1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGRecordLayout.h"
20 #include "CGObjCRuntime.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "llvm/Intrinsics.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Target/TargetData.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 //===--------------------------------------------------------------------===//
30 //                        Miscellaneous Helper Methods
31 //===--------------------------------------------------------------------===//
32 
33 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
34   unsigned addressSpace =
35     cast<llvm::PointerType>(value->getType())->getAddressSpace();
36 
37   const llvm::PointerType *destType = Int8PtrTy;
38   if (addressSpace)
39     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
40 
41   if (value->getType() == destType) return value;
42   return Builder.CreateBitCast(value, destType);
43 }
44 
45 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
46 /// block.
47 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
48                                                     const llvm::Twine &Name) {
49   if (!Builder.isNamePreserving())
50     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
51   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
52 }
53 
54 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
55                                      llvm::Value *Init) {
56   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
57   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
58   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
59 }
60 
61 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
62                                                 const llvm::Twine &Name) {
63   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
64   // FIXME: Should we prefer the preferred type alignment here?
65   CharUnits Align = getContext().getTypeAlignInChars(Ty);
66   Alloc->setAlignment(Align.getQuantity());
67   return Alloc;
68 }
69 
70 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
71                                                  const llvm::Twine &Name) {
72   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
73   // FIXME: Should we prefer the preferred type alignment here?
74   CharUnits Align = getContext().getTypeAlignInChars(Ty);
75   Alloc->setAlignment(Align.getQuantity());
76   return Alloc;
77 }
78 
79 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
80 /// expression and compare the result against zero, returning an Int1Ty value.
81 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
82   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
83     llvm::Value *MemPtr = EmitScalarExpr(E);
84     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
85   }
86 
87   QualType BoolTy = getContext().BoolTy;
88   if (!E->getType()->isAnyComplexType())
89     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
90 
91   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
92 }
93 
94 /// EmitIgnoredExpr - Emit code to compute the specified expression,
95 /// ignoring the result.
96 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
97   if (E->isRValue())
98     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
99 
100   // Just emit it as an l-value and drop the result.
101   EmitLValue(E);
102 }
103 
104 /// EmitAnyExpr - Emit code to compute the specified expression which
105 /// can have any type.  The result is returned as an RValue struct.
106 /// If this is an aggregate expression, AggSlot indicates where the
107 /// result should be returned.
108 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
109                                     bool IgnoreResult) {
110   if (!hasAggregateLLVMType(E->getType()))
111     return RValue::get(EmitScalarExpr(E, IgnoreResult));
112   else if (E->getType()->isAnyComplexType())
113     return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
114 
115   EmitAggExpr(E, AggSlot, IgnoreResult);
116   return AggSlot.asRValue();
117 }
118 
119 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
120 /// always be accessible even if no aggregate location is provided.
121 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
122   AggValueSlot AggSlot = AggValueSlot::ignored();
123 
124   if (hasAggregateLLVMType(E->getType()) &&
125       !E->getType()->isAnyComplexType())
126     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
127   return EmitAnyExpr(E, AggSlot);
128 }
129 
130 /// EmitAnyExprToMem - Evaluate an expression into a given memory
131 /// location.
132 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
133                                        llvm::Value *Location,
134                                        bool IsLocationVolatile,
135                                        bool IsInit) {
136   if (E->getType()->isComplexType())
137     EmitComplexExprIntoAddr(E, Location, IsLocationVolatile);
138   else if (hasAggregateLLVMType(E->getType()))
139     EmitAggExpr(E, AggValueSlot::forAddr(Location, IsLocationVolatile, IsInit));
140   else {
141     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
142     LValue LV = MakeAddrLValue(Location, E->getType());
143     EmitStoreThroughLValue(RV, LV, E->getType());
144   }
145 }
146 
147 namespace {
148 /// \brief An adjustment to be made to the temporary created when emitting a
149 /// reference binding, which accesses a particular subobject of that temporary.
150   struct SubobjectAdjustment {
151     enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
152 
153     union {
154       struct {
155         const CastExpr *BasePath;
156         const CXXRecordDecl *DerivedClass;
157       } DerivedToBase;
158 
159       FieldDecl *Field;
160     };
161 
162     SubobjectAdjustment(const CastExpr *BasePath,
163                         const CXXRecordDecl *DerivedClass)
164       : Kind(DerivedToBaseAdjustment) {
165       DerivedToBase.BasePath = BasePath;
166       DerivedToBase.DerivedClass = DerivedClass;
167     }
168 
169     SubobjectAdjustment(FieldDecl *Field)
170       : Kind(FieldAdjustment) {
171       this->Field = Field;
172     }
173   };
174 }
175 
176 static llvm::Value *
177 CreateReferenceTemporary(CodeGenFunction& CGF, QualType Type,
178                          const NamedDecl *InitializedDecl) {
179   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
180     if (VD->hasGlobalStorage()) {
181       llvm::SmallString<256> Name;
182       llvm::raw_svector_ostream Out(Name);
183       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
184       Out.flush();
185 
186       const llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
187 
188       // Create the reference temporary.
189       llvm::GlobalValue *RefTemp =
190         new llvm::GlobalVariable(CGF.CGM.getModule(),
191                                  RefTempTy, /*isConstant=*/false,
192                                  llvm::GlobalValue::InternalLinkage,
193                                  llvm::Constant::getNullValue(RefTempTy),
194                                  Name.str());
195       return RefTemp;
196     }
197   }
198 
199   return CGF.CreateMemTemp(Type, "ref.tmp");
200 }
201 
202 static llvm::Value *
203 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
204                             llvm::Value *&ReferenceTemporary,
205                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
206                             const NamedDecl *InitializedDecl) {
207   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
208     E = DAE->getExpr();
209 
210   if (const ExprWithCleanups *TE = dyn_cast<ExprWithCleanups>(E)) {
211     CodeGenFunction::RunCleanupsScope Scope(CGF);
212 
213     return EmitExprForReferenceBinding(CGF, TE->getSubExpr(),
214                                        ReferenceTemporary,
215                                        ReferenceTemporaryDtor,
216                                        InitializedDecl);
217   }
218 
219   if (const ObjCPropertyRefExpr *PRE =
220       dyn_cast<ObjCPropertyRefExpr>(E->IgnoreParenImpCasts()))
221     if (PRE->getGetterResultType()->isReferenceType())
222       E = PRE;
223 
224   RValue RV;
225   if (E->isGLValue()) {
226     // Emit the expression as an lvalue.
227     LValue LV = CGF.EmitLValue(E);
228     if (LV.isPropertyRef()) {
229       RV = CGF.EmitLoadOfPropertyRefLValue(LV);
230       return RV.getScalarVal();
231     }
232     if (LV.isSimple())
233       return LV.getAddress();
234 
235     // We have to load the lvalue.
236     RV = CGF.EmitLoadOfLValue(LV, E->getType());
237   } else {
238     QualType ResultTy = E->getType();
239 
240     llvm::SmallVector<SubobjectAdjustment, 2> Adjustments;
241     while (true) {
242       E = E->IgnoreParens();
243 
244       if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
245         if ((CE->getCastKind() == CK_DerivedToBase ||
246              CE->getCastKind() == CK_UncheckedDerivedToBase) &&
247             E->getType()->isRecordType()) {
248           E = CE->getSubExpr();
249           CXXRecordDecl *Derived
250             = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
251           Adjustments.push_back(SubobjectAdjustment(CE, Derived));
252           continue;
253         }
254 
255         if (CE->getCastKind() == CK_NoOp) {
256           E = CE->getSubExpr();
257           continue;
258         }
259       } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
260         if (!ME->isArrow() && ME->getBase()->isRValue()) {
261           assert(ME->getBase()->getType()->isRecordType());
262           if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
263             E = ME->getBase();
264             Adjustments.push_back(SubobjectAdjustment(Field));
265             continue;
266           }
267         }
268       }
269 
270       if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
271         if (opaque->getType()->isRecordType())
272           return CGF.EmitOpaqueValueLValue(opaque).getAddress();
273 
274       // Nothing changed.
275       break;
276     }
277 
278     // Create a reference temporary if necessary.
279     AggValueSlot AggSlot = AggValueSlot::ignored();
280     if (CGF.hasAggregateLLVMType(E->getType()) &&
281         !E->getType()->isAnyComplexType()) {
282       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
283                                                     InitializedDecl);
284       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, false,
285                                       InitializedDecl != 0);
286     }
287 
288     RV = CGF.EmitAnyExpr(E, AggSlot);
289 
290     if (InitializedDecl) {
291       // Get the destructor for the reference temporary.
292       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
293         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
294         if (!ClassDecl->hasTrivialDestructor())
295           ReferenceTemporaryDtor = ClassDecl->getDestructor();
296       }
297     }
298 
299     // Check if need to perform derived-to-base casts and/or field accesses, to
300     // get from the temporary object we created (and, potentially, for which we
301     // extended the lifetime) to the subobject we're binding the reference to.
302     if (!Adjustments.empty()) {
303       llvm::Value *Object = RV.getAggregateAddr();
304       for (unsigned I = Adjustments.size(); I != 0; --I) {
305         SubobjectAdjustment &Adjustment = Adjustments[I-1];
306         switch (Adjustment.Kind) {
307         case SubobjectAdjustment::DerivedToBaseAdjustment:
308           Object =
309               CGF.GetAddressOfBaseClass(Object,
310                                         Adjustment.DerivedToBase.DerivedClass,
311                               Adjustment.DerivedToBase.BasePath->path_begin(),
312                               Adjustment.DerivedToBase.BasePath->path_end(),
313                                         /*NullCheckValue=*/false);
314           break;
315 
316         case SubobjectAdjustment::FieldAdjustment: {
317           LValue LV =
318             CGF.EmitLValueForField(Object, Adjustment.Field, 0);
319           if (LV.isSimple()) {
320             Object = LV.getAddress();
321             break;
322           }
323 
324           // For non-simple lvalues, we actually have to create a copy of
325           // the object we're binding to.
326           QualType T = Adjustment.Field->getType().getNonReferenceType()
327                                                   .getUnqualifiedType();
328           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
329           LValue TempLV = CGF.MakeAddrLValue(Object,
330                                              Adjustment.Field->getType());
331           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV, T), TempLV, T);
332           break;
333         }
334 
335         }
336       }
337 
338       return Object;
339     }
340   }
341 
342   if (RV.isAggregate())
343     return RV.getAggregateAddr();
344 
345   // Create a temporary variable that we can bind the reference to.
346   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
347                                                 InitializedDecl);
348 
349 
350   unsigned Alignment =
351     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
352   if (RV.isScalar())
353     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
354                           /*Volatile=*/false, Alignment, E->getType());
355   else
356     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
357                            /*Volatile=*/false);
358   return ReferenceTemporary;
359 }
360 
361 RValue
362 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
363                                             const NamedDecl *InitializedDecl) {
364   llvm::Value *ReferenceTemporary = 0;
365   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
366   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
367                                                    ReferenceTemporaryDtor,
368                                                    InitializedDecl);
369   if (!ReferenceTemporaryDtor)
370     return RValue::get(Value);
371 
372   // Make sure to call the destructor for the reference temporary.
373   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
374     if (VD->hasGlobalStorage()) {
375       llvm::Constant *DtorFn =
376         CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
377       EmitCXXGlobalDtorRegistration(DtorFn,
378                                     cast<llvm::Constant>(ReferenceTemporary));
379 
380       return RValue::get(Value);
381     }
382   }
383 
384   PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
385 
386   return RValue::get(Value);
387 }
388 
389 
390 /// getAccessedFieldNo - Given an encoded value and a result number, return the
391 /// input field number being accessed.
392 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
393                                              const llvm::Constant *Elts) {
394   if (isa<llvm::ConstantAggregateZero>(Elts))
395     return 0;
396 
397   return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
398 }
399 
400 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
401   if (!CatchUndefined)
402     return;
403 
404   // This needs to be to the standard address space.
405   Address = Builder.CreateBitCast(Address, Int8PtrTy);
406 
407   const llvm::Type *IntPtrT = IntPtrTy;
408   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, &IntPtrT, 1);
409 
410   // In time, people may want to control this and use a 1 here.
411   llvm::Value *Arg = Builder.getFalse();
412   llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
413   llvm::BasicBlock *Cont = createBasicBlock();
414   llvm::BasicBlock *Check = createBasicBlock();
415   llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
416   Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
417 
418   EmitBlock(Check);
419   Builder.CreateCondBr(Builder.CreateICmpUGE(C,
420                                         llvm::ConstantInt::get(IntPtrTy, Size)),
421                        Cont, getTrapBB());
422   EmitBlock(Cont);
423 }
424 
425 
426 CodeGenFunction::ComplexPairTy CodeGenFunction::
427 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
428                          bool isInc, bool isPre) {
429   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
430                                             LV.isVolatileQualified());
431 
432   llvm::Value *NextVal;
433   if (isa<llvm::IntegerType>(InVal.first->getType())) {
434     uint64_t AmountVal = isInc ? 1 : -1;
435     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
436 
437     // Add the inc/dec to the real part.
438     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
439   } else {
440     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
441     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
442     if (!isInc)
443       FVal.changeSign();
444     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
445 
446     // Add the inc/dec to the real part.
447     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
448   }
449 
450   ComplexPairTy IncVal(NextVal, InVal.second);
451 
452   // Store the updated result through the lvalue.
453   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
454 
455   // If this is a postinc, return the value read from memory, otherwise use the
456   // updated value.
457   return isPre ? IncVal : InVal;
458 }
459 
460 
461 //===----------------------------------------------------------------------===//
462 //                         LValue Expression Emission
463 //===----------------------------------------------------------------------===//
464 
465 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
466   if (Ty->isVoidType())
467     return RValue::get(0);
468 
469   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
470     const llvm::Type *EltTy = ConvertType(CTy->getElementType());
471     llvm::Value *U = llvm::UndefValue::get(EltTy);
472     return RValue::getComplex(std::make_pair(U, U));
473   }
474 
475   // If this is a use of an undefined aggregate type, the aggregate must have an
476   // identifiable address.  Just because the contents of the value are undefined
477   // doesn't mean that the address can't be taken and compared.
478   if (hasAggregateLLVMType(Ty)) {
479     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
480     return RValue::getAggregate(DestPtr);
481   }
482 
483   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
484 }
485 
486 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
487                                               const char *Name) {
488   ErrorUnsupported(E, Name);
489   return GetUndefRValue(E->getType());
490 }
491 
492 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
493                                               const char *Name) {
494   ErrorUnsupported(E, Name);
495   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
496   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
497 }
498 
499 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
500   LValue LV = EmitLValue(E);
501   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
502     EmitCheck(LV.getAddress(),
503               getContext().getTypeSizeInChars(E->getType()).getQuantity());
504   return LV;
505 }
506 
507 /// EmitLValue - Emit code to compute a designator that specifies the location
508 /// of the expression.
509 ///
510 /// This can return one of two things: a simple address or a bitfield reference.
511 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
512 /// an LLVM pointer type.
513 ///
514 /// If this returns a bitfield reference, nothing about the pointee type of the
515 /// LLVM value is known: For example, it may not be a pointer to an integer.
516 ///
517 /// If this returns a normal address, and if the lvalue's C type is fixed size,
518 /// this method guarantees that the returned pointer type will point to an LLVM
519 /// type of the same size of the lvalue's type.  If the lvalue has a variable
520 /// length type, this is not possible.
521 ///
522 LValue CodeGenFunction::EmitLValue(const Expr *E) {
523   switch (E->getStmtClass()) {
524   default: return EmitUnsupportedLValue(E, "l-value expression");
525 
526   case Expr::ObjCSelectorExprClass:
527   return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
528   case Expr::ObjCIsaExprClass:
529     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
530   case Expr::BinaryOperatorClass:
531     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
532   case Expr::CompoundAssignOperatorClass:
533     if (!E->getType()->isAnyComplexType())
534       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
535     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
536   case Expr::CallExprClass:
537   case Expr::CXXMemberCallExprClass:
538   case Expr::CXXOperatorCallExprClass:
539     return EmitCallExprLValue(cast<CallExpr>(E));
540   case Expr::VAArgExprClass:
541     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
542   case Expr::DeclRefExprClass:
543     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
544   case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
545   case Expr::GenericSelectionExprClass:
546     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
547   case Expr::PredefinedExprClass:
548     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
549   case Expr::StringLiteralClass:
550     return EmitStringLiteralLValue(cast<StringLiteral>(E));
551   case Expr::ObjCEncodeExprClass:
552     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
553 
554   case Expr::BlockDeclRefExprClass:
555     return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
556 
557   case Expr::CXXTemporaryObjectExprClass:
558   case Expr::CXXConstructExprClass:
559     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
560   case Expr::CXXBindTemporaryExprClass:
561     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
562   case Expr::ExprWithCleanupsClass:
563     return EmitExprWithCleanupsLValue(cast<ExprWithCleanups>(E));
564   case Expr::CXXScalarValueInitExprClass:
565     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
566   case Expr::CXXDefaultArgExprClass:
567     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
568   case Expr::CXXTypeidExprClass:
569     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
570 
571   case Expr::ObjCMessageExprClass:
572     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
573   case Expr::ObjCIvarRefExprClass:
574     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
575   case Expr::ObjCPropertyRefExprClass:
576     return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E));
577   case Expr::StmtExprClass:
578     return EmitStmtExprLValue(cast<StmtExpr>(E));
579   case Expr::UnaryOperatorClass:
580     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
581   case Expr::ArraySubscriptExprClass:
582     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
583   case Expr::ExtVectorElementExprClass:
584     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
585   case Expr::MemberExprClass:
586     return EmitMemberExpr(cast<MemberExpr>(E));
587   case Expr::CompoundLiteralExprClass:
588     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
589   case Expr::ConditionalOperatorClass:
590     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
591   case Expr::BinaryConditionalOperatorClass:
592     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
593   case Expr::ChooseExprClass:
594     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
595   case Expr::OpaqueValueExprClass:
596     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
597   case Expr::ImplicitCastExprClass:
598   case Expr::CStyleCastExprClass:
599   case Expr::CXXFunctionalCastExprClass:
600   case Expr::CXXStaticCastExprClass:
601   case Expr::CXXDynamicCastExprClass:
602   case Expr::CXXReinterpretCastExprClass:
603   case Expr::CXXConstCastExprClass:
604     return EmitCastLValue(cast<CastExpr>(E));
605   }
606 }
607 
608 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
609                                               unsigned Alignment, QualType Ty,
610                                               llvm::MDNode *TBAAInfo) {
611   llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp");
612   if (Volatile)
613     Load->setVolatile(true);
614   if (Alignment)
615     Load->setAlignment(Alignment);
616   if (TBAAInfo)
617     CGM.DecorateInstruction(Load, TBAAInfo);
618 
619   return EmitFromMemory(Load, Ty);
620 }
621 
622 static bool isBooleanUnderlyingType(QualType Ty) {
623   if (const EnumType *ET = dyn_cast<EnumType>(Ty))
624     return ET->getDecl()->getIntegerType()->isBooleanType();
625   return false;
626 }
627 
628 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
629   // Bool has a different representation in memory than in registers.
630   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
631     // This should really always be an i1, but sometimes it's already
632     // an i8, and it's awkward to track those cases down.
633     if (Value->getType()->isIntegerTy(1))
634       return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
635     assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
636   }
637 
638   return Value;
639 }
640 
641 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
642   // Bool has a different representation in memory than in registers.
643   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
644     assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
645     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
646   }
647 
648   return Value;
649 }
650 
651 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
652                                         bool Volatile, unsigned Alignment,
653                                         QualType Ty,
654                                         llvm::MDNode *TBAAInfo) {
655   Value = EmitToMemory(Value, Ty);
656   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
657   if (Alignment)
658     Store->setAlignment(Alignment);
659   if (TBAAInfo)
660     CGM.DecorateInstruction(Store, TBAAInfo);
661 }
662 
663 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
664 /// method emits the address of the lvalue, then loads the result as an rvalue,
665 /// returning the rvalue.
666 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
667   if (LV.isObjCWeak()) {
668     // load of a __weak object.
669     llvm::Value *AddrWeakObj = LV.getAddress();
670     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
671                                                              AddrWeakObj));
672   }
673 
674   if (LV.isSimple()) {
675     llvm::Value *Ptr = LV.getAddress();
676 
677     // Functions are l-values that don't require loading.
678     if (ExprType->isFunctionType())
679       return RValue::get(Ptr);
680 
681     // Everything needs a load.
682     return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(),
683                                         LV.getAlignment(), ExprType,
684                                         LV.getTBAAInfo()));
685 
686   }
687 
688   if (LV.isVectorElt()) {
689     llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
690                                           LV.isVolatileQualified(), "tmp");
691     return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
692                                                     "vecext"));
693   }
694 
695   // If this is a reference to a subset of the elements of a vector, either
696   // shuffle the input or extract/insert them as appropriate.
697   if (LV.isExtVectorElt())
698     return EmitLoadOfExtVectorElementLValue(LV, ExprType);
699 
700   if (LV.isBitField())
701     return EmitLoadOfBitfieldLValue(LV, ExprType);
702 
703   assert(LV.isPropertyRef() && "Unknown LValue type!");
704   return EmitLoadOfPropertyRefLValue(LV);
705 }
706 
707 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
708                                                  QualType ExprType) {
709   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
710 
711   // Get the output type.
712   const llvm::Type *ResLTy = ConvertType(ExprType);
713   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
714 
715   // Compute the result as an OR of all of the individual component accesses.
716   llvm::Value *Res = 0;
717   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
718     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
719 
720     // Get the field pointer.
721     llvm::Value *Ptr = LV.getBitFieldBaseAddr();
722 
723     // Only offset by the field index if used, so that incoming values are not
724     // required to be structures.
725     if (AI.FieldIndex)
726       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
727 
728     // Offset by the byte offset, if used.
729     if (!AI.FieldByteOffset.isZero()) {
730       Ptr = EmitCastToVoidPtr(Ptr);
731       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
732                                        "bf.field.offs");
733     }
734 
735     // Cast to the access type.
736     const llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(),
737                                                      AI.AccessWidth,
738                               CGM.getContext().getTargetAddressSpace(ExprType));
739     Ptr = Builder.CreateBitCast(Ptr, PTy);
740 
741     // Perform the load.
742     llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
743     if (!AI.AccessAlignment.isZero())
744       Load->setAlignment(AI.AccessAlignment.getQuantity());
745 
746     // Shift out unused low bits and mask out unused high bits.
747     llvm::Value *Val = Load;
748     if (AI.FieldBitStart)
749       Val = Builder.CreateLShr(Load, AI.FieldBitStart);
750     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
751                                                             AI.TargetBitWidth),
752                             "bf.clear");
753 
754     // Extend or truncate to the target size.
755     if (AI.AccessWidth < ResSizeInBits)
756       Val = Builder.CreateZExt(Val, ResLTy);
757     else if (AI.AccessWidth > ResSizeInBits)
758       Val = Builder.CreateTrunc(Val, ResLTy);
759 
760     // Shift into place, and OR into the result.
761     if (AI.TargetBitOffset)
762       Val = Builder.CreateShl(Val, AI.TargetBitOffset);
763     Res = Res ? Builder.CreateOr(Res, Val) : Val;
764   }
765 
766   // If the bit-field is signed, perform the sign-extension.
767   //
768   // FIXME: This can easily be folded into the load of the high bits, which
769   // could also eliminate the mask of high bits in some situations.
770   if (Info.isSigned()) {
771     unsigned ExtraBits = ResSizeInBits - Info.getSize();
772     if (ExtraBits)
773       Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
774                                ExtraBits, "bf.val.sext");
775   }
776 
777   return RValue::get(Res);
778 }
779 
780 // If this is a reference to a subset of the elements of a vector, create an
781 // appropriate shufflevector.
782 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV,
783                                                          QualType ExprType) {
784   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
785                                         LV.isVolatileQualified(), "tmp");
786 
787   const llvm::Constant *Elts = LV.getExtVectorElts();
788 
789   // If the result of the expression is a non-vector type, we must be extracting
790   // a single element.  Just codegen as an extractelement.
791   const VectorType *ExprVT = ExprType->getAs<VectorType>();
792   if (!ExprVT) {
793     unsigned InIdx = getAccessedFieldNo(0, Elts);
794     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
795     return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
796   }
797 
798   // Always use shuffle vector to try to retain the original program structure
799   unsigned NumResultElts = ExprVT->getNumElements();
800 
801   llvm::SmallVector<llvm::Constant*, 4> Mask;
802   for (unsigned i = 0; i != NumResultElts; ++i) {
803     unsigned InIdx = getAccessedFieldNo(i, Elts);
804     Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx));
805   }
806 
807   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
808   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
809                                     MaskV, "tmp");
810   return RValue::get(Vec);
811 }
812 
813 
814 
815 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
816 /// lvalue, where both are guaranteed to the have the same type, and that type
817 /// is 'Ty'.
818 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
819                                              QualType Ty) {
820   if (!Dst.isSimple()) {
821     if (Dst.isVectorElt()) {
822       // Read/modify/write the vector, inserting the new element.
823       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
824                                             Dst.isVolatileQualified(), "tmp");
825       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
826                                         Dst.getVectorIdx(), "vecins");
827       Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
828       return;
829     }
830 
831     // If this is an update of extended vector elements, insert them as
832     // appropriate.
833     if (Dst.isExtVectorElt())
834       return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty);
835 
836     if (Dst.isBitField())
837       return EmitStoreThroughBitfieldLValue(Src, Dst, Ty);
838 
839     assert(Dst.isPropertyRef() && "Unknown LValue type");
840     return EmitStoreThroughPropertyRefLValue(Src, Dst);
841   }
842 
843   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
844     // load of a __weak object.
845     llvm::Value *LvalueDst = Dst.getAddress();
846     llvm::Value *src = Src.getScalarVal();
847      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
848     return;
849   }
850 
851   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
852     // load of a __strong object.
853     llvm::Value *LvalueDst = Dst.getAddress();
854     llvm::Value *src = Src.getScalarVal();
855     if (Dst.isObjCIvar()) {
856       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
857       const llvm::Type *ResultType = ConvertType(getContext().LongTy);
858       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
859       llvm::Value *dst = RHS;
860       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
861       llvm::Value *LHS =
862         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
863       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
864       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
865                                               BytesBetween);
866     } else if (Dst.isGlobalObjCRef()) {
867       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
868                                                 Dst.isThreadLocalRef());
869     }
870     else
871       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
872     return;
873   }
874 
875   assert(Src.isScalar() && "Can't emit an agg store with this method");
876   EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(),
877                     Dst.isVolatileQualified(), Dst.getAlignment(), Ty,
878                     Dst.getTBAAInfo());
879 }
880 
881 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
882                                                      QualType Ty,
883                                                      llvm::Value **Result) {
884   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
885 
886   // Get the output type.
887   const llvm::Type *ResLTy = ConvertTypeForMem(Ty);
888   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
889 
890   // Get the source value, truncated to the width of the bit-field.
891   llvm::Value *SrcVal = Src.getScalarVal();
892 
893   if (Ty->isBooleanType())
894     SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
895 
896   SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
897                                                                 Info.getSize()),
898                              "bf.value");
899 
900   // Return the new value of the bit-field, if requested.
901   if (Result) {
902     // Cast back to the proper type for result.
903     const llvm::Type *SrcTy = Src.getScalarVal()->getType();
904     llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
905                                                    "bf.reload.val");
906 
907     // Sign extend if necessary.
908     if (Info.isSigned()) {
909       unsigned ExtraBits = ResSizeInBits - Info.getSize();
910       if (ExtraBits)
911         ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
912                                        ExtraBits, "bf.reload.sext");
913     }
914 
915     *Result = ReloadVal;
916   }
917 
918   // Iterate over the components, writing each piece to memory.
919   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
920     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
921 
922     // Get the field pointer.
923     llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
924     unsigned addressSpace =
925       cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
926 
927     // Only offset by the field index if used, so that incoming values are not
928     // required to be structures.
929     if (AI.FieldIndex)
930       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
931 
932     // Offset by the byte offset, if used.
933     if (!AI.FieldByteOffset.isZero()) {
934       Ptr = EmitCastToVoidPtr(Ptr);
935       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
936                                        "bf.field.offs");
937     }
938 
939     // Cast to the access type.
940     const llvm::Type *AccessLTy =
941       llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
942 
943     const llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
944     Ptr = Builder.CreateBitCast(Ptr, PTy);
945 
946     // Extract the piece of the bit-field value to write in this access, limited
947     // to the values that are part of this access.
948     llvm::Value *Val = SrcVal;
949     if (AI.TargetBitOffset)
950       Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
951     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
952                                                             AI.TargetBitWidth));
953 
954     // Extend or truncate to the access size.
955     if (ResSizeInBits < AI.AccessWidth)
956       Val = Builder.CreateZExt(Val, AccessLTy);
957     else if (ResSizeInBits > AI.AccessWidth)
958       Val = Builder.CreateTrunc(Val, AccessLTy);
959 
960     // Shift into the position in memory.
961     if (AI.FieldBitStart)
962       Val = Builder.CreateShl(Val, AI.FieldBitStart);
963 
964     // If necessary, load and OR in bits that are outside of the bit-field.
965     if (AI.TargetBitWidth != AI.AccessWidth) {
966       llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
967       if (!AI.AccessAlignment.isZero())
968         Load->setAlignment(AI.AccessAlignment.getQuantity());
969 
970       // Compute the mask for zeroing the bits that are part of the bit-field.
971       llvm::APInt InvMask =
972         ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
973                                  AI.FieldBitStart + AI.TargetBitWidth);
974 
975       // Apply the mask and OR in to the value to write.
976       Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
977     }
978 
979     // Write the value.
980     llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
981                                                  Dst.isVolatileQualified());
982     if (!AI.AccessAlignment.isZero())
983       Store->setAlignment(AI.AccessAlignment.getQuantity());
984   }
985 }
986 
987 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
988                                                                LValue Dst,
989                                                                QualType Ty) {
990   // This access turns into a read/modify/write of the vector.  Load the input
991   // value now.
992   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
993                                         Dst.isVolatileQualified(), "tmp");
994   const llvm::Constant *Elts = Dst.getExtVectorElts();
995 
996   llvm::Value *SrcVal = Src.getScalarVal();
997 
998   if (const VectorType *VTy = Ty->getAs<VectorType>()) {
999     unsigned NumSrcElts = VTy->getNumElements();
1000     unsigned NumDstElts =
1001        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1002     if (NumDstElts == NumSrcElts) {
1003       // Use shuffle vector is the src and destination are the same number of
1004       // elements and restore the vector mask since it is on the side it will be
1005       // stored.
1006       llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1007       for (unsigned i = 0; i != NumSrcElts; ++i) {
1008         unsigned InIdx = getAccessedFieldNo(i, Elts);
1009         Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i);
1010       }
1011 
1012       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1013       Vec = Builder.CreateShuffleVector(SrcVal,
1014                                         llvm::UndefValue::get(Vec->getType()),
1015                                         MaskV, "tmp");
1016     } else if (NumDstElts > NumSrcElts) {
1017       // Extended the source vector to the same length and then shuffle it
1018       // into the destination.
1019       // FIXME: since we're shuffling with undef, can we just use the indices
1020       //        into that?  This could be simpler.
1021       llvm::SmallVector<llvm::Constant*, 4> ExtMask;
1022       unsigned i;
1023       for (i = 0; i != NumSrcElts; ++i)
1024         ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1025       for (; i != NumDstElts; ++i)
1026         ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
1027       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1028       llvm::Value *ExtSrcVal =
1029         Builder.CreateShuffleVector(SrcVal,
1030                                     llvm::UndefValue::get(SrcVal->getType()),
1031                                     ExtMaskV, "tmp");
1032       // build identity
1033       llvm::SmallVector<llvm::Constant*, 4> Mask;
1034       for (unsigned i = 0; i != NumDstElts; ++i)
1035         Mask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1036 
1037       // modify when what gets shuffled in
1038       for (unsigned i = 0; i != NumSrcElts; ++i) {
1039         unsigned Idx = getAccessedFieldNo(i, Elts);
1040         Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts);
1041       }
1042       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1043       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp");
1044     } else {
1045       // We should never shorten the vector
1046       assert(0 && "unexpected shorten vector length");
1047     }
1048   } else {
1049     // If the Src is a scalar (not a vector) it must be updating one element.
1050     unsigned InIdx = getAccessedFieldNo(0, Elts);
1051     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1052     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
1053   }
1054 
1055   Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
1056 }
1057 
1058 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1059 // generating write-barries API. It is currently a global, ivar,
1060 // or neither.
1061 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1062                                  LValue &LV) {
1063   if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC)
1064     return;
1065 
1066   if (isa<ObjCIvarRefExpr>(E)) {
1067     LV.setObjCIvar(true);
1068     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1069     LV.setBaseIvarExp(Exp->getBase());
1070     LV.setObjCArray(E->getType()->isArrayType());
1071     return;
1072   }
1073 
1074   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1075     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1076       if (VD->hasGlobalStorage()) {
1077         LV.setGlobalObjCRef(true);
1078         LV.setThreadLocalRef(VD->isThreadSpecified());
1079       }
1080     }
1081     LV.setObjCArray(E->getType()->isArrayType());
1082     return;
1083   }
1084 
1085   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1086     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1087     return;
1088   }
1089 
1090   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1091     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1092     if (LV.isObjCIvar()) {
1093       // If cast is to a structure pointer, follow gcc's behavior and make it
1094       // a non-ivar write-barrier.
1095       QualType ExpTy = E->getType();
1096       if (ExpTy->isPointerType())
1097         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1098       if (ExpTy->isRecordType())
1099         LV.setObjCIvar(false);
1100     }
1101     return;
1102   }
1103 
1104   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1105     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1106     return;
1107   }
1108 
1109   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1110     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1111     return;
1112   }
1113 
1114   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1115     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1116     return;
1117   }
1118 
1119   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1120     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1121     if (LV.isObjCIvar() && !LV.isObjCArray())
1122       // Using array syntax to assigning to what an ivar points to is not
1123       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1124       LV.setObjCIvar(false);
1125     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1126       // Using array syntax to assigning to what global points to is not
1127       // same as assigning to the global itself. {id *G;} G[i] = 0;
1128       LV.setGlobalObjCRef(false);
1129     return;
1130   }
1131 
1132   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1133     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1134     // We don't know if member is an 'ivar', but this flag is looked at
1135     // only in the context of LV.isObjCIvar().
1136     LV.setObjCArray(E->getType()->isArrayType());
1137     return;
1138   }
1139 }
1140 
1141 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1142                                       const Expr *E, const VarDecl *VD) {
1143   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1144          "Var decl must have external storage or be a file var decl!");
1145 
1146   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1147   if (VD->getType()->isReferenceType())
1148     V = CGF.Builder.CreateLoad(V, "tmp");
1149   unsigned Alignment = CGF.getContext().getDeclAlign(VD).getQuantity();
1150   LValue LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1151   setObjCGCLValueClass(CGF.getContext(), E, LV);
1152   return LV;
1153 }
1154 
1155 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1156                                       const Expr *E, const FunctionDecl *FD) {
1157   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1158   if (!FD->hasPrototype()) {
1159     if (const FunctionProtoType *Proto =
1160             FD->getType()->getAs<FunctionProtoType>()) {
1161       // Ugly case: for a K&R-style definition, the type of the definition
1162       // isn't the same as the type of a use.  Correct for this with a
1163       // bitcast.
1164       QualType NoProtoType =
1165           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1166       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1167       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp");
1168     }
1169   }
1170   unsigned Alignment = CGF.getContext().getDeclAlign(FD).getQuantity();
1171   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1172 }
1173 
1174 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1175   const NamedDecl *ND = E->getDecl();
1176   unsigned Alignment = getContext().getDeclAlign(ND).getQuantity();
1177 
1178   if (ND->hasAttr<WeakRefAttr>()) {
1179     const ValueDecl *VD = cast<ValueDecl>(ND);
1180     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1181     return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1182   }
1183 
1184   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1185 
1186     // Check if this is a global variable.
1187     if (VD->hasExternalStorage() || VD->isFileVarDecl())
1188       return EmitGlobalVarDeclLValue(*this, E, VD);
1189 
1190     bool NonGCable = VD->hasLocalStorage() &&
1191                      !VD->getType()->isReferenceType() &&
1192                      !VD->hasAttr<BlocksAttr>();
1193 
1194     llvm::Value *V = LocalDeclMap[VD];
1195     if (!V && VD->isStaticLocal())
1196       V = CGM.getStaticLocalDeclAddress(VD);
1197     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1198 
1199     if (VD->hasAttr<BlocksAttr>())
1200       V = BuildBlockByrefAddress(V, VD);
1201 
1202     if (VD->getType()->isReferenceType())
1203       V = Builder.CreateLoad(V, "tmp");
1204 
1205     LValue LV = MakeAddrLValue(V, E->getType(), Alignment);
1206     if (NonGCable) {
1207       LV.getQuals().removeObjCGCAttr();
1208       LV.setNonGC(true);
1209     }
1210     setObjCGCLValueClass(getContext(), E, LV);
1211     return LV;
1212   }
1213 
1214   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1215     return EmitFunctionDeclLValue(*this, E, fn);
1216 
1217   assert(false && "Unhandled DeclRefExpr");
1218 
1219   // an invalid LValue, but the assert will
1220   // ensure that this point is never reached.
1221   return LValue();
1222 }
1223 
1224 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
1225   unsigned Alignment =
1226     getContext().getDeclAlign(E->getDecl()).getQuantity();
1227   return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment);
1228 }
1229 
1230 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1231   // __extension__ doesn't affect lvalue-ness.
1232   if (E->getOpcode() == UO_Extension)
1233     return EmitLValue(E->getSubExpr());
1234 
1235   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1236   switch (E->getOpcode()) {
1237   default: assert(0 && "Unknown unary operator lvalue!");
1238   case UO_Deref: {
1239     QualType T = E->getSubExpr()->getType()->getPointeeType();
1240     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1241 
1242     LValue LV = MakeAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1243     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1244 
1245     // We should not generate __weak write barrier on indirect reference
1246     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1247     // But, we continue to generate __strong write barrier on indirect write
1248     // into a pointer to object.
1249     if (getContext().getLangOptions().ObjC1 &&
1250         getContext().getLangOptions().getGCMode() != LangOptions::NonGC &&
1251         LV.isObjCWeak())
1252       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1253     return LV;
1254   }
1255   case UO_Real:
1256   case UO_Imag: {
1257     LValue LV = EmitLValue(E->getSubExpr());
1258     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1259     llvm::Value *Addr = LV.getAddress();
1260 
1261     // real and imag are valid on scalars.  This is a faster way of
1262     // testing that.
1263     if (!cast<llvm::PointerType>(Addr->getType())
1264            ->getElementType()->isStructTy()) {
1265       assert(E->getSubExpr()->getType()->isArithmeticType());
1266       return LV;
1267     }
1268 
1269     assert(E->getSubExpr()->getType()->isAnyComplexType());
1270 
1271     unsigned Idx = E->getOpcode() == UO_Imag;
1272     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1273                                                   Idx, "idx"),
1274                           ExprTy);
1275   }
1276   case UO_PreInc:
1277   case UO_PreDec: {
1278     LValue LV = EmitLValue(E->getSubExpr());
1279     bool isInc = E->getOpcode() == UO_PreInc;
1280 
1281     if (E->getType()->isAnyComplexType())
1282       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1283     else
1284       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1285     return LV;
1286   }
1287   }
1288 }
1289 
1290 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1291   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1292                         E->getType());
1293 }
1294 
1295 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1296   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1297                         E->getType());
1298 }
1299 
1300 
1301 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1302   switch (E->getIdentType()) {
1303   default:
1304     return EmitUnsupportedLValue(E, "predefined expression");
1305 
1306   case PredefinedExpr::Func:
1307   case PredefinedExpr::Function:
1308   case PredefinedExpr::PrettyFunction: {
1309     unsigned Type = E->getIdentType();
1310     std::string GlobalVarName;
1311 
1312     switch (Type) {
1313     default: assert(0 && "Invalid type");
1314     case PredefinedExpr::Func:
1315       GlobalVarName = "__func__.";
1316       break;
1317     case PredefinedExpr::Function:
1318       GlobalVarName = "__FUNCTION__.";
1319       break;
1320     case PredefinedExpr::PrettyFunction:
1321       GlobalVarName = "__PRETTY_FUNCTION__.";
1322       break;
1323     }
1324 
1325     llvm::StringRef FnName = CurFn->getName();
1326     if (FnName.startswith("\01"))
1327       FnName = FnName.substr(1);
1328     GlobalVarName += FnName;
1329 
1330     const Decl *CurDecl = CurCodeDecl;
1331     if (CurDecl == 0)
1332       CurDecl = getContext().getTranslationUnitDecl();
1333 
1334     std::string FunctionName =
1335         (isa<BlockDecl>(CurDecl)
1336          ? FnName.str()
1337          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
1338 
1339     llvm::Constant *C =
1340       CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1341     return MakeAddrLValue(C, E->getType());
1342   }
1343   }
1344 }
1345 
1346 llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1347   const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1348 
1349   // If we are not optimzing, don't collapse all calls to trap in the function
1350   // to the same call, that way, in the debugger they can see which operation
1351   // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1352   // to just one per function to save on codesize.
1353   if (GCO.OptimizationLevel && TrapBB)
1354     return TrapBB;
1355 
1356   llvm::BasicBlock *Cont = 0;
1357   if (HaveInsertPoint()) {
1358     Cont = createBasicBlock("cont");
1359     EmitBranch(Cont);
1360   }
1361   TrapBB = createBasicBlock("trap");
1362   EmitBlock(TrapBB);
1363 
1364   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap, 0, 0);
1365   llvm::CallInst *TrapCall = Builder.CreateCall(F);
1366   TrapCall->setDoesNotReturn();
1367   TrapCall->setDoesNotThrow();
1368   Builder.CreateUnreachable();
1369 
1370   if (Cont)
1371     EmitBlock(Cont);
1372   return TrapBB;
1373 }
1374 
1375 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1376 /// array to pointer, return the array subexpression.
1377 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1378   // If this isn't just an array->pointer decay, bail out.
1379   const CastExpr *CE = dyn_cast<CastExpr>(E);
1380   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1381     return 0;
1382 
1383   // If this is a decay from variable width array, bail out.
1384   const Expr *SubExpr = CE->getSubExpr();
1385   if (SubExpr->getType()->isVariableArrayType())
1386     return 0;
1387 
1388   return SubExpr;
1389 }
1390 
1391 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1392   // The index must always be an integer, which is not an aggregate.  Emit it.
1393   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1394   QualType IdxTy  = E->getIdx()->getType();
1395   bool IdxSigned = IdxTy->isSignedIntegerType();
1396 
1397   // If the base is a vector type, then we are forming a vector element lvalue
1398   // with this subscript.
1399   if (E->getBase()->getType()->isVectorType()) {
1400     // Emit the vector as an lvalue to get its address.
1401     LValue LHS = EmitLValue(E->getBase());
1402     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1403     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1404     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1405                                  E->getBase()->getType().getCVRQualifiers());
1406   }
1407 
1408   // Extend or truncate the index type to 32 or 64-bits.
1409   if (Idx->getType() != IntPtrTy)
1410     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1411 
1412   // FIXME: As llvm implements the object size checking, this can come out.
1413   if (CatchUndefined) {
1414     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
1415       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1416         if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1417           if (const ConstantArrayType *CAT
1418               = getContext().getAsConstantArrayType(DRE->getType())) {
1419             llvm::APInt Size = CAT->getSize();
1420             llvm::BasicBlock *Cont = createBasicBlock("cont");
1421             Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1422                                   llvm::ConstantInt::get(Idx->getType(), Size)),
1423                                  Cont, getTrapBB());
1424             EmitBlock(Cont);
1425           }
1426         }
1427       }
1428     }
1429   }
1430 
1431   // We know that the pointer points to a type of the correct size, unless the
1432   // size is a VLA or Objective-C interface.
1433   llvm::Value *Address = 0;
1434   unsigned ArrayAlignment = 0;
1435   if (const VariableArrayType *VAT =
1436         getContext().getAsVariableArrayType(E->getType())) {
1437     llvm::Value *VLASize = GetVLASize(VAT);
1438 
1439     Idx = Builder.CreateMul(Idx, VLASize);
1440 
1441     // The base must be a pointer, which is not an aggregate.  Emit it.
1442     llvm::Value *Base = EmitScalarExpr(E->getBase());
1443 
1444     Address = EmitCastToVoidPtr(Base);
1445     if (getContext().getLangOptions().isSignedOverflowDefined())
1446       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1447     else
1448       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1449     Address = Builder.CreateBitCast(Address, Base->getType());
1450   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1451     // Indexing over an interface, as in "NSString *P; P[4];"
1452     llvm::Value *InterfaceSize =
1453       llvm::ConstantInt::get(Idx->getType(),
1454           getContext().getTypeSizeInChars(OIT).getQuantity());
1455 
1456     Idx = Builder.CreateMul(Idx, InterfaceSize);
1457 
1458     // The base must be a pointer, which is not an aggregate.  Emit it.
1459     llvm::Value *Base = EmitScalarExpr(E->getBase());
1460     Address = EmitCastToVoidPtr(Base);
1461     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1462     Address = Builder.CreateBitCast(Address, Base->getType());
1463   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1464     // If this is A[i] where A is an array, the frontend will have decayed the
1465     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
1466     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1467     // "gep x, i" here.  Emit one "gep A, 0, i".
1468     assert(Array->getType()->isArrayType() &&
1469            "Array to pointer decay must have array source type!");
1470     LValue ArrayLV = EmitLValue(Array);
1471     llvm::Value *ArrayPtr = ArrayLV.getAddress();
1472     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1473     llvm::Value *Args[] = { Zero, Idx };
1474 
1475     // Propagate the alignment from the array itself to the result.
1476     ArrayAlignment = ArrayLV.getAlignment();
1477 
1478     if (getContext().getLangOptions().isSignedOverflowDefined())
1479       Address = Builder.CreateGEP(ArrayPtr, Args, Args+2, "arrayidx");
1480     else
1481       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, Args+2, "arrayidx");
1482   } else {
1483     // The base must be a pointer, which is not an aggregate.  Emit it.
1484     llvm::Value *Base = EmitScalarExpr(E->getBase());
1485     if (getContext().getLangOptions().isSignedOverflowDefined())
1486       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
1487     else
1488       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1489   }
1490 
1491   QualType T = E->getBase()->getType()->getPointeeType();
1492   assert(!T.isNull() &&
1493          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1494 
1495   // Limit the alignment to that of the result type.
1496   if (ArrayAlignment) {
1497     unsigned Align = getContext().getTypeAlignInChars(T).getQuantity();
1498     ArrayAlignment = std::min(Align, ArrayAlignment);
1499   }
1500 
1501   LValue LV = MakeAddrLValue(Address, T, ArrayAlignment);
1502   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1503 
1504   if (getContext().getLangOptions().ObjC1 &&
1505       getContext().getLangOptions().getGCMode() != LangOptions::NonGC) {
1506     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1507     setObjCGCLValueClass(getContext(), E, LV);
1508   }
1509   return LV;
1510 }
1511 
1512 static
1513 llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
1514                                        llvm::SmallVector<unsigned, 4> &Elts) {
1515   llvm::SmallVector<llvm::Constant*, 4> CElts;
1516 
1517   const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
1518   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1519     CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i]));
1520 
1521   return llvm::ConstantVector::get(CElts);
1522 }
1523 
1524 LValue CodeGenFunction::
1525 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1526   // Emit the base vector as an l-value.
1527   LValue Base;
1528 
1529   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1530   if (E->isArrow()) {
1531     // If it is a pointer to a vector, emit the address and form an lvalue with
1532     // it.
1533     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1534     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1535     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1536     Base.getQuals().removeObjCGCAttr();
1537   } else if (E->getBase()->isGLValue()) {
1538     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1539     // emit the base as an lvalue.
1540     assert(E->getBase()->getType()->isVectorType());
1541     Base = EmitLValue(E->getBase());
1542   } else {
1543     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1544     assert(E->getBase()->getType()->getAs<VectorType>() &&
1545            "Result must be a vector");
1546     llvm::Value *Vec = EmitScalarExpr(E->getBase());
1547 
1548     // Store the vector to memory (because LValue wants an address).
1549     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1550     Builder.CreateStore(Vec, VecMem);
1551     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
1552   }
1553 
1554   // Encode the element access list into a vector of unsigned indices.
1555   llvm::SmallVector<unsigned, 4> Indices;
1556   E->getEncodedElementAccess(Indices);
1557 
1558   if (Base.isSimple()) {
1559     llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices);
1560     return LValue::MakeExtVectorElt(Base.getAddress(), CV,
1561                                     Base.getVRQualifiers());
1562   }
1563   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1564 
1565   llvm::Constant *BaseElts = Base.getExtVectorElts();
1566   llvm::SmallVector<llvm::Constant *, 4> CElts;
1567 
1568   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1569     if (isa<llvm::ConstantAggregateZero>(BaseElts))
1570       CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0));
1571     else
1572       CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i])));
1573   }
1574   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
1575   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV,
1576                                   Base.getVRQualifiers());
1577 }
1578 
1579 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1580   bool isNonGC = false;
1581   Expr *BaseExpr = E->getBase();
1582   llvm::Value *BaseValue = NULL;
1583   Qualifiers BaseQuals;
1584 
1585   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1586   if (E->isArrow()) {
1587     BaseValue = EmitScalarExpr(BaseExpr);
1588     const PointerType *PTy =
1589       BaseExpr->getType()->getAs<PointerType>();
1590     BaseQuals = PTy->getPointeeType().getQualifiers();
1591   } else {
1592     LValue BaseLV = EmitLValue(BaseExpr);
1593     if (BaseLV.isNonGC())
1594       isNonGC = true;
1595     // FIXME: this isn't right for bitfields.
1596     BaseValue = BaseLV.getAddress();
1597     QualType BaseTy = BaseExpr->getType();
1598     BaseQuals = BaseTy.getQualifiers();
1599   }
1600 
1601   NamedDecl *ND = E->getMemberDecl();
1602   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1603     LValue LV = EmitLValueForField(BaseValue, Field,
1604                                    BaseQuals.getCVRQualifiers());
1605     LV.setNonGC(isNonGC);
1606     setObjCGCLValueClass(getContext(), E, LV);
1607     return LV;
1608   }
1609 
1610   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1611     return EmitGlobalVarDeclLValue(*this, E, VD);
1612 
1613   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1614     return EmitFunctionDeclLValue(*this, E, FD);
1615 
1616   assert(false && "Unhandled member declaration!");
1617   return LValue();
1618 }
1619 
1620 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
1621                                               const FieldDecl *Field,
1622                                               unsigned CVRQualifiers) {
1623   const CGRecordLayout &RL =
1624     CGM.getTypes().getCGRecordLayout(Field->getParent());
1625   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
1626   return LValue::MakeBitfield(BaseValue, Info,
1627                              Field->getType().getCVRQualifiers()|CVRQualifiers);
1628 }
1629 
1630 /// EmitLValueForAnonRecordField - Given that the field is a member of
1631 /// an anonymous struct or union buried inside a record, and given
1632 /// that the base value is a pointer to the enclosing record, derive
1633 /// an lvalue for the ultimate field.
1634 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
1635                                              const IndirectFieldDecl *Field,
1636                                                      unsigned CVRQualifiers) {
1637   IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
1638     IEnd = Field->chain_end();
1639   while (true) {
1640     LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I), CVRQualifiers);
1641     if (++I == IEnd) return LV;
1642 
1643     assert(LV.isSimple());
1644     BaseValue = LV.getAddress();
1645     CVRQualifiers |= LV.getVRQualifiers();
1646   }
1647 }
1648 
1649 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr,
1650                                            const FieldDecl *field,
1651                                            unsigned cvr) {
1652   if (field->isBitField())
1653     return EmitLValueForBitfield(baseAddr, field, cvr);
1654 
1655   const RecordDecl *rec = field->getParent();
1656   QualType type = field->getType();
1657 
1658   bool mayAlias = rec->hasAttr<MayAliasAttr>();
1659 
1660   llvm::Value *addr;
1661   if (rec->isUnion()) {
1662     // For unions, we just cast to the appropriate type.
1663     assert(!type->isReferenceType() && "union has reference member");
1664 
1665     const llvm::Type *llvmType = CGM.getTypes().ConvertTypeForMem(type);
1666     unsigned AS =
1667       cast<llvm::PointerType>(baseAddr->getType())->getAddressSpace();
1668     addr = Builder.CreateBitCast(baseAddr, llvmType->getPointerTo(AS),
1669                                  field->getName());
1670   } else {
1671     // For structs, we GEP to the field that the record layout suggests.
1672     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
1673     addr = Builder.CreateStructGEP(baseAddr, idx, field->getName());
1674 
1675     // If this is a reference field, load the reference right now.
1676     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
1677       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
1678       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
1679 
1680       if (CGM.shouldUseTBAA()) {
1681         llvm::MDNode *tbaa;
1682         if (mayAlias)
1683           tbaa = CGM.getTBAAInfo(getContext().CharTy);
1684         else
1685           tbaa = CGM.getTBAAInfo(type);
1686         CGM.DecorateInstruction(load, tbaa);
1687       }
1688 
1689       addr = load;
1690       mayAlias = false;
1691       type = refType->getPointeeType();
1692       cvr = 0; // qualifiers don't recursively apply to referencee
1693     }
1694   }
1695 
1696   unsigned alignment = getContext().getDeclAlign(field).getQuantity();
1697   LValue LV = MakeAddrLValue(addr, type, alignment);
1698   LV.getQuals().addCVRQualifiers(cvr);
1699 
1700   // __weak attribute on a field is ignored.
1701   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
1702     LV.getQuals().removeObjCGCAttr();
1703 
1704   // Fields of may_alias structs act like 'char' for TBAA purposes.
1705   // FIXME: this should get propagated down through anonymous structs
1706   // and unions.
1707   if (mayAlias && LV.getTBAAInfo())
1708     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
1709 
1710   return LV;
1711 }
1712 
1713 LValue
1714 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue,
1715                                                   const FieldDecl *Field,
1716                                                   unsigned CVRQualifiers) {
1717   QualType FieldType = Field->getType();
1718 
1719   if (!FieldType->isReferenceType())
1720     return EmitLValueForField(BaseValue, Field, CVRQualifiers);
1721 
1722   const CGRecordLayout &RL =
1723     CGM.getTypes().getCGRecordLayout(Field->getParent());
1724   unsigned idx = RL.getLLVMFieldNo(Field);
1725   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
1726 
1727   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
1728 
1729   unsigned Alignment = getContext().getDeclAlign(Field).getQuantity();
1730   return MakeAddrLValue(V, FieldType, Alignment);
1731 }
1732 
1733 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
1734   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
1735   const Expr *InitExpr = E->getInitializer();
1736   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
1737 
1738   EmitAnyExprToMem(InitExpr, DeclPtr, /*Volatile*/ false, /*Init*/ true);
1739 
1740   return Result;
1741 }
1742 
1743 LValue CodeGenFunction::
1744 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
1745   if (!expr->isGLValue()) {
1746     // ?: here should be an aggregate.
1747     assert((hasAggregateLLVMType(expr->getType()) &&
1748             !expr->getType()->isAnyComplexType()) &&
1749            "Unexpected conditional operator!");
1750     return EmitAggExprToLValue(expr);
1751   }
1752 
1753   const Expr *condExpr = expr->getCond();
1754   bool CondExprBool;
1755   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
1756     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
1757     if (!CondExprBool) std::swap(live, dead);
1758 
1759     if (!ContainsLabel(dead))
1760       return EmitLValue(live);
1761   }
1762 
1763   OpaqueValueMapping binding(*this, expr);
1764 
1765   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
1766   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
1767   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
1768 
1769   ConditionalEvaluation eval(*this);
1770   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
1771 
1772   // Any temporaries created here are conditional.
1773   EmitBlock(lhsBlock);
1774   eval.begin(*this);
1775   LValue lhs = EmitLValue(expr->getTrueExpr());
1776   eval.end(*this);
1777 
1778   if (!lhs.isSimple())
1779     return EmitUnsupportedLValue(expr, "conditional operator");
1780 
1781   lhsBlock = Builder.GetInsertBlock();
1782   Builder.CreateBr(contBlock);
1783 
1784   // Any temporaries created here are conditional.
1785   EmitBlock(rhsBlock);
1786   eval.begin(*this);
1787   LValue rhs = EmitLValue(expr->getFalseExpr());
1788   eval.end(*this);
1789   if (!rhs.isSimple())
1790     return EmitUnsupportedLValue(expr, "conditional operator");
1791   rhsBlock = Builder.GetInsertBlock();
1792 
1793   EmitBlock(contBlock);
1794 
1795   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
1796                                          "cond-lvalue");
1797   phi->addIncoming(lhs.getAddress(), lhsBlock);
1798   phi->addIncoming(rhs.getAddress(), rhsBlock);
1799   return MakeAddrLValue(phi, expr->getType());
1800 }
1801 
1802 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
1803 /// If the cast is a dynamic_cast, we can have the usual lvalue result,
1804 /// otherwise if a cast is needed by the code generator in an lvalue context,
1805 /// then it must mean that we need the address of an aggregate in order to
1806 /// access one of its fields.  This can happen for all the reasons that casts
1807 /// are permitted with aggregate result, including noop aggregate casts, and
1808 /// cast from scalar to union.
1809 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
1810   switch (E->getCastKind()) {
1811   case CK_ToVoid:
1812     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
1813 
1814   case CK_Dependent:
1815     llvm_unreachable("dependent cast kind in IR gen!");
1816 
1817   case CK_GetObjCProperty: {
1818     LValue LV = EmitLValue(E->getSubExpr());
1819     assert(LV.isPropertyRef());
1820     RValue RV = EmitLoadOfPropertyRefLValue(LV);
1821 
1822     // Property is an aggregate r-value.
1823     if (RV.isAggregate()) {
1824       return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
1825     }
1826 
1827     // Implicit property returns an l-value.
1828     assert(RV.isScalar());
1829     return MakeAddrLValue(RV.getScalarVal(), E->getSubExpr()->getType());
1830   }
1831 
1832   case CK_NoOp:
1833   case CK_LValueToRValue:
1834     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
1835         || E->getType()->isRecordType())
1836       return EmitLValue(E->getSubExpr());
1837     // Fall through to synthesize a temporary.
1838 
1839   case CK_BitCast:
1840   case CK_ArrayToPointerDecay:
1841   case CK_FunctionToPointerDecay:
1842   case CK_NullToMemberPointer:
1843   case CK_NullToPointer:
1844   case CK_IntegralToPointer:
1845   case CK_PointerToIntegral:
1846   case CK_PointerToBoolean:
1847   case CK_VectorSplat:
1848   case CK_IntegralCast:
1849   case CK_IntegralToBoolean:
1850   case CK_IntegralToFloating:
1851   case CK_FloatingToIntegral:
1852   case CK_FloatingToBoolean:
1853   case CK_FloatingCast:
1854   case CK_FloatingRealToComplex:
1855   case CK_FloatingComplexToReal:
1856   case CK_FloatingComplexToBoolean:
1857   case CK_FloatingComplexCast:
1858   case CK_FloatingComplexToIntegralComplex:
1859   case CK_IntegralRealToComplex:
1860   case CK_IntegralComplexToReal:
1861   case CK_IntegralComplexToBoolean:
1862   case CK_IntegralComplexCast:
1863   case CK_IntegralComplexToFloatingComplex:
1864   case CK_DerivedToBaseMemberPointer:
1865   case CK_BaseToDerivedMemberPointer:
1866   case CK_MemberPointerToBoolean:
1867   case CK_AnyPointerToBlockPointerCast: {
1868     // These casts only produce lvalues when we're binding a reference to a
1869     // temporary realized from a (converted) pure rvalue. Emit the expression
1870     // as a value, copy it into a temporary, and return an lvalue referring to
1871     // that temporary.
1872     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
1873     EmitAnyExprToMem(E, V, false, false);
1874     return MakeAddrLValue(V, E->getType());
1875   }
1876 
1877   case CK_Dynamic: {
1878     LValue LV = EmitLValue(E->getSubExpr());
1879     llvm::Value *V = LV.getAddress();
1880     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
1881     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
1882   }
1883 
1884   case CK_ConstructorConversion:
1885   case CK_UserDefinedConversion:
1886   case CK_AnyPointerToObjCPointerCast:
1887     return EmitLValue(E->getSubExpr());
1888 
1889   case CK_UncheckedDerivedToBase:
1890   case CK_DerivedToBase: {
1891     const RecordType *DerivedClassTy =
1892       E->getSubExpr()->getType()->getAs<RecordType>();
1893     CXXRecordDecl *DerivedClassDecl =
1894       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1895 
1896     LValue LV = EmitLValue(E->getSubExpr());
1897     llvm::Value *This = LV.getAddress();
1898 
1899     // Perform the derived-to-base conversion
1900     llvm::Value *Base =
1901       GetAddressOfBaseClass(This, DerivedClassDecl,
1902                             E->path_begin(), E->path_end(),
1903                             /*NullCheckValue=*/false);
1904 
1905     return MakeAddrLValue(Base, E->getType());
1906   }
1907   case CK_ToUnion:
1908     return EmitAggExprToLValue(E);
1909   case CK_BaseToDerived: {
1910     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
1911     CXXRecordDecl *DerivedClassDecl =
1912       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1913 
1914     LValue LV = EmitLValue(E->getSubExpr());
1915 
1916     // Perform the base-to-derived conversion
1917     llvm::Value *Derived =
1918       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
1919                                E->path_begin(), E->path_end(),
1920                                /*NullCheckValue=*/false);
1921 
1922     return MakeAddrLValue(Derived, E->getType());
1923   }
1924   case CK_LValueBitCast: {
1925     // This must be a reinterpret_cast (or c-style equivalent).
1926     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
1927 
1928     LValue LV = EmitLValue(E->getSubExpr());
1929     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
1930                                            ConvertType(CE->getTypeAsWritten()));
1931     return MakeAddrLValue(V, E->getType());
1932   }
1933   case CK_ObjCObjectLValueCast: {
1934     LValue LV = EmitLValue(E->getSubExpr());
1935     QualType ToType = getContext().getLValueReferenceType(E->getType());
1936     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
1937                                            ConvertType(ToType));
1938     return MakeAddrLValue(V, E->getType());
1939   }
1940   }
1941 
1942   llvm_unreachable("Unhandled lvalue cast kind?");
1943 }
1944 
1945 LValue CodeGenFunction::EmitNullInitializationLValue(
1946                                               const CXXScalarValueInitExpr *E) {
1947   QualType Ty = E->getType();
1948   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
1949   EmitNullInitialization(LV.getAddress(), Ty);
1950   return LV;
1951 }
1952 
1953 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
1954   assert(e->isGLValue() || e->getType()->isRecordType());
1955   return getOpaqueLValueMapping(e);
1956 }
1957 
1958 //===--------------------------------------------------------------------===//
1959 //                             Expression Emission
1960 //===--------------------------------------------------------------------===//
1961 
1962 
1963 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
1964                                      ReturnValueSlot ReturnValue) {
1965   if (CGDebugInfo *DI = getDebugInfo()) {
1966     DI->setLocation(E->getLocStart());
1967     DI->UpdateLineDirectiveRegion(Builder);
1968     DI->EmitStopPoint(Builder);
1969   }
1970 
1971   // Builtins never have block type.
1972   if (E->getCallee()->getType()->isBlockPointerType())
1973     return EmitBlockCallExpr(E, ReturnValue);
1974 
1975   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
1976     return EmitCXXMemberCallExpr(CE, ReturnValue);
1977 
1978   const Decl *TargetDecl = 0;
1979   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) {
1980     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
1981       TargetDecl = DRE->getDecl();
1982       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl))
1983         if (unsigned builtinID = FD->getBuiltinID())
1984           return EmitBuiltinExpr(FD, builtinID, E);
1985     }
1986   }
1987 
1988   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
1989     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
1990       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
1991 
1992   if (isa<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
1993     // C++ [expr.pseudo]p1:
1994     //   The result shall only be used as the operand for the function call
1995     //   operator (), and the result of such a call has type void. The only
1996     //   effect is the evaluation of the postfix-expression before the dot or
1997     //   arrow.
1998     EmitScalarExpr(E->getCallee());
1999     return RValue::get(0);
2000   }
2001 
2002   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2003   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2004                   E->arg_begin(), E->arg_end(), TargetDecl);
2005 }
2006 
2007 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2008   // Comma expressions just emit their LHS then their RHS as an l-value.
2009   if (E->getOpcode() == BO_Comma) {
2010     EmitIgnoredExpr(E->getLHS());
2011     EnsureInsertPoint();
2012     return EmitLValue(E->getRHS());
2013   }
2014 
2015   if (E->getOpcode() == BO_PtrMemD ||
2016       E->getOpcode() == BO_PtrMemI)
2017     return EmitPointerToDataMemberBinaryExpr(E);
2018 
2019   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2020 
2021   if (!hasAggregateLLVMType(E->getType())) {
2022     // __block variables need the RHS evaluated first.
2023     RValue RV = EmitAnyExpr(E->getRHS());
2024     LValue LV = EmitLValue(E->getLHS());
2025     EmitStoreThroughLValue(RV, LV, E->getType());
2026     return LV;
2027   }
2028 
2029   if (E->getType()->isAnyComplexType())
2030     return EmitComplexAssignmentLValue(E);
2031 
2032   return EmitAggExprToLValue(E);
2033 }
2034 
2035 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2036   RValue RV = EmitCallExpr(E);
2037 
2038   if (!RV.isScalar())
2039     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2040 
2041   assert(E->getCallReturnType()->isReferenceType() &&
2042          "Can't have a scalar return unless the return type is a "
2043          "reference type!");
2044 
2045   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2046 }
2047 
2048 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2049   // FIXME: This shouldn't require another copy.
2050   return EmitAggExprToLValue(E);
2051 }
2052 
2053 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2054   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2055          && "binding l-value to type which needs a temporary");
2056   AggValueSlot Slot = CreateAggTemp(E->getType(), "tmp");
2057   EmitCXXConstructExpr(E, Slot);
2058   return MakeAddrLValue(Slot.getAddr(), E->getType());
2059 }
2060 
2061 LValue
2062 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2063   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2064 }
2065 
2066 LValue
2067 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2068   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2069   Slot.setLifetimeExternallyManaged();
2070   EmitAggExpr(E->getSubExpr(), Slot);
2071   EmitCXXTemporary(E->getTemporary(), Slot.getAddr());
2072   return MakeAddrLValue(Slot.getAddr(), E->getType());
2073 }
2074 
2075 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2076   RValue RV = EmitObjCMessageExpr(E);
2077 
2078   if (!RV.isScalar())
2079     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2080 
2081   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2082          "Can't have a scalar return unless the return type is a "
2083          "reference type!");
2084 
2085   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2086 }
2087 
2088 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2089   llvm::Value *V =
2090     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2091   return MakeAddrLValue(V, E->getType());
2092 }
2093 
2094 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2095                                              const ObjCIvarDecl *Ivar) {
2096   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2097 }
2098 
2099 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2100                                           llvm::Value *BaseValue,
2101                                           const ObjCIvarDecl *Ivar,
2102                                           unsigned CVRQualifiers) {
2103   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2104                                                    Ivar, CVRQualifiers);
2105 }
2106 
2107 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2108   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2109   llvm::Value *BaseValue = 0;
2110   const Expr *BaseExpr = E->getBase();
2111   Qualifiers BaseQuals;
2112   QualType ObjectTy;
2113   if (E->isArrow()) {
2114     BaseValue = EmitScalarExpr(BaseExpr);
2115     ObjectTy = BaseExpr->getType()->getPointeeType();
2116     BaseQuals = ObjectTy.getQualifiers();
2117   } else {
2118     LValue BaseLV = EmitLValue(BaseExpr);
2119     // FIXME: this isn't right for bitfields.
2120     BaseValue = BaseLV.getAddress();
2121     ObjectTy = BaseExpr->getType();
2122     BaseQuals = ObjectTy.getQualifiers();
2123   }
2124 
2125   LValue LV =
2126     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2127                       BaseQuals.getCVRQualifiers());
2128   setObjCGCLValueClass(getContext(), E, LV);
2129   return LV;
2130 }
2131 
2132 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2133   // Can only get l-value for message expression returning aggregate type
2134   RValue RV = EmitAnyExprToTemp(E);
2135   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2136 }
2137 
2138 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2139                                  ReturnValueSlot ReturnValue,
2140                                  CallExpr::const_arg_iterator ArgBeg,
2141                                  CallExpr::const_arg_iterator ArgEnd,
2142                                  const Decl *TargetDecl) {
2143   // Get the actual function type. The callee type will always be a pointer to
2144   // function type or a block pointer type.
2145   assert(CalleeType->isFunctionPointerType() &&
2146          "Call must have function pointer type!");
2147 
2148   CalleeType = getContext().getCanonicalType(CalleeType);
2149 
2150   const FunctionType *FnType
2151     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2152 
2153   CallArgList Args;
2154   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2155 
2156   return EmitCall(CGM.getTypes().getFunctionInfo(Args, FnType),
2157                   Callee, ReturnValue, Args, TargetDecl);
2158 }
2159 
2160 LValue CodeGenFunction::
2161 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2162   llvm::Value *BaseV;
2163   if (E->getOpcode() == BO_PtrMemI)
2164     BaseV = EmitScalarExpr(E->getLHS());
2165   else
2166     BaseV = EmitLValue(E->getLHS()).getAddress();
2167 
2168   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2169 
2170   const MemberPointerType *MPT
2171     = E->getRHS()->getType()->getAs<MemberPointerType>();
2172 
2173   llvm::Value *AddV =
2174     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2175 
2176   return MakeAddrLValue(AddV, MPT->getPointeeType());
2177 }
2178