1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGRecordLayout.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/Target/TargetData.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===--------------------------------------------------------------------===//
32 //                        Miscellaneous Helper Methods
33 //===--------------------------------------------------------------------===//
34 
35 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
36   unsigned addressSpace =
37     cast<llvm::PointerType>(value->getType())->getAddressSpace();
38 
39   llvm::PointerType *destType = Int8PtrTy;
40   if (addressSpace)
41     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
42 
43   if (value->getType() == destType) return value;
44   return Builder.CreateBitCast(value, destType);
45 }
46 
47 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
48 /// block.
49 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
50                                                     const Twine &Name) {
51   if (!Builder.isNamePreserving())
52     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
53   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
54 }
55 
56 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
57                                      llvm::Value *Init) {
58   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
59   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
60   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
61 }
62 
63 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
64                                                 const Twine &Name) {
65   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
66   // FIXME: Should we prefer the preferred type alignment here?
67   CharUnits Align = getContext().getTypeAlignInChars(Ty);
68   Alloc->setAlignment(Align.getQuantity());
69   return Alloc;
70 }
71 
72 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
73                                                  const Twine &Name) {
74   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
75   // FIXME: Should we prefer the preferred type alignment here?
76   CharUnits Align = getContext().getTypeAlignInChars(Ty);
77   Alloc->setAlignment(Align.getQuantity());
78   return Alloc;
79 }
80 
81 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
82 /// expression and compare the result against zero, returning an Int1Ty value.
83 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
84   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
85     llvm::Value *MemPtr = EmitScalarExpr(E);
86     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
87   }
88 
89   QualType BoolTy = getContext().BoolTy;
90   if (!E->getType()->isAnyComplexType())
91     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
92 
93   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
94 }
95 
96 /// EmitIgnoredExpr - Emit code to compute the specified expression,
97 /// ignoring the result.
98 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
99   if (E->isRValue())
100     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
101 
102   // Just emit it as an l-value and drop the result.
103   EmitLValue(E);
104 }
105 
106 /// EmitAnyExpr - Emit code to compute the specified expression which
107 /// can have any type.  The result is returned as an RValue struct.
108 /// If this is an aggregate expression, AggSlot indicates where the
109 /// result should be returned.
110 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
111                                     bool IgnoreResult) {
112   if (!hasAggregateLLVMType(E->getType()))
113     return RValue::get(EmitScalarExpr(E, IgnoreResult));
114   else if (E->getType()->isAnyComplexType())
115     return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
116 
117   EmitAggExpr(E, AggSlot, IgnoreResult);
118   return AggSlot.asRValue();
119 }
120 
121 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
122 /// always be accessible even if no aggregate location is provided.
123 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
124   AggValueSlot AggSlot = AggValueSlot::ignored();
125 
126   if (hasAggregateLLVMType(E->getType()) &&
127       !E->getType()->isAnyComplexType())
128     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
129   return EmitAnyExpr(E, AggSlot);
130 }
131 
132 /// EmitAnyExprToMem - Evaluate an expression into a given memory
133 /// location.
134 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
135                                        llvm::Value *Location,
136                                        Qualifiers Quals,
137                                        bool IsInit) {
138   if (E->getType()->isAnyComplexType())
139     EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
140   else if (hasAggregateLLVMType(E->getType()))
141     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
142                                          AggValueSlot::IsDestructed_t(IsInit),
143                                          AggValueSlot::DoesNotNeedGCBarriers,
144                                          AggValueSlot::IsAliased_t(!IsInit)));
145   else {
146     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
147     LValue LV = MakeAddrLValue(Location, E->getType());
148     EmitStoreThroughLValue(RV, LV);
149   }
150 }
151 
152 namespace {
153 /// \brief An adjustment to be made to the temporary created when emitting a
154 /// reference binding, which accesses a particular subobject of that temporary.
155   struct SubobjectAdjustment {
156     enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
157 
158     union {
159       struct {
160         const CastExpr *BasePath;
161         const CXXRecordDecl *DerivedClass;
162       } DerivedToBase;
163 
164       FieldDecl *Field;
165     };
166 
167     SubobjectAdjustment(const CastExpr *BasePath,
168                         const CXXRecordDecl *DerivedClass)
169       : Kind(DerivedToBaseAdjustment) {
170       DerivedToBase.BasePath = BasePath;
171       DerivedToBase.DerivedClass = DerivedClass;
172     }
173 
174     SubobjectAdjustment(FieldDecl *Field)
175       : Kind(FieldAdjustment) {
176       this->Field = Field;
177     }
178   };
179 }
180 
181 static llvm::Value *
182 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
183                          const NamedDecl *InitializedDecl) {
184   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
185     if (VD->hasGlobalStorage()) {
186       llvm::SmallString<256> Name;
187       llvm::raw_svector_ostream Out(Name);
188       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
189       Out.flush();
190 
191       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
192 
193       // Create the reference temporary.
194       llvm::GlobalValue *RefTemp =
195         new llvm::GlobalVariable(CGF.CGM.getModule(),
196                                  RefTempTy, /*isConstant=*/false,
197                                  llvm::GlobalValue::InternalLinkage,
198                                  llvm::Constant::getNullValue(RefTempTy),
199                                  Name.str());
200       return RefTemp;
201     }
202   }
203 
204   return CGF.CreateMemTemp(Type, "ref.tmp");
205 }
206 
207 static llvm::Value *
208 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
209                             llvm::Value *&ReferenceTemporary,
210                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
211                             QualType &ObjCARCReferenceLifetimeType,
212                             const NamedDecl *InitializedDecl) {
213   // Look through expressions for materialized temporaries (for now).
214   if (const MaterializeTemporaryExpr *M
215                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
216     // Objective-C++ ARC:
217     //   If we are binding a reference to a temporary that has ownership, we
218     //   need to perform retain/release operations on the temporary.
219     if (CGF.getContext().getLangOptions().ObjCAutoRefCount &&
220         E->getType()->isObjCLifetimeType() &&
221         (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
222          E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
223          E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
224       ObjCARCReferenceLifetimeType = E->getType();
225 
226     E = M->GetTemporaryExpr();
227   }
228 
229   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
230     E = DAE->getExpr();
231 
232   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
233     CGF.enterFullExpression(EWC);
234     CodeGenFunction::RunCleanupsScope Scope(CGF);
235 
236     return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
237                                        ReferenceTemporary,
238                                        ReferenceTemporaryDtor,
239                                        ObjCARCReferenceLifetimeType,
240                                        InitializedDecl);
241   }
242 
243   RValue RV;
244   if (E->isGLValue()) {
245     // Emit the expression as an lvalue.
246     LValue LV = CGF.EmitLValue(E);
247 
248     if (LV.isSimple())
249       return LV.getAddress();
250 
251     // We have to load the lvalue.
252     RV = CGF.EmitLoadOfLValue(LV);
253   } else {
254     if (!ObjCARCReferenceLifetimeType.isNull()) {
255       ReferenceTemporary = CreateReferenceTemporary(CGF,
256                                                   ObjCARCReferenceLifetimeType,
257                                                     InitializedDecl);
258 
259 
260       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
261                                              ObjCARCReferenceLifetimeType);
262 
263       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
264                          RefTempDst, false);
265 
266       bool ExtendsLifeOfTemporary = false;
267       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
268         if (Var->extendsLifetimeOfTemporary())
269           ExtendsLifeOfTemporary = true;
270       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
271         ExtendsLifeOfTemporary = true;
272       }
273 
274       if (!ExtendsLifeOfTemporary) {
275         // Since the lifetime of this temporary isn't going to be extended,
276         // we need to clean it up ourselves at the end of the full expression.
277         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
278         case Qualifiers::OCL_None:
279         case Qualifiers::OCL_ExplicitNone:
280         case Qualifiers::OCL_Autoreleasing:
281           break;
282 
283         case Qualifiers::OCL_Strong: {
284           assert(!ObjCARCReferenceLifetimeType->isArrayType());
285           CleanupKind cleanupKind = CGF.getARCCleanupKind();
286           CGF.pushDestroy(cleanupKind,
287                           ReferenceTemporary,
288                           ObjCARCReferenceLifetimeType,
289                           CodeGenFunction::destroyARCStrongImprecise,
290                           cleanupKind & EHCleanup);
291           break;
292         }
293 
294         case Qualifiers::OCL_Weak:
295           assert(!ObjCARCReferenceLifetimeType->isArrayType());
296           CGF.pushDestroy(NormalAndEHCleanup,
297                           ReferenceTemporary,
298                           ObjCARCReferenceLifetimeType,
299                           CodeGenFunction::destroyARCWeak,
300                           /*useEHCleanupForArray*/ true);
301           break;
302         }
303 
304         ObjCARCReferenceLifetimeType = QualType();
305       }
306 
307       return ReferenceTemporary;
308     }
309 
310     SmallVector<SubobjectAdjustment, 2> Adjustments;
311     while (true) {
312       E = E->IgnoreParens();
313 
314       if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
315         if ((CE->getCastKind() == CK_DerivedToBase ||
316              CE->getCastKind() == CK_UncheckedDerivedToBase) &&
317             E->getType()->isRecordType()) {
318           E = CE->getSubExpr();
319           CXXRecordDecl *Derived
320             = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
321           Adjustments.push_back(SubobjectAdjustment(CE, Derived));
322           continue;
323         }
324 
325         if (CE->getCastKind() == CK_NoOp) {
326           E = CE->getSubExpr();
327           continue;
328         }
329       } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
330         if (!ME->isArrow() && ME->getBase()->isRValue()) {
331           assert(ME->getBase()->getType()->isRecordType());
332           if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
333             E = ME->getBase();
334             Adjustments.push_back(SubobjectAdjustment(Field));
335             continue;
336           }
337         }
338       }
339 
340       if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
341         if (opaque->getType()->isRecordType())
342           return CGF.EmitOpaqueValueLValue(opaque).getAddress();
343 
344       // Nothing changed.
345       break;
346     }
347 
348     // Create a reference temporary if necessary.
349     AggValueSlot AggSlot = AggValueSlot::ignored();
350     if (CGF.hasAggregateLLVMType(E->getType()) &&
351         !E->getType()->isAnyComplexType()) {
352       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
353                                                     InitializedDecl);
354       AggValueSlot::IsDestructed_t isDestructed
355         = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
356       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Qualifiers(),
357                                       isDestructed,
358                                       AggValueSlot::DoesNotNeedGCBarriers,
359                                       AggValueSlot::IsNotAliased);
360     }
361 
362     if (InitializedDecl) {
363       // Get the destructor for the reference temporary.
364       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
365         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
366         if (!ClassDecl->hasTrivialDestructor())
367           ReferenceTemporaryDtor = ClassDecl->getDestructor();
368       }
369     }
370 
371     RV = CGF.EmitAnyExpr(E, AggSlot);
372 
373     // Check if need to perform derived-to-base casts and/or field accesses, to
374     // get from the temporary object we created (and, potentially, for which we
375     // extended the lifetime) to the subobject we're binding the reference to.
376     if (!Adjustments.empty()) {
377       llvm::Value *Object = RV.getAggregateAddr();
378       for (unsigned I = Adjustments.size(); I != 0; --I) {
379         SubobjectAdjustment &Adjustment = Adjustments[I-1];
380         switch (Adjustment.Kind) {
381         case SubobjectAdjustment::DerivedToBaseAdjustment:
382           Object =
383               CGF.GetAddressOfBaseClass(Object,
384                                         Adjustment.DerivedToBase.DerivedClass,
385                               Adjustment.DerivedToBase.BasePath->path_begin(),
386                               Adjustment.DerivedToBase.BasePath->path_end(),
387                                         /*NullCheckValue=*/false);
388           break;
389 
390         case SubobjectAdjustment::FieldAdjustment: {
391           LValue LV =
392             CGF.EmitLValueForField(Object, Adjustment.Field, 0);
393           if (LV.isSimple()) {
394             Object = LV.getAddress();
395             break;
396           }
397 
398           // For non-simple lvalues, we actually have to create a copy of
399           // the object we're binding to.
400           QualType T = Adjustment.Field->getType().getNonReferenceType()
401                                                   .getUnqualifiedType();
402           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
403           LValue TempLV = CGF.MakeAddrLValue(Object,
404                                              Adjustment.Field->getType());
405           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
406           break;
407         }
408 
409         }
410       }
411 
412       return Object;
413     }
414   }
415 
416   if (RV.isAggregate())
417     return RV.getAggregateAddr();
418 
419   // Create a temporary variable that we can bind the reference to.
420   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
421                                                 InitializedDecl);
422 
423 
424   unsigned Alignment =
425     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
426   if (RV.isScalar())
427     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
428                           /*Volatile=*/false, Alignment, E->getType());
429   else
430     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
431                            /*Volatile=*/false);
432   return ReferenceTemporary;
433 }
434 
435 RValue
436 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
437                                             const NamedDecl *InitializedDecl) {
438   llvm::Value *ReferenceTemporary = 0;
439   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
440   QualType ObjCARCReferenceLifetimeType;
441   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
442                                                    ReferenceTemporaryDtor,
443                                                    ObjCARCReferenceLifetimeType,
444                                                    InitializedDecl);
445   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
446     return RValue::get(Value);
447 
448   // Make sure to call the destructor for the reference temporary.
449   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
450   if (VD && VD->hasGlobalStorage()) {
451     if (ReferenceTemporaryDtor) {
452       llvm::Constant *DtorFn =
453         CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
454       EmitCXXGlobalDtorRegistration(DtorFn,
455                                     cast<llvm::Constant>(ReferenceTemporary));
456     } else {
457       assert(!ObjCARCReferenceLifetimeType.isNull());
458       // Note: We intentionally do not register a global "destructor" to
459       // release the object.
460     }
461 
462     return RValue::get(Value);
463   }
464 
465   if (ReferenceTemporaryDtor)
466     PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
467   else {
468     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
469     case Qualifiers::OCL_None:
470       llvm_unreachable(
471                       "Not a reference temporary that needs to be deallocated");
472     case Qualifiers::OCL_ExplicitNone:
473     case Qualifiers::OCL_Autoreleasing:
474       // Nothing to do.
475       break;
476 
477     case Qualifiers::OCL_Strong: {
478       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
479       CleanupKind cleanupKind = getARCCleanupKind();
480       // This local is a GCC and MSVC compiler workaround.
481       Destroyer *destroyer = precise ? &destroyARCStrongPrecise :
482                                        &destroyARCStrongImprecise;
483       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
484                   *destroyer, cleanupKind & EHCleanup);
485       break;
486     }
487 
488     case Qualifiers::OCL_Weak: {
489       // This local is a GCC and MSVC compiler workaround.
490       Destroyer *destroyer = &destroyARCWeak;
491       // __weak objects always get EH cleanups; otherwise, exceptions
492       // could cause really nasty crashes instead of mere leaks.
493       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
494                   ObjCARCReferenceLifetimeType, *destroyer, true);
495       break;
496     }
497     }
498   }
499 
500   return RValue::get(Value);
501 }
502 
503 
504 /// getAccessedFieldNo - Given an encoded value and a result number, return the
505 /// input field number being accessed.
506 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
507                                              const llvm::Constant *Elts) {
508   if (isa<llvm::ConstantAggregateZero>(Elts))
509     return 0;
510 
511   return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
512 }
513 
514 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
515   if (!CatchUndefined)
516     return;
517 
518   // This needs to be to the standard address space.
519   Address = Builder.CreateBitCast(Address, Int8PtrTy);
520 
521   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
522 
523   // In time, people may want to control this and use a 1 here.
524   llvm::Value *Arg = Builder.getFalse();
525   llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
526   llvm::BasicBlock *Cont = createBasicBlock();
527   llvm::BasicBlock *Check = createBasicBlock();
528   llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
529   Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
530 
531   EmitBlock(Check);
532   Builder.CreateCondBr(Builder.CreateICmpUGE(C,
533                                         llvm::ConstantInt::get(IntPtrTy, Size)),
534                        Cont, getTrapBB());
535   EmitBlock(Cont);
536 }
537 
538 
539 CodeGenFunction::ComplexPairTy CodeGenFunction::
540 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
541                          bool isInc, bool isPre) {
542   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
543                                             LV.isVolatileQualified());
544 
545   llvm::Value *NextVal;
546   if (isa<llvm::IntegerType>(InVal.first->getType())) {
547     uint64_t AmountVal = isInc ? 1 : -1;
548     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
549 
550     // Add the inc/dec to the real part.
551     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
552   } else {
553     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
554     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
555     if (!isInc)
556       FVal.changeSign();
557     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
558 
559     // Add the inc/dec to the real part.
560     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
561   }
562 
563   ComplexPairTy IncVal(NextVal, InVal.second);
564 
565   // Store the updated result through the lvalue.
566   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
567 
568   // If this is a postinc, return the value read from memory, otherwise use the
569   // updated value.
570   return isPre ? IncVal : InVal;
571 }
572 
573 
574 //===----------------------------------------------------------------------===//
575 //                         LValue Expression Emission
576 //===----------------------------------------------------------------------===//
577 
578 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
579   if (Ty->isVoidType())
580     return RValue::get(0);
581 
582   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
583     llvm::Type *EltTy = ConvertType(CTy->getElementType());
584     llvm::Value *U = llvm::UndefValue::get(EltTy);
585     return RValue::getComplex(std::make_pair(U, U));
586   }
587 
588   // If this is a use of an undefined aggregate type, the aggregate must have an
589   // identifiable address.  Just because the contents of the value are undefined
590   // doesn't mean that the address can't be taken and compared.
591   if (hasAggregateLLVMType(Ty)) {
592     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
593     return RValue::getAggregate(DestPtr);
594   }
595 
596   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
597 }
598 
599 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
600                                               const char *Name) {
601   ErrorUnsupported(E, Name);
602   return GetUndefRValue(E->getType());
603 }
604 
605 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
606                                               const char *Name) {
607   ErrorUnsupported(E, Name);
608   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
609   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
610 }
611 
612 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
613   LValue LV = EmitLValue(E);
614   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
615     EmitCheck(LV.getAddress(),
616               getContext().getTypeSizeInChars(E->getType()).getQuantity());
617   return LV;
618 }
619 
620 /// EmitLValue - Emit code to compute a designator that specifies the location
621 /// of the expression.
622 ///
623 /// This can return one of two things: a simple address or a bitfield reference.
624 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
625 /// an LLVM pointer type.
626 ///
627 /// If this returns a bitfield reference, nothing about the pointee type of the
628 /// LLVM value is known: For example, it may not be a pointer to an integer.
629 ///
630 /// If this returns a normal address, and if the lvalue's C type is fixed size,
631 /// this method guarantees that the returned pointer type will point to an LLVM
632 /// type of the same size of the lvalue's type.  If the lvalue has a variable
633 /// length type, this is not possible.
634 ///
635 LValue CodeGenFunction::EmitLValue(const Expr *E) {
636   switch (E->getStmtClass()) {
637   default: return EmitUnsupportedLValue(E, "l-value expression");
638 
639   case Expr::ObjCPropertyRefExprClass:
640     llvm_unreachable("cannot emit a property reference directly");
641 
642   case Expr::ObjCSelectorExprClass:
643   return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
644   case Expr::ObjCIsaExprClass:
645     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
646   case Expr::BinaryOperatorClass:
647     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
648   case Expr::CompoundAssignOperatorClass:
649     if (!E->getType()->isAnyComplexType())
650       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
651     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
652   case Expr::CallExprClass:
653   case Expr::CXXMemberCallExprClass:
654   case Expr::CXXOperatorCallExprClass:
655     return EmitCallExprLValue(cast<CallExpr>(E));
656   case Expr::VAArgExprClass:
657     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
658   case Expr::DeclRefExprClass:
659     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
660   case Expr::ParenExprClass:
661     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
662   case Expr::GenericSelectionExprClass:
663     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
664   case Expr::PredefinedExprClass:
665     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
666   case Expr::StringLiteralClass:
667     return EmitStringLiteralLValue(cast<StringLiteral>(E));
668   case Expr::ObjCEncodeExprClass:
669     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
670   case Expr::PseudoObjectExprClass:
671     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
672 
673   case Expr::BlockDeclRefExprClass:
674     return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
675 
676   case Expr::CXXTemporaryObjectExprClass:
677   case Expr::CXXConstructExprClass:
678     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
679   case Expr::CXXBindTemporaryExprClass:
680     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
681 
682   case Expr::ExprWithCleanupsClass: {
683     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
684     enterFullExpression(cleanups);
685     RunCleanupsScope Scope(*this);
686     return EmitLValue(cleanups->getSubExpr());
687   }
688 
689   case Expr::CXXScalarValueInitExprClass:
690     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
691   case Expr::CXXDefaultArgExprClass:
692     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
693   case Expr::CXXTypeidExprClass:
694     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
695 
696   case Expr::ObjCMessageExprClass:
697     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
698   case Expr::ObjCIvarRefExprClass:
699     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
700   case Expr::StmtExprClass:
701     return EmitStmtExprLValue(cast<StmtExpr>(E));
702   case Expr::UnaryOperatorClass:
703     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
704   case Expr::ArraySubscriptExprClass:
705     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
706   case Expr::ExtVectorElementExprClass:
707     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
708   case Expr::MemberExprClass:
709     return EmitMemberExpr(cast<MemberExpr>(E));
710   case Expr::CompoundLiteralExprClass:
711     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
712   case Expr::ConditionalOperatorClass:
713     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
714   case Expr::BinaryConditionalOperatorClass:
715     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
716   case Expr::ChooseExprClass:
717     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
718   case Expr::OpaqueValueExprClass:
719     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
720   case Expr::SubstNonTypeTemplateParmExprClass:
721     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
722   case Expr::ImplicitCastExprClass:
723   case Expr::CStyleCastExprClass:
724   case Expr::CXXFunctionalCastExprClass:
725   case Expr::CXXStaticCastExprClass:
726   case Expr::CXXDynamicCastExprClass:
727   case Expr::CXXReinterpretCastExprClass:
728   case Expr::CXXConstCastExprClass:
729   case Expr::ObjCBridgedCastExprClass:
730     return EmitCastLValue(cast<CastExpr>(E));
731 
732   case Expr::MaterializeTemporaryExprClass:
733     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
734   }
735 }
736 
737 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
738   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
739                           lvalue.getAlignment(), lvalue.getType(),
740                           lvalue.getTBAAInfo());
741 }
742 
743 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
744                                               unsigned Alignment, QualType Ty,
745                                               llvm::MDNode *TBAAInfo) {
746   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
747   if (Volatile)
748     Load->setVolatile(true);
749   if (Alignment)
750     Load->setAlignment(Alignment);
751   if (TBAAInfo)
752     CGM.DecorateInstruction(Load, TBAAInfo);
753 
754   return EmitFromMemory(Load, Ty);
755 }
756 
757 static bool isBooleanUnderlyingType(QualType Ty) {
758   if (const EnumType *ET = dyn_cast<EnumType>(Ty))
759     return ET->getDecl()->getIntegerType()->isBooleanType();
760   return false;
761 }
762 
763 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
764   // Bool has a different representation in memory than in registers.
765   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
766     // This should really always be an i1, but sometimes it's already
767     // an i8, and it's awkward to track those cases down.
768     if (Value->getType()->isIntegerTy(1))
769       return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
770     assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
771   }
772 
773   return Value;
774 }
775 
776 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
777   // Bool has a different representation in memory than in registers.
778   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
779     assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
780     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
781   }
782 
783   return Value;
784 }
785 
786 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
787                                         bool Volatile, unsigned Alignment,
788                                         QualType Ty,
789                                         llvm::MDNode *TBAAInfo) {
790   Value = EmitToMemory(Value, Ty);
791 
792   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
793   if (Alignment)
794     Store->setAlignment(Alignment);
795   if (TBAAInfo)
796     CGM.DecorateInstruction(Store, TBAAInfo);
797 }
798 
799 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue) {
800   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
801                     lvalue.getAlignment(), lvalue.getType(),
802                     lvalue.getTBAAInfo());
803 }
804 
805 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
806 /// method emits the address of the lvalue, then loads the result as an rvalue,
807 /// returning the rvalue.
808 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
809   if (LV.isObjCWeak()) {
810     // load of a __weak object.
811     llvm::Value *AddrWeakObj = LV.getAddress();
812     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
813                                                              AddrWeakObj));
814   }
815   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
816     return RValue::get(EmitARCLoadWeak(LV.getAddress()));
817 
818   if (LV.isSimple()) {
819     assert(!LV.getType()->isFunctionType());
820 
821     // Everything needs a load.
822     return RValue::get(EmitLoadOfScalar(LV));
823   }
824 
825   if (LV.isVectorElt()) {
826     llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
827                                           LV.isVolatileQualified());
828     return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
829                                                     "vecext"));
830   }
831 
832   // If this is a reference to a subset of the elements of a vector, either
833   // shuffle the input or extract/insert them as appropriate.
834   if (LV.isExtVectorElt())
835     return EmitLoadOfExtVectorElementLValue(LV);
836 
837   assert(LV.isBitField() && "Unknown LValue type!");
838   return EmitLoadOfBitfieldLValue(LV);
839 }
840 
841 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
842   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
843 
844   // Get the output type.
845   llvm::Type *ResLTy = ConvertType(LV.getType());
846   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
847 
848   // Compute the result as an OR of all of the individual component accesses.
849   llvm::Value *Res = 0;
850   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
851     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
852 
853     // Get the field pointer.
854     llvm::Value *Ptr = LV.getBitFieldBaseAddr();
855 
856     // Only offset by the field index if used, so that incoming values are not
857     // required to be structures.
858     if (AI.FieldIndex)
859       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
860 
861     // Offset by the byte offset, if used.
862     if (!AI.FieldByteOffset.isZero()) {
863       Ptr = EmitCastToVoidPtr(Ptr);
864       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
865                                        "bf.field.offs");
866     }
867 
868     // Cast to the access type.
869     llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(),
870                                                      AI.AccessWidth,
871                        CGM.getContext().getTargetAddressSpace(LV.getType()));
872     Ptr = Builder.CreateBitCast(Ptr, PTy);
873 
874     // Perform the load.
875     llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
876     if (!AI.AccessAlignment.isZero())
877       Load->setAlignment(AI.AccessAlignment.getQuantity());
878 
879     // Shift out unused low bits and mask out unused high bits.
880     llvm::Value *Val = Load;
881     if (AI.FieldBitStart)
882       Val = Builder.CreateLShr(Load, AI.FieldBitStart);
883     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
884                                                             AI.TargetBitWidth),
885                             "bf.clear");
886 
887     // Extend or truncate to the target size.
888     if (AI.AccessWidth < ResSizeInBits)
889       Val = Builder.CreateZExt(Val, ResLTy);
890     else if (AI.AccessWidth > ResSizeInBits)
891       Val = Builder.CreateTrunc(Val, ResLTy);
892 
893     // Shift into place, and OR into the result.
894     if (AI.TargetBitOffset)
895       Val = Builder.CreateShl(Val, AI.TargetBitOffset);
896     Res = Res ? Builder.CreateOr(Res, Val) : Val;
897   }
898 
899   // If the bit-field is signed, perform the sign-extension.
900   //
901   // FIXME: This can easily be folded into the load of the high bits, which
902   // could also eliminate the mask of high bits in some situations.
903   if (Info.isSigned()) {
904     unsigned ExtraBits = ResSizeInBits - Info.getSize();
905     if (ExtraBits)
906       Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
907                                ExtraBits, "bf.val.sext");
908   }
909 
910   return RValue::get(Res);
911 }
912 
913 // If this is a reference to a subset of the elements of a vector, create an
914 // appropriate shufflevector.
915 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
916   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
917                                         LV.isVolatileQualified());
918 
919   const llvm::Constant *Elts = LV.getExtVectorElts();
920 
921   // If the result of the expression is a non-vector type, we must be extracting
922   // a single element.  Just codegen as an extractelement.
923   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
924   if (!ExprVT) {
925     unsigned InIdx = getAccessedFieldNo(0, Elts);
926     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
927     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
928   }
929 
930   // Always use shuffle vector to try to retain the original program structure
931   unsigned NumResultElts = ExprVT->getNumElements();
932 
933   SmallVector<llvm::Constant*, 4> Mask;
934   for (unsigned i = 0; i != NumResultElts; ++i) {
935     unsigned InIdx = getAccessedFieldNo(i, Elts);
936     Mask.push_back(llvm::ConstantInt::get(Int32Ty, InIdx));
937   }
938 
939   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
940   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
941                                     MaskV);
942   return RValue::get(Vec);
943 }
944 
945 
946 
947 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
948 /// lvalue, where both are guaranteed to the have the same type, and that type
949 /// is 'Ty'.
950 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst) {
951   if (!Dst.isSimple()) {
952     if (Dst.isVectorElt()) {
953       // Read/modify/write the vector, inserting the new element.
954       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
955                                             Dst.isVolatileQualified());
956       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
957                                         Dst.getVectorIdx(), "vecins");
958       Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
959       return;
960     }
961 
962     // If this is an update of extended vector elements, insert them as
963     // appropriate.
964     if (Dst.isExtVectorElt())
965       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
966 
967     assert(Dst.isBitField() && "Unknown LValue type");
968     return EmitStoreThroughBitfieldLValue(Src, Dst);
969   }
970 
971   // There's special magic for assigning into an ARC-qualified l-value.
972   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
973     switch (Lifetime) {
974     case Qualifiers::OCL_None:
975       llvm_unreachable("present but none");
976 
977     case Qualifiers::OCL_ExplicitNone:
978       // nothing special
979       break;
980 
981     case Qualifiers::OCL_Strong:
982       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
983       return;
984 
985     case Qualifiers::OCL_Weak:
986       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
987       return;
988 
989     case Qualifiers::OCL_Autoreleasing:
990       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
991                                                      Src.getScalarVal()));
992       // fall into the normal path
993       break;
994     }
995   }
996 
997   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
998     // load of a __weak object.
999     llvm::Value *LvalueDst = Dst.getAddress();
1000     llvm::Value *src = Src.getScalarVal();
1001      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1002     return;
1003   }
1004 
1005   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1006     // load of a __strong object.
1007     llvm::Value *LvalueDst = Dst.getAddress();
1008     llvm::Value *src = Src.getScalarVal();
1009     if (Dst.isObjCIvar()) {
1010       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1011       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1012       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1013       llvm::Value *dst = RHS;
1014       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1015       llvm::Value *LHS =
1016         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1017       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1018       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1019                                               BytesBetween);
1020     } else if (Dst.isGlobalObjCRef()) {
1021       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1022                                                 Dst.isThreadLocalRef());
1023     }
1024     else
1025       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1026     return;
1027   }
1028 
1029   assert(Src.isScalar() && "Can't emit an agg store with this method");
1030   EmitStoreOfScalar(Src.getScalarVal(), Dst);
1031 }
1032 
1033 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1034                                                      llvm::Value **Result) {
1035   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1036 
1037   // Get the output type.
1038   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1039   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1040 
1041   // Get the source value, truncated to the width of the bit-field.
1042   llvm::Value *SrcVal = Src.getScalarVal();
1043 
1044   if (Dst.getType()->isBooleanType())
1045     SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1046 
1047   SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1048                                                                 Info.getSize()),
1049                              "bf.value");
1050 
1051   // Return the new value of the bit-field, if requested.
1052   if (Result) {
1053     // Cast back to the proper type for result.
1054     llvm::Type *SrcTy = Src.getScalarVal()->getType();
1055     llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1056                                                    "bf.reload.val");
1057 
1058     // Sign extend if necessary.
1059     if (Info.isSigned()) {
1060       unsigned ExtraBits = ResSizeInBits - Info.getSize();
1061       if (ExtraBits)
1062         ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1063                                        ExtraBits, "bf.reload.sext");
1064     }
1065 
1066     *Result = ReloadVal;
1067   }
1068 
1069   // Iterate over the components, writing each piece to memory.
1070   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1071     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1072 
1073     // Get the field pointer.
1074     llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1075     unsigned addressSpace =
1076       cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1077 
1078     // Only offset by the field index if used, so that incoming values are not
1079     // required to be structures.
1080     if (AI.FieldIndex)
1081       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1082 
1083     // Offset by the byte offset, if used.
1084     if (!AI.FieldByteOffset.isZero()) {
1085       Ptr = EmitCastToVoidPtr(Ptr);
1086       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1087                                        "bf.field.offs");
1088     }
1089 
1090     // Cast to the access type.
1091     llvm::Type *AccessLTy =
1092       llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1093 
1094     llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1095     Ptr = Builder.CreateBitCast(Ptr, PTy);
1096 
1097     // Extract the piece of the bit-field value to write in this access, limited
1098     // to the values that are part of this access.
1099     llvm::Value *Val = SrcVal;
1100     if (AI.TargetBitOffset)
1101       Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1102     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1103                                                             AI.TargetBitWidth));
1104 
1105     // Extend or truncate to the access size.
1106     if (ResSizeInBits < AI.AccessWidth)
1107       Val = Builder.CreateZExt(Val, AccessLTy);
1108     else if (ResSizeInBits > AI.AccessWidth)
1109       Val = Builder.CreateTrunc(Val, AccessLTy);
1110 
1111     // Shift into the position in memory.
1112     if (AI.FieldBitStart)
1113       Val = Builder.CreateShl(Val, AI.FieldBitStart);
1114 
1115     // If necessary, load and OR in bits that are outside of the bit-field.
1116     if (AI.TargetBitWidth != AI.AccessWidth) {
1117       llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1118       if (!AI.AccessAlignment.isZero())
1119         Load->setAlignment(AI.AccessAlignment.getQuantity());
1120 
1121       // Compute the mask for zeroing the bits that are part of the bit-field.
1122       llvm::APInt InvMask =
1123         ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1124                                  AI.FieldBitStart + AI.TargetBitWidth);
1125 
1126       // Apply the mask and OR in to the value to write.
1127       Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1128     }
1129 
1130     // Write the value.
1131     llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1132                                                  Dst.isVolatileQualified());
1133     if (!AI.AccessAlignment.isZero())
1134       Store->setAlignment(AI.AccessAlignment.getQuantity());
1135   }
1136 }
1137 
1138 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1139                                                                LValue Dst) {
1140   // This access turns into a read/modify/write of the vector.  Load the input
1141   // value now.
1142   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
1143                                         Dst.isVolatileQualified());
1144   const llvm::Constant *Elts = Dst.getExtVectorElts();
1145 
1146   llvm::Value *SrcVal = Src.getScalarVal();
1147 
1148   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1149     unsigned NumSrcElts = VTy->getNumElements();
1150     unsigned NumDstElts =
1151        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1152     if (NumDstElts == NumSrcElts) {
1153       // Use shuffle vector is the src and destination are the same number of
1154       // elements and restore the vector mask since it is on the side it will be
1155       // stored.
1156       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1157       for (unsigned i = 0; i != NumSrcElts; ++i) {
1158         unsigned InIdx = getAccessedFieldNo(i, Elts);
1159         Mask[InIdx] = llvm::ConstantInt::get(Int32Ty, i);
1160       }
1161 
1162       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1163       Vec = Builder.CreateShuffleVector(SrcVal,
1164                                         llvm::UndefValue::get(Vec->getType()),
1165                                         MaskV);
1166     } else if (NumDstElts > NumSrcElts) {
1167       // Extended the source vector to the same length and then shuffle it
1168       // into the destination.
1169       // FIXME: since we're shuffling with undef, can we just use the indices
1170       //        into that?  This could be simpler.
1171       SmallVector<llvm::Constant*, 4> ExtMask;
1172       unsigned i;
1173       for (i = 0; i != NumSrcElts; ++i)
1174         ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1175       for (; i != NumDstElts; ++i)
1176         ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
1177       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1178       llvm::Value *ExtSrcVal =
1179         Builder.CreateShuffleVector(SrcVal,
1180                                     llvm::UndefValue::get(SrcVal->getType()),
1181                                     ExtMaskV);
1182       // build identity
1183       SmallVector<llvm::Constant*, 4> Mask;
1184       for (unsigned i = 0; i != NumDstElts; ++i)
1185         Mask.push_back(llvm::ConstantInt::get(Int32Ty, i));
1186 
1187       // modify when what gets shuffled in
1188       for (unsigned i = 0; i != NumSrcElts; ++i) {
1189         unsigned Idx = getAccessedFieldNo(i, Elts);
1190         Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts);
1191       }
1192       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1193       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1194     } else {
1195       // We should never shorten the vector
1196       llvm_unreachable("unexpected shorten vector length");
1197     }
1198   } else {
1199     // If the Src is a scalar (not a vector) it must be updating one element.
1200     unsigned InIdx = getAccessedFieldNo(0, Elts);
1201     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1202     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1203   }
1204 
1205   Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
1206 }
1207 
1208 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1209 // generating write-barries API. It is currently a global, ivar,
1210 // or neither.
1211 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1212                                  LValue &LV,
1213                                  bool IsMemberAccess=false) {
1214   if (Ctx.getLangOptions().getGC() == LangOptions::NonGC)
1215     return;
1216 
1217   if (isa<ObjCIvarRefExpr>(E)) {
1218     QualType ExpTy = E->getType();
1219     if (IsMemberAccess && ExpTy->isPointerType()) {
1220       // If ivar is a structure pointer, assigning to field of
1221       // this struct follows gcc's behavior and makes it a non-ivar
1222       // writer-barrier conservatively.
1223       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1224       if (ExpTy->isRecordType()) {
1225         LV.setObjCIvar(false);
1226         return;
1227       }
1228     }
1229     LV.setObjCIvar(true);
1230     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1231     LV.setBaseIvarExp(Exp->getBase());
1232     LV.setObjCArray(E->getType()->isArrayType());
1233     return;
1234   }
1235 
1236   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1237     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1238       if (VD->hasGlobalStorage()) {
1239         LV.setGlobalObjCRef(true);
1240         LV.setThreadLocalRef(VD->isThreadSpecified());
1241       }
1242     }
1243     LV.setObjCArray(E->getType()->isArrayType());
1244     return;
1245   }
1246 
1247   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1248     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1249     return;
1250   }
1251 
1252   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1253     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1254     if (LV.isObjCIvar()) {
1255       // If cast is to a structure pointer, follow gcc's behavior and make it
1256       // a non-ivar write-barrier.
1257       QualType ExpTy = E->getType();
1258       if (ExpTy->isPointerType())
1259         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1260       if (ExpTy->isRecordType())
1261         LV.setObjCIvar(false);
1262     }
1263     return;
1264   }
1265 
1266   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1267     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1268     return;
1269   }
1270 
1271   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1272     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1273     return;
1274   }
1275 
1276   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1277     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1278     return;
1279   }
1280 
1281   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1282     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1283     return;
1284   }
1285 
1286   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1287     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1288     if (LV.isObjCIvar() && !LV.isObjCArray())
1289       // Using array syntax to assigning to what an ivar points to is not
1290       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1291       LV.setObjCIvar(false);
1292     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1293       // Using array syntax to assigning to what global points to is not
1294       // same as assigning to the global itself. {id *G;} G[i] = 0;
1295       LV.setGlobalObjCRef(false);
1296     return;
1297   }
1298 
1299   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1300     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1301     // We don't know if member is an 'ivar', but this flag is looked at
1302     // only in the context of LV.isObjCIvar().
1303     LV.setObjCArray(E->getType()->isArrayType());
1304     return;
1305   }
1306 }
1307 
1308 static llvm::Value *
1309 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1310                                 llvm::Value *V, llvm::Type *IRType,
1311                                 StringRef Name = StringRef()) {
1312   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1313   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1314 }
1315 
1316 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1317                                       const Expr *E, const VarDecl *VD) {
1318   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1319          "Var decl must have external storage or be a file var decl!");
1320 
1321   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1322   if (VD->getType()->isReferenceType())
1323     V = CGF.Builder.CreateLoad(V);
1324 
1325   V = EmitBitCastOfLValueToProperType(CGF, V,
1326                                 CGF.getTypes().ConvertTypeForMem(E->getType()));
1327 
1328   unsigned Alignment = CGF.getContext().getDeclAlign(VD).getQuantity();
1329   LValue LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1330   setObjCGCLValueClass(CGF.getContext(), E, LV);
1331   return LV;
1332 }
1333 
1334 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1335                                      const Expr *E, const FunctionDecl *FD) {
1336   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1337   if (!FD->hasPrototype()) {
1338     if (const FunctionProtoType *Proto =
1339             FD->getType()->getAs<FunctionProtoType>()) {
1340       // Ugly case: for a K&R-style definition, the type of the definition
1341       // isn't the same as the type of a use.  Correct for this with a
1342       // bitcast.
1343       QualType NoProtoType =
1344           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1345       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1346       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1347     }
1348   }
1349   unsigned Alignment = CGF.getContext().getDeclAlign(FD).getQuantity();
1350   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1351 }
1352 
1353 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1354   const NamedDecl *ND = E->getDecl();
1355   unsigned Alignment = getContext().getDeclAlign(ND).getQuantity();
1356 
1357   if (ND->hasAttr<WeakRefAttr>()) {
1358     const ValueDecl *VD = cast<ValueDecl>(ND);
1359     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1360     return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1361   }
1362 
1363   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1364 
1365     // Check if this is a global variable.
1366     if (VD->hasExternalStorage() || VD->isFileVarDecl())
1367       return EmitGlobalVarDeclLValue(*this, E, VD);
1368 
1369     bool NonGCable = VD->hasLocalStorage() &&
1370                      !VD->getType()->isReferenceType() &&
1371                      !VD->hasAttr<BlocksAttr>();
1372 
1373     llvm::Value *V = LocalDeclMap[VD];
1374     if (!V && VD->isStaticLocal())
1375       V = CGM.getStaticLocalDeclAddress(VD);
1376     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1377 
1378     if (VD->hasAttr<BlocksAttr>())
1379       V = BuildBlockByrefAddress(V, VD);
1380 
1381     if (VD->getType()->isReferenceType())
1382       V = Builder.CreateLoad(V);
1383 
1384     V = EmitBitCastOfLValueToProperType(*this, V,
1385                                     getTypes().ConvertTypeForMem(E->getType()));
1386 
1387     LValue LV = MakeAddrLValue(V, E->getType(), Alignment);
1388     if (NonGCable) {
1389       LV.getQuals().removeObjCGCAttr();
1390       LV.setNonGC(true);
1391     }
1392     setObjCGCLValueClass(getContext(), E, LV);
1393     return LV;
1394   }
1395 
1396   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1397     return EmitFunctionDeclLValue(*this, E, fn);
1398 
1399   llvm_unreachable("Unhandled DeclRefExpr");
1400 
1401   // an invalid LValue, but the assert will
1402   // ensure that this point is never reached.
1403   return LValue();
1404 }
1405 
1406 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
1407   unsigned Alignment =
1408     getContext().getDeclAlign(E->getDecl()).getQuantity();
1409   return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment);
1410 }
1411 
1412 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1413   // __extension__ doesn't affect lvalue-ness.
1414   if (E->getOpcode() == UO_Extension)
1415     return EmitLValue(E->getSubExpr());
1416 
1417   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1418   switch (E->getOpcode()) {
1419   default: llvm_unreachable("Unknown unary operator lvalue!");
1420   case UO_Deref: {
1421     QualType T = E->getSubExpr()->getType()->getPointeeType();
1422     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1423 
1424     LValue LV = MakeAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1425     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1426 
1427     // We should not generate __weak write barrier on indirect reference
1428     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1429     // But, we continue to generate __strong write barrier on indirect write
1430     // into a pointer to object.
1431     if (getContext().getLangOptions().ObjC1 &&
1432         getContext().getLangOptions().getGC() != LangOptions::NonGC &&
1433         LV.isObjCWeak())
1434       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1435     return LV;
1436   }
1437   case UO_Real:
1438   case UO_Imag: {
1439     LValue LV = EmitLValue(E->getSubExpr());
1440     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1441     llvm::Value *Addr = LV.getAddress();
1442 
1443     // real and imag are valid on scalars.  This is a faster way of
1444     // testing that.
1445     if (!cast<llvm::PointerType>(Addr->getType())
1446            ->getElementType()->isStructTy()) {
1447       assert(E->getSubExpr()->getType()->isArithmeticType());
1448       return LV;
1449     }
1450 
1451     assert(E->getSubExpr()->getType()->isAnyComplexType());
1452 
1453     unsigned Idx = E->getOpcode() == UO_Imag;
1454     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1455                                                   Idx, "idx"),
1456                           ExprTy);
1457   }
1458   case UO_PreInc:
1459   case UO_PreDec: {
1460     LValue LV = EmitLValue(E->getSubExpr());
1461     bool isInc = E->getOpcode() == UO_PreInc;
1462 
1463     if (E->getType()->isAnyComplexType())
1464       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1465     else
1466       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1467     return LV;
1468   }
1469   }
1470 }
1471 
1472 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1473   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1474                         E->getType());
1475 }
1476 
1477 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1478   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1479                         E->getType());
1480 }
1481 
1482 
1483 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1484   switch (E->getIdentType()) {
1485   default:
1486     return EmitUnsupportedLValue(E, "predefined expression");
1487 
1488   case PredefinedExpr::Func:
1489   case PredefinedExpr::Function:
1490   case PredefinedExpr::PrettyFunction: {
1491     unsigned Type = E->getIdentType();
1492     std::string GlobalVarName;
1493 
1494     switch (Type) {
1495     default: llvm_unreachable("Invalid type");
1496     case PredefinedExpr::Func:
1497       GlobalVarName = "__func__.";
1498       break;
1499     case PredefinedExpr::Function:
1500       GlobalVarName = "__FUNCTION__.";
1501       break;
1502     case PredefinedExpr::PrettyFunction:
1503       GlobalVarName = "__PRETTY_FUNCTION__.";
1504       break;
1505     }
1506 
1507     StringRef FnName = CurFn->getName();
1508     if (FnName.startswith("\01"))
1509       FnName = FnName.substr(1);
1510     GlobalVarName += FnName;
1511 
1512     const Decl *CurDecl = CurCodeDecl;
1513     if (CurDecl == 0)
1514       CurDecl = getContext().getTranslationUnitDecl();
1515 
1516     std::string FunctionName =
1517         (isa<BlockDecl>(CurDecl)
1518          ? FnName.str()
1519          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
1520 
1521     llvm::Constant *C =
1522       CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1523     return MakeAddrLValue(C, E->getType());
1524   }
1525   }
1526 }
1527 
1528 llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1529   const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1530 
1531   // If we are not optimzing, don't collapse all calls to trap in the function
1532   // to the same call, that way, in the debugger they can see which operation
1533   // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1534   // to just one per function to save on codesize.
1535   if (GCO.OptimizationLevel && TrapBB)
1536     return TrapBB;
1537 
1538   llvm::BasicBlock *Cont = 0;
1539   if (HaveInsertPoint()) {
1540     Cont = createBasicBlock("cont");
1541     EmitBranch(Cont);
1542   }
1543   TrapBB = createBasicBlock("trap");
1544   EmitBlock(TrapBB);
1545 
1546   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
1547   llvm::CallInst *TrapCall = Builder.CreateCall(F);
1548   TrapCall->setDoesNotReturn();
1549   TrapCall->setDoesNotThrow();
1550   Builder.CreateUnreachable();
1551 
1552   if (Cont)
1553     EmitBlock(Cont);
1554   return TrapBB;
1555 }
1556 
1557 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1558 /// array to pointer, return the array subexpression.
1559 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1560   // If this isn't just an array->pointer decay, bail out.
1561   const CastExpr *CE = dyn_cast<CastExpr>(E);
1562   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1563     return 0;
1564 
1565   // If this is a decay from variable width array, bail out.
1566   const Expr *SubExpr = CE->getSubExpr();
1567   if (SubExpr->getType()->isVariableArrayType())
1568     return 0;
1569 
1570   return SubExpr;
1571 }
1572 
1573 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1574   // The index must always be an integer, which is not an aggregate.  Emit it.
1575   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1576   QualType IdxTy  = E->getIdx()->getType();
1577   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1578 
1579   // If the base is a vector type, then we are forming a vector element lvalue
1580   // with this subscript.
1581   if (E->getBase()->getType()->isVectorType()) {
1582     // Emit the vector as an lvalue to get its address.
1583     LValue LHS = EmitLValue(E->getBase());
1584     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1585     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1586     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1587                                  E->getBase()->getType());
1588   }
1589 
1590   // Extend or truncate the index type to 32 or 64-bits.
1591   if (Idx->getType() != IntPtrTy)
1592     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1593 
1594   // FIXME: As llvm implements the object size checking, this can come out.
1595   if (CatchUndefined) {
1596     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
1597       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1598         if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1599           if (const ConstantArrayType *CAT
1600               = getContext().getAsConstantArrayType(DRE->getType())) {
1601             llvm::APInt Size = CAT->getSize();
1602             llvm::BasicBlock *Cont = createBasicBlock("cont");
1603             Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1604                                   llvm::ConstantInt::get(Idx->getType(), Size)),
1605                                  Cont, getTrapBB());
1606             EmitBlock(Cont);
1607           }
1608         }
1609       }
1610     }
1611   }
1612 
1613   // We know that the pointer points to a type of the correct size, unless the
1614   // size is a VLA or Objective-C interface.
1615   llvm::Value *Address = 0;
1616   unsigned ArrayAlignment = 0;
1617   if (const VariableArrayType *vla =
1618         getContext().getAsVariableArrayType(E->getType())) {
1619     // The base must be a pointer, which is not an aggregate.  Emit
1620     // it.  It needs to be emitted first in case it's what captures
1621     // the VLA bounds.
1622     Address = EmitScalarExpr(E->getBase());
1623 
1624     // The element count here is the total number of non-VLA elements.
1625     llvm::Value *numElements = getVLASize(vla).first;
1626 
1627     // Effectively, the multiply by the VLA size is part of the GEP.
1628     // GEP indexes are signed, and scaling an index isn't permitted to
1629     // signed-overflow, so we use the same semantics for our explicit
1630     // multiply.  We suppress this if overflow is not undefined behavior.
1631     if (getLangOptions().isSignedOverflowDefined()) {
1632       Idx = Builder.CreateMul(Idx, numElements);
1633       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1634     } else {
1635       Idx = Builder.CreateNSWMul(Idx, numElements);
1636       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1637     }
1638   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1639     // Indexing over an interface, as in "NSString *P; P[4];"
1640     llvm::Value *InterfaceSize =
1641       llvm::ConstantInt::get(Idx->getType(),
1642           getContext().getTypeSizeInChars(OIT).getQuantity());
1643 
1644     Idx = Builder.CreateMul(Idx, InterfaceSize);
1645 
1646     // The base must be a pointer, which is not an aggregate.  Emit it.
1647     llvm::Value *Base = EmitScalarExpr(E->getBase());
1648     Address = EmitCastToVoidPtr(Base);
1649     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1650     Address = Builder.CreateBitCast(Address, Base->getType());
1651   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1652     // If this is A[i] where A is an array, the frontend will have decayed the
1653     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
1654     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1655     // "gep x, i" here.  Emit one "gep A, 0, i".
1656     assert(Array->getType()->isArrayType() &&
1657            "Array to pointer decay must have array source type!");
1658     LValue ArrayLV = EmitLValue(Array);
1659     llvm::Value *ArrayPtr = ArrayLV.getAddress();
1660     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1661     llvm::Value *Args[] = { Zero, Idx };
1662 
1663     // Propagate the alignment from the array itself to the result.
1664     ArrayAlignment = ArrayLV.getAlignment();
1665 
1666     if (getContext().getLangOptions().isSignedOverflowDefined())
1667       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
1668     else
1669       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
1670   } else {
1671     // The base must be a pointer, which is not an aggregate.  Emit it.
1672     llvm::Value *Base = EmitScalarExpr(E->getBase());
1673     if (getContext().getLangOptions().isSignedOverflowDefined())
1674       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
1675     else
1676       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1677   }
1678 
1679   QualType T = E->getBase()->getType()->getPointeeType();
1680   assert(!T.isNull() &&
1681          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1682 
1683   // Limit the alignment to that of the result type.
1684   if (ArrayAlignment) {
1685     unsigned Align = getContext().getTypeAlignInChars(T).getQuantity();
1686     ArrayAlignment = std::min(Align, ArrayAlignment);
1687   }
1688 
1689   LValue LV = MakeAddrLValue(Address, T, ArrayAlignment);
1690   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1691 
1692   if (getContext().getLangOptions().ObjC1 &&
1693       getContext().getLangOptions().getGC() != LangOptions::NonGC) {
1694     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1695     setObjCGCLValueClass(getContext(), E, LV);
1696   }
1697   return LV;
1698 }
1699 
1700 static
1701 llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
1702                                        SmallVector<unsigned, 4> &Elts) {
1703   SmallVector<llvm::Constant*, 4> CElts;
1704 
1705   llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
1706   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1707     CElts.push_back(llvm::ConstantInt::get(Int32Ty, Elts[i]));
1708 
1709   return llvm::ConstantVector::get(CElts);
1710 }
1711 
1712 LValue CodeGenFunction::
1713 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1714   // Emit the base vector as an l-value.
1715   LValue Base;
1716 
1717   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1718   if (E->isArrow()) {
1719     // If it is a pointer to a vector, emit the address and form an lvalue with
1720     // it.
1721     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1722     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1723     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1724     Base.getQuals().removeObjCGCAttr();
1725   } else if (E->getBase()->isGLValue()) {
1726     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1727     // emit the base as an lvalue.
1728     assert(E->getBase()->getType()->isVectorType());
1729     Base = EmitLValue(E->getBase());
1730   } else {
1731     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1732     assert(E->getBase()->getType()->isVectorType() &&
1733            "Result must be a vector");
1734     llvm::Value *Vec = EmitScalarExpr(E->getBase());
1735 
1736     // Store the vector to memory (because LValue wants an address).
1737     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1738     Builder.CreateStore(Vec, VecMem);
1739     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
1740   }
1741 
1742   QualType type =
1743     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
1744 
1745   // Encode the element access list into a vector of unsigned indices.
1746   SmallVector<unsigned, 4> Indices;
1747   E->getEncodedElementAccess(Indices);
1748 
1749   if (Base.isSimple()) {
1750     llvm::Constant *CV = GenerateConstantVector(getLLVMContext(), Indices);
1751     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type);
1752   }
1753   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1754 
1755   llvm::Constant *BaseElts = Base.getExtVectorElts();
1756   SmallVector<llvm::Constant *, 4> CElts;
1757 
1758   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1759     if (isa<llvm::ConstantAggregateZero>(BaseElts))
1760       CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0));
1761     else
1762       CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i])));
1763   }
1764   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
1765   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type);
1766 }
1767 
1768 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1769   bool isNonGC = false;
1770   Expr *BaseExpr = E->getBase();
1771   llvm::Value *BaseValue = NULL;
1772   Qualifiers BaseQuals;
1773 
1774   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1775   if (E->isArrow()) {
1776     BaseValue = EmitScalarExpr(BaseExpr);
1777     const PointerType *PTy =
1778       BaseExpr->getType()->getAs<PointerType>();
1779     BaseQuals = PTy->getPointeeType().getQualifiers();
1780   } else {
1781     LValue BaseLV = EmitLValue(BaseExpr);
1782     if (BaseLV.isNonGC())
1783       isNonGC = true;
1784     // FIXME: this isn't right for bitfields.
1785     BaseValue = BaseLV.getAddress();
1786     QualType BaseTy = BaseExpr->getType();
1787     BaseQuals = BaseTy.getQualifiers();
1788   }
1789 
1790   NamedDecl *ND = E->getMemberDecl();
1791   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1792     LValue LV = EmitLValueForField(BaseValue, Field,
1793                                    BaseQuals.getCVRQualifiers());
1794     LV.setNonGC(isNonGC);
1795     setObjCGCLValueClass(getContext(), E, LV);
1796     return LV;
1797   }
1798 
1799   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1800     return EmitGlobalVarDeclLValue(*this, E, VD);
1801 
1802   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1803     return EmitFunctionDeclLValue(*this, E, FD);
1804 
1805   llvm_unreachable("Unhandled member declaration!");
1806 }
1807 
1808 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
1809                                               const FieldDecl *Field,
1810                                               unsigned CVRQualifiers) {
1811   const CGRecordLayout &RL =
1812     CGM.getTypes().getCGRecordLayout(Field->getParent());
1813   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
1814   return LValue::MakeBitfield(BaseValue, Info,
1815                           Field->getType().withCVRQualifiers(CVRQualifiers));
1816 }
1817 
1818 /// EmitLValueForAnonRecordField - Given that the field is a member of
1819 /// an anonymous struct or union buried inside a record, and given
1820 /// that the base value is a pointer to the enclosing record, derive
1821 /// an lvalue for the ultimate field.
1822 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
1823                                              const IndirectFieldDecl *Field,
1824                                                      unsigned CVRQualifiers) {
1825   IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
1826     IEnd = Field->chain_end();
1827   while (true) {
1828     LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I),
1829                                    CVRQualifiers);
1830     if (++I == IEnd) return LV;
1831 
1832     assert(LV.isSimple());
1833     BaseValue = LV.getAddress();
1834     CVRQualifiers |= LV.getVRQualifiers();
1835   }
1836 }
1837 
1838 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr,
1839                                            const FieldDecl *field,
1840                                            unsigned cvr) {
1841   if (field->isBitField())
1842     return EmitLValueForBitfield(baseAddr, field, cvr);
1843 
1844   const RecordDecl *rec = field->getParent();
1845   QualType type = field->getType();
1846 
1847   bool mayAlias = rec->hasAttr<MayAliasAttr>();
1848 
1849   llvm::Value *addr = baseAddr;
1850   if (rec->isUnion()) {
1851     // For unions, there is no pointer adjustment.
1852     assert(!type->isReferenceType() && "union has reference member");
1853   } else {
1854     // For structs, we GEP to the field that the record layout suggests.
1855     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
1856     addr = Builder.CreateStructGEP(addr, idx, field->getName());
1857 
1858     // If this is a reference field, load the reference right now.
1859     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
1860       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
1861       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
1862 
1863       if (CGM.shouldUseTBAA()) {
1864         llvm::MDNode *tbaa;
1865         if (mayAlias)
1866           tbaa = CGM.getTBAAInfo(getContext().CharTy);
1867         else
1868           tbaa = CGM.getTBAAInfo(type);
1869         CGM.DecorateInstruction(load, tbaa);
1870       }
1871 
1872       addr = load;
1873       mayAlias = false;
1874       type = refType->getPointeeType();
1875       cvr = 0; // qualifiers don't recursively apply to referencee
1876     }
1877   }
1878 
1879   // Make sure that the address is pointing to the right type.  This is critical
1880   // for both unions and structs.  A union needs a bitcast, a struct element
1881   // will need a bitcast if the LLVM type laid out doesn't match the desired
1882   // type.
1883   addr = EmitBitCastOfLValueToProperType(*this, addr,
1884                                          CGM.getTypes().ConvertTypeForMem(type),
1885                                          field->getName());
1886 
1887   if (field->hasAttr<AnnotateAttr>())
1888     addr = EmitFieldAnnotations(field, addr);
1889 
1890   unsigned alignment = getContext().getDeclAlign(field).getQuantity();
1891   LValue LV = MakeAddrLValue(addr, type, alignment);
1892   LV.getQuals().addCVRQualifiers(cvr);
1893 
1894   // __weak attribute on a field is ignored.
1895   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
1896     LV.getQuals().removeObjCGCAttr();
1897 
1898   // Fields of may_alias structs act like 'char' for TBAA purposes.
1899   // FIXME: this should get propagated down through anonymous structs
1900   // and unions.
1901   if (mayAlias && LV.getTBAAInfo())
1902     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
1903 
1904   return LV;
1905 }
1906 
1907 LValue
1908 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue,
1909                                                   const FieldDecl *Field,
1910                                                   unsigned CVRQualifiers) {
1911   QualType FieldType = Field->getType();
1912 
1913   if (!FieldType->isReferenceType())
1914     return EmitLValueForField(BaseValue, Field, CVRQualifiers);
1915 
1916   const CGRecordLayout &RL =
1917     CGM.getTypes().getCGRecordLayout(Field->getParent());
1918   unsigned idx = RL.getLLVMFieldNo(Field);
1919   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx);
1920   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
1921 
1922 
1923   // Make sure that the address is pointing to the right type.  This is critical
1924   // for both unions and structs.  A union needs a bitcast, a struct element
1925   // will need a bitcast if the LLVM type laid out doesn't match the desired
1926   // type.
1927   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
1928   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1929   V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS));
1930 
1931   unsigned Alignment = getContext().getDeclAlign(Field).getQuantity();
1932   return MakeAddrLValue(V, FieldType, Alignment);
1933 }
1934 
1935 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
1936   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
1937   const Expr *InitExpr = E->getInitializer();
1938   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
1939 
1940   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
1941                    /*Init*/ true);
1942 
1943   return Result;
1944 }
1945 
1946 LValue CodeGenFunction::
1947 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
1948   if (!expr->isGLValue()) {
1949     // ?: here should be an aggregate.
1950     assert((hasAggregateLLVMType(expr->getType()) &&
1951             !expr->getType()->isAnyComplexType()) &&
1952            "Unexpected conditional operator!");
1953     return EmitAggExprToLValue(expr);
1954   }
1955 
1956   const Expr *condExpr = expr->getCond();
1957   bool CondExprBool;
1958   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
1959     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
1960     if (!CondExprBool) std::swap(live, dead);
1961 
1962     if (!ContainsLabel(dead))
1963       return EmitLValue(live);
1964   }
1965 
1966   OpaqueValueMapping binding(*this, expr);
1967 
1968   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
1969   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
1970   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
1971 
1972   ConditionalEvaluation eval(*this);
1973   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
1974 
1975   // Any temporaries created here are conditional.
1976   EmitBlock(lhsBlock);
1977   eval.begin(*this);
1978   LValue lhs = EmitLValue(expr->getTrueExpr());
1979   eval.end(*this);
1980 
1981   if (!lhs.isSimple())
1982     return EmitUnsupportedLValue(expr, "conditional operator");
1983 
1984   lhsBlock = Builder.GetInsertBlock();
1985   Builder.CreateBr(contBlock);
1986 
1987   // Any temporaries created here are conditional.
1988   EmitBlock(rhsBlock);
1989   eval.begin(*this);
1990   LValue rhs = EmitLValue(expr->getFalseExpr());
1991   eval.end(*this);
1992   if (!rhs.isSimple())
1993     return EmitUnsupportedLValue(expr, "conditional operator");
1994   rhsBlock = Builder.GetInsertBlock();
1995 
1996   EmitBlock(contBlock);
1997 
1998   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
1999                                          "cond-lvalue");
2000   phi->addIncoming(lhs.getAddress(), lhsBlock);
2001   phi->addIncoming(rhs.getAddress(), rhsBlock);
2002   return MakeAddrLValue(phi, expr->getType());
2003 }
2004 
2005 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
2006 /// If the cast is a dynamic_cast, we can have the usual lvalue result,
2007 /// otherwise if a cast is needed by the code generator in an lvalue context,
2008 /// then it must mean that we need the address of an aggregate in order to
2009 /// access one of its fields.  This can happen for all the reasons that casts
2010 /// are permitted with aggregate result, including noop aggregate casts, and
2011 /// cast from scalar to union.
2012 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2013   switch (E->getCastKind()) {
2014   case CK_ToVoid:
2015     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2016 
2017   case CK_Dependent:
2018     llvm_unreachable("dependent cast kind in IR gen!");
2019 
2020   case CK_NoOp:
2021   case CK_LValueToRValue:
2022     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2023         || E->getType()->isRecordType())
2024       return EmitLValue(E->getSubExpr());
2025     // Fall through to synthesize a temporary.
2026 
2027   case CK_BitCast:
2028   case CK_ArrayToPointerDecay:
2029   case CK_FunctionToPointerDecay:
2030   case CK_NullToMemberPointer:
2031   case CK_NullToPointer:
2032   case CK_IntegralToPointer:
2033   case CK_PointerToIntegral:
2034   case CK_PointerToBoolean:
2035   case CK_VectorSplat:
2036   case CK_IntegralCast:
2037   case CK_IntegralToBoolean:
2038   case CK_IntegralToFloating:
2039   case CK_FloatingToIntegral:
2040   case CK_FloatingToBoolean:
2041   case CK_FloatingCast:
2042   case CK_FloatingRealToComplex:
2043   case CK_FloatingComplexToReal:
2044   case CK_FloatingComplexToBoolean:
2045   case CK_FloatingComplexCast:
2046   case CK_FloatingComplexToIntegralComplex:
2047   case CK_IntegralRealToComplex:
2048   case CK_IntegralComplexToReal:
2049   case CK_IntegralComplexToBoolean:
2050   case CK_IntegralComplexCast:
2051   case CK_IntegralComplexToFloatingComplex:
2052   case CK_DerivedToBaseMemberPointer:
2053   case CK_BaseToDerivedMemberPointer:
2054   case CK_MemberPointerToBoolean:
2055   case CK_AnyPointerToBlockPointerCast:
2056   case CK_ARCProduceObject:
2057   case CK_ARCConsumeObject:
2058   case CK_ARCReclaimReturnedObject:
2059   case CK_ARCExtendBlockObject: {
2060     // These casts only produce lvalues when we're binding a reference to a
2061     // temporary realized from a (converted) pure rvalue. Emit the expression
2062     // as a value, copy it into a temporary, and return an lvalue referring to
2063     // that temporary.
2064     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2065     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2066     return MakeAddrLValue(V, E->getType());
2067   }
2068 
2069   case CK_Dynamic: {
2070     LValue LV = EmitLValue(E->getSubExpr());
2071     llvm::Value *V = LV.getAddress();
2072     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2073     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2074   }
2075 
2076   case CK_ConstructorConversion:
2077   case CK_UserDefinedConversion:
2078   case CK_CPointerToObjCPointerCast:
2079   case CK_BlockPointerToObjCPointerCast:
2080     return EmitLValue(E->getSubExpr());
2081 
2082   case CK_UncheckedDerivedToBase:
2083   case CK_DerivedToBase: {
2084     const RecordType *DerivedClassTy =
2085       E->getSubExpr()->getType()->getAs<RecordType>();
2086     CXXRecordDecl *DerivedClassDecl =
2087       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2088 
2089     LValue LV = EmitLValue(E->getSubExpr());
2090     llvm::Value *This = LV.getAddress();
2091 
2092     // Perform the derived-to-base conversion
2093     llvm::Value *Base =
2094       GetAddressOfBaseClass(This, DerivedClassDecl,
2095                             E->path_begin(), E->path_end(),
2096                             /*NullCheckValue=*/false);
2097 
2098     return MakeAddrLValue(Base, E->getType());
2099   }
2100   case CK_ToUnion:
2101     return EmitAggExprToLValue(E);
2102   case CK_BaseToDerived: {
2103     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2104     CXXRecordDecl *DerivedClassDecl =
2105       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2106 
2107     LValue LV = EmitLValue(E->getSubExpr());
2108 
2109     // Perform the base-to-derived conversion
2110     llvm::Value *Derived =
2111       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2112                                E->path_begin(), E->path_end(),
2113                                /*NullCheckValue=*/false);
2114 
2115     return MakeAddrLValue(Derived, E->getType());
2116   }
2117   case CK_LValueBitCast: {
2118     // This must be a reinterpret_cast (or c-style equivalent).
2119     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2120 
2121     LValue LV = EmitLValue(E->getSubExpr());
2122     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2123                                            ConvertType(CE->getTypeAsWritten()));
2124     return MakeAddrLValue(V, E->getType());
2125   }
2126   case CK_ObjCObjectLValueCast: {
2127     LValue LV = EmitLValue(E->getSubExpr());
2128     QualType ToType = getContext().getLValueReferenceType(E->getType());
2129     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2130                                            ConvertType(ToType));
2131     return MakeAddrLValue(V, E->getType());
2132   }
2133   }
2134 
2135   llvm_unreachable("Unhandled lvalue cast kind?");
2136 }
2137 
2138 LValue CodeGenFunction::EmitNullInitializationLValue(
2139                                               const CXXScalarValueInitExpr *E) {
2140   QualType Ty = E->getType();
2141   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2142   EmitNullInitialization(LV.getAddress(), Ty);
2143   return LV;
2144 }
2145 
2146 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2147   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2148   return getOpaqueLValueMapping(e);
2149 }
2150 
2151 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2152                                            const MaterializeTemporaryExpr *E) {
2153   RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2154   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2155 }
2156 
2157 
2158 //===--------------------------------------------------------------------===//
2159 //                             Expression Emission
2160 //===--------------------------------------------------------------------===//
2161 
2162 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2163                                      ReturnValueSlot ReturnValue) {
2164   if (CGDebugInfo *DI = getDebugInfo())
2165     DI->EmitLocation(Builder, E->getLocStart());
2166 
2167   // Builtins never have block type.
2168   if (E->getCallee()->getType()->isBlockPointerType())
2169     return EmitBlockCallExpr(E, ReturnValue);
2170 
2171   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2172     return EmitCXXMemberCallExpr(CE, ReturnValue);
2173 
2174   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2175     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2176 
2177   const Decl *TargetDecl = E->getCalleeDecl();
2178   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2179     if (unsigned builtinID = FD->getBuiltinID())
2180       return EmitBuiltinExpr(FD, builtinID, E);
2181   }
2182 
2183   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2184     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2185       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2186 
2187   if (const CXXPseudoDestructorExpr *PseudoDtor
2188           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2189     QualType DestroyedType = PseudoDtor->getDestroyedType();
2190     if (getContext().getLangOptions().ObjCAutoRefCount &&
2191         DestroyedType->isObjCLifetimeType() &&
2192         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2193          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2194       // Automatic Reference Counting:
2195       //   If the pseudo-expression names a retainable object with weak or
2196       //   strong lifetime, the object shall be released.
2197       Expr *BaseExpr = PseudoDtor->getBase();
2198       llvm::Value *BaseValue = NULL;
2199       Qualifiers BaseQuals;
2200 
2201       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2202       if (PseudoDtor->isArrow()) {
2203         BaseValue = EmitScalarExpr(BaseExpr);
2204         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2205         BaseQuals = PTy->getPointeeType().getQualifiers();
2206       } else {
2207         LValue BaseLV = EmitLValue(BaseExpr);
2208         BaseValue = BaseLV.getAddress();
2209         QualType BaseTy = BaseExpr->getType();
2210         BaseQuals = BaseTy.getQualifiers();
2211       }
2212 
2213       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2214       case Qualifiers::OCL_None:
2215       case Qualifiers::OCL_ExplicitNone:
2216       case Qualifiers::OCL_Autoreleasing:
2217         break;
2218 
2219       case Qualifiers::OCL_Strong:
2220         EmitARCRelease(Builder.CreateLoad(BaseValue,
2221                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2222                        /*precise*/ true);
2223         break;
2224 
2225       case Qualifiers::OCL_Weak:
2226         EmitARCDestroyWeak(BaseValue);
2227         break;
2228       }
2229     } else {
2230       // C++ [expr.pseudo]p1:
2231       //   The result shall only be used as the operand for the function call
2232       //   operator (), and the result of such a call has type void. The only
2233       //   effect is the evaluation of the postfix-expression before the dot or
2234       //   arrow.
2235       EmitScalarExpr(E->getCallee());
2236     }
2237 
2238     return RValue::get(0);
2239   }
2240 
2241   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2242   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2243                   E->arg_begin(), E->arg_end(), TargetDecl);
2244 }
2245 
2246 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2247   // Comma expressions just emit their LHS then their RHS as an l-value.
2248   if (E->getOpcode() == BO_Comma) {
2249     EmitIgnoredExpr(E->getLHS());
2250     EnsureInsertPoint();
2251     return EmitLValue(E->getRHS());
2252   }
2253 
2254   if (E->getOpcode() == BO_PtrMemD ||
2255       E->getOpcode() == BO_PtrMemI)
2256     return EmitPointerToDataMemberBinaryExpr(E);
2257 
2258   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2259 
2260   // Note that in all of these cases, __block variables need the RHS
2261   // evaluated first just in case the variable gets moved by the RHS.
2262 
2263   if (!hasAggregateLLVMType(E->getType())) {
2264     switch (E->getLHS()->getType().getObjCLifetime()) {
2265     case Qualifiers::OCL_Strong:
2266       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2267 
2268     case Qualifiers::OCL_Autoreleasing:
2269       return EmitARCStoreAutoreleasing(E).first;
2270 
2271     // No reason to do any of these differently.
2272     case Qualifiers::OCL_None:
2273     case Qualifiers::OCL_ExplicitNone:
2274     case Qualifiers::OCL_Weak:
2275       break;
2276     }
2277 
2278     RValue RV = EmitAnyExpr(E->getRHS());
2279     LValue LV = EmitLValue(E->getLHS());
2280     EmitStoreThroughLValue(RV, LV);
2281     return LV;
2282   }
2283 
2284   if (E->getType()->isAnyComplexType())
2285     return EmitComplexAssignmentLValue(E);
2286 
2287   return EmitAggExprToLValue(E);
2288 }
2289 
2290 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2291   RValue RV = EmitCallExpr(E);
2292 
2293   if (!RV.isScalar())
2294     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2295 
2296   assert(E->getCallReturnType()->isReferenceType() &&
2297          "Can't have a scalar return unless the return type is a "
2298          "reference type!");
2299 
2300   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2301 }
2302 
2303 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2304   // FIXME: This shouldn't require another copy.
2305   return EmitAggExprToLValue(E);
2306 }
2307 
2308 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2309   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2310          && "binding l-value to type which needs a temporary");
2311   AggValueSlot Slot = CreateAggTemp(E->getType());
2312   EmitCXXConstructExpr(E, Slot);
2313   return MakeAddrLValue(Slot.getAddr(), E->getType());
2314 }
2315 
2316 LValue
2317 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2318   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2319 }
2320 
2321 LValue
2322 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2323   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2324   Slot.setExternallyDestructed();
2325   EmitAggExpr(E->getSubExpr(), Slot);
2326   EmitCXXTemporary(E->getTemporary(), Slot.getAddr());
2327   return MakeAddrLValue(Slot.getAddr(), E->getType());
2328 }
2329 
2330 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2331   RValue RV = EmitObjCMessageExpr(E);
2332 
2333   if (!RV.isScalar())
2334     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2335 
2336   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2337          "Can't have a scalar return unless the return type is a "
2338          "reference type!");
2339 
2340   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2341 }
2342 
2343 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2344   llvm::Value *V =
2345     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2346   return MakeAddrLValue(V, E->getType());
2347 }
2348 
2349 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2350                                              const ObjCIvarDecl *Ivar) {
2351   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2352 }
2353 
2354 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2355                                           llvm::Value *BaseValue,
2356                                           const ObjCIvarDecl *Ivar,
2357                                           unsigned CVRQualifiers) {
2358   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2359                                                    Ivar, CVRQualifiers);
2360 }
2361 
2362 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2363   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2364   llvm::Value *BaseValue = 0;
2365   const Expr *BaseExpr = E->getBase();
2366   Qualifiers BaseQuals;
2367   QualType ObjectTy;
2368   if (E->isArrow()) {
2369     BaseValue = EmitScalarExpr(BaseExpr);
2370     ObjectTy = BaseExpr->getType()->getPointeeType();
2371     BaseQuals = ObjectTy.getQualifiers();
2372   } else {
2373     LValue BaseLV = EmitLValue(BaseExpr);
2374     // FIXME: this isn't right for bitfields.
2375     BaseValue = BaseLV.getAddress();
2376     ObjectTy = BaseExpr->getType();
2377     BaseQuals = ObjectTy.getQualifiers();
2378   }
2379 
2380   LValue LV =
2381     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2382                       BaseQuals.getCVRQualifiers());
2383   setObjCGCLValueClass(getContext(), E, LV);
2384   return LV;
2385 }
2386 
2387 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2388   // Can only get l-value for message expression returning aggregate type
2389   RValue RV = EmitAnyExprToTemp(E);
2390   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2391 }
2392 
2393 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2394                                  ReturnValueSlot ReturnValue,
2395                                  CallExpr::const_arg_iterator ArgBeg,
2396                                  CallExpr::const_arg_iterator ArgEnd,
2397                                  const Decl *TargetDecl) {
2398   // Get the actual function type. The callee type will always be a pointer to
2399   // function type or a block pointer type.
2400   assert(CalleeType->isFunctionPointerType() &&
2401          "Call must have function pointer type!");
2402 
2403   CalleeType = getContext().getCanonicalType(CalleeType);
2404 
2405   const FunctionType *FnType
2406     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2407 
2408   CallArgList Args;
2409   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2410 
2411   const CGFunctionInfo &FnInfo = CGM.getTypes().getFunctionInfo(Args, FnType);
2412 
2413   // C99 6.5.2.2p6:
2414   //   If the expression that denotes the called function has a type
2415   //   that does not include a prototype, [the default argument
2416   //   promotions are performed]. If the number of arguments does not
2417   //   equal the number of parameters, the behavior is undefined. If
2418   //   the function is defined with a type that includes a prototype,
2419   //   and either the prototype ends with an ellipsis (, ...) or the
2420   //   types of the arguments after promotion are not compatible with
2421   //   the types of the parameters, the behavior is undefined. If the
2422   //   function is defined with a type that does not include a
2423   //   prototype, and the types of the arguments after promotion are
2424   //   not compatible with those of the parameters after promotion,
2425   //   the behavior is undefined [except in some trivial cases].
2426   // That is, in the general case, we should assume that a call
2427   // through an unprototyped function type works like a *non-variadic*
2428   // call.  The way we make this work is to cast to the exact type
2429   // of the promoted arguments.
2430   if (isa<FunctionNoProtoType>(FnType) &&
2431       !getTargetHooks().isNoProtoCallVariadic(FnType->getCallConv())) {
2432     assert(cast<llvm::FunctionType>(Callee->getType()->getContainedType(0))
2433              ->isVarArg());
2434     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo, false);
2435     CalleeTy = CalleeTy->getPointerTo();
2436     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2437   }
2438 
2439   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2440 }
2441 
2442 LValue CodeGenFunction::
2443 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2444   llvm::Value *BaseV;
2445   if (E->getOpcode() == BO_PtrMemI)
2446     BaseV = EmitScalarExpr(E->getLHS());
2447   else
2448     BaseV = EmitLValue(E->getLHS()).getAddress();
2449 
2450   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2451 
2452   const MemberPointerType *MPT
2453     = E->getRHS()->getType()->getAs<MemberPointerType>();
2454 
2455   llvm::Value *AddV =
2456     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2457 
2458   return MakeAddrLValue(AddV, MPT->getPointeeType());
2459 }
2460 
2461 static void
2462 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
2463              llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
2464              uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
2465   if (E->isCmpXChg()) {
2466     // Note that cmpxchg only supports specifying one ordering and
2467     // doesn't support weak cmpxchg, at least at the moment.
2468     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2469     LoadVal1->setAlignment(Align);
2470     llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
2471     LoadVal2->setAlignment(Align);
2472     llvm::AtomicCmpXchgInst *CXI =
2473         CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
2474     CXI->setVolatile(E->isVolatile());
2475     llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
2476     StoreVal1->setAlignment(Align);
2477     llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
2478     CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
2479     return;
2480   }
2481 
2482   if (E->getOp() == AtomicExpr::Load) {
2483     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
2484     Load->setAtomic(Order);
2485     Load->setAlignment(Size);
2486     Load->setVolatile(E->isVolatile());
2487     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
2488     StoreDest->setAlignment(Align);
2489     return;
2490   }
2491 
2492   if (E->getOp() == AtomicExpr::Store) {
2493     assert(!Dest && "Store does not return a value");
2494     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2495     LoadVal1->setAlignment(Align);
2496     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
2497     Store->setAtomic(Order);
2498     Store->setAlignment(Size);
2499     Store->setVolatile(E->isVolatile());
2500     return;
2501   }
2502 
2503   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
2504   switch (E->getOp()) {
2505     case AtomicExpr::CmpXchgWeak:
2506     case AtomicExpr::CmpXchgStrong:
2507     case AtomicExpr::Store:
2508     case AtomicExpr::Load:  assert(0 && "Already handled!");
2509     case AtomicExpr::Add:   Op = llvm::AtomicRMWInst::Add;  break;
2510     case AtomicExpr::Sub:   Op = llvm::AtomicRMWInst::Sub;  break;
2511     case AtomicExpr::And:   Op = llvm::AtomicRMWInst::And;  break;
2512     case AtomicExpr::Or:    Op = llvm::AtomicRMWInst::Or;   break;
2513     case AtomicExpr::Xor:   Op = llvm::AtomicRMWInst::Xor;  break;
2514     case AtomicExpr::Xchg:  Op = llvm::AtomicRMWInst::Xchg; break;
2515   }
2516   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2517   LoadVal1->setAlignment(Align);
2518   llvm::AtomicRMWInst *RMWI =
2519       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
2520   RMWI->setVolatile(E->isVolatile());
2521   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(RMWI, Dest);
2522   StoreDest->setAlignment(Align);
2523 }
2524 
2525 // This function emits any expression (scalar, complex, or aggregate)
2526 // into a temporary alloca.
2527 static llvm::Value *
2528 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
2529   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
2530   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
2531                        /*Init*/ true);
2532   return DeclPtr;
2533 }
2534 
2535 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
2536                                   llvm::Value *Dest) {
2537   if (Ty->isAnyComplexType())
2538     return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
2539   if (CGF.hasAggregateLLVMType(Ty))
2540     return RValue::getAggregate(Dest);
2541   return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
2542 }
2543 
2544 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
2545   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
2546   QualType MemTy = AtomicTy->getAs<AtomicType>()->getValueType();
2547   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
2548   uint64_t Size = sizeChars.getQuantity();
2549   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
2550   unsigned Align = alignChars.getQuantity();
2551   unsigned MaxInlineWidth =
2552       getContext().getTargetInfo().getMaxAtomicInlineWidth();
2553   bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
2554 
2555   llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
2556   Ptr = EmitScalarExpr(E->getPtr());
2557   Order = EmitScalarExpr(E->getOrder());
2558   if (E->isCmpXChg()) {
2559     Val1 = EmitScalarExpr(E->getVal1());
2560     Val2 = EmitValToTemp(*this, E->getVal2());
2561     OrderFail = EmitScalarExpr(E->getOrderFail());
2562     (void)OrderFail; // OrderFail is unused at the moment
2563   } else if ((E->getOp() == AtomicExpr::Add || E->getOp() == AtomicExpr::Sub) &&
2564              MemTy->isPointerType()) {
2565     // For pointers, we're required to do a bit of math: adding 1 to an int*
2566     // is not the same as adding 1 to a uintptr_t.
2567     QualType Val1Ty = E->getVal1()->getType();
2568     llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
2569     CharUnits PointeeIncAmt =
2570         getContext().getTypeSizeInChars(MemTy->getPointeeType());
2571     Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
2572     Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
2573     EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
2574   } else if (E->getOp() != AtomicExpr::Load) {
2575     Val1 = EmitValToTemp(*this, E->getVal1());
2576   }
2577 
2578   if (E->getOp() != AtomicExpr::Store && !Dest)
2579     Dest = CreateMemTemp(E->getType(), ".atomicdst");
2580 
2581   if (UseLibcall) {
2582     // FIXME: Finalize what the libcalls are actually supposed to look like.
2583     // See also http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
2584     return EmitUnsupportedRValue(E, "atomic library call");
2585   }
2586 #if 0
2587   if (UseLibcall) {
2588     const char* LibCallName;
2589     switch (E->getOp()) {
2590     case AtomicExpr::CmpXchgWeak:
2591       LibCallName = "__atomic_compare_exchange_generic"; break;
2592     case AtomicExpr::CmpXchgStrong:
2593       LibCallName = "__atomic_compare_exchange_generic"; break;
2594     case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
2595     case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
2596     case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
2597     case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
2598     case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
2599     case AtomicExpr::Xchg:  LibCallName = "__atomic_exchange_generic"; break;
2600     case AtomicExpr::Store: LibCallName = "__atomic_store_generic"; break;
2601     case AtomicExpr::Load:  LibCallName = "__atomic_load_generic"; break;
2602     }
2603     llvm::SmallVector<QualType, 4> Params;
2604     CallArgList Args;
2605     QualType RetTy = getContext().VoidTy;
2606     if (E->getOp() != AtomicExpr::Store && !E->isCmpXChg())
2607       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
2608                getContext().VoidPtrTy);
2609     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
2610              getContext().VoidPtrTy);
2611     if (E->getOp() != AtomicExpr::Load)
2612       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2613                getContext().VoidPtrTy);
2614     if (E->isCmpXChg()) {
2615       Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
2616                getContext().VoidPtrTy);
2617       RetTy = getContext().IntTy;
2618     }
2619     Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
2620              getContext().getSizeType());
2621     const CGFunctionInfo &FuncInfo =
2622         CGM.getTypes().getFunctionInfo(RetTy, Args, FunctionType::ExtInfo());
2623     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo, false);
2624     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2625     RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
2626     if (E->isCmpXChg())
2627       return Res;
2628     if (E->getOp() == AtomicExpr::Store)
2629       return RValue::get(0);
2630     return ConvertTempToRValue(*this, E->getType(), Dest);
2631   }
2632 #endif
2633   llvm::Type *IPtrTy =
2634       llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
2635   llvm::Value *OrigDest = Dest;
2636   Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
2637   if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
2638   if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
2639   if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
2640 
2641   if (isa<llvm::ConstantInt>(Order)) {
2642     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2643     switch (ord) {
2644     case 0:  // memory_order_relaxed
2645       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2646                    llvm::Monotonic);
2647       break;
2648     case 1:  // memory_order_consume
2649     case 2:  // memory_order_acquire
2650       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2651                    llvm::Acquire);
2652       break;
2653     case 3:  // memory_order_release
2654       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2655                    llvm::Release);
2656       break;
2657     case 4:  // memory_order_acq_rel
2658       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2659                    llvm::AcquireRelease);
2660       break;
2661     case 5:  // memory_order_seq_cst
2662       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2663                    llvm::SequentiallyConsistent);
2664       break;
2665     default: // invalid order
2666       // We should not ever get here normally, but it's hard to
2667       // enforce that in general.
2668       break;
2669     }
2670     if (E->getOp() == AtomicExpr::Store)
2671       return RValue::get(0);
2672     return ConvertTempToRValue(*this, E->getType(), OrigDest);
2673   }
2674 
2675   // Long case, when Order isn't obviously constant.
2676 
2677   // Create all the relevant BB's
2678   llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
2679                    *AcqRelBB = 0, *SeqCstBB = 0;
2680   MonotonicBB = createBasicBlock("monotonic", CurFn);
2681   if (E->getOp() != AtomicExpr::Store)
2682     AcquireBB = createBasicBlock("acquire", CurFn);
2683   if (E->getOp() != AtomicExpr::Load)
2684     ReleaseBB = createBasicBlock("release", CurFn);
2685   if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store)
2686     AcqRelBB = createBasicBlock("acqrel", CurFn);
2687   SeqCstBB = createBasicBlock("seqcst", CurFn);
2688   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2689 
2690   // Create the switch for the split
2691   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
2692   // doesn't matter unless someone is crazy enough to use something that
2693   // doesn't fold to a constant for the ordering.
2694   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2695   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
2696 
2697   // Emit all the different atomics
2698   Builder.SetInsertPoint(MonotonicBB);
2699   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2700                llvm::Monotonic);
2701   Builder.CreateBr(ContBB);
2702   if (E->getOp() != AtomicExpr::Store) {
2703     Builder.SetInsertPoint(AcquireBB);
2704     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2705                  llvm::Acquire);
2706     Builder.CreateBr(ContBB);
2707     SI->addCase(Builder.getInt32(1), AcquireBB);
2708     SI->addCase(Builder.getInt32(2), AcquireBB);
2709   }
2710   if (E->getOp() != AtomicExpr::Load) {
2711     Builder.SetInsertPoint(ReleaseBB);
2712     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2713                  llvm::Release);
2714     Builder.CreateBr(ContBB);
2715     SI->addCase(Builder.getInt32(3), ReleaseBB);
2716   }
2717   if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) {
2718     Builder.SetInsertPoint(AcqRelBB);
2719     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2720                  llvm::AcquireRelease);
2721     Builder.CreateBr(ContBB);
2722     SI->addCase(Builder.getInt32(4), AcqRelBB);
2723   }
2724   Builder.SetInsertPoint(SeqCstBB);
2725   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2726                llvm::SequentiallyConsistent);
2727   Builder.CreateBr(ContBB);
2728   SI->addCase(Builder.getInt32(5), SeqCstBB);
2729 
2730   // Cleanup and return
2731   Builder.SetInsertPoint(ContBB);
2732   if (E->getOp() == AtomicExpr::Store)
2733     return RValue::get(0);
2734   return ConvertTempToRValue(*this, E->getType(), OrigDest);
2735 }
2736 
2737 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN,
2738                                     unsigned AccuracyD) {
2739   assert(Val->getType()->isFPOrFPVectorTy());
2740   if (!AccuracyN || !isa<llvm::Instruction>(Val))
2741     return;
2742 
2743   llvm::Value *Vals[2];
2744   Vals[0] = llvm::ConstantInt::get(Int32Ty, AccuracyN);
2745   Vals[1] = llvm::ConstantInt::get(Int32Ty, AccuracyD);
2746   llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), Vals);
2747 
2748   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy,
2749                                             Node);
2750 }
2751 
2752 namespace {
2753   struct LValueOrRValue {
2754     LValue LV;
2755     RValue RV;
2756   };
2757 }
2758 
2759 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
2760                                            const PseudoObjectExpr *E,
2761                                            bool forLValue,
2762                                            AggValueSlot slot) {
2763   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2764 
2765   // Find the result expression, if any.
2766   const Expr *resultExpr = E->getResultExpr();
2767   LValueOrRValue result;
2768 
2769   for (PseudoObjectExpr::const_semantics_iterator
2770          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2771     const Expr *semantic = *i;
2772 
2773     // If this semantic expression is an opaque value, bind it
2774     // to the result of its source expression.
2775     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2776 
2777       // If this is the result expression, we may need to evaluate
2778       // directly into the slot.
2779       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2780       OVMA opaqueData;
2781       if (ov == resultExpr && ov->isRValue() && !forLValue &&
2782           CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
2783           !ov->getType()->isAnyComplexType()) {
2784         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
2785 
2786         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
2787         opaqueData = OVMA::bind(CGF, ov, LV);
2788         result.RV = slot.asRValue();
2789 
2790       // Otherwise, emit as normal.
2791       } else {
2792         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2793 
2794         // If this is the result, also evaluate the result now.
2795         if (ov == resultExpr) {
2796           if (forLValue)
2797             result.LV = CGF.EmitLValue(ov);
2798           else
2799             result.RV = CGF.EmitAnyExpr(ov, slot);
2800         }
2801       }
2802 
2803       opaques.push_back(opaqueData);
2804 
2805     // Otherwise, if the expression is the result, evaluate it
2806     // and remember the result.
2807     } else if (semantic == resultExpr) {
2808       if (forLValue)
2809         result.LV = CGF.EmitLValue(semantic);
2810       else
2811         result.RV = CGF.EmitAnyExpr(semantic, slot);
2812 
2813     // Otherwise, evaluate the expression in an ignored context.
2814     } else {
2815       CGF.EmitIgnoredExpr(semantic);
2816     }
2817   }
2818 
2819   // Unbind all the opaques now.
2820   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2821     opaques[i].unbind(CGF);
2822 
2823   return result;
2824 }
2825 
2826 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
2827                                                AggValueSlot slot) {
2828   return emitPseudoObjectExpr(*this, E, false, slot).RV;
2829 }
2830 
2831 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
2832   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
2833 }
2834