: return EmitUnsupportedLValue(E, "l-value expression");
776 
777   case Expr::ObjCPropertyRefExprClass:
778     llvm_unreachable("cannot emit a property reference directly");
779 
780   case Expr::ObjCSelectorExprClass:
781     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
782   case Expr::ObjCIsaExprClass:
783     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
784   case Expr::BinaryOperatorClass:
785     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
786   case Expr::CompoundAssignOperatorClass:
787     if (!E->getType()->isAnyComplexType())
788       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
789     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
790   case Expr::CallExprClass:
791   case Expr::CXXMemberCallExprClass:
792   case Expr::CXXOperatorCallExprClass:
793   case Expr::UserDefinedLiteralClass:
794     return EmitCallExprLValue(cast<CallExpr>(E));
795   case Expr::VAArgExprClass:
796     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
797   case Expr::DeclRefExprClass:
798     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
799   case Expr::ParenExprClass:
800     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
801   case Expr::GenericSelectionExprClass:
802     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
803   case Expr::PredefinedExprClass:
804     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
805   case Expr::StringLiteralClass:
806     return EmitStringLiteralLValue(cast<StringLiteral>(E));
807   case Expr::ObjCEncodeExprClass:
808     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
809   case Expr::PseudoObjectExprClass:
810     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
811   case Expr::InitListExprClass:
812     return EmitInitListLValue(cast<InitListExpr>(E));
813   case Expr::CXXTemporaryObjectExprClass:
814   case Expr::CXXConstructExprClass:
815     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
816   case Expr::CXXBindTemporaryExprClass:
817     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
818   case Expr::CXXUuidofExprClass:
819     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
820   case Expr::LambdaExprClass:
821     return EmitLambdaLValue(cast<LambdaExpr>(E));
822 
823   case Expr::ExprWithCleanupsClass: {
824     const auto *cleanups = cast<ExprWithCleanups>(E);
825     enterFullExpression(cleanups);
826     RunCleanupsScope Scope(*this);
827     return EmitLValue(cleanups->getSubExpr());
828   }
829 
830   case Expr::CXXDefaultArgExprClass:
831     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
832   case Expr::CXXDefaultInitExprClass: {
833     CXXDefaultInitExprScope Scope(*this);
834     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
835   }
836   case Expr::CXXTypeidExprClass:
837     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
838 
839   case Expr::ObjCMessageExprClass:
840     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
841   case Expr::ObjCIvarRefExprClass:
842     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
843   case Expr::StmtExprClass:
844     return EmitStmtExprLValue(cast<StmtExpr>(E));
845   case Expr::UnaryOperatorClass:
846     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
847   case Expr::ArraySubscriptExprClass:
848     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
849   case Expr::ExtVectorElementExprClass:
850     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
851   case Expr::MemberExprClass:
852     return EmitMemberExpr(cast<MemberExpr>(E));
853   case Expr::CompoundLiteralExprClass:
854     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
855   case Expr::ConditionalOperatorClass:
856     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
857   case Expr::BinaryConditionalOperatorClass:
858     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
859   case Expr::ChooseExprClass:
860     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
861   case Expr::OpaqueValueExprClass:
862     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
863   case Expr::SubstNonTypeTemplateParmExprClass:
864     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
865   case Expr::ImplicitCastExprClass:
866   case Expr::CStyleCastExprClass:
867   case Expr::CXXFunctionalCastExprClass:
868   case Expr::CXXStaticCastExprClass:
869   case Expr::CXXDynamicCastExprClass:
870   case Expr::CXXReinterpretCastExprClass:
871   case Expr::CXXConstCastExprClass:
872   case Expr::ObjCBridgedCastExprClass:
873     return EmitCastLValue(cast<CastExpr>(E));
874 
875   case Expr::MaterializeTemporaryExprClass:
876     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
877   }
878 }
879 
880 /// Given an object of the given canonical type, can we safely copy a
881 /// value out of it based on its initializer?
882 static bool isConstantEmittableObjectType(QualType type) {
883   assert(type.isCanonical());
884   assert(!type->isReferenceType());
885 
886   // Must be const-qualified but non-volatile.
887   Qualifiers qs = type.getLocalQualifiers();
888   if (!qs.hasConst() || qs.hasVolatile()) return false;
889 
890   // Otherwise, all object types satisfy this except C++ classes with
891   // mutable subobjects or non-trivial copy/destroy behavior.
892   if (const auto *RT = dyn_cast<RecordType>(type))
893     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
894       if (RD->hasMutableFields() || !RD->isTrivial())
895         return false;
896 
897   return true;
898 }
899 
900 /// Can we constant-emit a load of a reference to a variable of the
901 /// given type?  This is different from predicates like
902 /// Decl::isUsableInConstantExpressions because we do want it to apply
903 /// in situations that don't necessarily satisfy the language's rules
904 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
905 /// to do this with const float variables even if those variables
906 /// aren't marked 'constexpr'.
907 enum ConstantEmissionKind {
908   CEK_None,
909   CEK_AsReferenceOnly,
910   CEK_AsValueOrReference,
911   CEK_AsValueOnly
912 };
913 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
914   type = type.getCanonicalType();
915   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
916     if (isConstantEmittableObjectType(ref->getPointeeType()))
917       return CEK_AsValueOrReference;
918     return CEK_AsReferenceOnly;
919   }
920   if (isConstantEmittableObjectType(type))
921     return CEK_AsValueOnly;
922   return CEK_None;
923 }
924 
925 /// Try to emit a reference to the given value without producing it as
926 /// an l-value.  This is actually more than an optimization: we can't
927 /// produce an l-value for variables that we never actually captured
928 /// in a block or lambda, which means const int variables or constexpr
929 /// literals or similar.
930 CodeGenFunction::ConstantEmission
931 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
932   ValueDecl *value = refExpr->getDecl();
933 
934   // The value needs to be an enum constant or a constant variable.
935   ConstantEmissionKind CEK;
936   if (isa<ParmVarDecl>(value)) {
937     CEK = CEK_None;
938   } else if (auto *var = dyn_cast<VarDecl>(value)) {
939     CEK = checkVarTypeForConstantEmission(var->getType());
940   } else if (isa<EnumConstantDecl>(value)) {
941     CEK = CEK_AsValueOnly;
942   } else {
943     CEK = CEK_None;
944   }
945   if (CEK == CEK_None) return ConstantEmission();
946 
947   Expr::EvalResult result;
948   bool resultIsReference;
949   QualType resultType;
950 
951   // It's best to evaluate all the way as an r-value if that's permitted.
952   if (CEK != CEK_AsReferenceOnly &&
953       refExpr->EvaluateAsRValue(result, getContext())) {
954     resultIsReference = false;
955     resultType = refExpr->getType();
956 
957   // Otherwise, try to evaluate as an l-value.
958   } else if (CEK != CEK_AsValueOnly &&
959              refExpr->EvaluateAsLValue(result, getContext())) {
960     resultIsReference = true;
961     resultType = value->getType();
962 
963   // Failure.
964   } else {
965     return ConstantEmission();
966   }
967 
968   // In any case, if the initializer has side-effects, abandon ship.
969   if (result.HasSideEffects)
970     return ConstantEmission();
971 
972   // Emit as a constant.
973   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
974 
975   // Make sure we emit a debug reference to the global variable.
976   // This should probably fire even for
977   if (isa<VarDecl>(value)) {
978     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
979       EmitDeclRefExprDbgValue(refExpr, C);
980   } else {
981     assert(isa<EnumConstantDecl>(value));
982     EmitDeclRefExprDbgValue(refExpr, C);
983   }
984 
985   // If we emitted a reference constant, we need to dereference that.
986   if (resultIsReference)
987     return ConstantEmission::forReference(C);
988 
989   return ConstantEmission::forValue(C);
990 }
991 
992 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
993                                                SourceLocation Loc) {
994   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
995                           lvalue.getAlignment().getQuantity(),
996                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
997                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
998 }
999 
1000 static bool hasBooleanRepresentation(QualType Ty) {
1001   if (Ty->isBooleanType())
1002     return true;
1003 
1004   if (const EnumType *ET = Ty->getAs<EnumType>())
1005     return ET->getDecl()->getIntegerType()->isBooleanType();
1006 
1007   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1008     return hasBooleanRepresentation(AT->getValueType());
1009 
1010   return false;
1011 }
1012 
1013 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1014                             llvm::APInt &Min, llvm::APInt &End,
1015                             bool StrictEnums) {
1016   const EnumType *ET = Ty->getAs<EnumType>();
1017   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1018                                 ET && !ET->getDecl()->isFixed();
1019   bool IsBool = hasBooleanRepresentation(Ty);
1020   if (!IsBool && !IsRegularCPlusPlusEnum)
1021     return false;
1022 
1023   if (IsBool) {
1024     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1025     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1026   } else {
1027     const EnumDecl *ED = ET->getDecl();
1028     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1029     unsigned Bitwidth = LTy->getScalarSizeInBits();
1030     unsigned NumNegativeBits = ED->getNumNegativeBits();
1031     unsigned NumPositiveBits = ED->getNumPositiveBits();
1032 
1033     if (NumNegativeBits) {
1034       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1035       assert(NumBits <= Bitwidth);
1036       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1037       Min = -End;
1038     } else {
1039       assert(NumPositiveBits <= Bitwidth);
1040       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1041       Min = llvm::APInt(Bitwidth, 0);
1042     }
1043   }
1044   return true;
1045 }
1046 
1047 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1048   llvm::APInt Min, End;
1049   if (!getRangeForType(*this, Ty, Min, End,
1050                        CGM.getCodeGenOpts().StrictEnums))
1051     return 0;
1052 
1053   llvm::MDBuilder MDHelper(getLLVMContext());
1054   return MDHelper.createRange(Min, End);
1055 }
1056 
1057 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1058                                                unsigned Alignment, QualType Ty,
1059                                                SourceLocation Loc,
1060                                                llvm::MDNode *TBAAInfo,
1061                                                QualType TBAABaseType,
1062                                                uint64_t TBAAOffset) {
1063   // For better performance, handle vector loads differently.
1064   if (Ty->isVectorType()) {
1065     llvm::Value *V;
1066     const llvm::Type *EltTy =
1067     cast<llvm::PointerType>(Addr->getType())->getElementType();
1068 
1069     const auto *VTy = cast<llvm::VectorType>(EltTy);
1070 
1071     // Handle vectors of size 3, like size 4 for better performance.
1072     if (VTy->getNumElements() == 3) {
1073 
1074       // Bitcast to vec4 type.
1075       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1076                                                          4);
1077       llvm::PointerType *ptVec4Ty =
1078       llvm::PointerType::get(vec4Ty,
1079                              (cast<llvm::PointerType>(
1080                                       Addr->getType()))->getAddressSpace());
1081       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1082                                                 "castToVec4");
1083       // Now load value.
1084       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1085 
1086       // Shuffle vector to get vec3.
1087       llvm::Constant *Mask[] = {
1088         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1089         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1090         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1091       };
1092 
1093       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1094       V = Builder.CreateShuffleVector(LoadVal,
1095                                       llvm::UndefValue::get(vec4Ty),
1096                                       MaskV, "extractVec");
1097       return EmitFromMemory(V, Ty);
1098     }
1099   }
1100 
1101   // Atomic operations have to be done on integral types.
1102   if (Ty->isAtomicType()) {
1103     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1104                                      CharUnits::fromQuantity(Alignment),
1105                                      getContext(), TBAAInfo);
1106     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1107   }
1108 
1109   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1110   if (Volatile)
1111     Load->setVolatile(true);
1112   if (Alignment)
1113     Load->setAlignment(Alignment);
1114   if (TBAAInfo) {
1115     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1116                                                       TBAAOffset);
1117     if (TBAAPath)
1118       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1119   }
1120 
1121   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1122       (SanOpts->Enum && Ty->getAs<EnumType>())) {
1123     llvm::APInt Min, End;
1124     if (getRangeForType(*this, Ty, Min, End, true)) {
1125       --End;
1126       llvm::Value *Check;
1127       if (!Min)
1128         Check = Builder.CreateICmpULE(
1129           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1130       else {
1131         llvm::Value *Upper = Builder.CreateICmpSLE(
1132           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1133         llvm::Value *Lower = Builder.CreateICmpSGE(
1134           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1135         Check = Builder.CreateAnd(Upper, Lower);
1136       }
1137       llvm::Constant *StaticArgs[] = {
1138         EmitCheckSourceLocation(Loc),
1139         EmitCheckTypeDescriptor(Ty)
1140       };
1141       EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load),
1142                 CRK_Recoverable);
1143     }
1144   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1145     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1146       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1147 
1148   return EmitFromMemory(Load, Ty);
1149 }
1150 
1151 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1152   // Bool has a different representation in memory than in registers.
1153   if (hasBooleanRepresentation(Ty)) {
1154     // This should really always be an i1, but sometimes it's already
1155     // an i8, and it's awkward to track those cases down.
1156     if (Value->getType()->isIntegerTy(1))
1157       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1158     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1159            "wrong value rep of bool");
1160   }
1161 
1162   return Value;
1163 }
1164 
1165 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1166   // Bool has a different representation in memory than in registers.
1167   if (hasBooleanRepresentation(Ty)) {
1168     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1169            "wrong value rep of bool");
1170     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1171   }
1172 
1173   return Value;
1174 }
1175 
1176 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1177                                         bool Volatile, unsigned Alignment,
1178                                         QualType Ty, llvm::MDNode *TBAAInfo,
1179                                         bool isInit, QualType TBAABaseType,
1180                                         uint64_t TBAAOffset) {
1181 
1182   // Handle vectors differently to get better performance.
1183   if (Ty->isVectorType()) {
1184     llvm::Type *SrcTy = Value->getType();
1185     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1186     // Handle vec3 special.
1187     if (VecTy->getNumElements() == 3) {
1188       llvm::LLVMContext &VMContext = getLLVMContext();
1189 
1190       // Our source is a vec3, do a shuffle vector to make it a vec4.
1191       SmallVector<llvm::Constant*, 4> Mask;
1192       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1193                                             0));
1194       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1195                                             1));
1196       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1197                                             2));
1198       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1199 
1200       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1201       Value = Builder.CreateShuffleVector(Value,
1202                                           llvm::UndefValue::get(VecTy),
1203                                           MaskV, "extractVec");
1204       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1205     }
1206     auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
1207     if (DstPtr->getElementType() != SrcTy) {
1208       llvm::Type *MemTy =
1209       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1210       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1211     }
1212   }
1213 
1214   Value = EmitToMemory(Value, Ty);
1215 
1216   if (Ty->isAtomicType()) {
1217     EmitAtomicStore(RValue::get(Value),
1218                     LValue::MakeAddr(Addr, Ty,
1219                                      CharUnits::fromQuantity(Alignment),
1220                                      getContext(), TBAAInfo),
1221                     isInit);
1222     return;
1223   }
1224 
1225   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1226   if (Alignment)
1227     Store->setAlignment(Alignment);
1228   if (TBAAInfo) {
1229     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1230                                                       TBAAOffset);
1231     if (TBAAPath)
1232       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1233   }
1234 }
1235 
1236 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1237                                         bool isInit) {
1238   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1239                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1240                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1241                     lvalue.getTBAAOffset());
1242 }
1243 
1244 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1245 /// method emits the address of the lvalue, then loads the result as an rvalue,
1246 /// returning the rvalue.
1247 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1248   if (LV.isObjCWeak()) {
1249     // load of a __weak object.
1250     llvm::Value *AddrWeakObj = LV.getAddress();
1251     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1252                                                              AddrWeakObj));
1253   }
1254   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1255     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1256     Object = EmitObjCConsumeObject(LV.getType(), Object);
1257     return RValue::get(Object);
1258   }
1259 
1260   if (LV.isSimple()) {
1261     assert(!LV.getType()->isFunctionType());
1262 
1263     // Everything needs a load.
1264     return RValue::get(EmitLoadOfScalar(LV, Loc));
1265   }
1266 
1267   if (LV.isVectorElt()) {
1268     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1269                                               LV.isVolatileQualified());
1270     Load->setAlignment(LV.getAlignment().getQuantity());
1271     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1272                                                     "vecext"));
1273   }
1274 
1275   // If this is a reference to a subset of the elements of a vector, either
1276   // shuffle the input or extract/insert them as appropriate.
1277   if (LV.isExtVectorElt())
1278     return EmitLoadOfExtVectorElementLValue(LV);
1279 
1280   // Global Register variables always invoke intrinsics
1281   if (LV.isGlobalReg())
1282     return EmitLoadOfGlobalRegLValue(LV);
1283 
1284   assert(LV.isBitField() && "Unknown LValue type!");
1285   return EmitLoadOfBitfieldLValue(LV);
1286 }
1287 
1288 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1289   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1290 
1291   // Get the output type.
1292   llvm::Type *ResLTy = ConvertType(LV.getType());
1293 
1294   llvm::Value *Ptr = LV.getBitFieldAddr();
1295   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1296                                         "bf.load");
1297   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1298 
1299   if (Info.IsSigned) {
1300     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1301     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1302     if (HighBits)
1303       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1304     if (Info.Offset + HighBits)
1305       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1306   } else {
1307     if (Info.Offset)
1308       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1309     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1310       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1311                                                               Info.Size),
1312                               "bf.clear");
1313   }
1314   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1315 
1316   return RValue::get(Val);
1317 }
1318 
1319 // If this is a reference to a subset of the elements of a vector, create an
1320 // appropriate shufflevector.
1321 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1322   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1323                                             LV.isVolatileQualified());
1324   Load->setAlignment(LV.getAlignment().getQuantity());
1325   llvm::Value *Vec = Load;
1326 
1327   const llvm::Constant *Elts = LV.getExtVectorElts();
1328 
1329   // If the result of the expression is a non-vector type, we must be extracting
1330   // a single element.  Just codegen as an extractelement.
1331   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1332   if (!ExprVT) {
1333     unsigned InIdx = getAccessedFieldNo(0, Elts);
1334     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1335     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1336   }
1337 
1338   // Always use shuffle vector to try to retain the original program structure
1339   unsigned NumResultElts = ExprVT->getNumElements();
1340 
1341   SmallVector<llvm::Constant*, 4> Mask;
1342   for (unsigned i = 0; i != NumResultElts; ++i)
1343     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1344 
1345   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1346   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1347                                     MaskV);
1348   return RValue::get(Vec);
1349 }
1350 
1351 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1352 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1353   assert(LV.getType()->isIntegerType() && "Bad type for register variable");
1354   llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(LV.getGlobalReg());
1355   assert(RegName && "Register LValue is not metadata");
1356   llvm::Type *Types[] = { CGM.getTypes().ConvertType(LV.getType()) };
1357   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1358   llvm::Value* Call = Builder.CreateCall(F, RegName);
1359   return RValue::get(Call);
1360 }
1361 
1362 
1363 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1364 /// lvalue, where both are guaranteed to the have the same type, and that type
1365 /// is 'Ty'.
1366 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1367                                              bool isInit) {
1368   if (!Dst.isSimple()) {
1369     if (Dst.isVectorElt()) {
1370       // Read/modify/write the vector, inserting the new element.
1371       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1372                                                 Dst.isVolatileQualified());
1373       Load->setAlignment(Dst.getAlignment().getQuantity());
1374       llvm::Value *Vec = Load;
1375       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1376                                         Dst.getVectorIdx(), "vecins");
1377       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1378                                                    Dst.isVolatileQualified());
1379       Store->setAlignment(Dst.getAlignment().getQuantity());
1380       return;
1381     }
1382 
1383     // If this is an update of extended vector elements, insert them as
1384     // appropriate.
1385     if (Dst.isExtVectorElt())
1386       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1387 
1388     if (Dst.isGlobalReg())
1389       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1390 
1391     assert(Dst.isBitField() && "Unknown LValue type");
1392     return EmitStoreThroughBitfieldLValue(Src, Dst);
1393   }
1394 
1395   // There's special magic for assigning into an ARC-qualified l-value.
1396   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1397     switch (Lifetime) {
1398     case Qualifiers::OCL_None:
1399       llvm_unreachable("present but none");
1400 
1401     case Qualifiers::OCL_ExplicitNone:
1402       // nothing special
1403       break;
1404 
1405     case Qualifiers::OCL_Strong:
1406       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1407       return;
1408 
1409     case Qualifiers::OCL_Weak:
1410       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1411       return;
1412 
1413     case Qualifiers::OCL_Autoreleasing:
1414       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1415                                                      Src.getScalarVal()));
1416       // fall into the normal path
1417       break;
1418     }
1419   }
1420 
1421   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1422     // load of a __weak object.
1423     llvm::Value *LvalueDst = Dst.getAddress();
1424     llvm::Value *src = Src.getScalarVal();
1425      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1426     return;
1427   }
1428 
1429   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1430     // load of a __strong object.
1431     llvm::Value *LvalueDst = Dst.getAddress();
1432     llvm::Value *src = Src.getScalarVal();
1433     if (Dst.isObjCIvar()) {
1434       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1435       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1436       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1437       llvm::Value *dst = RHS;
1438       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1439       llvm::Value *LHS =
1440         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1441       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1442       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1443                                               BytesBetween);
1444     } else if (Dst.isGlobalObjCRef()) {
1445       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1446                                                 Dst.isThreadLocalRef());
1447     }
1448     else
1449       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1450     return;
1451   }
1452 
1453   assert(Src.isScalar() && "Can't emit an agg store with this method");
1454   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1455 }
1456 
1457 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1458                                                      llvm::Value **Result) {
1459   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1460   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1461   llvm::Value *Ptr = Dst.getBitFieldAddr();
1462 
1463   // Get the source value, truncated to the width of the bit-field.
1464   llvm::Value *SrcVal = Src.getScalarVal();
1465 
1466   // Cast the source to the storage type and shift it into place.
1467   SrcVal = Builder.CreateIntCast(SrcVal,
1468                                  Ptr->getType()->getPointerElementType(),
1469                                  /*IsSigned=*/false);
1470   llvm::Value *MaskedVal = SrcVal;
1471 
1472   // See if there are other bits in the bitfield's storage we'll need to load
1473   // and mask together with source before storing.
1474   if (Info.StorageSize != Info.Size) {
1475     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1476     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1477                                           "bf.load");
1478     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1479 
1480     // Mask the source value as needed.
1481     if (!hasBooleanRepresentation(Dst.getType()))
1482       SrcVal = Builder.CreateAnd(SrcVal,
1483                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1484                                                             Info.Size),
1485                                  "bf.value");
1486     MaskedVal = SrcVal;
1487     if (Info.Offset)
1488       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1489 
1490     // Mask out the original value.
1491     Val = Builder.CreateAnd(Val,
1492                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1493                                                      Info.Offset,
1494                                                      Info.Offset + Info.Size),
1495                             "bf.clear");
1496 
1497     // Or together the unchanged values and the source value.
1498     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1499   } else {
1500     assert(Info.Offset == 0);
1501   }
1502 
1503   // Write the new value back out.
1504   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1505                                                Dst.isVolatileQualified());
1506   Store->setAlignment(Info.StorageAlignment);
1507 
1508   // Return the new value of the bit-field, if requested.
1509   if (Result) {
1510     llvm::Value *ResultVal = MaskedVal;
1511 
1512     // Sign extend the value if needed.
1513     if (Info.IsSigned) {
1514       assert(Info.Size <= Info.StorageSize);
1515       unsigned HighBits = Info.StorageSize - Info.Size;
1516       if (HighBits) {
1517         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1518         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1519       }
1520     }
1521 
1522     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1523                                       "bf.result.cast");
1524     *Result = EmitFromMemory(ResultVal, Dst.getType());
1525   }
1526 }
1527 
1528 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1529                                                                LValue Dst) {
1530   // This access turns into a read/modify/write of the vector.  Load the input
1531   // value now.
1532   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1533                                             Dst.isVolatileQualified());
1534   Load->setAlignment(Dst.getAlignment().getQuantity());
1535   llvm::Value *Vec = Load;
1536   const llvm::Constant *Elts = Dst.getExtVectorElts();
1537 
1538   llvm::Value *SrcVal = Src.getScalarVal();
1539 
1540   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1541     unsigned NumSrcElts = VTy->getNumElements();
1542     unsigned NumDstElts =
1543        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1544     if (NumDstElts == NumSrcElts) {
1545       // Use shuffle vector is the src and destination are the same number of
1546       // elements and restore the vector mask since it is on the side it will be
1547       // stored.
1548       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1549       for (unsigned i = 0; i != NumSrcElts; ++i)
1550         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1551 
1552       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1553       Vec = Builder.CreateShuffleVector(SrcVal,
1554                                         llvm::UndefValue::get(Vec->getType()),
1555                                         MaskV);
1556     } else if (NumDstElts > NumSrcElts) {
1557       // Extended the source vector to the same length and then shuffle it
1558       // into the destination.
1559       // FIXME: since we're shuffling with undef, can we just use the indices
1560       //        into that?  This could be simpler.
1561       SmallVector<llvm::Constant*, 4> ExtMask;
1562       for (unsigned i = 0; i != NumSrcElts; ++i)
1563         ExtMask.push_back(Builder.getInt32(i));
1564       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1565       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1566       llvm::Value *ExtSrcVal =
1567         Builder.CreateShuffleVector(SrcVal,
1568                                     llvm::UndefValue::get(SrcVal->getType()),
1569                                     ExtMaskV);
1570       // build identity
1571       SmallVector<llvm::Constant*, 4> Mask;
1572       for (unsigned i = 0; i != NumDstElts; ++i)
1573         Mask.push_back(Builder.getInt32(i));
1574 
1575       // When the vector size is odd and .odd or .hi is used, the last element
1576       // of the Elts constant array will be one past the size of the vector.
1577       // Ignore the last element here, if it is greater than the mask size.
1578       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1579         NumSrcElts--;
1580 
1581       // modify when what gets shuffled in
1582       for (unsigned i = 0; i != NumSrcElts; ++i)
1583         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1584       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1585       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1586     } else {
1587       // We should never shorten the vector
1588       llvm_unreachable("unexpected shorten vector length");
1589     }
1590   } else {
1591     // If the Src is a scalar (not a vector) it must be updating one element.
1592     unsigned InIdx = getAccessedFieldNo(0, Elts);
1593     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1594     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1595   }
1596 
1597   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1598                                                Dst.isVolatileQualified());
1599   Store->setAlignment(Dst.getAlignment().getQuantity());
1600 }
1601 
1602 /// @brief Store of global named registers are always calls to intrinsics.
1603 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1604   assert(Dst.getType()->isIntegerType() && "Bad type for register variable");
1605   llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(Dst.getGlobalReg());
1606   assert(RegName && "Register LValue is not metadata");
1607   llvm::Type *Types[] = { CGM.getTypes().ConvertType(Dst.getType()) };
1608   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1609   llvm::Value *Value = Src.getScalarVal();
1610   Builder.CreateCall2(F, RegName, Value);
1611 }
1612 
1613 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1614 // generating write-barries API. It is currently a global, ivar,
1615 // or neither.
1616 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1617                                  LValue &LV,
1618                                  bool IsMemberAccess=false) {
1619   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1620     return;
1621 
1622   if (isa<ObjCIvarRefExpr>(E)) {
1623     QualType ExpTy = E->getType();
1624     if (IsMemberAccess && ExpTy->isPointerType()) {
1625       // If ivar is a structure pointer, assigning to field of
1626       // this struct follows gcc's behavior and makes it a non-ivar
1627       // writer-barrier conservatively.
1628       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1629       if (ExpTy->isRecordType()) {
1630         LV.setObjCIvar(false);
1631         return;
1632       }
1633     }
1634     LV.setObjCIvar(true);
1635     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1636     LV.setBaseIvarExp(Exp->getBase());
1637     LV.setObjCArray(E->getType()->isArrayType());
1638     return;
1639   }
1640 
1641   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1642     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1643       if (VD->hasGlobalStorage()) {
1644         LV.setGlobalObjCRef(true);
1645         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1646       }
1647     }
1648     LV.setObjCArray(E->getType()->isArrayType());
1649     return;
1650   }
1651 
1652   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1653     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1654     return;
1655   }
1656 
1657   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1658     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1659     if (LV.isObjCIvar()) {
1660       // If cast is to a structure pointer, follow gcc's behavior and make it
1661       // a non-ivar write-barrier.
1662       QualType ExpTy = E->getType();
1663       if (ExpTy->isPointerType())
1664         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1665       if (ExpTy->isRecordType())
1666         LV.setObjCIvar(false);
1667     }
1668     return;
1669   }
1670 
1671   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1672     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1673     return;
1674   }
1675 
1676   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1677     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1678     return;
1679   }
1680 
1681   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1682     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1683     return;
1684   }
1685 
1686   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1687     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1688     return;
1689   }
1690 
1691   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1692     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1693     if (LV.isObjCIvar() && !LV.isObjCArray())
1694       // Using array syntax to assigning to what an ivar points to is not
1695       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1696       LV.setObjCIvar(false);
1697     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1698       // Using array syntax to assigning to what global points to is not
1699       // same as assigning to the global itself. {id *G;} G[i] = 0;
1700       LV.setGlobalObjCRef(false);
1701     return;
1702   }
1703 
1704   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1705     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1706     // We don't know if member is an 'ivar', but this flag is looked at
1707     // only in the context of LV.isObjCIvar().
1708     LV.setObjCArray(E->getType()->isArrayType());
1709     return;
1710   }
1711 }
1712 
1713 static llvm::Value *
1714 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1715                                 llvm::Value *V, llvm::Type *IRType,
1716                                 StringRef Name = StringRef()) {
1717   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1718   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1719 }
1720 
1721 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1722                                       const Expr *E, const VarDecl *VD) {
1723   QualType T = E->getType();
1724 
1725   // If it's thread_local, emit a call to its wrapper function instead.
1726   if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1727     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1728 
1729   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1730   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1731   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1732   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1733   LValue LV;
1734   if (VD->getType()->isReferenceType()) {
1735     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1736     LI->setAlignment(Alignment.getQuantity());
1737     V = LI;
1738     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1739   } else {
1740     LV = CGF.MakeAddrLValue(V, T, Alignment);
1741   }
1742   setObjCGCLValueClass(CGF.getContext(), E, LV);
1743   return LV;
1744 }
1745 
1746 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1747                                      const Expr *E, const FunctionDecl *FD) {
1748   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1749   if (!FD->hasPrototype()) {
1750     if (const FunctionProtoType *Proto =
1751             FD->getType()->getAs<FunctionProtoType>()) {
1752       // Ugly case: for a K&R-style definition, the type of the definition
1753       // isn't the same as the type of a use.  Correct for this with a
1754       // bitcast.
1755       QualType NoProtoType =
1756           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1757       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1758       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1759     }
1760   }
1761   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1762   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1763 }
1764 
1765 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1766                                       llvm::Value *ThisValue) {
1767   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1768   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1769   return CGF.EmitLValueForField(LV, FD);
1770 }
1771 
1772 /// Named Registers are named metadata pointing to the register name
1773 /// which will be read from/written to as an argument to the intrinsic
1774 /// @llvm.read/write_register.
1775 /// So far, only the name is being passed down, but other options such as
1776 /// register type, allocation type or even optimization options could be
1777 /// passed down via the metadata node.
1778 static LValue EmitGlobalNamedRegister(const VarDecl *VD,
1779                                       CodeGenModule &CGM,
1780                                       CharUnits Alignment) {
1781   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
1782   llvm::Twine Name("llvm.named.register."+Asm->getLabel());
1783   llvm::NamedMDNode *M = CGM.getModule().getOrInsertNamedMetadata(Name.str());
1784   if (M->getNumOperands() == 0) {
1785     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
1786                                               Asm->getLabel());
1787     llvm::Value *Ops[] = { Str };
1788     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
1789   }
1790   return LValue::MakeGlobalReg(M->getOperand(0), VD->getType(), Alignment);
1791 }
1792 
1793 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1794   const NamedDecl *ND = E->getDecl();
1795   CharUnits Alignment = getContext().getDeclAlign(ND);
1796   QualType T = E->getType();
1797   const auto *VD = dyn_cast<VarDecl>(ND);
1798 
1799   // Global Named registers access via intrinsics only
1800   if (VD && VD->getStorageClass() == SC_Register &&
1801        VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
1802     return EmitGlobalNamedRegister(VD, CGM, Alignment);
1803 
1804   // A DeclRefExpr for a reference initialized by a constant expression can
1805   // appear without being odr-used. Directly emit the constant initializer.
1806   if (VD) {
1807     const Expr *Init = VD->getAnyInitializer(VD);
1808     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1809         VD->isUsableInConstantExpressions(getContext()) &&
1810         VD->checkInitIsICE()) {
1811       llvm::Constant *Val =
1812         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1813       assert(Val && "failed to emit reference constant expression");
1814       // FIXME: Eventually we will want to emit vector element references.
1815       return MakeAddrLValue(Val, T, Alignment);
1816     }
1817   }
1818 
1819   // FIXME: We should be able to assert this for FunctionDecls as well!
1820   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1821   // those with a valid source location.
1822   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1823           !E->getLocation().isValid()) &&
1824          "Should not use decl without marking it used!");
1825 
1826   if (ND->hasAttr<WeakRefAttr>()) {
1827     const auto *VD = cast<ValueDecl>(ND);
1828     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1829     return MakeAddrLValue(Aliasee, T, Alignment);
1830   }
1831 
1832   if (VD) {
1833     // Check if this is a global variable.
1834     if (VD->hasLinkage() || VD->isStaticDataMember())
1835       return EmitGlobalVarDeclLValue(*this, E, VD);
1836 
1837     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1838 
1839     llvm::Value *V = LocalDeclMap.lookup(VD);
1840     if (!V && VD->isStaticLocal())
1841       V = CGM.getStaticLocalDeclAddress(VD);
1842 
1843     // Use special handling for lambdas.
1844     if (!V) {
1845       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1846         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1847       } else if (CapturedStmtInfo) {
1848         if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1849           return EmitCapturedFieldLValue(*this, FD,
1850                                          CapturedStmtInfo->getContextValue());
1851       }
1852 
1853       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1854       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1855                             T, Alignment);
1856     }
1857 
1858     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1859 
1860     if (isBlockVariable)
1861       V = BuildBlockByrefAddress(V, VD);
1862 
1863     LValue LV;
1864     if (VD->getType()->isReferenceType()) {
1865       llvm::LoadInst *LI = Builder.CreateLoad(V);
1866       LI->setAlignment(Alignment.getQuantity());
1867       V = LI;
1868       LV = MakeNaturalAlignAddrLValue(V, T);
1869     } else {
1870       LV = MakeAddrLValue(V, T, Alignment);
1871     }
1872 
1873     bool isLocalStorage = VD->hasLocalStorage();
1874 
1875     bool NonGCable = isLocalStorage &&
1876                      !VD->getType()->isReferenceType() &&
1877                      !isBlockVariable;
1878     if (NonGCable) {
1879       LV.getQuals().removeObjCGCAttr();
1880       LV.setNonGC(true);
1881     }
1882 
1883     bool isImpreciseLifetime =
1884       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1885     if (isImpreciseLifetime)
1886       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1887     setObjCGCLValueClass(getContext(), E, LV);
1888     return LV;
1889   }
1890 
1891   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1892     return EmitFunctionDeclLValue(*this, E, FD);
1893 
1894   llvm_unreachable("Unhandled DeclRefExpr");
1895 }
1896 
1897 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1898   // __extension__ doesn't affect lvalue-ness.
1899   if (E->getOpcode() == UO_Extension)
1900     return EmitLValue(E->getSubExpr());
1901 
1902   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1903   switch (E->getOpcode()) {
1904   default: llvm_unreachable("Unknown unary operator lvalue!");
1905   case UO_Deref: {
1906     QualType T = E->getSubExpr()->getType()->getPointeeType();
1907     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1908 
1909     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1910     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1911 
1912     // We should not generate __weak write barrier on indirect reference
1913     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1914     // But, we continue to generate __strong write barrier on indirect write
1915     // into a pointer to object.
1916     if (getLangOpts().ObjC1 &&
1917         getLangOpts().getGC() != LangOptions::NonGC &&
1918         LV.isObjCWeak())
1919       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1920     return LV;
1921   }
1922   case UO_Real:
1923   case UO_Imag: {
1924     LValue LV = EmitLValue(E->getSubExpr());
1925     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1926     llvm::Value *Addr = LV.getAddress();
1927 
1928     // __real is valid on scalars.  This is a faster way of testing that.
1929     // __imag can only produce an rvalue on scalars.
1930     if (E->getOpcode() == UO_Real &&
1931         !cast<llvm::PointerType>(Addr->getType())
1932            ->getElementType()->isStructTy()) {
1933       assert(E->getSubExpr()->getType()->isArithmeticType());
1934       return LV;
1935     }
1936 
1937     assert(E->getSubExpr()->getType()->isAnyComplexType());
1938 
1939     unsigned Idx = E->getOpcode() == UO_Imag;
1940     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1941                                                   Idx, "idx"),
1942                           ExprTy);
1943   }
1944   case UO_PreInc:
1945   case UO_PreDec: {
1946     LValue LV = EmitLValue(E->getSubExpr());
1947     bool isInc = E->getOpcode() == UO_PreInc;
1948 
1949     if (E->getType()->isAnyComplexType())
1950       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1951     else
1952       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1953     return LV;
1954   }
1955   }
1956 }
1957 
1958 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1959   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1960                         E->getType());
1961 }
1962 
1963 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1964   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1965                         E->getType());
1966 }
1967 
1968 static llvm::Constant*
1969 GetAddrOfConstantWideString(StringRef Str,
1970                             const char *GlobalName,
1971                             ASTContext &Context,
1972                             QualType Ty, SourceLocation Loc,
1973                             CodeGenModule &CGM) {
1974 
1975   StringLiteral *SL = StringLiteral::Create(Context,
1976                                             Str,
1977                                             StringLiteral::Wide,
1978                                             /*Pascal = */false,
1979                                             Ty, Loc);
1980   llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1981   auto *GV = new llvm::GlobalVariable(
1982       CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings,
1983       llvm::GlobalValue::PrivateLinkage, C, GlobalName);
1984   const unsigned WideAlignment =
1985     Context.getTypeAlignInChars(Ty).getQuantity();
1986   GV->setAlignment(WideAlignment);
1987   return GV;
1988 }
1989 
1990 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1991                                     SmallString<32>& Target) {
1992   Target.resize(CharByteWidth * (Source.size() + 1));
1993   char *ResultPtr = &Target[0];
1994   const UTF8 *ErrorPtr;
1995   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1996   (void)success;
1997   assert(success);
1998   Target.resize(ResultPtr - &Target[0]);
1999 }
2000 
2001 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2002   switch (E->getIdentType()) {
2003   default:
2004     return EmitUnsupportedLValue(E, "predefined expression");
2005 
2006   case PredefinedExpr::Func:
2007   case PredefinedExpr::Function:
2008   case PredefinedExpr::LFunction:
2009   case PredefinedExpr::FuncDName:
2010   case PredefinedExpr::FuncSig:
2011   case PredefinedExpr::PrettyFunction: {
2012     PredefinedExpr::IdentType IdentType = E->getIdentType();
2013     std::string GVName;
2014 
2015     // FIXME: We should use the string literal mangling for the Microsoft C++
2016     // ABI so that strings get merged.
2017     switch (IdentType) {
2018     default: llvm_unreachable("Invalid type");
2019     case PredefinedExpr::Func:           GVName = "__func__."; break;
2020     case PredefinedExpr::Function:       GVName = "__FUNCTION__."; break;
2021     case PredefinedExpr::FuncDName:      GVName = "__FUNCDNAME__."; break;
2022     case PredefinedExpr::FuncSig:        GVName = "__FUNCSIG__."; break;
2023     case PredefinedExpr::LFunction:      GVName = "L__FUNCTION__."; break;
2024     case PredefinedExpr::PrettyFunction: GVName = "__PRETTY_FUNCTION__."; break;
2025     }
2026 
2027     StringRef FnName = CurFn->getName();
2028     if (FnName.startswith("\01"))
2029       FnName = FnName.substr(1);
2030     GVName += FnName;
2031 
2032     // If this is outside of a function use the top level decl.
2033     const Decl *CurDecl = CurCodeDecl;
2034     if (CurDecl == 0 || isa<VarDecl>(CurDecl))
2035       CurDecl = getContext().getTranslationUnitDecl();
2036 
2037     const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
2038     std::string FunctionName;
2039     if (isa<BlockDecl>(CurDecl)) {
2040       // Blocks use the mangled function name.
2041       // FIXME: ComputeName should handle blocks.
2042       FunctionName = FnName.str();
2043     } else if (isa<CapturedDecl>(CurDecl)) {
2044       // For a captured statement, the function name is its enclosing
2045       // function name not the one compiler generated.
2046       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2047     } else {
2048       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2049       assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
2050                  FunctionName.size() &&
2051              "Computed __func__ length differs from type!");
2052     }
2053 
2054     llvm::Constant *C;
2055     if (ElemType->isWideCharType()) {
2056       SmallString<32> RawChars;
2057       ConvertUTF8ToWideString(
2058           getContext().getTypeSizeInChars(ElemType).getQuantity(),
2059           FunctionName, RawChars);
2060       C = GetAddrOfConstantWideString(RawChars,
2061                                       GVName.c_str(),
2062                                       getContext(),
2063                                       E->getType(),
2064                                       E->getLocation(),
2065                                       CGM);
2066     } else {
2067       C = CGM.GetAddrOfConstantCString(FunctionName, GVName.c_str(), 1);
2068     }
2069     return MakeAddrLValue(C, E->getType());
2070   }
2071   }
2072 }
2073 
2074 /// Emit a type description suitable for use by a runtime sanitizer library. The
2075 /// format of a type descriptor is
2076 ///
2077 /// \code
2078 ///   { i16 TypeKind, i16 TypeInfo }
2079 /// \endcode
2080 ///
2081 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2082 /// integer, 1 for a floating point value, and -1 for anything else.
2083 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2084   // Only emit each type's descriptor once.
2085   if (llvm::Constant *C = CGM.getTypeDescriptor(T))
2086     return C;
2087 
2088   uint16_t TypeKind = -1;
2089   uint16_t TypeInfo = 0;
2090 
2091   if (T->isIntegerType()) {
2092     TypeKind = 0;
2093     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2094                (T->isSignedIntegerType() ? 1 : 0);
2095   } else if (T->isFloatingType()) {
2096     TypeKind = 1;
2097     TypeInfo = getContext().getTypeSize(T);
2098   }
2099 
2100   // Format the type name as if for a diagnostic, including quotes and
2101   // optionally an 'aka'.
2102   SmallString<32> Buffer;
2103   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2104                                     (intptr_t)T.getAsOpaquePtr(),
2105                                     0, 0, 0, 0, 0, 0, Buffer,
2106                                     ArrayRef<intptr_t>());
2107 
2108   llvm::Constant *Components[] = {
2109     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2110     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2111   };
2112   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2113 
2114   auto *GV = new llvm::GlobalVariable(
2115       CGM.getModule(), Descriptor->getType(),
2116       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2117   GV->setUnnamedAddr(true);
2118 
2119   // Remember the descriptor for this type.
2120   CGM.setTypeDescriptor(T, GV);
2121 
2122   return GV;
2123 }
2124 
2125 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2126   llvm::Type *TargetTy = IntPtrTy;
2127 
2128   // Floating-point types which fit into intptr_t are bitcast to integers
2129   // and then passed directly (after zero-extension, if necessary).
2130   if (V->getType()->isFloatingPointTy()) {
2131     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2132     if (Bits <= TargetTy->getIntegerBitWidth())
2133       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2134                                                          Bits));
2135   }
2136 
2137   // Integers which fit in intptr_t are zero-extended and passed directly.
2138   if (V->getType()->isIntegerTy() &&
2139       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2140     return Builder.CreateZExt(V, TargetTy);
2141 
2142   // Pointers are passed directly, everything else is passed by address.
2143   if (!V->getType()->isPointerTy()) {
2144     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2145     Builder.CreateStore(V, Ptr);
2146     V = Ptr;
2147   }
2148   return Builder.CreatePtrToInt(V, TargetTy);
2149 }
2150 
2151 /// \brief Emit a representation of a SourceLocation for passing to a handler
2152 /// in a sanitizer runtime library. The format for this data is:
2153 /// \code
2154 ///   struct SourceLocation {
2155 ///     const char *Filename;
2156 ///     int32_t Line, Column;
2157 ///   };
2158 /// \endcode
2159 /// For an invalid SourceLocation, the Filename pointer is null.
2160 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2161   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2162 
2163   llvm::Constant *Data[] = {
2164     PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src")
2165                    : llvm::Constant::getNullValue(Int8PtrTy),
2166     Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0),
2167     Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0)
2168   };
2169 
2170   return llvm::ConstantStruct::getAnon(Data);
2171 }
2172 
2173 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2174                                 ArrayRef<llvm::Constant *> StaticArgs,
2175                                 ArrayRef<llvm::Value *> DynamicArgs,
2176                                 CheckRecoverableKind RecoverKind) {
2177   assert(SanOpts != &SanitizerOptions::Disabled);
2178 
2179   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2180     assert (RecoverKind != CRK_AlwaysRecoverable &&
2181             "Runtime call required for AlwaysRecoverable kind!");
2182     return EmitTrapCheck(Checked);
2183   }
2184 
2185   llvm::BasicBlock *Cont = createBasicBlock("cont");
2186 
2187   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2188 
2189   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2190 
2191   // Give hint that we very much don't expect to execute the handler
2192   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2193   llvm::MDBuilder MDHelper(getLLVMContext());
2194   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2195   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2196 
2197   EmitBlock(Handler);
2198 
2199   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2200   auto *InfoPtr =
2201       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2202                                llvm::GlobalVariable::PrivateLinkage, Info);
2203   InfoPtr->setUnnamedAddr(true);
2204 
2205   SmallVector<llvm::Value *, 4> Args;
2206   SmallVector<llvm::Type *, 4> ArgTypes;
2207   Args.reserve(DynamicArgs.size() + 1);
2208   ArgTypes.reserve(DynamicArgs.size() + 1);
2209 
2210   // Handler functions take an i8* pointing to the (handler-specific) static
2211   // information block, followed by a sequence of intptr_t arguments
2212   // representing operand values.
2213   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2214   ArgTypes.push_back(Int8PtrTy);
2215   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2216     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2217     ArgTypes.push_back(IntPtrTy);
2218   }
2219 
2220   bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
2221                  ((RecoverKind == CRK_Recoverable) &&
2222                    CGM.getCodeGenOpts().SanitizeRecover);
2223 
2224   llvm::FunctionType *FnType =
2225     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2226   llvm::AttrBuilder B;
2227   if (!Recover) {
2228     B.addAttribute(llvm::Attribute::NoReturn)
2229      .addAttribute(llvm::Attribute::NoUnwind);
2230   }
2231   B.addAttribute(llvm::Attribute::UWTable);
2232 
2233   // Checks that have two variants use a suffix to differentiate them
2234   bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
2235                            !CGM.getCodeGenOpts().SanitizeRecover;
2236   std::string FunctionName = ("__ubsan_handle_" + CheckName +
2237                               (NeedsAbortSuffix? "_abort" : "")).str();
2238   llvm::Value *Fn =
2239     CGM.CreateRuntimeFunction(FnType, FunctionName,
2240                               llvm::AttributeSet::get(getLLVMContext(),
2241                                               llvm::AttributeSet::FunctionIndex,
2242                                                       B));
2243   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2244   if (Recover) {
2245     Builder.CreateBr(Cont);
2246   } else {
2247     HandlerCall->setDoesNotReturn();
2248     Builder.CreateUnreachable();
2249   }
2250 
2251   EmitBlock(Cont);
2252 }
2253 
2254 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2255   llvm::BasicBlock *Cont = createBasicBlock("cont");
2256 
2257   // If we're optimizing, collapse all calls to trap down to just one per
2258   // function to save on code size.
2259   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2260     TrapBB = createBasicBlock("trap");
2261     Builder.CreateCondBr(Checked, Cont, TrapBB);
2262     EmitBlock(TrapBB);
2263     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2264     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2265     TrapCall->setDoesNotReturn();
2266     TrapCall->setDoesNotThrow();
2267     Builder.CreateUnreachable();
2268   } else {
2269     Builder.CreateCondBr(Checked, Cont, TrapBB);
2270   }
2271 
2272   EmitBlock(Cont);
2273 }
2274 
2275 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2276 /// array to pointer, return the array subexpression.
2277 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2278   // If this isn't just an array->pointer decay, bail out.
2279   const auto *CE = dyn_cast<CastExpr>(E);
2280   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2281     return 0;
2282 
2283   // If this is a decay from variable width array, bail out.
2284   const Expr *SubExpr = CE->getSubExpr();
2285   if (SubExpr->getType()->isVariableArrayType())
2286     return 0;
2287 
2288   return SubExpr;
2289 }
2290 
2291 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2292                                                bool Accessed) {
2293   // The index must always be an integer, which is not an aggregate.  Emit it.
2294   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2295   QualType IdxTy  = E->getIdx()->getType();
2296   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2297 
2298   if (SanOpts->ArrayBounds)
2299     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2300 
2301   // If the base is a vector type, then we are forming a vector element lvalue
2302   // with this subscript.
2303   if (E->getBase()->getType()->isVectorType()) {
2304     // Emit the vector as an lvalue to get its address.
2305     LValue LHS = EmitLValue(E->getBase());
2306     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2307     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2308     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2309                                  E->getBase()->getType(), LHS.getAlignment());
2310   }
2311 
2312   // Extend or truncate the index type to 32 or 64-bits.
2313   if (Idx->getType() != IntPtrTy)
2314     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2315 
2316   // We know that the pointer points to a type of the correct size, unless the
2317   // size is a VLA or Objective-C interface.
2318   llvm::Value *Address = 0;
2319   CharUnits ArrayAlignment;
2320   if (const VariableArrayType *vla =
2321         getContext().getAsVariableArrayType(E->getType())) {
2322     // The base must be a pointer, which is not an aggregate.  Emit
2323     // it.  It needs to be emitted first in case it's what captures
2324     // the VLA bounds.
2325     Address = EmitScalarExpr(E->getBase());
2326 
2327     // The element count here is the total number of non-VLA elements.
2328     llvm::Value *numElements = getVLASize(vla).first;
2329 
2330     // Effectively, the multiply by the VLA size is part of the GEP.
2331     // GEP indexes are signed, and scaling an index isn't permitted to
2332     // signed-overflow, so we use the same semantics for our explicit
2333     // multiply.  We suppress this if overflow is not undefined behavior.
2334     if (getLangOpts().isSignedOverflowDefined()) {
2335       Idx = Builder.CreateMul(Idx, numElements);
2336       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2337     } else {
2338       Idx = Builder.CreateNSWMul(Idx, numElements);
2339       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2340     }
2341   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2342     // Indexing over an interface, as in "NSString *P; P[4];"
2343     llvm::Value *InterfaceSize =
2344       llvm::ConstantInt::get(Idx->getType(),
2345           getContext().getTypeSizeInChars(OIT).getQuantity());
2346 
2347     Idx = Builder.CreateMul(Idx, InterfaceSize);
2348 
2349     // The base must be a pointer, which is not an aggregate.  Emit it.
2350     llvm::Value *Base = EmitScalarExpr(E->getBase());
2351     Address = EmitCastToVoidPtr(Base);
2352     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2353     Address = Builder.CreateBitCast(Address, Base->getType());
2354   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2355     // If this is A[i] where A is an array, the frontend will have decayed the
2356     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2357     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2358     // "gep x, i" here.  Emit one "gep A, 0, i".
2359     assert(Array->getType()->isArrayType() &&
2360            "Array to pointer decay must have array source type!");
2361     LValue ArrayLV;
2362     // For simple multidimensional array indexing, set the 'accessed' flag for
2363     // better bounds-checking of the base expression.
2364     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2365       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2366     else
2367       ArrayLV = EmitLValue(Array);
2368     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2369     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2370     llvm::Value *Args[] = { Zero, Idx };
2371 
2372     // Propagate the alignment from the array itself to the result.
2373     ArrayAlignment = ArrayLV.getAlignment();
2374 
2375     if (getLangOpts().isSignedOverflowDefined())
2376       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2377     else
2378       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2379   } else {
2380     // The base must be a pointer, which is not an aggregate.  Emit it.
2381     llvm::Value *Base = EmitScalarExpr(E->getBase());
2382     if (getLangOpts().isSignedOverflowDefined())
2383       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2384     else
2385       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2386   }
2387 
2388   QualType T = E->getBase()->getType()->getPointeeType();
2389   assert(!T.isNull() &&
2390          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2391 
2392 
2393   // Limit the alignment to that of the result type.
2394   LValue LV;
2395   if (!ArrayAlignment.isZero()) {
2396     CharUnits Align = getContext().getTypeAlignInChars(T);
2397     ArrayAlignment = std::min(Align, ArrayAlignment);
2398     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2399   } else {
2400     LV = MakeNaturalAlignAddrLValue(Address, T);
2401   }
2402 
2403   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2404 
2405   if (getLangOpts().ObjC1 &&
2406       getLangOpts().getGC() != LangOptions::NonGC) {
2407     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2408     setObjCGCLValueClass(getContext(), E, LV);
2409   }
2410   return LV;
2411 }
2412 
2413 static
2414 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2415                                        SmallVectorImpl<unsigned> &Elts) {
2416   SmallVector<llvm::Constant*, 4> CElts;
2417   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2418     CElts.push_back(Builder.getInt32(Elts[i]));
2419 
2420   return llvm::ConstantVector::get(CElts);
2421 }
2422 
2423 LValue CodeGenFunction::
2424 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2425   // Emit the base vector as an l-value.
2426   LValue Base;
2427 
2428   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2429   if (E->isArrow()) {
2430     // If it is a pointer to a vector, emit the address and form an lvalue with
2431     // it.
2432     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2433     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2434     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2435     Base.getQuals().removeObjCGCAttr();
2436   } else if (E->getBase()->isGLValue()) {
2437     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2438     // emit the base as an lvalue.
2439     assert(E->getBase()->getType()->isVectorType());
2440     Base = EmitLValue(E->getBase());
2441   } else {
2442     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2443     assert(E->getBase()->getType()->isVectorType() &&
2444            "Result must be a vector");
2445     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2446 
2447     // Store the vector to memory (because LValue wants an address).
2448     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2449     Builder.CreateStore(Vec, VecMem);
2450     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2451   }
2452 
2453   QualType type =
2454     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2455 
2456   // Encode the element access list into a vector of unsigned indices.
2457   SmallVector<unsigned, 4> Indices;
2458   E->getEncodedElementAccess(Indices);
2459 
2460   if (Base.isSimple()) {
2461     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2462     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2463                                     Base.getAlignment());
2464   }
2465   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2466 
2467   llvm::Constant *BaseElts = Base.getExtVectorElts();
2468   SmallVector<llvm::Constant *, 4> CElts;
2469 
2470   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2471     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2472   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2473   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2474                                   Base.getAlignment());
2475 }
2476 
2477 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2478   Expr *BaseExpr = E->getBase();
2479 
2480   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2481   LValue BaseLV;
2482   if (E->isArrow()) {
2483     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2484     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2485     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2486     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2487   } else
2488     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2489 
2490   NamedDecl *ND = E->getMemberDecl();
2491   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
2492     LValue LV = EmitLValueForField(BaseLV, Field);
2493     setObjCGCLValueClass(getContext(), E, LV);
2494     return LV;
2495   }
2496 
2497   if (auto *VD = dyn_cast<VarDecl>(ND))
2498     return EmitGlobalVarDeclLValue(*this, E, VD);
2499 
2500   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2501     return EmitFunctionDeclLValue(*this, E, FD);
2502 
2503   llvm_unreachable("Unhandled member declaration!");
2504 }
2505 
2506 /// Given that we are currently emitting a lambda, emit an l-value for
2507 /// one of its members.
2508 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2509   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2510   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2511   QualType LambdaTagType =
2512     getContext().getTagDeclType(Field->getParent());
2513   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2514   return EmitLValueForField(LambdaLV, Field);
2515 }
2516 
2517 LValue CodeGenFunction::EmitLValueForField(LValue base,
2518                                            const FieldDecl *field) {
2519   if (field->isBitField()) {
2520     const CGRecordLayout &RL =
2521       CGM.getTypes().getCGRecordLayout(field->getParent());
2522     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2523     llvm::Value *Addr = base.getAddress();
2524     unsigned Idx = RL.getLLVMFieldNo(field);
2525     if (Idx != 0)
2526       // For structs, we GEP to the field that the record layout suggests.
2527       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2528     // Get the access type.
2529     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2530       getLLVMContext(), Info.StorageSize,
2531       CGM.getContext().getTargetAddressSpace(base.getType()));
2532     if (Addr->getType() != PtrTy)
2533       Addr = Builder.CreateBitCast(Addr, PtrTy);
2534 
2535     QualType fieldType =
2536       field->getType().withCVRQualifiers(base.getVRQualifiers());
2537     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2538   }
2539 
2540   const RecordDecl *rec = field->getParent();
2541   QualType type = field->getType();
2542   CharUnits alignment = getContext().getDeclAlign(field);
2543 
2544   // FIXME: It should be impossible to have an LValue without alignment for a
2545   // complete type.
2546   if (!base.getAlignment().isZero())
2547     alignment = std::min(alignment, base.getAlignment());
2548 
2549   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2550 
2551   llvm::Value *addr = base.getAddress();
2552   unsigned cvr = base.getVRQualifiers();
2553   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2554   if (rec->isUnion()) {
2555     // For unions, there is no pointer adjustment.
2556     assert(!type->isReferenceType() && "union has reference member");
2557     // TODO: handle path-aware TBAA for union.
2558     TBAAPath = false;
2559   } else {
2560     // For structs, we GEP to the field that the record layout suggests.
2561     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2562     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2563 
2564     // If this is a reference field, load the reference right now.
2565     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2566       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2567       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2568       load->setAlignment(alignment.getQuantity());
2569 
2570       // Loading the reference will disable path-aware TBAA.
2571       TBAAPath = false;
2572       if (CGM.shouldUseTBAA()) {
2573         llvm::MDNode *tbaa;
2574         if (mayAlias)
2575           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2576         else
2577           tbaa = CGM.getTBAAInfo(type);
2578         if (tbaa)
2579           CGM.DecorateInstruction(load, tbaa);
2580       }
2581 
2582       addr = load;
2583       mayAlias = false;
2584       type = refType->getPointeeType();
2585       if (type->isIncompleteType())
2586         alignment = CharUnits();
2587       else
2588         alignment = getContext().getTypeAlignInChars(type);
2589       cvr = 0; // qualifiers don't recursively apply to referencee
2590     }
2591   }
2592 
2593   // Make sure that the address is pointing to the right type.  This is critical
2594   // for both unions and structs.  A union needs a bitcast, a struct element
2595   // will need a bitcast if the LLVM type laid out doesn't match the desired
2596   // type.
2597   addr = EmitBitCastOfLValueToProperType(*this, addr,
2598                                          CGM.getTypes().ConvertTypeForMem(type),
2599                                          field->getName());
2600 
2601   if (field->hasAttr<AnnotateAttr>())
2602     addr = EmitFieldAnnotations(field, addr);
2603 
2604   LValue LV = MakeAddrLValue(addr, type, alignment);
2605   LV.getQuals().addCVRQualifiers(cvr);
2606   if (TBAAPath) {
2607     const ASTRecordLayout &Layout =
2608         getContext().getASTRecordLayout(field->getParent());
2609     // Set the base type to be the base type of the base LValue and
2610     // update offset to be relative to the base type.
2611     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2612     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2613                      Layout.getFieldOffset(field->getFieldIndex()) /
2614                                            getContext().getCharWidth());
2615   }
2616 
2617   // __weak attribute on a field is ignored.
2618   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2619     LV.getQuals().removeObjCGCAttr();
2620 
2621   // Fields of may_alias structs act like 'char' for TBAA purposes.
2622   // FIXME: this should get propagated down through anonymous structs
2623   // and unions.
2624   if (mayAlias && LV.getTBAAInfo())
2625     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2626 
2627   return LV;
2628 }
2629 
2630 LValue
2631 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2632                                                   const FieldDecl *Field) {
2633   QualType FieldType = Field->getType();
2634 
2635   if (!FieldType->isReferenceType())
2636     return EmitLValueForField(Base, Field);
2637 
2638   const CGRecordLayout &RL =
2639     CGM.getTypes().getCGRecordLayout(Field->getParent());
2640   unsigned idx = RL.getLLVMFieldNo(Field);
2641   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2642   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2643 
2644   // Make sure that the address is pointing to the right type.  This is critical
2645   // for both unions and structs.  A union needs a bitcast, a struct element
2646   // will need a bitcast if the LLVM type laid out doesn't match the desired
2647   // type.
2648   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2649   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2650 
2651   CharUnits Alignment = getContext().getDeclAlign(Field);
2652 
2653   // FIXME: It should be impossible to have an LValue without alignment for a
2654   // complete type.
2655   if (!Base.getAlignment().isZero())
2656     Alignment = std::min(Alignment, Base.getAlignment());
2657 
2658   return MakeAddrLValue(V, FieldType, Alignment);
2659 }
2660 
2661 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2662   if (E->isFileScope()) {
2663     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2664     return MakeAddrLValue(GlobalPtr, E->getType());
2665   }
2666   if (E->getType()->isVariablyModifiedType())
2667     // make sure to emit the VLA size.
2668     EmitVariablyModifiedType(E->getType());
2669 
2670   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2671   const Expr *InitExpr = E->getInitializer();
2672   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2673 
2674   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2675                    /*Init*/ true);
2676 
2677   return Result;
2678 }
2679 
2680 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2681   if (!E->isGLValue())
2682     // Initializing an aggregate temporary in C++11: T{...}.
2683     return EmitAggExprToLValue(E);
2684 
2685   // An lvalue initializer list must be initializing a reference.
2686   assert(E->getNumInits() == 1 && "reference init with multiple values");
2687   return EmitLValue(E->getInit(0));
2688 }
2689 
2690 LValue CodeGenFunction::
2691 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2692   if (!expr->isGLValue()) {
2693     // ?: here should be an aggregate.
2694     assert(hasAggregateEvaluationKind(expr->getType()) &&
2695            "Unexpected conditional operator!");
2696     return EmitAggExprToLValue(expr);
2697   }
2698 
2699   OpaqueValueMapping binding(*this, expr);
2700   RegionCounter Cnt = getPGORegionCounter(expr);
2701 
2702   const Expr *condExpr = expr->getCond();
2703   bool CondExprBool;
2704   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2705     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2706     if (!CondExprBool) std::swap(live, dead);
2707 
2708     if (!ContainsLabel(dead)) {
2709       // If the true case is live, we need to track its region.
2710       if (CondExprBool)
2711         Cnt.beginRegion(Builder);
2712       return EmitLValue(live);
2713     }
2714   }
2715 
2716   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2717   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2718   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2719 
2720   ConditionalEvaluation eval(*this);
2721   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
2722 
2723   // Any temporaries created here are conditional.
2724   EmitBlock(lhsBlock);
2725   Cnt.beginRegion(Builder);
2726   eval.begin(*this);
2727   LValue lhs = EmitLValue(expr->getTrueExpr());
2728   eval.end(*this);
2729 
2730   if (!lhs.isSimple())
2731     return EmitUnsupportedLValue(expr, "conditional operator");
2732 
2733   lhsBlock = Builder.GetInsertBlock();
2734   Builder.CreateBr(contBlock);
2735 
2736   // Any temporaries created here are conditional.
2737   EmitBlock(rhsBlock);
2738   eval.begin(*this);
2739   LValue rhs = EmitLValue(expr->getFalseExpr());
2740   eval.end(*this);
2741   if (!rhs.isSimple())
2742     return EmitUnsupportedLValue(expr, "conditional operator");
2743   rhsBlock = Builder.GetInsertBlock();
2744 
2745   EmitBlock(contBlock);
2746 
2747   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2748                                          "cond-lvalue");
2749   phi->addIncoming(lhs.getAddress(), lhsBlock);
2750   phi->addIncoming(rhs.getAddress(), rhsBlock);
2751   return MakeAddrLValue(phi, expr->getType());
2752 }
2753 
2754 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2755 /// type. If the cast is to a reference, we can have the usual lvalue result,
2756 /// otherwise if a cast is needed by the code generator in an lvalue context,
2757 /// then it must mean that we need the address of an aggregate in order to
2758 /// access one of its members.  This can happen for all the reasons that casts
2759 /// are permitted with aggregate result, including noop aggregate casts, and
2760 /// cast from scalar to union.
2761 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2762   switch (E->getCastKind()) {
2763   case CK_ToVoid:
2764   case CK_BitCast:
2765   case CK_ArrayToPointerDecay:
2766   case CK_FunctionToPointerDecay:
2767   case CK_NullToMemberPointer:
2768   case CK_NullToPointer:
2769   case CK_IntegralToPointer:
2770   case CK_PointerToIntegral:
2771   case CK_PointerToBoolean:
2772   case CK_VectorSplat:
2773   case CK_IntegralCast:
2774   case CK_IntegralToBoolean:
2775   case CK_IntegralToFloating:
2776   case CK_FloatingToIntegral:
2777   case CK_FloatingToBoolean:
2778   case CK_FloatingCast:
2779   case CK_FloatingRealToComplex:
2780   case CK_FloatingComplexToReal:
2781   case CK_FloatingComplexToBoolean:
2782   case CK_FloatingComplexCast:
2783   case CK_FloatingComplexToIntegralComplex:
2784   case CK_IntegralRealToComplex:
2785   case CK_IntegralComplexToReal:
2786   case CK_IntegralComplexToBoolean:
2787   case CK_IntegralComplexCast:
2788   case CK_IntegralComplexToFloatingComplex:
2789   case CK_DerivedToBaseMemberPointer:
2790   case CK_BaseToDerivedMemberPointer:
2791   case CK_MemberPointerToBoolean:
2792   case CK_ReinterpretMemberPointer:
2793   case CK_AnyPointerToBlockPointerCast:
2794   case CK_ARCProduceObject:
2795   case CK_ARCConsumeObject:
2796   case CK_ARCReclaimReturnedObject:
2797   case CK_ARCExtendBlockObject:
2798   case CK_CopyAndAutoreleaseBlockObject:
2799   case CK_AddressSpaceConversion:
2800     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2801 
2802   case CK_Dependent:
2803     llvm_unreachable("dependent cast kind in IR gen!");
2804 
2805   case CK_BuiltinFnToFnPtr:
2806     llvm_unreachable("builtin functions are handled elsewhere");
2807 
2808   // These are never l-values; just use the aggregate emission code.
2809   case CK_NonAtomicToAtomic:
2810   case CK_AtomicToNonAtomic:
2811     return EmitAggExprToLValue(E);
2812 
2813   case CK_Dynamic: {
2814     LValue LV = EmitLValue(E->getSubExpr());
2815     llvm::Value *V = LV.getAddress();
2816     const auto *DCE = cast<CXXDynamicCastExpr>(E);
2817     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2818   }
2819 
2820   case CK_ConstructorConversion:
2821   case CK_UserDefinedConversion:
2822   case CK_CPointerToObjCPointerCast:
2823   case CK_BlockPointerToObjCPointerCast:
2824   case CK_NoOp:
2825   case CK_LValueToRValue:
2826     return EmitLValue(E->getSubExpr());
2827 
2828   case CK_UncheckedDerivedToBase:
2829   case CK_DerivedToBase: {
2830     const RecordType *DerivedClassTy =
2831       E->getSubExpr()->getType()->getAs<RecordType>();
2832     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2833 
2834     LValue LV = EmitLValue(E->getSubExpr());
2835     llvm::Value *This = LV.getAddress();
2836 
2837     // Perform the derived-to-base conversion
2838     llvm::Value *Base =
2839       GetAddressOfBaseClass(This, DerivedClassDecl,
2840                             E->path_begin(), E->path_end(),
2841                             /*NullCheckValue=*/false);
2842 
2843     return MakeAddrLValue(Base, E->getType());
2844   }
2845   case CK_ToUnion:
2846     return EmitAggExprToLValue(E);
2847   case CK_BaseToDerived: {
2848     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2849     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2850 
2851     LValue LV = EmitLValue(E->getSubExpr());
2852 
2853     // Perform the base-to-derived conversion
2854     llvm::Value *Derived =
2855       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2856                                E->path_begin(), E->path_end(),
2857                                /*NullCheckValue=*/false);
2858 
2859     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2860     // performed and the object is not of the derived type.
2861     if (SanitizePerformTypeCheck)
2862       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2863                     Derived, E->getType());
2864 
2865     return MakeAddrLValue(Derived, E->getType());
2866   }
2867   case CK_LValueBitCast: {
2868     // This must be a reinterpret_cast (or c-style equivalent).
2869     const auto *CE = cast<ExplicitCastExpr>(E);
2870 
2871     LValue LV = EmitLValue(E->getSubExpr());
2872     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2873                                            ConvertType(CE->getTypeAsWritten()));
2874     return MakeAddrLValue(V, E->getType());
2875   }
2876   case CK_ObjCObjectLValueCast: {
2877     LValue LV = EmitLValue(E->getSubExpr());
2878     QualType ToType = getContext().getLValueReferenceType(E->getType());
2879     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2880                                            ConvertType(ToType));
2881     return MakeAddrLValue(V, E->getType());
2882   }
2883   case CK_ZeroToOCLEvent:
2884     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2885   }
2886 
2887   llvm_unreachable("Unhandled lvalue cast kind?");
2888 }
2889 
2890 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2891   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2892   return getOpaqueLValueMapping(e);
2893 }
2894 
2895 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2896                                            const FieldDecl *FD,
2897                                            SourceLocation Loc) {
2898   QualType FT = FD->getType();
2899   LValue FieldLV = EmitLValueForField(LV, FD);
2900   switch (getEvaluationKind(FT)) {
2901   case TEK_Complex:
2902     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
2903   case TEK_Aggregate:
2904     return FieldLV.asAggregateRValue();
2905   case TEK_Scalar:
2906     return EmitLoadOfLValue(FieldLV, Loc);
2907   }
2908   llvm_unreachable("bad evaluation kind");
2909 }
2910 
2911 //===--------------------------------------------------------------------===//
2912 //                             Expression Emission
2913 //===--------------------------------------------------------------------===//
2914 
2915 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2916                                      ReturnValueSlot ReturnValue) {
2917   if (CGDebugInfo *DI = getDebugInfo()) {
2918     SourceLocation Loc = E->getLocStart();
2919     // Force column info to be generated so we can differentiate
2920     // multiple call sites on the same line in the debug info.
2921     // FIXME: This is insufficient. Two calls coming from the same macro
2922     // expansion will still get the same line/column and break debug info. It's
2923     // possible that LLVM can be fixed to not rely on this uniqueness, at which
2924     // point this workaround can be removed.
2925     const FunctionDecl* Callee = E->getDirectCallee();
2926     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2927     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2928   }
2929 
2930   // Builtins never have block type.
2931   if (E->getCallee()->getType()->isBlockPointerType())
2932     return EmitBlockCallExpr(E, ReturnValue);
2933 
2934   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
2935     return EmitCXXMemberCallExpr(CE, ReturnValue);
2936 
2937   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
2938     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2939 
2940   const Decl *TargetDecl = E->getCalleeDecl();
2941   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2942     if (unsigned builtinID = FD->getBuiltinID())
2943       return EmitBuiltinExpr(FD, builtinID, E);
2944   }
2945 
2946   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
2947     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2948       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2949 
2950   if (const auto *PseudoDtor =
2951           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2952     QualType DestroyedType = PseudoDtor->getDestroyedType();
2953     if (getLangOpts().ObjCAutoRefCount &&
2954         DestroyedType->isObjCLifetimeType() &&
2955         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2956          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2957       // Automatic Reference Counting:
2958       //   If the pseudo-expression names a retainable object with weak or
2959       //   strong lifetime, the object shall be released.
2960       Expr *BaseExpr = PseudoDtor->getBase();
2961       llvm::Value *BaseValue = NULL;
2962       Qualifiers BaseQuals;
2963 
2964       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2965       if (PseudoDtor->isArrow()) {
2966         BaseValue = EmitScalarExpr(BaseExpr);
2967         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2968         BaseQuals = PTy->getPointeeType().getQualifiers();
2969       } else {
2970         LValue BaseLV = EmitLValue(BaseExpr);
2971         BaseValue = BaseLV.getAddress();
2972         QualType BaseTy = BaseExpr->getType();
2973         BaseQuals = BaseTy.getQualifiers();
2974       }
2975 
2976       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2977       case Qualifiers::OCL_None:
2978       case Qualifiers::OCL_ExplicitNone:
2979       case Qualifiers::OCL_Autoreleasing:
2980         break;
2981 
2982       case Qualifiers::OCL_Strong:
2983         EmitARCRelease(Builder.CreateLoad(BaseValue,
2984                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2985                        ARCPreciseLifetime);
2986         break;
2987 
2988       case Qualifiers::OCL_Weak:
2989         EmitARCDestroyWeak(BaseValue);
2990         break;
2991       }
2992     } else {
2993       // C++ [expr.pseudo]p1:
2994       //   The result shall only be used as the operand for the function call
2995       //   operator (), and the result of such a call has type void. The only
2996       //   effect is the evaluation of the postfix-expression before the dot or
2997       //   arrow.
2998       EmitScalarExpr(E->getCallee());
2999     }
3000 
3001     return RValue::get(0);
3002   }
3003 
3004   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3005   return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(),
3006                   ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl);
3007 }
3008 
3009 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3010   // Comma expressions just emit their LHS then their RHS as an l-value.
3011   if (E->getOpcode() == BO_Comma) {
3012     EmitIgnoredExpr(E->getLHS());
3013     EnsureInsertPoint();
3014     return EmitLValue(E->getRHS());
3015   }
3016 
3017   if (E->getOpcode() == BO_PtrMemD ||
3018       E->getOpcode() == BO_PtrMemI)
3019     return EmitPointerToDataMemberBinaryExpr(E);
3020 
3021   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3022 
3023   // Note that in all of these cases, __block variables need the RHS
3024   // evaluated first just in case the variable gets moved by the RHS.
3025 
3026   switch (getEvaluationKind(E->getType())) {
3027   case TEK_Scalar: {
3028     switch (E->getLHS()->getType().getObjCLifetime()) {
3029     case Qualifiers::OCL_Strong:
3030       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3031 
3032     case Qualifiers::OCL_Autoreleasing:
3033       return EmitARCStoreAutoreleasing(E).first;
3034 
3035     // No reason to do any of these differently.
3036     case Qualifiers::OCL_None:
3037     case Qualifiers::OCL_ExplicitNone:
3038     case Qualifiers::OCL_Weak:
3039       break;
3040     }
3041 
3042     RValue RV = EmitAnyExpr(E->getRHS());
3043     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3044     EmitStoreThroughLValue(RV, LV);
3045     return LV;
3046   }
3047 
3048   case TEK_Complex:
3049     return EmitComplexAssignmentLValue(E);
3050 
3051   case TEK_Aggregate:
3052     return EmitAggExprToLValue(E);
3053   }
3054   llvm_unreachable("bad evaluation kind");
3055 }
3056 
3057 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3058   RValue RV = EmitCallExpr(E);
3059 
3060   if (!RV.isScalar())
3061     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3062 
3063   assert(E->getCallReturnType()->isReferenceType() &&
3064          "Can't have a scalar return unless the return type is a "
3065          "reference type!");
3066 
3067   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3068 }
3069 
3070 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3071   // FIXME: This shouldn't require another copy.
3072   return EmitAggExprToLValue(E);
3073 }
3074 
3075 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3076   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3077          && "binding l-value to type which needs a temporary");
3078   AggValueSlot Slot = CreateAggTemp(E->getType());
3079   EmitCXXConstructExpr(E, Slot);
3080   return MakeAddrLValue(Slot.getAddr(), E->getType());
3081 }
3082 
3083 LValue
3084 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3085   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3086 }
3087 
3088 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3089   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3090                                ConvertType(E->getType())->getPointerTo());
3091 }
3092 
3093 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3094   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3095 }
3096 
3097 LValue
3098 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3099   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3100   Slot.setExternallyDestructed();
3101   EmitAggExpr(E->getSubExpr(), Slot);
3102   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3103   return MakeAddrLValue(Slot.getAddr(), E->getType());
3104 }
3105 
3106 LValue
3107 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3108   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3109   EmitLambdaExpr(E, Slot);
3110   return MakeAddrLValue(Slot.getAddr(), E->getType());
3111 }
3112 
3113 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3114   RValue RV = EmitObjCMessageExpr(E);
3115 
3116   if (!RV.isScalar())
3117     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3118 
3119   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3120          "Can't have a scalar return unless the return type is a "
3121          "reference type!");
3122 
3123   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3124 }
3125 
3126 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3127   llvm::Value *V =
3128     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3129   return MakeAddrLValue(V, E->getType());
3130 }
3131 
3132 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3133                                              const ObjCIvarDecl *Ivar) {
3134   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3135 }
3136 
3137 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3138                                           llvm::Value *BaseValue,
3139                                           const ObjCIvarDecl *Ivar,
3140                                           unsigned CVRQualifiers) {
3141   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3142                                                    Ivar, CVRQualifiers);
3143 }
3144 
3145 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3146   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3147   llvm::Value *BaseValue = 0;
3148   const Expr *BaseExpr = E->getBase();
3149   Qualifiers BaseQuals;
3150   QualType ObjectTy;
3151   if (E->isArrow()) {
3152     BaseValue = EmitScalarExpr(BaseExpr);
3153     ObjectTy = BaseExpr->getType()->getPointeeType();
3154     BaseQuals = ObjectTy.getQualifiers();
3155   } else {
3156     LValue BaseLV = EmitLValue(BaseExpr);
3157     // FIXME: this isn't right for bitfields.
3158     BaseValue = BaseLV.getAddress();
3159     ObjectTy = BaseExpr->getType();
3160     BaseQuals = ObjectTy.getQualifiers();
3161   }
3162 
3163   LValue LV =
3164     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3165                       BaseQuals.getCVRQualifiers());
3166   setObjCGCLValueClass(getContext(), E, LV);
3167   return LV;
3168 }
3169 
3170 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3171   // Can only get l-value for message expression returning aggregate type
3172   RValue RV = EmitAnyExprToTemp(E);
3173   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3174 }
3175 
3176 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3177                                  SourceLocation CallLoc,
3178                                  ReturnValueSlot ReturnValue,
3179                                  CallExpr::const_arg_iterator ArgBeg,
3180                                  CallExpr::const_arg_iterator ArgEnd,
3181                                  const Decl *TargetDecl) {
3182   // Get the actual function type. The callee type will always be a pointer to
3183   // function type or a block pointer type.
3184   assert(CalleeType->isFunctionPointerType() &&
3185          "Call must have function pointer type!");
3186 
3187   CalleeType = getContext().getCanonicalType(CalleeType);
3188 
3189   const auto *FnType =
3190       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3191 
3192   // Force column info to differentiate multiple inlined call sites on
3193   // the same line, analoguous to EmitCallExpr.
3194   // FIXME: This is insufficient. Two calls coming from the same macro expansion
3195   // will still get the same line/column and break debug info. It's possible
3196   // that LLVM can be fixed to not rely on this uniqueness, at which point this
3197   // workaround can be removed.
3198   bool ForceColumnInfo = false;
3199   if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3200     ForceColumnInfo = FD->isInlineSpecified();
3201 
3202   if (getLangOpts().CPlusPlus && SanOpts->Function &&
3203       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3204     if (llvm::Constant *PrefixSig =
3205             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3206       llvm::Constant *FTRTTIConst =
3207           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3208       llvm::Type *PrefixStructTyElems[] = {
3209         PrefixSig->getType(),
3210         FTRTTIConst->getType()
3211       };
3212       llvm::StructType *PrefixStructTy = llvm::StructType::get(
3213           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3214 
3215       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3216           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3217       llvm::Value *CalleeSigPtr =
3218           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
3219       llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3220       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3221 
3222       llvm::BasicBlock *Cont = createBasicBlock("cont");
3223       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3224       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3225 
3226       EmitBlock(TypeCheck);
3227       llvm::Value *CalleeRTTIPtr =
3228           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
3229       llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3230       llvm::Value *CalleeRTTIMatch =
3231           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3232       llvm::Constant *StaticData[] = {
3233         EmitCheckSourceLocation(CallLoc),
3234         EmitCheckTypeDescriptor(CalleeType)
3235       };
3236       EmitCheck(CalleeRTTIMatch,
3237                 "function_type_mismatch",
3238                 StaticData,
3239                 Callee,
3240                 CRK_Recoverable);
3241 
3242       Builder.CreateBr(Cont);
3243       EmitBlock(Cont);
3244     }
3245   }
3246 
3247   CallArgList Args;
3248   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
3249                ForceColumnInfo);
3250 
3251   const CGFunctionInfo &FnInfo =
3252     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3253 
3254   // C99 6.5.2.2p6:
3255   //   If the expression that denotes the called function has a type
3256   //   that does not include a prototype, [the default argument
3257   //   promotions are performed]. If the number of arguments does not
3258   //   equal the number of parameters, the behavior is undefined. If
3259   //   the function is defined with a type that includes a prototype,
3260   //   and either the prototype ends with an ellipsis (, ...) or the
3261   //   types of the arguments after promotion are not compatible with
3262   //   the types of the parameters, the behavior is undefined. If the
3263   //   function is defined with a type that does not include a
3264   //   prototype, and the types of the arguments after promotion are
3265   //   not compatible with those of the parameters after promotion,
3266   //   the behavior is undefined [except in some trivial cases].
3267   // That is, in the general case, we should assume that a call
3268   // through an unprototyped function type works like a *non-variadic*
3269   // call.  The way we make this work is to cast to the exact type
3270   // of the promoted arguments.
3271   if (isa<FunctionNoProtoType>(FnType)) {
3272     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3273     CalleeTy = CalleeTy->getPointerTo();
3274     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3275   }
3276 
3277   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3278 }
3279 
3280 LValue CodeGenFunction::
3281 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3282   llvm::Value *BaseV;
3283   if (E->getOpcode() == BO_PtrMemI)
3284     BaseV = EmitScalarExpr(E->getLHS());
3285   else
3286     BaseV = EmitLValue(E->getLHS()).getAddress();
3287 
3288   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3289 
3290   const MemberPointerType *MPT
3291     = E->getRHS()->getType()->getAs<MemberPointerType>();
3292 
3293   llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
3294       *this, E, BaseV, OffsetV, MPT);
3295 
3296   return MakeAddrLValue(AddV, MPT->getPointeeType());
3297 }
3298 
3299 /// Given the address of a temporary variable, produce an r-value of
3300 /// its type.
3301 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3302                                             QualType type,
3303                                             SourceLocation loc) {
3304   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3305   switch (getEvaluationKind(type)) {
3306   case TEK_Complex:
3307     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3308   case TEK_Aggregate:
3309     return lvalue.asAggregateRValue();
3310   case TEK_Scalar:
3311     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3312   }
3313   llvm_unreachable("bad evaluation kind");
3314 }
3315 
3316 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3317   assert(Val->getType()->isFPOrFPVectorTy());
3318   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3319     return;
3320 
3321   llvm::MDBuilder MDHelper(getLLVMContext());
3322   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3323 
3324   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3325 }
3326 
3327 namespace {
3328   struct LValueOrRValue {
3329     LValue LV;
3330     RValue RV;
3331   };
3332 }
3333 
3334 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3335                                            const PseudoObjectExpr *E,
3336                                            bool forLValue,
3337                                            AggValueSlot slot) {
3338   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3339 
3340   // Find the result expression, if any.
3341   const Expr *resultExpr = E->getResultExpr();
3342   LValueOrRValue result;
3343 
3344   for (PseudoObjectExpr::const_semantics_iterator
3345          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3346     const Expr *semantic = *i;
3347 
3348     // If this semantic expression is an opaque value, bind it
3349     // to the result of its source expression.
3350     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3351 
3352       // If this is the result expression, we may need to evaluate
3353       // directly into the slot.
3354       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3355       OVMA opaqueData;
3356       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3357           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3358         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3359 
3360         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3361         opaqueData = OVMA::bind(CGF, ov, LV);
3362         result.RV = slot.asRValue();
3363 
3364       // Otherwise, emit as normal.
3365       } else {
3366         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3367 
3368         // If this is the result, also evaluate the result now.
3369         if (ov == resultExpr) {
3370           if (forLValue)
3371             result.LV = CGF.EmitLValue(ov);
3372           else
3373             result.RV = CGF.EmitAnyExpr(ov, slot);
3374         }
3375       }
3376 
3377       opaques.push_back(opaqueData);
3378 
3379     // Otherwise, if the expression is the result, evaluate it
3380     // and remember the result.
3381     } else if (semantic == resultExpr) {
3382       if (forLValue)
3383         result.LV = CGF.EmitLValue(semantic);
3384       else
3385         result.RV = CGF.EmitAnyExpr(semantic, slot);
3386 
3387     // Otherwise, evaluate the expression in an ignored context.
3388     } else {
3389       CGF.EmitIgnoredExpr(semantic);
3390     }
3391   }
3392 
3393   // Unbind all the opaques now.
3394   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3395     opaques[i].unbind(CGF);
3396 
3397   return result;
3398 }
3399 
3400 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3401                                                AggValueSlot slot) {
3402   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3403 }
3404 
3405 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3406   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3407 }
3408