1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "llvm/ADT/Hashing.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/MatrixBuilder.h"
39 #include "llvm/Support/ConvertUTF.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Path.h"
42 #include "llvm/Support/SaveAndRestore.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 #include <string>
46 
47 using namespace clang;
48 using namespace CodeGen;
49 
50 //===--------------------------------------------------------------------===//
51 //                        Miscellaneous Helper Methods
52 //===--------------------------------------------------------------------===//
53 
54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
55   unsigned addressSpace =
56       cast<llvm::PointerType>(value->getType())->getAddressSpace();
57 
58   llvm::PointerType *destType = Int8PtrTy;
59   if (addressSpace)
60     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
61 
62   if (value->getType() == destType) return value;
63   return Builder.CreateBitCast(value, destType);
64 }
65 
66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
67 /// block.
68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
69                                                      CharUnits Align,
70                                                      const Twine &Name,
71                                                      llvm::Value *ArraySize) {
72   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
73   Alloca->setAlignment(Align.getAsAlign());
74   return Address(Alloca, Align);
75 }
76 
77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
78 /// block. The alloca is casted to default address space if necessary.
79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
80                                           const Twine &Name,
81                                           llvm::Value *ArraySize,
82                                           Address *AllocaAddr) {
83   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
84   if (AllocaAddr)
85     *AllocaAddr = Alloca;
86   llvm::Value *V = Alloca.getPointer();
87   // Alloca always returns a pointer in alloca address space, which may
88   // be different from the type defined by the language. For example,
89   // in C++ the auto variables are in the default address space. Therefore
90   // cast alloca to the default address space when necessary.
91   if (getASTAllocaAddressSpace() != LangAS::Default) {
92     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
93     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
94     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
95     // otherwise alloca is inserted at the current insertion point of the
96     // builder.
97     if (!ArraySize)
98       Builder.SetInsertPoint(AllocaInsertPt);
99     V = getTargetHooks().performAddrSpaceCast(
100         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
101         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
102   }
103 
104   return Address(V, Align);
105 }
106 
107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
109 /// insertion point of the builder.
110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
111                                                     const Twine &Name,
112                                                     llvm::Value *ArraySize) {
113   if (ArraySize)
114     return Builder.CreateAlloca(Ty, ArraySize, Name);
115   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
116                               ArraySize, Name, AllocaInsertPt);
117 }
118 
119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
120 /// default alignment of the corresponding LLVM type, which is *not*
121 /// guaranteed to be related in any way to the expected alignment of
122 /// an AST type that might have been lowered to Ty.
123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
124                                                       const Twine &Name) {
125   CharUnits Align =
126       CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty));
127   return CreateTempAlloca(Ty, Align, Name);
128 }
129 
130 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
131   auto *Alloca = Var.getPointer();
132   assert(isa<llvm::AllocaInst>(Alloca) ||
133          (isa<llvm::AddrSpaceCastInst>(Alloca) &&
134           isa<llvm::AllocaInst>(
135               cast<llvm::AddrSpaceCastInst>(Alloca)->getPointerOperand())));
136 
137   auto *Store = new llvm::StoreInst(Init, Alloca, /*volatile*/ false,
138                                     Var.getAlignment().getAsAlign());
139   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
140   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
141 }
142 
143 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
144   CharUnits Align = getContext().getTypeAlignInChars(Ty);
145   return CreateTempAlloca(ConvertType(Ty), Align, Name);
146 }
147 
148 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
149                                        Address *Alloca) {
150   // FIXME: Should we prefer the preferred type alignment here?
151   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
152 }
153 
154 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
155                                        const Twine &Name, Address *Alloca) {
156   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
157                                     /*ArraySize=*/nullptr, Alloca);
158 
159   if (Ty->isConstantMatrixType()) {
160     auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
161     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
162                                                 ArrayTy->getNumElements());
163 
164     Result = Address(
165         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
166         Result.getAlignment());
167   }
168   return Result;
169 }
170 
171 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
172                                                   const Twine &Name) {
173   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
174 }
175 
176 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
177                                                   const Twine &Name) {
178   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
179                                   Name);
180 }
181 
182 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
183 /// expression and compare the result against zero, returning an Int1Ty value.
184 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
185   PGO.setCurrentStmt(E);
186   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
187     llvm::Value *MemPtr = EmitScalarExpr(E);
188     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
189   }
190 
191   QualType BoolTy = getContext().BoolTy;
192   SourceLocation Loc = E->getExprLoc();
193   CGFPOptionsRAII FPOptsRAII(*this, E);
194   if (!E->getType()->isAnyComplexType())
195     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
196 
197   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
198                                        Loc);
199 }
200 
201 /// EmitIgnoredExpr - Emit code to compute the specified expression,
202 /// ignoring the result.
203 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
204   if (E->isPRValue())
205     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
206 
207   // Just emit it as an l-value and drop the result.
208   EmitLValue(E);
209 }
210 
211 /// EmitAnyExpr - Emit code to compute the specified expression which
212 /// can have any type.  The result is returned as an RValue struct.
213 /// If this is an aggregate expression, AggSlot indicates where the
214 /// result should be returned.
215 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
216                                     AggValueSlot aggSlot,
217                                     bool ignoreResult) {
218   switch (getEvaluationKind(E->getType())) {
219   case TEK_Scalar:
220     return RValue::get(EmitScalarExpr(E, ignoreResult));
221   case TEK_Complex:
222     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
223   case TEK_Aggregate:
224     if (!ignoreResult && aggSlot.isIgnored())
225       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
226     EmitAggExpr(E, aggSlot);
227     return aggSlot.asRValue();
228   }
229   llvm_unreachable("bad evaluation kind");
230 }
231 
232 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
233 /// always be accessible even if no aggregate location is provided.
234 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
235   AggValueSlot AggSlot = AggValueSlot::ignored();
236 
237   if (hasAggregateEvaluationKind(E->getType()))
238     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
239   return EmitAnyExpr(E, AggSlot);
240 }
241 
242 /// EmitAnyExprToMem - Evaluate an expression into a given memory
243 /// location.
244 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
245                                        Address Location,
246                                        Qualifiers Quals,
247                                        bool IsInit) {
248   // FIXME: This function should take an LValue as an argument.
249   switch (getEvaluationKind(E->getType())) {
250   case TEK_Complex:
251     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
252                               /*isInit*/ false);
253     return;
254 
255   case TEK_Aggregate: {
256     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
257                                          AggValueSlot::IsDestructed_t(IsInit),
258                                          AggValueSlot::DoesNotNeedGCBarriers,
259                                          AggValueSlot::IsAliased_t(!IsInit),
260                                          AggValueSlot::MayOverlap));
261     return;
262   }
263 
264   case TEK_Scalar: {
265     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
266     LValue LV = MakeAddrLValue(Location, E->getType());
267     EmitStoreThroughLValue(RV, LV);
268     return;
269   }
270   }
271   llvm_unreachable("bad evaluation kind");
272 }
273 
274 static void
275 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
276                      const Expr *E, Address ReferenceTemporary) {
277   // Objective-C++ ARC:
278   //   If we are binding a reference to a temporary that has ownership, we
279   //   need to perform retain/release operations on the temporary.
280   //
281   // FIXME: This should be looking at E, not M.
282   if (auto Lifetime = M->getType().getObjCLifetime()) {
283     switch (Lifetime) {
284     case Qualifiers::OCL_None:
285     case Qualifiers::OCL_ExplicitNone:
286       // Carry on to normal cleanup handling.
287       break;
288 
289     case Qualifiers::OCL_Autoreleasing:
290       // Nothing to do; cleaned up by an autorelease pool.
291       return;
292 
293     case Qualifiers::OCL_Strong:
294     case Qualifiers::OCL_Weak:
295       switch (StorageDuration Duration = M->getStorageDuration()) {
296       case SD_Static:
297         // Note: we intentionally do not register a cleanup to release
298         // the object on program termination.
299         return;
300 
301       case SD_Thread:
302         // FIXME: We should probably register a cleanup in this case.
303         return;
304 
305       case SD_Automatic:
306       case SD_FullExpression:
307         CodeGenFunction::Destroyer *Destroy;
308         CleanupKind CleanupKind;
309         if (Lifetime == Qualifiers::OCL_Strong) {
310           const ValueDecl *VD = M->getExtendingDecl();
311           bool Precise =
312               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
313           CleanupKind = CGF.getARCCleanupKind();
314           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
315                             : &CodeGenFunction::destroyARCStrongImprecise;
316         } else {
317           // __weak objects always get EH cleanups; otherwise, exceptions
318           // could cause really nasty crashes instead of mere leaks.
319           CleanupKind = NormalAndEHCleanup;
320           Destroy = &CodeGenFunction::destroyARCWeak;
321         }
322         if (Duration == SD_FullExpression)
323           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
324                           M->getType(), *Destroy,
325                           CleanupKind & EHCleanup);
326         else
327           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
328                                           M->getType(),
329                                           *Destroy, CleanupKind & EHCleanup);
330         return;
331 
332       case SD_Dynamic:
333         llvm_unreachable("temporary cannot have dynamic storage duration");
334       }
335       llvm_unreachable("unknown storage duration");
336     }
337   }
338 
339   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
340   if (const RecordType *RT =
341           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
342     // Get the destructor for the reference temporary.
343     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
344     if (!ClassDecl->hasTrivialDestructor())
345       ReferenceTemporaryDtor = ClassDecl->getDestructor();
346   }
347 
348   if (!ReferenceTemporaryDtor)
349     return;
350 
351   // Call the destructor for the temporary.
352   switch (M->getStorageDuration()) {
353   case SD_Static:
354   case SD_Thread: {
355     llvm::FunctionCallee CleanupFn;
356     llvm::Constant *CleanupArg;
357     if (E->getType()->isArrayType()) {
358       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
359           ReferenceTemporary, E->getType(),
360           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
361           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
362       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
363     } else {
364       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
365           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
366       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
367     }
368     CGF.CGM.getCXXABI().registerGlobalDtor(
369         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
370     break;
371   }
372 
373   case SD_FullExpression:
374     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
375                     CodeGenFunction::destroyCXXObject,
376                     CGF.getLangOpts().Exceptions);
377     break;
378 
379   case SD_Automatic:
380     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
381                                     ReferenceTemporary, E->getType(),
382                                     CodeGenFunction::destroyCXXObject,
383                                     CGF.getLangOpts().Exceptions);
384     break;
385 
386   case SD_Dynamic:
387     llvm_unreachable("temporary cannot have dynamic storage duration");
388   }
389 }
390 
391 static Address createReferenceTemporary(CodeGenFunction &CGF,
392                                         const MaterializeTemporaryExpr *M,
393                                         const Expr *Inner,
394                                         Address *Alloca = nullptr) {
395   auto &TCG = CGF.getTargetHooks();
396   switch (M->getStorageDuration()) {
397   case SD_FullExpression:
398   case SD_Automatic: {
399     // If we have a constant temporary array or record try to promote it into a
400     // constant global under the same rules a normal constant would've been
401     // promoted. This is easier on the optimizer and generally emits fewer
402     // instructions.
403     QualType Ty = Inner->getType();
404     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
405         (Ty->isArrayType() || Ty->isRecordType()) &&
406         CGF.CGM.isTypeConstant(Ty, true))
407       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
408         auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
409         auto *GV = new llvm::GlobalVariable(
410             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
411             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
412             llvm::GlobalValue::NotThreadLocal,
413             CGF.getContext().getTargetAddressSpace(AS));
414         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
415         GV->setAlignment(alignment.getAsAlign());
416         llvm::Constant *C = GV;
417         if (AS != LangAS::Default)
418           C = TCG.performAddrSpaceCast(
419               CGF.CGM, GV, AS, LangAS::Default,
420               GV->getValueType()->getPointerTo(
421                   CGF.getContext().getTargetAddressSpace(LangAS::Default)));
422         // FIXME: Should we put the new global into a COMDAT?
423         return Address(C, alignment);
424       }
425     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
426   }
427   case SD_Thread:
428   case SD_Static:
429     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
430 
431   case SD_Dynamic:
432     llvm_unreachable("temporary can't have dynamic storage duration");
433   }
434   llvm_unreachable("unknown storage duration");
435 }
436 
437 /// Helper method to check if the underlying ABI is AAPCS
438 static bool isAAPCS(const TargetInfo &TargetInfo) {
439   return TargetInfo.getABI().startswith("aapcs");
440 }
441 
442 LValue CodeGenFunction::
443 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
444   const Expr *E = M->getSubExpr();
445 
446   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
447           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
448          "Reference should never be pseudo-strong!");
449 
450   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
451   // as that will cause the lifetime adjustment to be lost for ARC
452   auto ownership = M->getType().getObjCLifetime();
453   if (ownership != Qualifiers::OCL_None &&
454       ownership != Qualifiers::OCL_ExplicitNone) {
455     Address Object = createReferenceTemporary(*this, M, E);
456     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
457       Object = Address(llvm::ConstantExpr::getBitCast(Var,
458                            ConvertTypeForMem(E->getType())
459                              ->getPointerTo(Object.getAddressSpace())),
460                        Object.getAlignment());
461 
462       // createReferenceTemporary will promote the temporary to a global with a
463       // constant initializer if it can.  It can only do this to a value of
464       // ARC-manageable type if the value is global and therefore "immune" to
465       // ref-counting operations.  Therefore we have no need to emit either a
466       // dynamic initialization or a cleanup and we can just return the address
467       // of the temporary.
468       if (Var->hasInitializer())
469         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
470 
471       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
472     }
473     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
474                                        AlignmentSource::Decl);
475 
476     switch (getEvaluationKind(E->getType())) {
477     default: llvm_unreachable("expected scalar or aggregate expression");
478     case TEK_Scalar:
479       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
480       break;
481     case TEK_Aggregate: {
482       EmitAggExpr(E, AggValueSlot::forAddr(Object,
483                                            E->getType().getQualifiers(),
484                                            AggValueSlot::IsDestructed,
485                                            AggValueSlot::DoesNotNeedGCBarriers,
486                                            AggValueSlot::IsNotAliased,
487                                            AggValueSlot::DoesNotOverlap));
488       break;
489     }
490     }
491 
492     pushTemporaryCleanup(*this, M, E, Object);
493     return RefTempDst;
494   }
495 
496   SmallVector<const Expr *, 2> CommaLHSs;
497   SmallVector<SubobjectAdjustment, 2> Adjustments;
498   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
499 
500   for (const auto &Ignored : CommaLHSs)
501     EmitIgnoredExpr(Ignored);
502 
503   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
504     if (opaque->getType()->isRecordType()) {
505       assert(Adjustments.empty());
506       return EmitOpaqueValueLValue(opaque);
507     }
508   }
509 
510   // Create and initialize the reference temporary.
511   Address Alloca = Address::invalid();
512   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
513   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
514           Object.getPointer()->stripPointerCasts())) {
515     Object = Address(llvm::ConstantExpr::getBitCast(
516                          cast<llvm::Constant>(Object.getPointer()),
517                          ConvertTypeForMem(E->getType())->getPointerTo()),
518                      Object.getAlignment());
519     // If the temporary is a global and has a constant initializer or is a
520     // constant temporary that we promoted to a global, we may have already
521     // initialized it.
522     if (!Var->hasInitializer()) {
523       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
524       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
525     }
526   } else {
527     switch (M->getStorageDuration()) {
528     case SD_Automatic:
529       if (auto *Size = EmitLifetimeStart(
530               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
531               Alloca.getPointer())) {
532         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
533                                                   Alloca, Size);
534       }
535       break;
536 
537     case SD_FullExpression: {
538       if (!ShouldEmitLifetimeMarkers)
539         break;
540 
541       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
542       // marker. Instead, start the lifetime of a conditional temporary earlier
543       // so that it's unconditional. Don't do this with sanitizers which need
544       // more precise lifetime marks.
545       ConditionalEvaluation *OldConditional = nullptr;
546       CGBuilderTy::InsertPoint OldIP;
547       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
548           !SanOpts.has(SanitizerKind::HWAddress) &&
549           !SanOpts.has(SanitizerKind::Memory) &&
550           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
551         OldConditional = OutermostConditional;
552         OutermostConditional = nullptr;
553 
554         OldIP = Builder.saveIP();
555         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
556         Builder.restoreIP(CGBuilderTy::InsertPoint(
557             Block, llvm::BasicBlock::iterator(Block->back())));
558       }
559 
560       if (auto *Size = EmitLifetimeStart(
561               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
562               Alloca.getPointer())) {
563         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
564                                              Size);
565       }
566 
567       if (OldConditional) {
568         OutermostConditional = OldConditional;
569         Builder.restoreIP(OldIP);
570       }
571       break;
572     }
573 
574     default:
575       break;
576     }
577     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
578   }
579   pushTemporaryCleanup(*this, M, E, Object);
580 
581   // Perform derived-to-base casts and/or field accesses, to get from the
582   // temporary object we created (and, potentially, for which we extended
583   // the lifetime) to the subobject we're binding the reference to.
584   for (unsigned I = Adjustments.size(); I != 0; --I) {
585     SubobjectAdjustment &Adjustment = Adjustments[I-1];
586     switch (Adjustment.Kind) {
587     case SubobjectAdjustment::DerivedToBaseAdjustment:
588       Object =
589           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
590                                 Adjustment.DerivedToBase.BasePath->path_begin(),
591                                 Adjustment.DerivedToBase.BasePath->path_end(),
592                                 /*NullCheckValue=*/ false, E->getExprLoc());
593       break;
594 
595     case SubobjectAdjustment::FieldAdjustment: {
596       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
597       LV = EmitLValueForField(LV, Adjustment.Field);
598       assert(LV.isSimple() &&
599              "materialized temporary field is not a simple lvalue");
600       Object = LV.getAddress(*this);
601       break;
602     }
603 
604     case SubobjectAdjustment::MemberPointerAdjustment: {
605       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
606       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
607                                                Adjustment.Ptr.MPT);
608       break;
609     }
610     }
611   }
612 
613   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
614 }
615 
616 RValue
617 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
618   // Emit the expression as an lvalue.
619   LValue LV = EmitLValue(E);
620   assert(LV.isSimple());
621   llvm::Value *Value = LV.getPointer(*this);
622 
623   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
624     // C++11 [dcl.ref]p5 (as amended by core issue 453):
625     //   If a glvalue to which a reference is directly bound designates neither
626     //   an existing object or function of an appropriate type nor a region of
627     //   storage of suitable size and alignment to contain an object of the
628     //   reference's type, the behavior is undefined.
629     QualType Ty = E->getType();
630     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
631   }
632 
633   return RValue::get(Value);
634 }
635 
636 
637 /// getAccessedFieldNo - Given an encoded value and a result number, return the
638 /// input field number being accessed.
639 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
640                                              const llvm::Constant *Elts) {
641   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
642       ->getZExtValue();
643 }
644 
645 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
646 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
647                                     llvm::Value *High) {
648   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
649   llvm::Value *K47 = Builder.getInt64(47);
650   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
651   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
652   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
653   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
654   return Builder.CreateMul(B1, KMul);
655 }
656 
657 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
658   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
659          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
660 }
661 
662 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
663   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
664   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
665          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
666           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
667           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
668 }
669 
670 bool CodeGenFunction::sanitizePerformTypeCheck() const {
671   return SanOpts.has(SanitizerKind::Null) |
672          SanOpts.has(SanitizerKind::Alignment) |
673          SanOpts.has(SanitizerKind::ObjectSize) |
674          SanOpts.has(SanitizerKind::Vptr);
675 }
676 
677 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
678                                     llvm::Value *Ptr, QualType Ty,
679                                     CharUnits Alignment,
680                                     SanitizerSet SkippedChecks,
681                                     llvm::Value *ArraySize) {
682   if (!sanitizePerformTypeCheck())
683     return;
684 
685   // Don't check pointers outside the default address space. The null check
686   // isn't correct, the object-size check isn't supported by LLVM, and we can't
687   // communicate the addresses to the runtime handler for the vptr check.
688   if (Ptr->getType()->getPointerAddressSpace())
689     return;
690 
691   // Don't check pointers to volatile data. The behavior here is implementation-
692   // defined.
693   if (Ty.isVolatileQualified())
694     return;
695 
696   SanitizerScope SanScope(this);
697 
698   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
699   llvm::BasicBlock *Done = nullptr;
700 
701   // Quickly determine whether we have a pointer to an alloca. It's possible
702   // to skip null checks, and some alignment checks, for these pointers. This
703   // can reduce compile-time significantly.
704   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
705 
706   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
707   llvm::Value *IsNonNull = nullptr;
708   bool IsGuaranteedNonNull =
709       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
710   bool AllowNullPointers = isNullPointerAllowed(TCK);
711   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
712       !IsGuaranteedNonNull) {
713     // The glvalue must not be an empty glvalue.
714     IsNonNull = Builder.CreateIsNotNull(Ptr);
715 
716     // The IR builder can constant-fold the null check if the pointer points to
717     // a constant.
718     IsGuaranteedNonNull = IsNonNull == True;
719 
720     // Skip the null check if the pointer is known to be non-null.
721     if (!IsGuaranteedNonNull) {
722       if (AllowNullPointers) {
723         // When performing pointer casts, it's OK if the value is null.
724         // Skip the remaining checks in that case.
725         Done = createBasicBlock("null");
726         llvm::BasicBlock *Rest = createBasicBlock("not.null");
727         Builder.CreateCondBr(IsNonNull, Rest, Done);
728         EmitBlock(Rest);
729       } else {
730         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
731       }
732     }
733   }
734 
735   if (SanOpts.has(SanitizerKind::ObjectSize) &&
736       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
737       !Ty->isIncompleteType()) {
738     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
739     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
740     if (ArraySize)
741       Size = Builder.CreateMul(Size, ArraySize);
742 
743     // Degenerate case: new X[0] does not need an objectsize check.
744     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
745     if (!ConstantSize || !ConstantSize->isNullValue()) {
746       // The glvalue must refer to a large enough storage region.
747       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
748       //        to check this.
749       // FIXME: Get object address space
750       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
751       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
752       llvm::Value *Min = Builder.getFalse();
753       llvm::Value *NullIsUnknown = Builder.getFalse();
754       llvm::Value *Dynamic = Builder.getFalse();
755       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
756       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
757           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
758       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
759     }
760   }
761 
762   uint64_t AlignVal = 0;
763   llvm::Value *PtrAsInt = nullptr;
764 
765   if (SanOpts.has(SanitizerKind::Alignment) &&
766       !SkippedChecks.has(SanitizerKind::Alignment)) {
767     AlignVal = Alignment.getQuantity();
768     if (!Ty->isIncompleteType() && !AlignVal)
769       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
770                                              /*ForPointeeType=*/true)
771                      .getQuantity();
772 
773     // The glvalue must be suitably aligned.
774     if (AlignVal > 1 &&
775         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
776       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
777       llvm::Value *Align = Builder.CreateAnd(
778           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
779       llvm::Value *Aligned =
780           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
781       if (Aligned != True)
782         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
783     }
784   }
785 
786   if (Checks.size() > 0) {
787     // Make sure we're not losing information. Alignment needs to be a power of
788     // 2
789     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
790     llvm::Constant *StaticData[] = {
791         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
792         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
793         llvm::ConstantInt::get(Int8Ty, TCK)};
794     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
795               PtrAsInt ? PtrAsInt : Ptr);
796   }
797 
798   // If possible, check that the vptr indicates that there is a subobject of
799   // type Ty at offset zero within this object.
800   //
801   // C++11 [basic.life]p5,6:
802   //   [For storage which does not refer to an object within its lifetime]
803   //   The program has undefined behavior if:
804   //    -- the [pointer or glvalue] is used to access a non-static data member
805   //       or call a non-static member function
806   if (SanOpts.has(SanitizerKind::Vptr) &&
807       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
808     // Ensure that the pointer is non-null before loading it. If there is no
809     // compile-time guarantee, reuse the run-time null check or emit a new one.
810     if (!IsGuaranteedNonNull) {
811       if (!IsNonNull)
812         IsNonNull = Builder.CreateIsNotNull(Ptr);
813       if (!Done)
814         Done = createBasicBlock("vptr.null");
815       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
816       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
817       EmitBlock(VptrNotNull);
818     }
819 
820     // Compute a hash of the mangled name of the type.
821     //
822     // FIXME: This is not guaranteed to be deterministic! Move to a
823     //        fingerprinting mechanism once LLVM provides one. For the time
824     //        being the implementation happens to be deterministic.
825     SmallString<64> MangledName;
826     llvm::raw_svector_ostream Out(MangledName);
827     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
828                                                      Out);
829 
830     // Contained in NoSanitizeList based on the mangled type.
831     if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
832                                                            Out.str())) {
833       llvm::hash_code TypeHash = hash_value(Out.str());
834 
835       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
836       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
837       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
838       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
839       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
840       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
841 
842       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
843       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
844 
845       // Look the hash up in our cache.
846       const int CacheSize = 128;
847       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
848       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
849                                                      "__ubsan_vptr_type_cache");
850       llvm::Value *Slot = Builder.CreateAnd(Hash,
851                                             llvm::ConstantInt::get(IntPtrTy,
852                                                                    CacheSize-1));
853       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
854       llvm::Value *CacheVal = Builder.CreateAlignedLoad(
855           IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
856           getPointerAlign());
857 
858       // If the hash isn't in the cache, call a runtime handler to perform the
859       // hard work of checking whether the vptr is for an object of the right
860       // type. This will either fill in the cache and return, or produce a
861       // diagnostic.
862       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
863       llvm::Constant *StaticData[] = {
864         EmitCheckSourceLocation(Loc),
865         EmitCheckTypeDescriptor(Ty),
866         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
867         llvm::ConstantInt::get(Int8Ty, TCK)
868       };
869       llvm::Value *DynamicData[] = { Ptr, Hash };
870       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
871                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
872                 DynamicData);
873     }
874   }
875 
876   if (Done) {
877     Builder.CreateBr(Done);
878     EmitBlock(Done);
879   }
880 }
881 
882 /// Determine whether this expression refers to a flexible array member in a
883 /// struct. We disable array bounds checks for such members.
884 static bool isFlexibleArrayMemberExpr(const Expr *E) {
885   // For compatibility with existing code, we treat arrays of length 0 or
886   // 1 as flexible array members.
887   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
888   // the two mechanisms.
889   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
890   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
891     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
892     // was produced by macro expansion.
893     if (CAT->getSize().ugt(1))
894       return false;
895   } else if (!isa<IncompleteArrayType>(AT))
896     return false;
897 
898   E = E->IgnoreParens();
899 
900   // A flexible array member must be the last member in the class.
901   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
902     // FIXME: If the base type of the member expr is not FD->getParent(),
903     // this should not be treated as a flexible array member access.
904     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
905       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
906       // member, only a T[0] or T[] member gets that treatment.
907       if (FD->getParent()->isUnion())
908         return true;
909       RecordDecl::field_iterator FI(
910           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
911       return ++FI == FD->getParent()->field_end();
912     }
913   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
914     return IRE->getDecl()->getNextIvar() == nullptr;
915   }
916 
917   return false;
918 }
919 
920 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
921                                                    QualType EltTy) {
922   ASTContext &C = getContext();
923   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
924   if (!EltSize)
925     return nullptr;
926 
927   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
928   if (!ArrayDeclRef)
929     return nullptr;
930 
931   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
932   if (!ParamDecl)
933     return nullptr;
934 
935   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
936   if (!POSAttr)
937     return nullptr;
938 
939   // Don't load the size if it's a lower bound.
940   int POSType = POSAttr->getType();
941   if (POSType != 0 && POSType != 1)
942     return nullptr;
943 
944   // Find the implicit size parameter.
945   auto PassedSizeIt = SizeArguments.find(ParamDecl);
946   if (PassedSizeIt == SizeArguments.end())
947     return nullptr;
948 
949   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
950   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
951   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
952   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
953                                               C.getSizeType(), E->getExprLoc());
954   llvm::Value *SizeOfElement =
955       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
956   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
957 }
958 
959 /// If Base is known to point to the start of an array, return the length of
960 /// that array. Return 0 if the length cannot be determined.
961 static llvm::Value *getArrayIndexingBound(
962     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
963   // For the vector indexing extension, the bound is the number of elements.
964   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
965     IndexedType = Base->getType();
966     return CGF.Builder.getInt32(VT->getNumElements());
967   }
968 
969   Base = Base->IgnoreParens();
970 
971   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
972     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
973         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
974       IndexedType = CE->getSubExpr()->getType();
975       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
976       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
977         return CGF.Builder.getInt(CAT->getSize());
978       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
979         return CGF.getVLASize(VAT).NumElts;
980       // Ignore pass_object_size here. It's not applicable on decayed pointers.
981     }
982   }
983 
984   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
985   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
986     IndexedType = Base->getType();
987     return POS;
988   }
989 
990   return nullptr;
991 }
992 
993 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
994                                       llvm::Value *Index, QualType IndexType,
995                                       bool Accessed) {
996   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
997          "should not be called unless adding bounds checks");
998   SanitizerScope SanScope(this);
999 
1000   QualType IndexedType;
1001   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
1002   if (!Bound)
1003     return;
1004 
1005   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
1006   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1007   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1008 
1009   llvm::Constant *StaticData[] = {
1010     EmitCheckSourceLocation(E->getExprLoc()),
1011     EmitCheckTypeDescriptor(IndexedType),
1012     EmitCheckTypeDescriptor(IndexType)
1013   };
1014   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1015                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1016   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1017             SanitizerHandler::OutOfBounds, StaticData, Index);
1018 }
1019 
1020 
1021 CodeGenFunction::ComplexPairTy CodeGenFunction::
1022 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1023                          bool isInc, bool isPre) {
1024   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1025 
1026   llvm::Value *NextVal;
1027   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1028     uint64_t AmountVal = isInc ? 1 : -1;
1029     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1030 
1031     // Add the inc/dec to the real part.
1032     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1033   } else {
1034     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1035     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1036     if (!isInc)
1037       FVal.changeSign();
1038     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1039 
1040     // Add the inc/dec to the real part.
1041     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1042   }
1043 
1044   ComplexPairTy IncVal(NextVal, InVal.second);
1045 
1046   // Store the updated result through the lvalue.
1047   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1048   if (getLangOpts().OpenMP)
1049     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1050                                                               E->getSubExpr());
1051 
1052   // If this is a postinc, return the value read from memory, otherwise use the
1053   // updated value.
1054   return isPre ? IncVal : InVal;
1055 }
1056 
1057 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1058                                              CodeGenFunction *CGF) {
1059   // Bind VLAs in the cast type.
1060   if (CGF && E->getType()->isVariablyModifiedType())
1061     CGF->EmitVariablyModifiedType(E->getType());
1062 
1063   if (CGDebugInfo *DI = getModuleDebugInfo())
1064     DI->EmitExplicitCastType(E->getType());
1065 }
1066 
1067 //===----------------------------------------------------------------------===//
1068 //                         LValue Expression Emission
1069 //===----------------------------------------------------------------------===//
1070 
1071 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1072 /// derive a more accurate bound on the alignment of the pointer.
1073 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1074                                                   LValueBaseInfo *BaseInfo,
1075                                                   TBAAAccessInfo *TBAAInfo) {
1076   // We allow this with ObjC object pointers because of fragile ABIs.
1077   assert(E->getType()->isPointerType() ||
1078          E->getType()->isObjCObjectPointerType());
1079   E = E->IgnoreParens();
1080 
1081   // Casts:
1082   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1083     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1084       CGM.EmitExplicitCastExprType(ECE, this);
1085 
1086     switch (CE->getCastKind()) {
1087     // Non-converting casts (but not C's implicit conversion from void*).
1088     case CK_BitCast:
1089     case CK_NoOp:
1090     case CK_AddressSpaceConversion:
1091       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1092         if (PtrTy->getPointeeType()->isVoidType())
1093           break;
1094 
1095         LValueBaseInfo InnerBaseInfo;
1096         TBAAAccessInfo InnerTBAAInfo;
1097         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1098                                                 &InnerBaseInfo,
1099                                                 &InnerTBAAInfo);
1100         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1101         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1102 
1103         if (isa<ExplicitCastExpr>(CE)) {
1104           LValueBaseInfo TargetTypeBaseInfo;
1105           TBAAAccessInfo TargetTypeTBAAInfo;
1106           CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1107               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1108           if (TBAAInfo)
1109             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1110                                                  TargetTypeTBAAInfo);
1111           // If the source l-value is opaque, honor the alignment of the
1112           // casted-to type.
1113           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1114             if (BaseInfo)
1115               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1116             Addr = Address(Addr.getPointer(), Align);
1117           }
1118         }
1119 
1120         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1121             CE->getCastKind() == CK_BitCast) {
1122           if (auto PT = E->getType()->getAs<PointerType>())
1123             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1124                                       /*MayBeNull=*/true,
1125                                       CodeGenFunction::CFITCK_UnrelatedCast,
1126                                       CE->getBeginLoc());
1127         }
1128         return CE->getCastKind() != CK_AddressSpaceConversion
1129                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1130                    : Builder.CreateAddrSpaceCast(Addr,
1131                                                  ConvertType(E->getType()));
1132       }
1133       break;
1134 
1135     // Array-to-pointer decay.
1136     case CK_ArrayToPointerDecay:
1137       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1138 
1139     // Derived-to-base conversions.
1140     case CK_UncheckedDerivedToBase:
1141     case CK_DerivedToBase: {
1142       // TODO: Support accesses to members of base classes in TBAA. For now, we
1143       // conservatively pretend that the complete object is of the base class
1144       // type.
1145       if (TBAAInfo)
1146         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1147       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1148       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1149       return GetAddressOfBaseClass(Addr, Derived,
1150                                    CE->path_begin(), CE->path_end(),
1151                                    ShouldNullCheckClassCastValue(CE),
1152                                    CE->getExprLoc());
1153     }
1154 
1155     // TODO: Is there any reason to treat base-to-derived conversions
1156     // specially?
1157     default:
1158       break;
1159     }
1160   }
1161 
1162   // Unary &.
1163   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1164     if (UO->getOpcode() == UO_AddrOf) {
1165       LValue LV = EmitLValue(UO->getSubExpr());
1166       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1167       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1168       return LV.getAddress(*this);
1169     }
1170   }
1171 
1172   // TODO: conditional operators, comma.
1173 
1174   // Otherwise, use the alignment of the type.
1175   CharUnits Align =
1176       CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1177   return Address(EmitScalarExpr(E), Align);
1178 }
1179 
1180 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1181   llvm::Value *V = RV.getScalarVal();
1182   if (auto MPT = T->getAs<MemberPointerType>())
1183     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1184   return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1185 }
1186 
1187 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1188   if (Ty->isVoidType())
1189     return RValue::get(nullptr);
1190 
1191   switch (getEvaluationKind(Ty)) {
1192   case TEK_Complex: {
1193     llvm::Type *EltTy =
1194       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1195     llvm::Value *U = llvm::UndefValue::get(EltTy);
1196     return RValue::getComplex(std::make_pair(U, U));
1197   }
1198 
1199   // If this is a use of an undefined aggregate type, the aggregate must have an
1200   // identifiable address.  Just because the contents of the value are undefined
1201   // doesn't mean that the address can't be taken and compared.
1202   case TEK_Aggregate: {
1203     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1204     return RValue::getAggregate(DestPtr);
1205   }
1206 
1207   case TEK_Scalar:
1208     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1209   }
1210   llvm_unreachable("bad evaluation kind");
1211 }
1212 
1213 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1214                                               const char *Name) {
1215   ErrorUnsupported(E, Name);
1216   return GetUndefRValue(E->getType());
1217 }
1218 
1219 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1220                                               const char *Name) {
1221   ErrorUnsupported(E, Name);
1222   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1223   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1224                         E->getType());
1225 }
1226 
1227 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1228   const Expr *Base = Obj;
1229   while (!isa<CXXThisExpr>(Base)) {
1230     // The result of a dynamic_cast can be null.
1231     if (isa<CXXDynamicCastExpr>(Base))
1232       return false;
1233 
1234     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1235       Base = CE->getSubExpr();
1236     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1237       Base = PE->getSubExpr();
1238     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1239       if (UO->getOpcode() == UO_Extension)
1240         Base = UO->getSubExpr();
1241       else
1242         return false;
1243     } else {
1244       return false;
1245     }
1246   }
1247   return true;
1248 }
1249 
1250 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1251   LValue LV;
1252   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1253     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1254   else
1255     LV = EmitLValue(E);
1256   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1257     SanitizerSet SkippedChecks;
1258     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1259       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1260       if (IsBaseCXXThis)
1261         SkippedChecks.set(SanitizerKind::Alignment, true);
1262       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1263         SkippedChecks.set(SanitizerKind::Null, true);
1264     }
1265     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1266                   LV.getAlignment(), SkippedChecks);
1267   }
1268   return LV;
1269 }
1270 
1271 /// EmitLValue - Emit code to compute a designator that specifies the location
1272 /// of the expression.
1273 ///
1274 /// This can return one of two things: a simple address or a bitfield reference.
1275 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1276 /// an LLVM pointer type.
1277 ///
1278 /// If this returns a bitfield reference, nothing about the pointee type of the
1279 /// LLVM value is known: For example, it may not be a pointer to an integer.
1280 ///
1281 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1282 /// this method guarantees that the returned pointer type will point to an LLVM
1283 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1284 /// length type, this is not possible.
1285 ///
1286 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1287   ApplyDebugLocation DL(*this, E);
1288   switch (E->getStmtClass()) {
1289   default: return EmitUnsupportedLValue(E, "l-value expression");
1290 
1291   case Expr::ObjCPropertyRefExprClass:
1292     llvm_unreachable("cannot emit a property reference directly");
1293 
1294   case Expr::ObjCSelectorExprClass:
1295     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1296   case Expr::ObjCIsaExprClass:
1297     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1298   case Expr::BinaryOperatorClass:
1299     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1300   case Expr::CompoundAssignOperatorClass: {
1301     QualType Ty = E->getType();
1302     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1303       Ty = AT->getValueType();
1304     if (!Ty->isAnyComplexType())
1305       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1306     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1307   }
1308   case Expr::CallExprClass:
1309   case Expr::CXXMemberCallExprClass:
1310   case Expr::CXXOperatorCallExprClass:
1311   case Expr::UserDefinedLiteralClass:
1312     return EmitCallExprLValue(cast<CallExpr>(E));
1313   case Expr::CXXRewrittenBinaryOperatorClass:
1314     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1315   case Expr::VAArgExprClass:
1316     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1317   case Expr::DeclRefExprClass:
1318     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1319   case Expr::ConstantExprClass: {
1320     const ConstantExpr *CE = cast<ConstantExpr>(E);
1321     if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1322       QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1323                              ->getCallReturnType(getContext());
1324       return MakeNaturalAlignAddrLValue(Result, RetType);
1325     }
1326     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1327   }
1328   case Expr::ParenExprClass:
1329     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1330   case Expr::GenericSelectionExprClass:
1331     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1332   case Expr::PredefinedExprClass:
1333     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1334   case Expr::StringLiteralClass:
1335     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1336   case Expr::ObjCEncodeExprClass:
1337     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1338   case Expr::PseudoObjectExprClass:
1339     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1340   case Expr::InitListExprClass:
1341     return EmitInitListLValue(cast<InitListExpr>(E));
1342   case Expr::CXXTemporaryObjectExprClass:
1343   case Expr::CXXConstructExprClass:
1344     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1345   case Expr::CXXBindTemporaryExprClass:
1346     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1347   case Expr::CXXUuidofExprClass:
1348     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1349   case Expr::LambdaExprClass:
1350     return EmitAggExprToLValue(E);
1351 
1352   case Expr::ExprWithCleanupsClass: {
1353     const auto *cleanups = cast<ExprWithCleanups>(E);
1354     RunCleanupsScope Scope(*this);
1355     LValue LV = EmitLValue(cleanups->getSubExpr());
1356     if (LV.isSimple()) {
1357       // Defend against branches out of gnu statement expressions surrounded by
1358       // cleanups.
1359       llvm::Value *V = LV.getPointer(*this);
1360       Scope.ForceCleanup({&V});
1361       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1362                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1363     }
1364     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1365     // bitfield lvalue or some other non-simple lvalue?
1366     return LV;
1367   }
1368 
1369   case Expr::CXXDefaultArgExprClass: {
1370     auto *DAE = cast<CXXDefaultArgExpr>(E);
1371     CXXDefaultArgExprScope Scope(*this, DAE);
1372     return EmitLValue(DAE->getExpr());
1373   }
1374   case Expr::CXXDefaultInitExprClass: {
1375     auto *DIE = cast<CXXDefaultInitExpr>(E);
1376     CXXDefaultInitExprScope Scope(*this, DIE);
1377     return EmitLValue(DIE->getExpr());
1378   }
1379   case Expr::CXXTypeidExprClass:
1380     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1381 
1382   case Expr::ObjCMessageExprClass:
1383     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1384   case Expr::ObjCIvarRefExprClass:
1385     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1386   case Expr::StmtExprClass:
1387     return EmitStmtExprLValue(cast<StmtExpr>(E));
1388   case Expr::UnaryOperatorClass:
1389     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1390   case Expr::ArraySubscriptExprClass:
1391     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1392   case Expr::MatrixSubscriptExprClass:
1393     return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1394   case Expr::OMPArraySectionExprClass:
1395     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1396   case Expr::ExtVectorElementExprClass:
1397     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1398   case Expr::MemberExprClass:
1399     return EmitMemberExpr(cast<MemberExpr>(E));
1400   case Expr::CompoundLiteralExprClass:
1401     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1402   case Expr::ConditionalOperatorClass:
1403     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1404   case Expr::BinaryConditionalOperatorClass:
1405     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1406   case Expr::ChooseExprClass:
1407     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1408   case Expr::OpaqueValueExprClass:
1409     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1410   case Expr::SubstNonTypeTemplateParmExprClass:
1411     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1412   case Expr::ImplicitCastExprClass:
1413   case Expr::CStyleCastExprClass:
1414   case Expr::CXXFunctionalCastExprClass:
1415   case Expr::CXXStaticCastExprClass:
1416   case Expr::CXXDynamicCastExprClass:
1417   case Expr::CXXReinterpretCastExprClass:
1418   case Expr::CXXConstCastExprClass:
1419   case Expr::CXXAddrspaceCastExprClass:
1420   case Expr::ObjCBridgedCastExprClass:
1421     return EmitCastLValue(cast<CastExpr>(E));
1422 
1423   case Expr::MaterializeTemporaryExprClass:
1424     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1425 
1426   case Expr::CoawaitExprClass:
1427     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1428   case Expr::CoyieldExprClass:
1429     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1430   }
1431 }
1432 
1433 /// Given an object of the given canonical type, can we safely copy a
1434 /// value out of it based on its initializer?
1435 static bool isConstantEmittableObjectType(QualType type) {
1436   assert(type.isCanonical());
1437   assert(!type->isReferenceType());
1438 
1439   // Must be const-qualified but non-volatile.
1440   Qualifiers qs = type.getLocalQualifiers();
1441   if (!qs.hasConst() || qs.hasVolatile()) return false;
1442 
1443   // Otherwise, all object types satisfy this except C++ classes with
1444   // mutable subobjects or non-trivial copy/destroy behavior.
1445   if (const auto *RT = dyn_cast<RecordType>(type))
1446     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1447       if (RD->hasMutableFields() || !RD->isTrivial())
1448         return false;
1449 
1450   return true;
1451 }
1452 
1453 /// Can we constant-emit a load of a reference to a variable of the
1454 /// given type?  This is different from predicates like
1455 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1456 /// in situations that don't necessarily satisfy the language's rules
1457 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1458 /// to do this with const float variables even if those variables
1459 /// aren't marked 'constexpr'.
1460 enum ConstantEmissionKind {
1461   CEK_None,
1462   CEK_AsReferenceOnly,
1463   CEK_AsValueOrReference,
1464   CEK_AsValueOnly
1465 };
1466 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1467   type = type.getCanonicalType();
1468   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1469     if (isConstantEmittableObjectType(ref->getPointeeType()))
1470       return CEK_AsValueOrReference;
1471     return CEK_AsReferenceOnly;
1472   }
1473   if (isConstantEmittableObjectType(type))
1474     return CEK_AsValueOnly;
1475   return CEK_None;
1476 }
1477 
1478 /// Try to emit a reference to the given value without producing it as
1479 /// an l-value.  This is just an optimization, but it avoids us needing
1480 /// to emit global copies of variables if they're named without triggering
1481 /// a formal use in a context where we can't emit a direct reference to them,
1482 /// for instance if a block or lambda or a member of a local class uses a
1483 /// const int variable or constexpr variable from an enclosing function.
1484 CodeGenFunction::ConstantEmission
1485 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1486   ValueDecl *value = refExpr->getDecl();
1487 
1488   // The value needs to be an enum constant or a constant variable.
1489   ConstantEmissionKind CEK;
1490   if (isa<ParmVarDecl>(value)) {
1491     CEK = CEK_None;
1492   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1493     CEK = checkVarTypeForConstantEmission(var->getType());
1494   } else if (isa<EnumConstantDecl>(value)) {
1495     CEK = CEK_AsValueOnly;
1496   } else {
1497     CEK = CEK_None;
1498   }
1499   if (CEK == CEK_None) return ConstantEmission();
1500 
1501   Expr::EvalResult result;
1502   bool resultIsReference;
1503   QualType resultType;
1504 
1505   // It's best to evaluate all the way as an r-value if that's permitted.
1506   if (CEK != CEK_AsReferenceOnly &&
1507       refExpr->EvaluateAsRValue(result, getContext())) {
1508     resultIsReference = false;
1509     resultType = refExpr->getType();
1510 
1511   // Otherwise, try to evaluate as an l-value.
1512   } else if (CEK != CEK_AsValueOnly &&
1513              refExpr->EvaluateAsLValue(result, getContext())) {
1514     resultIsReference = true;
1515     resultType = value->getType();
1516 
1517   // Failure.
1518   } else {
1519     return ConstantEmission();
1520   }
1521 
1522   // In any case, if the initializer has side-effects, abandon ship.
1523   if (result.HasSideEffects)
1524     return ConstantEmission();
1525 
1526   // In CUDA/HIP device compilation, a lambda may capture a reference variable
1527   // referencing a global host variable by copy. In this case the lambda should
1528   // make a copy of the value of the global host variable. The DRE of the
1529   // captured reference variable cannot be emitted as load from the host
1530   // global variable as compile time constant, since the host variable is not
1531   // accessible on device. The DRE of the captured reference variable has to be
1532   // loaded from captures.
1533   if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1534       refExpr->refersToEnclosingVariableOrCapture()) {
1535     auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1536     if (MD && MD->getParent()->isLambda() &&
1537         MD->getOverloadedOperator() == OO_Call) {
1538       const APValue::LValueBase &base = result.Val.getLValueBase();
1539       if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1540         if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1541           if (!VD->hasAttr<CUDADeviceAttr>()) {
1542             return ConstantEmission();
1543           }
1544         }
1545       }
1546     }
1547   }
1548 
1549   // Emit as a constant.
1550   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1551                                                result.Val, resultType);
1552 
1553   // Make sure we emit a debug reference to the global variable.
1554   // This should probably fire even for
1555   if (isa<VarDecl>(value)) {
1556     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1557       EmitDeclRefExprDbgValue(refExpr, result.Val);
1558   } else {
1559     assert(isa<EnumConstantDecl>(value));
1560     EmitDeclRefExprDbgValue(refExpr, result.Val);
1561   }
1562 
1563   // If we emitted a reference constant, we need to dereference that.
1564   if (resultIsReference)
1565     return ConstantEmission::forReference(C);
1566 
1567   return ConstantEmission::forValue(C);
1568 }
1569 
1570 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1571                                                         const MemberExpr *ME) {
1572   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1573     // Try to emit static variable member expressions as DREs.
1574     return DeclRefExpr::Create(
1575         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1576         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1577         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1578   }
1579   return nullptr;
1580 }
1581 
1582 CodeGenFunction::ConstantEmission
1583 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1584   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1585     return tryEmitAsConstant(DRE);
1586   return ConstantEmission();
1587 }
1588 
1589 llvm::Value *CodeGenFunction::emitScalarConstant(
1590     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1591   assert(Constant && "not a constant");
1592   if (Constant.isReference())
1593     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1594                             E->getExprLoc())
1595         .getScalarVal();
1596   return Constant.getValue();
1597 }
1598 
1599 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1600                                                SourceLocation Loc) {
1601   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1602                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1603                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1604 }
1605 
1606 static bool hasBooleanRepresentation(QualType Ty) {
1607   if (Ty->isBooleanType())
1608     return true;
1609 
1610   if (const EnumType *ET = Ty->getAs<EnumType>())
1611     return ET->getDecl()->getIntegerType()->isBooleanType();
1612 
1613   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1614     return hasBooleanRepresentation(AT->getValueType());
1615 
1616   return false;
1617 }
1618 
1619 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1620                             llvm::APInt &Min, llvm::APInt &End,
1621                             bool StrictEnums, bool IsBool) {
1622   const EnumType *ET = Ty->getAs<EnumType>();
1623   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1624                                 ET && !ET->getDecl()->isFixed();
1625   if (!IsBool && !IsRegularCPlusPlusEnum)
1626     return false;
1627 
1628   if (IsBool) {
1629     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1630     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1631   } else {
1632     const EnumDecl *ED = ET->getDecl();
1633     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1634     unsigned Bitwidth = LTy->getScalarSizeInBits();
1635     unsigned NumNegativeBits = ED->getNumNegativeBits();
1636     unsigned NumPositiveBits = ED->getNumPositiveBits();
1637 
1638     if (NumNegativeBits) {
1639       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1640       assert(NumBits <= Bitwidth);
1641       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1642       Min = -End;
1643     } else {
1644       assert(NumPositiveBits <= Bitwidth);
1645       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1646       Min = llvm::APInt::getZero(Bitwidth);
1647     }
1648   }
1649   return true;
1650 }
1651 
1652 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1653   llvm::APInt Min, End;
1654   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1655                        hasBooleanRepresentation(Ty)))
1656     return nullptr;
1657 
1658   llvm::MDBuilder MDHelper(getLLVMContext());
1659   return MDHelper.createRange(Min, End);
1660 }
1661 
1662 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1663                                            SourceLocation Loc) {
1664   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1665   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1666   if (!HasBoolCheck && !HasEnumCheck)
1667     return false;
1668 
1669   bool IsBool = hasBooleanRepresentation(Ty) ||
1670                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1671   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1672   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1673   if (!NeedsBoolCheck && !NeedsEnumCheck)
1674     return false;
1675 
1676   // Single-bit booleans don't need to be checked. Special-case this to avoid
1677   // a bit width mismatch when handling bitfield values. This is handled by
1678   // EmitFromMemory for the non-bitfield case.
1679   if (IsBool &&
1680       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1681     return false;
1682 
1683   llvm::APInt Min, End;
1684   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1685     return true;
1686 
1687   auto &Ctx = getLLVMContext();
1688   SanitizerScope SanScope(this);
1689   llvm::Value *Check;
1690   --End;
1691   if (!Min) {
1692     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1693   } else {
1694     llvm::Value *Upper =
1695         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1696     llvm::Value *Lower =
1697         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1698     Check = Builder.CreateAnd(Upper, Lower);
1699   }
1700   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1701                                   EmitCheckTypeDescriptor(Ty)};
1702   SanitizerMask Kind =
1703       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1704   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1705             StaticArgs, EmitCheckValue(Value));
1706   return true;
1707 }
1708 
1709 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1710                                                QualType Ty,
1711                                                SourceLocation Loc,
1712                                                LValueBaseInfo BaseInfo,
1713                                                TBAAAccessInfo TBAAInfo,
1714                                                bool isNontemporal) {
1715   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1716     // For better performance, handle vector loads differently.
1717     if (Ty->isVectorType()) {
1718       const llvm::Type *EltTy = Addr.getElementType();
1719 
1720       const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1721 
1722       // Handle vectors of size 3 like size 4 for better performance.
1723       if (VTy->getNumElements() == 3) {
1724 
1725         // Bitcast to vec4 type.
1726         auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
1727         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1728         // Now load value.
1729         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1730 
1731         // Shuffle vector to get vec3.
1732         V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2},
1733                                         "extractVec");
1734         return EmitFromMemory(V, Ty);
1735       }
1736     }
1737   }
1738 
1739   // Atomic operations have to be done on integral types.
1740   LValue AtomicLValue =
1741       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1742   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1743     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1744   }
1745 
1746   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1747   if (isNontemporal) {
1748     llvm::MDNode *Node = llvm::MDNode::get(
1749         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1750     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1751   }
1752 
1753   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1754 
1755   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1756     // In order to prevent the optimizer from throwing away the check, don't
1757     // attach range metadata to the load.
1758   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1759     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1760       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1761 
1762   return EmitFromMemory(Load, Ty);
1763 }
1764 
1765 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1766   // Bool has a different representation in memory than in registers.
1767   if (hasBooleanRepresentation(Ty)) {
1768     // This should really always be an i1, but sometimes it's already
1769     // an i8, and it's awkward to track those cases down.
1770     if (Value->getType()->isIntegerTy(1))
1771       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1772     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1773            "wrong value rep of bool");
1774   }
1775 
1776   return Value;
1777 }
1778 
1779 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1780   // Bool has a different representation in memory than in registers.
1781   if (hasBooleanRepresentation(Ty)) {
1782     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1783            "wrong value rep of bool");
1784     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1785   }
1786 
1787   return Value;
1788 }
1789 
1790 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1791 // MatrixType), if it points to a array (the memory type of MatrixType).
1792 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1793                                          bool IsVector = true) {
1794   auto *ArrayTy = dyn_cast<llvm::ArrayType>(
1795       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1796   if (ArrayTy && IsVector) {
1797     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1798                                                 ArrayTy->getNumElements());
1799 
1800     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1801   }
1802   auto *VectorTy = dyn_cast<llvm::VectorType>(
1803       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1804   if (VectorTy && !IsVector) {
1805     auto *ArrayTy = llvm::ArrayType::get(
1806         VectorTy->getElementType(),
1807         cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1808 
1809     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1810   }
1811 
1812   return Addr;
1813 }
1814 
1815 // Emit a store of a matrix LValue. This may require casting the original
1816 // pointer to memory address (ArrayType) to a pointer to the value type
1817 // (VectorType).
1818 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1819                                     bool isInit, CodeGenFunction &CGF) {
1820   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1821                                            value->getType()->isVectorTy());
1822   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1823                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1824                         lvalue.isNontemporal());
1825 }
1826 
1827 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1828                                         bool Volatile, QualType Ty,
1829                                         LValueBaseInfo BaseInfo,
1830                                         TBAAAccessInfo TBAAInfo,
1831                                         bool isInit, bool isNontemporal) {
1832   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1833     // Handle vectors differently to get better performance.
1834     if (Ty->isVectorType()) {
1835       llvm::Type *SrcTy = Value->getType();
1836       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1837       // Handle vec3 special.
1838       if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1839         // Our source is a vec3, do a shuffle vector to make it a vec4.
1840         Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
1841                                             "extractVec");
1842         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1843       }
1844       if (Addr.getElementType() != SrcTy) {
1845         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1846       }
1847     }
1848   }
1849 
1850   Value = EmitToMemory(Value, Ty);
1851 
1852   LValue AtomicLValue =
1853       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1854   if (Ty->isAtomicType() ||
1855       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1856     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1857     return;
1858   }
1859 
1860   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1861   if (isNontemporal) {
1862     llvm::MDNode *Node =
1863         llvm::MDNode::get(Store->getContext(),
1864                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1865     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1866   }
1867 
1868   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1869 }
1870 
1871 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1872                                         bool isInit) {
1873   if (lvalue.getType()->isConstantMatrixType()) {
1874     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1875     return;
1876   }
1877 
1878   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1879                     lvalue.getType(), lvalue.getBaseInfo(),
1880                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1881 }
1882 
1883 // Emit a load of a LValue of matrix type. This may require casting the pointer
1884 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1885 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1886                                      CodeGenFunction &CGF) {
1887   assert(LV.getType()->isConstantMatrixType());
1888   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1889   LV.setAddress(Addr);
1890   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1891 }
1892 
1893 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1894 /// method emits the address of the lvalue, then loads the result as an rvalue,
1895 /// returning the rvalue.
1896 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1897   if (LV.isObjCWeak()) {
1898     // load of a __weak object.
1899     Address AddrWeakObj = LV.getAddress(*this);
1900     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1901                                                              AddrWeakObj));
1902   }
1903   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1904     // In MRC mode, we do a load+autorelease.
1905     if (!getLangOpts().ObjCAutoRefCount) {
1906       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1907     }
1908 
1909     // In ARC mode, we load retained and then consume the value.
1910     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1911     Object = EmitObjCConsumeObject(LV.getType(), Object);
1912     return RValue::get(Object);
1913   }
1914 
1915   if (LV.isSimple()) {
1916     assert(!LV.getType()->isFunctionType());
1917 
1918     if (LV.getType()->isConstantMatrixType())
1919       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1920 
1921     // Everything needs a load.
1922     return RValue::get(EmitLoadOfScalar(LV, Loc));
1923   }
1924 
1925   if (LV.isVectorElt()) {
1926     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1927                                               LV.isVolatileQualified());
1928     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1929                                                     "vecext"));
1930   }
1931 
1932   // If this is a reference to a subset of the elements of a vector, either
1933   // shuffle the input or extract/insert them as appropriate.
1934   if (LV.isExtVectorElt()) {
1935     return EmitLoadOfExtVectorElementLValue(LV);
1936   }
1937 
1938   // Global Register variables always invoke intrinsics
1939   if (LV.isGlobalReg())
1940     return EmitLoadOfGlobalRegLValue(LV);
1941 
1942   if (LV.isMatrixElt()) {
1943     llvm::Value *Idx = LV.getMatrixIdx();
1944     if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
1945       const auto *const MatTy = LV.getType()->getAs<ConstantMatrixType>();
1946       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1947       MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
1948     }
1949     llvm::LoadInst *Load =
1950         Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
1951     return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext"));
1952   }
1953 
1954   assert(LV.isBitField() && "Unknown LValue type!");
1955   return EmitLoadOfBitfieldLValue(LV, Loc);
1956 }
1957 
1958 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1959                                                  SourceLocation Loc) {
1960   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1961 
1962   // Get the output type.
1963   llvm::Type *ResLTy = ConvertType(LV.getType());
1964 
1965   Address Ptr = LV.getBitFieldAddress();
1966   llvm::Value *Val =
1967       Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1968 
1969   bool UseVolatile = LV.isVolatileQualified() &&
1970                      Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
1971   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
1972   const unsigned StorageSize =
1973       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
1974   if (Info.IsSigned) {
1975     assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
1976     unsigned HighBits = StorageSize - Offset - Info.Size;
1977     if (HighBits)
1978       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1979     if (Offset + HighBits)
1980       Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
1981   } else {
1982     if (Offset)
1983       Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
1984     if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
1985       Val = Builder.CreateAnd(
1986           Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
1987   }
1988   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1989   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1990   return RValue::get(Val);
1991 }
1992 
1993 // If this is a reference to a subset of the elements of a vector, create an
1994 // appropriate shufflevector.
1995 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1996   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1997                                         LV.isVolatileQualified());
1998 
1999   const llvm::Constant *Elts = LV.getExtVectorElts();
2000 
2001   // If the result of the expression is a non-vector type, we must be extracting
2002   // a single element.  Just codegen as an extractelement.
2003   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2004   if (!ExprVT) {
2005     unsigned InIdx = getAccessedFieldNo(0, Elts);
2006     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2007     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
2008   }
2009 
2010   // Always use shuffle vector to try to retain the original program structure
2011   unsigned NumResultElts = ExprVT->getNumElements();
2012 
2013   SmallVector<int, 4> Mask;
2014   for (unsigned i = 0; i != NumResultElts; ++i)
2015     Mask.push_back(getAccessedFieldNo(i, Elts));
2016 
2017   Vec = Builder.CreateShuffleVector(Vec, Mask);
2018   return RValue::get(Vec);
2019 }
2020 
2021 /// Generates lvalue for partial ext_vector access.
2022 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2023   Address VectorAddress = LV.getExtVectorAddress();
2024   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2025   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2026 
2027   Address CastToPointerElement =
2028     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
2029                                  "conv.ptr.element");
2030 
2031   const llvm::Constant *Elts = LV.getExtVectorElts();
2032   unsigned ix = getAccessedFieldNo(0, Elts);
2033 
2034   Address VectorBasePtrPlusIx =
2035     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2036                                    "vector.elt");
2037 
2038   return VectorBasePtrPlusIx;
2039 }
2040 
2041 /// Load of global gamed gegisters are always calls to intrinsics.
2042 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2043   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2044          "Bad type for register variable");
2045   llvm::MDNode *RegName = cast<llvm::MDNode>(
2046       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2047 
2048   // We accept integer and pointer types only
2049   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2050   llvm::Type *Ty = OrigTy;
2051   if (OrigTy->isPointerTy())
2052     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2053   llvm::Type *Types[] = { Ty };
2054 
2055   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2056   llvm::Value *Call = Builder.CreateCall(
2057       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2058   if (OrigTy->isPointerTy())
2059     Call = Builder.CreateIntToPtr(Call, OrigTy);
2060   return RValue::get(Call);
2061 }
2062 
2063 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2064 /// lvalue, where both are guaranteed to the have the same type, and that type
2065 /// is 'Ty'.
2066 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2067                                              bool isInit) {
2068   if (!Dst.isSimple()) {
2069     if (Dst.isVectorElt()) {
2070       // Read/modify/write the vector, inserting the new element.
2071       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2072                                             Dst.isVolatileQualified());
2073       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2074                                         Dst.getVectorIdx(), "vecins");
2075       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2076                           Dst.isVolatileQualified());
2077       return;
2078     }
2079 
2080     // If this is an update of extended vector elements, insert them as
2081     // appropriate.
2082     if (Dst.isExtVectorElt())
2083       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2084 
2085     if (Dst.isGlobalReg())
2086       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2087 
2088     if (Dst.isMatrixElt()) {
2089       llvm::Value *Idx = Dst.getMatrixIdx();
2090       if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2091         const auto *const MatTy = Dst.getType()->getAs<ConstantMatrixType>();
2092         llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
2093         MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2094       }
2095       llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress());
2096       llvm::Value *Vec =
2097           Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins");
2098       Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2099                           Dst.isVolatileQualified());
2100       return;
2101     }
2102 
2103     assert(Dst.isBitField() && "Unknown LValue type");
2104     return EmitStoreThroughBitfieldLValue(Src, Dst);
2105   }
2106 
2107   // There's special magic for assigning into an ARC-qualified l-value.
2108   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2109     switch (Lifetime) {
2110     case Qualifiers::OCL_None:
2111       llvm_unreachable("present but none");
2112 
2113     case Qualifiers::OCL_ExplicitNone:
2114       // nothing special
2115       break;
2116 
2117     case Qualifiers::OCL_Strong:
2118       if (isInit) {
2119         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2120         break;
2121       }
2122       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2123       return;
2124 
2125     case Qualifiers::OCL_Weak:
2126       if (isInit)
2127         // Initialize and then skip the primitive store.
2128         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2129       else
2130         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2131                          /*ignore*/ true);
2132       return;
2133 
2134     case Qualifiers::OCL_Autoreleasing:
2135       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2136                                                      Src.getScalarVal()));
2137       // fall into the normal path
2138       break;
2139     }
2140   }
2141 
2142   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2143     // load of a __weak object.
2144     Address LvalueDst = Dst.getAddress(*this);
2145     llvm::Value *src = Src.getScalarVal();
2146      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2147     return;
2148   }
2149 
2150   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2151     // load of a __strong object.
2152     Address LvalueDst = Dst.getAddress(*this);
2153     llvm::Value *src = Src.getScalarVal();
2154     if (Dst.isObjCIvar()) {
2155       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2156       llvm::Type *ResultType = IntPtrTy;
2157       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2158       llvm::Value *RHS = dst.getPointer();
2159       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2160       llvm::Value *LHS =
2161         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2162                                "sub.ptr.lhs.cast");
2163       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2164       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2165                                               BytesBetween);
2166     } else if (Dst.isGlobalObjCRef()) {
2167       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2168                                                 Dst.isThreadLocalRef());
2169     }
2170     else
2171       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2172     return;
2173   }
2174 
2175   assert(Src.isScalar() && "Can't emit an agg store with this method");
2176   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2177 }
2178 
2179 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2180                                                      llvm::Value **Result) {
2181   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2182   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2183   Address Ptr = Dst.getBitFieldAddress();
2184 
2185   // Get the source value, truncated to the width of the bit-field.
2186   llvm::Value *SrcVal = Src.getScalarVal();
2187 
2188   // Cast the source to the storage type and shift it into place.
2189   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2190                                  /*isSigned=*/false);
2191   llvm::Value *MaskedVal = SrcVal;
2192 
2193   const bool UseVolatile =
2194       CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2195       Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2196   const unsigned StorageSize =
2197       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2198   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2199   // See if there are other bits in the bitfield's storage we'll need to load
2200   // and mask together with source before storing.
2201   if (StorageSize != Info.Size) {
2202     assert(StorageSize > Info.Size && "Invalid bitfield size.");
2203     llvm::Value *Val =
2204         Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2205 
2206     // Mask the source value as needed.
2207     if (!hasBooleanRepresentation(Dst.getType()))
2208       SrcVal = Builder.CreateAnd(
2209           SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2210           "bf.value");
2211     MaskedVal = SrcVal;
2212     if (Offset)
2213       SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2214 
2215     // Mask out the original value.
2216     Val = Builder.CreateAnd(
2217         Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2218         "bf.clear");
2219 
2220     // Or together the unchanged values and the source value.
2221     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2222   } else {
2223     assert(Offset == 0);
2224     // According to the AACPS:
2225     // When a volatile bit-field is written, and its container does not overlap
2226     // with any non-bit-field member, its container must be read exactly once
2227     // and written exactly once using the access width appropriate to the type
2228     // of the container. The two accesses are not atomic.
2229     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2230         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2231       Builder.CreateLoad(Ptr, true, "bf.load");
2232   }
2233 
2234   // Write the new value back out.
2235   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2236 
2237   // Return the new value of the bit-field, if requested.
2238   if (Result) {
2239     llvm::Value *ResultVal = MaskedVal;
2240 
2241     // Sign extend the value if needed.
2242     if (Info.IsSigned) {
2243       assert(Info.Size <= StorageSize);
2244       unsigned HighBits = StorageSize - Info.Size;
2245       if (HighBits) {
2246         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2247         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2248       }
2249     }
2250 
2251     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2252                                       "bf.result.cast");
2253     *Result = EmitFromMemory(ResultVal, Dst.getType());
2254   }
2255 }
2256 
2257 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2258                                                                LValue Dst) {
2259   // This access turns into a read/modify/write of the vector.  Load the input
2260   // value now.
2261   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2262                                         Dst.isVolatileQualified());
2263   const llvm::Constant *Elts = Dst.getExtVectorElts();
2264 
2265   llvm::Value *SrcVal = Src.getScalarVal();
2266 
2267   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2268     unsigned NumSrcElts = VTy->getNumElements();
2269     unsigned NumDstElts =
2270         cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2271     if (NumDstElts == NumSrcElts) {
2272       // Use shuffle vector is the src and destination are the same number of
2273       // elements and restore the vector mask since it is on the side it will be
2274       // stored.
2275       SmallVector<int, 4> Mask(NumDstElts);
2276       for (unsigned i = 0; i != NumSrcElts; ++i)
2277         Mask[getAccessedFieldNo(i, Elts)] = i;
2278 
2279       Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2280     } else if (NumDstElts > NumSrcElts) {
2281       // Extended the source vector to the same length and then shuffle it
2282       // into the destination.
2283       // FIXME: since we're shuffling with undef, can we just use the indices
2284       //        into that?  This could be simpler.
2285       SmallVector<int, 4> ExtMask;
2286       for (unsigned i = 0; i != NumSrcElts; ++i)
2287         ExtMask.push_back(i);
2288       ExtMask.resize(NumDstElts, -1);
2289       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2290       // build identity
2291       SmallVector<int, 4> Mask;
2292       for (unsigned i = 0; i != NumDstElts; ++i)
2293         Mask.push_back(i);
2294 
2295       // When the vector size is odd and .odd or .hi is used, the last element
2296       // of the Elts constant array will be one past the size of the vector.
2297       // Ignore the last element here, if it is greater than the mask size.
2298       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2299         NumSrcElts--;
2300 
2301       // modify when what gets shuffled in
2302       for (unsigned i = 0; i != NumSrcElts; ++i)
2303         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2304       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2305     } else {
2306       // We should never shorten the vector
2307       llvm_unreachable("unexpected shorten vector length");
2308     }
2309   } else {
2310     // If the Src is a scalar (not a vector) it must be updating one element.
2311     unsigned InIdx = getAccessedFieldNo(0, Elts);
2312     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2313     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2314   }
2315 
2316   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2317                       Dst.isVolatileQualified());
2318 }
2319 
2320 /// Store of global named registers are always calls to intrinsics.
2321 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2322   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2323          "Bad type for register variable");
2324   llvm::MDNode *RegName = cast<llvm::MDNode>(
2325       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2326   assert(RegName && "Register LValue is not metadata");
2327 
2328   // We accept integer and pointer types only
2329   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2330   llvm::Type *Ty = OrigTy;
2331   if (OrigTy->isPointerTy())
2332     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2333   llvm::Type *Types[] = { Ty };
2334 
2335   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2336   llvm::Value *Value = Src.getScalarVal();
2337   if (OrigTy->isPointerTy())
2338     Value = Builder.CreatePtrToInt(Value, Ty);
2339   Builder.CreateCall(
2340       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2341 }
2342 
2343 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2344 // generating write-barries API. It is currently a global, ivar,
2345 // or neither.
2346 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2347                                  LValue &LV,
2348                                  bool IsMemberAccess=false) {
2349   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2350     return;
2351 
2352   if (isa<ObjCIvarRefExpr>(E)) {
2353     QualType ExpTy = E->getType();
2354     if (IsMemberAccess && ExpTy->isPointerType()) {
2355       // If ivar is a structure pointer, assigning to field of
2356       // this struct follows gcc's behavior and makes it a non-ivar
2357       // writer-barrier conservatively.
2358       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2359       if (ExpTy->isRecordType()) {
2360         LV.setObjCIvar(false);
2361         return;
2362       }
2363     }
2364     LV.setObjCIvar(true);
2365     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2366     LV.setBaseIvarExp(Exp->getBase());
2367     LV.setObjCArray(E->getType()->isArrayType());
2368     return;
2369   }
2370 
2371   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2372     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2373       if (VD->hasGlobalStorage()) {
2374         LV.setGlobalObjCRef(true);
2375         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2376       }
2377     }
2378     LV.setObjCArray(E->getType()->isArrayType());
2379     return;
2380   }
2381 
2382   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2383     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2384     return;
2385   }
2386 
2387   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2388     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2389     if (LV.isObjCIvar()) {
2390       // If cast is to a structure pointer, follow gcc's behavior and make it
2391       // a non-ivar write-barrier.
2392       QualType ExpTy = E->getType();
2393       if (ExpTy->isPointerType())
2394         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2395       if (ExpTy->isRecordType())
2396         LV.setObjCIvar(false);
2397     }
2398     return;
2399   }
2400 
2401   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2402     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2403     return;
2404   }
2405 
2406   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2407     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2408     return;
2409   }
2410 
2411   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2412     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2413     return;
2414   }
2415 
2416   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2417     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2418     return;
2419   }
2420 
2421   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2422     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2423     if (LV.isObjCIvar() && !LV.isObjCArray())
2424       // Using array syntax to assigning to what an ivar points to is not
2425       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2426       LV.setObjCIvar(false);
2427     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2428       // Using array syntax to assigning to what global points to is not
2429       // same as assigning to the global itself. {id *G;} G[i] = 0;
2430       LV.setGlobalObjCRef(false);
2431     return;
2432   }
2433 
2434   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2435     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2436     // We don't know if member is an 'ivar', but this flag is looked at
2437     // only in the context of LV.isObjCIvar().
2438     LV.setObjCArray(E->getType()->isArrayType());
2439     return;
2440   }
2441 }
2442 
2443 static llvm::Value *
2444 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2445                                 llvm::Value *V, llvm::Type *IRType,
2446                                 StringRef Name = StringRef()) {
2447   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2448   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2449 }
2450 
2451 static LValue EmitThreadPrivateVarDeclLValue(
2452     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2453     llvm::Type *RealVarTy, SourceLocation Loc) {
2454   if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2455     Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2456         CGF, VD, Addr, Loc);
2457   else
2458     Addr =
2459         CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2460 
2461   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2462   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2463 }
2464 
2465 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2466                                            const VarDecl *VD, QualType T) {
2467   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2468       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2469   // Return an invalid address if variable is MT_To and unified
2470   // memory is not enabled. For all other cases: MT_Link and
2471   // MT_To with unified memory, return a valid address.
2472   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2473                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2474     return Address::invalid();
2475   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2476           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2477            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2478          "Expected link clause OR to clause with unified memory enabled.");
2479   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2480   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2481   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2482 }
2483 
2484 Address
2485 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2486                                      LValueBaseInfo *PointeeBaseInfo,
2487                                      TBAAAccessInfo *PointeeTBAAInfo) {
2488   llvm::LoadInst *Load =
2489       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2490   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2491 
2492   CharUnits Align = CGM.getNaturalTypeAlignment(
2493       RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo,
2494       /* forPointeeType= */ true);
2495   return Address(Load, Align);
2496 }
2497 
2498 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2499   LValueBaseInfo PointeeBaseInfo;
2500   TBAAAccessInfo PointeeTBAAInfo;
2501   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2502                                             &PointeeTBAAInfo);
2503   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2504                         PointeeBaseInfo, PointeeTBAAInfo);
2505 }
2506 
2507 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2508                                            const PointerType *PtrTy,
2509                                            LValueBaseInfo *BaseInfo,
2510                                            TBAAAccessInfo *TBAAInfo) {
2511   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2512   return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
2513                                                    BaseInfo, TBAAInfo,
2514                                                    /*forPointeeType=*/true));
2515 }
2516 
2517 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2518                                                 const PointerType *PtrTy) {
2519   LValueBaseInfo BaseInfo;
2520   TBAAAccessInfo TBAAInfo;
2521   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2522   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2523 }
2524 
2525 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2526                                       const Expr *E, const VarDecl *VD) {
2527   QualType T = E->getType();
2528 
2529   // If it's thread_local, emit a call to its wrapper function instead.
2530   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2531       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2532     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2533   // Check if the variable is marked as declare target with link clause in
2534   // device codegen.
2535   if (CGF.getLangOpts().OpenMPIsDevice) {
2536     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2537     if (Addr.isValid())
2538       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2539   }
2540 
2541   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2542   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2543   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2544   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2545   Address Addr(V, Alignment);
2546   // Emit reference to the private copy of the variable if it is an OpenMP
2547   // threadprivate variable.
2548   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2549       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2550     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2551                                           E->getExprLoc());
2552   }
2553   LValue LV = VD->getType()->isReferenceType() ?
2554       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2555                                     AlignmentSource::Decl) :
2556       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2557   setObjCGCLValueClass(CGF.getContext(), E, LV);
2558   return LV;
2559 }
2560 
2561 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2562                                                GlobalDecl GD) {
2563   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2564   if (FD->hasAttr<WeakRefAttr>()) {
2565     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2566     return aliasee.getPointer();
2567   }
2568 
2569   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2570   if (!FD->hasPrototype()) {
2571     if (const FunctionProtoType *Proto =
2572             FD->getType()->getAs<FunctionProtoType>()) {
2573       // Ugly case: for a K&R-style definition, the type of the definition
2574       // isn't the same as the type of a use.  Correct for this with a
2575       // bitcast.
2576       QualType NoProtoType =
2577           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2578       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2579       V = llvm::ConstantExpr::getBitCast(V,
2580                                       CGM.getTypes().ConvertType(NoProtoType));
2581     }
2582   }
2583   return V;
2584 }
2585 
2586 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2587                                      GlobalDecl GD) {
2588   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2589   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2590   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2591   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2592                             AlignmentSource::Decl);
2593 }
2594 
2595 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2596                                       llvm::Value *ThisValue) {
2597   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2598   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2599   return CGF.EmitLValueForField(LV, FD);
2600 }
2601 
2602 /// Named Registers are named metadata pointing to the register name
2603 /// which will be read from/written to as an argument to the intrinsic
2604 /// @llvm.read/write_register.
2605 /// So far, only the name is being passed down, but other options such as
2606 /// register type, allocation type or even optimization options could be
2607 /// passed down via the metadata node.
2608 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2609   SmallString<64> Name("llvm.named.register.");
2610   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2611   assert(Asm->getLabel().size() < 64-Name.size() &&
2612       "Register name too big");
2613   Name.append(Asm->getLabel());
2614   llvm::NamedMDNode *M =
2615     CGM.getModule().getOrInsertNamedMetadata(Name);
2616   if (M->getNumOperands() == 0) {
2617     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2618                                               Asm->getLabel());
2619     llvm::Metadata *Ops[] = {Str};
2620     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2621   }
2622 
2623   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2624 
2625   llvm::Value *Ptr =
2626     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2627   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2628 }
2629 
2630 /// Determine whether we can emit a reference to \p VD from the current
2631 /// context, despite not necessarily having seen an odr-use of the variable in
2632 /// this context.
2633 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2634                                                const DeclRefExpr *E,
2635                                                const VarDecl *VD,
2636                                                bool IsConstant) {
2637   // For a variable declared in an enclosing scope, do not emit a spurious
2638   // reference even if we have a capture, as that will emit an unwarranted
2639   // reference to our capture state, and will likely generate worse code than
2640   // emitting a local copy.
2641   if (E->refersToEnclosingVariableOrCapture())
2642     return false;
2643 
2644   // For a local declaration declared in this function, we can always reference
2645   // it even if we don't have an odr-use.
2646   if (VD->hasLocalStorage()) {
2647     return VD->getDeclContext() ==
2648            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2649   }
2650 
2651   // For a global declaration, we can emit a reference to it if we know
2652   // for sure that we are able to emit a definition of it.
2653   VD = VD->getDefinition(CGF.getContext());
2654   if (!VD)
2655     return false;
2656 
2657   // Don't emit a spurious reference if it might be to a variable that only
2658   // exists on a different device / target.
2659   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2660   // cross-target reference.
2661   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2662       CGF.getLangOpts().OpenCL) {
2663     return false;
2664   }
2665 
2666   // We can emit a spurious reference only if the linkage implies that we'll
2667   // be emitting a non-interposable symbol that will be retained until link
2668   // time.
2669   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2670   case llvm::GlobalValue::ExternalLinkage:
2671   case llvm::GlobalValue::LinkOnceODRLinkage:
2672   case llvm::GlobalValue::WeakODRLinkage:
2673   case llvm::GlobalValue::InternalLinkage:
2674   case llvm::GlobalValue::PrivateLinkage:
2675     return true;
2676   default:
2677     return false;
2678   }
2679 }
2680 
2681 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2682   const NamedDecl *ND = E->getDecl();
2683   QualType T = E->getType();
2684 
2685   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2686          "should not emit an unevaluated operand");
2687 
2688   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2689     // Global Named registers access via intrinsics only
2690     if (VD->getStorageClass() == SC_Register &&
2691         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2692       return EmitGlobalNamedRegister(VD, CGM);
2693 
2694     // If this DeclRefExpr does not constitute an odr-use of the variable,
2695     // we're not permitted to emit a reference to it in general, and it might
2696     // not be captured if capture would be necessary for a use. Emit the
2697     // constant value directly instead.
2698     if (E->isNonOdrUse() == NOUR_Constant &&
2699         (VD->getType()->isReferenceType() ||
2700          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2701       VD->getAnyInitializer(VD);
2702       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2703           E->getLocation(), *VD->evaluateValue(), VD->getType());
2704       assert(Val && "failed to emit constant expression");
2705 
2706       Address Addr = Address::invalid();
2707       if (!VD->getType()->isReferenceType()) {
2708         // Spill the constant value to a global.
2709         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2710                                            getContext().getDeclAlign(VD));
2711         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2712         auto *PTy = llvm::PointerType::get(
2713             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2714         if (PTy != Addr.getType())
2715           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2716       } else {
2717         // Should we be using the alignment of the constant pointer we emitted?
2718         CharUnits Alignment =
2719             CGM.getNaturalTypeAlignment(E->getType(),
2720                                         /* BaseInfo= */ nullptr,
2721                                         /* TBAAInfo= */ nullptr,
2722                                         /* forPointeeType= */ true);
2723         Addr = Address(Val, Alignment);
2724       }
2725       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2726     }
2727 
2728     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2729 
2730     // Check for captured variables.
2731     if (E->refersToEnclosingVariableOrCapture()) {
2732       VD = VD->getCanonicalDecl();
2733       if (auto *FD = LambdaCaptureFields.lookup(VD))
2734         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2735       if (CapturedStmtInfo) {
2736         auto I = LocalDeclMap.find(VD);
2737         if (I != LocalDeclMap.end()) {
2738           LValue CapLVal;
2739           if (VD->getType()->isReferenceType())
2740             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2741                                                 AlignmentSource::Decl);
2742           else
2743             CapLVal = MakeAddrLValue(I->second, T);
2744           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2745           // in simd context.
2746           if (getLangOpts().OpenMP &&
2747               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2748             CapLVal.setNontemporal(/*Value=*/true);
2749           return CapLVal;
2750         }
2751         LValue CapLVal =
2752             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2753                                     CapturedStmtInfo->getContextValue());
2754         CapLVal = MakeAddrLValue(
2755             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2756             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2757             CapLVal.getTBAAInfo());
2758         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2759         // in simd context.
2760         if (getLangOpts().OpenMP &&
2761             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2762           CapLVal.setNontemporal(/*Value=*/true);
2763         return CapLVal;
2764       }
2765 
2766       assert(isa<BlockDecl>(CurCodeDecl));
2767       Address addr = GetAddrOfBlockDecl(VD);
2768       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2769     }
2770   }
2771 
2772   // FIXME: We should be able to assert this for FunctionDecls as well!
2773   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2774   // those with a valid source location.
2775   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2776           !E->getLocation().isValid()) &&
2777          "Should not use decl without marking it used!");
2778 
2779   if (ND->hasAttr<WeakRefAttr>()) {
2780     const auto *VD = cast<ValueDecl>(ND);
2781     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2782     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2783   }
2784 
2785   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2786     // Check if this is a global variable.
2787     if (VD->hasLinkage() || VD->isStaticDataMember())
2788       return EmitGlobalVarDeclLValue(*this, E, VD);
2789 
2790     Address addr = Address::invalid();
2791 
2792     // The variable should generally be present in the local decl map.
2793     auto iter = LocalDeclMap.find(VD);
2794     if (iter != LocalDeclMap.end()) {
2795       addr = iter->second;
2796 
2797     // Otherwise, it might be static local we haven't emitted yet for
2798     // some reason; most likely, because it's in an outer function.
2799     } else if (VD->isStaticLocal()) {
2800       addr = Address(CGM.getOrCreateStaticVarDecl(
2801           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2802                      getContext().getDeclAlign(VD));
2803 
2804     // No other cases for now.
2805     } else {
2806       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2807     }
2808 
2809 
2810     // Check for OpenMP threadprivate variables.
2811     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2812         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2813       return EmitThreadPrivateVarDeclLValue(
2814           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2815           E->getExprLoc());
2816     }
2817 
2818     // Drill into block byref variables.
2819     bool isBlockByref = VD->isEscapingByref();
2820     if (isBlockByref) {
2821       addr = emitBlockByrefAddress(addr, VD);
2822     }
2823 
2824     // Drill into reference types.
2825     LValue LV = VD->getType()->isReferenceType() ?
2826         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2827         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2828 
2829     bool isLocalStorage = VD->hasLocalStorage();
2830 
2831     bool NonGCable = isLocalStorage &&
2832                      !VD->getType()->isReferenceType() &&
2833                      !isBlockByref;
2834     if (NonGCable) {
2835       LV.getQuals().removeObjCGCAttr();
2836       LV.setNonGC(true);
2837     }
2838 
2839     bool isImpreciseLifetime =
2840       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2841     if (isImpreciseLifetime)
2842       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2843     setObjCGCLValueClass(getContext(), E, LV);
2844     return LV;
2845   }
2846 
2847   if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
2848     LValue LV = EmitFunctionDeclLValue(*this, E, FD);
2849 
2850     // Emit debuginfo for the function declaration if the target wants to.
2851     if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2852       if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) {
2853         auto *Fn =
2854             cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts());
2855         if (!Fn->getSubprogram())
2856           DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn);
2857       }
2858     }
2859 
2860     return LV;
2861   }
2862 
2863   // FIXME: While we're emitting a binding from an enclosing scope, all other
2864   // DeclRefExprs we see should be implicitly treated as if they also refer to
2865   // an enclosing scope.
2866   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2867     return EmitLValue(BD->getBinding());
2868 
2869   // We can form DeclRefExprs naming GUID declarations when reconstituting
2870   // non-type template parameters into expressions.
2871   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2872     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2873                           AlignmentSource::Decl);
2874 
2875   if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
2876     return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
2877                           AlignmentSource::Decl);
2878 
2879   llvm_unreachable("Unhandled DeclRefExpr");
2880 }
2881 
2882 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2883   // __extension__ doesn't affect lvalue-ness.
2884   if (E->getOpcode() == UO_Extension)
2885     return EmitLValue(E->getSubExpr());
2886 
2887   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2888   switch (E->getOpcode()) {
2889   default: llvm_unreachable("Unknown unary operator lvalue!");
2890   case UO_Deref: {
2891     QualType T = E->getSubExpr()->getType()->getPointeeType();
2892     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2893 
2894     LValueBaseInfo BaseInfo;
2895     TBAAAccessInfo TBAAInfo;
2896     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2897                                             &TBAAInfo);
2898     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2899     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2900 
2901     // We should not generate __weak write barrier on indirect reference
2902     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2903     // But, we continue to generate __strong write barrier on indirect write
2904     // into a pointer to object.
2905     if (getLangOpts().ObjC &&
2906         getLangOpts().getGC() != LangOptions::NonGC &&
2907         LV.isObjCWeak())
2908       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2909     return LV;
2910   }
2911   case UO_Real:
2912   case UO_Imag: {
2913     LValue LV = EmitLValue(E->getSubExpr());
2914     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2915 
2916     // __real is valid on scalars.  This is a faster way of testing that.
2917     // __imag can only produce an rvalue on scalars.
2918     if (E->getOpcode() == UO_Real &&
2919         !LV.getAddress(*this).getElementType()->isStructTy()) {
2920       assert(E->getSubExpr()->getType()->isArithmeticType());
2921       return LV;
2922     }
2923 
2924     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2925 
2926     Address Component =
2927         (E->getOpcode() == UO_Real
2928              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2929              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2930     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2931                                    CGM.getTBAAInfoForSubobject(LV, T));
2932     ElemLV.getQuals().addQualifiers(LV.getQuals());
2933     return ElemLV;
2934   }
2935   case UO_PreInc:
2936   case UO_PreDec: {
2937     LValue LV = EmitLValue(E->getSubExpr());
2938     bool isInc = E->getOpcode() == UO_PreInc;
2939 
2940     if (E->getType()->isAnyComplexType())
2941       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2942     else
2943       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2944     return LV;
2945   }
2946   }
2947 }
2948 
2949 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2950   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2951                         E->getType(), AlignmentSource::Decl);
2952 }
2953 
2954 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2955   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2956                         E->getType(), AlignmentSource::Decl);
2957 }
2958 
2959 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2960   auto SL = E->getFunctionName();
2961   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2962   StringRef FnName = CurFn->getName();
2963   if (FnName.startswith("\01"))
2964     FnName = FnName.substr(1);
2965   StringRef NameItems[] = {
2966       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2967   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2968   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2969     std::string Name = std::string(SL->getString());
2970     if (!Name.empty()) {
2971       unsigned Discriminator =
2972           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2973       if (Discriminator)
2974         Name += "_" + Twine(Discriminator + 1).str();
2975       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2976       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2977     } else {
2978       auto C =
2979           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2980       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2981     }
2982   }
2983   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2984   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2985 }
2986 
2987 /// Emit a type description suitable for use by a runtime sanitizer library. The
2988 /// format of a type descriptor is
2989 ///
2990 /// \code
2991 ///   { i16 TypeKind, i16 TypeInfo }
2992 /// \endcode
2993 ///
2994 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2995 /// integer, 1 for a floating point value, and -1 for anything else.
2996 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2997   // Only emit each type's descriptor once.
2998   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2999     return C;
3000 
3001   uint16_t TypeKind = -1;
3002   uint16_t TypeInfo = 0;
3003 
3004   if (T->isIntegerType()) {
3005     TypeKind = 0;
3006     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
3007                (T->isSignedIntegerType() ? 1 : 0);
3008   } else if (T->isFloatingType()) {
3009     TypeKind = 1;
3010     TypeInfo = getContext().getTypeSize(T);
3011   }
3012 
3013   // Format the type name as if for a diagnostic, including quotes and
3014   // optionally an 'aka'.
3015   SmallString<32> Buffer;
3016   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
3017                                     (intptr_t)T.getAsOpaquePtr(),
3018                                     StringRef(), StringRef(), None, Buffer,
3019                                     None);
3020 
3021   llvm::Constant *Components[] = {
3022     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3023     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3024   };
3025   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3026 
3027   auto *GV = new llvm::GlobalVariable(
3028       CGM.getModule(), Descriptor->getType(),
3029       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3030   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3031   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3032 
3033   // Remember the descriptor for this type.
3034   CGM.setTypeDescriptorInMap(T, GV);
3035 
3036   return GV;
3037 }
3038 
3039 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3040   llvm::Type *TargetTy = IntPtrTy;
3041 
3042   if (V->getType() == TargetTy)
3043     return V;
3044 
3045   // Floating-point types which fit into intptr_t are bitcast to integers
3046   // and then passed directly (after zero-extension, if necessary).
3047   if (V->getType()->isFloatingPointTy()) {
3048     unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize();
3049     if (Bits <= TargetTy->getIntegerBitWidth())
3050       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3051                                                          Bits));
3052   }
3053 
3054   // Integers which fit in intptr_t are zero-extended and passed directly.
3055   if (V->getType()->isIntegerTy() &&
3056       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3057     return Builder.CreateZExt(V, TargetTy);
3058 
3059   // Pointers are passed directly, everything else is passed by address.
3060   if (!V->getType()->isPointerTy()) {
3061     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3062     Builder.CreateStore(V, Ptr);
3063     V = Ptr.getPointer();
3064   }
3065   return Builder.CreatePtrToInt(V, TargetTy);
3066 }
3067 
3068 /// Emit a representation of a SourceLocation for passing to a handler
3069 /// in a sanitizer runtime library. The format for this data is:
3070 /// \code
3071 ///   struct SourceLocation {
3072 ///     const char *Filename;
3073 ///     int32_t Line, Column;
3074 ///   };
3075 /// \endcode
3076 /// For an invalid SourceLocation, the Filename pointer is null.
3077 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3078   llvm::Constant *Filename;
3079   int Line, Column;
3080 
3081   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3082   if (PLoc.isValid()) {
3083     StringRef FilenameString = PLoc.getFilename();
3084 
3085     int PathComponentsToStrip =
3086         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3087     if (PathComponentsToStrip < 0) {
3088       assert(PathComponentsToStrip != INT_MIN);
3089       int PathComponentsToKeep = -PathComponentsToStrip;
3090       auto I = llvm::sys::path::rbegin(FilenameString);
3091       auto E = llvm::sys::path::rend(FilenameString);
3092       while (I != E && --PathComponentsToKeep)
3093         ++I;
3094 
3095       FilenameString = FilenameString.substr(I - E);
3096     } else if (PathComponentsToStrip > 0) {
3097       auto I = llvm::sys::path::begin(FilenameString);
3098       auto E = llvm::sys::path::end(FilenameString);
3099       while (I != E && PathComponentsToStrip--)
3100         ++I;
3101 
3102       if (I != E)
3103         FilenameString =
3104             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3105       else
3106         FilenameString = llvm::sys::path::filename(FilenameString);
3107     }
3108 
3109     auto FilenameGV =
3110         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3111     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3112                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3113     Filename = FilenameGV.getPointer();
3114     Line = PLoc.getLine();
3115     Column = PLoc.getColumn();
3116   } else {
3117     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3118     Line = Column = 0;
3119   }
3120 
3121   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3122                             Builder.getInt32(Column)};
3123 
3124   return llvm::ConstantStruct::getAnon(Data);
3125 }
3126 
3127 namespace {
3128 /// Specify under what conditions this check can be recovered
3129 enum class CheckRecoverableKind {
3130   /// Always terminate program execution if this check fails.
3131   Unrecoverable,
3132   /// Check supports recovering, runtime has both fatal (noreturn) and
3133   /// non-fatal handlers for this check.
3134   Recoverable,
3135   /// Runtime conditionally aborts, always need to support recovery.
3136   AlwaysRecoverable
3137 };
3138 }
3139 
3140 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3141   assert(Kind.countPopulation() == 1);
3142   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3143     return CheckRecoverableKind::AlwaysRecoverable;
3144   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3145     return CheckRecoverableKind::Unrecoverable;
3146   else
3147     return CheckRecoverableKind::Recoverable;
3148 }
3149 
3150 namespace {
3151 struct SanitizerHandlerInfo {
3152   char const *const Name;
3153   unsigned Version;
3154 };
3155 }
3156 
3157 const SanitizerHandlerInfo SanitizerHandlers[] = {
3158 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3159     LIST_SANITIZER_CHECKS
3160 #undef SANITIZER_CHECK
3161 };
3162 
3163 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3164                                  llvm::FunctionType *FnType,
3165                                  ArrayRef<llvm::Value *> FnArgs,
3166                                  SanitizerHandler CheckHandler,
3167                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3168                                  llvm::BasicBlock *ContBB) {
3169   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3170   Optional<ApplyDebugLocation> DL;
3171   if (!CGF.Builder.getCurrentDebugLocation()) {
3172     // Ensure that the call has at least an artificial debug location.
3173     DL.emplace(CGF, SourceLocation());
3174   }
3175   bool NeedsAbortSuffix =
3176       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3177   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3178   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3179   const StringRef CheckName = CheckInfo.Name;
3180   std::string FnName = "__ubsan_handle_" + CheckName.str();
3181   if (CheckInfo.Version && !MinimalRuntime)
3182     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3183   if (MinimalRuntime)
3184     FnName += "_minimal";
3185   if (NeedsAbortSuffix)
3186     FnName += "_abort";
3187   bool MayReturn =
3188       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3189 
3190   llvm::AttrBuilder B;
3191   if (!MayReturn) {
3192     B.addAttribute(llvm::Attribute::NoReturn)
3193         .addAttribute(llvm::Attribute::NoUnwind);
3194   }
3195   B.addAttribute(llvm::Attribute::UWTable);
3196 
3197   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3198       FnType, FnName,
3199       llvm::AttributeList::get(CGF.getLLVMContext(),
3200                                llvm::AttributeList::FunctionIndex, B),
3201       /*Local=*/true);
3202   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3203   if (!MayReturn) {
3204     HandlerCall->setDoesNotReturn();
3205     CGF.Builder.CreateUnreachable();
3206   } else {
3207     CGF.Builder.CreateBr(ContBB);
3208   }
3209 }
3210 
3211 void CodeGenFunction::EmitCheck(
3212     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3213     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3214     ArrayRef<llvm::Value *> DynamicArgs) {
3215   assert(IsSanitizerScope);
3216   assert(Checked.size() > 0);
3217   assert(CheckHandler >= 0 &&
3218          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3219   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3220 
3221   llvm::Value *FatalCond = nullptr;
3222   llvm::Value *RecoverableCond = nullptr;
3223   llvm::Value *TrapCond = nullptr;
3224   for (int i = 0, n = Checked.size(); i < n; ++i) {
3225     llvm::Value *Check = Checked[i].first;
3226     // -fsanitize-trap= overrides -fsanitize-recover=.
3227     llvm::Value *&Cond =
3228         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3229             ? TrapCond
3230             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3231                   ? RecoverableCond
3232                   : FatalCond;
3233     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3234   }
3235 
3236   if (TrapCond)
3237     EmitTrapCheck(TrapCond, CheckHandler);
3238   if (!FatalCond && !RecoverableCond)
3239     return;
3240 
3241   llvm::Value *JointCond;
3242   if (FatalCond && RecoverableCond)
3243     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3244   else
3245     JointCond = FatalCond ? FatalCond : RecoverableCond;
3246   assert(JointCond);
3247 
3248   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3249   assert(SanOpts.has(Checked[0].second));
3250 #ifndef NDEBUG
3251   for (int i = 1, n = Checked.size(); i < n; ++i) {
3252     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3253            "All recoverable kinds in a single check must be same!");
3254     assert(SanOpts.has(Checked[i].second));
3255   }
3256 #endif
3257 
3258   llvm::BasicBlock *Cont = createBasicBlock("cont");
3259   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3260   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3261   // Give hint that we very much don't expect to execute the handler
3262   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3263   llvm::MDBuilder MDHelper(getLLVMContext());
3264   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3265   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3266   EmitBlock(Handlers);
3267 
3268   // Handler functions take an i8* pointing to the (handler-specific) static
3269   // information block, followed by a sequence of intptr_t arguments
3270   // representing operand values.
3271   SmallVector<llvm::Value *, 4> Args;
3272   SmallVector<llvm::Type *, 4> ArgTypes;
3273   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3274     Args.reserve(DynamicArgs.size() + 1);
3275     ArgTypes.reserve(DynamicArgs.size() + 1);
3276 
3277     // Emit handler arguments and create handler function type.
3278     if (!StaticArgs.empty()) {
3279       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3280       auto *InfoPtr =
3281           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3282                                    llvm::GlobalVariable::PrivateLinkage, Info);
3283       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3284       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3285       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3286       ArgTypes.push_back(Int8PtrTy);
3287     }
3288 
3289     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3290       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3291       ArgTypes.push_back(IntPtrTy);
3292     }
3293   }
3294 
3295   llvm::FunctionType *FnType =
3296     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3297 
3298   if (!FatalCond || !RecoverableCond) {
3299     // Simple case: we need to generate a single handler call, either
3300     // fatal, or non-fatal.
3301     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3302                          (FatalCond != nullptr), Cont);
3303   } else {
3304     // Emit two handler calls: first one for set of unrecoverable checks,
3305     // another one for recoverable.
3306     llvm::BasicBlock *NonFatalHandlerBB =
3307         createBasicBlock("non_fatal." + CheckName);
3308     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3309     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3310     EmitBlock(FatalHandlerBB);
3311     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3312                          NonFatalHandlerBB);
3313     EmitBlock(NonFatalHandlerBB);
3314     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3315                          Cont);
3316   }
3317 
3318   EmitBlock(Cont);
3319 }
3320 
3321 void CodeGenFunction::EmitCfiSlowPathCheck(
3322     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3323     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3324   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3325 
3326   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3327   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3328 
3329   llvm::MDBuilder MDHelper(getLLVMContext());
3330   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3331   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3332 
3333   EmitBlock(CheckBB);
3334 
3335   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3336 
3337   llvm::CallInst *CheckCall;
3338   llvm::FunctionCallee SlowPathFn;
3339   if (WithDiag) {
3340     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3341     auto *InfoPtr =
3342         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3343                                  llvm::GlobalVariable::PrivateLinkage, Info);
3344     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3345     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3346 
3347     SlowPathFn = CGM.getModule().getOrInsertFunction(
3348         "__cfi_slowpath_diag",
3349         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3350                                 false));
3351     CheckCall = Builder.CreateCall(
3352         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3353   } else {
3354     SlowPathFn = CGM.getModule().getOrInsertFunction(
3355         "__cfi_slowpath",
3356         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3357     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3358   }
3359 
3360   CGM.setDSOLocal(
3361       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3362   CheckCall->setDoesNotThrow();
3363 
3364   EmitBlock(Cont);
3365 }
3366 
3367 // Emit a stub for __cfi_check function so that the linker knows about this
3368 // symbol in LTO mode.
3369 void CodeGenFunction::EmitCfiCheckStub() {
3370   llvm::Module *M = &CGM.getModule();
3371   auto &Ctx = M->getContext();
3372   llvm::Function *F = llvm::Function::Create(
3373       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3374       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3375   CGM.setDSOLocal(F);
3376   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3377   // FIXME: consider emitting an intrinsic call like
3378   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3379   // which can be lowered in CrossDSOCFI pass to the actual contents of
3380   // __cfi_check. This would allow inlining of __cfi_check calls.
3381   llvm::CallInst::Create(
3382       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3383   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3384 }
3385 
3386 // This function is basically a switch over the CFI failure kind, which is
3387 // extracted from CFICheckFailData (1st function argument). Each case is either
3388 // llvm.trap or a call to one of the two runtime handlers, based on
3389 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3390 // failure kind) traps, but this should really never happen.  CFICheckFailData
3391 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3392 // check kind; in this case __cfi_check_fail traps as well.
3393 void CodeGenFunction::EmitCfiCheckFail() {
3394   SanitizerScope SanScope(this);
3395   FunctionArgList Args;
3396   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3397                             ImplicitParamDecl::Other);
3398   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3399                             ImplicitParamDecl::Other);
3400   Args.push_back(&ArgData);
3401   Args.push_back(&ArgAddr);
3402 
3403   const CGFunctionInfo &FI =
3404     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3405 
3406   llvm::Function *F = llvm::Function::Create(
3407       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3408       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3409 
3410   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3411   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3412   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3413 
3414   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3415                 SourceLocation());
3416 
3417   // This function is not affected by NoSanitizeList. This function does
3418   // not have a source location, but "src:*" would still apply. Revert any
3419   // changes to SanOpts made in StartFunction.
3420   SanOpts = CGM.getLangOpts().Sanitize;
3421 
3422   llvm::Value *Data =
3423       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3424                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3425   llvm::Value *Addr =
3426       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3427                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3428 
3429   // Data == nullptr means the calling module has trap behaviour for this check.
3430   llvm::Value *DataIsNotNullPtr =
3431       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3432   EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3433 
3434   llvm::StructType *SourceLocationTy =
3435       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3436   llvm::StructType *CfiCheckFailDataTy =
3437       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3438 
3439   llvm::Value *V = Builder.CreateConstGEP2_32(
3440       CfiCheckFailDataTy,
3441       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3442       0);
3443   Address CheckKindAddr(V, getIntAlign());
3444   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3445 
3446   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3447       CGM.getLLVMContext(),
3448       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3449   llvm::Value *ValidVtable = Builder.CreateZExt(
3450       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3451                          {Addr, AllVtables}),
3452       IntPtrTy);
3453 
3454   const std::pair<int, SanitizerMask> CheckKinds[] = {
3455       {CFITCK_VCall, SanitizerKind::CFIVCall},
3456       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3457       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3458       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3459       {CFITCK_ICall, SanitizerKind::CFIICall}};
3460 
3461   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3462   for (auto CheckKindMaskPair : CheckKinds) {
3463     int Kind = CheckKindMaskPair.first;
3464     SanitizerMask Mask = CheckKindMaskPair.second;
3465     llvm::Value *Cond =
3466         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3467     if (CGM.getLangOpts().Sanitize.has(Mask))
3468       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3469                 {Data, Addr, ValidVtable});
3470     else
3471       EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3472   }
3473 
3474   FinishFunction();
3475   // The only reference to this function will be created during LTO link.
3476   // Make sure it survives until then.
3477   CGM.addUsedGlobal(F);
3478 }
3479 
3480 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3481   if (SanOpts.has(SanitizerKind::Unreachable)) {
3482     SanitizerScope SanScope(this);
3483     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3484                              SanitizerKind::Unreachable),
3485               SanitizerHandler::BuiltinUnreachable,
3486               EmitCheckSourceLocation(Loc), None);
3487   }
3488   Builder.CreateUnreachable();
3489 }
3490 
3491 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3492                                     SanitizerHandler CheckHandlerID) {
3493   llvm::BasicBlock *Cont = createBasicBlock("cont");
3494 
3495   // If we're optimizing, collapse all calls to trap down to just one per
3496   // check-type per function to save on code size.
3497   if (TrapBBs.size() <= CheckHandlerID)
3498     TrapBBs.resize(CheckHandlerID + 1);
3499   llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3500 
3501   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3502     TrapBB = createBasicBlock("trap");
3503     Builder.CreateCondBr(Checked, Cont, TrapBB);
3504     EmitBlock(TrapBB);
3505 
3506     llvm::CallInst *TrapCall =
3507         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3508                            llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID));
3509 
3510     if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3511       auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3512                                     CGM.getCodeGenOpts().TrapFuncName);
3513       TrapCall->addFnAttr(A);
3514     }
3515     TrapCall->setDoesNotReturn();
3516     TrapCall->setDoesNotThrow();
3517     Builder.CreateUnreachable();
3518   } else {
3519     auto Call = TrapBB->begin();
3520     assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3521 
3522     Call->applyMergedLocation(Call->getDebugLoc(),
3523                               Builder.getCurrentDebugLocation());
3524     Builder.CreateCondBr(Checked, Cont, TrapBB);
3525   }
3526 
3527   EmitBlock(Cont);
3528 }
3529 
3530 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3531   llvm::CallInst *TrapCall =
3532       Builder.CreateCall(CGM.getIntrinsic(IntrID));
3533 
3534   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3535     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3536                                   CGM.getCodeGenOpts().TrapFuncName);
3537     TrapCall->addFnAttr(A);
3538   }
3539 
3540   return TrapCall;
3541 }
3542 
3543 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3544                                                  LValueBaseInfo *BaseInfo,
3545                                                  TBAAAccessInfo *TBAAInfo) {
3546   assert(E->getType()->isArrayType() &&
3547          "Array to pointer decay must have array source type!");
3548 
3549   // Expressions of array type can't be bitfields or vector elements.
3550   LValue LV = EmitLValue(E);
3551   Address Addr = LV.getAddress(*this);
3552 
3553   // If the array type was an incomplete type, we need to make sure
3554   // the decay ends up being the right type.
3555   llvm::Type *NewTy = ConvertType(E->getType());
3556   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3557 
3558   // Note that VLA pointers are always decayed, so we don't need to do
3559   // anything here.
3560   if (!E->getType()->isVariableArrayType()) {
3561     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3562            "Expected pointer to array");
3563     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3564   }
3565 
3566   // The result of this decay conversion points to an array element within the
3567   // base lvalue. However, since TBAA currently does not support representing
3568   // accesses to elements of member arrays, we conservatively represent accesses
3569   // to the pointee object as if it had no any base lvalue specified.
3570   // TODO: Support TBAA for member arrays.
3571   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3572   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3573   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3574 
3575   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3576 }
3577 
3578 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3579 /// array to pointer, return the array subexpression.
3580 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3581   // If this isn't just an array->pointer decay, bail out.
3582   const auto *CE = dyn_cast<CastExpr>(E);
3583   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3584     return nullptr;
3585 
3586   // If this is a decay from variable width array, bail out.
3587   const Expr *SubExpr = CE->getSubExpr();
3588   if (SubExpr->getType()->isVariableArrayType())
3589     return nullptr;
3590 
3591   return SubExpr;
3592 }
3593 
3594 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3595                                           llvm::Type *elemType,
3596                                           llvm::Value *ptr,
3597                                           ArrayRef<llvm::Value*> indices,
3598                                           bool inbounds,
3599                                           bool signedIndices,
3600                                           SourceLocation loc,
3601                                     const llvm::Twine &name = "arrayidx") {
3602   if (inbounds) {
3603     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3604                                       CodeGenFunction::NotSubtraction, loc,
3605                                       name);
3606   } else {
3607     return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3608   }
3609 }
3610 
3611 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3612                                       llvm::Value *idx,
3613                                       CharUnits eltSize) {
3614   // If we have a constant index, we can use the exact offset of the
3615   // element we're accessing.
3616   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3617     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3618     return arrayAlign.alignmentAtOffset(offset);
3619 
3620   // Otherwise, use the worst-case alignment for any element.
3621   } else {
3622     return arrayAlign.alignmentOfArrayElement(eltSize);
3623   }
3624 }
3625 
3626 static QualType getFixedSizeElementType(const ASTContext &ctx,
3627                                         const VariableArrayType *vla) {
3628   QualType eltType;
3629   do {
3630     eltType = vla->getElementType();
3631   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3632   return eltType;
3633 }
3634 
3635 /// Given an array base, check whether its member access belongs to a record
3636 /// with preserve_access_index attribute or not.
3637 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3638   if (!ArrayBase || !CGF.getDebugInfo())
3639     return false;
3640 
3641   // Only support base as either a MemberExpr or DeclRefExpr.
3642   // DeclRefExpr to cover cases like:
3643   //    struct s { int a; int b[10]; };
3644   //    struct s *p;
3645   //    p[1].a
3646   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3647   // p->b[5] is a MemberExpr example.
3648   const Expr *E = ArrayBase->IgnoreImpCasts();
3649   if (const auto *ME = dyn_cast<MemberExpr>(E))
3650     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3651 
3652   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3653     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3654     if (!VarDef)
3655       return false;
3656 
3657     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3658     if (!PtrT)
3659       return false;
3660 
3661     const auto *PointeeT = PtrT->getPointeeType()
3662                              ->getUnqualifiedDesugaredType();
3663     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3664       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3665     return false;
3666   }
3667 
3668   return false;
3669 }
3670 
3671 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3672                                      ArrayRef<llvm::Value *> indices,
3673                                      QualType eltType, bool inbounds,
3674                                      bool signedIndices, SourceLocation loc,
3675                                      QualType *arrayType = nullptr,
3676                                      const Expr *Base = nullptr,
3677                                      const llvm::Twine &name = "arrayidx") {
3678   // All the indices except that last must be zero.
3679 #ifndef NDEBUG
3680   for (auto idx : indices.drop_back())
3681     assert(isa<llvm::ConstantInt>(idx) &&
3682            cast<llvm::ConstantInt>(idx)->isZero());
3683 #endif
3684 
3685   // Determine the element size of the statically-sized base.  This is
3686   // the thing that the indices are expressed in terms of.
3687   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3688     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3689   }
3690 
3691   // We can use that to compute the best alignment of the element.
3692   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3693   CharUnits eltAlign =
3694     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3695 
3696   llvm::Value *eltPtr;
3697   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3698   if (!LastIndex ||
3699       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3700     eltPtr = emitArraySubscriptGEP(
3701         CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
3702         signedIndices, loc, name);
3703   } else {
3704     // Remember the original array subscript for bpf target
3705     unsigned idx = LastIndex->getZExtValue();
3706     llvm::DIType *DbgInfo = nullptr;
3707     if (arrayType)
3708       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3709     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3710                                                         addr.getPointer(),
3711                                                         indices.size() - 1,
3712                                                         idx, DbgInfo);
3713   }
3714 
3715   return Address(eltPtr, eltAlign);
3716 }
3717 
3718 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3719                                                bool Accessed) {
3720   // The index must always be an integer, which is not an aggregate.  Emit it
3721   // in lexical order (this complexity is, sadly, required by C++17).
3722   llvm::Value *IdxPre =
3723       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3724   bool SignedIndices = false;
3725   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3726     auto *Idx = IdxPre;
3727     if (E->getLHS() != E->getIdx()) {
3728       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3729       Idx = EmitScalarExpr(E->getIdx());
3730     }
3731 
3732     QualType IdxTy = E->getIdx()->getType();
3733     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3734     SignedIndices |= IdxSigned;
3735 
3736     if (SanOpts.has(SanitizerKind::ArrayBounds))
3737       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3738 
3739     // Extend or truncate the index type to 32 or 64-bits.
3740     if (Promote && Idx->getType() != IntPtrTy)
3741       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3742 
3743     return Idx;
3744   };
3745   IdxPre = nullptr;
3746 
3747   // If the base is a vector type, then we are forming a vector element lvalue
3748   // with this subscript.
3749   if (E->getBase()->getType()->isVectorType() &&
3750       !isa<ExtVectorElementExpr>(E->getBase())) {
3751     // Emit the vector as an lvalue to get its address.
3752     LValue LHS = EmitLValue(E->getBase());
3753     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3754     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3755     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3756                                  E->getBase()->getType(), LHS.getBaseInfo(),
3757                                  TBAAAccessInfo());
3758   }
3759 
3760   // All the other cases basically behave like simple offsetting.
3761 
3762   // Handle the extvector case we ignored above.
3763   if (isa<ExtVectorElementExpr>(E->getBase())) {
3764     LValue LV = EmitLValue(E->getBase());
3765     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3766     Address Addr = EmitExtVectorElementLValue(LV);
3767 
3768     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3769     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3770                                  SignedIndices, E->getExprLoc());
3771     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3772                           CGM.getTBAAInfoForSubobject(LV, EltType));
3773   }
3774 
3775   LValueBaseInfo EltBaseInfo;
3776   TBAAAccessInfo EltTBAAInfo;
3777   Address Addr = Address::invalid();
3778   if (const VariableArrayType *vla =
3779            getContext().getAsVariableArrayType(E->getType())) {
3780     // The base must be a pointer, which is not an aggregate.  Emit
3781     // it.  It needs to be emitted first in case it's what captures
3782     // the VLA bounds.
3783     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3784     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3785 
3786     // The element count here is the total number of non-VLA elements.
3787     llvm::Value *numElements = getVLASize(vla).NumElts;
3788 
3789     // Effectively, the multiply by the VLA size is part of the GEP.
3790     // GEP indexes are signed, and scaling an index isn't permitted to
3791     // signed-overflow, so we use the same semantics for our explicit
3792     // multiply.  We suppress this if overflow is not undefined behavior.
3793     if (getLangOpts().isSignedOverflowDefined()) {
3794       Idx = Builder.CreateMul(Idx, numElements);
3795     } else {
3796       Idx = Builder.CreateNSWMul(Idx, numElements);
3797     }
3798 
3799     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3800                                  !getLangOpts().isSignedOverflowDefined(),
3801                                  SignedIndices, E->getExprLoc());
3802 
3803   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3804     // Indexing over an interface, as in "NSString *P; P[4];"
3805 
3806     // Emit the base pointer.
3807     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3808     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3809 
3810     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3811     llvm::Value *InterfaceSizeVal =
3812         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3813 
3814     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3815 
3816     // We don't necessarily build correct LLVM struct types for ObjC
3817     // interfaces, so we can't rely on GEP to do this scaling
3818     // correctly, so we need to cast to i8*.  FIXME: is this actually
3819     // true?  A lot of other things in the fragile ABI would break...
3820     llvm::Type *OrigBaseTy = Addr.getType();
3821     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3822 
3823     // Do the GEP.
3824     CharUnits EltAlign =
3825       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3826     llvm::Value *EltPtr =
3827         emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(),
3828                               ScaledIdx, false, SignedIndices, E->getExprLoc());
3829     Addr = Address(EltPtr, EltAlign);
3830 
3831     // Cast back.
3832     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3833   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3834     // If this is A[i] where A is an array, the frontend will have decayed the
3835     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3836     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3837     // "gep x, i" here.  Emit one "gep A, 0, i".
3838     assert(Array->getType()->isArrayType() &&
3839            "Array to pointer decay must have array source type!");
3840     LValue ArrayLV;
3841     // For simple multidimensional array indexing, set the 'accessed' flag for
3842     // better bounds-checking of the base expression.
3843     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3844       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3845     else
3846       ArrayLV = EmitLValue(Array);
3847     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3848 
3849     // Propagate the alignment from the array itself to the result.
3850     QualType arrayType = Array->getType();
3851     Addr = emitArraySubscriptGEP(
3852         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3853         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3854         E->getExprLoc(), &arrayType, E->getBase());
3855     EltBaseInfo = ArrayLV.getBaseInfo();
3856     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3857   } else {
3858     // The base must be a pointer; emit it with an estimate of its alignment.
3859     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3860     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3861     QualType ptrType = E->getBase()->getType();
3862     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3863                                  !getLangOpts().isSignedOverflowDefined(),
3864                                  SignedIndices, E->getExprLoc(), &ptrType,
3865                                  E->getBase());
3866   }
3867 
3868   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3869 
3870   if (getLangOpts().ObjC &&
3871       getLangOpts().getGC() != LangOptions::NonGC) {
3872     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3873     setObjCGCLValueClass(getContext(), E, LV);
3874   }
3875   return LV;
3876 }
3877 
3878 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3879   assert(
3880       !E->isIncomplete() &&
3881       "incomplete matrix subscript expressions should be rejected during Sema");
3882   LValue Base = EmitLValue(E->getBase());
3883   llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3884   llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3885   llvm::Value *NumRows = Builder.getIntN(
3886       RowIdx->getType()->getScalarSizeInBits(),
3887       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
3888   llvm::Value *FinalIdx =
3889       Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3890   return LValue::MakeMatrixElt(
3891       MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3892       E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3893 }
3894 
3895 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3896                                        LValueBaseInfo &BaseInfo,
3897                                        TBAAAccessInfo &TBAAInfo,
3898                                        QualType BaseTy, QualType ElTy,
3899                                        bool IsLowerBound) {
3900   LValue BaseLVal;
3901   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3902     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3903     if (BaseTy->isArrayType()) {
3904       Address Addr = BaseLVal.getAddress(CGF);
3905       BaseInfo = BaseLVal.getBaseInfo();
3906 
3907       // If the array type was an incomplete type, we need to make sure
3908       // the decay ends up being the right type.
3909       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3910       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3911 
3912       // Note that VLA pointers are always decayed, so we don't need to do
3913       // anything here.
3914       if (!BaseTy->isVariableArrayType()) {
3915         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3916                "Expected pointer to array");
3917         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3918       }
3919 
3920       return CGF.Builder.CreateElementBitCast(Addr,
3921                                               CGF.ConvertTypeForMem(ElTy));
3922     }
3923     LValueBaseInfo TypeBaseInfo;
3924     TBAAAccessInfo TypeTBAAInfo;
3925     CharUnits Align =
3926         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3927     BaseInfo.mergeForCast(TypeBaseInfo);
3928     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3929     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3930   }
3931   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3932 }
3933 
3934 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3935                                                 bool IsLowerBound) {
3936   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3937   QualType ResultExprTy;
3938   if (auto *AT = getContext().getAsArrayType(BaseTy))
3939     ResultExprTy = AT->getElementType();
3940   else
3941     ResultExprTy = BaseTy->getPointeeType();
3942   llvm::Value *Idx = nullptr;
3943   if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
3944     // Requesting lower bound or upper bound, but without provided length and
3945     // without ':' symbol for the default length -> length = 1.
3946     // Idx = LowerBound ?: 0;
3947     if (auto *LowerBound = E->getLowerBound()) {
3948       Idx = Builder.CreateIntCast(
3949           EmitScalarExpr(LowerBound), IntPtrTy,
3950           LowerBound->getType()->hasSignedIntegerRepresentation());
3951     } else
3952       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3953   } else {
3954     // Try to emit length or lower bound as constant. If this is possible, 1
3955     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3956     // IR (LB + Len) - 1.
3957     auto &C = CGM.getContext();
3958     auto *Length = E->getLength();
3959     llvm::APSInt ConstLength;
3960     if (Length) {
3961       // Idx = LowerBound + Length - 1;
3962       if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
3963         ConstLength = CL->zextOrTrunc(PointerWidthInBits);
3964         Length = nullptr;
3965       }
3966       auto *LowerBound = E->getLowerBound();
3967       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3968       if (LowerBound) {
3969         if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
3970           ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
3971           LowerBound = nullptr;
3972         }
3973       }
3974       if (!Length)
3975         --ConstLength;
3976       else if (!LowerBound)
3977         --ConstLowerBound;
3978 
3979       if (Length || LowerBound) {
3980         auto *LowerBoundVal =
3981             LowerBound
3982                 ? Builder.CreateIntCast(
3983                       EmitScalarExpr(LowerBound), IntPtrTy,
3984                       LowerBound->getType()->hasSignedIntegerRepresentation())
3985                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3986         auto *LengthVal =
3987             Length
3988                 ? Builder.CreateIntCast(
3989                       EmitScalarExpr(Length), IntPtrTy,
3990                       Length->getType()->hasSignedIntegerRepresentation())
3991                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3992         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3993                                 /*HasNUW=*/false,
3994                                 !getLangOpts().isSignedOverflowDefined());
3995         if (Length && LowerBound) {
3996           Idx = Builder.CreateSub(
3997               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3998               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3999         }
4000       } else
4001         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
4002     } else {
4003       // Idx = ArraySize - 1;
4004       QualType ArrayTy = BaseTy->isPointerType()
4005                              ? E->getBase()->IgnoreParenImpCasts()->getType()
4006                              : BaseTy;
4007       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
4008         Length = VAT->getSizeExpr();
4009         if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
4010           ConstLength = *L;
4011           Length = nullptr;
4012         }
4013       } else {
4014         auto *CAT = C.getAsConstantArrayType(ArrayTy);
4015         ConstLength = CAT->getSize();
4016       }
4017       if (Length) {
4018         auto *LengthVal = Builder.CreateIntCast(
4019             EmitScalarExpr(Length), IntPtrTy,
4020             Length->getType()->hasSignedIntegerRepresentation());
4021         Idx = Builder.CreateSub(
4022             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4023             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4024       } else {
4025         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4026         --ConstLength;
4027         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4028       }
4029     }
4030   }
4031   assert(Idx);
4032 
4033   Address EltPtr = Address::invalid();
4034   LValueBaseInfo BaseInfo;
4035   TBAAAccessInfo TBAAInfo;
4036   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4037     // The base must be a pointer, which is not an aggregate.  Emit
4038     // it.  It needs to be emitted first in case it's what captures
4039     // the VLA bounds.
4040     Address Base =
4041         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4042                                 BaseTy, VLA->getElementType(), IsLowerBound);
4043     // The element count here is the total number of non-VLA elements.
4044     llvm::Value *NumElements = getVLASize(VLA).NumElts;
4045 
4046     // Effectively, the multiply by the VLA size is part of the GEP.
4047     // GEP indexes are signed, and scaling an index isn't permitted to
4048     // signed-overflow, so we use the same semantics for our explicit
4049     // multiply.  We suppress this if overflow is not undefined behavior.
4050     if (getLangOpts().isSignedOverflowDefined())
4051       Idx = Builder.CreateMul(Idx, NumElements);
4052     else
4053       Idx = Builder.CreateNSWMul(Idx, NumElements);
4054     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4055                                    !getLangOpts().isSignedOverflowDefined(),
4056                                    /*signedIndices=*/false, E->getExprLoc());
4057   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4058     // If this is A[i] where A is an array, the frontend will have decayed the
4059     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
4060     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4061     // "gep x, i" here.  Emit one "gep A, 0, i".
4062     assert(Array->getType()->isArrayType() &&
4063            "Array to pointer decay must have array source type!");
4064     LValue ArrayLV;
4065     // For simple multidimensional array indexing, set the 'accessed' flag for
4066     // better bounds-checking of the base expression.
4067     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4068       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4069     else
4070       ArrayLV = EmitLValue(Array);
4071 
4072     // Propagate the alignment from the array itself to the result.
4073     EltPtr = emitArraySubscriptGEP(
4074         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4075         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4076         /*signedIndices=*/false, E->getExprLoc());
4077     BaseInfo = ArrayLV.getBaseInfo();
4078     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4079   } else {
4080     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4081                                            TBAAInfo, BaseTy, ResultExprTy,
4082                                            IsLowerBound);
4083     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4084                                    !getLangOpts().isSignedOverflowDefined(),
4085                                    /*signedIndices=*/false, E->getExprLoc());
4086   }
4087 
4088   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4089 }
4090 
4091 LValue CodeGenFunction::
4092 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4093   // Emit the base vector as an l-value.
4094   LValue Base;
4095 
4096   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4097   if (E->isArrow()) {
4098     // If it is a pointer to a vector, emit the address and form an lvalue with
4099     // it.
4100     LValueBaseInfo BaseInfo;
4101     TBAAAccessInfo TBAAInfo;
4102     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4103     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4104     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4105     Base.getQuals().removeObjCGCAttr();
4106   } else if (E->getBase()->isGLValue()) {
4107     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4108     // emit the base as an lvalue.
4109     assert(E->getBase()->getType()->isVectorType());
4110     Base = EmitLValue(E->getBase());
4111   } else {
4112     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4113     assert(E->getBase()->getType()->isVectorType() &&
4114            "Result must be a vector");
4115     llvm::Value *Vec = EmitScalarExpr(E->getBase());
4116 
4117     // Store the vector to memory (because LValue wants an address).
4118     Address VecMem = CreateMemTemp(E->getBase()->getType());
4119     Builder.CreateStore(Vec, VecMem);
4120     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4121                           AlignmentSource::Decl);
4122   }
4123 
4124   QualType type =
4125     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4126 
4127   // Encode the element access list into a vector of unsigned indices.
4128   SmallVector<uint32_t, 4> Indices;
4129   E->getEncodedElementAccess(Indices);
4130 
4131   if (Base.isSimple()) {
4132     llvm::Constant *CV =
4133         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4134     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4135                                     Base.getBaseInfo(), TBAAAccessInfo());
4136   }
4137   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4138 
4139   llvm::Constant *BaseElts = Base.getExtVectorElts();
4140   SmallVector<llvm::Constant *, 4> CElts;
4141 
4142   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4143     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4144   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4145   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4146                                   Base.getBaseInfo(), TBAAAccessInfo());
4147 }
4148 
4149 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4150   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4151     EmitIgnoredExpr(E->getBase());
4152     return EmitDeclRefLValue(DRE);
4153   }
4154 
4155   Expr *BaseExpr = E->getBase();
4156   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4157   LValue BaseLV;
4158   if (E->isArrow()) {
4159     LValueBaseInfo BaseInfo;
4160     TBAAAccessInfo TBAAInfo;
4161     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4162     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4163     SanitizerSet SkippedChecks;
4164     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4165     if (IsBaseCXXThis)
4166       SkippedChecks.set(SanitizerKind::Alignment, true);
4167     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4168       SkippedChecks.set(SanitizerKind::Null, true);
4169     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4170                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4171     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4172   } else
4173     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4174 
4175   NamedDecl *ND = E->getMemberDecl();
4176   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4177     LValue LV = EmitLValueForField(BaseLV, Field);
4178     setObjCGCLValueClass(getContext(), E, LV);
4179     if (getLangOpts().OpenMP) {
4180       // If the member was explicitly marked as nontemporal, mark it as
4181       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4182       // to children as nontemporal too.
4183       if ((IsWrappedCXXThis(BaseExpr) &&
4184            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4185           BaseLV.isNontemporal())
4186         LV.setNontemporal(/*Value=*/true);
4187     }
4188     return LV;
4189   }
4190 
4191   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4192     return EmitFunctionDeclLValue(*this, E, FD);
4193 
4194   llvm_unreachable("Unhandled member declaration!");
4195 }
4196 
4197 /// Given that we are currently emitting a lambda, emit an l-value for
4198 /// one of its members.
4199 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4200   if (CurCodeDecl) {
4201     assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4202     assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4203   }
4204   QualType LambdaTagType =
4205     getContext().getTagDeclType(Field->getParent());
4206   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4207   return EmitLValueForField(LambdaLV, Field);
4208 }
4209 
4210 /// Get the field index in the debug info. The debug info structure/union
4211 /// will ignore the unnamed bitfields.
4212 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4213                                              unsigned FieldIndex) {
4214   unsigned I = 0, Skipped = 0;
4215 
4216   for (auto F : Rec->getDefinition()->fields()) {
4217     if (I == FieldIndex)
4218       break;
4219     if (F->isUnnamedBitfield())
4220       Skipped++;
4221     I++;
4222   }
4223 
4224   return FieldIndex - Skipped;
4225 }
4226 
4227 /// Get the address of a zero-sized field within a record. The resulting
4228 /// address doesn't necessarily have the right type.
4229 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4230                                        const FieldDecl *Field) {
4231   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4232       CGF.getContext().getFieldOffset(Field));
4233   if (Offset.isZero())
4234     return Base;
4235   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4236   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4237 }
4238 
4239 /// Drill down to the storage of a field without walking into
4240 /// reference types.
4241 ///
4242 /// The resulting address doesn't necessarily have the right type.
4243 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4244                                       const FieldDecl *field) {
4245   if (field->isZeroSize(CGF.getContext()))
4246     return emitAddrOfZeroSizeField(CGF, base, field);
4247 
4248   const RecordDecl *rec = field->getParent();
4249 
4250   unsigned idx =
4251     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4252 
4253   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4254 }
4255 
4256 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4257                                         Address addr, const FieldDecl *field) {
4258   const RecordDecl *rec = field->getParent();
4259   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4260       base.getType(), rec->getLocation());
4261 
4262   unsigned idx =
4263       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4264 
4265   return CGF.Builder.CreatePreserveStructAccessIndex(
4266       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4267 }
4268 
4269 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4270   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4271   if (!RD)
4272     return false;
4273 
4274   if (RD->isDynamicClass())
4275     return true;
4276 
4277   for (const auto &Base : RD->bases())
4278     if (hasAnyVptr(Base.getType(), Context))
4279       return true;
4280 
4281   for (const FieldDecl *Field : RD->fields())
4282     if (hasAnyVptr(Field->getType(), Context))
4283       return true;
4284 
4285   return false;
4286 }
4287 
4288 LValue CodeGenFunction::EmitLValueForField(LValue base,
4289                                            const FieldDecl *field) {
4290   LValueBaseInfo BaseInfo = base.getBaseInfo();
4291 
4292   if (field->isBitField()) {
4293     const CGRecordLayout &RL =
4294         CGM.getTypes().getCGRecordLayout(field->getParent());
4295     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4296     const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4297                              CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4298                              Info.VolatileStorageSize != 0 &&
4299                              field->getType()
4300                                  .withCVRQualifiers(base.getVRQualifiers())
4301                                  .isVolatileQualified();
4302     Address Addr = base.getAddress(*this);
4303     unsigned Idx = RL.getLLVMFieldNo(field);
4304     const RecordDecl *rec = field->getParent();
4305     if (!UseVolatile) {
4306       if (!IsInPreservedAIRegion &&
4307           (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4308         if (Idx != 0)
4309           // For structs, we GEP to the field that the record layout suggests.
4310           Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4311       } else {
4312         llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4313             getContext().getRecordType(rec), rec->getLocation());
4314         Addr = Builder.CreatePreserveStructAccessIndex(
4315             Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4316             DbgInfo);
4317       }
4318     }
4319     const unsigned SS =
4320         UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4321     // Get the access type.
4322     llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4323     if (Addr.getElementType() != FieldIntTy)
4324       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4325     if (UseVolatile) {
4326       const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4327       if (VolatileOffset)
4328         Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4329     }
4330 
4331     QualType fieldType =
4332         field->getType().withCVRQualifiers(base.getVRQualifiers());
4333     // TODO: Support TBAA for bit fields.
4334     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4335     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4336                                 TBAAAccessInfo());
4337   }
4338 
4339   // Fields of may-alias structures are may-alias themselves.
4340   // FIXME: this should get propagated down through anonymous structs
4341   // and unions.
4342   QualType FieldType = field->getType();
4343   const RecordDecl *rec = field->getParent();
4344   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4345   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4346   TBAAAccessInfo FieldTBAAInfo;
4347   if (base.getTBAAInfo().isMayAlias() ||
4348           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4349     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4350   } else if (rec->isUnion()) {
4351     // TODO: Support TBAA for unions.
4352     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4353   } else {
4354     // If no base type been assigned for the base access, then try to generate
4355     // one for this base lvalue.
4356     FieldTBAAInfo = base.getTBAAInfo();
4357     if (!FieldTBAAInfo.BaseType) {
4358         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4359         assert(!FieldTBAAInfo.Offset &&
4360                "Nonzero offset for an access with no base type!");
4361     }
4362 
4363     // Adjust offset to be relative to the base type.
4364     const ASTRecordLayout &Layout =
4365         getContext().getASTRecordLayout(field->getParent());
4366     unsigned CharWidth = getContext().getCharWidth();
4367     if (FieldTBAAInfo.BaseType)
4368       FieldTBAAInfo.Offset +=
4369           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4370 
4371     // Update the final access type and size.
4372     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4373     FieldTBAAInfo.Size =
4374         getContext().getTypeSizeInChars(FieldType).getQuantity();
4375   }
4376 
4377   Address addr = base.getAddress(*this);
4378   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4379     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4380         ClassDef->isDynamicClass()) {
4381       // Getting to any field of dynamic object requires stripping dynamic
4382       // information provided by invariant.group.  This is because accessing
4383       // fields may leak the real address of dynamic object, which could result
4384       // in miscompilation when leaked pointer would be compared.
4385       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4386       addr = Address(stripped, addr.getAlignment());
4387     }
4388   }
4389 
4390   unsigned RecordCVR = base.getVRQualifiers();
4391   if (rec->isUnion()) {
4392     // For unions, there is no pointer adjustment.
4393     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4394         hasAnyVptr(FieldType, getContext()))
4395       // Because unions can easily skip invariant.barriers, we need to add
4396       // a barrier every time CXXRecord field with vptr is referenced.
4397       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4398                      addr.getAlignment());
4399 
4400     if (IsInPreservedAIRegion ||
4401         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4402       // Remember the original union field index
4403       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4404           rec->getLocation());
4405       addr = Address(
4406           Builder.CreatePreserveUnionAccessIndex(
4407               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4408           addr.getAlignment());
4409     }
4410 
4411     if (FieldType->isReferenceType())
4412       addr = Builder.CreateElementBitCast(
4413           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4414   } else {
4415     if (!IsInPreservedAIRegion &&
4416         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4417       // For structs, we GEP to the field that the record layout suggests.
4418       addr = emitAddrOfFieldStorage(*this, addr, field);
4419     else
4420       // Remember the original struct field index
4421       addr = emitPreserveStructAccess(*this, base, addr, field);
4422   }
4423 
4424   // If this is a reference field, load the reference right now.
4425   if (FieldType->isReferenceType()) {
4426     LValue RefLVal =
4427         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4428     if (RecordCVR & Qualifiers::Volatile)
4429       RefLVal.getQuals().addVolatile();
4430     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4431 
4432     // Qualifiers on the struct don't apply to the referencee.
4433     RecordCVR = 0;
4434     FieldType = FieldType->getPointeeType();
4435   }
4436 
4437   // Make sure that the address is pointing to the right type.  This is critical
4438   // for both unions and structs.  A union needs a bitcast, a struct element
4439   // will need a bitcast if the LLVM type laid out doesn't match the desired
4440   // type.
4441   addr = Builder.CreateElementBitCast(
4442       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4443 
4444   if (field->hasAttr<AnnotateAttr>())
4445     addr = EmitFieldAnnotations(field, addr);
4446 
4447   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4448   LV.getQuals().addCVRQualifiers(RecordCVR);
4449 
4450   // __weak attribute on a field is ignored.
4451   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4452     LV.getQuals().removeObjCGCAttr();
4453 
4454   return LV;
4455 }
4456 
4457 LValue
4458 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4459                                                   const FieldDecl *Field) {
4460   QualType FieldType = Field->getType();
4461 
4462   if (!FieldType->isReferenceType())
4463     return EmitLValueForField(Base, Field);
4464 
4465   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4466 
4467   // Make sure that the address is pointing to the right type.
4468   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4469   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4470 
4471   // TODO: Generate TBAA information that describes this access as a structure
4472   // member access and not just an access to an object of the field's type. This
4473   // should be similar to what we do in EmitLValueForField().
4474   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4475   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4476   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4477   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4478                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4479 }
4480 
4481 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4482   if (E->isFileScope()) {
4483     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4484     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4485   }
4486   if (E->getType()->isVariablyModifiedType())
4487     // make sure to emit the VLA size.
4488     EmitVariablyModifiedType(E->getType());
4489 
4490   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4491   const Expr *InitExpr = E->getInitializer();
4492   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4493 
4494   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4495                    /*Init*/ true);
4496 
4497   // Block-scope compound literals are destroyed at the end of the enclosing
4498   // scope in C.
4499   if (!getLangOpts().CPlusPlus)
4500     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4501       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4502                                   E->getType(), getDestroyer(DtorKind),
4503                                   DtorKind & EHCleanup);
4504 
4505   return Result;
4506 }
4507 
4508 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4509   if (!E->isGLValue())
4510     // Initializing an aggregate temporary in C++11: T{...}.
4511     return EmitAggExprToLValue(E);
4512 
4513   // An lvalue initializer list must be initializing a reference.
4514   assert(E->isTransparent() && "non-transparent glvalue init list");
4515   return EmitLValue(E->getInit(0));
4516 }
4517 
4518 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4519 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4520 /// LValue is returned and the current block has been terminated.
4521 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4522                                                     const Expr *Operand) {
4523   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4524     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4525     return None;
4526   }
4527 
4528   return CGF.EmitLValue(Operand);
4529 }
4530 
4531 LValue CodeGenFunction::
4532 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4533   if (!expr->isGLValue()) {
4534     // ?: here should be an aggregate.
4535     assert(hasAggregateEvaluationKind(expr->getType()) &&
4536            "Unexpected conditional operator!");
4537     return EmitAggExprToLValue(expr);
4538   }
4539 
4540   OpaqueValueMapping binding(*this, expr);
4541 
4542   const Expr *condExpr = expr->getCond();
4543   bool CondExprBool;
4544   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4545     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4546     if (!CondExprBool) std::swap(live, dead);
4547 
4548     if (!ContainsLabel(dead)) {
4549       // If the true case is live, we need to track its region.
4550       if (CondExprBool)
4551         incrementProfileCounter(expr);
4552       // If a throw expression we emit it and return an undefined lvalue
4553       // because it can't be used.
4554       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4555         EmitCXXThrowExpr(ThrowExpr);
4556         llvm::Type *Ty =
4557             llvm::PointerType::getUnqual(ConvertType(dead->getType()));
4558         return MakeAddrLValue(
4559             Address(llvm::UndefValue::get(Ty), CharUnits::One()),
4560             dead->getType());
4561       }
4562       return EmitLValue(live);
4563     }
4564   }
4565 
4566   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4567   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4568   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4569 
4570   ConditionalEvaluation eval(*this);
4571   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4572 
4573   // Any temporaries created here are conditional.
4574   EmitBlock(lhsBlock);
4575   incrementProfileCounter(expr);
4576   eval.begin(*this);
4577   Optional<LValue> lhs =
4578       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4579   eval.end(*this);
4580 
4581   if (lhs && !lhs->isSimple())
4582     return EmitUnsupportedLValue(expr, "conditional operator");
4583 
4584   lhsBlock = Builder.GetInsertBlock();
4585   if (lhs)
4586     Builder.CreateBr(contBlock);
4587 
4588   // Any temporaries created here are conditional.
4589   EmitBlock(rhsBlock);
4590   eval.begin(*this);
4591   Optional<LValue> rhs =
4592       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4593   eval.end(*this);
4594   if (rhs && !rhs->isSimple())
4595     return EmitUnsupportedLValue(expr, "conditional operator");
4596   rhsBlock = Builder.GetInsertBlock();
4597 
4598   EmitBlock(contBlock);
4599 
4600   if (lhs && rhs) {
4601     llvm::PHINode *phi =
4602         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4603     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4604     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4605     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4606     AlignmentSource alignSource =
4607       std::max(lhs->getBaseInfo().getAlignmentSource(),
4608                rhs->getBaseInfo().getAlignmentSource());
4609     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4610         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4611     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4612                           TBAAInfo);
4613   } else {
4614     assert((lhs || rhs) &&
4615            "both operands of glvalue conditional are throw-expressions?");
4616     return lhs ? *lhs : *rhs;
4617   }
4618 }
4619 
4620 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4621 /// type. If the cast is to a reference, we can have the usual lvalue result,
4622 /// otherwise if a cast is needed by the code generator in an lvalue context,
4623 /// then it must mean that we need the address of an aggregate in order to
4624 /// access one of its members.  This can happen for all the reasons that casts
4625 /// are permitted with aggregate result, including noop aggregate casts, and
4626 /// cast from scalar to union.
4627 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4628   switch (E->getCastKind()) {
4629   case CK_ToVoid:
4630   case CK_BitCast:
4631   case CK_LValueToRValueBitCast:
4632   case CK_ArrayToPointerDecay:
4633   case CK_FunctionToPointerDecay:
4634   case CK_NullToMemberPointer:
4635   case CK_NullToPointer:
4636   case CK_IntegralToPointer:
4637   case CK_PointerToIntegral:
4638   case CK_PointerToBoolean:
4639   case CK_VectorSplat:
4640   case CK_IntegralCast:
4641   case CK_BooleanToSignedIntegral:
4642   case CK_IntegralToBoolean:
4643   case CK_IntegralToFloating:
4644   case CK_FloatingToIntegral:
4645   case CK_FloatingToBoolean:
4646   case CK_FloatingCast:
4647   case CK_FloatingRealToComplex:
4648   case CK_FloatingComplexToReal:
4649   case CK_FloatingComplexToBoolean:
4650   case CK_FloatingComplexCast:
4651   case CK_FloatingComplexToIntegralComplex:
4652   case CK_IntegralRealToComplex:
4653   case CK_IntegralComplexToReal:
4654   case CK_IntegralComplexToBoolean:
4655   case CK_IntegralComplexCast:
4656   case CK_IntegralComplexToFloatingComplex:
4657   case CK_DerivedToBaseMemberPointer:
4658   case CK_BaseToDerivedMemberPointer:
4659   case CK_MemberPointerToBoolean:
4660   case CK_ReinterpretMemberPointer:
4661   case CK_AnyPointerToBlockPointerCast:
4662   case CK_ARCProduceObject:
4663   case CK_ARCConsumeObject:
4664   case CK_ARCReclaimReturnedObject:
4665   case CK_ARCExtendBlockObject:
4666   case CK_CopyAndAutoreleaseBlockObject:
4667   case CK_IntToOCLSampler:
4668   case CK_FloatingToFixedPoint:
4669   case CK_FixedPointToFloating:
4670   case CK_FixedPointCast:
4671   case CK_FixedPointToBoolean:
4672   case CK_FixedPointToIntegral:
4673   case CK_IntegralToFixedPoint:
4674   case CK_MatrixCast:
4675     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4676 
4677   case CK_Dependent:
4678     llvm_unreachable("dependent cast kind in IR gen!");
4679 
4680   case CK_BuiltinFnToFnPtr:
4681     llvm_unreachable("builtin functions are handled elsewhere");
4682 
4683   // These are never l-values; just use the aggregate emission code.
4684   case CK_NonAtomicToAtomic:
4685   case CK_AtomicToNonAtomic:
4686     return EmitAggExprToLValue(E);
4687 
4688   case CK_Dynamic: {
4689     LValue LV = EmitLValue(E->getSubExpr());
4690     Address V = LV.getAddress(*this);
4691     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4692     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4693   }
4694 
4695   case CK_ConstructorConversion:
4696   case CK_UserDefinedConversion:
4697   case CK_CPointerToObjCPointerCast:
4698   case CK_BlockPointerToObjCPointerCast:
4699   case CK_NoOp:
4700   case CK_LValueToRValue:
4701     return EmitLValue(E->getSubExpr());
4702 
4703   case CK_UncheckedDerivedToBase:
4704   case CK_DerivedToBase: {
4705     const auto *DerivedClassTy =
4706         E->getSubExpr()->getType()->castAs<RecordType>();
4707     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4708 
4709     LValue LV = EmitLValue(E->getSubExpr());
4710     Address This = LV.getAddress(*this);
4711 
4712     // Perform the derived-to-base conversion
4713     Address Base = GetAddressOfBaseClass(
4714         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4715         /*NullCheckValue=*/false, E->getExprLoc());
4716 
4717     // TODO: Support accesses to members of base classes in TBAA. For now, we
4718     // conservatively pretend that the complete object is of the base class
4719     // type.
4720     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4721                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4722   }
4723   case CK_ToUnion:
4724     return EmitAggExprToLValue(E);
4725   case CK_BaseToDerived: {
4726     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4727     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4728 
4729     LValue LV = EmitLValue(E->getSubExpr());
4730 
4731     // Perform the base-to-derived conversion
4732     Address Derived = GetAddressOfDerivedClass(
4733         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4734         /*NullCheckValue=*/false);
4735 
4736     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4737     // performed and the object is not of the derived type.
4738     if (sanitizePerformTypeCheck())
4739       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4740                     Derived.getPointer(), E->getType());
4741 
4742     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4743       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4744                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4745                                 E->getBeginLoc());
4746 
4747     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4748                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4749   }
4750   case CK_LValueBitCast: {
4751     // This must be a reinterpret_cast (or c-style equivalent).
4752     const auto *CE = cast<ExplicitCastExpr>(E);
4753 
4754     CGM.EmitExplicitCastExprType(CE, this);
4755     LValue LV = EmitLValue(E->getSubExpr());
4756     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4757                                       ConvertType(CE->getTypeAsWritten()));
4758 
4759     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4760       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4761                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4762                                 E->getBeginLoc());
4763 
4764     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4765                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4766   }
4767   case CK_AddressSpaceConversion: {
4768     LValue LV = EmitLValue(E->getSubExpr());
4769     QualType DestTy = getContext().getPointerType(E->getType());
4770     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4771         *this, LV.getPointer(*this),
4772         E->getSubExpr()->getType().getAddressSpace(),
4773         E->getType().getAddressSpace(), ConvertType(DestTy));
4774     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4775                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4776   }
4777   case CK_ObjCObjectLValueCast: {
4778     LValue LV = EmitLValue(E->getSubExpr());
4779     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4780                                              ConvertType(E->getType()));
4781     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4782                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4783   }
4784   case CK_ZeroToOCLOpaqueType:
4785     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4786   }
4787 
4788   llvm_unreachable("Unhandled lvalue cast kind?");
4789 }
4790 
4791 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4792   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4793   return getOrCreateOpaqueLValueMapping(e);
4794 }
4795 
4796 LValue
4797 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4798   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4799 
4800   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4801       it = OpaqueLValues.find(e);
4802 
4803   if (it != OpaqueLValues.end())
4804     return it->second;
4805 
4806   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4807   return EmitLValue(e->getSourceExpr());
4808 }
4809 
4810 RValue
4811 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4812   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4813 
4814   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4815       it = OpaqueRValues.find(e);
4816 
4817   if (it != OpaqueRValues.end())
4818     return it->second;
4819 
4820   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4821   return EmitAnyExpr(e->getSourceExpr());
4822 }
4823 
4824 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4825                                            const FieldDecl *FD,
4826                                            SourceLocation Loc) {
4827   QualType FT = FD->getType();
4828   LValue FieldLV = EmitLValueForField(LV, FD);
4829   switch (getEvaluationKind(FT)) {
4830   case TEK_Complex:
4831     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4832   case TEK_Aggregate:
4833     return FieldLV.asAggregateRValue(*this);
4834   case TEK_Scalar:
4835     // This routine is used to load fields one-by-one to perform a copy, so
4836     // don't load reference fields.
4837     if (FD->getType()->isReferenceType())
4838       return RValue::get(FieldLV.getPointer(*this));
4839     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4840     // primitive load.
4841     if (FieldLV.isBitField())
4842       return EmitLoadOfLValue(FieldLV, Loc);
4843     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4844   }
4845   llvm_unreachable("bad evaluation kind");
4846 }
4847 
4848 //===--------------------------------------------------------------------===//
4849 //                             Expression Emission
4850 //===--------------------------------------------------------------------===//
4851 
4852 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4853                                      ReturnValueSlot ReturnValue) {
4854   // Builtins never have block type.
4855   if (E->getCallee()->getType()->isBlockPointerType())
4856     return EmitBlockCallExpr(E, ReturnValue);
4857 
4858   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4859     return EmitCXXMemberCallExpr(CE, ReturnValue);
4860 
4861   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4862     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4863 
4864   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4865     if (const CXXMethodDecl *MD =
4866           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4867       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4868 
4869   CGCallee callee = EmitCallee(E->getCallee());
4870 
4871   if (callee.isBuiltin()) {
4872     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4873                            E, ReturnValue);
4874   }
4875 
4876   if (callee.isPseudoDestructor()) {
4877     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4878   }
4879 
4880   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4881 }
4882 
4883 /// Emit a CallExpr without considering whether it might be a subclass.
4884 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4885                                            ReturnValueSlot ReturnValue) {
4886   CGCallee Callee = EmitCallee(E->getCallee());
4887   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4888 }
4889 
4890 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4891   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4892 
4893   if (auto builtinID = FD->getBuiltinID()) {
4894     // Replaceable builtin provide their own implementation of a builtin. Unless
4895     // we are in the builtin implementation itself, don't call the actual
4896     // builtin. If we are in the builtin implementation, avoid trivial infinite
4897     // recursion.
4898     if (!FD->isInlineBuiltinDeclaration() ||
4899         CGF.CurFn->getName() == FD->getName())
4900       return CGCallee::forBuiltin(builtinID, FD);
4901   }
4902 
4903   llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4904   if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
4905       FD->hasAttr<CUDAGlobalAttr>())
4906     CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
4907         cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
4908   return CGCallee::forDirect(CalleePtr, GD);
4909 }
4910 
4911 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4912   E = E->IgnoreParens();
4913 
4914   // Look through function-to-pointer decay.
4915   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4916     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4917         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4918       return EmitCallee(ICE->getSubExpr());
4919     }
4920 
4921   // Resolve direct calls.
4922   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4923     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4924       return EmitDirectCallee(*this, FD);
4925     }
4926   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4927     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4928       EmitIgnoredExpr(ME->getBase());
4929       return EmitDirectCallee(*this, FD);
4930     }
4931 
4932   // Look through template substitutions.
4933   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4934     return EmitCallee(NTTP->getReplacement());
4935 
4936   // Treat pseudo-destructor calls differently.
4937   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4938     return CGCallee::forPseudoDestructor(PDE);
4939   }
4940 
4941   // Otherwise, we have an indirect reference.
4942   llvm::Value *calleePtr;
4943   QualType functionType;
4944   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4945     calleePtr = EmitScalarExpr(E);
4946     functionType = ptrType->getPointeeType();
4947   } else {
4948     functionType = E->getType();
4949     calleePtr = EmitLValue(E).getPointer(*this);
4950   }
4951   assert(functionType->isFunctionType());
4952 
4953   GlobalDecl GD;
4954   if (const auto *VD =
4955           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4956     GD = GlobalDecl(VD);
4957 
4958   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4959   CGCallee callee(calleeInfo, calleePtr);
4960   return callee;
4961 }
4962 
4963 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4964   // Comma expressions just emit their LHS then their RHS as an l-value.
4965   if (E->getOpcode() == BO_Comma) {
4966     EmitIgnoredExpr(E->getLHS());
4967     EnsureInsertPoint();
4968     return EmitLValue(E->getRHS());
4969   }
4970 
4971   if (E->getOpcode() == BO_PtrMemD ||
4972       E->getOpcode() == BO_PtrMemI)
4973     return EmitPointerToDataMemberBinaryExpr(E);
4974 
4975   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4976 
4977   // Note that in all of these cases, __block variables need the RHS
4978   // evaluated first just in case the variable gets moved by the RHS.
4979 
4980   switch (getEvaluationKind(E->getType())) {
4981   case TEK_Scalar: {
4982     switch (E->getLHS()->getType().getObjCLifetime()) {
4983     case Qualifiers::OCL_Strong:
4984       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4985 
4986     case Qualifiers::OCL_Autoreleasing:
4987       return EmitARCStoreAutoreleasing(E).first;
4988 
4989     // No reason to do any of these differently.
4990     case Qualifiers::OCL_None:
4991     case Qualifiers::OCL_ExplicitNone:
4992     case Qualifiers::OCL_Weak:
4993       break;
4994     }
4995 
4996     RValue RV = EmitAnyExpr(E->getRHS());
4997     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4998     if (RV.isScalar())
4999       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
5000     EmitStoreThroughLValue(RV, LV);
5001     if (getLangOpts().OpenMP)
5002       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5003                                                                 E->getLHS());
5004     return LV;
5005   }
5006 
5007   case TEK_Complex:
5008     return EmitComplexAssignmentLValue(E);
5009 
5010   case TEK_Aggregate:
5011     return EmitAggExprToLValue(E);
5012   }
5013   llvm_unreachable("bad evaluation kind");
5014 }
5015 
5016 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5017   RValue RV = EmitCallExpr(E);
5018 
5019   if (!RV.isScalar())
5020     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5021                           AlignmentSource::Decl);
5022 
5023   assert(E->getCallReturnType(getContext())->isReferenceType() &&
5024          "Can't have a scalar return unless the return type is a "
5025          "reference type!");
5026 
5027   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5028 }
5029 
5030 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5031   // FIXME: This shouldn't require another copy.
5032   return EmitAggExprToLValue(E);
5033 }
5034 
5035 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5036   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5037          && "binding l-value to type which needs a temporary");
5038   AggValueSlot Slot = CreateAggTemp(E->getType());
5039   EmitCXXConstructExpr(E, Slot);
5040   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5041 }
5042 
5043 LValue
5044 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5045   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5046 }
5047 
5048 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5049   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
5050                                       ConvertType(E->getType()));
5051 }
5052 
5053 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5054   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5055                         AlignmentSource::Decl);
5056 }
5057 
5058 LValue
5059 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5060   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5061   Slot.setExternallyDestructed();
5062   EmitAggExpr(E->getSubExpr(), Slot);
5063   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5064   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5065 }
5066 
5067 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5068   RValue RV = EmitObjCMessageExpr(E);
5069 
5070   if (!RV.isScalar())
5071     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5072                           AlignmentSource::Decl);
5073 
5074   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5075          "Can't have a scalar return unless the return type is a "
5076          "reference type!");
5077 
5078   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5079 }
5080 
5081 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5082   Address V =
5083     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5084   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5085 }
5086 
5087 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5088                                              const ObjCIvarDecl *Ivar) {
5089   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5090 }
5091 
5092 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5093                                           llvm::Value *BaseValue,
5094                                           const ObjCIvarDecl *Ivar,
5095                                           unsigned CVRQualifiers) {
5096   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5097                                                    Ivar, CVRQualifiers);
5098 }
5099 
5100 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5101   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5102   llvm::Value *BaseValue = nullptr;
5103   const Expr *BaseExpr = E->getBase();
5104   Qualifiers BaseQuals;
5105   QualType ObjectTy;
5106   if (E->isArrow()) {
5107     BaseValue = EmitScalarExpr(BaseExpr);
5108     ObjectTy = BaseExpr->getType()->getPointeeType();
5109     BaseQuals = ObjectTy.getQualifiers();
5110   } else {
5111     LValue BaseLV = EmitLValue(BaseExpr);
5112     BaseValue = BaseLV.getPointer(*this);
5113     ObjectTy = BaseExpr->getType();
5114     BaseQuals = ObjectTy.getQualifiers();
5115   }
5116 
5117   LValue LV =
5118     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5119                       BaseQuals.getCVRQualifiers());
5120   setObjCGCLValueClass(getContext(), E, LV);
5121   return LV;
5122 }
5123 
5124 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5125   // Can only get l-value for message expression returning aggregate type
5126   RValue RV = EmitAnyExprToTemp(E);
5127   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5128                         AlignmentSource::Decl);
5129 }
5130 
5131 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5132                                  const CallExpr *E, ReturnValueSlot ReturnValue,
5133                                  llvm::Value *Chain) {
5134   // Get the actual function type. The callee type will always be a pointer to
5135   // function type or a block pointer type.
5136   assert(CalleeType->isFunctionPointerType() &&
5137          "Call must have function pointer type!");
5138 
5139   const Decl *TargetDecl =
5140       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5141 
5142   CalleeType = getContext().getCanonicalType(CalleeType);
5143 
5144   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5145 
5146   CGCallee Callee = OrigCallee;
5147 
5148   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5149       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5150     if (llvm::Constant *PrefixSig =
5151             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5152       SanitizerScope SanScope(this);
5153       // Remove any (C++17) exception specifications, to allow calling e.g. a
5154       // noexcept function through a non-noexcept pointer.
5155       auto ProtoTy =
5156         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5157       llvm::Constant *FTRTTIConst =
5158           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5159       llvm::Type *PrefixSigType = PrefixSig->getType();
5160       llvm::StructType *PrefixStructTy = llvm::StructType::get(
5161           CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5162 
5163       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5164 
5165       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5166           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5167       llvm::Value *CalleeSigPtr =
5168           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5169       llvm::Value *CalleeSig =
5170           Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5171       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5172 
5173       llvm::BasicBlock *Cont = createBasicBlock("cont");
5174       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5175       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5176 
5177       EmitBlock(TypeCheck);
5178       llvm::Value *CalleeRTTIPtr =
5179           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5180       llvm::Value *CalleeRTTIEncoded =
5181           Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign());
5182       llvm::Value *CalleeRTTI =
5183           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5184       llvm::Value *CalleeRTTIMatch =
5185           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5186       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5187                                       EmitCheckTypeDescriptor(CalleeType)};
5188       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5189                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5190                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5191 
5192       Builder.CreateBr(Cont);
5193       EmitBlock(Cont);
5194     }
5195   }
5196 
5197   const auto *FnType = cast<FunctionType>(PointeeType);
5198 
5199   // If we are checking indirect calls and this call is indirect, check that the
5200   // function pointer is a member of the bit set for the function type.
5201   if (SanOpts.has(SanitizerKind::CFIICall) &&
5202       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5203     SanitizerScope SanScope(this);
5204     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5205 
5206     llvm::Metadata *MD;
5207     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5208       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5209     else
5210       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5211 
5212     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5213 
5214     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5215     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5216     llvm::Value *TypeTest = Builder.CreateCall(
5217         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5218 
5219     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5220     llvm::Constant *StaticData[] = {
5221         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5222         EmitCheckSourceLocation(E->getBeginLoc()),
5223         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5224     };
5225     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5226       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5227                            CastedCallee, StaticData);
5228     } else {
5229       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5230                 SanitizerHandler::CFICheckFail, StaticData,
5231                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5232     }
5233   }
5234 
5235   CallArgList Args;
5236   if (Chain)
5237     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5238              CGM.getContext().VoidPtrTy);
5239 
5240   // C++17 requires that we evaluate arguments to a call using assignment syntax
5241   // right-to-left, and that we evaluate arguments to certain other operators
5242   // left-to-right. Note that we allow this to override the order dictated by
5243   // the calling convention on the MS ABI, which means that parameter
5244   // destruction order is not necessarily reverse construction order.
5245   // FIXME: Revisit this based on C++ committee response to unimplementability.
5246   EvaluationOrder Order = EvaluationOrder::Default;
5247   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5248     if (OCE->isAssignmentOp())
5249       Order = EvaluationOrder::ForceRightToLeft;
5250     else {
5251       switch (OCE->getOperator()) {
5252       case OO_LessLess:
5253       case OO_GreaterGreater:
5254       case OO_AmpAmp:
5255       case OO_PipePipe:
5256       case OO_Comma:
5257       case OO_ArrowStar:
5258         Order = EvaluationOrder::ForceLeftToRight;
5259         break;
5260       default:
5261         break;
5262       }
5263     }
5264   }
5265 
5266   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5267                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5268 
5269   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5270       Args, FnType, /*ChainCall=*/Chain);
5271 
5272   // C99 6.5.2.2p6:
5273   //   If the expression that denotes the called function has a type
5274   //   that does not include a prototype, [the default argument
5275   //   promotions are performed]. If the number of arguments does not
5276   //   equal the number of parameters, the behavior is undefined. If
5277   //   the function is defined with a type that includes a prototype,
5278   //   and either the prototype ends with an ellipsis (, ...) or the
5279   //   types of the arguments after promotion are not compatible with
5280   //   the types of the parameters, the behavior is undefined. If the
5281   //   function is defined with a type that does not include a
5282   //   prototype, and the types of the arguments after promotion are
5283   //   not compatible with those of the parameters after promotion,
5284   //   the behavior is undefined [except in some trivial cases].
5285   // That is, in the general case, we should assume that a call
5286   // through an unprototyped function type works like a *non-variadic*
5287   // call.  The way we make this work is to cast to the exact type
5288   // of the promoted arguments.
5289   //
5290   // Chain calls use this same code path to add the invisible chain parameter
5291   // to the function type.
5292   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5293     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5294     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5295     CalleeTy = CalleeTy->getPointerTo(AS);
5296 
5297     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5298     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5299     Callee.setFunctionPointer(CalleePtr);
5300   }
5301 
5302   // HIP function pointer contains kernel handle when it is used in triple
5303   // chevron. The kernel stub needs to be loaded from kernel handle and used
5304   // as callee.
5305   if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
5306       isa<CUDAKernelCallExpr>(E) &&
5307       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5308     llvm::Value *Handle = Callee.getFunctionPointer();
5309     auto *Cast =
5310         Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo());
5311     auto *Stub = Builder.CreateLoad(Address(Cast, CGM.getPointerAlign()));
5312     Callee.setFunctionPointer(Stub);
5313   }
5314   llvm::CallBase *CallOrInvoke = nullptr;
5315   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5316                          E == MustTailCall, E->getExprLoc());
5317 
5318   // Generate function declaration DISuprogram in order to be used
5319   // in debug info about call sites.
5320   if (CGDebugInfo *DI = getDebugInfo()) {
5321     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5322       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5323                                   CalleeDecl);
5324   }
5325 
5326   return Call;
5327 }
5328 
5329 LValue CodeGenFunction::
5330 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5331   Address BaseAddr = Address::invalid();
5332   if (E->getOpcode() == BO_PtrMemI) {
5333     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5334   } else {
5335     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5336   }
5337 
5338   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5339   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5340 
5341   LValueBaseInfo BaseInfo;
5342   TBAAAccessInfo TBAAInfo;
5343   Address MemberAddr =
5344     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5345                                     &TBAAInfo);
5346 
5347   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5348 }
5349 
5350 /// Given the address of a temporary variable, produce an r-value of
5351 /// its type.
5352 RValue CodeGenFunction::convertTempToRValue(Address addr,
5353                                             QualType type,
5354                                             SourceLocation loc) {
5355   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5356   switch (getEvaluationKind(type)) {
5357   case TEK_Complex:
5358     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5359   case TEK_Aggregate:
5360     return lvalue.asAggregateRValue(*this);
5361   case TEK_Scalar:
5362     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5363   }
5364   llvm_unreachable("bad evaluation kind");
5365 }
5366 
5367 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5368   assert(Val->getType()->isFPOrFPVectorTy());
5369   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5370     return;
5371 
5372   llvm::MDBuilder MDHelper(getLLVMContext());
5373   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5374 
5375   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5376 }
5377 
5378 namespace {
5379   struct LValueOrRValue {
5380     LValue LV;
5381     RValue RV;
5382   };
5383 }
5384 
5385 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5386                                            const PseudoObjectExpr *E,
5387                                            bool forLValue,
5388                                            AggValueSlot slot) {
5389   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5390 
5391   // Find the result expression, if any.
5392   const Expr *resultExpr = E->getResultExpr();
5393   LValueOrRValue result;
5394 
5395   for (PseudoObjectExpr::const_semantics_iterator
5396          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5397     const Expr *semantic = *i;
5398 
5399     // If this semantic expression is an opaque value, bind it
5400     // to the result of its source expression.
5401     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5402       // Skip unique OVEs.
5403       if (ov->isUnique()) {
5404         assert(ov != resultExpr &&
5405                "A unique OVE cannot be used as the result expression");
5406         continue;
5407       }
5408 
5409       // If this is the result expression, we may need to evaluate
5410       // directly into the slot.
5411       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5412       OVMA opaqueData;
5413       if (ov == resultExpr && ov->isPRValue() && !forLValue &&
5414           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5415         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5416         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5417                                        AlignmentSource::Decl);
5418         opaqueData = OVMA::bind(CGF, ov, LV);
5419         result.RV = slot.asRValue();
5420 
5421       // Otherwise, emit as normal.
5422       } else {
5423         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5424 
5425         // If this is the result, also evaluate the result now.
5426         if (ov == resultExpr) {
5427           if (forLValue)
5428             result.LV = CGF.EmitLValue(ov);
5429           else
5430             result.RV = CGF.EmitAnyExpr(ov, slot);
5431         }
5432       }
5433 
5434       opaques.push_back(opaqueData);
5435 
5436     // Otherwise, if the expression is the result, evaluate it
5437     // and remember the result.
5438     } else if (semantic == resultExpr) {
5439       if (forLValue)
5440         result.LV = CGF.EmitLValue(semantic);
5441       else
5442         result.RV = CGF.EmitAnyExpr(semantic, slot);
5443 
5444     // Otherwise, evaluate the expression in an ignored context.
5445     } else {
5446       CGF.EmitIgnoredExpr(semantic);
5447     }
5448   }
5449 
5450   // Unbind all the opaques now.
5451   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5452     opaques[i].unbind(CGF);
5453 
5454   return result;
5455 }
5456 
5457 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5458                                                AggValueSlot slot) {
5459   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5460 }
5461 
5462 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5463   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5464 }
5465