1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
65                                                      CharUnits Align,
66                                                      const Twine &Name,
67                                                      llvm::Value *ArraySize) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getQuantity());
70   return Address(Alloca, Align);
71 }
72 
73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
74 /// block. The alloca is casted to default address space if necessary.
75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
76                                           const Twine &Name,
77                                           llvm::Value *ArraySize,
78                                           Address *AllocaAddr) {
79   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
80   if (AllocaAddr)
81     *AllocaAddr = Alloca;
82   llvm::Value *V = Alloca.getPointer();
83   // Alloca always returns a pointer in alloca address space, which may
84   // be different from the type defined by the language. For example,
85   // in C++ the auto variables are in the default address space. Therefore
86   // cast alloca to the default address space when necessary.
87   if (getASTAllocaAddressSpace() != LangAS::Default) {
88     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
89     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
90     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
91     // otherwise alloca is inserted at the current insertion point of the
92     // builder.
93     if (!ArraySize)
94       Builder.SetInsertPoint(AllocaInsertPt);
95     V = getTargetHooks().performAddrSpaceCast(
96         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
97         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
98   }
99 
100   return Address(V, Align);
101 }
102 
103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
105 /// insertion point of the builder.
106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
107                                                     const Twine &Name,
108                                                     llvm::Value *ArraySize) {
109   if (ArraySize)
110     return Builder.CreateAlloca(Ty, ArraySize, Name);
111   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
112                               ArraySize, Name, AllocaInsertPt);
113 }
114 
115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
116 /// default alignment of the corresponding LLVM type, which is *not*
117 /// guaranteed to be related in any way to the expected alignment of
118 /// an AST type that might have been lowered to Ty.
119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
120                                                       const Twine &Name) {
121   CharUnits Align =
122     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
123   return CreateTempAlloca(Ty, Align, Name);
124 }
125 
126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
127   assert(isa<llvm::AllocaInst>(Var.getPointer()));
128   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
129   Store->setAlignment(Var.getAlignment().getQuantity());
130   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
131   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
132 }
133 
134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
135   CharUnits Align = getContext().getTypeAlignInChars(Ty);
136   return CreateTempAlloca(ConvertType(Ty), Align, Name);
137 }
138 
139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
140                                        Address *Alloca) {
141   // FIXME: Should we prefer the preferred type alignment here?
142   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
143 }
144 
145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
146                                        const Twine &Name, Address *Alloca) {
147   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
148                           /*ArraySize=*/nullptr, Alloca);
149 }
150 
151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
152                                                   const Twine &Name) {
153   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
154 }
155 
156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
157                                                   const Twine &Name) {
158   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
159                                   Name);
160 }
161 
162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
163 /// expression and compare the result against zero, returning an Int1Ty value.
164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
165   PGO.setCurrentStmt(E);
166   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
167     llvm::Value *MemPtr = EmitScalarExpr(E);
168     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
169   }
170 
171   QualType BoolTy = getContext().BoolTy;
172   SourceLocation Loc = E->getExprLoc();
173   if (!E->getType()->isAnyComplexType())
174     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
175 
176   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
177                                        Loc);
178 }
179 
180 /// EmitIgnoredExpr - Emit code to compute the specified expression,
181 /// ignoring the result.
182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
183   if (E->isRValue())
184     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
185 
186   // Just emit it as an l-value and drop the result.
187   EmitLValue(E);
188 }
189 
190 /// EmitAnyExpr - Emit code to compute the specified expression which
191 /// can have any type.  The result is returned as an RValue struct.
192 /// If this is an aggregate expression, AggSlot indicates where the
193 /// result should be returned.
194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
195                                     AggValueSlot aggSlot,
196                                     bool ignoreResult) {
197   switch (getEvaluationKind(E->getType())) {
198   case TEK_Scalar:
199     return RValue::get(EmitScalarExpr(E, ignoreResult));
200   case TEK_Complex:
201     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
202   case TEK_Aggregate:
203     if (!ignoreResult && aggSlot.isIgnored())
204       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
205     EmitAggExpr(E, aggSlot);
206     return aggSlot.asRValue();
207   }
208   llvm_unreachable("bad evaluation kind");
209 }
210 
211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
212 /// always be accessible even if no aggregate location is provided.
213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
214   AggValueSlot AggSlot = AggValueSlot::ignored();
215 
216   if (hasAggregateEvaluationKind(E->getType()))
217     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
218   return EmitAnyExpr(E, AggSlot);
219 }
220 
221 /// EmitAnyExprToMem - Evaluate an expression into a given memory
222 /// location.
223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
224                                        Address Location,
225                                        Qualifiers Quals,
226                                        bool IsInit) {
227   // FIXME: This function should take an LValue as an argument.
228   switch (getEvaluationKind(E->getType())) {
229   case TEK_Complex:
230     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
231                               /*isInit*/ false);
232     return;
233 
234   case TEK_Aggregate: {
235     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
236                                          AggValueSlot::IsDestructed_t(IsInit),
237                                          AggValueSlot::DoesNotNeedGCBarriers,
238                                          AggValueSlot::IsAliased_t(!IsInit),
239                                          AggValueSlot::MayOverlap));
240     return;
241   }
242 
243   case TEK_Scalar: {
244     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
245     LValue LV = MakeAddrLValue(Location, E->getType());
246     EmitStoreThroughLValue(RV, LV);
247     return;
248   }
249   }
250   llvm_unreachable("bad evaluation kind");
251 }
252 
253 static void
254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
255                      const Expr *E, Address ReferenceTemporary) {
256   // Objective-C++ ARC:
257   //   If we are binding a reference to a temporary that has ownership, we
258   //   need to perform retain/release operations on the temporary.
259   //
260   // FIXME: This should be looking at E, not M.
261   if (auto Lifetime = M->getType().getObjCLifetime()) {
262     switch (Lifetime) {
263     case Qualifiers::OCL_None:
264     case Qualifiers::OCL_ExplicitNone:
265       // Carry on to normal cleanup handling.
266       break;
267 
268     case Qualifiers::OCL_Autoreleasing:
269       // Nothing to do; cleaned up by an autorelease pool.
270       return;
271 
272     case Qualifiers::OCL_Strong:
273     case Qualifiers::OCL_Weak:
274       switch (StorageDuration Duration = M->getStorageDuration()) {
275       case SD_Static:
276         // Note: we intentionally do not register a cleanup to release
277         // the object on program termination.
278         return;
279 
280       case SD_Thread:
281         // FIXME: We should probably register a cleanup in this case.
282         return;
283 
284       case SD_Automatic:
285       case SD_FullExpression:
286         CodeGenFunction::Destroyer *Destroy;
287         CleanupKind CleanupKind;
288         if (Lifetime == Qualifiers::OCL_Strong) {
289           const ValueDecl *VD = M->getExtendingDecl();
290           bool Precise =
291               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
292           CleanupKind = CGF.getARCCleanupKind();
293           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
294                             : &CodeGenFunction::destroyARCStrongImprecise;
295         } else {
296           // __weak objects always get EH cleanups; otherwise, exceptions
297           // could cause really nasty crashes instead of mere leaks.
298           CleanupKind = NormalAndEHCleanup;
299           Destroy = &CodeGenFunction::destroyARCWeak;
300         }
301         if (Duration == SD_FullExpression)
302           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
303                           M->getType(), *Destroy,
304                           CleanupKind & EHCleanup);
305         else
306           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
307                                           M->getType(),
308                                           *Destroy, CleanupKind & EHCleanup);
309         return;
310 
311       case SD_Dynamic:
312         llvm_unreachable("temporary cannot have dynamic storage duration");
313       }
314       llvm_unreachable("unknown storage duration");
315     }
316   }
317 
318   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
319   if (const RecordType *RT =
320           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
321     // Get the destructor for the reference temporary.
322     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
323     if (!ClassDecl->hasTrivialDestructor())
324       ReferenceTemporaryDtor = ClassDecl->getDestructor();
325   }
326 
327   if (!ReferenceTemporaryDtor)
328     return;
329 
330   // Call the destructor for the temporary.
331   switch (M->getStorageDuration()) {
332   case SD_Static:
333   case SD_Thread: {
334     llvm::Constant *CleanupFn;
335     llvm::Constant *CleanupArg;
336     if (E->getType()->isArrayType()) {
337       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
338           ReferenceTemporary, E->getType(),
339           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
340           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
341       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
342     } else {
343       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
344                                                StructorType::Complete);
345       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
346     }
347     CGF.CGM.getCXXABI().registerGlobalDtor(
348         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
349     break;
350   }
351 
352   case SD_FullExpression:
353     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
354                     CodeGenFunction::destroyCXXObject,
355                     CGF.getLangOpts().Exceptions);
356     break;
357 
358   case SD_Automatic:
359     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
360                                     ReferenceTemporary, E->getType(),
361                                     CodeGenFunction::destroyCXXObject,
362                                     CGF.getLangOpts().Exceptions);
363     break;
364 
365   case SD_Dynamic:
366     llvm_unreachable("temporary cannot have dynamic storage duration");
367   }
368 }
369 
370 static Address createReferenceTemporary(CodeGenFunction &CGF,
371                                         const MaterializeTemporaryExpr *M,
372                                         const Expr *Inner,
373                                         Address *Alloca = nullptr) {
374   auto &TCG = CGF.getTargetHooks();
375   switch (M->getStorageDuration()) {
376   case SD_FullExpression:
377   case SD_Automatic: {
378     // If we have a constant temporary array or record try to promote it into a
379     // constant global under the same rules a normal constant would've been
380     // promoted. This is easier on the optimizer and generally emits fewer
381     // instructions.
382     QualType Ty = Inner->getType();
383     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
384         (Ty->isArrayType() || Ty->isRecordType()) &&
385         CGF.CGM.isTypeConstant(Ty, true))
386       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
387         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
388           auto AS = AddrSpace.getValue();
389           auto *GV = new llvm::GlobalVariable(
390               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
391               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
392               llvm::GlobalValue::NotThreadLocal,
393               CGF.getContext().getTargetAddressSpace(AS));
394           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
395           GV->setAlignment(alignment.getQuantity());
396           llvm::Constant *C = GV;
397           if (AS != LangAS::Default)
398             C = TCG.performAddrSpaceCast(
399                 CGF.CGM, GV, AS, LangAS::Default,
400                 GV->getValueType()->getPointerTo(
401                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
402           // FIXME: Should we put the new global into a COMDAT?
403           return Address(C, alignment);
404         }
405       }
406     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
407   }
408   case SD_Thread:
409   case SD_Static:
410     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
411 
412   case SD_Dynamic:
413     llvm_unreachable("temporary can't have dynamic storage duration");
414   }
415   llvm_unreachable("unknown storage duration");
416 }
417 
418 LValue CodeGenFunction::
419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
420   const Expr *E = M->GetTemporaryExpr();
421 
422     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
423     // as that will cause the lifetime adjustment to be lost for ARC
424   auto ownership = M->getType().getObjCLifetime();
425   if (ownership != Qualifiers::OCL_None &&
426       ownership != Qualifiers::OCL_ExplicitNone) {
427     Address Object = createReferenceTemporary(*this, M, E);
428     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
429       Object = Address(llvm::ConstantExpr::getBitCast(Var,
430                            ConvertTypeForMem(E->getType())
431                              ->getPointerTo(Object.getAddressSpace())),
432                        Object.getAlignment());
433 
434       // createReferenceTemporary will promote the temporary to a global with a
435       // constant initializer if it can.  It can only do this to a value of
436       // ARC-manageable type if the value is global and therefore "immune" to
437       // ref-counting operations.  Therefore we have no need to emit either a
438       // dynamic initialization or a cleanup and we can just return the address
439       // of the temporary.
440       if (Var->hasInitializer())
441         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
442 
443       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
444     }
445     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
446                                        AlignmentSource::Decl);
447 
448     switch (getEvaluationKind(E->getType())) {
449     default: llvm_unreachable("expected scalar or aggregate expression");
450     case TEK_Scalar:
451       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
452       break;
453     case TEK_Aggregate: {
454       EmitAggExpr(E, AggValueSlot::forAddr(Object,
455                                            E->getType().getQualifiers(),
456                                            AggValueSlot::IsDestructed,
457                                            AggValueSlot::DoesNotNeedGCBarriers,
458                                            AggValueSlot::IsNotAliased,
459                                            AggValueSlot::DoesNotOverlap));
460       break;
461     }
462     }
463 
464     pushTemporaryCleanup(*this, M, E, Object);
465     return RefTempDst;
466   }
467 
468   SmallVector<const Expr *, 2> CommaLHSs;
469   SmallVector<SubobjectAdjustment, 2> Adjustments;
470   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
471 
472   for (const auto &Ignored : CommaLHSs)
473     EmitIgnoredExpr(Ignored);
474 
475   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
476     if (opaque->getType()->isRecordType()) {
477       assert(Adjustments.empty());
478       return EmitOpaqueValueLValue(opaque);
479     }
480   }
481 
482   // Create and initialize the reference temporary.
483   Address Alloca = Address::invalid();
484   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
485   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
486           Object.getPointer()->stripPointerCasts())) {
487     Object = Address(llvm::ConstantExpr::getBitCast(
488                          cast<llvm::Constant>(Object.getPointer()),
489                          ConvertTypeForMem(E->getType())->getPointerTo()),
490                      Object.getAlignment());
491     // If the temporary is a global and has a constant initializer or is a
492     // constant temporary that we promoted to a global, we may have already
493     // initialized it.
494     if (!Var->hasInitializer()) {
495       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
496       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
497     }
498   } else {
499     switch (M->getStorageDuration()) {
500     case SD_Automatic:
501     case SD_FullExpression:
502       if (auto *Size = EmitLifetimeStart(
503               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
504               Alloca.getPointer())) {
505         if (M->getStorageDuration() == SD_Automatic)
506           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
507                                                     Alloca, Size);
508         else
509           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
510                                                Size);
511       }
512       break;
513     default:
514       break;
515     }
516     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
517   }
518   pushTemporaryCleanup(*this, M, E, Object);
519 
520   // Perform derived-to-base casts and/or field accesses, to get from the
521   // temporary object we created (and, potentially, for which we extended
522   // the lifetime) to the subobject we're binding the reference to.
523   for (unsigned I = Adjustments.size(); I != 0; --I) {
524     SubobjectAdjustment &Adjustment = Adjustments[I-1];
525     switch (Adjustment.Kind) {
526     case SubobjectAdjustment::DerivedToBaseAdjustment:
527       Object =
528           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
529                                 Adjustment.DerivedToBase.BasePath->path_begin(),
530                                 Adjustment.DerivedToBase.BasePath->path_end(),
531                                 /*NullCheckValue=*/ false, E->getExprLoc());
532       break;
533 
534     case SubobjectAdjustment::FieldAdjustment: {
535       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
536       LV = EmitLValueForField(LV, Adjustment.Field);
537       assert(LV.isSimple() &&
538              "materialized temporary field is not a simple lvalue");
539       Object = LV.getAddress();
540       break;
541     }
542 
543     case SubobjectAdjustment::MemberPointerAdjustment: {
544       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
545       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
546                                                Adjustment.Ptr.MPT);
547       break;
548     }
549     }
550   }
551 
552   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
553 }
554 
555 RValue
556 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
557   // Emit the expression as an lvalue.
558   LValue LV = EmitLValue(E);
559   assert(LV.isSimple());
560   llvm::Value *Value = LV.getPointer();
561 
562   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
563     // C++11 [dcl.ref]p5 (as amended by core issue 453):
564     //   If a glvalue to which a reference is directly bound designates neither
565     //   an existing object or function of an appropriate type nor a region of
566     //   storage of suitable size and alignment to contain an object of the
567     //   reference's type, the behavior is undefined.
568     QualType Ty = E->getType();
569     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
570   }
571 
572   return RValue::get(Value);
573 }
574 
575 
576 /// getAccessedFieldNo - Given an encoded value and a result number, return the
577 /// input field number being accessed.
578 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
579                                              const llvm::Constant *Elts) {
580   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
581       ->getZExtValue();
582 }
583 
584 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
585 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
586                                     llvm::Value *High) {
587   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
588   llvm::Value *K47 = Builder.getInt64(47);
589   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
590   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
591   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
592   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
593   return Builder.CreateMul(B1, KMul);
594 }
595 
596 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
597   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
598          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
599 }
600 
601 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
602   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
603   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
604          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
605           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
606           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
607 }
608 
609 bool CodeGenFunction::sanitizePerformTypeCheck() const {
610   return SanOpts.has(SanitizerKind::Null) |
611          SanOpts.has(SanitizerKind::Alignment) |
612          SanOpts.has(SanitizerKind::ObjectSize) |
613          SanOpts.has(SanitizerKind::Vptr);
614 }
615 
616 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
617                                     llvm::Value *Ptr, QualType Ty,
618                                     CharUnits Alignment,
619                                     SanitizerSet SkippedChecks) {
620   if (!sanitizePerformTypeCheck())
621     return;
622 
623   // Don't check pointers outside the default address space. The null check
624   // isn't correct, the object-size check isn't supported by LLVM, and we can't
625   // communicate the addresses to the runtime handler for the vptr check.
626   if (Ptr->getType()->getPointerAddressSpace())
627     return;
628 
629   // Don't check pointers to volatile data. The behavior here is implementation-
630   // defined.
631   if (Ty.isVolatileQualified())
632     return;
633 
634   SanitizerScope SanScope(this);
635 
636   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
637   llvm::BasicBlock *Done = nullptr;
638 
639   // Quickly determine whether we have a pointer to an alloca. It's possible
640   // to skip null checks, and some alignment checks, for these pointers. This
641   // can reduce compile-time significantly.
642   auto PtrToAlloca =
643       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
644 
645   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
646   llvm::Value *IsNonNull = nullptr;
647   bool IsGuaranteedNonNull =
648       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
649   bool AllowNullPointers = isNullPointerAllowed(TCK);
650   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
651       !IsGuaranteedNonNull) {
652     // The glvalue must not be an empty glvalue.
653     IsNonNull = Builder.CreateIsNotNull(Ptr);
654 
655     // The IR builder can constant-fold the null check if the pointer points to
656     // a constant.
657     IsGuaranteedNonNull = IsNonNull == True;
658 
659     // Skip the null check if the pointer is known to be non-null.
660     if (!IsGuaranteedNonNull) {
661       if (AllowNullPointers) {
662         // When performing pointer casts, it's OK if the value is null.
663         // Skip the remaining checks in that case.
664         Done = createBasicBlock("null");
665         llvm::BasicBlock *Rest = createBasicBlock("not.null");
666         Builder.CreateCondBr(IsNonNull, Rest, Done);
667         EmitBlock(Rest);
668       } else {
669         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
670       }
671     }
672   }
673 
674   if (SanOpts.has(SanitizerKind::ObjectSize) &&
675       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
676       !Ty->isIncompleteType()) {
677     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
678 
679     // The glvalue must refer to a large enough storage region.
680     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
681     //        to check this.
682     // FIXME: Get object address space
683     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
684     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
685     llvm::Value *Min = Builder.getFalse();
686     llvm::Value *NullIsUnknown = Builder.getFalse();
687     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
688     llvm::Value *LargeEnough = Builder.CreateICmpUGE(
689         Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}),
690         llvm::ConstantInt::get(IntPtrTy, Size));
691     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
692   }
693 
694   uint64_t AlignVal = 0;
695   llvm::Value *PtrAsInt = nullptr;
696 
697   if (SanOpts.has(SanitizerKind::Alignment) &&
698       !SkippedChecks.has(SanitizerKind::Alignment)) {
699     AlignVal = Alignment.getQuantity();
700     if (!Ty->isIncompleteType() && !AlignVal)
701       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
702 
703     // The glvalue must be suitably aligned.
704     if (AlignVal > 1 &&
705         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
706       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
707       llvm::Value *Align = Builder.CreateAnd(
708           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
709       llvm::Value *Aligned =
710           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
711       if (Aligned != True)
712         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
713     }
714   }
715 
716   if (Checks.size() > 0) {
717     // Make sure we're not losing information. Alignment needs to be a power of
718     // 2
719     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
720     llvm::Constant *StaticData[] = {
721         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
722         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
723         llvm::ConstantInt::get(Int8Ty, TCK)};
724     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
725               PtrAsInt ? PtrAsInt : Ptr);
726   }
727 
728   // If possible, check that the vptr indicates that there is a subobject of
729   // type Ty at offset zero within this object.
730   //
731   // C++11 [basic.life]p5,6:
732   //   [For storage which does not refer to an object within its lifetime]
733   //   The program has undefined behavior if:
734   //    -- the [pointer or glvalue] is used to access a non-static data member
735   //       or call a non-static member function
736   if (SanOpts.has(SanitizerKind::Vptr) &&
737       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
738     // Ensure that the pointer is non-null before loading it. If there is no
739     // compile-time guarantee, reuse the run-time null check or emit a new one.
740     if (!IsGuaranteedNonNull) {
741       if (!IsNonNull)
742         IsNonNull = Builder.CreateIsNotNull(Ptr);
743       if (!Done)
744         Done = createBasicBlock("vptr.null");
745       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
746       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
747       EmitBlock(VptrNotNull);
748     }
749 
750     // Compute a hash of the mangled name of the type.
751     //
752     // FIXME: This is not guaranteed to be deterministic! Move to a
753     //        fingerprinting mechanism once LLVM provides one. For the time
754     //        being the implementation happens to be deterministic.
755     SmallString<64> MangledName;
756     llvm::raw_svector_ostream Out(MangledName);
757     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
758                                                      Out);
759 
760     // Blacklist based on the mangled type.
761     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
762             SanitizerKind::Vptr, Out.str())) {
763       llvm::hash_code TypeHash = hash_value(Out.str());
764 
765       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
766       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
767       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
768       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
769       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
770       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
771 
772       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
773       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
774 
775       // Look the hash up in our cache.
776       const int CacheSize = 128;
777       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
778       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
779                                                      "__ubsan_vptr_type_cache");
780       llvm::Value *Slot = Builder.CreateAnd(Hash,
781                                             llvm::ConstantInt::get(IntPtrTy,
782                                                                    CacheSize-1));
783       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
784       llvm::Value *CacheVal =
785         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
786                                   getPointerAlign());
787 
788       // If the hash isn't in the cache, call a runtime handler to perform the
789       // hard work of checking whether the vptr is for an object of the right
790       // type. This will either fill in the cache and return, or produce a
791       // diagnostic.
792       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
793       llvm::Constant *StaticData[] = {
794         EmitCheckSourceLocation(Loc),
795         EmitCheckTypeDescriptor(Ty),
796         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
797         llvm::ConstantInt::get(Int8Ty, TCK)
798       };
799       llvm::Value *DynamicData[] = { Ptr, Hash };
800       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
801                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
802                 DynamicData);
803     }
804   }
805 
806   if (Done) {
807     Builder.CreateBr(Done);
808     EmitBlock(Done);
809   }
810 }
811 
812 /// Determine whether this expression refers to a flexible array member in a
813 /// struct. We disable array bounds checks for such members.
814 static bool isFlexibleArrayMemberExpr(const Expr *E) {
815   // For compatibility with existing code, we treat arrays of length 0 or
816   // 1 as flexible array members.
817   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
818   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
819     if (CAT->getSize().ugt(1))
820       return false;
821   } else if (!isa<IncompleteArrayType>(AT))
822     return false;
823 
824   E = E->IgnoreParens();
825 
826   // A flexible array member must be the last member in the class.
827   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
828     // FIXME: If the base type of the member expr is not FD->getParent(),
829     // this should not be treated as a flexible array member access.
830     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
831       RecordDecl::field_iterator FI(
832           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
833       return ++FI == FD->getParent()->field_end();
834     }
835   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
836     return IRE->getDecl()->getNextIvar() == nullptr;
837   }
838 
839   return false;
840 }
841 
842 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
843                                                    QualType EltTy) {
844   ASTContext &C = getContext();
845   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
846   if (!EltSize)
847     return nullptr;
848 
849   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
850   if (!ArrayDeclRef)
851     return nullptr;
852 
853   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
854   if (!ParamDecl)
855     return nullptr;
856 
857   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
858   if (!POSAttr)
859     return nullptr;
860 
861   // Don't load the size if it's a lower bound.
862   int POSType = POSAttr->getType();
863   if (POSType != 0 && POSType != 1)
864     return nullptr;
865 
866   // Find the implicit size parameter.
867   auto PassedSizeIt = SizeArguments.find(ParamDecl);
868   if (PassedSizeIt == SizeArguments.end())
869     return nullptr;
870 
871   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
872   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
873   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
874   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
875                                               C.getSizeType(), E->getExprLoc());
876   llvm::Value *SizeOfElement =
877       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
878   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
879 }
880 
881 /// If Base is known to point to the start of an array, return the length of
882 /// that array. Return 0 if the length cannot be determined.
883 static llvm::Value *getArrayIndexingBound(
884     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
885   // For the vector indexing extension, the bound is the number of elements.
886   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
887     IndexedType = Base->getType();
888     return CGF.Builder.getInt32(VT->getNumElements());
889   }
890 
891   Base = Base->IgnoreParens();
892 
893   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
894     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
895         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
896       IndexedType = CE->getSubExpr()->getType();
897       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
898       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
899         return CGF.Builder.getInt(CAT->getSize());
900       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
901         return CGF.getVLASize(VAT).NumElts;
902       // Ignore pass_object_size here. It's not applicable on decayed pointers.
903     }
904   }
905 
906   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
907   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
908     IndexedType = Base->getType();
909     return POS;
910   }
911 
912   return nullptr;
913 }
914 
915 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
916                                       llvm::Value *Index, QualType IndexType,
917                                       bool Accessed) {
918   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
919          "should not be called unless adding bounds checks");
920   SanitizerScope SanScope(this);
921 
922   QualType IndexedType;
923   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
924   if (!Bound)
925     return;
926 
927   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
928   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
929   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
930 
931   llvm::Constant *StaticData[] = {
932     EmitCheckSourceLocation(E->getExprLoc()),
933     EmitCheckTypeDescriptor(IndexedType),
934     EmitCheckTypeDescriptor(IndexType)
935   };
936   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
937                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
938   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
939             SanitizerHandler::OutOfBounds, StaticData, Index);
940 }
941 
942 
943 CodeGenFunction::ComplexPairTy CodeGenFunction::
944 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
945                          bool isInc, bool isPre) {
946   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
947 
948   llvm::Value *NextVal;
949   if (isa<llvm::IntegerType>(InVal.first->getType())) {
950     uint64_t AmountVal = isInc ? 1 : -1;
951     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
952 
953     // Add the inc/dec to the real part.
954     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
955   } else {
956     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
957     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
958     if (!isInc)
959       FVal.changeSign();
960     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
961 
962     // Add the inc/dec to the real part.
963     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
964   }
965 
966   ComplexPairTy IncVal(NextVal, InVal.second);
967 
968   // Store the updated result through the lvalue.
969   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
970 
971   // If this is a postinc, return the value read from memory, otherwise use the
972   // updated value.
973   return isPre ? IncVal : InVal;
974 }
975 
976 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
977                                              CodeGenFunction *CGF) {
978   // Bind VLAs in the cast type.
979   if (CGF && E->getType()->isVariablyModifiedType())
980     CGF->EmitVariablyModifiedType(E->getType());
981 
982   if (CGDebugInfo *DI = getModuleDebugInfo())
983     DI->EmitExplicitCastType(E->getType());
984 }
985 
986 //===----------------------------------------------------------------------===//
987 //                         LValue Expression Emission
988 //===----------------------------------------------------------------------===//
989 
990 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
991 /// derive a more accurate bound on the alignment of the pointer.
992 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
993                                                   LValueBaseInfo *BaseInfo,
994                                                   TBAAAccessInfo *TBAAInfo) {
995   // We allow this with ObjC object pointers because of fragile ABIs.
996   assert(E->getType()->isPointerType() ||
997          E->getType()->isObjCObjectPointerType());
998   E = E->IgnoreParens();
999 
1000   // Casts:
1001   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1002     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1003       CGM.EmitExplicitCastExprType(ECE, this);
1004 
1005     switch (CE->getCastKind()) {
1006     // Non-converting casts (but not C's implicit conversion from void*).
1007     case CK_BitCast:
1008     case CK_NoOp:
1009     case CK_AddressSpaceConversion:
1010       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1011         if (PtrTy->getPointeeType()->isVoidType())
1012           break;
1013 
1014         LValueBaseInfo InnerBaseInfo;
1015         TBAAAccessInfo InnerTBAAInfo;
1016         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1017                                                 &InnerBaseInfo,
1018                                                 &InnerTBAAInfo);
1019         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1020         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1021 
1022         if (isa<ExplicitCastExpr>(CE)) {
1023           LValueBaseInfo TargetTypeBaseInfo;
1024           TBAAAccessInfo TargetTypeTBAAInfo;
1025           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1026                                                            &TargetTypeBaseInfo,
1027                                                            &TargetTypeTBAAInfo);
1028           if (TBAAInfo)
1029             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1030                                                  TargetTypeTBAAInfo);
1031           // If the source l-value is opaque, honor the alignment of the
1032           // casted-to type.
1033           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1034             if (BaseInfo)
1035               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1036             Addr = Address(Addr.getPointer(), Align);
1037           }
1038         }
1039 
1040         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1041             CE->getCastKind() == CK_BitCast) {
1042           if (auto PT = E->getType()->getAs<PointerType>())
1043             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1044                                       /*MayBeNull=*/true,
1045                                       CodeGenFunction::CFITCK_UnrelatedCast,
1046                                       CE->getLocStart());
1047         }
1048         return CE->getCastKind() != CK_AddressSpaceConversion
1049                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1050                    : Builder.CreateAddrSpaceCast(Addr,
1051                                                  ConvertType(E->getType()));
1052       }
1053       break;
1054 
1055     // Array-to-pointer decay.
1056     case CK_ArrayToPointerDecay:
1057       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1058 
1059     // Derived-to-base conversions.
1060     case CK_UncheckedDerivedToBase:
1061     case CK_DerivedToBase: {
1062       // TODO: Support accesses to members of base classes in TBAA. For now, we
1063       // conservatively pretend that the complete object is of the base class
1064       // type.
1065       if (TBAAInfo)
1066         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1067       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1068       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1069       return GetAddressOfBaseClass(Addr, Derived,
1070                                    CE->path_begin(), CE->path_end(),
1071                                    ShouldNullCheckClassCastValue(CE),
1072                                    CE->getExprLoc());
1073     }
1074 
1075     // TODO: Is there any reason to treat base-to-derived conversions
1076     // specially?
1077     default:
1078       break;
1079     }
1080   }
1081 
1082   // Unary &.
1083   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1084     if (UO->getOpcode() == UO_AddrOf) {
1085       LValue LV = EmitLValue(UO->getSubExpr());
1086       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1087       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1088       return LV.getAddress();
1089     }
1090   }
1091 
1092   // TODO: conditional operators, comma.
1093 
1094   // Otherwise, use the alignment of the type.
1095   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1096                                                    TBAAInfo);
1097   return Address(EmitScalarExpr(E), Align);
1098 }
1099 
1100 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1101   if (Ty->isVoidType())
1102     return RValue::get(nullptr);
1103 
1104   switch (getEvaluationKind(Ty)) {
1105   case TEK_Complex: {
1106     llvm::Type *EltTy =
1107       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1108     llvm::Value *U = llvm::UndefValue::get(EltTy);
1109     return RValue::getComplex(std::make_pair(U, U));
1110   }
1111 
1112   // If this is a use of an undefined aggregate type, the aggregate must have an
1113   // identifiable address.  Just because the contents of the value are undefined
1114   // doesn't mean that the address can't be taken and compared.
1115   case TEK_Aggregate: {
1116     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1117     return RValue::getAggregate(DestPtr);
1118   }
1119 
1120   case TEK_Scalar:
1121     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1122   }
1123   llvm_unreachable("bad evaluation kind");
1124 }
1125 
1126 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1127                                               const char *Name) {
1128   ErrorUnsupported(E, Name);
1129   return GetUndefRValue(E->getType());
1130 }
1131 
1132 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1133                                               const char *Name) {
1134   ErrorUnsupported(E, Name);
1135   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1136   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1137                         E->getType());
1138 }
1139 
1140 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1141   const Expr *Base = Obj;
1142   while (!isa<CXXThisExpr>(Base)) {
1143     // The result of a dynamic_cast can be null.
1144     if (isa<CXXDynamicCastExpr>(Base))
1145       return false;
1146 
1147     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1148       Base = CE->getSubExpr();
1149     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1150       Base = PE->getSubExpr();
1151     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1152       if (UO->getOpcode() == UO_Extension)
1153         Base = UO->getSubExpr();
1154       else
1155         return false;
1156     } else {
1157       return false;
1158     }
1159   }
1160   return true;
1161 }
1162 
1163 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1164   LValue LV;
1165   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1166     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1167   else
1168     LV = EmitLValue(E);
1169   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1170     SanitizerSet SkippedChecks;
1171     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1172       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1173       if (IsBaseCXXThis)
1174         SkippedChecks.set(SanitizerKind::Alignment, true);
1175       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1176         SkippedChecks.set(SanitizerKind::Null, true);
1177     }
1178     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1179                   E->getType(), LV.getAlignment(), SkippedChecks);
1180   }
1181   return LV;
1182 }
1183 
1184 /// EmitLValue - Emit code to compute a designator that specifies the location
1185 /// of the expression.
1186 ///
1187 /// This can return one of two things: a simple address or a bitfield reference.
1188 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1189 /// an LLVM pointer type.
1190 ///
1191 /// If this returns a bitfield reference, nothing about the pointee type of the
1192 /// LLVM value is known: For example, it may not be a pointer to an integer.
1193 ///
1194 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1195 /// this method guarantees that the returned pointer type will point to an LLVM
1196 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1197 /// length type, this is not possible.
1198 ///
1199 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1200   ApplyDebugLocation DL(*this, E);
1201   switch (E->getStmtClass()) {
1202   default: return EmitUnsupportedLValue(E, "l-value expression");
1203 
1204   case Expr::ObjCPropertyRefExprClass:
1205     llvm_unreachable("cannot emit a property reference directly");
1206 
1207   case Expr::ObjCSelectorExprClass:
1208     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1209   case Expr::ObjCIsaExprClass:
1210     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1211   case Expr::BinaryOperatorClass:
1212     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1213   case Expr::CompoundAssignOperatorClass: {
1214     QualType Ty = E->getType();
1215     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1216       Ty = AT->getValueType();
1217     if (!Ty->isAnyComplexType())
1218       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1219     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1220   }
1221   case Expr::CallExprClass:
1222   case Expr::CXXMemberCallExprClass:
1223   case Expr::CXXOperatorCallExprClass:
1224   case Expr::UserDefinedLiteralClass:
1225     return EmitCallExprLValue(cast<CallExpr>(E));
1226   case Expr::VAArgExprClass:
1227     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1228   case Expr::DeclRefExprClass:
1229     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1230   case Expr::ParenExprClass:
1231     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1232   case Expr::GenericSelectionExprClass:
1233     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1234   case Expr::PredefinedExprClass:
1235     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1236   case Expr::StringLiteralClass:
1237     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1238   case Expr::ObjCEncodeExprClass:
1239     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1240   case Expr::PseudoObjectExprClass:
1241     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1242   case Expr::InitListExprClass:
1243     return EmitInitListLValue(cast<InitListExpr>(E));
1244   case Expr::CXXTemporaryObjectExprClass:
1245   case Expr::CXXConstructExprClass:
1246     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1247   case Expr::CXXBindTemporaryExprClass:
1248     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1249   case Expr::CXXUuidofExprClass:
1250     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1251   case Expr::LambdaExprClass:
1252     return EmitLambdaLValue(cast<LambdaExpr>(E));
1253 
1254   case Expr::ExprWithCleanupsClass: {
1255     const auto *cleanups = cast<ExprWithCleanups>(E);
1256     enterFullExpression(cleanups);
1257     RunCleanupsScope Scope(*this);
1258     LValue LV = EmitLValue(cleanups->getSubExpr());
1259     if (LV.isSimple()) {
1260       // Defend against branches out of gnu statement expressions surrounded by
1261       // cleanups.
1262       llvm::Value *V = LV.getPointer();
1263       Scope.ForceCleanup({&V});
1264       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1265                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1266     }
1267     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1268     // bitfield lvalue or some other non-simple lvalue?
1269     return LV;
1270   }
1271 
1272   case Expr::CXXDefaultArgExprClass:
1273     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1274   case Expr::CXXDefaultInitExprClass: {
1275     CXXDefaultInitExprScope Scope(*this);
1276     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1277   }
1278   case Expr::CXXTypeidExprClass:
1279     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1280 
1281   case Expr::ObjCMessageExprClass:
1282     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1283   case Expr::ObjCIvarRefExprClass:
1284     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1285   case Expr::StmtExprClass:
1286     return EmitStmtExprLValue(cast<StmtExpr>(E));
1287   case Expr::UnaryOperatorClass:
1288     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1289   case Expr::ArraySubscriptExprClass:
1290     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1291   case Expr::OMPArraySectionExprClass:
1292     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1293   case Expr::ExtVectorElementExprClass:
1294     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1295   case Expr::MemberExprClass:
1296     return EmitMemberExpr(cast<MemberExpr>(E));
1297   case Expr::CompoundLiteralExprClass:
1298     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1299   case Expr::ConditionalOperatorClass:
1300     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1301   case Expr::BinaryConditionalOperatorClass:
1302     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1303   case Expr::ChooseExprClass:
1304     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1305   case Expr::OpaqueValueExprClass:
1306     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1307   case Expr::SubstNonTypeTemplateParmExprClass:
1308     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1309   case Expr::ImplicitCastExprClass:
1310   case Expr::CStyleCastExprClass:
1311   case Expr::CXXFunctionalCastExprClass:
1312   case Expr::CXXStaticCastExprClass:
1313   case Expr::CXXDynamicCastExprClass:
1314   case Expr::CXXReinterpretCastExprClass:
1315   case Expr::CXXConstCastExprClass:
1316   case Expr::ObjCBridgedCastExprClass:
1317     return EmitCastLValue(cast<CastExpr>(E));
1318 
1319   case Expr::MaterializeTemporaryExprClass:
1320     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1321 
1322   case Expr::CoawaitExprClass:
1323     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1324   case Expr::CoyieldExprClass:
1325     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1326   }
1327 }
1328 
1329 /// Given an object of the given canonical type, can we safely copy a
1330 /// value out of it based on its initializer?
1331 static bool isConstantEmittableObjectType(QualType type) {
1332   assert(type.isCanonical());
1333   assert(!type->isReferenceType());
1334 
1335   // Must be const-qualified but non-volatile.
1336   Qualifiers qs = type.getLocalQualifiers();
1337   if (!qs.hasConst() || qs.hasVolatile()) return false;
1338 
1339   // Otherwise, all object types satisfy this except C++ classes with
1340   // mutable subobjects or non-trivial copy/destroy behavior.
1341   if (const auto *RT = dyn_cast<RecordType>(type))
1342     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1343       if (RD->hasMutableFields() || !RD->isTrivial())
1344         return false;
1345 
1346   return true;
1347 }
1348 
1349 /// Can we constant-emit a load of a reference to a variable of the
1350 /// given type?  This is different from predicates like
1351 /// Decl::isUsableInConstantExpressions because we do want it to apply
1352 /// in situations that don't necessarily satisfy the language's rules
1353 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1354 /// to do this with const float variables even if those variables
1355 /// aren't marked 'constexpr'.
1356 enum ConstantEmissionKind {
1357   CEK_None,
1358   CEK_AsReferenceOnly,
1359   CEK_AsValueOrReference,
1360   CEK_AsValueOnly
1361 };
1362 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1363   type = type.getCanonicalType();
1364   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1365     if (isConstantEmittableObjectType(ref->getPointeeType()))
1366       return CEK_AsValueOrReference;
1367     return CEK_AsReferenceOnly;
1368   }
1369   if (isConstantEmittableObjectType(type))
1370     return CEK_AsValueOnly;
1371   return CEK_None;
1372 }
1373 
1374 /// Try to emit a reference to the given value without producing it as
1375 /// an l-value.  This is actually more than an optimization: we can't
1376 /// produce an l-value for variables that we never actually captured
1377 /// in a block or lambda, which means const int variables or constexpr
1378 /// literals or similar.
1379 CodeGenFunction::ConstantEmission
1380 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1381   ValueDecl *value = refExpr->getDecl();
1382 
1383   // The value needs to be an enum constant or a constant variable.
1384   ConstantEmissionKind CEK;
1385   if (isa<ParmVarDecl>(value)) {
1386     CEK = CEK_None;
1387   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1388     CEK = checkVarTypeForConstantEmission(var->getType());
1389   } else if (isa<EnumConstantDecl>(value)) {
1390     CEK = CEK_AsValueOnly;
1391   } else {
1392     CEK = CEK_None;
1393   }
1394   if (CEK == CEK_None) return ConstantEmission();
1395 
1396   Expr::EvalResult result;
1397   bool resultIsReference;
1398   QualType resultType;
1399 
1400   // It's best to evaluate all the way as an r-value if that's permitted.
1401   if (CEK != CEK_AsReferenceOnly &&
1402       refExpr->EvaluateAsRValue(result, getContext())) {
1403     resultIsReference = false;
1404     resultType = refExpr->getType();
1405 
1406   // Otherwise, try to evaluate as an l-value.
1407   } else if (CEK != CEK_AsValueOnly &&
1408              refExpr->EvaluateAsLValue(result, getContext())) {
1409     resultIsReference = true;
1410     resultType = value->getType();
1411 
1412   // Failure.
1413   } else {
1414     return ConstantEmission();
1415   }
1416 
1417   // In any case, if the initializer has side-effects, abandon ship.
1418   if (result.HasSideEffects)
1419     return ConstantEmission();
1420 
1421   // Emit as a constant.
1422   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1423                                                result.Val, resultType);
1424 
1425   // Make sure we emit a debug reference to the global variable.
1426   // This should probably fire even for
1427   if (isa<VarDecl>(value)) {
1428     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1429       EmitDeclRefExprDbgValue(refExpr, result.Val);
1430   } else {
1431     assert(isa<EnumConstantDecl>(value));
1432     EmitDeclRefExprDbgValue(refExpr, result.Val);
1433   }
1434 
1435   // If we emitted a reference constant, we need to dereference that.
1436   if (resultIsReference)
1437     return ConstantEmission::forReference(C);
1438 
1439   return ConstantEmission::forValue(C);
1440 }
1441 
1442 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1443                                                         const MemberExpr *ME) {
1444   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1445     // Try to emit static variable member expressions as DREs.
1446     return DeclRefExpr::Create(
1447         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1448         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1449         ME->getType(), ME->getValueKind());
1450   }
1451   return nullptr;
1452 }
1453 
1454 CodeGenFunction::ConstantEmission
1455 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1456   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1457     return tryEmitAsConstant(DRE);
1458   return ConstantEmission();
1459 }
1460 
1461 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1462                                                SourceLocation Loc) {
1463   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1464                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1465                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1466 }
1467 
1468 static bool hasBooleanRepresentation(QualType Ty) {
1469   if (Ty->isBooleanType())
1470     return true;
1471 
1472   if (const EnumType *ET = Ty->getAs<EnumType>())
1473     return ET->getDecl()->getIntegerType()->isBooleanType();
1474 
1475   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1476     return hasBooleanRepresentation(AT->getValueType());
1477 
1478   return false;
1479 }
1480 
1481 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1482                             llvm::APInt &Min, llvm::APInt &End,
1483                             bool StrictEnums, bool IsBool) {
1484   const EnumType *ET = Ty->getAs<EnumType>();
1485   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1486                                 ET && !ET->getDecl()->isFixed();
1487   if (!IsBool && !IsRegularCPlusPlusEnum)
1488     return false;
1489 
1490   if (IsBool) {
1491     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1492     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1493   } else {
1494     const EnumDecl *ED = ET->getDecl();
1495     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1496     unsigned Bitwidth = LTy->getScalarSizeInBits();
1497     unsigned NumNegativeBits = ED->getNumNegativeBits();
1498     unsigned NumPositiveBits = ED->getNumPositiveBits();
1499 
1500     if (NumNegativeBits) {
1501       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1502       assert(NumBits <= Bitwidth);
1503       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1504       Min = -End;
1505     } else {
1506       assert(NumPositiveBits <= Bitwidth);
1507       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1508       Min = llvm::APInt(Bitwidth, 0);
1509     }
1510   }
1511   return true;
1512 }
1513 
1514 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1515   llvm::APInt Min, End;
1516   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1517                        hasBooleanRepresentation(Ty)))
1518     return nullptr;
1519 
1520   llvm::MDBuilder MDHelper(getLLVMContext());
1521   return MDHelper.createRange(Min, End);
1522 }
1523 
1524 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1525                                            SourceLocation Loc) {
1526   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1527   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1528   if (!HasBoolCheck && !HasEnumCheck)
1529     return false;
1530 
1531   bool IsBool = hasBooleanRepresentation(Ty) ||
1532                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1533   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1534   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1535   if (!NeedsBoolCheck && !NeedsEnumCheck)
1536     return false;
1537 
1538   // Single-bit booleans don't need to be checked. Special-case this to avoid
1539   // a bit width mismatch when handling bitfield values. This is handled by
1540   // EmitFromMemory for the non-bitfield case.
1541   if (IsBool &&
1542       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1543     return false;
1544 
1545   llvm::APInt Min, End;
1546   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1547     return true;
1548 
1549   auto &Ctx = getLLVMContext();
1550   SanitizerScope SanScope(this);
1551   llvm::Value *Check;
1552   --End;
1553   if (!Min) {
1554     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1555   } else {
1556     llvm::Value *Upper =
1557         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1558     llvm::Value *Lower =
1559         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1560     Check = Builder.CreateAnd(Upper, Lower);
1561   }
1562   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1563                                   EmitCheckTypeDescriptor(Ty)};
1564   SanitizerMask Kind =
1565       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1566   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1567             StaticArgs, EmitCheckValue(Value));
1568   return true;
1569 }
1570 
1571 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1572                                                QualType Ty,
1573                                                SourceLocation Loc,
1574                                                LValueBaseInfo BaseInfo,
1575                                                TBAAAccessInfo TBAAInfo,
1576                                                bool isNontemporal) {
1577   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1578     // For better performance, handle vector loads differently.
1579     if (Ty->isVectorType()) {
1580       const llvm::Type *EltTy = Addr.getElementType();
1581 
1582       const auto *VTy = cast<llvm::VectorType>(EltTy);
1583 
1584       // Handle vectors of size 3 like size 4 for better performance.
1585       if (VTy->getNumElements() == 3) {
1586 
1587         // Bitcast to vec4 type.
1588         llvm::VectorType *vec4Ty =
1589             llvm::VectorType::get(VTy->getElementType(), 4);
1590         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1591         // Now load value.
1592         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1593 
1594         // Shuffle vector to get vec3.
1595         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1596                                         {0, 1, 2}, "extractVec");
1597         return EmitFromMemory(V, Ty);
1598       }
1599     }
1600   }
1601 
1602   // Atomic operations have to be done on integral types.
1603   LValue AtomicLValue =
1604       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1605   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1606     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1607   }
1608 
1609   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1610   if (isNontemporal) {
1611     llvm::MDNode *Node = llvm::MDNode::get(
1612         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1613     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1614   }
1615 
1616   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1617 
1618   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1619     // In order to prevent the optimizer from throwing away the check, don't
1620     // attach range metadata to the load.
1621   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1622     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1623       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1624 
1625   return EmitFromMemory(Load, Ty);
1626 }
1627 
1628 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1629   // Bool has a different representation in memory than in registers.
1630   if (hasBooleanRepresentation(Ty)) {
1631     // This should really always be an i1, but sometimes it's already
1632     // an i8, and it's awkward to track those cases down.
1633     if (Value->getType()->isIntegerTy(1))
1634       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1635     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1636            "wrong value rep of bool");
1637   }
1638 
1639   return Value;
1640 }
1641 
1642 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1643   // Bool has a different representation in memory than in registers.
1644   if (hasBooleanRepresentation(Ty)) {
1645     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1646            "wrong value rep of bool");
1647     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1648   }
1649 
1650   return Value;
1651 }
1652 
1653 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1654                                         bool Volatile, QualType Ty,
1655                                         LValueBaseInfo BaseInfo,
1656                                         TBAAAccessInfo TBAAInfo,
1657                                         bool isInit, bool isNontemporal) {
1658   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1659     // Handle vectors differently to get better performance.
1660     if (Ty->isVectorType()) {
1661       llvm::Type *SrcTy = Value->getType();
1662       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1663       // Handle vec3 special.
1664       if (VecTy && VecTy->getNumElements() == 3) {
1665         // Our source is a vec3, do a shuffle vector to make it a vec4.
1666         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1667                                   Builder.getInt32(2),
1668                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1669         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1670         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1671                                             MaskV, "extractVec");
1672         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1673       }
1674       if (Addr.getElementType() != SrcTy) {
1675         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1676       }
1677     }
1678   }
1679 
1680   Value = EmitToMemory(Value, Ty);
1681 
1682   LValue AtomicLValue =
1683       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1684   if (Ty->isAtomicType() ||
1685       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1686     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1687     return;
1688   }
1689 
1690   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1691   if (isNontemporal) {
1692     llvm::MDNode *Node =
1693         llvm::MDNode::get(Store->getContext(),
1694                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1695     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1696   }
1697 
1698   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1699 }
1700 
1701 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1702                                         bool isInit) {
1703   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1704                     lvalue.getType(), lvalue.getBaseInfo(),
1705                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1706 }
1707 
1708 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1709 /// method emits the address of the lvalue, then loads the result as an rvalue,
1710 /// returning the rvalue.
1711 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1712   if (LV.isObjCWeak()) {
1713     // load of a __weak object.
1714     Address AddrWeakObj = LV.getAddress();
1715     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1716                                                              AddrWeakObj));
1717   }
1718   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1719     // In MRC mode, we do a load+autorelease.
1720     if (!getLangOpts().ObjCAutoRefCount) {
1721       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1722     }
1723 
1724     // In ARC mode, we load retained and then consume the value.
1725     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1726     Object = EmitObjCConsumeObject(LV.getType(), Object);
1727     return RValue::get(Object);
1728   }
1729 
1730   if (LV.isSimple()) {
1731     assert(!LV.getType()->isFunctionType());
1732 
1733     // Everything needs a load.
1734     return RValue::get(EmitLoadOfScalar(LV, Loc));
1735   }
1736 
1737   if (LV.isVectorElt()) {
1738     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1739                                               LV.isVolatileQualified());
1740     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1741                                                     "vecext"));
1742   }
1743 
1744   // If this is a reference to a subset of the elements of a vector, either
1745   // shuffle the input or extract/insert them as appropriate.
1746   if (LV.isExtVectorElt())
1747     return EmitLoadOfExtVectorElementLValue(LV);
1748 
1749   // Global Register variables always invoke intrinsics
1750   if (LV.isGlobalReg())
1751     return EmitLoadOfGlobalRegLValue(LV);
1752 
1753   assert(LV.isBitField() && "Unknown LValue type!");
1754   return EmitLoadOfBitfieldLValue(LV, Loc);
1755 }
1756 
1757 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1758                                                  SourceLocation Loc) {
1759   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1760 
1761   // Get the output type.
1762   llvm::Type *ResLTy = ConvertType(LV.getType());
1763 
1764   Address Ptr = LV.getBitFieldAddress();
1765   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1766 
1767   if (Info.IsSigned) {
1768     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1769     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1770     if (HighBits)
1771       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1772     if (Info.Offset + HighBits)
1773       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1774   } else {
1775     if (Info.Offset)
1776       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1777     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1778       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1779                                                               Info.Size),
1780                               "bf.clear");
1781   }
1782   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1783   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1784   return RValue::get(Val);
1785 }
1786 
1787 // If this is a reference to a subset of the elements of a vector, create an
1788 // appropriate shufflevector.
1789 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1790   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1791                                         LV.isVolatileQualified());
1792 
1793   const llvm::Constant *Elts = LV.getExtVectorElts();
1794 
1795   // If the result of the expression is a non-vector type, we must be extracting
1796   // a single element.  Just codegen as an extractelement.
1797   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1798   if (!ExprVT) {
1799     unsigned InIdx = getAccessedFieldNo(0, Elts);
1800     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1801     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1802   }
1803 
1804   // Always use shuffle vector to try to retain the original program structure
1805   unsigned NumResultElts = ExprVT->getNumElements();
1806 
1807   SmallVector<llvm::Constant*, 4> Mask;
1808   for (unsigned i = 0; i != NumResultElts; ++i)
1809     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1810 
1811   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1812   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1813                                     MaskV);
1814   return RValue::get(Vec);
1815 }
1816 
1817 /// Generates lvalue for partial ext_vector access.
1818 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1819   Address VectorAddress = LV.getExtVectorAddress();
1820   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1821   QualType EQT = ExprVT->getElementType();
1822   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1823 
1824   Address CastToPointerElement =
1825     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1826                                  "conv.ptr.element");
1827 
1828   const llvm::Constant *Elts = LV.getExtVectorElts();
1829   unsigned ix = getAccessedFieldNo(0, Elts);
1830 
1831   Address VectorBasePtrPlusIx =
1832     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1833                                    getContext().getTypeSizeInChars(EQT),
1834                                    "vector.elt");
1835 
1836   return VectorBasePtrPlusIx;
1837 }
1838 
1839 /// Load of global gamed gegisters are always calls to intrinsics.
1840 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1841   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1842          "Bad type for register variable");
1843   llvm::MDNode *RegName = cast<llvm::MDNode>(
1844       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1845 
1846   // We accept integer and pointer types only
1847   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1848   llvm::Type *Ty = OrigTy;
1849   if (OrigTy->isPointerTy())
1850     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1851   llvm::Type *Types[] = { Ty };
1852 
1853   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1854   llvm::Value *Call = Builder.CreateCall(
1855       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1856   if (OrigTy->isPointerTy())
1857     Call = Builder.CreateIntToPtr(Call, OrigTy);
1858   return RValue::get(Call);
1859 }
1860 
1861 
1862 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1863 /// lvalue, where both are guaranteed to the have the same type, and that type
1864 /// is 'Ty'.
1865 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1866                                              bool isInit) {
1867   if (!Dst.isSimple()) {
1868     if (Dst.isVectorElt()) {
1869       // Read/modify/write the vector, inserting the new element.
1870       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1871                                             Dst.isVolatileQualified());
1872       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1873                                         Dst.getVectorIdx(), "vecins");
1874       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1875                           Dst.isVolatileQualified());
1876       return;
1877     }
1878 
1879     // If this is an update of extended vector elements, insert them as
1880     // appropriate.
1881     if (Dst.isExtVectorElt())
1882       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1883 
1884     if (Dst.isGlobalReg())
1885       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1886 
1887     assert(Dst.isBitField() && "Unknown LValue type");
1888     return EmitStoreThroughBitfieldLValue(Src, Dst);
1889   }
1890 
1891   // There's special magic for assigning into an ARC-qualified l-value.
1892   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1893     switch (Lifetime) {
1894     case Qualifiers::OCL_None:
1895       llvm_unreachable("present but none");
1896 
1897     case Qualifiers::OCL_ExplicitNone:
1898       // nothing special
1899       break;
1900 
1901     case Qualifiers::OCL_Strong:
1902       if (isInit) {
1903         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1904         break;
1905       }
1906       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1907       return;
1908 
1909     case Qualifiers::OCL_Weak:
1910       if (isInit)
1911         // Initialize and then skip the primitive store.
1912         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1913       else
1914         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1915       return;
1916 
1917     case Qualifiers::OCL_Autoreleasing:
1918       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1919                                                      Src.getScalarVal()));
1920       // fall into the normal path
1921       break;
1922     }
1923   }
1924 
1925   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1926     // load of a __weak object.
1927     Address LvalueDst = Dst.getAddress();
1928     llvm::Value *src = Src.getScalarVal();
1929      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1930     return;
1931   }
1932 
1933   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1934     // load of a __strong object.
1935     Address LvalueDst = Dst.getAddress();
1936     llvm::Value *src = Src.getScalarVal();
1937     if (Dst.isObjCIvar()) {
1938       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1939       llvm::Type *ResultType = IntPtrTy;
1940       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1941       llvm::Value *RHS = dst.getPointer();
1942       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1943       llvm::Value *LHS =
1944         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1945                                "sub.ptr.lhs.cast");
1946       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1947       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1948                                               BytesBetween);
1949     } else if (Dst.isGlobalObjCRef()) {
1950       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1951                                                 Dst.isThreadLocalRef());
1952     }
1953     else
1954       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1955     return;
1956   }
1957 
1958   assert(Src.isScalar() && "Can't emit an agg store with this method");
1959   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1960 }
1961 
1962 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1963                                                      llvm::Value **Result) {
1964   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1965   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1966   Address Ptr = Dst.getBitFieldAddress();
1967 
1968   // Get the source value, truncated to the width of the bit-field.
1969   llvm::Value *SrcVal = Src.getScalarVal();
1970 
1971   // Cast the source to the storage type and shift it into place.
1972   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1973                                  /*IsSigned=*/false);
1974   llvm::Value *MaskedVal = SrcVal;
1975 
1976   // See if there are other bits in the bitfield's storage we'll need to load
1977   // and mask together with source before storing.
1978   if (Info.StorageSize != Info.Size) {
1979     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1980     llvm::Value *Val =
1981       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1982 
1983     // Mask the source value as needed.
1984     if (!hasBooleanRepresentation(Dst.getType()))
1985       SrcVal = Builder.CreateAnd(SrcVal,
1986                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1987                                                             Info.Size),
1988                                  "bf.value");
1989     MaskedVal = SrcVal;
1990     if (Info.Offset)
1991       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1992 
1993     // Mask out the original value.
1994     Val = Builder.CreateAnd(Val,
1995                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1996                                                      Info.Offset,
1997                                                      Info.Offset + Info.Size),
1998                             "bf.clear");
1999 
2000     // Or together the unchanged values and the source value.
2001     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2002   } else {
2003     assert(Info.Offset == 0);
2004   }
2005 
2006   // Write the new value back out.
2007   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2008 
2009   // Return the new value of the bit-field, if requested.
2010   if (Result) {
2011     llvm::Value *ResultVal = MaskedVal;
2012 
2013     // Sign extend the value if needed.
2014     if (Info.IsSigned) {
2015       assert(Info.Size <= Info.StorageSize);
2016       unsigned HighBits = Info.StorageSize - Info.Size;
2017       if (HighBits) {
2018         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2019         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2020       }
2021     }
2022 
2023     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2024                                       "bf.result.cast");
2025     *Result = EmitFromMemory(ResultVal, Dst.getType());
2026   }
2027 }
2028 
2029 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2030                                                                LValue Dst) {
2031   // This access turns into a read/modify/write of the vector.  Load the input
2032   // value now.
2033   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2034                                         Dst.isVolatileQualified());
2035   const llvm::Constant *Elts = Dst.getExtVectorElts();
2036 
2037   llvm::Value *SrcVal = Src.getScalarVal();
2038 
2039   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2040     unsigned NumSrcElts = VTy->getNumElements();
2041     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2042     if (NumDstElts == NumSrcElts) {
2043       // Use shuffle vector is the src and destination are the same number of
2044       // elements and restore the vector mask since it is on the side it will be
2045       // stored.
2046       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2047       for (unsigned i = 0; i != NumSrcElts; ++i)
2048         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2049 
2050       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2051       Vec = Builder.CreateShuffleVector(SrcVal,
2052                                         llvm::UndefValue::get(Vec->getType()),
2053                                         MaskV);
2054     } else if (NumDstElts > NumSrcElts) {
2055       // Extended the source vector to the same length and then shuffle it
2056       // into the destination.
2057       // FIXME: since we're shuffling with undef, can we just use the indices
2058       //        into that?  This could be simpler.
2059       SmallVector<llvm::Constant*, 4> ExtMask;
2060       for (unsigned i = 0; i != NumSrcElts; ++i)
2061         ExtMask.push_back(Builder.getInt32(i));
2062       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2063       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2064       llvm::Value *ExtSrcVal =
2065         Builder.CreateShuffleVector(SrcVal,
2066                                     llvm::UndefValue::get(SrcVal->getType()),
2067                                     ExtMaskV);
2068       // build identity
2069       SmallVector<llvm::Constant*, 4> Mask;
2070       for (unsigned i = 0; i != NumDstElts; ++i)
2071         Mask.push_back(Builder.getInt32(i));
2072 
2073       // When the vector size is odd and .odd or .hi is used, the last element
2074       // of the Elts constant array will be one past the size of the vector.
2075       // Ignore the last element here, if it is greater than the mask size.
2076       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2077         NumSrcElts--;
2078 
2079       // modify when what gets shuffled in
2080       for (unsigned i = 0; i != NumSrcElts; ++i)
2081         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2082       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2083       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2084     } else {
2085       // We should never shorten the vector
2086       llvm_unreachable("unexpected shorten vector length");
2087     }
2088   } else {
2089     // If the Src is a scalar (not a vector) it must be updating one element.
2090     unsigned InIdx = getAccessedFieldNo(0, Elts);
2091     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2092     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2093   }
2094 
2095   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2096                       Dst.isVolatileQualified());
2097 }
2098 
2099 /// Store of global named registers are always calls to intrinsics.
2100 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2101   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2102          "Bad type for register variable");
2103   llvm::MDNode *RegName = cast<llvm::MDNode>(
2104       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2105   assert(RegName && "Register LValue is not metadata");
2106 
2107   // We accept integer and pointer types only
2108   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2109   llvm::Type *Ty = OrigTy;
2110   if (OrigTy->isPointerTy())
2111     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2112   llvm::Type *Types[] = { Ty };
2113 
2114   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2115   llvm::Value *Value = Src.getScalarVal();
2116   if (OrigTy->isPointerTy())
2117     Value = Builder.CreatePtrToInt(Value, Ty);
2118   Builder.CreateCall(
2119       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2120 }
2121 
2122 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2123 // generating write-barries API. It is currently a global, ivar,
2124 // or neither.
2125 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2126                                  LValue &LV,
2127                                  bool IsMemberAccess=false) {
2128   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2129     return;
2130 
2131   if (isa<ObjCIvarRefExpr>(E)) {
2132     QualType ExpTy = E->getType();
2133     if (IsMemberAccess && ExpTy->isPointerType()) {
2134       // If ivar is a structure pointer, assigning to field of
2135       // this struct follows gcc's behavior and makes it a non-ivar
2136       // writer-barrier conservatively.
2137       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2138       if (ExpTy->isRecordType()) {
2139         LV.setObjCIvar(false);
2140         return;
2141       }
2142     }
2143     LV.setObjCIvar(true);
2144     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2145     LV.setBaseIvarExp(Exp->getBase());
2146     LV.setObjCArray(E->getType()->isArrayType());
2147     return;
2148   }
2149 
2150   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2151     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2152       if (VD->hasGlobalStorage()) {
2153         LV.setGlobalObjCRef(true);
2154         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2155       }
2156     }
2157     LV.setObjCArray(E->getType()->isArrayType());
2158     return;
2159   }
2160 
2161   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2162     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2163     return;
2164   }
2165 
2166   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2167     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2168     if (LV.isObjCIvar()) {
2169       // If cast is to a structure pointer, follow gcc's behavior and make it
2170       // a non-ivar write-barrier.
2171       QualType ExpTy = E->getType();
2172       if (ExpTy->isPointerType())
2173         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2174       if (ExpTy->isRecordType())
2175         LV.setObjCIvar(false);
2176     }
2177     return;
2178   }
2179 
2180   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2181     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2182     return;
2183   }
2184 
2185   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2186     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2187     return;
2188   }
2189 
2190   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2191     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2192     return;
2193   }
2194 
2195   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2196     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2197     return;
2198   }
2199 
2200   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2201     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2202     if (LV.isObjCIvar() && !LV.isObjCArray())
2203       // Using array syntax to assigning to what an ivar points to is not
2204       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2205       LV.setObjCIvar(false);
2206     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2207       // Using array syntax to assigning to what global points to is not
2208       // same as assigning to the global itself. {id *G;} G[i] = 0;
2209       LV.setGlobalObjCRef(false);
2210     return;
2211   }
2212 
2213   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2214     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2215     // We don't know if member is an 'ivar', but this flag is looked at
2216     // only in the context of LV.isObjCIvar().
2217     LV.setObjCArray(E->getType()->isArrayType());
2218     return;
2219   }
2220 }
2221 
2222 static llvm::Value *
2223 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2224                                 llvm::Value *V, llvm::Type *IRType,
2225                                 StringRef Name = StringRef()) {
2226   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2227   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2228 }
2229 
2230 static LValue EmitThreadPrivateVarDeclLValue(
2231     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2232     llvm::Type *RealVarTy, SourceLocation Loc) {
2233   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2234   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2235   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2236 }
2237 
2238 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF,
2239                                                const VarDecl *VD, QualType T) {
2240   for (const auto *D : VD->redecls()) {
2241     if (!VD->hasAttrs())
2242       continue;
2243     if (const auto *Attr = D->getAttr<OMPDeclareTargetDeclAttr>())
2244       if (Attr->getMapType() == OMPDeclareTargetDeclAttr::MT_Link) {
2245         QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2246         Address Addr =
2247             CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2248         return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2249       }
2250   }
2251   return Address::invalid();
2252 }
2253 
2254 Address
2255 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2256                                      LValueBaseInfo *PointeeBaseInfo,
2257                                      TBAAAccessInfo *PointeeTBAAInfo) {
2258   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2259                                             RefLVal.isVolatile());
2260   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2261 
2262   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2263                                             PointeeBaseInfo, PointeeTBAAInfo,
2264                                             /* forPointeeType= */ true);
2265   return Address(Load, Align);
2266 }
2267 
2268 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2269   LValueBaseInfo PointeeBaseInfo;
2270   TBAAAccessInfo PointeeTBAAInfo;
2271   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2272                                             &PointeeTBAAInfo);
2273   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2274                         PointeeBaseInfo, PointeeTBAAInfo);
2275 }
2276 
2277 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2278                                            const PointerType *PtrTy,
2279                                            LValueBaseInfo *BaseInfo,
2280                                            TBAAAccessInfo *TBAAInfo) {
2281   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2282   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2283                                                BaseInfo, TBAAInfo,
2284                                                /*forPointeeType=*/true));
2285 }
2286 
2287 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2288                                                 const PointerType *PtrTy) {
2289   LValueBaseInfo BaseInfo;
2290   TBAAAccessInfo TBAAInfo;
2291   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2292   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2293 }
2294 
2295 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2296                                       const Expr *E, const VarDecl *VD) {
2297   QualType T = E->getType();
2298 
2299   // If it's thread_local, emit a call to its wrapper function instead.
2300   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2301       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2302     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2303   // Check if the variable is marked as declare target with link clause in
2304   // device codegen.
2305   if (CGF.getLangOpts().OpenMPIsDevice) {
2306     Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T);
2307     if (Addr.isValid())
2308       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2309   }
2310 
2311   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2312   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2313   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2314   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2315   Address Addr(V, Alignment);
2316   // Emit reference to the private copy of the variable if it is an OpenMP
2317   // threadprivate variable.
2318   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2319       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2320     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2321                                           E->getExprLoc());
2322   }
2323   LValue LV = VD->getType()->isReferenceType() ?
2324       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2325                                     AlignmentSource::Decl) :
2326       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2327   setObjCGCLValueClass(CGF.getContext(), E, LV);
2328   return LV;
2329 }
2330 
2331 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2332                                                const FunctionDecl *FD) {
2333   if (FD->hasAttr<WeakRefAttr>()) {
2334     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2335     return aliasee.getPointer();
2336   }
2337 
2338   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2339   if (!FD->hasPrototype()) {
2340     if (const FunctionProtoType *Proto =
2341             FD->getType()->getAs<FunctionProtoType>()) {
2342       // Ugly case: for a K&R-style definition, the type of the definition
2343       // isn't the same as the type of a use.  Correct for this with a
2344       // bitcast.
2345       QualType NoProtoType =
2346           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2347       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2348       V = llvm::ConstantExpr::getBitCast(V,
2349                                       CGM.getTypes().ConvertType(NoProtoType));
2350     }
2351   }
2352   return V;
2353 }
2354 
2355 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2356                                      const Expr *E, const FunctionDecl *FD) {
2357   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2358   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2359   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2360                             AlignmentSource::Decl);
2361 }
2362 
2363 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2364                                       llvm::Value *ThisValue) {
2365   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2366   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2367   return CGF.EmitLValueForField(LV, FD);
2368 }
2369 
2370 /// Named Registers are named metadata pointing to the register name
2371 /// which will be read from/written to as an argument to the intrinsic
2372 /// @llvm.read/write_register.
2373 /// So far, only the name is being passed down, but other options such as
2374 /// register type, allocation type or even optimization options could be
2375 /// passed down via the metadata node.
2376 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2377   SmallString<64> Name("llvm.named.register.");
2378   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2379   assert(Asm->getLabel().size() < 64-Name.size() &&
2380       "Register name too big");
2381   Name.append(Asm->getLabel());
2382   llvm::NamedMDNode *M =
2383     CGM.getModule().getOrInsertNamedMetadata(Name);
2384   if (M->getNumOperands() == 0) {
2385     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2386                                               Asm->getLabel());
2387     llvm::Metadata *Ops[] = {Str};
2388     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2389   }
2390 
2391   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2392 
2393   llvm::Value *Ptr =
2394     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2395   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2396 }
2397 
2398 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2399   const NamedDecl *ND = E->getDecl();
2400   QualType T = E->getType();
2401 
2402   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2403     // Global Named registers access via intrinsics only
2404     if (VD->getStorageClass() == SC_Register &&
2405         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2406       return EmitGlobalNamedRegister(VD, CGM);
2407 
2408     // A DeclRefExpr for a reference initialized by a constant expression can
2409     // appear without being odr-used. Directly emit the constant initializer.
2410     const Expr *Init = VD->getAnyInitializer(VD);
2411     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2412         VD->isUsableInConstantExpressions(getContext()) &&
2413         VD->checkInitIsICE() &&
2414         // Do not emit if it is private OpenMP variable.
2415         !(E->refersToEnclosingVariableOrCapture() &&
2416           ((CapturedStmtInfo &&
2417             (LocalDeclMap.count(VD->getCanonicalDecl()) ||
2418              CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
2419            LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
2420            isa<BlockDecl>(CurCodeDecl)))) {
2421       llvm::Constant *Val =
2422         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2423                                             *VD->evaluateValue(),
2424                                             VD->getType());
2425       assert(Val && "failed to emit reference constant expression");
2426       // FIXME: Eventually we will want to emit vector element references.
2427 
2428       // Should we be using the alignment of the constant pointer we emitted?
2429       CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
2430                                                     /* BaseInfo= */ nullptr,
2431                                                     /* TBAAInfo= */ nullptr,
2432                                                     /* forPointeeType= */ true);
2433       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2434     }
2435 
2436     // Check for captured variables.
2437     if (E->refersToEnclosingVariableOrCapture()) {
2438       VD = VD->getCanonicalDecl();
2439       if (auto *FD = LambdaCaptureFields.lookup(VD))
2440         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2441       else if (CapturedStmtInfo) {
2442         auto I = LocalDeclMap.find(VD);
2443         if (I != LocalDeclMap.end()) {
2444           if (VD->getType()->isReferenceType())
2445             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2446                                              AlignmentSource::Decl);
2447           return MakeAddrLValue(I->second, T);
2448         }
2449         LValue CapLVal =
2450             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2451                                     CapturedStmtInfo->getContextValue());
2452         return MakeAddrLValue(
2453             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2454             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2455             CapLVal.getTBAAInfo());
2456       }
2457 
2458       assert(isa<BlockDecl>(CurCodeDecl));
2459       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2460       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2461     }
2462   }
2463 
2464   // FIXME: We should be able to assert this for FunctionDecls as well!
2465   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2466   // those with a valid source location.
2467   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2468           !E->getLocation().isValid()) &&
2469          "Should not use decl without marking it used!");
2470 
2471   if (ND->hasAttr<WeakRefAttr>()) {
2472     const auto *VD = cast<ValueDecl>(ND);
2473     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2474     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2475   }
2476 
2477   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2478     // Check if this is a global variable.
2479     if (VD->hasLinkage() || VD->isStaticDataMember())
2480       return EmitGlobalVarDeclLValue(*this, E, VD);
2481 
2482     Address addr = Address::invalid();
2483 
2484     // The variable should generally be present in the local decl map.
2485     auto iter = LocalDeclMap.find(VD);
2486     if (iter != LocalDeclMap.end()) {
2487       addr = iter->second;
2488 
2489     // Otherwise, it might be static local we haven't emitted yet for
2490     // some reason; most likely, because it's in an outer function.
2491     } else if (VD->isStaticLocal()) {
2492       addr = Address(CGM.getOrCreateStaticVarDecl(
2493           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2494                      getContext().getDeclAlign(VD));
2495 
2496     // No other cases for now.
2497     } else {
2498       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2499     }
2500 
2501 
2502     // Check for OpenMP threadprivate variables.
2503     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2504         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2505       return EmitThreadPrivateVarDeclLValue(
2506           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2507           E->getExprLoc());
2508     }
2509 
2510     // Drill into block byref variables.
2511     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2512     if (isBlockByref) {
2513       addr = emitBlockByrefAddress(addr, VD);
2514     }
2515 
2516     // Drill into reference types.
2517     LValue LV = VD->getType()->isReferenceType() ?
2518         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2519         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2520 
2521     bool isLocalStorage = VD->hasLocalStorage();
2522 
2523     bool NonGCable = isLocalStorage &&
2524                      !VD->getType()->isReferenceType() &&
2525                      !isBlockByref;
2526     if (NonGCable) {
2527       LV.getQuals().removeObjCGCAttr();
2528       LV.setNonGC(true);
2529     }
2530 
2531     bool isImpreciseLifetime =
2532       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2533     if (isImpreciseLifetime)
2534       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2535     setObjCGCLValueClass(getContext(), E, LV);
2536     return LV;
2537   }
2538 
2539   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2540     return EmitFunctionDeclLValue(*this, E, FD);
2541 
2542   // FIXME: While we're emitting a binding from an enclosing scope, all other
2543   // DeclRefExprs we see should be implicitly treated as if they also refer to
2544   // an enclosing scope.
2545   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2546     return EmitLValue(BD->getBinding());
2547 
2548   llvm_unreachable("Unhandled DeclRefExpr");
2549 }
2550 
2551 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2552   // __extension__ doesn't affect lvalue-ness.
2553   if (E->getOpcode() == UO_Extension)
2554     return EmitLValue(E->getSubExpr());
2555 
2556   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2557   switch (E->getOpcode()) {
2558   default: llvm_unreachable("Unknown unary operator lvalue!");
2559   case UO_Deref: {
2560     QualType T = E->getSubExpr()->getType()->getPointeeType();
2561     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2562 
2563     LValueBaseInfo BaseInfo;
2564     TBAAAccessInfo TBAAInfo;
2565     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2566                                             &TBAAInfo);
2567     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2568     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2569 
2570     // We should not generate __weak write barrier on indirect reference
2571     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2572     // But, we continue to generate __strong write barrier on indirect write
2573     // into a pointer to object.
2574     if (getLangOpts().ObjC1 &&
2575         getLangOpts().getGC() != LangOptions::NonGC &&
2576         LV.isObjCWeak())
2577       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2578     return LV;
2579   }
2580   case UO_Real:
2581   case UO_Imag: {
2582     LValue LV = EmitLValue(E->getSubExpr());
2583     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2584 
2585     // __real is valid on scalars.  This is a faster way of testing that.
2586     // __imag can only produce an rvalue on scalars.
2587     if (E->getOpcode() == UO_Real &&
2588         !LV.getAddress().getElementType()->isStructTy()) {
2589       assert(E->getSubExpr()->getType()->isArithmeticType());
2590       return LV;
2591     }
2592 
2593     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2594 
2595     Address Component =
2596       (E->getOpcode() == UO_Real
2597          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2598          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2599     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2600                                    CGM.getTBAAInfoForSubobject(LV, T));
2601     ElemLV.getQuals().addQualifiers(LV.getQuals());
2602     return ElemLV;
2603   }
2604   case UO_PreInc:
2605   case UO_PreDec: {
2606     LValue LV = EmitLValue(E->getSubExpr());
2607     bool isInc = E->getOpcode() == UO_PreInc;
2608 
2609     if (E->getType()->isAnyComplexType())
2610       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2611     else
2612       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2613     return LV;
2614   }
2615   }
2616 }
2617 
2618 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2619   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2620                         E->getType(), AlignmentSource::Decl);
2621 }
2622 
2623 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2624   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2625                         E->getType(), AlignmentSource::Decl);
2626 }
2627 
2628 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2629   auto SL = E->getFunctionName();
2630   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2631   StringRef FnName = CurFn->getName();
2632   if (FnName.startswith("\01"))
2633     FnName = FnName.substr(1);
2634   StringRef NameItems[] = {
2635       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2636   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2637   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2638     std::string Name = SL->getString();
2639     if (!Name.empty()) {
2640       unsigned Discriminator =
2641           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2642       if (Discriminator)
2643         Name += "_" + Twine(Discriminator + 1).str();
2644       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2645       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2646     } else {
2647       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2648       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2649     }
2650   }
2651   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2652   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2653 }
2654 
2655 /// Emit a type description suitable for use by a runtime sanitizer library. The
2656 /// format of a type descriptor is
2657 ///
2658 /// \code
2659 ///   { i16 TypeKind, i16 TypeInfo }
2660 /// \endcode
2661 ///
2662 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2663 /// integer, 1 for a floating point value, and -1 for anything else.
2664 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2665   // Only emit each type's descriptor once.
2666   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2667     return C;
2668 
2669   uint16_t TypeKind = -1;
2670   uint16_t TypeInfo = 0;
2671 
2672   if (T->isIntegerType()) {
2673     TypeKind = 0;
2674     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2675                (T->isSignedIntegerType() ? 1 : 0);
2676   } else if (T->isFloatingType()) {
2677     TypeKind = 1;
2678     TypeInfo = getContext().getTypeSize(T);
2679   }
2680 
2681   // Format the type name as if for a diagnostic, including quotes and
2682   // optionally an 'aka'.
2683   SmallString<32> Buffer;
2684   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2685                                     (intptr_t)T.getAsOpaquePtr(),
2686                                     StringRef(), StringRef(), None, Buffer,
2687                                     None);
2688 
2689   llvm::Constant *Components[] = {
2690     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2691     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2692   };
2693   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2694 
2695   auto *GV = new llvm::GlobalVariable(
2696       CGM.getModule(), Descriptor->getType(),
2697       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2698   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2699   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2700 
2701   // Remember the descriptor for this type.
2702   CGM.setTypeDescriptorInMap(T, GV);
2703 
2704   return GV;
2705 }
2706 
2707 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2708   llvm::Type *TargetTy = IntPtrTy;
2709 
2710   if (V->getType() == TargetTy)
2711     return V;
2712 
2713   // Floating-point types which fit into intptr_t are bitcast to integers
2714   // and then passed directly (after zero-extension, if necessary).
2715   if (V->getType()->isFloatingPointTy()) {
2716     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2717     if (Bits <= TargetTy->getIntegerBitWidth())
2718       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2719                                                          Bits));
2720   }
2721 
2722   // Integers which fit in intptr_t are zero-extended and passed directly.
2723   if (V->getType()->isIntegerTy() &&
2724       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2725     return Builder.CreateZExt(V, TargetTy);
2726 
2727   // Pointers are passed directly, everything else is passed by address.
2728   if (!V->getType()->isPointerTy()) {
2729     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2730     Builder.CreateStore(V, Ptr);
2731     V = Ptr.getPointer();
2732   }
2733   return Builder.CreatePtrToInt(V, TargetTy);
2734 }
2735 
2736 /// Emit a representation of a SourceLocation for passing to a handler
2737 /// in a sanitizer runtime library. The format for this data is:
2738 /// \code
2739 ///   struct SourceLocation {
2740 ///     const char *Filename;
2741 ///     int32_t Line, Column;
2742 ///   };
2743 /// \endcode
2744 /// For an invalid SourceLocation, the Filename pointer is null.
2745 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2746   llvm::Constant *Filename;
2747   int Line, Column;
2748 
2749   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2750   if (PLoc.isValid()) {
2751     StringRef FilenameString = PLoc.getFilename();
2752 
2753     int PathComponentsToStrip =
2754         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2755     if (PathComponentsToStrip < 0) {
2756       assert(PathComponentsToStrip != INT_MIN);
2757       int PathComponentsToKeep = -PathComponentsToStrip;
2758       auto I = llvm::sys::path::rbegin(FilenameString);
2759       auto E = llvm::sys::path::rend(FilenameString);
2760       while (I != E && --PathComponentsToKeep)
2761         ++I;
2762 
2763       FilenameString = FilenameString.substr(I - E);
2764     } else if (PathComponentsToStrip > 0) {
2765       auto I = llvm::sys::path::begin(FilenameString);
2766       auto E = llvm::sys::path::end(FilenameString);
2767       while (I != E && PathComponentsToStrip--)
2768         ++I;
2769 
2770       if (I != E)
2771         FilenameString =
2772             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2773       else
2774         FilenameString = llvm::sys::path::filename(FilenameString);
2775     }
2776 
2777     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2778     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2779                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2780     Filename = FilenameGV.getPointer();
2781     Line = PLoc.getLine();
2782     Column = PLoc.getColumn();
2783   } else {
2784     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2785     Line = Column = 0;
2786   }
2787 
2788   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2789                             Builder.getInt32(Column)};
2790 
2791   return llvm::ConstantStruct::getAnon(Data);
2792 }
2793 
2794 namespace {
2795 /// Specify under what conditions this check can be recovered
2796 enum class CheckRecoverableKind {
2797   /// Always terminate program execution if this check fails.
2798   Unrecoverable,
2799   /// Check supports recovering, runtime has both fatal (noreturn) and
2800   /// non-fatal handlers for this check.
2801   Recoverable,
2802   /// Runtime conditionally aborts, always need to support recovery.
2803   AlwaysRecoverable
2804 };
2805 }
2806 
2807 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2808   assert(llvm::countPopulation(Kind) == 1);
2809   switch (Kind) {
2810   case SanitizerKind::Vptr:
2811     return CheckRecoverableKind::AlwaysRecoverable;
2812   case SanitizerKind::Return:
2813   case SanitizerKind::Unreachable:
2814     return CheckRecoverableKind::Unrecoverable;
2815   default:
2816     return CheckRecoverableKind::Recoverable;
2817   }
2818 }
2819 
2820 namespace {
2821 struct SanitizerHandlerInfo {
2822   char const *const Name;
2823   unsigned Version;
2824 };
2825 }
2826 
2827 const SanitizerHandlerInfo SanitizerHandlers[] = {
2828 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2829     LIST_SANITIZER_CHECKS
2830 #undef SANITIZER_CHECK
2831 };
2832 
2833 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2834                                  llvm::FunctionType *FnType,
2835                                  ArrayRef<llvm::Value *> FnArgs,
2836                                  SanitizerHandler CheckHandler,
2837                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2838                                  llvm::BasicBlock *ContBB) {
2839   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2840   bool NeedsAbortSuffix =
2841       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2842   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2843   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2844   const StringRef CheckName = CheckInfo.Name;
2845   std::string FnName = "__ubsan_handle_" + CheckName.str();
2846   if (CheckInfo.Version && !MinimalRuntime)
2847     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2848   if (MinimalRuntime)
2849     FnName += "_minimal";
2850   if (NeedsAbortSuffix)
2851     FnName += "_abort";
2852   bool MayReturn =
2853       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2854 
2855   llvm::AttrBuilder B;
2856   if (!MayReturn) {
2857     B.addAttribute(llvm::Attribute::NoReturn)
2858         .addAttribute(llvm::Attribute::NoUnwind);
2859   }
2860   B.addAttribute(llvm::Attribute::UWTable);
2861 
2862   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2863       FnType, FnName,
2864       llvm::AttributeList::get(CGF.getLLVMContext(),
2865                                llvm::AttributeList::FunctionIndex, B),
2866       /*Local=*/true);
2867   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2868   if (!MayReturn) {
2869     HandlerCall->setDoesNotReturn();
2870     CGF.Builder.CreateUnreachable();
2871   } else {
2872     CGF.Builder.CreateBr(ContBB);
2873   }
2874 }
2875 
2876 void CodeGenFunction::EmitCheck(
2877     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2878     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2879     ArrayRef<llvm::Value *> DynamicArgs) {
2880   assert(IsSanitizerScope);
2881   assert(Checked.size() > 0);
2882   assert(CheckHandler >= 0 &&
2883          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
2884   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2885 
2886   llvm::Value *FatalCond = nullptr;
2887   llvm::Value *RecoverableCond = nullptr;
2888   llvm::Value *TrapCond = nullptr;
2889   for (int i = 0, n = Checked.size(); i < n; ++i) {
2890     llvm::Value *Check = Checked[i].first;
2891     // -fsanitize-trap= overrides -fsanitize-recover=.
2892     llvm::Value *&Cond =
2893         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2894             ? TrapCond
2895             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2896                   ? RecoverableCond
2897                   : FatalCond;
2898     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2899   }
2900 
2901   if (TrapCond)
2902     EmitTrapCheck(TrapCond);
2903   if (!FatalCond && !RecoverableCond)
2904     return;
2905 
2906   llvm::Value *JointCond;
2907   if (FatalCond && RecoverableCond)
2908     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2909   else
2910     JointCond = FatalCond ? FatalCond : RecoverableCond;
2911   assert(JointCond);
2912 
2913   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2914   assert(SanOpts.has(Checked[0].second));
2915 #ifndef NDEBUG
2916   for (int i = 1, n = Checked.size(); i < n; ++i) {
2917     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2918            "All recoverable kinds in a single check must be same!");
2919     assert(SanOpts.has(Checked[i].second));
2920   }
2921 #endif
2922 
2923   llvm::BasicBlock *Cont = createBasicBlock("cont");
2924   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2925   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2926   // Give hint that we very much don't expect to execute the handler
2927   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2928   llvm::MDBuilder MDHelper(getLLVMContext());
2929   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2930   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2931   EmitBlock(Handlers);
2932 
2933   // Handler functions take an i8* pointing to the (handler-specific) static
2934   // information block, followed by a sequence of intptr_t arguments
2935   // representing operand values.
2936   SmallVector<llvm::Value *, 4> Args;
2937   SmallVector<llvm::Type *, 4> ArgTypes;
2938   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2939     Args.reserve(DynamicArgs.size() + 1);
2940     ArgTypes.reserve(DynamicArgs.size() + 1);
2941 
2942     // Emit handler arguments and create handler function type.
2943     if (!StaticArgs.empty()) {
2944       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2945       auto *InfoPtr =
2946           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2947                                    llvm::GlobalVariable::PrivateLinkage, Info);
2948       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2949       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2950       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2951       ArgTypes.push_back(Int8PtrTy);
2952     }
2953 
2954     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2955       Args.push_back(EmitCheckValue(DynamicArgs[i]));
2956       ArgTypes.push_back(IntPtrTy);
2957     }
2958   }
2959 
2960   llvm::FunctionType *FnType =
2961     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2962 
2963   if (!FatalCond || !RecoverableCond) {
2964     // Simple case: we need to generate a single handler call, either
2965     // fatal, or non-fatal.
2966     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
2967                          (FatalCond != nullptr), Cont);
2968   } else {
2969     // Emit two handler calls: first one for set of unrecoverable checks,
2970     // another one for recoverable.
2971     llvm::BasicBlock *NonFatalHandlerBB =
2972         createBasicBlock("non_fatal." + CheckName);
2973     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2974     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2975     EmitBlock(FatalHandlerBB);
2976     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
2977                          NonFatalHandlerBB);
2978     EmitBlock(NonFatalHandlerBB);
2979     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
2980                          Cont);
2981   }
2982 
2983   EmitBlock(Cont);
2984 }
2985 
2986 void CodeGenFunction::EmitCfiSlowPathCheck(
2987     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2988     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2989   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2990 
2991   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2992   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2993 
2994   llvm::MDBuilder MDHelper(getLLVMContext());
2995   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2996   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2997 
2998   EmitBlock(CheckBB);
2999 
3000   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3001 
3002   llvm::CallInst *CheckCall;
3003   llvm::Constant *SlowPathFn;
3004   if (WithDiag) {
3005     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3006     auto *InfoPtr =
3007         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3008                                  llvm::GlobalVariable::PrivateLinkage, Info);
3009     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3010     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3011 
3012     SlowPathFn = CGM.getModule().getOrInsertFunction(
3013         "__cfi_slowpath_diag",
3014         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3015                                 false));
3016     CheckCall = Builder.CreateCall(
3017         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3018   } else {
3019     SlowPathFn = CGM.getModule().getOrInsertFunction(
3020         "__cfi_slowpath",
3021         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3022     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3023   }
3024 
3025   CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts()));
3026   CheckCall->setDoesNotThrow();
3027 
3028   EmitBlock(Cont);
3029 }
3030 
3031 // Emit a stub for __cfi_check function so that the linker knows about this
3032 // symbol in LTO mode.
3033 void CodeGenFunction::EmitCfiCheckStub() {
3034   llvm::Module *M = &CGM.getModule();
3035   auto &Ctx = M->getContext();
3036   llvm::Function *F = llvm::Function::Create(
3037       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3038       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3039   CGM.setDSOLocal(F);
3040   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3041   // FIXME: consider emitting an intrinsic call like
3042   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3043   // which can be lowered in CrossDSOCFI pass to the actual contents of
3044   // __cfi_check. This would allow inlining of __cfi_check calls.
3045   llvm::CallInst::Create(
3046       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3047   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3048 }
3049 
3050 // This function is basically a switch over the CFI failure kind, which is
3051 // extracted from CFICheckFailData (1st function argument). Each case is either
3052 // llvm.trap or a call to one of the two runtime handlers, based on
3053 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3054 // failure kind) traps, but this should really never happen.  CFICheckFailData
3055 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3056 // check kind; in this case __cfi_check_fail traps as well.
3057 void CodeGenFunction::EmitCfiCheckFail() {
3058   SanitizerScope SanScope(this);
3059   FunctionArgList Args;
3060   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3061                             ImplicitParamDecl::Other);
3062   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3063                             ImplicitParamDecl::Other);
3064   Args.push_back(&ArgData);
3065   Args.push_back(&ArgAddr);
3066 
3067   const CGFunctionInfo &FI =
3068     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3069 
3070   llvm::Function *F = llvm::Function::Create(
3071       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3072       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3073   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3074 
3075   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3076                 SourceLocation());
3077 
3078   // This function should not be affected by blacklist. This function does
3079   // not have a source location, but "src:*" would still apply. Revert any
3080   // changes to SanOpts made in StartFunction.
3081   SanOpts = CGM.getLangOpts().Sanitize;
3082 
3083   llvm::Value *Data =
3084       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3085                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3086   llvm::Value *Addr =
3087       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3088                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3089 
3090   // Data == nullptr means the calling module has trap behaviour for this check.
3091   llvm::Value *DataIsNotNullPtr =
3092       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3093   EmitTrapCheck(DataIsNotNullPtr);
3094 
3095   llvm::StructType *SourceLocationTy =
3096       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3097   llvm::StructType *CfiCheckFailDataTy =
3098       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3099 
3100   llvm::Value *V = Builder.CreateConstGEP2_32(
3101       CfiCheckFailDataTy,
3102       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3103       0);
3104   Address CheckKindAddr(V, getIntAlign());
3105   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3106 
3107   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3108       CGM.getLLVMContext(),
3109       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3110   llvm::Value *ValidVtable = Builder.CreateZExt(
3111       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3112                          {Addr, AllVtables}),
3113       IntPtrTy);
3114 
3115   const std::pair<int, SanitizerMask> CheckKinds[] = {
3116       {CFITCK_VCall, SanitizerKind::CFIVCall},
3117       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3118       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3119       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3120       {CFITCK_ICall, SanitizerKind::CFIICall}};
3121 
3122   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3123   for (auto CheckKindMaskPair : CheckKinds) {
3124     int Kind = CheckKindMaskPair.first;
3125     SanitizerMask Mask = CheckKindMaskPair.second;
3126     llvm::Value *Cond =
3127         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3128     if (CGM.getLangOpts().Sanitize.has(Mask))
3129       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3130                 {Data, Addr, ValidVtable});
3131     else
3132       EmitTrapCheck(Cond);
3133   }
3134 
3135   FinishFunction();
3136   // The only reference to this function will be created during LTO link.
3137   // Make sure it survives until then.
3138   CGM.addUsedGlobal(F);
3139 }
3140 
3141 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3142   if (SanOpts.has(SanitizerKind::Unreachable)) {
3143     SanitizerScope SanScope(this);
3144     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3145                              SanitizerKind::Unreachable),
3146               SanitizerHandler::BuiltinUnreachable,
3147               EmitCheckSourceLocation(Loc), None);
3148   }
3149   Builder.CreateUnreachable();
3150 }
3151 
3152 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3153   llvm::BasicBlock *Cont = createBasicBlock("cont");
3154 
3155   // If we're optimizing, collapse all calls to trap down to just one per
3156   // function to save on code size.
3157   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3158     TrapBB = createBasicBlock("trap");
3159     Builder.CreateCondBr(Checked, Cont, TrapBB);
3160     EmitBlock(TrapBB);
3161     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3162     TrapCall->setDoesNotReturn();
3163     TrapCall->setDoesNotThrow();
3164     Builder.CreateUnreachable();
3165   } else {
3166     Builder.CreateCondBr(Checked, Cont, TrapBB);
3167   }
3168 
3169   EmitBlock(Cont);
3170 }
3171 
3172 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3173   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3174 
3175   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3176     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3177                                   CGM.getCodeGenOpts().TrapFuncName);
3178     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3179   }
3180 
3181   return TrapCall;
3182 }
3183 
3184 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3185                                                  LValueBaseInfo *BaseInfo,
3186                                                  TBAAAccessInfo *TBAAInfo) {
3187   assert(E->getType()->isArrayType() &&
3188          "Array to pointer decay must have array source type!");
3189 
3190   // Expressions of array type can't be bitfields or vector elements.
3191   LValue LV = EmitLValue(E);
3192   Address Addr = LV.getAddress();
3193 
3194   // If the array type was an incomplete type, we need to make sure
3195   // the decay ends up being the right type.
3196   llvm::Type *NewTy = ConvertType(E->getType());
3197   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3198 
3199   // Note that VLA pointers are always decayed, so we don't need to do
3200   // anything here.
3201   if (!E->getType()->isVariableArrayType()) {
3202     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3203            "Expected pointer to array");
3204     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3205   }
3206 
3207   // The result of this decay conversion points to an array element within the
3208   // base lvalue. However, since TBAA currently does not support representing
3209   // accesses to elements of member arrays, we conservatively represent accesses
3210   // to the pointee object as if it had no any base lvalue specified.
3211   // TODO: Support TBAA for member arrays.
3212   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3213   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3214   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3215 
3216   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3217 }
3218 
3219 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3220 /// array to pointer, return the array subexpression.
3221 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3222   // If this isn't just an array->pointer decay, bail out.
3223   const auto *CE = dyn_cast<CastExpr>(E);
3224   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3225     return nullptr;
3226 
3227   // If this is a decay from variable width array, bail out.
3228   const Expr *SubExpr = CE->getSubExpr();
3229   if (SubExpr->getType()->isVariableArrayType())
3230     return nullptr;
3231 
3232   return SubExpr;
3233 }
3234 
3235 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3236                                           llvm::Value *ptr,
3237                                           ArrayRef<llvm::Value*> indices,
3238                                           bool inbounds,
3239                                           bool signedIndices,
3240                                           SourceLocation loc,
3241                                     const llvm::Twine &name = "arrayidx") {
3242   if (inbounds) {
3243     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3244                                       CodeGenFunction::NotSubtraction, loc,
3245                                       name);
3246   } else {
3247     return CGF.Builder.CreateGEP(ptr, indices, name);
3248   }
3249 }
3250 
3251 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3252                                       llvm::Value *idx,
3253                                       CharUnits eltSize) {
3254   // If we have a constant index, we can use the exact offset of the
3255   // element we're accessing.
3256   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3257     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3258     return arrayAlign.alignmentAtOffset(offset);
3259 
3260   // Otherwise, use the worst-case alignment for any element.
3261   } else {
3262     return arrayAlign.alignmentOfArrayElement(eltSize);
3263   }
3264 }
3265 
3266 static QualType getFixedSizeElementType(const ASTContext &ctx,
3267                                         const VariableArrayType *vla) {
3268   QualType eltType;
3269   do {
3270     eltType = vla->getElementType();
3271   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3272   return eltType;
3273 }
3274 
3275 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3276                                      ArrayRef<llvm::Value *> indices,
3277                                      QualType eltType, bool inbounds,
3278                                      bool signedIndices, SourceLocation loc,
3279                                      const llvm::Twine &name = "arrayidx") {
3280   // All the indices except that last must be zero.
3281 #ifndef NDEBUG
3282   for (auto idx : indices.drop_back())
3283     assert(isa<llvm::ConstantInt>(idx) &&
3284            cast<llvm::ConstantInt>(idx)->isZero());
3285 #endif
3286 
3287   // Determine the element size of the statically-sized base.  This is
3288   // the thing that the indices are expressed in terms of.
3289   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3290     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3291   }
3292 
3293   // We can use that to compute the best alignment of the element.
3294   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3295   CharUnits eltAlign =
3296     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3297 
3298   llvm::Value *eltPtr = emitArraySubscriptGEP(
3299       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3300   return Address(eltPtr, eltAlign);
3301 }
3302 
3303 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3304                                                bool Accessed) {
3305   // The index must always be an integer, which is not an aggregate.  Emit it
3306   // in lexical order (this complexity is, sadly, required by C++17).
3307   llvm::Value *IdxPre =
3308       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3309   bool SignedIndices = false;
3310   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3311     auto *Idx = IdxPre;
3312     if (E->getLHS() != E->getIdx()) {
3313       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3314       Idx = EmitScalarExpr(E->getIdx());
3315     }
3316 
3317     QualType IdxTy = E->getIdx()->getType();
3318     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3319     SignedIndices |= IdxSigned;
3320 
3321     if (SanOpts.has(SanitizerKind::ArrayBounds))
3322       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3323 
3324     // Extend or truncate the index type to 32 or 64-bits.
3325     if (Promote && Idx->getType() != IntPtrTy)
3326       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3327 
3328     return Idx;
3329   };
3330   IdxPre = nullptr;
3331 
3332   // If the base is a vector type, then we are forming a vector element lvalue
3333   // with this subscript.
3334   if (E->getBase()->getType()->isVectorType() &&
3335       !isa<ExtVectorElementExpr>(E->getBase())) {
3336     // Emit the vector as an lvalue to get its address.
3337     LValue LHS = EmitLValue(E->getBase());
3338     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3339     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3340     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3341                                  LHS.getBaseInfo(), TBAAAccessInfo());
3342   }
3343 
3344   // All the other cases basically behave like simple offsetting.
3345 
3346   // Handle the extvector case we ignored above.
3347   if (isa<ExtVectorElementExpr>(E->getBase())) {
3348     LValue LV = EmitLValue(E->getBase());
3349     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3350     Address Addr = EmitExtVectorElementLValue(LV);
3351 
3352     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3353     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3354                                  SignedIndices, E->getExprLoc());
3355     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3356                           CGM.getTBAAInfoForSubobject(LV, EltType));
3357   }
3358 
3359   LValueBaseInfo EltBaseInfo;
3360   TBAAAccessInfo EltTBAAInfo;
3361   Address Addr = Address::invalid();
3362   if (const VariableArrayType *vla =
3363            getContext().getAsVariableArrayType(E->getType())) {
3364     // The base must be a pointer, which is not an aggregate.  Emit
3365     // it.  It needs to be emitted first in case it's what captures
3366     // the VLA bounds.
3367     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3368     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3369 
3370     // The element count here is the total number of non-VLA elements.
3371     llvm::Value *numElements = getVLASize(vla).NumElts;
3372 
3373     // Effectively, the multiply by the VLA size is part of the GEP.
3374     // GEP indexes are signed, and scaling an index isn't permitted to
3375     // signed-overflow, so we use the same semantics for our explicit
3376     // multiply.  We suppress this if overflow is not undefined behavior.
3377     if (getLangOpts().isSignedOverflowDefined()) {
3378       Idx = Builder.CreateMul(Idx, numElements);
3379     } else {
3380       Idx = Builder.CreateNSWMul(Idx, numElements);
3381     }
3382 
3383     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3384                                  !getLangOpts().isSignedOverflowDefined(),
3385                                  SignedIndices, E->getExprLoc());
3386 
3387   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3388     // Indexing over an interface, as in "NSString *P; P[4];"
3389 
3390     // Emit the base pointer.
3391     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3392     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3393 
3394     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3395     llvm::Value *InterfaceSizeVal =
3396         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3397 
3398     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3399 
3400     // We don't necessarily build correct LLVM struct types for ObjC
3401     // interfaces, so we can't rely on GEP to do this scaling
3402     // correctly, so we need to cast to i8*.  FIXME: is this actually
3403     // true?  A lot of other things in the fragile ABI would break...
3404     llvm::Type *OrigBaseTy = Addr.getType();
3405     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3406 
3407     // Do the GEP.
3408     CharUnits EltAlign =
3409       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3410     llvm::Value *EltPtr =
3411         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3412                               SignedIndices, E->getExprLoc());
3413     Addr = Address(EltPtr, EltAlign);
3414 
3415     // Cast back.
3416     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3417   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3418     // If this is A[i] where A is an array, the frontend will have decayed the
3419     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3420     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3421     // "gep x, i" here.  Emit one "gep A, 0, i".
3422     assert(Array->getType()->isArrayType() &&
3423            "Array to pointer decay must have array source type!");
3424     LValue ArrayLV;
3425     // For simple multidimensional array indexing, set the 'accessed' flag for
3426     // better bounds-checking of the base expression.
3427     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3428       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3429     else
3430       ArrayLV = EmitLValue(Array);
3431     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3432 
3433     // Propagate the alignment from the array itself to the result.
3434     Addr = emitArraySubscriptGEP(
3435         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3436         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3437         E->getExprLoc());
3438     EltBaseInfo = ArrayLV.getBaseInfo();
3439     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3440   } else {
3441     // The base must be a pointer; emit it with an estimate of its alignment.
3442     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3443     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3444     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3445                                  !getLangOpts().isSignedOverflowDefined(),
3446                                  SignedIndices, E->getExprLoc());
3447   }
3448 
3449   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3450 
3451   if (getLangOpts().ObjC1 &&
3452       getLangOpts().getGC() != LangOptions::NonGC) {
3453     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3454     setObjCGCLValueClass(getContext(), E, LV);
3455   }
3456   return LV;
3457 }
3458 
3459 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3460                                        LValueBaseInfo &BaseInfo,
3461                                        TBAAAccessInfo &TBAAInfo,
3462                                        QualType BaseTy, QualType ElTy,
3463                                        bool IsLowerBound) {
3464   LValue BaseLVal;
3465   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3466     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3467     if (BaseTy->isArrayType()) {
3468       Address Addr = BaseLVal.getAddress();
3469       BaseInfo = BaseLVal.getBaseInfo();
3470 
3471       // If the array type was an incomplete type, we need to make sure
3472       // the decay ends up being the right type.
3473       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3474       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3475 
3476       // Note that VLA pointers are always decayed, so we don't need to do
3477       // anything here.
3478       if (!BaseTy->isVariableArrayType()) {
3479         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3480                "Expected pointer to array");
3481         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3482                                            "arraydecay");
3483       }
3484 
3485       return CGF.Builder.CreateElementBitCast(Addr,
3486                                               CGF.ConvertTypeForMem(ElTy));
3487     }
3488     LValueBaseInfo TypeBaseInfo;
3489     TBAAAccessInfo TypeTBAAInfo;
3490     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3491                                                   &TypeTBAAInfo);
3492     BaseInfo.mergeForCast(TypeBaseInfo);
3493     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3494     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3495   }
3496   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3497 }
3498 
3499 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3500                                                 bool IsLowerBound) {
3501   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3502   QualType ResultExprTy;
3503   if (auto *AT = getContext().getAsArrayType(BaseTy))
3504     ResultExprTy = AT->getElementType();
3505   else
3506     ResultExprTy = BaseTy->getPointeeType();
3507   llvm::Value *Idx = nullptr;
3508   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3509     // Requesting lower bound or upper bound, but without provided length and
3510     // without ':' symbol for the default length -> length = 1.
3511     // Idx = LowerBound ?: 0;
3512     if (auto *LowerBound = E->getLowerBound()) {
3513       Idx = Builder.CreateIntCast(
3514           EmitScalarExpr(LowerBound), IntPtrTy,
3515           LowerBound->getType()->hasSignedIntegerRepresentation());
3516     } else
3517       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3518   } else {
3519     // Try to emit length or lower bound as constant. If this is possible, 1
3520     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3521     // IR (LB + Len) - 1.
3522     auto &C = CGM.getContext();
3523     auto *Length = E->getLength();
3524     llvm::APSInt ConstLength;
3525     if (Length) {
3526       // Idx = LowerBound + Length - 1;
3527       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3528         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3529         Length = nullptr;
3530       }
3531       auto *LowerBound = E->getLowerBound();
3532       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3533       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3534         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3535         LowerBound = nullptr;
3536       }
3537       if (!Length)
3538         --ConstLength;
3539       else if (!LowerBound)
3540         --ConstLowerBound;
3541 
3542       if (Length || LowerBound) {
3543         auto *LowerBoundVal =
3544             LowerBound
3545                 ? Builder.CreateIntCast(
3546                       EmitScalarExpr(LowerBound), IntPtrTy,
3547                       LowerBound->getType()->hasSignedIntegerRepresentation())
3548                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3549         auto *LengthVal =
3550             Length
3551                 ? Builder.CreateIntCast(
3552                       EmitScalarExpr(Length), IntPtrTy,
3553                       Length->getType()->hasSignedIntegerRepresentation())
3554                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3555         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3556                                 /*HasNUW=*/false,
3557                                 !getLangOpts().isSignedOverflowDefined());
3558         if (Length && LowerBound) {
3559           Idx = Builder.CreateSub(
3560               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3561               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3562         }
3563       } else
3564         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3565     } else {
3566       // Idx = ArraySize - 1;
3567       QualType ArrayTy = BaseTy->isPointerType()
3568                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3569                              : BaseTy;
3570       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3571         Length = VAT->getSizeExpr();
3572         if (Length->isIntegerConstantExpr(ConstLength, C))
3573           Length = nullptr;
3574       } else {
3575         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3576         ConstLength = CAT->getSize();
3577       }
3578       if (Length) {
3579         auto *LengthVal = Builder.CreateIntCast(
3580             EmitScalarExpr(Length), IntPtrTy,
3581             Length->getType()->hasSignedIntegerRepresentation());
3582         Idx = Builder.CreateSub(
3583             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3584             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3585       } else {
3586         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3587         --ConstLength;
3588         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3589       }
3590     }
3591   }
3592   assert(Idx);
3593 
3594   Address EltPtr = Address::invalid();
3595   LValueBaseInfo BaseInfo;
3596   TBAAAccessInfo TBAAInfo;
3597   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3598     // The base must be a pointer, which is not an aggregate.  Emit
3599     // it.  It needs to be emitted first in case it's what captures
3600     // the VLA bounds.
3601     Address Base =
3602         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3603                                 BaseTy, VLA->getElementType(), IsLowerBound);
3604     // The element count here is the total number of non-VLA elements.
3605     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3606 
3607     // Effectively, the multiply by the VLA size is part of the GEP.
3608     // GEP indexes are signed, and scaling an index isn't permitted to
3609     // signed-overflow, so we use the same semantics for our explicit
3610     // multiply.  We suppress this if overflow is not undefined behavior.
3611     if (getLangOpts().isSignedOverflowDefined())
3612       Idx = Builder.CreateMul(Idx, NumElements);
3613     else
3614       Idx = Builder.CreateNSWMul(Idx, NumElements);
3615     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3616                                    !getLangOpts().isSignedOverflowDefined(),
3617                                    /*SignedIndices=*/false, E->getExprLoc());
3618   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3619     // If this is A[i] where A is an array, the frontend will have decayed the
3620     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3621     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3622     // "gep x, i" here.  Emit one "gep A, 0, i".
3623     assert(Array->getType()->isArrayType() &&
3624            "Array to pointer decay must have array source type!");
3625     LValue ArrayLV;
3626     // For simple multidimensional array indexing, set the 'accessed' flag for
3627     // better bounds-checking of the base expression.
3628     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3629       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3630     else
3631       ArrayLV = EmitLValue(Array);
3632 
3633     // Propagate the alignment from the array itself to the result.
3634     EltPtr = emitArraySubscriptGEP(
3635         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3636         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3637         /*SignedIndices=*/false, E->getExprLoc());
3638     BaseInfo = ArrayLV.getBaseInfo();
3639     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3640   } else {
3641     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3642                                            TBAAInfo, BaseTy, ResultExprTy,
3643                                            IsLowerBound);
3644     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3645                                    !getLangOpts().isSignedOverflowDefined(),
3646                                    /*SignedIndices=*/false, E->getExprLoc());
3647   }
3648 
3649   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3650 }
3651 
3652 LValue CodeGenFunction::
3653 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3654   // Emit the base vector as an l-value.
3655   LValue Base;
3656 
3657   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3658   if (E->isArrow()) {
3659     // If it is a pointer to a vector, emit the address and form an lvalue with
3660     // it.
3661     LValueBaseInfo BaseInfo;
3662     TBAAAccessInfo TBAAInfo;
3663     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3664     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3665     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3666     Base.getQuals().removeObjCGCAttr();
3667   } else if (E->getBase()->isGLValue()) {
3668     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3669     // emit the base as an lvalue.
3670     assert(E->getBase()->getType()->isVectorType());
3671     Base = EmitLValue(E->getBase());
3672   } else {
3673     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3674     assert(E->getBase()->getType()->isVectorType() &&
3675            "Result must be a vector");
3676     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3677 
3678     // Store the vector to memory (because LValue wants an address).
3679     Address VecMem = CreateMemTemp(E->getBase()->getType());
3680     Builder.CreateStore(Vec, VecMem);
3681     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3682                           AlignmentSource::Decl);
3683   }
3684 
3685   QualType type =
3686     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3687 
3688   // Encode the element access list into a vector of unsigned indices.
3689   SmallVector<uint32_t, 4> Indices;
3690   E->getEncodedElementAccess(Indices);
3691 
3692   if (Base.isSimple()) {
3693     llvm::Constant *CV =
3694         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3695     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3696                                     Base.getBaseInfo(), TBAAAccessInfo());
3697   }
3698   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3699 
3700   llvm::Constant *BaseElts = Base.getExtVectorElts();
3701   SmallVector<llvm::Constant *, 4> CElts;
3702 
3703   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3704     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3705   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3706   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3707                                   Base.getBaseInfo(), TBAAAccessInfo());
3708 }
3709 
3710 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3711   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3712     EmitIgnoredExpr(E->getBase());
3713     return EmitDeclRefLValue(DRE);
3714   }
3715 
3716   Expr *BaseExpr = E->getBase();
3717   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3718   LValue BaseLV;
3719   if (E->isArrow()) {
3720     LValueBaseInfo BaseInfo;
3721     TBAAAccessInfo TBAAInfo;
3722     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3723     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3724     SanitizerSet SkippedChecks;
3725     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3726     if (IsBaseCXXThis)
3727       SkippedChecks.set(SanitizerKind::Alignment, true);
3728     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3729       SkippedChecks.set(SanitizerKind::Null, true);
3730     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3731                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3732     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3733   } else
3734     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3735 
3736   NamedDecl *ND = E->getMemberDecl();
3737   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3738     LValue LV = EmitLValueForField(BaseLV, Field);
3739     setObjCGCLValueClass(getContext(), E, LV);
3740     return LV;
3741   }
3742 
3743   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3744     return EmitFunctionDeclLValue(*this, E, FD);
3745 
3746   llvm_unreachable("Unhandled member declaration!");
3747 }
3748 
3749 /// Given that we are currently emitting a lambda, emit an l-value for
3750 /// one of its members.
3751 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3752   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3753   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3754   QualType LambdaTagType =
3755     getContext().getTagDeclType(Field->getParent());
3756   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3757   return EmitLValueForField(LambdaLV, Field);
3758 }
3759 
3760 /// Drill down to the storage of a field without walking into
3761 /// reference types.
3762 ///
3763 /// The resulting address doesn't necessarily have the right type.
3764 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3765                                       const FieldDecl *field) {
3766   const RecordDecl *rec = field->getParent();
3767 
3768   unsigned idx =
3769     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3770 
3771   CharUnits offset;
3772   // Adjust the alignment down to the given offset.
3773   // As a special case, if the LLVM field index is 0, we know that this
3774   // is zero.
3775   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3776                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3777          "LLVM field at index zero had non-zero offset?");
3778   if (idx != 0) {
3779     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3780     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3781     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3782   }
3783 
3784   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3785 }
3786 
3787 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3788   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3789   if (!RD)
3790     return false;
3791 
3792   if (RD->isDynamicClass())
3793     return true;
3794 
3795   for (const auto &Base : RD->bases())
3796     if (hasAnyVptr(Base.getType(), Context))
3797       return true;
3798 
3799   for (const FieldDecl *Field : RD->fields())
3800     if (hasAnyVptr(Field->getType(), Context))
3801       return true;
3802 
3803   return false;
3804 }
3805 
3806 LValue CodeGenFunction::EmitLValueForField(LValue base,
3807                                            const FieldDecl *field) {
3808   LValueBaseInfo BaseInfo = base.getBaseInfo();
3809 
3810   if (field->isBitField()) {
3811     const CGRecordLayout &RL =
3812       CGM.getTypes().getCGRecordLayout(field->getParent());
3813     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3814     Address Addr = base.getAddress();
3815     unsigned Idx = RL.getLLVMFieldNo(field);
3816     if (Idx != 0)
3817       // For structs, we GEP to the field that the record layout suggests.
3818       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3819                                      field->getName());
3820     // Get the access type.
3821     llvm::Type *FieldIntTy =
3822       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3823     if (Addr.getElementType() != FieldIntTy)
3824       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3825 
3826     QualType fieldType =
3827       field->getType().withCVRQualifiers(base.getVRQualifiers());
3828     // TODO: Support TBAA for bit fields.
3829     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
3830     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3831                                 TBAAAccessInfo());
3832   }
3833 
3834   // Fields of may-alias structures are may-alias themselves.
3835   // FIXME: this should get propagated down through anonymous structs
3836   // and unions.
3837   QualType FieldType = field->getType();
3838   const RecordDecl *rec = field->getParent();
3839   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3840   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
3841   TBAAAccessInfo FieldTBAAInfo;
3842   if (base.getTBAAInfo().isMayAlias() ||
3843           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
3844     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3845   } else if (rec->isUnion()) {
3846     // TODO: Support TBAA for unions.
3847     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3848   } else {
3849     // If no base type been assigned for the base access, then try to generate
3850     // one for this base lvalue.
3851     FieldTBAAInfo = base.getTBAAInfo();
3852     if (!FieldTBAAInfo.BaseType) {
3853         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3854         assert(!FieldTBAAInfo.Offset &&
3855                "Nonzero offset for an access with no base type!");
3856     }
3857 
3858     // Adjust offset to be relative to the base type.
3859     const ASTRecordLayout &Layout =
3860         getContext().getASTRecordLayout(field->getParent());
3861     unsigned CharWidth = getContext().getCharWidth();
3862     if (FieldTBAAInfo.BaseType)
3863       FieldTBAAInfo.Offset +=
3864           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3865 
3866     // Update the final access type and size.
3867     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3868     FieldTBAAInfo.Size =
3869         getContext().getTypeSizeInChars(FieldType).getQuantity();
3870   }
3871 
3872   Address addr = base.getAddress();
3873   unsigned RecordCVR = base.getVRQualifiers();
3874   if (rec->isUnion()) {
3875     // For unions, there is no pointer adjustment.
3876     assert(!FieldType->isReferenceType() && "union has reference member");
3877     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3878         hasAnyVptr(FieldType, getContext()))
3879       // Because unions can easily skip invariant.barriers, we need to add
3880       // a barrier every time CXXRecord field with vptr is referenced.
3881       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
3882                      addr.getAlignment());
3883   } else {
3884     // For structs, we GEP to the field that the record layout suggests.
3885     addr = emitAddrOfFieldStorage(*this, addr, field);
3886 
3887     // If this is a reference field, load the reference right now.
3888     if (FieldType->isReferenceType()) {
3889       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
3890                                       FieldTBAAInfo);
3891       if (RecordCVR & Qualifiers::Volatile)
3892         RefLVal.getQuals().setVolatile(true);
3893       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
3894 
3895       // Qualifiers on the struct don't apply to the referencee.
3896       RecordCVR = 0;
3897       FieldType = FieldType->getPointeeType();
3898     }
3899   }
3900 
3901   // Make sure that the address is pointing to the right type.  This is critical
3902   // for both unions and structs.  A union needs a bitcast, a struct element
3903   // will need a bitcast if the LLVM type laid out doesn't match the desired
3904   // type.
3905   addr = Builder.CreateElementBitCast(
3906       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
3907 
3908   if (field->hasAttr<AnnotateAttr>())
3909     addr = EmitFieldAnnotations(field, addr);
3910 
3911   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
3912   LV.getQuals().addCVRQualifiers(RecordCVR);
3913 
3914   // __weak attribute on a field is ignored.
3915   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3916     LV.getQuals().removeObjCGCAttr();
3917 
3918   return LV;
3919 }
3920 
3921 LValue
3922 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3923                                                   const FieldDecl *Field) {
3924   QualType FieldType = Field->getType();
3925 
3926   if (!FieldType->isReferenceType())
3927     return EmitLValueForField(Base, Field);
3928 
3929   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3930 
3931   // Make sure that the address is pointing to the right type.
3932   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3933   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3934 
3935   // TODO: Generate TBAA information that describes this access as a structure
3936   // member access and not just an access to an object of the field's type. This
3937   // should be similar to what we do in EmitLValueForField().
3938   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3939   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
3940   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
3941   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
3942                         CGM.getTBAAInfoForSubobject(Base, FieldType));
3943 }
3944 
3945 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3946   if (E->isFileScope()) {
3947     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3948     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3949   }
3950   if (E->getType()->isVariablyModifiedType())
3951     // make sure to emit the VLA size.
3952     EmitVariablyModifiedType(E->getType());
3953 
3954   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3955   const Expr *InitExpr = E->getInitializer();
3956   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3957 
3958   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3959                    /*Init*/ true);
3960 
3961   return Result;
3962 }
3963 
3964 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3965   if (!E->isGLValue())
3966     // Initializing an aggregate temporary in C++11: T{...}.
3967     return EmitAggExprToLValue(E);
3968 
3969   // An lvalue initializer list must be initializing a reference.
3970   assert(E->isTransparent() && "non-transparent glvalue init list");
3971   return EmitLValue(E->getInit(0));
3972 }
3973 
3974 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3975 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3976 /// LValue is returned and the current block has been terminated.
3977 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3978                                                     const Expr *Operand) {
3979   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3980     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3981     return None;
3982   }
3983 
3984   return CGF.EmitLValue(Operand);
3985 }
3986 
3987 LValue CodeGenFunction::
3988 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3989   if (!expr->isGLValue()) {
3990     // ?: here should be an aggregate.
3991     assert(hasAggregateEvaluationKind(expr->getType()) &&
3992            "Unexpected conditional operator!");
3993     return EmitAggExprToLValue(expr);
3994   }
3995 
3996   OpaqueValueMapping binding(*this, expr);
3997 
3998   const Expr *condExpr = expr->getCond();
3999   bool CondExprBool;
4000   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4001     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4002     if (!CondExprBool) std::swap(live, dead);
4003 
4004     if (!ContainsLabel(dead)) {
4005       // If the true case is live, we need to track its region.
4006       if (CondExprBool)
4007         incrementProfileCounter(expr);
4008       return EmitLValue(live);
4009     }
4010   }
4011 
4012   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4013   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4014   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4015 
4016   ConditionalEvaluation eval(*this);
4017   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4018 
4019   // Any temporaries created here are conditional.
4020   EmitBlock(lhsBlock);
4021   incrementProfileCounter(expr);
4022   eval.begin(*this);
4023   Optional<LValue> lhs =
4024       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4025   eval.end(*this);
4026 
4027   if (lhs && !lhs->isSimple())
4028     return EmitUnsupportedLValue(expr, "conditional operator");
4029 
4030   lhsBlock = Builder.GetInsertBlock();
4031   if (lhs)
4032     Builder.CreateBr(contBlock);
4033 
4034   // Any temporaries created here are conditional.
4035   EmitBlock(rhsBlock);
4036   eval.begin(*this);
4037   Optional<LValue> rhs =
4038       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4039   eval.end(*this);
4040   if (rhs && !rhs->isSimple())
4041     return EmitUnsupportedLValue(expr, "conditional operator");
4042   rhsBlock = Builder.GetInsertBlock();
4043 
4044   EmitBlock(contBlock);
4045 
4046   if (lhs && rhs) {
4047     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4048                                            2, "cond-lvalue");
4049     phi->addIncoming(lhs->getPointer(), lhsBlock);
4050     phi->addIncoming(rhs->getPointer(), rhsBlock);
4051     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4052     AlignmentSource alignSource =
4053       std::max(lhs->getBaseInfo().getAlignmentSource(),
4054                rhs->getBaseInfo().getAlignmentSource());
4055     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4056         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4057     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4058                           TBAAInfo);
4059   } else {
4060     assert((lhs || rhs) &&
4061            "both operands of glvalue conditional are throw-expressions?");
4062     return lhs ? *lhs : *rhs;
4063   }
4064 }
4065 
4066 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4067 /// type. If the cast is to a reference, we can have the usual lvalue result,
4068 /// otherwise if a cast is needed by the code generator in an lvalue context,
4069 /// then it must mean that we need the address of an aggregate in order to
4070 /// access one of its members.  This can happen for all the reasons that casts
4071 /// are permitted with aggregate result, including noop aggregate casts, and
4072 /// cast from scalar to union.
4073 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4074   switch (E->getCastKind()) {
4075   case CK_ToVoid:
4076   case CK_BitCast:
4077   case CK_ArrayToPointerDecay:
4078   case CK_FunctionToPointerDecay:
4079   case CK_NullToMemberPointer:
4080   case CK_NullToPointer:
4081   case CK_IntegralToPointer:
4082   case CK_PointerToIntegral:
4083   case CK_PointerToBoolean:
4084   case CK_VectorSplat:
4085   case CK_IntegralCast:
4086   case CK_BooleanToSignedIntegral:
4087   case CK_IntegralToBoolean:
4088   case CK_IntegralToFloating:
4089   case CK_FloatingToIntegral:
4090   case CK_FloatingToBoolean:
4091   case CK_FloatingCast:
4092   case CK_FloatingRealToComplex:
4093   case CK_FloatingComplexToReal:
4094   case CK_FloatingComplexToBoolean:
4095   case CK_FloatingComplexCast:
4096   case CK_FloatingComplexToIntegralComplex:
4097   case CK_IntegralRealToComplex:
4098   case CK_IntegralComplexToReal:
4099   case CK_IntegralComplexToBoolean:
4100   case CK_IntegralComplexCast:
4101   case CK_IntegralComplexToFloatingComplex:
4102   case CK_DerivedToBaseMemberPointer:
4103   case CK_BaseToDerivedMemberPointer:
4104   case CK_MemberPointerToBoolean:
4105   case CK_ReinterpretMemberPointer:
4106   case CK_AnyPointerToBlockPointerCast:
4107   case CK_ARCProduceObject:
4108   case CK_ARCConsumeObject:
4109   case CK_ARCReclaimReturnedObject:
4110   case CK_ARCExtendBlockObject:
4111   case CK_CopyAndAutoreleaseBlockObject:
4112   case CK_AddressSpaceConversion:
4113   case CK_IntToOCLSampler:
4114     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4115 
4116   case CK_Dependent:
4117     llvm_unreachable("dependent cast kind in IR gen!");
4118 
4119   case CK_BuiltinFnToFnPtr:
4120     llvm_unreachable("builtin functions are handled elsewhere");
4121 
4122   // These are never l-values; just use the aggregate emission code.
4123   case CK_NonAtomicToAtomic:
4124   case CK_AtomicToNonAtomic:
4125     return EmitAggExprToLValue(E);
4126 
4127   case CK_Dynamic: {
4128     LValue LV = EmitLValue(E->getSubExpr());
4129     Address V = LV.getAddress();
4130     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4131     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4132   }
4133 
4134   case CK_ConstructorConversion:
4135   case CK_UserDefinedConversion:
4136   case CK_CPointerToObjCPointerCast:
4137   case CK_BlockPointerToObjCPointerCast:
4138   case CK_NoOp:
4139   case CK_LValueToRValue:
4140     return EmitLValue(E->getSubExpr());
4141 
4142   case CK_UncheckedDerivedToBase:
4143   case CK_DerivedToBase: {
4144     const RecordType *DerivedClassTy =
4145       E->getSubExpr()->getType()->getAs<RecordType>();
4146     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4147 
4148     LValue LV = EmitLValue(E->getSubExpr());
4149     Address This = LV.getAddress();
4150 
4151     // Perform the derived-to-base conversion
4152     Address Base = GetAddressOfBaseClass(
4153         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4154         /*NullCheckValue=*/false, E->getExprLoc());
4155 
4156     // TODO: Support accesses to members of base classes in TBAA. For now, we
4157     // conservatively pretend that the complete object is of the base class
4158     // type.
4159     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4160                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4161   }
4162   case CK_ToUnion:
4163     return EmitAggExprToLValue(E);
4164   case CK_BaseToDerived: {
4165     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4166     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4167 
4168     LValue LV = EmitLValue(E->getSubExpr());
4169 
4170     // Perform the base-to-derived conversion
4171     Address Derived =
4172       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4173                                E->path_begin(), E->path_end(),
4174                                /*NullCheckValue=*/false);
4175 
4176     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4177     // performed and the object is not of the derived type.
4178     if (sanitizePerformTypeCheck())
4179       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4180                     Derived.getPointer(), E->getType());
4181 
4182     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4183       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4184                                 /*MayBeNull=*/false,
4185                                 CFITCK_DerivedCast, E->getLocStart());
4186 
4187     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4188                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4189   }
4190   case CK_LValueBitCast: {
4191     // This must be a reinterpret_cast (or c-style equivalent).
4192     const auto *CE = cast<ExplicitCastExpr>(E);
4193 
4194     CGM.EmitExplicitCastExprType(CE, this);
4195     LValue LV = EmitLValue(E->getSubExpr());
4196     Address V = Builder.CreateBitCast(LV.getAddress(),
4197                                       ConvertType(CE->getTypeAsWritten()));
4198 
4199     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4200       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4201                                 /*MayBeNull=*/false,
4202                                 CFITCK_UnrelatedCast, E->getLocStart());
4203 
4204     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4205                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4206   }
4207   case CK_ObjCObjectLValueCast: {
4208     LValue LV = EmitLValue(E->getSubExpr());
4209     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4210                                              ConvertType(E->getType()));
4211     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4212                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4213   }
4214   case CK_ZeroToOCLQueue:
4215     llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid");
4216   case CK_ZeroToOCLEvent:
4217     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
4218   }
4219 
4220   llvm_unreachable("Unhandled lvalue cast kind?");
4221 }
4222 
4223 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4224   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4225   return getOrCreateOpaqueLValueMapping(e);
4226 }
4227 
4228 LValue
4229 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4230   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4231 
4232   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4233       it = OpaqueLValues.find(e);
4234 
4235   if (it != OpaqueLValues.end())
4236     return it->second;
4237 
4238   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4239   return EmitLValue(e->getSourceExpr());
4240 }
4241 
4242 RValue
4243 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4244   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4245 
4246   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4247       it = OpaqueRValues.find(e);
4248 
4249   if (it != OpaqueRValues.end())
4250     return it->second;
4251 
4252   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4253   return EmitAnyExpr(e->getSourceExpr());
4254 }
4255 
4256 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4257                                            const FieldDecl *FD,
4258                                            SourceLocation Loc) {
4259   QualType FT = FD->getType();
4260   LValue FieldLV = EmitLValueForField(LV, FD);
4261   switch (getEvaluationKind(FT)) {
4262   case TEK_Complex:
4263     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4264   case TEK_Aggregate:
4265     return FieldLV.asAggregateRValue();
4266   case TEK_Scalar:
4267     // This routine is used to load fields one-by-one to perform a copy, so
4268     // don't load reference fields.
4269     if (FD->getType()->isReferenceType())
4270       return RValue::get(FieldLV.getPointer());
4271     return EmitLoadOfLValue(FieldLV, Loc);
4272   }
4273   llvm_unreachable("bad evaluation kind");
4274 }
4275 
4276 //===--------------------------------------------------------------------===//
4277 //                             Expression Emission
4278 //===--------------------------------------------------------------------===//
4279 
4280 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4281                                      ReturnValueSlot ReturnValue) {
4282   // Builtins never have block type.
4283   if (E->getCallee()->getType()->isBlockPointerType())
4284     return EmitBlockCallExpr(E, ReturnValue);
4285 
4286   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4287     return EmitCXXMemberCallExpr(CE, ReturnValue);
4288 
4289   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4290     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4291 
4292   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4293     if (const CXXMethodDecl *MD =
4294           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4295       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4296 
4297   CGCallee callee = EmitCallee(E->getCallee());
4298 
4299   if (callee.isBuiltin()) {
4300     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4301                            E, ReturnValue);
4302   }
4303 
4304   if (callee.isPseudoDestructor()) {
4305     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4306   }
4307 
4308   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4309 }
4310 
4311 /// Emit a CallExpr without considering whether it might be a subclass.
4312 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4313                                            ReturnValueSlot ReturnValue) {
4314   CGCallee Callee = EmitCallee(E->getCallee());
4315   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4316 }
4317 
4318 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4319   if (auto builtinID = FD->getBuiltinID()) {
4320     return CGCallee::forBuiltin(builtinID, FD);
4321   }
4322 
4323   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4324   return CGCallee::forDirect(calleePtr, FD);
4325 }
4326 
4327 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4328   E = E->IgnoreParens();
4329 
4330   // Look through function-to-pointer decay.
4331   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4332     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4333         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4334       return EmitCallee(ICE->getSubExpr());
4335     }
4336 
4337   // Resolve direct calls.
4338   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4339     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4340       return EmitDirectCallee(*this, FD);
4341     }
4342   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4343     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4344       EmitIgnoredExpr(ME->getBase());
4345       return EmitDirectCallee(*this, FD);
4346     }
4347 
4348   // Look through template substitutions.
4349   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4350     return EmitCallee(NTTP->getReplacement());
4351 
4352   // Treat pseudo-destructor calls differently.
4353   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4354     return CGCallee::forPseudoDestructor(PDE);
4355   }
4356 
4357   // Otherwise, we have an indirect reference.
4358   llvm::Value *calleePtr;
4359   QualType functionType;
4360   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4361     calleePtr = EmitScalarExpr(E);
4362     functionType = ptrType->getPointeeType();
4363   } else {
4364     functionType = E->getType();
4365     calleePtr = EmitLValue(E).getPointer();
4366   }
4367   assert(functionType->isFunctionType());
4368   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
4369                           E->getReferencedDeclOfCallee());
4370   CGCallee callee(calleeInfo, calleePtr);
4371   return callee;
4372 }
4373 
4374 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4375   // Comma expressions just emit their LHS then their RHS as an l-value.
4376   if (E->getOpcode() == BO_Comma) {
4377     EmitIgnoredExpr(E->getLHS());
4378     EnsureInsertPoint();
4379     return EmitLValue(E->getRHS());
4380   }
4381 
4382   if (E->getOpcode() == BO_PtrMemD ||
4383       E->getOpcode() == BO_PtrMemI)
4384     return EmitPointerToDataMemberBinaryExpr(E);
4385 
4386   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4387 
4388   // Note that in all of these cases, __block variables need the RHS
4389   // evaluated first just in case the variable gets moved by the RHS.
4390 
4391   switch (getEvaluationKind(E->getType())) {
4392   case TEK_Scalar: {
4393     switch (E->getLHS()->getType().getObjCLifetime()) {
4394     case Qualifiers::OCL_Strong:
4395       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4396 
4397     case Qualifiers::OCL_Autoreleasing:
4398       return EmitARCStoreAutoreleasing(E).first;
4399 
4400     // No reason to do any of these differently.
4401     case Qualifiers::OCL_None:
4402     case Qualifiers::OCL_ExplicitNone:
4403     case Qualifiers::OCL_Weak:
4404       break;
4405     }
4406 
4407     RValue RV = EmitAnyExpr(E->getRHS());
4408     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4409     if (RV.isScalar())
4410       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4411     EmitStoreThroughLValue(RV, LV);
4412     return LV;
4413   }
4414 
4415   case TEK_Complex:
4416     return EmitComplexAssignmentLValue(E);
4417 
4418   case TEK_Aggregate:
4419     return EmitAggExprToLValue(E);
4420   }
4421   llvm_unreachable("bad evaluation kind");
4422 }
4423 
4424 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4425   RValue RV = EmitCallExpr(E);
4426 
4427   if (!RV.isScalar())
4428     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4429                           AlignmentSource::Decl);
4430 
4431   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4432          "Can't have a scalar return unless the return type is a "
4433          "reference type!");
4434 
4435   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4436 }
4437 
4438 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4439   // FIXME: This shouldn't require another copy.
4440   return EmitAggExprToLValue(E);
4441 }
4442 
4443 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4444   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4445          && "binding l-value to type which needs a temporary");
4446   AggValueSlot Slot = CreateAggTemp(E->getType());
4447   EmitCXXConstructExpr(E, Slot);
4448   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4449 }
4450 
4451 LValue
4452 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4453   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4454 }
4455 
4456 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4457   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4458                                       ConvertType(E->getType()));
4459 }
4460 
4461 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4462   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4463                         AlignmentSource::Decl);
4464 }
4465 
4466 LValue
4467 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4468   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4469   Slot.setExternallyDestructed();
4470   EmitAggExpr(E->getSubExpr(), Slot);
4471   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4472   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4473 }
4474 
4475 LValue
4476 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
4477   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4478   EmitLambdaExpr(E, Slot);
4479   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4480 }
4481 
4482 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4483   RValue RV = EmitObjCMessageExpr(E);
4484 
4485   if (!RV.isScalar())
4486     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4487                           AlignmentSource::Decl);
4488 
4489   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4490          "Can't have a scalar return unless the return type is a "
4491          "reference type!");
4492 
4493   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4494 }
4495 
4496 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4497   Address V =
4498     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4499   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4500 }
4501 
4502 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4503                                              const ObjCIvarDecl *Ivar) {
4504   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4505 }
4506 
4507 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4508                                           llvm::Value *BaseValue,
4509                                           const ObjCIvarDecl *Ivar,
4510                                           unsigned CVRQualifiers) {
4511   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4512                                                    Ivar, CVRQualifiers);
4513 }
4514 
4515 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4516   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4517   llvm::Value *BaseValue = nullptr;
4518   const Expr *BaseExpr = E->getBase();
4519   Qualifiers BaseQuals;
4520   QualType ObjectTy;
4521   if (E->isArrow()) {
4522     BaseValue = EmitScalarExpr(BaseExpr);
4523     ObjectTy = BaseExpr->getType()->getPointeeType();
4524     BaseQuals = ObjectTy.getQualifiers();
4525   } else {
4526     LValue BaseLV = EmitLValue(BaseExpr);
4527     BaseValue = BaseLV.getPointer();
4528     ObjectTy = BaseExpr->getType();
4529     BaseQuals = ObjectTy.getQualifiers();
4530   }
4531 
4532   LValue LV =
4533     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4534                       BaseQuals.getCVRQualifiers());
4535   setObjCGCLValueClass(getContext(), E, LV);
4536   return LV;
4537 }
4538 
4539 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4540   // Can only get l-value for message expression returning aggregate type
4541   RValue RV = EmitAnyExprToTemp(E);
4542   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4543                         AlignmentSource::Decl);
4544 }
4545 
4546 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4547                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4548                                  llvm::Value *Chain) {
4549   // Get the actual function type. The callee type will always be a pointer to
4550   // function type or a block pointer type.
4551   assert(CalleeType->isFunctionPointerType() &&
4552          "Call must have function pointer type!");
4553 
4554   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4555 
4556   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4557     // We can only guarantee that a function is called from the correct
4558     // context/function based on the appropriate target attributes,
4559     // so only check in the case where we have both always_inline and target
4560     // since otherwise we could be making a conditional call after a check for
4561     // the proper cpu features (and it won't cause code generation issues due to
4562     // function based code generation).
4563     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4564         TargetDecl->hasAttr<TargetAttr>())
4565       checkTargetFeatures(E, FD);
4566 
4567   CalleeType = getContext().getCanonicalType(CalleeType);
4568 
4569   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4570 
4571   CGCallee Callee = OrigCallee;
4572 
4573   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4574       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4575     if (llvm::Constant *PrefixSig =
4576             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4577       SanitizerScope SanScope(this);
4578       // Remove any (C++17) exception specifications, to allow calling e.g. a
4579       // noexcept function through a non-noexcept pointer.
4580       auto ProtoTy =
4581         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4582       llvm::Constant *FTRTTIConst =
4583           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4584       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4585       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4586           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4587 
4588       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4589 
4590       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4591           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4592       llvm::Value *CalleeSigPtr =
4593           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4594       llvm::Value *CalleeSig =
4595           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4596       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4597 
4598       llvm::BasicBlock *Cont = createBasicBlock("cont");
4599       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4600       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4601 
4602       EmitBlock(TypeCheck);
4603       llvm::Value *CalleeRTTIPtr =
4604           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4605       llvm::Value *CalleeRTTIEncoded =
4606           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4607       llvm::Value *CalleeRTTI =
4608           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4609       llvm::Value *CalleeRTTIMatch =
4610           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4611       llvm::Constant *StaticData[] = {
4612         EmitCheckSourceLocation(E->getLocStart()),
4613         EmitCheckTypeDescriptor(CalleeType)
4614       };
4615       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4616                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4617 
4618       Builder.CreateBr(Cont);
4619       EmitBlock(Cont);
4620     }
4621   }
4622 
4623   const auto *FnType = cast<FunctionType>(PointeeType);
4624 
4625   // If we are checking indirect calls and this call is indirect, check that the
4626   // function pointer is a member of the bit set for the function type.
4627   if (SanOpts.has(SanitizerKind::CFIICall) &&
4628       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4629     SanitizerScope SanScope(this);
4630     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4631 
4632     llvm::Metadata *MD;
4633     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4634       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4635     else
4636       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4637 
4638     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4639 
4640     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4641     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4642     llvm::Value *TypeTest = Builder.CreateCall(
4643         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4644 
4645     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4646     llvm::Constant *StaticData[] = {
4647         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4648         EmitCheckSourceLocation(E->getLocStart()),
4649         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4650     };
4651     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4652       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4653                            CastedCallee, StaticData);
4654     } else {
4655       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4656                 SanitizerHandler::CFICheckFail, StaticData,
4657                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4658     }
4659   }
4660 
4661   CallArgList Args;
4662   if (Chain)
4663     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4664              CGM.getContext().VoidPtrTy);
4665 
4666   // C++17 requires that we evaluate arguments to a call using assignment syntax
4667   // right-to-left, and that we evaluate arguments to certain other operators
4668   // left-to-right. Note that we allow this to override the order dictated by
4669   // the calling convention on the MS ABI, which means that parameter
4670   // destruction order is not necessarily reverse construction order.
4671   // FIXME: Revisit this based on C++ committee response to unimplementability.
4672   EvaluationOrder Order = EvaluationOrder::Default;
4673   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4674     if (OCE->isAssignmentOp())
4675       Order = EvaluationOrder::ForceRightToLeft;
4676     else {
4677       switch (OCE->getOperator()) {
4678       case OO_LessLess:
4679       case OO_GreaterGreater:
4680       case OO_AmpAmp:
4681       case OO_PipePipe:
4682       case OO_Comma:
4683       case OO_ArrowStar:
4684         Order = EvaluationOrder::ForceLeftToRight;
4685         break;
4686       default:
4687         break;
4688       }
4689     }
4690   }
4691 
4692   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4693                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4694 
4695   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4696       Args, FnType, /*isChainCall=*/Chain);
4697 
4698   // C99 6.5.2.2p6:
4699   //   If the expression that denotes the called function has a type
4700   //   that does not include a prototype, [the default argument
4701   //   promotions are performed]. If the number of arguments does not
4702   //   equal the number of parameters, the behavior is undefined. If
4703   //   the function is defined with a type that includes a prototype,
4704   //   and either the prototype ends with an ellipsis (, ...) or the
4705   //   types of the arguments after promotion are not compatible with
4706   //   the types of the parameters, the behavior is undefined. If the
4707   //   function is defined with a type that does not include a
4708   //   prototype, and the types of the arguments after promotion are
4709   //   not compatible with those of the parameters after promotion,
4710   //   the behavior is undefined [except in some trivial cases].
4711   // That is, in the general case, we should assume that a call
4712   // through an unprototyped function type works like a *non-variadic*
4713   // call.  The way we make this work is to cast to the exact type
4714   // of the promoted arguments.
4715   //
4716   // Chain calls use this same code path to add the invisible chain parameter
4717   // to the function type.
4718   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4719     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4720     CalleeTy = CalleeTy->getPointerTo();
4721 
4722     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4723     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4724     Callee.setFunctionPointer(CalleePtr);
4725   }
4726 
4727   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc());
4728 }
4729 
4730 LValue CodeGenFunction::
4731 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4732   Address BaseAddr = Address::invalid();
4733   if (E->getOpcode() == BO_PtrMemI) {
4734     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4735   } else {
4736     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4737   }
4738 
4739   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4740 
4741   const MemberPointerType *MPT
4742     = E->getRHS()->getType()->getAs<MemberPointerType>();
4743 
4744   LValueBaseInfo BaseInfo;
4745   TBAAAccessInfo TBAAInfo;
4746   Address MemberAddr =
4747     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4748                                     &TBAAInfo);
4749 
4750   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4751 }
4752 
4753 /// Given the address of a temporary variable, produce an r-value of
4754 /// its type.
4755 RValue CodeGenFunction::convertTempToRValue(Address addr,
4756                                             QualType type,
4757                                             SourceLocation loc) {
4758   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4759   switch (getEvaluationKind(type)) {
4760   case TEK_Complex:
4761     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4762   case TEK_Aggregate:
4763     return lvalue.asAggregateRValue();
4764   case TEK_Scalar:
4765     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4766   }
4767   llvm_unreachable("bad evaluation kind");
4768 }
4769 
4770 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4771   assert(Val->getType()->isFPOrFPVectorTy());
4772   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4773     return;
4774 
4775   llvm::MDBuilder MDHelper(getLLVMContext());
4776   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4777 
4778   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4779 }
4780 
4781 namespace {
4782   struct LValueOrRValue {
4783     LValue LV;
4784     RValue RV;
4785   };
4786 }
4787 
4788 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4789                                            const PseudoObjectExpr *E,
4790                                            bool forLValue,
4791                                            AggValueSlot slot) {
4792   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4793 
4794   // Find the result expression, if any.
4795   const Expr *resultExpr = E->getResultExpr();
4796   LValueOrRValue result;
4797 
4798   for (PseudoObjectExpr::const_semantics_iterator
4799          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4800     const Expr *semantic = *i;
4801 
4802     // If this semantic expression is an opaque value, bind it
4803     // to the result of its source expression.
4804     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4805       // Skip unique OVEs.
4806       if (ov->isUnique()) {
4807         assert(ov != resultExpr &&
4808                "A unique OVE cannot be used as the result expression");
4809         continue;
4810       }
4811 
4812       // If this is the result expression, we may need to evaluate
4813       // directly into the slot.
4814       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4815       OVMA opaqueData;
4816       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4817           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4818         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4819         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4820                                        AlignmentSource::Decl);
4821         opaqueData = OVMA::bind(CGF, ov, LV);
4822         result.RV = slot.asRValue();
4823 
4824       // Otherwise, emit as normal.
4825       } else {
4826         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4827 
4828         // If this is the result, also evaluate the result now.
4829         if (ov == resultExpr) {
4830           if (forLValue)
4831             result.LV = CGF.EmitLValue(ov);
4832           else
4833             result.RV = CGF.EmitAnyExpr(ov, slot);
4834         }
4835       }
4836 
4837       opaques.push_back(opaqueData);
4838 
4839     // Otherwise, if the expression is the result, evaluate it
4840     // and remember the result.
4841     } else if (semantic == resultExpr) {
4842       if (forLValue)
4843         result.LV = CGF.EmitLValue(semantic);
4844       else
4845         result.RV = CGF.EmitAnyExpr(semantic, slot);
4846 
4847     // Otherwise, evaluate the expression in an ignored context.
4848     } else {
4849       CGF.EmitIgnoredExpr(semantic);
4850     }
4851   }
4852 
4853   // Unbind all the opaques now.
4854   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4855     opaques[i].unbind(CGF);
4856 
4857   return result;
4858 }
4859 
4860 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4861                                                AggValueSlot slot) {
4862   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4863 }
4864 
4865 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4866   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4867 }
4868