1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/ADT/Hashing.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/Support/ConvertUTF.h"
31 
32 using namespace clang;
33 using namespace CodeGen;
34 
35 //===--------------------------------------------------------------------===//
36 //                        Miscellaneous Helper Methods
37 //===--------------------------------------------------------------------===//
38 
39 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
40   unsigned addressSpace =
41     cast<llvm::PointerType>(value->getType())->getAddressSpace();
42 
43   llvm::PointerType *destType = Int8PtrTy;
44   if (addressSpace)
45     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
46 
47   if (value->getType() == destType) return value;
48   return Builder.CreateBitCast(value, destType);
49 }
50 
51 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
52 /// block.
53 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
54                                                     const Twine &Name) {
55   if (!Builder.isNamePreserving())
56     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
57   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
58 }
59 
60 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
61                                      llvm::Value *Init) {
62   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
63   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
64   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
65 }
66 
67 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
68                                                 const Twine &Name) {
69   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
70   // FIXME: Should we prefer the preferred type alignment here?
71   CharUnits Align = getContext().getTypeAlignInChars(Ty);
72   Alloc->setAlignment(Align.getQuantity());
73   return Alloc;
74 }
75 
76 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
77                                                  const Twine &Name) {
78   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
79   // FIXME: Should we prefer the preferred type alignment here?
80   CharUnits Align = getContext().getTypeAlignInChars(Ty);
81   Alloc->setAlignment(Align.getQuantity());
82   return Alloc;
83 }
84 
85 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
86 /// expression and compare the result against zero, returning an Int1Ty value.
87 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
88   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
89     llvm::Value *MemPtr = EmitScalarExpr(E);
90     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
91   }
92 
93   QualType BoolTy = getContext().BoolTy;
94   if (!E->getType()->isAnyComplexType())
95     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
96 
97   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
98 }
99 
100 /// EmitIgnoredExpr - Emit code to compute the specified expression,
101 /// ignoring the result.
102 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
103   if (E->isRValue())
104     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
105 
106   // Just emit it as an l-value and drop the result.
107   EmitLValue(E);
108 }
109 
110 /// EmitAnyExpr - Emit code to compute the specified expression which
111 /// can have any type.  The result is returned as an RValue struct.
112 /// If this is an aggregate expression, AggSlot indicates where the
113 /// result should be returned.
114 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
115                                     AggValueSlot aggSlot,
116                                     bool ignoreResult) {
117   switch (getEvaluationKind(E->getType())) {
118   case TEK_Scalar:
119     return RValue::get(EmitScalarExpr(E, ignoreResult));
120   case TEK_Complex:
121     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
122   case TEK_Aggregate:
123     if (!ignoreResult && aggSlot.isIgnored())
124       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
125     EmitAggExpr(E, aggSlot);
126     return aggSlot.asRValue();
127   }
128   llvm_unreachable("bad evaluation kind");
129 }
130 
131 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
132 /// always be accessible even if no aggregate location is provided.
133 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
134   AggValueSlot AggSlot = AggValueSlot::ignored();
135 
136   if (hasAggregateEvaluationKind(E->getType()))
137     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
138   return EmitAnyExpr(E, AggSlot);
139 }
140 
141 /// EmitAnyExprToMem - Evaluate an expression into a given memory
142 /// location.
143 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
144                                        llvm::Value *Location,
145                                        Qualifiers Quals,
146                                        bool IsInit) {
147   // FIXME: This function should take an LValue as an argument.
148   switch (getEvaluationKind(E->getType())) {
149   case TEK_Complex:
150     EmitComplexExprIntoLValue(E,
151                          MakeNaturalAlignAddrLValue(Location, E->getType()),
152                               /*isInit*/ false);
153     return;
154 
155   case TEK_Aggregate: {
156     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
157     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
158                                          AggValueSlot::IsDestructed_t(IsInit),
159                                          AggValueSlot::DoesNotNeedGCBarriers,
160                                          AggValueSlot::IsAliased_t(!IsInit)));
161     return;
162   }
163 
164   case TEK_Scalar: {
165     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
166     LValue LV = MakeAddrLValue(Location, E->getType());
167     EmitStoreThroughLValue(RV, LV);
168     return;
169   }
170   }
171   llvm_unreachable("bad evaluation kind");
172 }
173 
174 static void
175 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
176                      const Expr *E, llvm::Value *ReferenceTemporary) {
177   // Objective-C++ ARC:
178   //   If we are binding a reference to a temporary that has ownership, we
179   //   need to perform retain/release operations on the temporary.
180   //
181   // FIXME: This should be looking at E, not M.
182   if (CGF.getLangOpts().ObjCAutoRefCount &&
183       M->getType()->isObjCLifetimeType()) {
184     QualType ObjCARCReferenceLifetimeType = M->getType();
185     switch (Qualifiers::ObjCLifetime Lifetime =
186                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
187     case Qualifiers::OCL_None:
188     case Qualifiers::OCL_ExplicitNone:
189       // Carry on to normal cleanup handling.
190       break;
191 
192     case Qualifiers::OCL_Autoreleasing:
193       // Nothing to do; cleaned up by an autorelease pool.
194       return;
195 
196     case Qualifiers::OCL_Strong:
197     case Qualifiers::OCL_Weak:
198       switch (StorageDuration Duration = M->getStorageDuration()) {
199       case SD_Static:
200         // Note: we intentionally do not register a cleanup to release
201         // the object on program termination.
202         return;
203 
204       case SD_Thread:
205         // FIXME: We should probably register a cleanup in this case.
206         return;
207 
208       case SD_Automatic:
209       case SD_FullExpression:
210         assert(!ObjCARCReferenceLifetimeType->isArrayType());
211         CodeGenFunction::Destroyer *Destroy;
212         CleanupKind CleanupKind;
213         if (Lifetime == Qualifiers::OCL_Strong) {
214           const ValueDecl *VD = M->getExtendingDecl();
215           bool Precise =
216               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
217           CleanupKind = CGF.getARCCleanupKind();
218           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
219                             : &CodeGenFunction::destroyARCStrongImprecise;
220         } else {
221           // __weak objects always get EH cleanups; otherwise, exceptions
222           // could cause really nasty crashes instead of mere leaks.
223           CleanupKind = NormalAndEHCleanup;
224           Destroy = &CodeGenFunction::destroyARCWeak;
225         }
226         if (Duration == SD_FullExpression)
227           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
228                           ObjCARCReferenceLifetimeType, *Destroy,
229                           CleanupKind & EHCleanup);
230         else
231           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
232                                           ObjCARCReferenceLifetimeType,
233                                           *Destroy, CleanupKind & EHCleanup);
234         return;
235 
236       case SD_Dynamic:
237         llvm_unreachable("temporary cannot have dynamic storage duration");
238       }
239       llvm_unreachable("unknown storage duration");
240     }
241   }
242 
243   CXXDestructorDecl *ReferenceTemporaryDtor = 0;
244   if (const RecordType *RT =
245           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
246     // Get the destructor for the reference temporary.
247     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
248     if (!ClassDecl->hasTrivialDestructor())
249       ReferenceTemporaryDtor = ClassDecl->getDestructor();
250   }
251 
252   if (!ReferenceTemporaryDtor)
253     return;
254 
255   // Call the destructor for the temporary.
256   switch (M->getStorageDuration()) {
257   case SD_Static:
258   case SD_Thread: {
259     llvm::Constant *CleanupFn;
260     llvm::Constant *CleanupArg;
261     if (E->getType()->isArrayType()) {
262       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
263           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
264           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
265           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
266       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
267     } else {
268       CleanupFn =
269         CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
270       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
271     }
272     CGF.CGM.getCXXABI().registerGlobalDtor(
273         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
274     break;
275   }
276 
277   case SD_FullExpression:
278     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
279                     CodeGenFunction::destroyCXXObject,
280                     CGF.getLangOpts().Exceptions);
281     break;
282 
283   case SD_Automatic:
284     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
285                                     ReferenceTemporary, E->getType(),
286                                     CodeGenFunction::destroyCXXObject,
287                                     CGF.getLangOpts().Exceptions);
288     break;
289 
290   case SD_Dynamic:
291     llvm_unreachable("temporary cannot have dynamic storage duration");
292   }
293 }
294 
295 static llvm::Value *
296 createReferenceTemporary(CodeGenFunction &CGF,
297                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
298   switch (M->getStorageDuration()) {
299   case SD_FullExpression:
300   case SD_Automatic:
301     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
302 
303   case SD_Thread:
304   case SD_Static:
305     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
306 
307   case SD_Dynamic:
308     llvm_unreachable("temporary can't have dynamic storage duration");
309   }
310   llvm_unreachable("unknown storage duration");
311 }
312 
313 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
314                                            const MaterializeTemporaryExpr *M) {
315   const Expr *E = M->GetTemporaryExpr();
316 
317   if (getLangOpts().ObjCAutoRefCount &&
318       M->getType()->isObjCLifetimeType() &&
319       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
320       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
321     // FIXME: Fold this into the general case below.
322     llvm::Value *Object = createReferenceTemporary(*this, M, E);
323     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
324 
325     if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
326       // We should not have emitted the initializer for this temporary as a
327       // constant.
328       assert(!Var->hasInitializer());
329       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
330     }
331 
332     EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
333 
334     pushTemporaryCleanup(*this, M, E, Object);
335     return RefTempDst;
336   }
337 
338   SmallVector<const Expr *, 2> CommaLHSs;
339   SmallVector<SubobjectAdjustment, 2> Adjustments;
340   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
341 
342   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
343     EmitIgnoredExpr(CommaLHSs[I]);
344 
345   if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) {
346     if (opaque->getType()->isRecordType()) {
347       assert(Adjustments.empty());
348       return EmitOpaqueValueLValue(opaque);
349     }
350   }
351 
352   // Create and initialize the reference temporary.
353   llvm::Value *Object = createReferenceTemporary(*this, M, E);
354   if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
355     // If the temporary is a global and has a constant initializer, we may
356     // have already initialized it.
357     if (!Var->hasInitializer()) {
358       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
359       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
360     }
361   } else {
362     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
363   }
364   pushTemporaryCleanup(*this, M, E, Object);
365 
366   // Perform derived-to-base casts and/or field accesses, to get from the
367   // temporary object we created (and, potentially, for which we extended
368   // the lifetime) to the subobject we're binding the reference to.
369   for (unsigned I = Adjustments.size(); I != 0; --I) {
370     SubobjectAdjustment &Adjustment = Adjustments[I-1];
371     switch (Adjustment.Kind) {
372     case SubobjectAdjustment::DerivedToBaseAdjustment:
373       Object =
374           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
375                                 Adjustment.DerivedToBase.BasePath->path_begin(),
376                                 Adjustment.DerivedToBase.BasePath->path_end(),
377                                 /*NullCheckValue=*/ false);
378       break;
379 
380     case SubobjectAdjustment::FieldAdjustment: {
381       LValue LV = MakeAddrLValue(Object, E->getType());
382       LV = EmitLValueForField(LV, Adjustment.Field);
383       assert(LV.isSimple() &&
384              "materialized temporary field is not a simple lvalue");
385       Object = LV.getAddress();
386       break;
387     }
388 
389     case SubobjectAdjustment::MemberPointerAdjustment: {
390       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
391       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
392                     *this, Object, Ptr, Adjustment.Ptr.MPT);
393       break;
394     }
395     }
396   }
397 
398   return MakeAddrLValue(Object, M->getType());
399 }
400 
401 RValue
402 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
403   // Emit the expression as an lvalue.
404   LValue LV = EmitLValue(E);
405   assert(LV.isSimple());
406   llvm::Value *Value = LV.getAddress();
407 
408   if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
409     // C++11 [dcl.ref]p5 (as amended by core issue 453):
410     //   If a glvalue to which a reference is directly bound designates neither
411     //   an existing object or function of an appropriate type nor a region of
412     //   storage of suitable size and alignment to contain an object of the
413     //   reference's type, the behavior is undefined.
414     QualType Ty = E->getType();
415     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
416   }
417 
418   return RValue::get(Value);
419 }
420 
421 
422 /// getAccessedFieldNo - Given an encoded value and a result number, return the
423 /// input field number being accessed.
424 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
425                                              const llvm::Constant *Elts) {
426   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
427       ->getZExtValue();
428 }
429 
430 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
431 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
432                                     llvm::Value *High) {
433   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
434   llvm::Value *K47 = Builder.getInt64(47);
435   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
436   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
437   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
438   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
439   return Builder.CreateMul(B1, KMul);
440 }
441 
442 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
443                                     llvm::Value *Address,
444                                     QualType Ty, CharUnits Alignment) {
445   if (!SanitizePerformTypeCheck)
446     return;
447 
448   // Don't check pointers outside the default address space. The null check
449   // isn't correct, the object-size check isn't supported by LLVM, and we can't
450   // communicate the addresses to the runtime handler for the vptr check.
451   if (Address->getType()->getPointerAddressSpace())
452     return;
453 
454   llvm::Value *Cond = 0;
455   llvm::BasicBlock *Done = 0;
456 
457   if (SanOpts->Null) {
458     // The glvalue must not be an empty glvalue.
459     Cond = Builder.CreateICmpNE(
460         Address, llvm::Constant::getNullValue(Address->getType()));
461 
462     if (TCK == TCK_DowncastPointer) {
463       // When performing a pointer downcast, it's OK if the value is null.
464       // Skip the remaining checks in that case.
465       Done = createBasicBlock("null");
466       llvm::BasicBlock *Rest = createBasicBlock("not.null");
467       Builder.CreateCondBr(Cond, Rest, Done);
468       EmitBlock(Rest);
469       Cond = 0;
470     }
471   }
472 
473   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
474     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
475 
476     // The glvalue must refer to a large enough storage region.
477     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
478     //        to check this.
479     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
480     llvm::Value *Min = Builder.getFalse();
481     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
482     llvm::Value *LargeEnough =
483         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
484                               llvm::ConstantInt::get(IntPtrTy, Size));
485     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
486   }
487 
488   uint64_t AlignVal = 0;
489 
490   if (SanOpts->Alignment) {
491     AlignVal = Alignment.getQuantity();
492     if (!Ty->isIncompleteType() && !AlignVal)
493       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
494 
495     // The glvalue must be suitably aligned.
496     if (AlignVal) {
497       llvm::Value *Align =
498           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
499                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
500       llvm::Value *Aligned =
501         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
502       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
503     }
504   }
505 
506   if (Cond) {
507     llvm::Constant *StaticData[] = {
508       EmitCheckSourceLocation(Loc),
509       EmitCheckTypeDescriptor(Ty),
510       llvm::ConstantInt::get(SizeTy, AlignVal),
511       llvm::ConstantInt::get(Int8Ty, TCK)
512     };
513     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
514   }
515 
516   // If possible, check that the vptr indicates that there is a subobject of
517   // type Ty at offset zero within this object.
518   //
519   // C++11 [basic.life]p5,6:
520   //   [For storage which does not refer to an object within its lifetime]
521   //   The program has undefined behavior if:
522   //    -- the [pointer or glvalue] is used to access a non-static data member
523   //       or call a non-static member function
524   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
525   if (SanOpts->Vptr &&
526       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
527        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
528       RD && RD->hasDefinition() && RD->isDynamicClass()) {
529     // Compute a hash of the mangled name of the type.
530     //
531     // FIXME: This is not guaranteed to be deterministic! Move to a
532     //        fingerprinting mechanism once LLVM provides one. For the time
533     //        being the implementation happens to be deterministic.
534     SmallString<64> MangledName;
535     llvm::raw_svector_ostream Out(MangledName);
536     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
537                                                      Out);
538     llvm::hash_code TypeHash = hash_value(Out.str());
539 
540     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
541     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
542     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
543     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
544     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
545     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
546 
547     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
548     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
549 
550     // Look the hash up in our cache.
551     const int CacheSize = 128;
552     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
553     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
554                                                    "__ubsan_vptr_type_cache");
555     llvm::Value *Slot = Builder.CreateAnd(Hash,
556                                           llvm::ConstantInt::get(IntPtrTy,
557                                                                  CacheSize-1));
558     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
559     llvm::Value *CacheVal =
560       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
561 
562     // If the hash isn't in the cache, call a runtime handler to perform the
563     // hard work of checking whether the vptr is for an object of the right
564     // type. This will either fill in the cache and return, or produce a
565     // diagnostic.
566     llvm::Constant *StaticData[] = {
567       EmitCheckSourceLocation(Loc),
568       EmitCheckTypeDescriptor(Ty),
569       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
570       llvm::ConstantInt::get(Int8Ty, TCK)
571     };
572     llvm::Value *DynamicData[] = { Address, Hash };
573     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
574               "dynamic_type_cache_miss", StaticData, DynamicData,
575               CRK_AlwaysRecoverable);
576   }
577 
578   if (Done) {
579     Builder.CreateBr(Done);
580     EmitBlock(Done);
581   }
582 }
583 
584 /// Determine whether this expression refers to a flexible array member in a
585 /// struct. We disable array bounds checks for such members.
586 static bool isFlexibleArrayMemberExpr(const Expr *E) {
587   // For compatibility with existing code, we treat arrays of length 0 or
588   // 1 as flexible array members.
589   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
590   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
591     if (CAT->getSize().ugt(1))
592       return false;
593   } else if (!isa<IncompleteArrayType>(AT))
594     return false;
595 
596   E = E->IgnoreParens();
597 
598   // A flexible array member must be the last member in the class.
599   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
600     // FIXME: If the base type of the member expr is not FD->getParent(),
601     // this should not be treated as a flexible array member access.
602     if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
603       RecordDecl::field_iterator FI(
604           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
605       return ++FI == FD->getParent()->field_end();
606     }
607   }
608 
609   return false;
610 }
611 
612 /// If Base is known to point to the start of an array, return the length of
613 /// that array. Return 0 if the length cannot be determined.
614 static llvm::Value *getArrayIndexingBound(
615     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
616   // For the vector indexing extension, the bound is the number of elements.
617   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
618     IndexedType = Base->getType();
619     return CGF.Builder.getInt32(VT->getNumElements());
620   }
621 
622   Base = Base->IgnoreParens();
623 
624   if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
625     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
626         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
627       IndexedType = CE->getSubExpr()->getType();
628       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
629       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
630         return CGF.Builder.getInt(CAT->getSize());
631       else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
632         return CGF.getVLASize(VAT).first;
633     }
634   }
635 
636   return 0;
637 }
638 
639 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
640                                       llvm::Value *Index, QualType IndexType,
641                                       bool Accessed) {
642   assert(SanOpts->Bounds && "should not be called unless adding bounds checks");
643 
644   QualType IndexedType;
645   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
646   if (!Bound)
647     return;
648 
649   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
650   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
651   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
652 
653   llvm::Constant *StaticData[] = {
654     EmitCheckSourceLocation(E->getExprLoc()),
655     EmitCheckTypeDescriptor(IndexedType),
656     EmitCheckTypeDescriptor(IndexType)
657   };
658   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
659                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
660   EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
661 }
662 
663 
664 CodeGenFunction::ComplexPairTy CodeGenFunction::
665 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
666                          bool isInc, bool isPre) {
667   ComplexPairTy InVal = EmitLoadOfComplex(LV);
668 
669   llvm::Value *NextVal;
670   if (isa<llvm::IntegerType>(InVal.first->getType())) {
671     uint64_t AmountVal = isInc ? 1 : -1;
672     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
673 
674     // Add the inc/dec to the real part.
675     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
676   } else {
677     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
678     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
679     if (!isInc)
680       FVal.changeSign();
681     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
682 
683     // Add the inc/dec to the real part.
684     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
685   }
686 
687   ComplexPairTy IncVal(NextVal, InVal.second);
688 
689   // Store the updated result through the lvalue.
690   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
691 
692   // If this is a postinc, return the value read from memory, otherwise use the
693   // updated value.
694   return isPre ? IncVal : InVal;
695 }
696 
697 
698 //===----------------------------------------------------------------------===//
699 //                         LValue Expression Emission
700 //===----------------------------------------------------------------------===//
701 
702 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
703   if (Ty->isVoidType())
704     return RValue::get(0);
705 
706   switch (getEvaluationKind(Ty)) {
707   case TEK_Complex: {
708     llvm::Type *EltTy =
709       ConvertType(Ty->castAs<ComplexType>()->getElementType());
710     llvm::Value *U = llvm::UndefValue::get(EltTy);
711     return RValue::getComplex(std::make_pair(U, U));
712   }
713 
714   // If this is a use of an undefined aggregate type, the aggregate must have an
715   // identifiable address.  Just because the contents of the value are undefined
716   // doesn't mean that the address can't be taken and compared.
717   case TEK_Aggregate: {
718     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
719     return RValue::getAggregate(DestPtr);
720   }
721 
722   case TEK_Scalar:
723     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
724   }
725   llvm_unreachable("bad evaluation kind");
726 }
727 
728 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
729                                               const char *Name) {
730   ErrorUnsupported(E, Name);
731   return GetUndefRValue(E->getType());
732 }
733 
734 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
735                                               const char *Name) {
736   ErrorUnsupported(E, Name);
737   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
738   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
739 }
740 
741 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
742   LValue LV;
743   if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E))
744     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
745   else
746     LV = EmitLValue(E);
747   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
748     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
749                   E->getType(), LV.getAlignment());
750   return LV;
751 }
752 
753 /// EmitLValue - Emit code to compute a designator that specifies the location
754 /// of the expression.
755 ///
756 /// This can return one of two things: a simple address or a bitfield reference.
757 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
758 /// an LLVM pointer type.
759 ///
760 /// If this returns a bitfield reference, nothing about the pointee type of the
761 /// LLVM value is known: For example, it may not be a pointer to an integer.
762 ///
763 /// If this returns a normal address, and if the lvalue's C type is fixed size,
764 /// this method guarantees that the returned pointer type will point to an LLVM
765 /// type of the same size of the lvalue's type.  If the lvalue has a variable
766 /// length type, this is not possible.
767 ///
768 LValue CodeGenFunction::EmitLValue(const Expr *E) {
769   switch (E->getStmtClass()) {
770   default: return EmitUnsupportedLValue(E, "l-value expression");
771 
772   case Expr::ObjCPropertyRefExprClass:
773     llvm_unreachable("cannot emit a property reference directly");
774 
775   case Expr::ObjCSelectorExprClass:
776     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
777   case Expr::ObjCIsaExprClass:
778     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
779   case Expr::BinaryOperatorClass:
780     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
781   case Expr::CompoundAssignOperatorClass:
782     if (!E->getType()->isAnyComplexType())
783       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
784     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
785   case Expr::CallExprClass:
786   case Expr::CXXMemberCallExprClass:
787   case Expr::CXXOperatorCallExprClass:
788   case Expr::UserDefinedLiteralClass:
789     return EmitCallExprLValue(cast<CallExpr>(E));
790   case Expr::VAArgExprClass:
791     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
792   case Expr::DeclRefExprClass:
793     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
794   case Expr::ParenExprClass:
795     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
796   case Expr::GenericSelectionExprClass:
797     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
798   case Expr::PredefinedExprClass:
799     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
800   case Expr::StringLiteralClass:
801     return EmitStringLiteralLValue(cast<StringLiteral>(E));
802   case Expr::ObjCEncodeExprClass:
803     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
804   case Expr::PseudoObjectExprClass:
805     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
806   case Expr::InitListExprClass:
807     return EmitInitListLValue(cast<InitListExpr>(E));
808   case Expr::CXXTemporaryObjectExprClass:
809   case Expr::CXXConstructExprClass:
810     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
811   case Expr::CXXBindTemporaryExprClass:
812     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
813   case Expr::CXXUuidofExprClass:
814     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
815   case Expr::LambdaExprClass:
816     return EmitLambdaLValue(cast<LambdaExpr>(E));
817 
818   case Expr::ExprWithCleanupsClass: {
819     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
820     enterFullExpression(cleanups);
821     RunCleanupsScope Scope(*this);
822     return EmitLValue(cleanups->getSubExpr());
823   }
824 
825   case Expr::CXXDefaultArgExprClass:
826     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
827   case Expr::CXXDefaultInitExprClass: {
828     CXXDefaultInitExprScope Scope(*this);
829     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
830   }
831   case Expr::CXXTypeidExprClass:
832     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
833 
834   case Expr::ObjCMessageExprClass:
835     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
836   case Expr::ObjCIvarRefExprClass:
837     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
838   case Expr::StmtExprClass:
839     return EmitStmtExprLValue(cast<StmtExpr>(E));
840   case Expr::UnaryOperatorClass:
841     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
842   case Expr::ArraySubscriptExprClass:
843     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
844   case Expr::ExtVectorElementExprClass:
845     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
846   case Expr::MemberExprClass:
847     return EmitMemberExpr(cast<MemberExpr>(E));
848   case Expr::CompoundLiteralExprClass:
849     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
850   case Expr::ConditionalOperatorClass:
851     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
852   case Expr::BinaryConditionalOperatorClass:
853     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
854   case Expr::ChooseExprClass:
855     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
856   case Expr::OpaqueValueExprClass:
857     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
858   case Expr::SubstNonTypeTemplateParmExprClass:
859     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
860   case Expr::ImplicitCastExprClass:
861   case Expr::CStyleCastExprClass:
862   case Expr::CXXFunctionalCastExprClass:
863   case Expr::CXXStaticCastExprClass:
864   case Expr::CXXDynamicCastExprClass:
865   case Expr::CXXReinterpretCastExprClass:
866   case Expr::CXXConstCastExprClass:
867   case Expr::ObjCBridgedCastExprClass:
868     return EmitCastLValue(cast<CastExpr>(E));
869 
870   case Expr::MaterializeTemporaryExprClass:
871     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
872   }
873 }
874 
875 /// Given an object of the given canonical type, can we safely copy a
876 /// value out of it based on its initializer?
877 static bool isConstantEmittableObjectType(QualType type) {
878   assert(type.isCanonical());
879   assert(!type->isReferenceType());
880 
881   // Must be const-qualified but non-volatile.
882   Qualifiers qs = type.getLocalQualifiers();
883   if (!qs.hasConst() || qs.hasVolatile()) return false;
884 
885   // Otherwise, all object types satisfy this except C++ classes with
886   // mutable subobjects or non-trivial copy/destroy behavior.
887   if (const RecordType *RT = dyn_cast<RecordType>(type))
888     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
889       if (RD->hasMutableFields() || !RD->isTrivial())
890         return false;
891 
892   return true;
893 }
894 
895 /// Can we constant-emit a load of a reference to a variable of the
896 /// given type?  This is different from predicates like
897 /// Decl::isUsableInConstantExpressions because we do want it to apply
898 /// in situations that don't necessarily satisfy the language's rules
899 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
900 /// to do this with const float variables even if those variables
901 /// aren't marked 'constexpr'.
902 enum ConstantEmissionKind {
903   CEK_None,
904   CEK_AsReferenceOnly,
905   CEK_AsValueOrReference,
906   CEK_AsValueOnly
907 };
908 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
909   type = type.getCanonicalType();
910   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
911     if (isConstantEmittableObjectType(ref->getPointeeType()))
912       return CEK_AsValueOrReference;
913     return CEK_AsReferenceOnly;
914   }
915   if (isConstantEmittableObjectType(type))
916     return CEK_AsValueOnly;
917   return CEK_None;
918 }
919 
920 /// Try to emit a reference to the given value without producing it as
921 /// an l-value.  This is actually more than an optimization: we can't
922 /// produce an l-value for variables that we never actually captured
923 /// in a block or lambda, which means const int variables or constexpr
924 /// literals or similar.
925 CodeGenFunction::ConstantEmission
926 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
927   ValueDecl *value = refExpr->getDecl();
928 
929   // The value needs to be an enum constant or a constant variable.
930   ConstantEmissionKind CEK;
931   if (isa<ParmVarDecl>(value)) {
932     CEK = CEK_None;
933   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
934     CEK = checkVarTypeForConstantEmission(var->getType());
935   } else if (isa<EnumConstantDecl>(value)) {
936     CEK = CEK_AsValueOnly;
937   } else {
938     CEK = CEK_None;
939   }
940   if (CEK == CEK_None) return ConstantEmission();
941 
942   Expr::EvalResult result;
943   bool resultIsReference;
944   QualType resultType;
945 
946   // It's best to evaluate all the way as an r-value if that's permitted.
947   if (CEK != CEK_AsReferenceOnly &&
948       refExpr->EvaluateAsRValue(result, getContext())) {
949     resultIsReference = false;
950     resultType = refExpr->getType();
951 
952   // Otherwise, try to evaluate as an l-value.
953   } else if (CEK != CEK_AsValueOnly &&
954              refExpr->EvaluateAsLValue(result, getContext())) {
955     resultIsReference = true;
956     resultType = value->getType();
957 
958   // Failure.
959   } else {
960     return ConstantEmission();
961   }
962 
963   // In any case, if the initializer has side-effects, abandon ship.
964   if (result.HasSideEffects)
965     return ConstantEmission();
966 
967   // Emit as a constant.
968   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
969 
970   // Make sure we emit a debug reference to the global variable.
971   // This should probably fire even for
972   if (isa<VarDecl>(value)) {
973     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
974       EmitDeclRefExprDbgValue(refExpr, C);
975   } else {
976     assert(isa<EnumConstantDecl>(value));
977     EmitDeclRefExprDbgValue(refExpr, C);
978   }
979 
980   // If we emitted a reference constant, we need to dereference that.
981   if (resultIsReference)
982     return ConstantEmission::forReference(C);
983 
984   return ConstantEmission::forValue(C);
985 }
986 
987 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
988   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
989                           lvalue.getAlignment().getQuantity(),
990                           lvalue.getType(), lvalue.getTBAAInfo(),
991                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
992 }
993 
994 static bool hasBooleanRepresentation(QualType Ty) {
995   if (Ty->isBooleanType())
996     return true;
997 
998   if (const EnumType *ET = Ty->getAs<EnumType>())
999     return ET->getDecl()->getIntegerType()->isBooleanType();
1000 
1001   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1002     return hasBooleanRepresentation(AT->getValueType());
1003 
1004   return false;
1005 }
1006 
1007 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1008                             llvm::APInt &Min, llvm::APInt &End,
1009                             bool StrictEnums) {
1010   const EnumType *ET = Ty->getAs<EnumType>();
1011   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1012                                 ET && !ET->getDecl()->isFixed();
1013   bool IsBool = hasBooleanRepresentation(Ty);
1014   if (!IsBool && !IsRegularCPlusPlusEnum)
1015     return false;
1016 
1017   if (IsBool) {
1018     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1019     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1020   } else {
1021     const EnumDecl *ED = ET->getDecl();
1022     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1023     unsigned Bitwidth = LTy->getScalarSizeInBits();
1024     unsigned NumNegativeBits = ED->getNumNegativeBits();
1025     unsigned NumPositiveBits = ED->getNumPositiveBits();
1026 
1027     if (NumNegativeBits) {
1028       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1029       assert(NumBits <= Bitwidth);
1030       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1031       Min = -End;
1032     } else {
1033       assert(NumPositiveBits <= Bitwidth);
1034       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1035       Min = llvm::APInt(Bitwidth, 0);
1036     }
1037   }
1038   return true;
1039 }
1040 
1041 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1042   llvm::APInt Min, End;
1043   if (!getRangeForType(*this, Ty, Min, End,
1044                        CGM.getCodeGenOpts().StrictEnums))
1045     return 0;
1046 
1047   llvm::MDBuilder MDHelper(getLLVMContext());
1048   return MDHelper.createRange(Min, End);
1049 }
1050 
1051 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1052                                               unsigned Alignment, QualType Ty,
1053                                               llvm::MDNode *TBAAInfo,
1054                                               QualType TBAABaseType,
1055                                               uint64_t TBAAOffset) {
1056   // For better performance, handle vector loads differently.
1057   if (Ty->isVectorType()) {
1058     llvm::Value *V;
1059     const llvm::Type *EltTy =
1060     cast<llvm::PointerType>(Addr->getType())->getElementType();
1061 
1062     const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
1063 
1064     // Handle vectors of size 3, like size 4 for better performance.
1065     if (VTy->getNumElements() == 3) {
1066 
1067       // Bitcast to vec4 type.
1068       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1069                                                          4);
1070       llvm::PointerType *ptVec4Ty =
1071       llvm::PointerType::get(vec4Ty,
1072                              (cast<llvm::PointerType>(
1073                                       Addr->getType()))->getAddressSpace());
1074       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1075                                                 "castToVec4");
1076       // Now load value.
1077       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1078 
1079       // Shuffle vector to get vec3.
1080       llvm::Constant *Mask[] = {
1081         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1082         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1083         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1084       };
1085 
1086       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1087       V = Builder.CreateShuffleVector(LoadVal,
1088                                       llvm::UndefValue::get(vec4Ty),
1089                                       MaskV, "extractVec");
1090       return EmitFromMemory(V, Ty);
1091     }
1092   }
1093 
1094   // Atomic operations have to be done on integral types.
1095   if (Ty->isAtomicType()) {
1096     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1097                                      CharUnits::fromQuantity(Alignment),
1098                                      getContext(), TBAAInfo);
1099     return EmitAtomicLoad(lvalue).getScalarVal();
1100   }
1101 
1102   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1103   if (Volatile)
1104     Load->setVolatile(true);
1105   if (Alignment)
1106     Load->setAlignment(Alignment);
1107   if (TBAAInfo) {
1108     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1109                                                       TBAAOffset);
1110     CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1111   }
1112 
1113   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1114       (SanOpts->Enum && Ty->getAs<EnumType>())) {
1115     llvm::APInt Min, End;
1116     if (getRangeForType(*this, Ty, Min, End, true)) {
1117       --End;
1118       llvm::Value *Check;
1119       if (!Min)
1120         Check = Builder.CreateICmpULE(
1121           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1122       else {
1123         llvm::Value *Upper = Builder.CreateICmpSLE(
1124           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1125         llvm::Value *Lower = Builder.CreateICmpSGE(
1126           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1127         Check = Builder.CreateAnd(Upper, Lower);
1128       }
1129       // FIXME: Provide a SourceLocation.
1130       EmitCheck(Check, "load_invalid_value", EmitCheckTypeDescriptor(Ty),
1131                 EmitCheckValue(Load), CRK_Recoverable);
1132     }
1133   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1134     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1135       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1136 
1137   return EmitFromMemory(Load, Ty);
1138 }
1139 
1140 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1141   // Bool has a different representation in memory than in registers.
1142   if (hasBooleanRepresentation(Ty)) {
1143     // This should really always be an i1, but sometimes it's already
1144     // an i8, and it's awkward to track those cases down.
1145     if (Value->getType()->isIntegerTy(1))
1146       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1147     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1148            "wrong value rep of bool");
1149   }
1150 
1151   return Value;
1152 }
1153 
1154 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1155   // Bool has a different representation in memory than in registers.
1156   if (hasBooleanRepresentation(Ty)) {
1157     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1158            "wrong value rep of bool");
1159     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1160   }
1161 
1162   return Value;
1163 }
1164 
1165 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1166                                         bool Volatile, unsigned Alignment,
1167                                         QualType Ty,
1168                                         llvm::MDNode *TBAAInfo,
1169                                         bool isInit, QualType TBAABaseType,
1170                                         uint64_t TBAAOffset) {
1171 
1172   // Handle vectors differently to get better performance.
1173   if (Ty->isVectorType()) {
1174     llvm::Type *SrcTy = Value->getType();
1175     llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1176     // Handle vec3 special.
1177     if (VecTy->getNumElements() == 3) {
1178       llvm::LLVMContext &VMContext = getLLVMContext();
1179 
1180       // Our source is a vec3, do a shuffle vector to make it a vec4.
1181       SmallVector<llvm::Constant*, 4> Mask;
1182       Mask.push_back(llvm::ConstantInt::get(
1183                                             llvm::Type::getInt32Ty(VMContext),
1184                                             0));
1185       Mask.push_back(llvm::ConstantInt::get(
1186                                             llvm::Type::getInt32Ty(VMContext),
1187                                             1));
1188       Mask.push_back(llvm::ConstantInt::get(
1189                                             llvm::Type::getInt32Ty(VMContext),
1190                                             2));
1191       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1192 
1193       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1194       Value = Builder.CreateShuffleVector(Value,
1195                                           llvm::UndefValue::get(VecTy),
1196                                           MaskV, "extractVec");
1197       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1198     }
1199     llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1200     if (DstPtr->getElementType() != SrcTy) {
1201       llvm::Type *MemTy =
1202       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1203       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1204     }
1205   }
1206 
1207   Value = EmitToMemory(Value, Ty);
1208 
1209   if (Ty->isAtomicType()) {
1210     EmitAtomicStore(RValue::get(Value),
1211                     LValue::MakeAddr(Addr, Ty,
1212                                      CharUnits::fromQuantity(Alignment),
1213                                      getContext(), TBAAInfo),
1214                     isInit);
1215     return;
1216   }
1217 
1218   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1219   if (Alignment)
1220     Store->setAlignment(Alignment);
1221   if (TBAAInfo) {
1222     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1223                                                       TBAAOffset);
1224     CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1225   }
1226 }
1227 
1228 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1229                                         bool isInit) {
1230   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1231                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1232                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1233                     lvalue.getTBAAOffset());
1234 }
1235 
1236 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1237 /// method emits the address of the lvalue, then loads the result as an rvalue,
1238 /// returning the rvalue.
1239 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
1240   if (LV.isObjCWeak()) {
1241     // load of a __weak object.
1242     llvm::Value *AddrWeakObj = LV.getAddress();
1243     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1244                                                              AddrWeakObj));
1245   }
1246   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1247     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1248     Object = EmitObjCConsumeObject(LV.getType(), Object);
1249     return RValue::get(Object);
1250   }
1251 
1252   if (LV.isSimple()) {
1253     assert(!LV.getType()->isFunctionType());
1254 
1255     // Everything needs a load.
1256     return RValue::get(EmitLoadOfScalar(LV));
1257   }
1258 
1259   if (LV.isVectorElt()) {
1260     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1261                                               LV.isVolatileQualified());
1262     Load->setAlignment(LV.getAlignment().getQuantity());
1263     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1264                                                     "vecext"));
1265   }
1266 
1267   // If this is a reference to a subset of the elements of a vector, either
1268   // shuffle the input or extract/insert them as appropriate.
1269   if (LV.isExtVectorElt())
1270     return EmitLoadOfExtVectorElementLValue(LV);
1271 
1272   assert(LV.isBitField() && "Unknown LValue type!");
1273   return EmitLoadOfBitfieldLValue(LV);
1274 }
1275 
1276 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1277   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1278 
1279   // Get the output type.
1280   llvm::Type *ResLTy = ConvertType(LV.getType());
1281 
1282   llvm::Value *Ptr = LV.getBitFieldAddr();
1283   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1284                                         "bf.load");
1285   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1286 
1287   if (Info.IsSigned) {
1288     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1289     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1290     if (HighBits)
1291       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1292     if (Info.Offset + HighBits)
1293       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1294   } else {
1295     if (Info.Offset)
1296       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1297     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1298       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1299                                                               Info.Size),
1300                               "bf.clear");
1301   }
1302   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1303 
1304   return RValue::get(Val);
1305 }
1306 
1307 // If this is a reference to a subset of the elements of a vector, create an
1308 // appropriate shufflevector.
1309 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1310   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1311                                             LV.isVolatileQualified());
1312   Load->setAlignment(LV.getAlignment().getQuantity());
1313   llvm::Value *Vec = Load;
1314 
1315   const llvm::Constant *Elts = LV.getExtVectorElts();
1316 
1317   // If the result of the expression is a non-vector type, we must be extracting
1318   // a single element.  Just codegen as an extractelement.
1319   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1320   if (!ExprVT) {
1321     unsigned InIdx = getAccessedFieldNo(0, Elts);
1322     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1323     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1324   }
1325 
1326   // Always use shuffle vector to try to retain the original program structure
1327   unsigned NumResultElts = ExprVT->getNumElements();
1328 
1329   SmallVector<llvm::Constant*, 4> Mask;
1330   for (unsigned i = 0; i != NumResultElts; ++i)
1331     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1332 
1333   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1334   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1335                                     MaskV);
1336   return RValue::get(Vec);
1337 }
1338 
1339 
1340 
1341 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1342 /// lvalue, where both are guaranteed to the have the same type, and that type
1343 /// is 'Ty'.
1344 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1345   if (!Dst.isSimple()) {
1346     if (Dst.isVectorElt()) {
1347       // Read/modify/write the vector, inserting the new element.
1348       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1349                                                 Dst.isVolatileQualified());
1350       Load->setAlignment(Dst.getAlignment().getQuantity());
1351       llvm::Value *Vec = Load;
1352       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1353                                         Dst.getVectorIdx(), "vecins");
1354       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1355                                                    Dst.isVolatileQualified());
1356       Store->setAlignment(Dst.getAlignment().getQuantity());
1357       return;
1358     }
1359 
1360     // If this is an update of extended vector elements, insert them as
1361     // appropriate.
1362     if (Dst.isExtVectorElt())
1363       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1364 
1365     assert(Dst.isBitField() && "Unknown LValue type");
1366     return EmitStoreThroughBitfieldLValue(Src, Dst);
1367   }
1368 
1369   // There's special magic for assigning into an ARC-qualified l-value.
1370   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1371     switch (Lifetime) {
1372     case Qualifiers::OCL_None:
1373       llvm_unreachable("present but none");
1374 
1375     case Qualifiers::OCL_ExplicitNone:
1376       // nothing special
1377       break;
1378 
1379     case Qualifiers::OCL_Strong:
1380       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1381       return;
1382 
1383     case Qualifiers::OCL_Weak:
1384       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1385       return;
1386 
1387     case Qualifiers::OCL_Autoreleasing:
1388       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1389                                                      Src.getScalarVal()));
1390       // fall into the normal path
1391       break;
1392     }
1393   }
1394 
1395   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1396     // load of a __weak object.
1397     llvm::Value *LvalueDst = Dst.getAddress();
1398     llvm::Value *src = Src.getScalarVal();
1399      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1400     return;
1401   }
1402 
1403   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1404     // load of a __strong object.
1405     llvm::Value *LvalueDst = Dst.getAddress();
1406     llvm::Value *src = Src.getScalarVal();
1407     if (Dst.isObjCIvar()) {
1408       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1409       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1410       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1411       llvm::Value *dst = RHS;
1412       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1413       llvm::Value *LHS =
1414         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1415       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1416       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1417                                               BytesBetween);
1418     } else if (Dst.isGlobalObjCRef()) {
1419       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1420                                                 Dst.isThreadLocalRef());
1421     }
1422     else
1423       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1424     return;
1425   }
1426 
1427   assert(Src.isScalar() && "Can't emit an agg store with this method");
1428   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1429 }
1430 
1431 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1432                                                      llvm::Value **Result) {
1433   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1434   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1435   llvm::Value *Ptr = Dst.getBitFieldAddr();
1436 
1437   // Get the source value, truncated to the width of the bit-field.
1438   llvm::Value *SrcVal = Src.getScalarVal();
1439 
1440   // Cast the source to the storage type and shift it into place.
1441   SrcVal = Builder.CreateIntCast(SrcVal,
1442                                  Ptr->getType()->getPointerElementType(),
1443                                  /*IsSigned=*/false);
1444   llvm::Value *MaskedVal = SrcVal;
1445 
1446   // See if there are other bits in the bitfield's storage we'll need to load
1447   // and mask together with source before storing.
1448   if (Info.StorageSize != Info.Size) {
1449     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1450     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1451                                           "bf.load");
1452     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1453 
1454     // Mask the source value as needed.
1455     if (!hasBooleanRepresentation(Dst.getType()))
1456       SrcVal = Builder.CreateAnd(SrcVal,
1457                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1458                                                             Info.Size),
1459                                  "bf.value");
1460     MaskedVal = SrcVal;
1461     if (Info.Offset)
1462       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1463 
1464     // Mask out the original value.
1465     Val = Builder.CreateAnd(Val,
1466                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1467                                                      Info.Offset,
1468                                                      Info.Offset + Info.Size),
1469                             "bf.clear");
1470 
1471     // Or together the unchanged values and the source value.
1472     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1473   } else {
1474     assert(Info.Offset == 0);
1475   }
1476 
1477   // Write the new value back out.
1478   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1479                                                Dst.isVolatileQualified());
1480   Store->setAlignment(Info.StorageAlignment);
1481 
1482   // Return the new value of the bit-field, if requested.
1483   if (Result) {
1484     llvm::Value *ResultVal = MaskedVal;
1485 
1486     // Sign extend the value if needed.
1487     if (Info.IsSigned) {
1488       assert(Info.Size <= Info.StorageSize);
1489       unsigned HighBits = Info.StorageSize - Info.Size;
1490       if (HighBits) {
1491         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1492         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1493       }
1494     }
1495 
1496     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1497                                       "bf.result.cast");
1498     *Result = EmitFromMemory(ResultVal, Dst.getType());
1499   }
1500 }
1501 
1502 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1503                                                                LValue Dst) {
1504   // This access turns into a read/modify/write of the vector.  Load the input
1505   // value now.
1506   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1507                                             Dst.isVolatileQualified());
1508   Load->setAlignment(Dst.getAlignment().getQuantity());
1509   llvm::Value *Vec = Load;
1510   const llvm::Constant *Elts = Dst.getExtVectorElts();
1511 
1512   llvm::Value *SrcVal = Src.getScalarVal();
1513 
1514   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1515     unsigned NumSrcElts = VTy->getNumElements();
1516     unsigned NumDstElts =
1517        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1518     if (NumDstElts == NumSrcElts) {
1519       // Use shuffle vector is the src and destination are the same number of
1520       // elements and restore the vector mask since it is on the side it will be
1521       // stored.
1522       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1523       for (unsigned i = 0; i != NumSrcElts; ++i)
1524         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1525 
1526       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1527       Vec = Builder.CreateShuffleVector(SrcVal,
1528                                         llvm::UndefValue::get(Vec->getType()),
1529                                         MaskV);
1530     } else if (NumDstElts > NumSrcElts) {
1531       // Extended the source vector to the same length and then shuffle it
1532       // into the destination.
1533       // FIXME: since we're shuffling with undef, can we just use the indices
1534       //        into that?  This could be simpler.
1535       SmallVector<llvm::Constant*, 4> ExtMask;
1536       for (unsigned i = 0; i != NumSrcElts; ++i)
1537         ExtMask.push_back(Builder.getInt32(i));
1538       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1539       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1540       llvm::Value *ExtSrcVal =
1541         Builder.CreateShuffleVector(SrcVal,
1542                                     llvm::UndefValue::get(SrcVal->getType()),
1543                                     ExtMaskV);
1544       // build identity
1545       SmallVector<llvm::Constant*, 4> Mask;
1546       for (unsigned i = 0; i != NumDstElts; ++i)
1547         Mask.push_back(Builder.getInt32(i));
1548 
1549       // modify when what gets shuffled in
1550       for (unsigned i = 0; i != NumSrcElts; ++i)
1551         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1552       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1553       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1554     } else {
1555       // We should never shorten the vector
1556       llvm_unreachable("unexpected shorten vector length");
1557     }
1558   } else {
1559     // If the Src is a scalar (not a vector) it must be updating one element.
1560     unsigned InIdx = getAccessedFieldNo(0, Elts);
1561     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1562     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1563   }
1564 
1565   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1566                                                Dst.isVolatileQualified());
1567   Store->setAlignment(Dst.getAlignment().getQuantity());
1568 }
1569 
1570 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1571 // generating write-barries API. It is currently a global, ivar,
1572 // or neither.
1573 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1574                                  LValue &LV,
1575                                  bool IsMemberAccess=false) {
1576   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1577     return;
1578 
1579   if (isa<ObjCIvarRefExpr>(E)) {
1580     QualType ExpTy = E->getType();
1581     if (IsMemberAccess && ExpTy->isPointerType()) {
1582       // If ivar is a structure pointer, assigning to field of
1583       // this struct follows gcc's behavior and makes it a non-ivar
1584       // writer-barrier conservatively.
1585       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1586       if (ExpTy->isRecordType()) {
1587         LV.setObjCIvar(false);
1588         return;
1589       }
1590     }
1591     LV.setObjCIvar(true);
1592     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1593     LV.setBaseIvarExp(Exp->getBase());
1594     LV.setObjCArray(E->getType()->isArrayType());
1595     return;
1596   }
1597 
1598   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1599     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1600       if (VD->hasGlobalStorage()) {
1601         LV.setGlobalObjCRef(true);
1602         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1603       }
1604     }
1605     LV.setObjCArray(E->getType()->isArrayType());
1606     return;
1607   }
1608 
1609   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1610     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1611     return;
1612   }
1613 
1614   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1615     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1616     if (LV.isObjCIvar()) {
1617       // If cast is to a structure pointer, follow gcc's behavior and make it
1618       // a non-ivar write-barrier.
1619       QualType ExpTy = E->getType();
1620       if (ExpTy->isPointerType())
1621         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1622       if (ExpTy->isRecordType())
1623         LV.setObjCIvar(false);
1624     }
1625     return;
1626   }
1627 
1628   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1629     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1630     return;
1631   }
1632 
1633   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1634     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1635     return;
1636   }
1637 
1638   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1639     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1640     return;
1641   }
1642 
1643   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1644     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1645     return;
1646   }
1647 
1648   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1649     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1650     if (LV.isObjCIvar() && !LV.isObjCArray())
1651       // Using array syntax to assigning to what an ivar points to is not
1652       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1653       LV.setObjCIvar(false);
1654     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1655       // Using array syntax to assigning to what global points to is not
1656       // same as assigning to the global itself. {id *G;} G[i] = 0;
1657       LV.setGlobalObjCRef(false);
1658     return;
1659   }
1660 
1661   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1662     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1663     // We don't know if member is an 'ivar', but this flag is looked at
1664     // only in the context of LV.isObjCIvar().
1665     LV.setObjCArray(E->getType()->isArrayType());
1666     return;
1667   }
1668 }
1669 
1670 static llvm::Value *
1671 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1672                                 llvm::Value *V, llvm::Type *IRType,
1673                                 StringRef Name = StringRef()) {
1674   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1675   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1676 }
1677 
1678 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1679                                       const Expr *E, const VarDecl *VD) {
1680   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1681   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1682   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1683   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1684   QualType T = E->getType();
1685   LValue LV;
1686   if (VD->getType()->isReferenceType()) {
1687     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1688     LI->setAlignment(Alignment.getQuantity());
1689     V = LI;
1690     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1691   } else {
1692     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1693   }
1694   setObjCGCLValueClass(CGF.getContext(), E, LV);
1695   return LV;
1696 }
1697 
1698 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1699                                      const Expr *E, const FunctionDecl *FD) {
1700   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1701   if (!FD->hasPrototype()) {
1702     if (const FunctionProtoType *Proto =
1703             FD->getType()->getAs<FunctionProtoType>()) {
1704       // Ugly case: for a K&R-style definition, the type of the definition
1705       // isn't the same as the type of a use.  Correct for this with a
1706       // bitcast.
1707       QualType NoProtoType =
1708           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1709       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1710       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1711     }
1712   }
1713   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1714   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1715 }
1716 
1717 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1718                                       llvm::Value *ThisValue) {
1719   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1720   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1721   return CGF.EmitLValueForField(LV, FD);
1722 }
1723 
1724 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1725   const NamedDecl *ND = E->getDecl();
1726   CharUnits Alignment = getContext().getDeclAlign(ND);
1727   QualType T = E->getType();
1728 
1729   // A DeclRefExpr for a reference initialized by a constant expression can
1730   // appear without being odr-used. Directly emit the constant initializer.
1731   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1732     const Expr *Init = VD->getAnyInitializer(VD);
1733     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1734         VD->isUsableInConstantExpressions(getContext()) &&
1735         VD->checkInitIsICE()) {
1736       llvm::Constant *Val =
1737         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1738       assert(Val && "failed to emit reference constant expression");
1739       // FIXME: Eventually we will want to emit vector element references.
1740       return MakeAddrLValue(Val, T, Alignment);
1741     }
1742   }
1743 
1744   // FIXME: We should be able to assert this for FunctionDecls as well!
1745   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1746   // those with a valid source location.
1747   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1748           !E->getLocation().isValid()) &&
1749          "Should not use decl without marking it used!");
1750 
1751   if (ND->hasAttr<WeakRefAttr>()) {
1752     const ValueDecl *VD = cast<ValueDecl>(ND);
1753     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1754     return MakeAddrLValue(Aliasee, T, Alignment);
1755   }
1756 
1757   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1758     // Check if this is a global variable.
1759     if (VD->hasLinkage() || VD->isStaticDataMember()) {
1760       // If it's thread_local, emit a call to its wrapper function instead.
1761       if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1762         return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E);
1763       return EmitGlobalVarDeclLValue(*this, E, VD);
1764     }
1765 
1766     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1767 
1768     llvm::Value *V = LocalDeclMap.lookup(VD);
1769     if (!V && VD->isStaticLocal())
1770       V = CGM.getStaticLocalDeclAddress(VD);
1771 
1772     // Use special handling for lambdas.
1773     if (!V) {
1774       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1775         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1776       } else if (CapturedStmtInfo) {
1777         if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1778           return EmitCapturedFieldLValue(*this, FD,
1779                                          CapturedStmtInfo->getContextValue());
1780       }
1781 
1782       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1783       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1784                             T, Alignment);
1785     }
1786 
1787     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1788 
1789     if (isBlockVariable)
1790       V = BuildBlockByrefAddress(V, VD);
1791 
1792     LValue LV;
1793     if (VD->getType()->isReferenceType()) {
1794       llvm::LoadInst *LI = Builder.CreateLoad(V);
1795       LI->setAlignment(Alignment.getQuantity());
1796       V = LI;
1797       LV = MakeNaturalAlignAddrLValue(V, T);
1798     } else {
1799       LV = MakeAddrLValue(V, T, Alignment);
1800     }
1801 
1802     bool isLocalStorage = VD->hasLocalStorage();
1803 
1804     bool NonGCable = isLocalStorage &&
1805                      !VD->getType()->isReferenceType() &&
1806                      !isBlockVariable;
1807     if (NonGCable) {
1808       LV.getQuals().removeObjCGCAttr();
1809       LV.setNonGC(true);
1810     }
1811 
1812     bool isImpreciseLifetime =
1813       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1814     if (isImpreciseLifetime)
1815       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1816     setObjCGCLValueClass(getContext(), E, LV);
1817     return LV;
1818   }
1819 
1820   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1821     return EmitFunctionDeclLValue(*this, E, fn);
1822 
1823   llvm_unreachable("Unhandled DeclRefExpr");
1824 }
1825 
1826 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1827   // __extension__ doesn't affect lvalue-ness.
1828   if (E->getOpcode() == UO_Extension)
1829     return EmitLValue(E->getSubExpr());
1830 
1831   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1832   switch (E->getOpcode()) {
1833   default: llvm_unreachable("Unknown unary operator lvalue!");
1834   case UO_Deref: {
1835     QualType T = E->getSubExpr()->getType()->getPointeeType();
1836     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1837 
1838     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1839     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1840 
1841     // We should not generate __weak write barrier on indirect reference
1842     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1843     // But, we continue to generate __strong write barrier on indirect write
1844     // into a pointer to object.
1845     if (getLangOpts().ObjC1 &&
1846         getLangOpts().getGC() != LangOptions::NonGC &&
1847         LV.isObjCWeak())
1848       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1849     return LV;
1850   }
1851   case UO_Real:
1852   case UO_Imag: {
1853     LValue LV = EmitLValue(E->getSubExpr());
1854     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1855     llvm::Value *Addr = LV.getAddress();
1856 
1857     // __real is valid on scalars.  This is a faster way of testing that.
1858     // __imag can only produce an rvalue on scalars.
1859     if (E->getOpcode() == UO_Real &&
1860         !cast<llvm::PointerType>(Addr->getType())
1861            ->getElementType()->isStructTy()) {
1862       assert(E->getSubExpr()->getType()->isArithmeticType());
1863       return LV;
1864     }
1865 
1866     assert(E->getSubExpr()->getType()->isAnyComplexType());
1867 
1868     unsigned Idx = E->getOpcode() == UO_Imag;
1869     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1870                                                   Idx, "idx"),
1871                           ExprTy);
1872   }
1873   case UO_PreInc:
1874   case UO_PreDec: {
1875     LValue LV = EmitLValue(E->getSubExpr());
1876     bool isInc = E->getOpcode() == UO_PreInc;
1877 
1878     if (E->getType()->isAnyComplexType())
1879       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1880     else
1881       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1882     return LV;
1883   }
1884   }
1885 }
1886 
1887 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1888   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1889                         E->getType());
1890 }
1891 
1892 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1893   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1894                         E->getType());
1895 }
1896 
1897 static llvm::Constant*
1898 GetAddrOfConstantWideString(StringRef Str,
1899                             const char *GlobalName,
1900                             ASTContext &Context,
1901                             QualType Ty, SourceLocation Loc,
1902                             CodeGenModule &CGM) {
1903 
1904   StringLiteral *SL = StringLiteral::Create(Context,
1905                                             Str,
1906                                             StringLiteral::Wide,
1907                                             /*Pascal = */false,
1908                                             Ty, Loc);
1909   llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1910   llvm::GlobalVariable *GV =
1911     new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1912                              !CGM.getLangOpts().WritableStrings,
1913                              llvm::GlobalValue::PrivateLinkage,
1914                              C, GlobalName);
1915   const unsigned WideAlignment =
1916     Context.getTypeAlignInChars(Ty).getQuantity();
1917   GV->setAlignment(WideAlignment);
1918   return GV;
1919 }
1920 
1921 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1922                                     SmallString<32>& Target) {
1923   Target.resize(CharByteWidth * (Source.size() + 1));
1924   char *ResultPtr = &Target[0];
1925   const UTF8 *ErrorPtr;
1926   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1927   (void)success;
1928   assert(success);
1929   Target.resize(ResultPtr - &Target[0]);
1930 }
1931 
1932 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1933   switch (E->getIdentType()) {
1934   default:
1935     return EmitUnsupportedLValue(E, "predefined expression");
1936 
1937   case PredefinedExpr::Func:
1938   case PredefinedExpr::Function:
1939   case PredefinedExpr::LFunction:
1940   case PredefinedExpr::PrettyFunction: {
1941     PredefinedExpr::IdentType IdentType = E->getIdentType();
1942     std::string GlobalVarName;
1943 
1944     switch (IdentType) {
1945     default: llvm_unreachable("Invalid type");
1946     case PredefinedExpr::Func:
1947       GlobalVarName = "__func__.";
1948       break;
1949     case PredefinedExpr::Function:
1950       GlobalVarName = "__FUNCTION__.";
1951       break;
1952     case PredefinedExpr::LFunction:
1953       GlobalVarName = "L__FUNCTION__.";
1954       break;
1955     case PredefinedExpr::PrettyFunction:
1956       GlobalVarName = "__PRETTY_FUNCTION__.";
1957       break;
1958     }
1959 
1960     StringRef FnName = CurFn->getName();
1961     if (FnName.startswith("\01"))
1962       FnName = FnName.substr(1);
1963     GlobalVarName += FnName;
1964 
1965     // If this is outside of a function use the top level decl.
1966     const Decl *CurDecl = CurCodeDecl;
1967     if (CurDecl == 0 || isa<VarDecl>(CurDecl))
1968       CurDecl = getContext().getTranslationUnitDecl();
1969 
1970     const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1971     std::string FunctionName;
1972     if (isa<BlockDecl>(CurDecl)) {
1973       // Blocks use the mangled function name.
1974       // FIXME: ComputeName should handle blocks.
1975       FunctionName = FnName.str();
1976     } else if (isa<CapturedDecl>(CurDecl)) {
1977       // For a captured statement, the function name is its enclosing
1978       // function name not the one compiler generated.
1979       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
1980     } else {
1981       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
1982       assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
1983                  FunctionName.size() &&
1984              "Computed __func__ length differs from type!");
1985     }
1986 
1987     llvm::Constant *C;
1988     if (ElemType->isWideCharType()) {
1989       SmallString<32> RawChars;
1990       ConvertUTF8ToWideString(
1991           getContext().getTypeSizeInChars(ElemType).getQuantity(),
1992           FunctionName, RawChars);
1993       C = GetAddrOfConstantWideString(RawChars,
1994                                       GlobalVarName.c_str(),
1995                                       getContext(),
1996                                       E->getType(),
1997                                       E->getLocation(),
1998                                       CGM);
1999     } else {
2000       C = CGM.GetAddrOfConstantCString(FunctionName,
2001                                        GlobalVarName.c_str(),
2002                                        1);
2003     }
2004     return MakeAddrLValue(C, E->getType());
2005   }
2006   }
2007 }
2008 
2009 /// Emit a type description suitable for use by a runtime sanitizer library. The
2010 /// format of a type descriptor is
2011 ///
2012 /// \code
2013 ///   { i16 TypeKind, i16 TypeInfo }
2014 /// \endcode
2015 ///
2016 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2017 /// integer, 1 for a floating point value, and -1 for anything else.
2018 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2019   // FIXME: Only emit each type's descriptor once.
2020   uint16_t TypeKind = -1;
2021   uint16_t TypeInfo = 0;
2022 
2023   if (T->isIntegerType()) {
2024     TypeKind = 0;
2025     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2026                (T->isSignedIntegerType() ? 1 : 0);
2027   } else if (T->isFloatingType()) {
2028     TypeKind = 1;
2029     TypeInfo = getContext().getTypeSize(T);
2030   }
2031 
2032   // Format the type name as if for a diagnostic, including quotes and
2033   // optionally an 'aka'.
2034   SmallString<32> Buffer;
2035   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2036                                     (intptr_t)T.getAsOpaquePtr(),
2037                                     0, 0, 0, 0, 0, 0, Buffer,
2038                                     ArrayRef<intptr_t>());
2039 
2040   llvm::Constant *Components[] = {
2041     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2042     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2043   };
2044   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2045 
2046   llvm::GlobalVariable *GV =
2047     new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
2048                              /*isConstant=*/true,
2049                              llvm::GlobalVariable::PrivateLinkage,
2050                              Descriptor);
2051   GV->setUnnamedAddr(true);
2052   return GV;
2053 }
2054 
2055 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2056   llvm::Type *TargetTy = IntPtrTy;
2057 
2058   // Floating-point types which fit into intptr_t are bitcast to integers
2059   // and then passed directly (after zero-extension, if necessary).
2060   if (V->getType()->isFloatingPointTy()) {
2061     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2062     if (Bits <= TargetTy->getIntegerBitWidth())
2063       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2064                                                          Bits));
2065   }
2066 
2067   // Integers which fit in intptr_t are zero-extended and passed directly.
2068   if (V->getType()->isIntegerTy() &&
2069       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2070     return Builder.CreateZExt(V, TargetTy);
2071 
2072   // Pointers are passed directly, everything else is passed by address.
2073   if (!V->getType()->isPointerTy()) {
2074     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2075     Builder.CreateStore(V, Ptr);
2076     V = Ptr;
2077   }
2078   return Builder.CreatePtrToInt(V, TargetTy);
2079 }
2080 
2081 /// \brief Emit a representation of a SourceLocation for passing to a handler
2082 /// in a sanitizer runtime library. The format for this data is:
2083 /// \code
2084 ///   struct SourceLocation {
2085 ///     const char *Filename;
2086 ///     int32_t Line, Column;
2087 ///   };
2088 /// \endcode
2089 /// For an invalid SourceLocation, the Filename pointer is null.
2090 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2091   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2092 
2093   llvm::Constant *Data[] = {
2094     // FIXME: Only emit each file name once.
2095     PLoc.isValid() ? cast<llvm::Constant>(
2096                        Builder.CreateGlobalStringPtr(PLoc.getFilename()))
2097                    : llvm::Constant::getNullValue(Int8PtrTy),
2098     Builder.getInt32(PLoc.getLine()),
2099     Builder.getInt32(PLoc.getColumn())
2100   };
2101 
2102   return llvm::ConstantStruct::getAnon(Data);
2103 }
2104 
2105 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2106                                 ArrayRef<llvm::Constant *> StaticArgs,
2107                                 ArrayRef<llvm::Value *> DynamicArgs,
2108                                 CheckRecoverableKind RecoverKind) {
2109   assert(SanOpts != &SanitizerOptions::Disabled);
2110 
2111   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2112     assert (RecoverKind != CRK_AlwaysRecoverable &&
2113             "Runtime call required for AlwaysRecoverable kind!");
2114     return EmitTrapCheck(Checked);
2115   }
2116 
2117   llvm::BasicBlock *Cont = createBasicBlock("cont");
2118 
2119   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2120 
2121   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2122 
2123   // Give hint that we very much don't expect to execute the handler
2124   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2125   llvm::MDBuilder MDHelper(getLLVMContext());
2126   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2127   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2128 
2129   EmitBlock(Handler);
2130 
2131   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2132   llvm::GlobalValue *InfoPtr =
2133       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2134                                llvm::GlobalVariable::PrivateLinkage, Info);
2135   InfoPtr->setUnnamedAddr(true);
2136 
2137   SmallVector<llvm::Value *, 4> Args;
2138   SmallVector<llvm::Type *, 4> ArgTypes;
2139   Args.reserve(DynamicArgs.size() + 1);
2140   ArgTypes.reserve(DynamicArgs.size() + 1);
2141 
2142   // Handler functions take an i8* pointing to the (handler-specific) static
2143   // information block, followed by a sequence of intptr_t arguments
2144   // representing operand values.
2145   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2146   ArgTypes.push_back(Int8PtrTy);
2147   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2148     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2149     ArgTypes.push_back(IntPtrTy);
2150   }
2151 
2152   bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
2153                  ((RecoverKind == CRK_Recoverable) &&
2154                    CGM.getCodeGenOpts().SanitizeRecover);
2155 
2156   llvm::FunctionType *FnType =
2157     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2158   llvm::AttrBuilder B;
2159   if (!Recover) {
2160     B.addAttribute(llvm::Attribute::NoReturn)
2161      .addAttribute(llvm::Attribute::NoUnwind);
2162   }
2163   B.addAttribute(llvm::Attribute::UWTable);
2164 
2165   // Checks that have two variants use a suffix to differentiate them
2166   bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
2167                            !CGM.getCodeGenOpts().SanitizeRecover;
2168   std::string FunctionName = ("__ubsan_handle_" + CheckName +
2169                               (NeedsAbortSuffix? "_abort" : "")).str();
2170   llvm::Value *Fn =
2171     CGM.CreateRuntimeFunction(FnType, FunctionName,
2172                               llvm::AttributeSet::get(getLLVMContext(),
2173                                               llvm::AttributeSet::FunctionIndex,
2174                                                       B));
2175   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2176   if (Recover) {
2177     Builder.CreateBr(Cont);
2178   } else {
2179     HandlerCall->setDoesNotReturn();
2180     Builder.CreateUnreachable();
2181   }
2182 
2183   EmitBlock(Cont);
2184 }
2185 
2186 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2187   llvm::BasicBlock *Cont = createBasicBlock("cont");
2188 
2189   // If we're optimizing, collapse all calls to trap down to just one per
2190   // function to save on code size.
2191   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2192     TrapBB = createBasicBlock("trap");
2193     Builder.CreateCondBr(Checked, Cont, TrapBB);
2194     EmitBlock(TrapBB);
2195     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2196     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2197     TrapCall->setDoesNotReturn();
2198     TrapCall->setDoesNotThrow();
2199     Builder.CreateUnreachable();
2200   } else {
2201     Builder.CreateCondBr(Checked, Cont, TrapBB);
2202   }
2203 
2204   EmitBlock(Cont);
2205 }
2206 
2207 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2208 /// array to pointer, return the array subexpression.
2209 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2210   // If this isn't just an array->pointer decay, bail out.
2211   const CastExpr *CE = dyn_cast<CastExpr>(E);
2212   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2213     return 0;
2214 
2215   // If this is a decay from variable width array, bail out.
2216   const Expr *SubExpr = CE->getSubExpr();
2217   if (SubExpr->getType()->isVariableArrayType())
2218     return 0;
2219 
2220   return SubExpr;
2221 }
2222 
2223 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2224                                                bool Accessed) {
2225   // The index must always be an integer, which is not an aggregate.  Emit it.
2226   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2227   QualType IdxTy  = E->getIdx()->getType();
2228   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2229 
2230   if (SanOpts->Bounds)
2231     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2232 
2233   // If the base is a vector type, then we are forming a vector element lvalue
2234   // with this subscript.
2235   if (E->getBase()->getType()->isVectorType()) {
2236     // Emit the vector as an lvalue to get its address.
2237     LValue LHS = EmitLValue(E->getBase());
2238     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2239     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2240     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2241                                  E->getBase()->getType(), LHS.getAlignment());
2242   }
2243 
2244   // Extend or truncate the index type to 32 or 64-bits.
2245   if (Idx->getType() != IntPtrTy)
2246     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2247 
2248   // We know that the pointer points to a type of the correct size, unless the
2249   // size is a VLA or Objective-C interface.
2250   llvm::Value *Address = 0;
2251   CharUnits ArrayAlignment;
2252   if (const VariableArrayType *vla =
2253         getContext().getAsVariableArrayType(E->getType())) {
2254     // The base must be a pointer, which is not an aggregate.  Emit
2255     // it.  It needs to be emitted first in case it's what captures
2256     // the VLA bounds.
2257     Address = EmitScalarExpr(E->getBase());
2258 
2259     // The element count here is the total number of non-VLA elements.
2260     llvm::Value *numElements = getVLASize(vla).first;
2261 
2262     // Effectively, the multiply by the VLA size is part of the GEP.
2263     // GEP indexes are signed, and scaling an index isn't permitted to
2264     // signed-overflow, so we use the same semantics for our explicit
2265     // multiply.  We suppress this if overflow is not undefined behavior.
2266     if (getLangOpts().isSignedOverflowDefined()) {
2267       Idx = Builder.CreateMul(Idx, numElements);
2268       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2269     } else {
2270       Idx = Builder.CreateNSWMul(Idx, numElements);
2271       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2272     }
2273   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2274     // Indexing over an interface, as in "NSString *P; P[4];"
2275     llvm::Value *InterfaceSize =
2276       llvm::ConstantInt::get(Idx->getType(),
2277           getContext().getTypeSizeInChars(OIT).getQuantity());
2278 
2279     Idx = Builder.CreateMul(Idx, InterfaceSize);
2280 
2281     // The base must be a pointer, which is not an aggregate.  Emit it.
2282     llvm::Value *Base = EmitScalarExpr(E->getBase());
2283     Address = EmitCastToVoidPtr(Base);
2284     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2285     Address = Builder.CreateBitCast(Address, Base->getType());
2286   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2287     // If this is A[i] where A is an array, the frontend will have decayed the
2288     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2289     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2290     // "gep x, i" here.  Emit one "gep A, 0, i".
2291     assert(Array->getType()->isArrayType() &&
2292            "Array to pointer decay must have array source type!");
2293     LValue ArrayLV;
2294     // For simple multidimensional array indexing, set the 'accessed' flag for
2295     // better bounds-checking of the base expression.
2296     if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2297       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2298     else
2299       ArrayLV = EmitLValue(Array);
2300     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2301     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2302     llvm::Value *Args[] = { Zero, Idx };
2303 
2304     // Propagate the alignment from the array itself to the result.
2305     ArrayAlignment = ArrayLV.getAlignment();
2306 
2307     if (getLangOpts().isSignedOverflowDefined())
2308       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2309     else
2310       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2311   } else {
2312     // The base must be a pointer, which is not an aggregate.  Emit it.
2313     llvm::Value *Base = EmitScalarExpr(E->getBase());
2314     if (getLangOpts().isSignedOverflowDefined())
2315       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2316     else
2317       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2318   }
2319 
2320   QualType T = E->getBase()->getType()->getPointeeType();
2321   assert(!T.isNull() &&
2322          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2323 
2324 
2325   // Limit the alignment to that of the result type.
2326   LValue LV;
2327   if (!ArrayAlignment.isZero()) {
2328     CharUnits Align = getContext().getTypeAlignInChars(T);
2329     ArrayAlignment = std::min(Align, ArrayAlignment);
2330     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2331   } else {
2332     LV = MakeNaturalAlignAddrLValue(Address, T);
2333   }
2334 
2335   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2336 
2337   if (getLangOpts().ObjC1 &&
2338       getLangOpts().getGC() != LangOptions::NonGC) {
2339     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2340     setObjCGCLValueClass(getContext(), E, LV);
2341   }
2342   return LV;
2343 }
2344 
2345 static
2346 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2347                                        SmallVectorImpl<unsigned> &Elts) {
2348   SmallVector<llvm::Constant*, 4> CElts;
2349   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2350     CElts.push_back(Builder.getInt32(Elts[i]));
2351 
2352   return llvm::ConstantVector::get(CElts);
2353 }
2354 
2355 LValue CodeGenFunction::
2356 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2357   // Emit the base vector as an l-value.
2358   LValue Base;
2359 
2360   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2361   if (E->isArrow()) {
2362     // If it is a pointer to a vector, emit the address and form an lvalue with
2363     // it.
2364     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2365     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2366     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2367     Base.getQuals().removeObjCGCAttr();
2368   } else if (E->getBase()->isGLValue()) {
2369     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2370     // emit the base as an lvalue.
2371     assert(E->getBase()->getType()->isVectorType());
2372     Base = EmitLValue(E->getBase());
2373   } else {
2374     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2375     assert(E->getBase()->getType()->isVectorType() &&
2376            "Result must be a vector");
2377     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2378 
2379     // Store the vector to memory (because LValue wants an address).
2380     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2381     Builder.CreateStore(Vec, VecMem);
2382     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2383   }
2384 
2385   QualType type =
2386     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2387 
2388   // Encode the element access list into a vector of unsigned indices.
2389   SmallVector<unsigned, 4> Indices;
2390   E->getEncodedElementAccess(Indices);
2391 
2392   if (Base.isSimple()) {
2393     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2394     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2395                                     Base.getAlignment());
2396   }
2397   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2398 
2399   llvm::Constant *BaseElts = Base.getExtVectorElts();
2400   SmallVector<llvm::Constant *, 4> CElts;
2401 
2402   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2403     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2404   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2405   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2406                                   Base.getAlignment());
2407 }
2408 
2409 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2410   Expr *BaseExpr = E->getBase();
2411 
2412   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2413   LValue BaseLV;
2414   if (E->isArrow()) {
2415     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2416     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2417     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2418     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2419   } else
2420     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2421 
2422   NamedDecl *ND = E->getMemberDecl();
2423   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2424     LValue LV = EmitLValueForField(BaseLV, Field);
2425     setObjCGCLValueClass(getContext(), E, LV);
2426     return LV;
2427   }
2428 
2429   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2430     return EmitGlobalVarDeclLValue(*this, E, VD);
2431 
2432   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2433     return EmitFunctionDeclLValue(*this, E, FD);
2434 
2435   llvm_unreachable("Unhandled member declaration!");
2436 }
2437 
2438 /// Given that we are currently emitting a lambda, emit an l-value for
2439 /// one of its members.
2440 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2441   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2442   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2443   QualType LambdaTagType =
2444     getContext().getTagDeclType(Field->getParent());
2445   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2446   return EmitLValueForField(LambdaLV, Field);
2447 }
2448 
2449 LValue CodeGenFunction::EmitLValueForField(LValue base,
2450                                            const FieldDecl *field) {
2451   if (field->isBitField()) {
2452     const CGRecordLayout &RL =
2453       CGM.getTypes().getCGRecordLayout(field->getParent());
2454     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2455     llvm::Value *Addr = base.getAddress();
2456     unsigned Idx = RL.getLLVMFieldNo(field);
2457     if (Idx != 0)
2458       // For structs, we GEP to the field that the record layout suggests.
2459       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2460     // Get the access type.
2461     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2462       getLLVMContext(), Info.StorageSize,
2463       CGM.getContext().getTargetAddressSpace(base.getType()));
2464     if (Addr->getType() != PtrTy)
2465       Addr = Builder.CreateBitCast(Addr, PtrTy);
2466 
2467     QualType fieldType =
2468       field->getType().withCVRQualifiers(base.getVRQualifiers());
2469     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2470   }
2471 
2472   const RecordDecl *rec = field->getParent();
2473   QualType type = field->getType();
2474   CharUnits alignment = getContext().getDeclAlign(field);
2475 
2476   // FIXME: It should be impossible to have an LValue without alignment for a
2477   // complete type.
2478   if (!base.getAlignment().isZero())
2479     alignment = std::min(alignment, base.getAlignment());
2480 
2481   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2482 
2483   llvm::Value *addr = base.getAddress();
2484   unsigned cvr = base.getVRQualifiers();
2485   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2486   if (rec->isUnion()) {
2487     // For unions, there is no pointer adjustment.
2488     assert(!type->isReferenceType() && "union has reference member");
2489     // TODO: handle path-aware TBAA for union.
2490     TBAAPath = false;
2491   } else {
2492     // For structs, we GEP to the field that the record layout suggests.
2493     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2494     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2495 
2496     // If this is a reference field, load the reference right now.
2497     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2498       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2499       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2500       load->setAlignment(alignment.getQuantity());
2501 
2502       // Loading the reference will disable path-aware TBAA.
2503       TBAAPath = false;
2504       if (CGM.shouldUseTBAA()) {
2505         llvm::MDNode *tbaa;
2506         if (mayAlias)
2507           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2508         else
2509           tbaa = CGM.getTBAAInfo(type);
2510         CGM.DecorateInstruction(load, tbaa);
2511       }
2512 
2513       addr = load;
2514       mayAlias = false;
2515       type = refType->getPointeeType();
2516       if (type->isIncompleteType())
2517         alignment = CharUnits();
2518       else
2519         alignment = getContext().getTypeAlignInChars(type);
2520       cvr = 0; // qualifiers don't recursively apply to referencee
2521     }
2522   }
2523 
2524   // Make sure that the address is pointing to the right type.  This is critical
2525   // for both unions and structs.  A union needs a bitcast, a struct element
2526   // will need a bitcast if the LLVM type laid out doesn't match the desired
2527   // type.
2528   addr = EmitBitCastOfLValueToProperType(*this, addr,
2529                                          CGM.getTypes().ConvertTypeForMem(type),
2530                                          field->getName());
2531 
2532   if (field->hasAttr<AnnotateAttr>())
2533     addr = EmitFieldAnnotations(field, addr);
2534 
2535   LValue LV = MakeAddrLValue(addr, type, alignment);
2536   LV.getQuals().addCVRQualifiers(cvr);
2537   if (TBAAPath) {
2538     const ASTRecordLayout &Layout =
2539         getContext().getASTRecordLayout(field->getParent());
2540     // Set the base type to be the base type of the base LValue and
2541     // update offset to be relative to the base type.
2542     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2543     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2544                      Layout.getFieldOffset(field->getFieldIndex()) /
2545                                            getContext().getCharWidth());
2546   }
2547 
2548   // __weak attribute on a field is ignored.
2549   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2550     LV.getQuals().removeObjCGCAttr();
2551 
2552   // Fields of may_alias structs act like 'char' for TBAA purposes.
2553   // FIXME: this should get propagated down through anonymous structs
2554   // and unions.
2555   if (mayAlias && LV.getTBAAInfo())
2556     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2557 
2558   return LV;
2559 }
2560 
2561 LValue
2562 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2563                                                   const FieldDecl *Field) {
2564   QualType FieldType = Field->getType();
2565 
2566   if (!FieldType->isReferenceType())
2567     return EmitLValueForField(Base, Field);
2568 
2569   const CGRecordLayout &RL =
2570     CGM.getTypes().getCGRecordLayout(Field->getParent());
2571   unsigned idx = RL.getLLVMFieldNo(Field);
2572   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2573   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2574 
2575   // Make sure that the address is pointing to the right type.  This is critical
2576   // for both unions and structs.  A union needs a bitcast, a struct element
2577   // will need a bitcast if the LLVM type laid out doesn't match the desired
2578   // type.
2579   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2580   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2581 
2582   CharUnits Alignment = getContext().getDeclAlign(Field);
2583 
2584   // FIXME: It should be impossible to have an LValue without alignment for a
2585   // complete type.
2586   if (!Base.getAlignment().isZero())
2587     Alignment = std::min(Alignment, Base.getAlignment());
2588 
2589   return MakeAddrLValue(V, FieldType, Alignment);
2590 }
2591 
2592 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2593   if (E->isFileScope()) {
2594     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2595     return MakeAddrLValue(GlobalPtr, E->getType());
2596   }
2597   if (E->getType()->isVariablyModifiedType())
2598     // make sure to emit the VLA size.
2599     EmitVariablyModifiedType(E->getType());
2600 
2601   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2602   const Expr *InitExpr = E->getInitializer();
2603   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2604 
2605   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2606                    /*Init*/ true);
2607 
2608   return Result;
2609 }
2610 
2611 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2612   if (!E->isGLValue())
2613     // Initializing an aggregate temporary in C++11: T{...}.
2614     return EmitAggExprToLValue(E);
2615 
2616   // An lvalue initializer list must be initializing a reference.
2617   assert(E->getNumInits() == 1 && "reference init with multiple values");
2618   return EmitLValue(E->getInit(0));
2619 }
2620 
2621 LValue CodeGenFunction::
2622 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2623   if (!expr->isGLValue()) {
2624     // ?: here should be an aggregate.
2625     assert(hasAggregateEvaluationKind(expr->getType()) &&
2626            "Unexpected conditional operator!");
2627     return EmitAggExprToLValue(expr);
2628   }
2629 
2630   OpaqueValueMapping binding(*this, expr);
2631 
2632   const Expr *condExpr = expr->getCond();
2633   bool CondExprBool;
2634   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2635     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2636     if (!CondExprBool) std::swap(live, dead);
2637 
2638     if (!ContainsLabel(dead))
2639       return EmitLValue(live);
2640   }
2641 
2642   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2643   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2644   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2645 
2646   ConditionalEvaluation eval(*this);
2647   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2648 
2649   // Any temporaries created here are conditional.
2650   EmitBlock(lhsBlock);
2651   eval.begin(*this);
2652   LValue lhs = EmitLValue(expr->getTrueExpr());
2653   eval.end(*this);
2654 
2655   if (!lhs.isSimple())
2656     return EmitUnsupportedLValue(expr, "conditional operator");
2657 
2658   lhsBlock = Builder.GetInsertBlock();
2659   Builder.CreateBr(contBlock);
2660 
2661   // Any temporaries created here are conditional.
2662   EmitBlock(rhsBlock);
2663   eval.begin(*this);
2664   LValue rhs = EmitLValue(expr->getFalseExpr());
2665   eval.end(*this);
2666   if (!rhs.isSimple())
2667     return EmitUnsupportedLValue(expr, "conditional operator");
2668   rhsBlock = Builder.GetInsertBlock();
2669 
2670   EmitBlock(contBlock);
2671 
2672   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2673                                          "cond-lvalue");
2674   phi->addIncoming(lhs.getAddress(), lhsBlock);
2675   phi->addIncoming(rhs.getAddress(), rhsBlock);
2676   return MakeAddrLValue(phi, expr->getType());
2677 }
2678 
2679 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2680 /// type. If the cast is to a reference, we can have the usual lvalue result,
2681 /// otherwise if a cast is needed by the code generator in an lvalue context,
2682 /// then it must mean that we need the address of an aggregate in order to
2683 /// access one of its members.  This can happen for all the reasons that casts
2684 /// are permitted with aggregate result, including noop aggregate casts, and
2685 /// cast from scalar to union.
2686 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2687   switch (E->getCastKind()) {
2688   case CK_ToVoid:
2689   case CK_BitCast:
2690   case CK_ArrayToPointerDecay:
2691   case CK_FunctionToPointerDecay:
2692   case CK_NullToMemberPointer:
2693   case CK_NullToPointer:
2694   case CK_IntegralToPointer:
2695   case CK_PointerToIntegral:
2696   case CK_PointerToBoolean:
2697   case CK_VectorSplat:
2698   case CK_IntegralCast:
2699   case CK_IntegralToBoolean:
2700   case CK_IntegralToFloating:
2701   case CK_FloatingToIntegral:
2702   case CK_FloatingToBoolean:
2703   case CK_FloatingCast:
2704   case CK_FloatingRealToComplex:
2705   case CK_FloatingComplexToReal:
2706   case CK_FloatingComplexToBoolean:
2707   case CK_FloatingComplexCast:
2708   case CK_FloatingComplexToIntegralComplex:
2709   case CK_IntegralRealToComplex:
2710   case CK_IntegralComplexToReal:
2711   case CK_IntegralComplexToBoolean:
2712   case CK_IntegralComplexCast:
2713   case CK_IntegralComplexToFloatingComplex:
2714   case CK_DerivedToBaseMemberPointer:
2715   case CK_BaseToDerivedMemberPointer:
2716   case CK_MemberPointerToBoolean:
2717   case CK_ReinterpretMemberPointer:
2718   case CK_AnyPointerToBlockPointerCast:
2719   case CK_ARCProduceObject:
2720   case CK_ARCConsumeObject:
2721   case CK_ARCReclaimReturnedObject:
2722   case CK_ARCExtendBlockObject:
2723   case CK_CopyAndAutoreleaseBlockObject:
2724     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2725 
2726   case CK_Dependent:
2727     llvm_unreachable("dependent cast kind in IR gen!");
2728 
2729   case CK_BuiltinFnToFnPtr:
2730     llvm_unreachable("builtin functions are handled elsewhere");
2731 
2732   // These are never l-values; just use the aggregate emission code.
2733   case CK_NonAtomicToAtomic:
2734   case CK_AtomicToNonAtomic:
2735     return EmitAggExprToLValue(E);
2736 
2737   case CK_Dynamic: {
2738     LValue LV = EmitLValue(E->getSubExpr());
2739     llvm::Value *V = LV.getAddress();
2740     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2741     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2742   }
2743 
2744   case CK_ConstructorConversion:
2745   case CK_UserDefinedConversion:
2746   case CK_CPointerToObjCPointerCast:
2747   case CK_BlockPointerToObjCPointerCast:
2748   case CK_NoOp:
2749   case CK_LValueToRValue:
2750     return EmitLValue(E->getSubExpr());
2751 
2752   case CK_UncheckedDerivedToBase:
2753   case CK_DerivedToBase: {
2754     const RecordType *DerivedClassTy =
2755       E->getSubExpr()->getType()->getAs<RecordType>();
2756     CXXRecordDecl *DerivedClassDecl =
2757       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2758 
2759     LValue LV = EmitLValue(E->getSubExpr());
2760     llvm::Value *This = LV.getAddress();
2761 
2762     // Perform the derived-to-base conversion
2763     llvm::Value *Base =
2764       GetAddressOfBaseClass(This, DerivedClassDecl,
2765                             E->path_begin(), E->path_end(),
2766                             /*NullCheckValue=*/false);
2767 
2768     return MakeAddrLValue(Base, E->getType());
2769   }
2770   case CK_ToUnion:
2771     return EmitAggExprToLValue(E);
2772   case CK_BaseToDerived: {
2773     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2774     CXXRecordDecl *DerivedClassDecl =
2775       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2776 
2777     LValue LV = EmitLValue(E->getSubExpr());
2778 
2779     // Perform the base-to-derived conversion
2780     llvm::Value *Derived =
2781       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2782                                E->path_begin(), E->path_end(),
2783                                /*NullCheckValue=*/false);
2784 
2785     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2786     // performed and the object is not of the derived type.
2787     if (SanitizePerformTypeCheck)
2788       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2789                     Derived, E->getType());
2790 
2791     return MakeAddrLValue(Derived, E->getType());
2792   }
2793   case CK_LValueBitCast: {
2794     // This must be a reinterpret_cast (or c-style equivalent).
2795     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2796 
2797     LValue LV = EmitLValue(E->getSubExpr());
2798     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2799                                            ConvertType(CE->getTypeAsWritten()));
2800     return MakeAddrLValue(V, E->getType());
2801   }
2802   case CK_ObjCObjectLValueCast: {
2803     LValue LV = EmitLValue(E->getSubExpr());
2804     QualType ToType = getContext().getLValueReferenceType(E->getType());
2805     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2806                                            ConvertType(ToType));
2807     return MakeAddrLValue(V, E->getType());
2808   }
2809   case CK_ZeroToOCLEvent:
2810     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2811   }
2812 
2813   llvm_unreachable("Unhandled lvalue cast kind?");
2814 }
2815 
2816 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2817   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2818   return getOpaqueLValueMapping(e);
2819 }
2820 
2821 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2822                                            const FieldDecl *FD) {
2823   QualType FT = FD->getType();
2824   LValue FieldLV = EmitLValueForField(LV, FD);
2825   switch (getEvaluationKind(FT)) {
2826   case TEK_Complex:
2827     return RValue::getComplex(EmitLoadOfComplex(FieldLV));
2828   case TEK_Aggregate:
2829     return FieldLV.asAggregateRValue();
2830   case TEK_Scalar:
2831     return EmitLoadOfLValue(FieldLV);
2832   }
2833   llvm_unreachable("bad evaluation kind");
2834 }
2835 
2836 //===--------------------------------------------------------------------===//
2837 //                             Expression Emission
2838 //===--------------------------------------------------------------------===//
2839 
2840 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2841                                      ReturnValueSlot ReturnValue) {
2842   if (CGDebugInfo *DI = getDebugInfo()) {
2843     SourceLocation Loc = E->getLocStart();
2844     // Force column info to be generated so we can differentiate
2845     // multiple call sites on the same line in the debug info.
2846     const FunctionDecl* Callee = E->getDirectCallee();
2847     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2848     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2849   }
2850 
2851   // Builtins never have block type.
2852   if (E->getCallee()->getType()->isBlockPointerType())
2853     return EmitBlockCallExpr(E, ReturnValue);
2854 
2855   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2856     return EmitCXXMemberCallExpr(CE, ReturnValue);
2857 
2858   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2859     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2860 
2861   const Decl *TargetDecl = E->getCalleeDecl();
2862   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2863     if (unsigned builtinID = FD->getBuiltinID())
2864       return EmitBuiltinExpr(FD, builtinID, E);
2865   }
2866 
2867   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2868     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2869       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2870 
2871   if (const CXXPseudoDestructorExpr *PseudoDtor
2872           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2873     QualType DestroyedType = PseudoDtor->getDestroyedType();
2874     if (getLangOpts().ObjCAutoRefCount &&
2875         DestroyedType->isObjCLifetimeType() &&
2876         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2877          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2878       // Automatic Reference Counting:
2879       //   If the pseudo-expression names a retainable object with weak or
2880       //   strong lifetime, the object shall be released.
2881       Expr *BaseExpr = PseudoDtor->getBase();
2882       llvm::Value *BaseValue = NULL;
2883       Qualifiers BaseQuals;
2884 
2885       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2886       if (PseudoDtor->isArrow()) {
2887         BaseValue = EmitScalarExpr(BaseExpr);
2888         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2889         BaseQuals = PTy->getPointeeType().getQualifiers();
2890       } else {
2891         LValue BaseLV = EmitLValue(BaseExpr);
2892         BaseValue = BaseLV.getAddress();
2893         QualType BaseTy = BaseExpr->getType();
2894         BaseQuals = BaseTy.getQualifiers();
2895       }
2896 
2897       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2898       case Qualifiers::OCL_None:
2899       case Qualifiers::OCL_ExplicitNone:
2900       case Qualifiers::OCL_Autoreleasing:
2901         break;
2902 
2903       case Qualifiers::OCL_Strong:
2904         EmitARCRelease(Builder.CreateLoad(BaseValue,
2905                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2906                        ARCPreciseLifetime);
2907         break;
2908 
2909       case Qualifiers::OCL_Weak:
2910         EmitARCDestroyWeak(BaseValue);
2911         break;
2912       }
2913     } else {
2914       // C++ [expr.pseudo]p1:
2915       //   The result shall only be used as the operand for the function call
2916       //   operator (), and the result of such a call has type void. The only
2917       //   effect is the evaluation of the postfix-expression before the dot or
2918       //   arrow.
2919       EmitScalarExpr(E->getCallee());
2920     }
2921 
2922     return RValue::get(0);
2923   }
2924 
2925   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2926   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2927                   E->arg_begin(), E->arg_end(), TargetDecl);
2928 }
2929 
2930 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2931   // Comma expressions just emit their LHS then their RHS as an l-value.
2932   if (E->getOpcode() == BO_Comma) {
2933     EmitIgnoredExpr(E->getLHS());
2934     EnsureInsertPoint();
2935     return EmitLValue(E->getRHS());
2936   }
2937 
2938   if (E->getOpcode() == BO_PtrMemD ||
2939       E->getOpcode() == BO_PtrMemI)
2940     return EmitPointerToDataMemberBinaryExpr(E);
2941 
2942   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2943 
2944   // Note that in all of these cases, __block variables need the RHS
2945   // evaluated first just in case the variable gets moved by the RHS.
2946 
2947   switch (getEvaluationKind(E->getType())) {
2948   case TEK_Scalar: {
2949     switch (E->getLHS()->getType().getObjCLifetime()) {
2950     case Qualifiers::OCL_Strong:
2951       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2952 
2953     case Qualifiers::OCL_Autoreleasing:
2954       return EmitARCStoreAutoreleasing(E).first;
2955 
2956     // No reason to do any of these differently.
2957     case Qualifiers::OCL_None:
2958     case Qualifiers::OCL_ExplicitNone:
2959     case Qualifiers::OCL_Weak:
2960       break;
2961     }
2962 
2963     RValue RV = EmitAnyExpr(E->getRHS());
2964     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
2965     EmitStoreThroughLValue(RV, LV);
2966     return LV;
2967   }
2968 
2969   case TEK_Complex:
2970     return EmitComplexAssignmentLValue(E);
2971 
2972   case TEK_Aggregate:
2973     return EmitAggExprToLValue(E);
2974   }
2975   llvm_unreachable("bad evaluation kind");
2976 }
2977 
2978 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2979   RValue RV = EmitCallExpr(E);
2980 
2981   if (!RV.isScalar())
2982     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2983 
2984   assert(E->getCallReturnType()->isReferenceType() &&
2985          "Can't have a scalar return unless the return type is a "
2986          "reference type!");
2987 
2988   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2989 }
2990 
2991 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2992   // FIXME: This shouldn't require another copy.
2993   return EmitAggExprToLValue(E);
2994 }
2995 
2996 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2997   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2998          && "binding l-value to type which needs a temporary");
2999   AggValueSlot Slot = CreateAggTemp(E->getType());
3000   EmitCXXConstructExpr(E, Slot);
3001   return MakeAddrLValue(Slot.getAddr(), E->getType());
3002 }
3003 
3004 LValue
3005 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3006   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3007 }
3008 
3009 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3010   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3011                                ConvertType(E->getType())->getPointerTo());
3012 }
3013 
3014 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3015   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3016 }
3017 
3018 LValue
3019 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3020   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3021   Slot.setExternallyDestructed();
3022   EmitAggExpr(E->getSubExpr(), Slot);
3023   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3024   return MakeAddrLValue(Slot.getAddr(), E->getType());
3025 }
3026 
3027 LValue
3028 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3029   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3030   EmitLambdaExpr(E, Slot);
3031   return MakeAddrLValue(Slot.getAddr(), E->getType());
3032 }
3033 
3034 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3035   RValue RV = EmitObjCMessageExpr(E);
3036 
3037   if (!RV.isScalar())
3038     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3039 
3040   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
3041          "Can't have a scalar return unless the return type is a "
3042          "reference type!");
3043 
3044   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3045 }
3046 
3047 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3048   llvm::Value *V =
3049     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3050   return MakeAddrLValue(V, E->getType());
3051 }
3052 
3053 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3054                                              const ObjCIvarDecl *Ivar) {
3055   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3056 }
3057 
3058 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3059                                           llvm::Value *BaseValue,
3060                                           const ObjCIvarDecl *Ivar,
3061                                           unsigned CVRQualifiers) {
3062   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3063                                                    Ivar, CVRQualifiers);
3064 }
3065 
3066 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3067   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3068   llvm::Value *BaseValue = 0;
3069   const Expr *BaseExpr = E->getBase();
3070   Qualifiers BaseQuals;
3071   QualType ObjectTy;
3072   if (E->isArrow()) {
3073     BaseValue = EmitScalarExpr(BaseExpr);
3074     ObjectTy = BaseExpr->getType()->getPointeeType();
3075     BaseQuals = ObjectTy.getQualifiers();
3076   } else {
3077     LValue BaseLV = EmitLValue(BaseExpr);
3078     // FIXME: this isn't right for bitfields.
3079     BaseValue = BaseLV.getAddress();
3080     ObjectTy = BaseExpr->getType();
3081     BaseQuals = ObjectTy.getQualifiers();
3082   }
3083 
3084   LValue LV =
3085     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3086                       BaseQuals.getCVRQualifiers());
3087   setObjCGCLValueClass(getContext(), E, LV);
3088   return LV;
3089 }
3090 
3091 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3092   // Can only get l-value for message expression returning aggregate type
3093   RValue RV = EmitAnyExprToTemp(E);
3094   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3095 }
3096 
3097 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3098                                  ReturnValueSlot ReturnValue,
3099                                  CallExpr::const_arg_iterator ArgBeg,
3100                                  CallExpr::const_arg_iterator ArgEnd,
3101                                  const Decl *TargetDecl) {
3102   // Get the actual function type. The callee type will always be a pointer to
3103   // function type or a block pointer type.
3104   assert(CalleeType->isFunctionPointerType() &&
3105          "Call must have function pointer type!");
3106 
3107   CalleeType = getContext().getCanonicalType(CalleeType);
3108 
3109   const FunctionType *FnType
3110     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3111 
3112   // Force column info to differentiate multiple inlined call sites on
3113   // the same line, analoguous to EmitCallExpr.
3114   bool ForceColumnInfo = false;
3115   if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3116     ForceColumnInfo = FD->isInlineSpecified();
3117 
3118   CallArgList Args;
3119   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
3120                ForceColumnInfo);
3121 
3122   const CGFunctionInfo &FnInfo =
3123     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3124 
3125   // C99 6.5.2.2p6:
3126   //   If the expression that denotes the called function has a type
3127   //   that does not include a prototype, [the default argument
3128   //   promotions are performed]. If the number of arguments does not
3129   //   equal the number of parameters, the behavior is undefined. If
3130   //   the function is defined with a type that includes a prototype,
3131   //   and either the prototype ends with an ellipsis (, ...) or the
3132   //   types of the arguments after promotion are not compatible with
3133   //   the types of the parameters, the behavior is undefined. If the
3134   //   function is defined with a type that does not include a
3135   //   prototype, and the types of the arguments after promotion are
3136   //   not compatible with those of the parameters after promotion,
3137   //   the behavior is undefined [except in some trivial cases].
3138   // That is, in the general case, we should assume that a call
3139   // through an unprototyped function type works like a *non-variadic*
3140   // call.  The way we make this work is to cast to the exact type
3141   // of the promoted arguments.
3142   if (isa<FunctionNoProtoType>(FnType)) {
3143     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3144     CalleeTy = CalleeTy->getPointerTo();
3145     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3146   }
3147 
3148   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3149 }
3150 
3151 LValue CodeGenFunction::
3152 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3153   llvm::Value *BaseV;
3154   if (E->getOpcode() == BO_PtrMemI)
3155     BaseV = EmitScalarExpr(E->getLHS());
3156   else
3157     BaseV = EmitLValue(E->getLHS()).getAddress();
3158 
3159   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3160 
3161   const MemberPointerType *MPT
3162     = E->getRHS()->getType()->getAs<MemberPointerType>();
3163 
3164   llvm::Value *AddV =
3165     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
3166 
3167   return MakeAddrLValue(AddV, MPT->getPointeeType());
3168 }
3169 
3170 /// Given the address of a temporary variable, produce an r-value of
3171 /// its type.
3172 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3173                                             QualType type) {
3174   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3175   switch (getEvaluationKind(type)) {
3176   case TEK_Complex:
3177     return RValue::getComplex(EmitLoadOfComplex(lvalue));
3178   case TEK_Aggregate:
3179     return lvalue.asAggregateRValue();
3180   case TEK_Scalar:
3181     return RValue::get(EmitLoadOfScalar(lvalue));
3182   }
3183   llvm_unreachable("bad evaluation kind");
3184 }
3185 
3186 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3187   assert(Val->getType()->isFPOrFPVectorTy());
3188   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3189     return;
3190 
3191   llvm::MDBuilder MDHelper(getLLVMContext());
3192   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3193 
3194   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3195 }
3196 
3197 namespace {
3198   struct LValueOrRValue {
3199     LValue LV;
3200     RValue RV;
3201   };
3202 }
3203 
3204 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3205                                            const PseudoObjectExpr *E,
3206                                            bool forLValue,
3207                                            AggValueSlot slot) {
3208   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3209 
3210   // Find the result expression, if any.
3211   const Expr *resultExpr = E->getResultExpr();
3212   LValueOrRValue result;
3213 
3214   for (PseudoObjectExpr::const_semantics_iterator
3215          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3216     const Expr *semantic = *i;
3217 
3218     // If this semantic expression is an opaque value, bind it
3219     // to the result of its source expression.
3220     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3221 
3222       // If this is the result expression, we may need to evaluate
3223       // directly into the slot.
3224       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3225       OVMA opaqueData;
3226       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3227           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3228         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3229 
3230         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3231         opaqueData = OVMA::bind(CGF, ov, LV);
3232         result.RV = slot.asRValue();
3233 
3234       // Otherwise, emit as normal.
3235       } else {
3236         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3237 
3238         // If this is the result, also evaluate the result now.
3239         if (ov == resultExpr) {
3240           if (forLValue)
3241             result.LV = CGF.EmitLValue(ov);
3242           else
3243             result.RV = CGF.EmitAnyExpr(ov, slot);
3244         }
3245       }
3246 
3247       opaques.push_back(opaqueData);
3248 
3249     // Otherwise, if the expression is the result, evaluate it
3250     // and remember the result.
3251     } else if (semantic == resultExpr) {
3252       if (forLValue)
3253         result.LV = CGF.EmitLValue(semantic);
3254       else
3255         result.RV = CGF.EmitAnyExpr(semantic, slot);
3256 
3257     // Otherwise, evaluate the expression in an ignored context.
3258     } else {
3259       CGF.EmitIgnoredExpr(semantic);
3260     }
3261   }
3262 
3263   // Unbind all the opaques now.
3264   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3265     opaques[i].unbind(CGF);
3266 
3267   return result;
3268 }
3269 
3270 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3271                                                AggValueSlot slot) {
3272   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3273 }
3274 
3275 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3276   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3277 }
3278