1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 65 const Twine &Name, 66 llvm::Value *ArraySize, 67 Address *AllocaAddr, 68 bool CastToDefaultAddrSpace) { 69 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 70 Alloca->setAlignment(Align.getQuantity()); 71 if (AllocaAddr) 72 *AllocaAddr = Address(Alloca, Align); 73 llvm::Value *V = Alloca; 74 // Alloca always returns a pointer in alloca address space, which may 75 // be different from the type defined by the language. For example, 76 // in C++ the auto variables are in the default address space. Therefore 77 // cast alloca to the default address space when necessary. 78 if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) { 79 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 80 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 81 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 82 // otherwise alloca is inserted at the current insertion point of the 83 // builder. 84 if (!ArraySize) 85 Builder.SetInsertPoint(AllocaInsertPt); 86 V = getTargetHooks().performAddrSpaceCast( 87 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 88 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 89 } 90 91 return Address(V, Align); 92 } 93 94 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 95 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 96 /// insertion point of the builder. 97 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 98 const Twine &Name, 99 llvm::Value *ArraySize) { 100 if (ArraySize) 101 return Builder.CreateAlloca(Ty, ArraySize, Name); 102 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 103 ArraySize, Name, AllocaInsertPt); 104 } 105 106 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 107 /// default alignment of the corresponding LLVM type, which is *not* 108 /// guaranteed to be related in any way to the expected alignment of 109 /// an AST type that might have been lowered to Ty. 110 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 111 const Twine &Name) { 112 CharUnits Align = 113 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 114 return CreateTempAlloca(Ty, Align, Name); 115 } 116 117 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 118 assert(isa<llvm::AllocaInst>(Var.getPointer())); 119 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 120 Store->setAlignment(Var.getAlignment().getQuantity()); 121 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 122 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 123 } 124 125 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 126 CharUnits Align = getContext().getTypeAlignInChars(Ty); 127 return CreateTempAlloca(ConvertType(Ty), Align, Name); 128 } 129 130 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 131 Address *Alloca, 132 bool CastToDefaultAddrSpace) { 133 // FIXME: Should we prefer the preferred type alignment here? 134 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca, 135 CastToDefaultAddrSpace); 136 } 137 138 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 139 const Twine &Name, Address *Alloca, 140 bool CastToDefaultAddrSpace) { 141 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 142 /*ArraySize=*/nullptr, Alloca, 143 CastToDefaultAddrSpace); 144 } 145 146 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 147 /// expression and compare the result against zero, returning an Int1Ty value. 148 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 149 PGO.setCurrentStmt(E); 150 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 151 llvm::Value *MemPtr = EmitScalarExpr(E); 152 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 153 } 154 155 QualType BoolTy = getContext().BoolTy; 156 SourceLocation Loc = E->getExprLoc(); 157 if (!E->getType()->isAnyComplexType()) 158 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 159 160 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 161 Loc); 162 } 163 164 /// EmitIgnoredExpr - Emit code to compute the specified expression, 165 /// ignoring the result. 166 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 167 if (E->isRValue()) 168 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 169 170 // Just emit it as an l-value and drop the result. 171 EmitLValue(E); 172 } 173 174 /// EmitAnyExpr - Emit code to compute the specified expression which 175 /// can have any type. The result is returned as an RValue struct. 176 /// If this is an aggregate expression, AggSlot indicates where the 177 /// result should be returned. 178 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 179 AggValueSlot aggSlot, 180 bool ignoreResult) { 181 switch (getEvaluationKind(E->getType())) { 182 case TEK_Scalar: 183 return RValue::get(EmitScalarExpr(E, ignoreResult)); 184 case TEK_Complex: 185 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 186 case TEK_Aggregate: 187 if (!ignoreResult && aggSlot.isIgnored()) 188 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 189 EmitAggExpr(E, aggSlot); 190 return aggSlot.asRValue(); 191 } 192 llvm_unreachable("bad evaluation kind"); 193 } 194 195 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 196 /// always be accessible even if no aggregate location is provided. 197 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 198 AggValueSlot AggSlot = AggValueSlot::ignored(); 199 200 if (hasAggregateEvaluationKind(E->getType())) 201 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 202 return EmitAnyExpr(E, AggSlot); 203 } 204 205 /// EmitAnyExprToMem - Evaluate an expression into a given memory 206 /// location. 207 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 208 Address Location, 209 Qualifiers Quals, 210 bool IsInit) { 211 // FIXME: This function should take an LValue as an argument. 212 switch (getEvaluationKind(E->getType())) { 213 case TEK_Complex: 214 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 215 /*isInit*/ false); 216 return; 217 218 case TEK_Aggregate: { 219 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 220 AggValueSlot::IsDestructed_t(IsInit), 221 AggValueSlot::DoesNotNeedGCBarriers, 222 AggValueSlot::IsAliased_t(!IsInit), 223 AggValueSlot::MayOverlap)); 224 return; 225 } 226 227 case TEK_Scalar: { 228 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 229 LValue LV = MakeAddrLValue(Location, E->getType()); 230 EmitStoreThroughLValue(RV, LV); 231 return; 232 } 233 } 234 llvm_unreachable("bad evaluation kind"); 235 } 236 237 static void 238 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 239 const Expr *E, Address ReferenceTemporary) { 240 // Objective-C++ ARC: 241 // If we are binding a reference to a temporary that has ownership, we 242 // need to perform retain/release operations on the temporary. 243 // 244 // FIXME: This should be looking at E, not M. 245 if (auto Lifetime = M->getType().getObjCLifetime()) { 246 switch (Lifetime) { 247 case Qualifiers::OCL_None: 248 case Qualifiers::OCL_ExplicitNone: 249 // Carry on to normal cleanup handling. 250 break; 251 252 case Qualifiers::OCL_Autoreleasing: 253 // Nothing to do; cleaned up by an autorelease pool. 254 return; 255 256 case Qualifiers::OCL_Strong: 257 case Qualifiers::OCL_Weak: 258 switch (StorageDuration Duration = M->getStorageDuration()) { 259 case SD_Static: 260 // Note: we intentionally do not register a cleanup to release 261 // the object on program termination. 262 return; 263 264 case SD_Thread: 265 // FIXME: We should probably register a cleanup in this case. 266 return; 267 268 case SD_Automatic: 269 case SD_FullExpression: 270 CodeGenFunction::Destroyer *Destroy; 271 CleanupKind CleanupKind; 272 if (Lifetime == Qualifiers::OCL_Strong) { 273 const ValueDecl *VD = M->getExtendingDecl(); 274 bool Precise = 275 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 276 CleanupKind = CGF.getARCCleanupKind(); 277 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 278 : &CodeGenFunction::destroyARCStrongImprecise; 279 } else { 280 // __weak objects always get EH cleanups; otherwise, exceptions 281 // could cause really nasty crashes instead of mere leaks. 282 CleanupKind = NormalAndEHCleanup; 283 Destroy = &CodeGenFunction::destroyARCWeak; 284 } 285 if (Duration == SD_FullExpression) 286 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 287 M->getType(), *Destroy, 288 CleanupKind & EHCleanup); 289 else 290 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 291 M->getType(), 292 *Destroy, CleanupKind & EHCleanup); 293 return; 294 295 case SD_Dynamic: 296 llvm_unreachable("temporary cannot have dynamic storage duration"); 297 } 298 llvm_unreachable("unknown storage duration"); 299 } 300 } 301 302 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 303 if (const RecordType *RT = 304 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 305 // Get the destructor for the reference temporary. 306 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 307 if (!ClassDecl->hasTrivialDestructor()) 308 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 309 } 310 311 if (!ReferenceTemporaryDtor) 312 return; 313 314 // Call the destructor for the temporary. 315 switch (M->getStorageDuration()) { 316 case SD_Static: 317 case SD_Thread: { 318 llvm::Constant *CleanupFn; 319 llvm::Constant *CleanupArg; 320 if (E->getType()->isArrayType()) { 321 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 322 ReferenceTemporary, E->getType(), 323 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 324 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 325 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 326 } else { 327 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 328 StructorType::Complete); 329 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 330 } 331 CGF.CGM.getCXXABI().registerGlobalDtor( 332 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 333 break; 334 } 335 336 case SD_FullExpression: 337 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 338 CodeGenFunction::destroyCXXObject, 339 CGF.getLangOpts().Exceptions); 340 break; 341 342 case SD_Automatic: 343 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 344 ReferenceTemporary, E->getType(), 345 CodeGenFunction::destroyCXXObject, 346 CGF.getLangOpts().Exceptions); 347 break; 348 349 case SD_Dynamic: 350 llvm_unreachable("temporary cannot have dynamic storage duration"); 351 } 352 } 353 354 static Address createReferenceTemporary(CodeGenFunction &CGF, 355 const MaterializeTemporaryExpr *M, 356 const Expr *Inner, 357 Address *Alloca = nullptr) { 358 auto &TCG = CGF.getTargetHooks(); 359 switch (M->getStorageDuration()) { 360 case SD_FullExpression: 361 case SD_Automatic: { 362 // If we have a constant temporary array or record try to promote it into a 363 // constant global under the same rules a normal constant would've been 364 // promoted. This is easier on the optimizer and generally emits fewer 365 // instructions. 366 QualType Ty = Inner->getType(); 367 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 368 (Ty->isArrayType() || Ty->isRecordType()) && 369 CGF.CGM.isTypeConstant(Ty, true)) 370 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 371 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 372 auto AS = AddrSpace.getValue(); 373 auto *GV = new llvm::GlobalVariable( 374 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 375 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 376 llvm::GlobalValue::NotThreadLocal, 377 CGF.getContext().getTargetAddressSpace(AS)); 378 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 379 GV->setAlignment(alignment.getQuantity()); 380 llvm::Constant *C = GV; 381 if (AS != LangAS::Default) 382 C = TCG.performAddrSpaceCast( 383 CGF.CGM, GV, AS, LangAS::Default, 384 GV->getValueType()->getPointerTo( 385 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 386 // FIXME: Should we put the new global into a COMDAT? 387 return Address(C, alignment); 388 } 389 } 390 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 391 } 392 case SD_Thread: 393 case SD_Static: 394 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 395 396 case SD_Dynamic: 397 llvm_unreachable("temporary can't have dynamic storage duration"); 398 } 399 llvm_unreachable("unknown storage duration"); 400 } 401 402 LValue CodeGenFunction:: 403 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 404 const Expr *E = M->GetTemporaryExpr(); 405 406 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 407 // as that will cause the lifetime adjustment to be lost for ARC 408 auto ownership = M->getType().getObjCLifetime(); 409 if (ownership != Qualifiers::OCL_None && 410 ownership != Qualifiers::OCL_ExplicitNone) { 411 Address Object = createReferenceTemporary(*this, M, E); 412 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 413 Object = Address(llvm::ConstantExpr::getBitCast(Var, 414 ConvertTypeForMem(E->getType()) 415 ->getPointerTo(Object.getAddressSpace())), 416 Object.getAlignment()); 417 418 // createReferenceTemporary will promote the temporary to a global with a 419 // constant initializer if it can. It can only do this to a value of 420 // ARC-manageable type if the value is global and therefore "immune" to 421 // ref-counting operations. Therefore we have no need to emit either a 422 // dynamic initialization or a cleanup and we can just return the address 423 // of the temporary. 424 if (Var->hasInitializer()) 425 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 426 427 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 428 } 429 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 430 AlignmentSource::Decl); 431 432 switch (getEvaluationKind(E->getType())) { 433 default: llvm_unreachable("expected scalar or aggregate expression"); 434 case TEK_Scalar: 435 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 436 break; 437 case TEK_Aggregate: { 438 EmitAggExpr(E, AggValueSlot::forAddr(Object, 439 E->getType().getQualifiers(), 440 AggValueSlot::IsDestructed, 441 AggValueSlot::DoesNotNeedGCBarriers, 442 AggValueSlot::IsNotAliased, 443 AggValueSlot::DoesNotOverlap)); 444 break; 445 } 446 } 447 448 pushTemporaryCleanup(*this, M, E, Object); 449 return RefTempDst; 450 } 451 452 SmallVector<const Expr *, 2> CommaLHSs; 453 SmallVector<SubobjectAdjustment, 2> Adjustments; 454 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 455 456 for (const auto &Ignored : CommaLHSs) 457 EmitIgnoredExpr(Ignored); 458 459 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 460 if (opaque->getType()->isRecordType()) { 461 assert(Adjustments.empty()); 462 return EmitOpaqueValueLValue(opaque); 463 } 464 } 465 466 // Create and initialize the reference temporary. 467 Address Alloca = Address::invalid(); 468 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 469 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 470 Object.getPointer()->stripPointerCasts())) { 471 Object = Address(llvm::ConstantExpr::getBitCast( 472 cast<llvm::Constant>(Object.getPointer()), 473 ConvertTypeForMem(E->getType())->getPointerTo()), 474 Object.getAlignment()); 475 // If the temporary is a global and has a constant initializer or is a 476 // constant temporary that we promoted to a global, we may have already 477 // initialized it. 478 if (!Var->hasInitializer()) { 479 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 480 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 481 } 482 } else { 483 switch (M->getStorageDuration()) { 484 case SD_Automatic: 485 case SD_FullExpression: 486 if (auto *Size = EmitLifetimeStart( 487 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 488 Alloca.getPointer())) { 489 if (M->getStorageDuration() == SD_Automatic) 490 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 491 Alloca, Size); 492 else 493 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 494 Size); 495 } 496 break; 497 default: 498 break; 499 } 500 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 501 } 502 pushTemporaryCleanup(*this, M, E, Object); 503 504 // Perform derived-to-base casts and/or field accesses, to get from the 505 // temporary object we created (and, potentially, for which we extended 506 // the lifetime) to the subobject we're binding the reference to. 507 for (unsigned I = Adjustments.size(); I != 0; --I) { 508 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 509 switch (Adjustment.Kind) { 510 case SubobjectAdjustment::DerivedToBaseAdjustment: 511 Object = 512 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 513 Adjustment.DerivedToBase.BasePath->path_begin(), 514 Adjustment.DerivedToBase.BasePath->path_end(), 515 /*NullCheckValue=*/ false, E->getExprLoc()); 516 break; 517 518 case SubobjectAdjustment::FieldAdjustment: { 519 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 520 LV = EmitLValueForField(LV, Adjustment.Field); 521 assert(LV.isSimple() && 522 "materialized temporary field is not a simple lvalue"); 523 Object = LV.getAddress(); 524 break; 525 } 526 527 case SubobjectAdjustment::MemberPointerAdjustment: { 528 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 529 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 530 Adjustment.Ptr.MPT); 531 break; 532 } 533 } 534 } 535 536 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 537 } 538 539 RValue 540 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 541 // Emit the expression as an lvalue. 542 LValue LV = EmitLValue(E); 543 assert(LV.isSimple()); 544 llvm::Value *Value = LV.getPointer(); 545 546 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 547 // C++11 [dcl.ref]p5 (as amended by core issue 453): 548 // If a glvalue to which a reference is directly bound designates neither 549 // an existing object or function of an appropriate type nor a region of 550 // storage of suitable size and alignment to contain an object of the 551 // reference's type, the behavior is undefined. 552 QualType Ty = E->getType(); 553 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 554 } 555 556 return RValue::get(Value); 557 } 558 559 560 /// getAccessedFieldNo - Given an encoded value and a result number, return the 561 /// input field number being accessed. 562 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 563 const llvm::Constant *Elts) { 564 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 565 ->getZExtValue(); 566 } 567 568 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 569 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 570 llvm::Value *High) { 571 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 572 llvm::Value *K47 = Builder.getInt64(47); 573 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 574 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 575 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 576 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 577 return Builder.CreateMul(B1, KMul); 578 } 579 580 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 581 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 582 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 583 } 584 585 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 586 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 587 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 588 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 589 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 590 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 591 } 592 593 bool CodeGenFunction::sanitizePerformTypeCheck() const { 594 return SanOpts.has(SanitizerKind::Null) | 595 SanOpts.has(SanitizerKind::Alignment) | 596 SanOpts.has(SanitizerKind::ObjectSize) | 597 SanOpts.has(SanitizerKind::Vptr); 598 } 599 600 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 601 llvm::Value *Ptr, QualType Ty, 602 CharUnits Alignment, 603 SanitizerSet SkippedChecks) { 604 if (!sanitizePerformTypeCheck()) 605 return; 606 607 // Don't check pointers outside the default address space. The null check 608 // isn't correct, the object-size check isn't supported by LLVM, and we can't 609 // communicate the addresses to the runtime handler for the vptr check. 610 if (Ptr->getType()->getPointerAddressSpace()) 611 return; 612 613 // Don't check pointers to volatile data. The behavior here is implementation- 614 // defined. 615 if (Ty.isVolatileQualified()) 616 return; 617 618 SanitizerScope SanScope(this); 619 620 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 621 llvm::BasicBlock *Done = nullptr; 622 623 // Quickly determine whether we have a pointer to an alloca. It's possible 624 // to skip null checks, and some alignment checks, for these pointers. This 625 // can reduce compile-time significantly. 626 auto PtrToAlloca = 627 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 628 629 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 630 llvm::Value *IsNonNull = nullptr; 631 bool IsGuaranteedNonNull = 632 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 633 bool AllowNullPointers = isNullPointerAllowed(TCK); 634 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 635 !IsGuaranteedNonNull) { 636 // The glvalue must not be an empty glvalue. 637 IsNonNull = Builder.CreateIsNotNull(Ptr); 638 639 // The IR builder can constant-fold the null check if the pointer points to 640 // a constant. 641 IsGuaranteedNonNull = IsNonNull == True; 642 643 // Skip the null check if the pointer is known to be non-null. 644 if (!IsGuaranteedNonNull) { 645 if (AllowNullPointers) { 646 // When performing pointer casts, it's OK if the value is null. 647 // Skip the remaining checks in that case. 648 Done = createBasicBlock("null"); 649 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 650 Builder.CreateCondBr(IsNonNull, Rest, Done); 651 EmitBlock(Rest); 652 } else { 653 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 654 } 655 } 656 } 657 658 if (SanOpts.has(SanitizerKind::ObjectSize) && 659 !SkippedChecks.has(SanitizerKind::ObjectSize) && 660 !Ty->isIncompleteType()) { 661 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 662 663 // The glvalue must refer to a large enough storage region. 664 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 665 // to check this. 666 // FIXME: Get object address space 667 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 668 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 669 llvm::Value *Min = Builder.getFalse(); 670 llvm::Value *NullIsUnknown = Builder.getFalse(); 671 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 672 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 673 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 674 llvm::ConstantInt::get(IntPtrTy, Size)); 675 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 676 } 677 678 uint64_t AlignVal = 0; 679 llvm::Value *PtrAsInt = nullptr; 680 681 if (SanOpts.has(SanitizerKind::Alignment) && 682 !SkippedChecks.has(SanitizerKind::Alignment)) { 683 AlignVal = Alignment.getQuantity(); 684 if (!Ty->isIncompleteType() && !AlignVal) 685 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 686 687 // The glvalue must be suitably aligned. 688 if (AlignVal > 1 && 689 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 690 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 691 llvm::Value *Align = Builder.CreateAnd( 692 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 693 llvm::Value *Aligned = 694 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 695 if (Aligned != True) 696 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 697 } 698 } 699 700 if (Checks.size() > 0) { 701 // Make sure we're not losing information. Alignment needs to be a power of 702 // 2 703 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 704 llvm::Constant *StaticData[] = { 705 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 706 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 707 llvm::ConstantInt::get(Int8Ty, TCK)}; 708 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 709 PtrAsInt ? PtrAsInt : Ptr); 710 } 711 712 // If possible, check that the vptr indicates that there is a subobject of 713 // type Ty at offset zero within this object. 714 // 715 // C++11 [basic.life]p5,6: 716 // [For storage which does not refer to an object within its lifetime] 717 // The program has undefined behavior if: 718 // -- the [pointer or glvalue] is used to access a non-static data member 719 // or call a non-static member function 720 if (SanOpts.has(SanitizerKind::Vptr) && 721 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 722 // Ensure that the pointer is non-null before loading it. If there is no 723 // compile-time guarantee, reuse the run-time null check or emit a new one. 724 if (!IsGuaranteedNonNull) { 725 if (!IsNonNull) 726 IsNonNull = Builder.CreateIsNotNull(Ptr); 727 if (!Done) 728 Done = createBasicBlock("vptr.null"); 729 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 730 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 731 EmitBlock(VptrNotNull); 732 } 733 734 // Compute a hash of the mangled name of the type. 735 // 736 // FIXME: This is not guaranteed to be deterministic! Move to a 737 // fingerprinting mechanism once LLVM provides one. For the time 738 // being the implementation happens to be deterministic. 739 SmallString<64> MangledName; 740 llvm::raw_svector_ostream Out(MangledName); 741 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 742 Out); 743 744 // Blacklist based on the mangled type. 745 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 746 SanitizerKind::Vptr, Out.str())) { 747 llvm::hash_code TypeHash = hash_value(Out.str()); 748 749 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 750 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 751 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 752 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 753 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 754 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 755 756 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 757 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 758 759 // Look the hash up in our cache. 760 const int CacheSize = 128; 761 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 762 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 763 "__ubsan_vptr_type_cache"); 764 llvm::Value *Slot = Builder.CreateAnd(Hash, 765 llvm::ConstantInt::get(IntPtrTy, 766 CacheSize-1)); 767 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 768 llvm::Value *CacheVal = 769 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 770 getPointerAlign()); 771 772 // If the hash isn't in the cache, call a runtime handler to perform the 773 // hard work of checking whether the vptr is for an object of the right 774 // type. This will either fill in the cache and return, or produce a 775 // diagnostic. 776 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 777 llvm::Constant *StaticData[] = { 778 EmitCheckSourceLocation(Loc), 779 EmitCheckTypeDescriptor(Ty), 780 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 781 llvm::ConstantInt::get(Int8Ty, TCK) 782 }; 783 llvm::Value *DynamicData[] = { Ptr, Hash }; 784 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 785 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 786 DynamicData); 787 } 788 } 789 790 if (Done) { 791 Builder.CreateBr(Done); 792 EmitBlock(Done); 793 } 794 } 795 796 /// Determine whether this expression refers to a flexible array member in a 797 /// struct. We disable array bounds checks for such members. 798 static bool isFlexibleArrayMemberExpr(const Expr *E) { 799 // For compatibility with existing code, we treat arrays of length 0 or 800 // 1 as flexible array members. 801 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 802 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 803 if (CAT->getSize().ugt(1)) 804 return false; 805 } else if (!isa<IncompleteArrayType>(AT)) 806 return false; 807 808 E = E->IgnoreParens(); 809 810 // A flexible array member must be the last member in the class. 811 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 812 // FIXME: If the base type of the member expr is not FD->getParent(), 813 // this should not be treated as a flexible array member access. 814 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 815 RecordDecl::field_iterator FI( 816 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 817 return ++FI == FD->getParent()->field_end(); 818 } 819 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 820 return IRE->getDecl()->getNextIvar() == nullptr; 821 } 822 823 return false; 824 } 825 826 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 827 QualType EltTy) { 828 ASTContext &C = getContext(); 829 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 830 if (!EltSize) 831 return nullptr; 832 833 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 834 if (!ArrayDeclRef) 835 return nullptr; 836 837 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 838 if (!ParamDecl) 839 return nullptr; 840 841 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 842 if (!POSAttr) 843 return nullptr; 844 845 // Don't load the size if it's a lower bound. 846 int POSType = POSAttr->getType(); 847 if (POSType != 0 && POSType != 1) 848 return nullptr; 849 850 // Find the implicit size parameter. 851 auto PassedSizeIt = SizeArguments.find(ParamDecl); 852 if (PassedSizeIt == SizeArguments.end()) 853 return nullptr; 854 855 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 856 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 857 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 858 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 859 C.getSizeType(), E->getExprLoc()); 860 llvm::Value *SizeOfElement = 861 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 862 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 863 } 864 865 /// If Base is known to point to the start of an array, return the length of 866 /// that array. Return 0 if the length cannot be determined. 867 static llvm::Value *getArrayIndexingBound( 868 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 869 // For the vector indexing extension, the bound is the number of elements. 870 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 871 IndexedType = Base->getType(); 872 return CGF.Builder.getInt32(VT->getNumElements()); 873 } 874 875 Base = Base->IgnoreParens(); 876 877 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 878 if (CE->getCastKind() == CK_ArrayToPointerDecay && 879 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 880 IndexedType = CE->getSubExpr()->getType(); 881 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 882 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 883 return CGF.Builder.getInt(CAT->getSize()); 884 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 885 return CGF.getVLASize(VAT).NumElts; 886 // Ignore pass_object_size here. It's not applicable on decayed pointers. 887 } 888 } 889 890 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 891 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 892 IndexedType = Base->getType(); 893 return POS; 894 } 895 896 return nullptr; 897 } 898 899 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 900 llvm::Value *Index, QualType IndexType, 901 bool Accessed) { 902 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 903 "should not be called unless adding bounds checks"); 904 SanitizerScope SanScope(this); 905 906 QualType IndexedType; 907 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 908 if (!Bound) 909 return; 910 911 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 912 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 913 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 914 915 llvm::Constant *StaticData[] = { 916 EmitCheckSourceLocation(E->getExprLoc()), 917 EmitCheckTypeDescriptor(IndexedType), 918 EmitCheckTypeDescriptor(IndexType) 919 }; 920 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 921 : Builder.CreateICmpULE(IndexVal, BoundVal); 922 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 923 SanitizerHandler::OutOfBounds, StaticData, Index); 924 } 925 926 927 CodeGenFunction::ComplexPairTy CodeGenFunction:: 928 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 929 bool isInc, bool isPre) { 930 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 931 932 llvm::Value *NextVal; 933 if (isa<llvm::IntegerType>(InVal.first->getType())) { 934 uint64_t AmountVal = isInc ? 1 : -1; 935 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 936 937 // Add the inc/dec to the real part. 938 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 939 } else { 940 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 941 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 942 if (!isInc) 943 FVal.changeSign(); 944 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 945 946 // Add the inc/dec to the real part. 947 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 948 } 949 950 ComplexPairTy IncVal(NextVal, InVal.second); 951 952 // Store the updated result through the lvalue. 953 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 954 955 // If this is a postinc, return the value read from memory, otherwise use the 956 // updated value. 957 return isPre ? IncVal : InVal; 958 } 959 960 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 961 CodeGenFunction *CGF) { 962 // Bind VLAs in the cast type. 963 if (CGF && E->getType()->isVariablyModifiedType()) 964 CGF->EmitVariablyModifiedType(E->getType()); 965 966 if (CGDebugInfo *DI = getModuleDebugInfo()) 967 DI->EmitExplicitCastType(E->getType()); 968 } 969 970 //===----------------------------------------------------------------------===// 971 // LValue Expression Emission 972 //===----------------------------------------------------------------------===// 973 974 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 975 /// derive a more accurate bound on the alignment of the pointer. 976 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 977 LValueBaseInfo *BaseInfo, 978 TBAAAccessInfo *TBAAInfo) { 979 // We allow this with ObjC object pointers because of fragile ABIs. 980 assert(E->getType()->isPointerType() || 981 E->getType()->isObjCObjectPointerType()); 982 E = E->IgnoreParens(); 983 984 // Casts: 985 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 986 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 987 CGM.EmitExplicitCastExprType(ECE, this); 988 989 switch (CE->getCastKind()) { 990 // Non-converting casts (but not C's implicit conversion from void*). 991 case CK_BitCast: 992 case CK_NoOp: 993 case CK_AddressSpaceConversion: 994 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 995 if (PtrTy->getPointeeType()->isVoidType()) 996 break; 997 998 LValueBaseInfo InnerBaseInfo; 999 TBAAAccessInfo InnerTBAAInfo; 1000 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1001 &InnerBaseInfo, 1002 &InnerTBAAInfo); 1003 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1004 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1005 1006 if (isa<ExplicitCastExpr>(CE)) { 1007 LValueBaseInfo TargetTypeBaseInfo; 1008 TBAAAccessInfo TargetTypeTBAAInfo; 1009 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1010 &TargetTypeBaseInfo, 1011 &TargetTypeTBAAInfo); 1012 if (TBAAInfo) 1013 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1014 TargetTypeTBAAInfo); 1015 // If the source l-value is opaque, honor the alignment of the 1016 // casted-to type. 1017 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1018 if (BaseInfo) 1019 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1020 Addr = Address(Addr.getPointer(), Align); 1021 } 1022 } 1023 1024 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1025 CE->getCastKind() == CK_BitCast) { 1026 if (auto PT = E->getType()->getAs<PointerType>()) 1027 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1028 /*MayBeNull=*/true, 1029 CodeGenFunction::CFITCK_UnrelatedCast, 1030 CE->getLocStart()); 1031 } 1032 return CE->getCastKind() != CK_AddressSpaceConversion 1033 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1034 : Builder.CreateAddrSpaceCast(Addr, 1035 ConvertType(E->getType())); 1036 } 1037 break; 1038 1039 // Array-to-pointer decay. 1040 case CK_ArrayToPointerDecay: 1041 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1042 1043 // Derived-to-base conversions. 1044 case CK_UncheckedDerivedToBase: 1045 case CK_DerivedToBase: { 1046 // TODO: Support accesses to members of base classes in TBAA. For now, we 1047 // conservatively pretend that the complete object is of the base class 1048 // type. 1049 if (TBAAInfo) 1050 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1051 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1052 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1053 return GetAddressOfBaseClass(Addr, Derived, 1054 CE->path_begin(), CE->path_end(), 1055 ShouldNullCheckClassCastValue(CE), 1056 CE->getExprLoc()); 1057 } 1058 1059 // TODO: Is there any reason to treat base-to-derived conversions 1060 // specially? 1061 default: 1062 break; 1063 } 1064 } 1065 1066 // Unary &. 1067 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1068 if (UO->getOpcode() == UO_AddrOf) { 1069 LValue LV = EmitLValue(UO->getSubExpr()); 1070 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1071 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1072 return LV.getAddress(); 1073 } 1074 } 1075 1076 // TODO: conditional operators, comma. 1077 1078 // Otherwise, use the alignment of the type. 1079 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1080 TBAAInfo); 1081 return Address(EmitScalarExpr(E), Align); 1082 } 1083 1084 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1085 if (Ty->isVoidType()) 1086 return RValue::get(nullptr); 1087 1088 switch (getEvaluationKind(Ty)) { 1089 case TEK_Complex: { 1090 llvm::Type *EltTy = 1091 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1092 llvm::Value *U = llvm::UndefValue::get(EltTy); 1093 return RValue::getComplex(std::make_pair(U, U)); 1094 } 1095 1096 // If this is a use of an undefined aggregate type, the aggregate must have an 1097 // identifiable address. Just because the contents of the value are undefined 1098 // doesn't mean that the address can't be taken and compared. 1099 case TEK_Aggregate: { 1100 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1101 return RValue::getAggregate(DestPtr); 1102 } 1103 1104 case TEK_Scalar: 1105 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1106 } 1107 llvm_unreachable("bad evaluation kind"); 1108 } 1109 1110 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1111 const char *Name) { 1112 ErrorUnsupported(E, Name); 1113 return GetUndefRValue(E->getType()); 1114 } 1115 1116 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1117 const char *Name) { 1118 ErrorUnsupported(E, Name); 1119 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1120 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1121 E->getType()); 1122 } 1123 1124 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1125 const Expr *Base = Obj; 1126 while (!isa<CXXThisExpr>(Base)) { 1127 // The result of a dynamic_cast can be null. 1128 if (isa<CXXDynamicCastExpr>(Base)) 1129 return false; 1130 1131 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1132 Base = CE->getSubExpr(); 1133 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1134 Base = PE->getSubExpr(); 1135 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1136 if (UO->getOpcode() == UO_Extension) 1137 Base = UO->getSubExpr(); 1138 else 1139 return false; 1140 } else { 1141 return false; 1142 } 1143 } 1144 return true; 1145 } 1146 1147 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1148 LValue LV; 1149 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1150 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1151 else 1152 LV = EmitLValue(E); 1153 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1154 SanitizerSet SkippedChecks; 1155 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1156 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1157 if (IsBaseCXXThis) 1158 SkippedChecks.set(SanitizerKind::Alignment, true); 1159 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1160 SkippedChecks.set(SanitizerKind::Null, true); 1161 } 1162 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1163 E->getType(), LV.getAlignment(), SkippedChecks); 1164 } 1165 return LV; 1166 } 1167 1168 /// EmitLValue - Emit code to compute a designator that specifies the location 1169 /// of the expression. 1170 /// 1171 /// This can return one of two things: a simple address or a bitfield reference. 1172 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1173 /// an LLVM pointer type. 1174 /// 1175 /// If this returns a bitfield reference, nothing about the pointee type of the 1176 /// LLVM value is known: For example, it may not be a pointer to an integer. 1177 /// 1178 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1179 /// this method guarantees that the returned pointer type will point to an LLVM 1180 /// type of the same size of the lvalue's type. If the lvalue has a variable 1181 /// length type, this is not possible. 1182 /// 1183 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1184 ApplyDebugLocation DL(*this, E); 1185 switch (E->getStmtClass()) { 1186 default: return EmitUnsupportedLValue(E, "l-value expression"); 1187 1188 case Expr::ObjCPropertyRefExprClass: 1189 llvm_unreachable("cannot emit a property reference directly"); 1190 1191 case Expr::ObjCSelectorExprClass: 1192 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1193 case Expr::ObjCIsaExprClass: 1194 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1195 case Expr::BinaryOperatorClass: 1196 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1197 case Expr::CompoundAssignOperatorClass: { 1198 QualType Ty = E->getType(); 1199 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1200 Ty = AT->getValueType(); 1201 if (!Ty->isAnyComplexType()) 1202 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1203 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1204 } 1205 case Expr::CallExprClass: 1206 case Expr::CXXMemberCallExprClass: 1207 case Expr::CXXOperatorCallExprClass: 1208 case Expr::UserDefinedLiteralClass: 1209 return EmitCallExprLValue(cast<CallExpr>(E)); 1210 case Expr::VAArgExprClass: 1211 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1212 case Expr::DeclRefExprClass: 1213 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1214 case Expr::ParenExprClass: 1215 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1216 case Expr::GenericSelectionExprClass: 1217 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1218 case Expr::PredefinedExprClass: 1219 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1220 case Expr::StringLiteralClass: 1221 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1222 case Expr::ObjCEncodeExprClass: 1223 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1224 case Expr::PseudoObjectExprClass: 1225 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1226 case Expr::InitListExprClass: 1227 return EmitInitListLValue(cast<InitListExpr>(E)); 1228 case Expr::CXXTemporaryObjectExprClass: 1229 case Expr::CXXConstructExprClass: 1230 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1231 case Expr::CXXBindTemporaryExprClass: 1232 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1233 case Expr::CXXUuidofExprClass: 1234 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1235 case Expr::LambdaExprClass: 1236 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1237 1238 case Expr::ExprWithCleanupsClass: { 1239 const auto *cleanups = cast<ExprWithCleanups>(E); 1240 enterFullExpression(cleanups); 1241 RunCleanupsScope Scope(*this); 1242 LValue LV = EmitLValue(cleanups->getSubExpr()); 1243 if (LV.isSimple()) { 1244 // Defend against branches out of gnu statement expressions surrounded by 1245 // cleanups. 1246 llvm::Value *V = LV.getPointer(); 1247 Scope.ForceCleanup({&V}); 1248 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1249 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1250 } 1251 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1252 // bitfield lvalue or some other non-simple lvalue? 1253 return LV; 1254 } 1255 1256 case Expr::CXXDefaultArgExprClass: 1257 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1258 case Expr::CXXDefaultInitExprClass: { 1259 CXXDefaultInitExprScope Scope(*this); 1260 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1261 } 1262 case Expr::CXXTypeidExprClass: 1263 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1264 1265 case Expr::ObjCMessageExprClass: 1266 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1267 case Expr::ObjCIvarRefExprClass: 1268 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1269 case Expr::StmtExprClass: 1270 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1271 case Expr::UnaryOperatorClass: 1272 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1273 case Expr::ArraySubscriptExprClass: 1274 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1275 case Expr::OMPArraySectionExprClass: 1276 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1277 case Expr::ExtVectorElementExprClass: 1278 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1279 case Expr::MemberExprClass: 1280 return EmitMemberExpr(cast<MemberExpr>(E)); 1281 case Expr::CompoundLiteralExprClass: 1282 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1283 case Expr::ConditionalOperatorClass: 1284 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1285 case Expr::BinaryConditionalOperatorClass: 1286 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1287 case Expr::ChooseExprClass: 1288 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1289 case Expr::OpaqueValueExprClass: 1290 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1291 case Expr::SubstNonTypeTemplateParmExprClass: 1292 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1293 case Expr::ImplicitCastExprClass: 1294 case Expr::CStyleCastExprClass: 1295 case Expr::CXXFunctionalCastExprClass: 1296 case Expr::CXXStaticCastExprClass: 1297 case Expr::CXXDynamicCastExprClass: 1298 case Expr::CXXReinterpretCastExprClass: 1299 case Expr::CXXConstCastExprClass: 1300 case Expr::ObjCBridgedCastExprClass: 1301 return EmitCastLValue(cast<CastExpr>(E)); 1302 1303 case Expr::MaterializeTemporaryExprClass: 1304 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1305 1306 case Expr::CoawaitExprClass: 1307 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1308 case Expr::CoyieldExprClass: 1309 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1310 } 1311 } 1312 1313 /// Given an object of the given canonical type, can we safely copy a 1314 /// value out of it based on its initializer? 1315 static bool isConstantEmittableObjectType(QualType type) { 1316 assert(type.isCanonical()); 1317 assert(!type->isReferenceType()); 1318 1319 // Must be const-qualified but non-volatile. 1320 Qualifiers qs = type.getLocalQualifiers(); 1321 if (!qs.hasConst() || qs.hasVolatile()) return false; 1322 1323 // Otherwise, all object types satisfy this except C++ classes with 1324 // mutable subobjects or non-trivial copy/destroy behavior. 1325 if (const auto *RT = dyn_cast<RecordType>(type)) 1326 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1327 if (RD->hasMutableFields() || !RD->isTrivial()) 1328 return false; 1329 1330 return true; 1331 } 1332 1333 /// Can we constant-emit a load of a reference to a variable of the 1334 /// given type? This is different from predicates like 1335 /// Decl::isUsableInConstantExpressions because we do want it to apply 1336 /// in situations that don't necessarily satisfy the language's rules 1337 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1338 /// to do this with const float variables even if those variables 1339 /// aren't marked 'constexpr'. 1340 enum ConstantEmissionKind { 1341 CEK_None, 1342 CEK_AsReferenceOnly, 1343 CEK_AsValueOrReference, 1344 CEK_AsValueOnly 1345 }; 1346 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1347 type = type.getCanonicalType(); 1348 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1349 if (isConstantEmittableObjectType(ref->getPointeeType())) 1350 return CEK_AsValueOrReference; 1351 return CEK_AsReferenceOnly; 1352 } 1353 if (isConstantEmittableObjectType(type)) 1354 return CEK_AsValueOnly; 1355 return CEK_None; 1356 } 1357 1358 /// Try to emit a reference to the given value without producing it as 1359 /// an l-value. This is actually more than an optimization: we can't 1360 /// produce an l-value for variables that we never actually captured 1361 /// in a block or lambda, which means const int variables or constexpr 1362 /// literals or similar. 1363 CodeGenFunction::ConstantEmission 1364 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1365 ValueDecl *value = refExpr->getDecl(); 1366 1367 // The value needs to be an enum constant or a constant variable. 1368 ConstantEmissionKind CEK; 1369 if (isa<ParmVarDecl>(value)) { 1370 CEK = CEK_None; 1371 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1372 CEK = checkVarTypeForConstantEmission(var->getType()); 1373 } else if (isa<EnumConstantDecl>(value)) { 1374 CEK = CEK_AsValueOnly; 1375 } else { 1376 CEK = CEK_None; 1377 } 1378 if (CEK == CEK_None) return ConstantEmission(); 1379 1380 Expr::EvalResult result; 1381 bool resultIsReference; 1382 QualType resultType; 1383 1384 // It's best to evaluate all the way as an r-value if that's permitted. 1385 if (CEK != CEK_AsReferenceOnly && 1386 refExpr->EvaluateAsRValue(result, getContext())) { 1387 resultIsReference = false; 1388 resultType = refExpr->getType(); 1389 1390 // Otherwise, try to evaluate as an l-value. 1391 } else if (CEK != CEK_AsValueOnly && 1392 refExpr->EvaluateAsLValue(result, getContext())) { 1393 resultIsReference = true; 1394 resultType = value->getType(); 1395 1396 // Failure. 1397 } else { 1398 return ConstantEmission(); 1399 } 1400 1401 // In any case, if the initializer has side-effects, abandon ship. 1402 if (result.HasSideEffects) 1403 return ConstantEmission(); 1404 1405 // Emit as a constant. 1406 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1407 result.Val, resultType); 1408 1409 // Make sure we emit a debug reference to the global variable. 1410 // This should probably fire even for 1411 if (isa<VarDecl>(value)) { 1412 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1413 EmitDeclRefExprDbgValue(refExpr, result.Val); 1414 } else { 1415 assert(isa<EnumConstantDecl>(value)); 1416 EmitDeclRefExprDbgValue(refExpr, result.Val); 1417 } 1418 1419 // If we emitted a reference constant, we need to dereference that. 1420 if (resultIsReference) 1421 return ConstantEmission::forReference(C); 1422 1423 return ConstantEmission::forValue(C); 1424 } 1425 1426 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1427 const MemberExpr *ME) { 1428 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1429 // Try to emit static variable member expressions as DREs. 1430 return DeclRefExpr::Create( 1431 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1432 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1433 ME->getType(), ME->getValueKind()); 1434 } 1435 return nullptr; 1436 } 1437 1438 CodeGenFunction::ConstantEmission 1439 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1440 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1441 return tryEmitAsConstant(DRE); 1442 return ConstantEmission(); 1443 } 1444 1445 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1446 SourceLocation Loc) { 1447 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1448 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1449 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1450 } 1451 1452 static bool hasBooleanRepresentation(QualType Ty) { 1453 if (Ty->isBooleanType()) 1454 return true; 1455 1456 if (const EnumType *ET = Ty->getAs<EnumType>()) 1457 return ET->getDecl()->getIntegerType()->isBooleanType(); 1458 1459 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1460 return hasBooleanRepresentation(AT->getValueType()); 1461 1462 return false; 1463 } 1464 1465 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1466 llvm::APInt &Min, llvm::APInt &End, 1467 bool StrictEnums, bool IsBool) { 1468 const EnumType *ET = Ty->getAs<EnumType>(); 1469 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1470 ET && !ET->getDecl()->isFixed(); 1471 if (!IsBool && !IsRegularCPlusPlusEnum) 1472 return false; 1473 1474 if (IsBool) { 1475 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1476 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1477 } else { 1478 const EnumDecl *ED = ET->getDecl(); 1479 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1480 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1481 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1482 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1483 1484 if (NumNegativeBits) { 1485 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1486 assert(NumBits <= Bitwidth); 1487 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1488 Min = -End; 1489 } else { 1490 assert(NumPositiveBits <= Bitwidth); 1491 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1492 Min = llvm::APInt(Bitwidth, 0); 1493 } 1494 } 1495 return true; 1496 } 1497 1498 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1499 llvm::APInt Min, End; 1500 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1501 hasBooleanRepresentation(Ty))) 1502 return nullptr; 1503 1504 llvm::MDBuilder MDHelper(getLLVMContext()); 1505 return MDHelper.createRange(Min, End); 1506 } 1507 1508 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1509 SourceLocation Loc) { 1510 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1511 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1512 if (!HasBoolCheck && !HasEnumCheck) 1513 return false; 1514 1515 bool IsBool = hasBooleanRepresentation(Ty) || 1516 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1517 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1518 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1519 if (!NeedsBoolCheck && !NeedsEnumCheck) 1520 return false; 1521 1522 // Single-bit booleans don't need to be checked. Special-case this to avoid 1523 // a bit width mismatch when handling bitfield values. This is handled by 1524 // EmitFromMemory for the non-bitfield case. 1525 if (IsBool && 1526 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1527 return false; 1528 1529 llvm::APInt Min, End; 1530 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1531 return true; 1532 1533 auto &Ctx = getLLVMContext(); 1534 SanitizerScope SanScope(this); 1535 llvm::Value *Check; 1536 --End; 1537 if (!Min) { 1538 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1539 } else { 1540 llvm::Value *Upper = 1541 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1542 llvm::Value *Lower = 1543 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1544 Check = Builder.CreateAnd(Upper, Lower); 1545 } 1546 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1547 EmitCheckTypeDescriptor(Ty)}; 1548 SanitizerMask Kind = 1549 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1550 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1551 StaticArgs, EmitCheckValue(Value)); 1552 return true; 1553 } 1554 1555 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1556 QualType Ty, 1557 SourceLocation Loc, 1558 LValueBaseInfo BaseInfo, 1559 TBAAAccessInfo TBAAInfo, 1560 bool isNontemporal) { 1561 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1562 // For better performance, handle vector loads differently. 1563 if (Ty->isVectorType()) { 1564 const llvm::Type *EltTy = Addr.getElementType(); 1565 1566 const auto *VTy = cast<llvm::VectorType>(EltTy); 1567 1568 // Handle vectors of size 3 like size 4 for better performance. 1569 if (VTy->getNumElements() == 3) { 1570 1571 // Bitcast to vec4 type. 1572 llvm::VectorType *vec4Ty = 1573 llvm::VectorType::get(VTy->getElementType(), 4); 1574 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1575 // Now load value. 1576 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1577 1578 // Shuffle vector to get vec3. 1579 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1580 {0, 1, 2}, "extractVec"); 1581 return EmitFromMemory(V, Ty); 1582 } 1583 } 1584 } 1585 1586 // Atomic operations have to be done on integral types. 1587 LValue AtomicLValue = 1588 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1589 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1590 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1591 } 1592 1593 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1594 if (isNontemporal) { 1595 llvm::MDNode *Node = llvm::MDNode::get( 1596 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1597 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1598 } 1599 1600 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1601 1602 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1603 // In order to prevent the optimizer from throwing away the check, don't 1604 // attach range metadata to the load. 1605 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1606 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1607 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1608 1609 return EmitFromMemory(Load, Ty); 1610 } 1611 1612 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1613 // Bool has a different representation in memory than in registers. 1614 if (hasBooleanRepresentation(Ty)) { 1615 // This should really always be an i1, but sometimes it's already 1616 // an i8, and it's awkward to track those cases down. 1617 if (Value->getType()->isIntegerTy(1)) 1618 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1619 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1620 "wrong value rep of bool"); 1621 } 1622 1623 return Value; 1624 } 1625 1626 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1627 // Bool has a different representation in memory than in registers. 1628 if (hasBooleanRepresentation(Ty)) { 1629 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1630 "wrong value rep of bool"); 1631 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1632 } 1633 1634 return Value; 1635 } 1636 1637 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1638 bool Volatile, QualType Ty, 1639 LValueBaseInfo BaseInfo, 1640 TBAAAccessInfo TBAAInfo, 1641 bool isInit, bool isNontemporal) { 1642 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1643 // Handle vectors differently to get better performance. 1644 if (Ty->isVectorType()) { 1645 llvm::Type *SrcTy = Value->getType(); 1646 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1647 // Handle vec3 special. 1648 if (VecTy && VecTy->getNumElements() == 3) { 1649 // Our source is a vec3, do a shuffle vector to make it a vec4. 1650 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1651 Builder.getInt32(2), 1652 llvm::UndefValue::get(Builder.getInt32Ty())}; 1653 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1654 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1655 MaskV, "extractVec"); 1656 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1657 } 1658 if (Addr.getElementType() != SrcTy) { 1659 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1660 } 1661 } 1662 } 1663 1664 Value = EmitToMemory(Value, Ty); 1665 1666 LValue AtomicLValue = 1667 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1668 if (Ty->isAtomicType() || 1669 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1670 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1671 return; 1672 } 1673 1674 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1675 if (isNontemporal) { 1676 llvm::MDNode *Node = 1677 llvm::MDNode::get(Store->getContext(), 1678 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1679 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1680 } 1681 1682 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1683 } 1684 1685 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1686 bool isInit) { 1687 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1688 lvalue.getType(), lvalue.getBaseInfo(), 1689 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1690 } 1691 1692 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1693 /// method emits the address of the lvalue, then loads the result as an rvalue, 1694 /// returning the rvalue. 1695 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1696 if (LV.isObjCWeak()) { 1697 // load of a __weak object. 1698 Address AddrWeakObj = LV.getAddress(); 1699 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1700 AddrWeakObj)); 1701 } 1702 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1703 // In MRC mode, we do a load+autorelease. 1704 if (!getLangOpts().ObjCAutoRefCount) { 1705 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1706 } 1707 1708 // In ARC mode, we load retained and then consume the value. 1709 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1710 Object = EmitObjCConsumeObject(LV.getType(), Object); 1711 return RValue::get(Object); 1712 } 1713 1714 if (LV.isSimple()) { 1715 assert(!LV.getType()->isFunctionType()); 1716 1717 // Everything needs a load. 1718 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1719 } 1720 1721 if (LV.isVectorElt()) { 1722 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1723 LV.isVolatileQualified()); 1724 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1725 "vecext")); 1726 } 1727 1728 // If this is a reference to a subset of the elements of a vector, either 1729 // shuffle the input or extract/insert them as appropriate. 1730 if (LV.isExtVectorElt()) 1731 return EmitLoadOfExtVectorElementLValue(LV); 1732 1733 // Global Register variables always invoke intrinsics 1734 if (LV.isGlobalReg()) 1735 return EmitLoadOfGlobalRegLValue(LV); 1736 1737 assert(LV.isBitField() && "Unknown LValue type!"); 1738 return EmitLoadOfBitfieldLValue(LV, Loc); 1739 } 1740 1741 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1742 SourceLocation Loc) { 1743 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1744 1745 // Get the output type. 1746 llvm::Type *ResLTy = ConvertType(LV.getType()); 1747 1748 Address Ptr = LV.getBitFieldAddress(); 1749 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1750 1751 if (Info.IsSigned) { 1752 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1753 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1754 if (HighBits) 1755 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1756 if (Info.Offset + HighBits) 1757 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1758 } else { 1759 if (Info.Offset) 1760 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1761 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1762 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1763 Info.Size), 1764 "bf.clear"); 1765 } 1766 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1767 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1768 return RValue::get(Val); 1769 } 1770 1771 // If this is a reference to a subset of the elements of a vector, create an 1772 // appropriate shufflevector. 1773 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1774 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1775 LV.isVolatileQualified()); 1776 1777 const llvm::Constant *Elts = LV.getExtVectorElts(); 1778 1779 // If the result of the expression is a non-vector type, we must be extracting 1780 // a single element. Just codegen as an extractelement. 1781 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1782 if (!ExprVT) { 1783 unsigned InIdx = getAccessedFieldNo(0, Elts); 1784 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1785 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1786 } 1787 1788 // Always use shuffle vector to try to retain the original program structure 1789 unsigned NumResultElts = ExprVT->getNumElements(); 1790 1791 SmallVector<llvm::Constant*, 4> Mask; 1792 for (unsigned i = 0; i != NumResultElts; ++i) 1793 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1794 1795 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1796 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1797 MaskV); 1798 return RValue::get(Vec); 1799 } 1800 1801 /// Generates lvalue for partial ext_vector access. 1802 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1803 Address VectorAddress = LV.getExtVectorAddress(); 1804 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1805 QualType EQT = ExprVT->getElementType(); 1806 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1807 1808 Address CastToPointerElement = 1809 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1810 "conv.ptr.element"); 1811 1812 const llvm::Constant *Elts = LV.getExtVectorElts(); 1813 unsigned ix = getAccessedFieldNo(0, Elts); 1814 1815 Address VectorBasePtrPlusIx = 1816 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1817 getContext().getTypeSizeInChars(EQT), 1818 "vector.elt"); 1819 1820 return VectorBasePtrPlusIx; 1821 } 1822 1823 /// Load of global gamed gegisters are always calls to intrinsics. 1824 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1825 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1826 "Bad type for register variable"); 1827 llvm::MDNode *RegName = cast<llvm::MDNode>( 1828 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1829 1830 // We accept integer and pointer types only 1831 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1832 llvm::Type *Ty = OrigTy; 1833 if (OrigTy->isPointerTy()) 1834 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1835 llvm::Type *Types[] = { Ty }; 1836 1837 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1838 llvm::Value *Call = Builder.CreateCall( 1839 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1840 if (OrigTy->isPointerTy()) 1841 Call = Builder.CreateIntToPtr(Call, OrigTy); 1842 return RValue::get(Call); 1843 } 1844 1845 1846 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1847 /// lvalue, where both are guaranteed to the have the same type, and that type 1848 /// is 'Ty'. 1849 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1850 bool isInit) { 1851 if (!Dst.isSimple()) { 1852 if (Dst.isVectorElt()) { 1853 // Read/modify/write the vector, inserting the new element. 1854 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1855 Dst.isVolatileQualified()); 1856 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1857 Dst.getVectorIdx(), "vecins"); 1858 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1859 Dst.isVolatileQualified()); 1860 return; 1861 } 1862 1863 // If this is an update of extended vector elements, insert them as 1864 // appropriate. 1865 if (Dst.isExtVectorElt()) 1866 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1867 1868 if (Dst.isGlobalReg()) 1869 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1870 1871 assert(Dst.isBitField() && "Unknown LValue type"); 1872 return EmitStoreThroughBitfieldLValue(Src, Dst); 1873 } 1874 1875 // There's special magic for assigning into an ARC-qualified l-value. 1876 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1877 switch (Lifetime) { 1878 case Qualifiers::OCL_None: 1879 llvm_unreachable("present but none"); 1880 1881 case Qualifiers::OCL_ExplicitNone: 1882 // nothing special 1883 break; 1884 1885 case Qualifiers::OCL_Strong: 1886 if (isInit) { 1887 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1888 break; 1889 } 1890 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1891 return; 1892 1893 case Qualifiers::OCL_Weak: 1894 if (isInit) 1895 // Initialize and then skip the primitive store. 1896 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1897 else 1898 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1899 return; 1900 1901 case Qualifiers::OCL_Autoreleasing: 1902 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1903 Src.getScalarVal())); 1904 // fall into the normal path 1905 break; 1906 } 1907 } 1908 1909 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1910 // load of a __weak object. 1911 Address LvalueDst = Dst.getAddress(); 1912 llvm::Value *src = Src.getScalarVal(); 1913 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1914 return; 1915 } 1916 1917 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1918 // load of a __strong object. 1919 Address LvalueDst = Dst.getAddress(); 1920 llvm::Value *src = Src.getScalarVal(); 1921 if (Dst.isObjCIvar()) { 1922 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1923 llvm::Type *ResultType = IntPtrTy; 1924 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1925 llvm::Value *RHS = dst.getPointer(); 1926 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1927 llvm::Value *LHS = 1928 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1929 "sub.ptr.lhs.cast"); 1930 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1931 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1932 BytesBetween); 1933 } else if (Dst.isGlobalObjCRef()) { 1934 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1935 Dst.isThreadLocalRef()); 1936 } 1937 else 1938 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1939 return; 1940 } 1941 1942 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1943 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1944 } 1945 1946 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1947 llvm::Value **Result) { 1948 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1949 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1950 Address Ptr = Dst.getBitFieldAddress(); 1951 1952 // Get the source value, truncated to the width of the bit-field. 1953 llvm::Value *SrcVal = Src.getScalarVal(); 1954 1955 // Cast the source to the storage type and shift it into place. 1956 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1957 /*IsSigned=*/false); 1958 llvm::Value *MaskedVal = SrcVal; 1959 1960 // See if there are other bits in the bitfield's storage we'll need to load 1961 // and mask together with source before storing. 1962 if (Info.StorageSize != Info.Size) { 1963 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1964 llvm::Value *Val = 1965 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1966 1967 // Mask the source value as needed. 1968 if (!hasBooleanRepresentation(Dst.getType())) 1969 SrcVal = Builder.CreateAnd(SrcVal, 1970 llvm::APInt::getLowBitsSet(Info.StorageSize, 1971 Info.Size), 1972 "bf.value"); 1973 MaskedVal = SrcVal; 1974 if (Info.Offset) 1975 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1976 1977 // Mask out the original value. 1978 Val = Builder.CreateAnd(Val, 1979 ~llvm::APInt::getBitsSet(Info.StorageSize, 1980 Info.Offset, 1981 Info.Offset + Info.Size), 1982 "bf.clear"); 1983 1984 // Or together the unchanged values and the source value. 1985 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1986 } else { 1987 assert(Info.Offset == 0); 1988 } 1989 1990 // Write the new value back out. 1991 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1992 1993 // Return the new value of the bit-field, if requested. 1994 if (Result) { 1995 llvm::Value *ResultVal = MaskedVal; 1996 1997 // Sign extend the value if needed. 1998 if (Info.IsSigned) { 1999 assert(Info.Size <= Info.StorageSize); 2000 unsigned HighBits = Info.StorageSize - Info.Size; 2001 if (HighBits) { 2002 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2003 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2004 } 2005 } 2006 2007 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2008 "bf.result.cast"); 2009 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2010 } 2011 } 2012 2013 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2014 LValue Dst) { 2015 // This access turns into a read/modify/write of the vector. Load the input 2016 // value now. 2017 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2018 Dst.isVolatileQualified()); 2019 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2020 2021 llvm::Value *SrcVal = Src.getScalarVal(); 2022 2023 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2024 unsigned NumSrcElts = VTy->getNumElements(); 2025 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2026 if (NumDstElts == NumSrcElts) { 2027 // Use shuffle vector is the src and destination are the same number of 2028 // elements and restore the vector mask since it is on the side it will be 2029 // stored. 2030 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2031 for (unsigned i = 0; i != NumSrcElts; ++i) 2032 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2033 2034 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2035 Vec = Builder.CreateShuffleVector(SrcVal, 2036 llvm::UndefValue::get(Vec->getType()), 2037 MaskV); 2038 } else if (NumDstElts > NumSrcElts) { 2039 // Extended the source vector to the same length and then shuffle it 2040 // into the destination. 2041 // FIXME: since we're shuffling with undef, can we just use the indices 2042 // into that? This could be simpler. 2043 SmallVector<llvm::Constant*, 4> ExtMask; 2044 for (unsigned i = 0; i != NumSrcElts; ++i) 2045 ExtMask.push_back(Builder.getInt32(i)); 2046 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2047 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2048 llvm::Value *ExtSrcVal = 2049 Builder.CreateShuffleVector(SrcVal, 2050 llvm::UndefValue::get(SrcVal->getType()), 2051 ExtMaskV); 2052 // build identity 2053 SmallVector<llvm::Constant*, 4> Mask; 2054 for (unsigned i = 0; i != NumDstElts; ++i) 2055 Mask.push_back(Builder.getInt32(i)); 2056 2057 // When the vector size is odd and .odd or .hi is used, the last element 2058 // of the Elts constant array will be one past the size of the vector. 2059 // Ignore the last element here, if it is greater than the mask size. 2060 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2061 NumSrcElts--; 2062 2063 // modify when what gets shuffled in 2064 for (unsigned i = 0; i != NumSrcElts; ++i) 2065 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2066 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2067 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2068 } else { 2069 // We should never shorten the vector 2070 llvm_unreachable("unexpected shorten vector length"); 2071 } 2072 } else { 2073 // If the Src is a scalar (not a vector) it must be updating one element. 2074 unsigned InIdx = getAccessedFieldNo(0, Elts); 2075 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2076 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2077 } 2078 2079 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2080 Dst.isVolatileQualified()); 2081 } 2082 2083 /// Store of global named registers are always calls to intrinsics. 2084 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2085 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2086 "Bad type for register variable"); 2087 llvm::MDNode *RegName = cast<llvm::MDNode>( 2088 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2089 assert(RegName && "Register LValue is not metadata"); 2090 2091 // We accept integer and pointer types only 2092 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2093 llvm::Type *Ty = OrigTy; 2094 if (OrigTy->isPointerTy()) 2095 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2096 llvm::Type *Types[] = { Ty }; 2097 2098 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2099 llvm::Value *Value = Src.getScalarVal(); 2100 if (OrigTy->isPointerTy()) 2101 Value = Builder.CreatePtrToInt(Value, Ty); 2102 Builder.CreateCall( 2103 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2104 } 2105 2106 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2107 // generating write-barries API. It is currently a global, ivar, 2108 // or neither. 2109 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2110 LValue &LV, 2111 bool IsMemberAccess=false) { 2112 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2113 return; 2114 2115 if (isa<ObjCIvarRefExpr>(E)) { 2116 QualType ExpTy = E->getType(); 2117 if (IsMemberAccess && ExpTy->isPointerType()) { 2118 // If ivar is a structure pointer, assigning to field of 2119 // this struct follows gcc's behavior and makes it a non-ivar 2120 // writer-barrier conservatively. 2121 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2122 if (ExpTy->isRecordType()) { 2123 LV.setObjCIvar(false); 2124 return; 2125 } 2126 } 2127 LV.setObjCIvar(true); 2128 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2129 LV.setBaseIvarExp(Exp->getBase()); 2130 LV.setObjCArray(E->getType()->isArrayType()); 2131 return; 2132 } 2133 2134 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2135 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2136 if (VD->hasGlobalStorage()) { 2137 LV.setGlobalObjCRef(true); 2138 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2139 } 2140 } 2141 LV.setObjCArray(E->getType()->isArrayType()); 2142 return; 2143 } 2144 2145 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2146 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2147 return; 2148 } 2149 2150 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2151 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2152 if (LV.isObjCIvar()) { 2153 // If cast is to a structure pointer, follow gcc's behavior and make it 2154 // a non-ivar write-barrier. 2155 QualType ExpTy = E->getType(); 2156 if (ExpTy->isPointerType()) 2157 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2158 if (ExpTy->isRecordType()) 2159 LV.setObjCIvar(false); 2160 } 2161 return; 2162 } 2163 2164 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2165 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2166 return; 2167 } 2168 2169 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2170 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2171 return; 2172 } 2173 2174 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2175 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2176 return; 2177 } 2178 2179 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2180 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2181 return; 2182 } 2183 2184 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2185 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2186 if (LV.isObjCIvar() && !LV.isObjCArray()) 2187 // Using array syntax to assigning to what an ivar points to is not 2188 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2189 LV.setObjCIvar(false); 2190 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2191 // Using array syntax to assigning to what global points to is not 2192 // same as assigning to the global itself. {id *G;} G[i] = 0; 2193 LV.setGlobalObjCRef(false); 2194 return; 2195 } 2196 2197 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2198 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2199 // We don't know if member is an 'ivar', but this flag is looked at 2200 // only in the context of LV.isObjCIvar(). 2201 LV.setObjCArray(E->getType()->isArrayType()); 2202 return; 2203 } 2204 } 2205 2206 static llvm::Value * 2207 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2208 llvm::Value *V, llvm::Type *IRType, 2209 StringRef Name = StringRef()) { 2210 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2211 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2212 } 2213 2214 static LValue EmitThreadPrivateVarDeclLValue( 2215 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2216 llvm::Type *RealVarTy, SourceLocation Loc) { 2217 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2218 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2219 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2220 } 2221 2222 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF, 2223 const VarDecl *VD, QualType T) { 2224 for (const auto *D : VD->redecls()) { 2225 if (!VD->hasAttrs()) 2226 continue; 2227 if (const auto *Attr = D->getAttr<OMPDeclareTargetDeclAttr>()) 2228 if (Attr->getMapType() == OMPDeclareTargetDeclAttr::MT_Link) { 2229 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2230 Address Addr = 2231 CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2232 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2233 } 2234 } 2235 return Address::invalid(); 2236 } 2237 2238 Address 2239 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2240 LValueBaseInfo *PointeeBaseInfo, 2241 TBAAAccessInfo *PointeeTBAAInfo) { 2242 llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), 2243 RefLVal.isVolatile()); 2244 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2245 2246 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2247 PointeeBaseInfo, PointeeTBAAInfo, 2248 /* forPointeeType= */ true); 2249 return Address(Load, Align); 2250 } 2251 2252 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2253 LValueBaseInfo PointeeBaseInfo; 2254 TBAAAccessInfo PointeeTBAAInfo; 2255 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2256 &PointeeTBAAInfo); 2257 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2258 PointeeBaseInfo, PointeeTBAAInfo); 2259 } 2260 2261 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2262 const PointerType *PtrTy, 2263 LValueBaseInfo *BaseInfo, 2264 TBAAAccessInfo *TBAAInfo) { 2265 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2266 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2267 BaseInfo, TBAAInfo, 2268 /*forPointeeType=*/true)); 2269 } 2270 2271 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2272 const PointerType *PtrTy) { 2273 LValueBaseInfo BaseInfo; 2274 TBAAAccessInfo TBAAInfo; 2275 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2276 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2277 } 2278 2279 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2280 const Expr *E, const VarDecl *VD) { 2281 QualType T = E->getType(); 2282 2283 // If it's thread_local, emit a call to its wrapper function instead. 2284 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2285 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2286 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2287 // Check if the variable is marked as declare target with link clause in 2288 // device codegen. 2289 if (CGF.getLangOpts().OpenMPIsDevice) { 2290 Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T); 2291 if (Addr.isValid()) 2292 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2293 } 2294 2295 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2296 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2297 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2298 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2299 Address Addr(V, Alignment); 2300 // Emit reference to the private copy of the variable if it is an OpenMP 2301 // threadprivate variable. 2302 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2303 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2304 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2305 E->getExprLoc()); 2306 } 2307 LValue LV = VD->getType()->isReferenceType() ? 2308 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2309 AlignmentSource::Decl) : 2310 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2311 setObjCGCLValueClass(CGF.getContext(), E, LV); 2312 return LV; 2313 } 2314 2315 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2316 const FunctionDecl *FD) { 2317 if (FD->hasAttr<WeakRefAttr>()) { 2318 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2319 return aliasee.getPointer(); 2320 } 2321 2322 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2323 if (!FD->hasPrototype()) { 2324 if (const FunctionProtoType *Proto = 2325 FD->getType()->getAs<FunctionProtoType>()) { 2326 // Ugly case: for a K&R-style definition, the type of the definition 2327 // isn't the same as the type of a use. Correct for this with a 2328 // bitcast. 2329 QualType NoProtoType = 2330 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2331 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2332 V = llvm::ConstantExpr::getBitCast(V, 2333 CGM.getTypes().ConvertType(NoProtoType)); 2334 } 2335 } 2336 return V; 2337 } 2338 2339 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2340 const Expr *E, const FunctionDecl *FD) { 2341 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2342 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2343 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2344 AlignmentSource::Decl); 2345 } 2346 2347 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2348 llvm::Value *ThisValue) { 2349 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2350 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2351 return CGF.EmitLValueForField(LV, FD); 2352 } 2353 2354 /// Named Registers are named metadata pointing to the register name 2355 /// which will be read from/written to as an argument to the intrinsic 2356 /// @llvm.read/write_register. 2357 /// So far, only the name is being passed down, but other options such as 2358 /// register type, allocation type or even optimization options could be 2359 /// passed down via the metadata node. 2360 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2361 SmallString<64> Name("llvm.named.register."); 2362 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2363 assert(Asm->getLabel().size() < 64-Name.size() && 2364 "Register name too big"); 2365 Name.append(Asm->getLabel()); 2366 llvm::NamedMDNode *M = 2367 CGM.getModule().getOrInsertNamedMetadata(Name); 2368 if (M->getNumOperands() == 0) { 2369 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2370 Asm->getLabel()); 2371 llvm::Metadata *Ops[] = {Str}; 2372 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2373 } 2374 2375 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2376 2377 llvm::Value *Ptr = 2378 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2379 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2380 } 2381 2382 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2383 const NamedDecl *ND = E->getDecl(); 2384 QualType T = E->getType(); 2385 2386 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2387 // Global Named registers access via intrinsics only 2388 if (VD->getStorageClass() == SC_Register && 2389 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2390 return EmitGlobalNamedRegister(VD, CGM); 2391 2392 // A DeclRefExpr for a reference initialized by a constant expression can 2393 // appear without being odr-used. Directly emit the constant initializer. 2394 const Expr *Init = VD->getAnyInitializer(VD); 2395 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2396 VD->isUsableInConstantExpressions(getContext()) && 2397 VD->checkInitIsICE() && 2398 // Do not emit if it is private OpenMP variable. 2399 !(E->refersToEnclosingVariableOrCapture() && 2400 ((CapturedStmtInfo && 2401 (LocalDeclMap.count(VD->getCanonicalDecl()) || 2402 CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || 2403 LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || 2404 isa<BlockDecl>(CurCodeDecl)))) { 2405 llvm::Constant *Val = 2406 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2407 *VD->evaluateValue(), 2408 VD->getType()); 2409 assert(Val && "failed to emit reference constant expression"); 2410 // FIXME: Eventually we will want to emit vector element references. 2411 2412 // Should we be using the alignment of the constant pointer we emitted? 2413 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), 2414 /* BaseInfo= */ nullptr, 2415 /* TBAAInfo= */ nullptr, 2416 /* forPointeeType= */ true); 2417 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2418 } 2419 2420 // Check for captured variables. 2421 if (E->refersToEnclosingVariableOrCapture()) { 2422 VD = VD->getCanonicalDecl(); 2423 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2424 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2425 else if (CapturedStmtInfo) { 2426 auto I = LocalDeclMap.find(VD); 2427 if (I != LocalDeclMap.end()) { 2428 if (VD->getType()->isReferenceType()) 2429 return EmitLoadOfReferenceLValue(I->second, VD->getType(), 2430 AlignmentSource::Decl); 2431 return MakeAddrLValue(I->second, T); 2432 } 2433 LValue CapLVal = 2434 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2435 CapturedStmtInfo->getContextValue()); 2436 return MakeAddrLValue( 2437 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2438 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2439 CapLVal.getTBAAInfo()); 2440 } 2441 2442 assert(isa<BlockDecl>(CurCodeDecl)); 2443 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2444 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2445 } 2446 } 2447 2448 // FIXME: We should be able to assert this for FunctionDecls as well! 2449 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2450 // those with a valid source location. 2451 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2452 !E->getLocation().isValid()) && 2453 "Should not use decl without marking it used!"); 2454 2455 if (ND->hasAttr<WeakRefAttr>()) { 2456 const auto *VD = cast<ValueDecl>(ND); 2457 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2458 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2459 } 2460 2461 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2462 // Check if this is a global variable. 2463 if (VD->hasLinkage() || VD->isStaticDataMember()) 2464 return EmitGlobalVarDeclLValue(*this, E, VD); 2465 2466 Address addr = Address::invalid(); 2467 2468 // The variable should generally be present in the local decl map. 2469 auto iter = LocalDeclMap.find(VD); 2470 if (iter != LocalDeclMap.end()) { 2471 addr = iter->second; 2472 2473 // Otherwise, it might be static local we haven't emitted yet for 2474 // some reason; most likely, because it's in an outer function. 2475 } else if (VD->isStaticLocal()) { 2476 addr = Address(CGM.getOrCreateStaticVarDecl( 2477 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2478 getContext().getDeclAlign(VD)); 2479 2480 // No other cases for now. 2481 } else { 2482 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2483 } 2484 2485 2486 // Check for OpenMP threadprivate variables. 2487 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2488 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2489 return EmitThreadPrivateVarDeclLValue( 2490 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2491 E->getExprLoc()); 2492 } 2493 2494 // Drill into block byref variables. 2495 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2496 if (isBlockByref) { 2497 addr = emitBlockByrefAddress(addr, VD); 2498 } 2499 2500 // Drill into reference types. 2501 LValue LV = VD->getType()->isReferenceType() ? 2502 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2503 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2504 2505 bool isLocalStorage = VD->hasLocalStorage(); 2506 2507 bool NonGCable = isLocalStorage && 2508 !VD->getType()->isReferenceType() && 2509 !isBlockByref; 2510 if (NonGCable) { 2511 LV.getQuals().removeObjCGCAttr(); 2512 LV.setNonGC(true); 2513 } 2514 2515 bool isImpreciseLifetime = 2516 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2517 if (isImpreciseLifetime) 2518 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2519 setObjCGCLValueClass(getContext(), E, LV); 2520 return LV; 2521 } 2522 2523 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2524 return EmitFunctionDeclLValue(*this, E, FD); 2525 2526 // FIXME: While we're emitting a binding from an enclosing scope, all other 2527 // DeclRefExprs we see should be implicitly treated as if they also refer to 2528 // an enclosing scope. 2529 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2530 return EmitLValue(BD->getBinding()); 2531 2532 llvm_unreachable("Unhandled DeclRefExpr"); 2533 } 2534 2535 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2536 // __extension__ doesn't affect lvalue-ness. 2537 if (E->getOpcode() == UO_Extension) 2538 return EmitLValue(E->getSubExpr()); 2539 2540 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2541 switch (E->getOpcode()) { 2542 default: llvm_unreachable("Unknown unary operator lvalue!"); 2543 case UO_Deref: { 2544 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2545 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2546 2547 LValueBaseInfo BaseInfo; 2548 TBAAAccessInfo TBAAInfo; 2549 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2550 &TBAAInfo); 2551 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2552 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2553 2554 // We should not generate __weak write barrier on indirect reference 2555 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2556 // But, we continue to generate __strong write barrier on indirect write 2557 // into a pointer to object. 2558 if (getLangOpts().ObjC1 && 2559 getLangOpts().getGC() != LangOptions::NonGC && 2560 LV.isObjCWeak()) 2561 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2562 return LV; 2563 } 2564 case UO_Real: 2565 case UO_Imag: { 2566 LValue LV = EmitLValue(E->getSubExpr()); 2567 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2568 2569 // __real is valid on scalars. This is a faster way of testing that. 2570 // __imag can only produce an rvalue on scalars. 2571 if (E->getOpcode() == UO_Real && 2572 !LV.getAddress().getElementType()->isStructTy()) { 2573 assert(E->getSubExpr()->getType()->isArithmeticType()); 2574 return LV; 2575 } 2576 2577 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2578 2579 Address Component = 2580 (E->getOpcode() == UO_Real 2581 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2582 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2583 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2584 CGM.getTBAAInfoForSubobject(LV, T)); 2585 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2586 return ElemLV; 2587 } 2588 case UO_PreInc: 2589 case UO_PreDec: { 2590 LValue LV = EmitLValue(E->getSubExpr()); 2591 bool isInc = E->getOpcode() == UO_PreInc; 2592 2593 if (E->getType()->isAnyComplexType()) 2594 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2595 else 2596 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2597 return LV; 2598 } 2599 } 2600 } 2601 2602 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2603 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2604 E->getType(), AlignmentSource::Decl); 2605 } 2606 2607 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2608 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2609 E->getType(), AlignmentSource::Decl); 2610 } 2611 2612 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2613 auto SL = E->getFunctionName(); 2614 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2615 StringRef FnName = CurFn->getName(); 2616 if (FnName.startswith("\01")) 2617 FnName = FnName.substr(1); 2618 StringRef NameItems[] = { 2619 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2620 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2621 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2622 std::string Name = SL->getString(); 2623 if (!Name.empty()) { 2624 unsigned Discriminator = 2625 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2626 if (Discriminator) 2627 Name += "_" + Twine(Discriminator + 1).str(); 2628 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2629 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2630 } else { 2631 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2632 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2633 } 2634 } 2635 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2636 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2637 } 2638 2639 /// Emit a type description suitable for use by a runtime sanitizer library. The 2640 /// format of a type descriptor is 2641 /// 2642 /// \code 2643 /// { i16 TypeKind, i16 TypeInfo } 2644 /// \endcode 2645 /// 2646 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2647 /// integer, 1 for a floating point value, and -1 for anything else. 2648 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2649 // Only emit each type's descriptor once. 2650 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2651 return C; 2652 2653 uint16_t TypeKind = -1; 2654 uint16_t TypeInfo = 0; 2655 2656 if (T->isIntegerType()) { 2657 TypeKind = 0; 2658 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2659 (T->isSignedIntegerType() ? 1 : 0); 2660 } else if (T->isFloatingType()) { 2661 TypeKind = 1; 2662 TypeInfo = getContext().getTypeSize(T); 2663 } 2664 2665 // Format the type name as if for a diagnostic, including quotes and 2666 // optionally an 'aka'. 2667 SmallString<32> Buffer; 2668 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2669 (intptr_t)T.getAsOpaquePtr(), 2670 StringRef(), StringRef(), None, Buffer, 2671 None); 2672 2673 llvm::Constant *Components[] = { 2674 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2675 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2676 }; 2677 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2678 2679 auto *GV = new llvm::GlobalVariable( 2680 CGM.getModule(), Descriptor->getType(), 2681 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2682 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2683 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2684 2685 // Remember the descriptor for this type. 2686 CGM.setTypeDescriptorInMap(T, GV); 2687 2688 return GV; 2689 } 2690 2691 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2692 llvm::Type *TargetTy = IntPtrTy; 2693 2694 if (V->getType() == TargetTy) 2695 return V; 2696 2697 // Floating-point types which fit into intptr_t are bitcast to integers 2698 // and then passed directly (after zero-extension, if necessary). 2699 if (V->getType()->isFloatingPointTy()) { 2700 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2701 if (Bits <= TargetTy->getIntegerBitWidth()) 2702 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2703 Bits)); 2704 } 2705 2706 // Integers which fit in intptr_t are zero-extended and passed directly. 2707 if (V->getType()->isIntegerTy() && 2708 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2709 return Builder.CreateZExt(V, TargetTy); 2710 2711 // Pointers are passed directly, everything else is passed by address. 2712 if (!V->getType()->isPointerTy()) { 2713 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2714 Builder.CreateStore(V, Ptr); 2715 V = Ptr.getPointer(); 2716 } 2717 return Builder.CreatePtrToInt(V, TargetTy); 2718 } 2719 2720 /// Emit a representation of a SourceLocation for passing to a handler 2721 /// in a sanitizer runtime library. The format for this data is: 2722 /// \code 2723 /// struct SourceLocation { 2724 /// const char *Filename; 2725 /// int32_t Line, Column; 2726 /// }; 2727 /// \endcode 2728 /// For an invalid SourceLocation, the Filename pointer is null. 2729 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2730 llvm::Constant *Filename; 2731 int Line, Column; 2732 2733 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2734 if (PLoc.isValid()) { 2735 StringRef FilenameString = PLoc.getFilename(); 2736 2737 int PathComponentsToStrip = 2738 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2739 if (PathComponentsToStrip < 0) { 2740 assert(PathComponentsToStrip != INT_MIN); 2741 int PathComponentsToKeep = -PathComponentsToStrip; 2742 auto I = llvm::sys::path::rbegin(FilenameString); 2743 auto E = llvm::sys::path::rend(FilenameString); 2744 while (I != E && --PathComponentsToKeep) 2745 ++I; 2746 2747 FilenameString = FilenameString.substr(I - E); 2748 } else if (PathComponentsToStrip > 0) { 2749 auto I = llvm::sys::path::begin(FilenameString); 2750 auto E = llvm::sys::path::end(FilenameString); 2751 while (I != E && PathComponentsToStrip--) 2752 ++I; 2753 2754 if (I != E) 2755 FilenameString = 2756 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2757 else 2758 FilenameString = llvm::sys::path::filename(FilenameString); 2759 } 2760 2761 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2762 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2763 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2764 Filename = FilenameGV.getPointer(); 2765 Line = PLoc.getLine(); 2766 Column = PLoc.getColumn(); 2767 } else { 2768 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2769 Line = Column = 0; 2770 } 2771 2772 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2773 Builder.getInt32(Column)}; 2774 2775 return llvm::ConstantStruct::getAnon(Data); 2776 } 2777 2778 namespace { 2779 /// Specify under what conditions this check can be recovered 2780 enum class CheckRecoverableKind { 2781 /// Always terminate program execution if this check fails. 2782 Unrecoverable, 2783 /// Check supports recovering, runtime has both fatal (noreturn) and 2784 /// non-fatal handlers for this check. 2785 Recoverable, 2786 /// Runtime conditionally aborts, always need to support recovery. 2787 AlwaysRecoverable 2788 }; 2789 } 2790 2791 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2792 assert(llvm::countPopulation(Kind) == 1); 2793 switch (Kind) { 2794 case SanitizerKind::Vptr: 2795 return CheckRecoverableKind::AlwaysRecoverable; 2796 case SanitizerKind::Return: 2797 case SanitizerKind::Unreachable: 2798 return CheckRecoverableKind::Unrecoverable; 2799 default: 2800 return CheckRecoverableKind::Recoverable; 2801 } 2802 } 2803 2804 namespace { 2805 struct SanitizerHandlerInfo { 2806 char const *const Name; 2807 unsigned Version; 2808 }; 2809 } 2810 2811 const SanitizerHandlerInfo SanitizerHandlers[] = { 2812 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2813 LIST_SANITIZER_CHECKS 2814 #undef SANITIZER_CHECK 2815 }; 2816 2817 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2818 llvm::FunctionType *FnType, 2819 ArrayRef<llvm::Value *> FnArgs, 2820 SanitizerHandler CheckHandler, 2821 CheckRecoverableKind RecoverKind, bool IsFatal, 2822 llvm::BasicBlock *ContBB) { 2823 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2824 bool NeedsAbortSuffix = 2825 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2826 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2827 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2828 const StringRef CheckName = CheckInfo.Name; 2829 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2830 if (CheckInfo.Version && !MinimalRuntime) 2831 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2832 if (MinimalRuntime) 2833 FnName += "_minimal"; 2834 if (NeedsAbortSuffix) 2835 FnName += "_abort"; 2836 bool MayReturn = 2837 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2838 2839 llvm::AttrBuilder B; 2840 if (!MayReturn) { 2841 B.addAttribute(llvm::Attribute::NoReturn) 2842 .addAttribute(llvm::Attribute::NoUnwind); 2843 } 2844 B.addAttribute(llvm::Attribute::UWTable); 2845 2846 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2847 FnType, FnName, 2848 llvm::AttributeList::get(CGF.getLLVMContext(), 2849 llvm::AttributeList::FunctionIndex, B), 2850 /*Local=*/true); 2851 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2852 if (!MayReturn) { 2853 HandlerCall->setDoesNotReturn(); 2854 CGF.Builder.CreateUnreachable(); 2855 } else { 2856 CGF.Builder.CreateBr(ContBB); 2857 } 2858 } 2859 2860 void CodeGenFunction::EmitCheck( 2861 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2862 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2863 ArrayRef<llvm::Value *> DynamicArgs) { 2864 assert(IsSanitizerScope); 2865 assert(Checked.size() > 0); 2866 assert(CheckHandler >= 0 && 2867 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 2868 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2869 2870 llvm::Value *FatalCond = nullptr; 2871 llvm::Value *RecoverableCond = nullptr; 2872 llvm::Value *TrapCond = nullptr; 2873 for (int i = 0, n = Checked.size(); i < n; ++i) { 2874 llvm::Value *Check = Checked[i].first; 2875 // -fsanitize-trap= overrides -fsanitize-recover=. 2876 llvm::Value *&Cond = 2877 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2878 ? TrapCond 2879 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2880 ? RecoverableCond 2881 : FatalCond; 2882 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2883 } 2884 2885 if (TrapCond) 2886 EmitTrapCheck(TrapCond); 2887 if (!FatalCond && !RecoverableCond) 2888 return; 2889 2890 llvm::Value *JointCond; 2891 if (FatalCond && RecoverableCond) 2892 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2893 else 2894 JointCond = FatalCond ? FatalCond : RecoverableCond; 2895 assert(JointCond); 2896 2897 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2898 assert(SanOpts.has(Checked[0].second)); 2899 #ifndef NDEBUG 2900 for (int i = 1, n = Checked.size(); i < n; ++i) { 2901 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2902 "All recoverable kinds in a single check must be same!"); 2903 assert(SanOpts.has(Checked[i].second)); 2904 } 2905 #endif 2906 2907 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2908 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2909 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2910 // Give hint that we very much don't expect to execute the handler 2911 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2912 llvm::MDBuilder MDHelper(getLLVMContext()); 2913 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2914 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2915 EmitBlock(Handlers); 2916 2917 // Handler functions take an i8* pointing to the (handler-specific) static 2918 // information block, followed by a sequence of intptr_t arguments 2919 // representing operand values. 2920 SmallVector<llvm::Value *, 4> Args; 2921 SmallVector<llvm::Type *, 4> ArgTypes; 2922 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2923 Args.reserve(DynamicArgs.size() + 1); 2924 ArgTypes.reserve(DynamicArgs.size() + 1); 2925 2926 // Emit handler arguments and create handler function type. 2927 if (!StaticArgs.empty()) { 2928 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2929 auto *InfoPtr = 2930 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2931 llvm::GlobalVariable::PrivateLinkage, Info); 2932 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2933 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2934 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2935 ArgTypes.push_back(Int8PtrTy); 2936 } 2937 2938 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2939 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2940 ArgTypes.push_back(IntPtrTy); 2941 } 2942 } 2943 2944 llvm::FunctionType *FnType = 2945 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2946 2947 if (!FatalCond || !RecoverableCond) { 2948 // Simple case: we need to generate a single handler call, either 2949 // fatal, or non-fatal. 2950 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2951 (FatalCond != nullptr), Cont); 2952 } else { 2953 // Emit two handler calls: first one for set of unrecoverable checks, 2954 // another one for recoverable. 2955 llvm::BasicBlock *NonFatalHandlerBB = 2956 createBasicBlock("non_fatal." + CheckName); 2957 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2958 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2959 EmitBlock(FatalHandlerBB); 2960 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2961 NonFatalHandlerBB); 2962 EmitBlock(NonFatalHandlerBB); 2963 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2964 Cont); 2965 } 2966 2967 EmitBlock(Cont); 2968 } 2969 2970 void CodeGenFunction::EmitCfiSlowPathCheck( 2971 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2972 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2973 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2974 2975 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2976 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2977 2978 llvm::MDBuilder MDHelper(getLLVMContext()); 2979 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2980 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2981 2982 EmitBlock(CheckBB); 2983 2984 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2985 2986 llvm::CallInst *CheckCall; 2987 llvm::Constant *SlowPathFn; 2988 if (WithDiag) { 2989 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2990 auto *InfoPtr = 2991 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2992 llvm::GlobalVariable::PrivateLinkage, Info); 2993 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2994 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2995 2996 SlowPathFn = CGM.getModule().getOrInsertFunction( 2997 "__cfi_slowpath_diag", 2998 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2999 false)); 3000 CheckCall = Builder.CreateCall( 3001 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3002 } else { 3003 SlowPathFn = CGM.getModule().getOrInsertFunction( 3004 "__cfi_slowpath", 3005 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3006 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3007 } 3008 3009 CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts())); 3010 CheckCall->setDoesNotThrow(); 3011 3012 EmitBlock(Cont); 3013 } 3014 3015 // Emit a stub for __cfi_check function so that the linker knows about this 3016 // symbol in LTO mode. 3017 void CodeGenFunction::EmitCfiCheckStub() { 3018 llvm::Module *M = &CGM.getModule(); 3019 auto &Ctx = M->getContext(); 3020 llvm::Function *F = llvm::Function::Create( 3021 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3022 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3023 CGM.setDSOLocal(F); 3024 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3025 // FIXME: consider emitting an intrinsic call like 3026 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3027 // which can be lowered in CrossDSOCFI pass to the actual contents of 3028 // __cfi_check. This would allow inlining of __cfi_check calls. 3029 llvm::CallInst::Create( 3030 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3031 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3032 } 3033 3034 // This function is basically a switch over the CFI failure kind, which is 3035 // extracted from CFICheckFailData (1st function argument). Each case is either 3036 // llvm.trap or a call to one of the two runtime handlers, based on 3037 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3038 // failure kind) traps, but this should really never happen. CFICheckFailData 3039 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3040 // check kind; in this case __cfi_check_fail traps as well. 3041 void CodeGenFunction::EmitCfiCheckFail() { 3042 SanitizerScope SanScope(this); 3043 FunctionArgList Args; 3044 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3045 ImplicitParamDecl::Other); 3046 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3047 ImplicitParamDecl::Other); 3048 Args.push_back(&ArgData); 3049 Args.push_back(&ArgAddr); 3050 3051 const CGFunctionInfo &FI = 3052 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3053 3054 llvm::Function *F = llvm::Function::Create( 3055 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3056 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3057 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3058 3059 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3060 SourceLocation()); 3061 3062 llvm::Value *Data = 3063 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3064 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3065 llvm::Value *Addr = 3066 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3067 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3068 3069 // Data == nullptr means the calling module has trap behaviour for this check. 3070 llvm::Value *DataIsNotNullPtr = 3071 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3072 EmitTrapCheck(DataIsNotNullPtr); 3073 3074 llvm::StructType *SourceLocationTy = 3075 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3076 llvm::StructType *CfiCheckFailDataTy = 3077 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3078 3079 llvm::Value *V = Builder.CreateConstGEP2_32( 3080 CfiCheckFailDataTy, 3081 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3082 0); 3083 Address CheckKindAddr(V, getIntAlign()); 3084 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3085 3086 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3087 CGM.getLLVMContext(), 3088 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3089 llvm::Value *ValidVtable = Builder.CreateZExt( 3090 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3091 {Addr, AllVtables}), 3092 IntPtrTy); 3093 3094 const std::pair<int, SanitizerMask> CheckKinds[] = { 3095 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3096 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3097 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3098 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3099 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3100 3101 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3102 for (auto CheckKindMaskPair : CheckKinds) { 3103 int Kind = CheckKindMaskPair.first; 3104 SanitizerMask Mask = CheckKindMaskPair.second; 3105 llvm::Value *Cond = 3106 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3107 if (CGM.getLangOpts().Sanitize.has(Mask)) 3108 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3109 {Data, Addr, ValidVtable}); 3110 else 3111 EmitTrapCheck(Cond); 3112 } 3113 3114 FinishFunction(); 3115 // The only reference to this function will be created during LTO link. 3116 // Make sure it survives until then. 3117 CGM.addUsedGlobal(F); 3118 } 3119 3120 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3121 if (SanOpts.has(SanitizerKind::Unreachable)) { 3122 SanitizerScope SanScope(this); 3123 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3124 SanitizerKind::Unreachable), 3125 SanitizerHandler::BuiltinUnreachable, 3126 EmitCheckSourceLocation(Loc), None); 3127 } 3128 Builder.CreateUnreachable(); 3129 } 3130 3131 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3132 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3133 3134 // If we're optimizing, collapse all calls to trap down to just one per 3135 // function to save on code size. 3136 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3137 TrapBB = createBasicBlock("trap"); 3138 Builder.CreateCondBr(Checked, Cont, TrapBB); 3139 EmitBlock(TrapBB); 3140 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3141 TrapCall->setDoesNotReturn(); 3142 TrapCall->setDoesNotThrow(); 3143 Builder.CreateUnreachable(); 3144 } else { 3145 Builder.CreateCondBr(Checked, Cont, TrapBB); 3146 } 3147 3148 EmitBlock(Cont); 3149 } 3150 3151 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3152 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3153 3154 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3155 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3156 CGM.getCodeGenOpts().TrapFuncName); 3157 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3158 } 3159 3160 return TrapCall; 3161 } 3162 3163 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3164 LValueBaseInfo *BaseInfo, 3165 TBAAAccessInfo *TBAAInfo) { 3166 assert(E->getType()->isArrayType() && 3167 "Array to pointer decay must have array source type!"); 3168 3169 // Expressions of array type can't be bitfields or vector elements. 3170 LValue LV = EmitLValue(E); 3171 Address Addr = LV.getAddress(); 3172 3173 // If the array type was an incomplete type, we need to make sure 3174 // the decay ends up being the right type. 3175 llvm::Type *NewTy = ConvertType(E->getType()); 3176 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3177 3178 // Note that VLA pointers are always decayed, so we don't need to do 3179 // anything here. 3180 if (!E->getType()->isVariableArrayType()) { 3181 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3182 "Expected pointer to array"); 3183 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3184 } 3185 3186 // The result of this decay conversion points to an array element within the 3187 // base lvalue. However, since TBAA currently does not support representing 3188 // accesses to elements of member arrays, we conservatively represent accesses 3189 // to the pointee object as if it had no any base lvalue specified. 3190 // TODO: Support TBAA for member arrays. 3191 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3192 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3193 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3194 3195 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3196 } 3197 3198 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3199 /// array to pointer, return the array subexpression. 3200 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3201 // If this isn't just an array->pointer decay, bail out. 3202 const auto *CE = dyn_cast<CastExpr>(E); 3203 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3204 return nullptr; 3205 3206 // If this is a decay from variable width array, bail out. 3207 const Expr *SubExpr = CE->getSubExpr(); 3208 if (SubExpr->getType()->isVariableArrayType()) 3209 return nullptr; 3210 3211 return SubExpr; 3212 } 3213 3214 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3215 llvm::Value *ptr, 3216 ArrayRef<llvm::Value*> indices, 3217 bool inbounds, 3218 bool signedIndices, 3219 SourceLocation loc, 3220 const llvm::Twine &name = "arrayidx") { 3221 if (inbounds) { 3222 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3223 CodeGenFunction::NotSubtraction, loc, 3224 name); 3225 } else { 3226 return CGF.Builder.CreateGEP(ptr, indices, name); 3227 } 3228 } 3229 3230 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3231 llvm::Value *idx, 3232 CharUnits eltSize) { 3233 // If we have a constant index, we can use the exact offset of the 3234 // element we're accessing. 3235 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3236 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3237 return arrayAlign.alignmentAtOffset(offset); 3238 3239 // Otherwise, use the worst-case alignment for any element. 3240 } else { 3241 return arrayAlign.alignmentOfArrayElement(eltSize); 3242 } 3243 } 3244 3245 static QualType getFixedSizeElementType(const ASTContext &ctx, 3246 const VariableArrayType *vla) { 3247 QualType eltType; 3248 do { 3249 eltType = vla->getElementType(); 3250 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3251 return eltType; 3252 } 3253 3254 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3255 ArrayRef<llvm::Value *> indices, 3256 QualType eltType, bool inbounds, 3257 bool signedIndices, SourceLocation loc, 3258 const llvm::Twine &name = "arrayidx") { 3259 // All the indices except that last must be zero. 3260 #ifndef NDEBUG 3261 for (auto idx : indices.drop_back()) 3262 assert(isa<llvm::ConstantInt>(idx) && 3263 cast<llvm::ConstantInt>(idx)->isZero()); 3264 #endif 3265 3266 // Determine the element size of the statically-sized base. This is 3267 // the thing that the indices are expressed in terms of. 3268 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3269 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3270 } 3271 3272 // We can use that to compute the best alignment of the element. 3273 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3274 CharUnits eltAlign = 3275 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3276 3277 llvm::Value *eltPtr = emitArraySubscriptGEP( 3278 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3279 return Address(eltPtr, eltAlign); 3280 } 3281 3282 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3283 bool Accessed) { 3284 // The index must always be an integer, which is not an aggregate. Emit it 3285 // in lexical order (this complexity is, sadly, required by C++17). 3286 llvm::Value *IdxPre = 3287 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3288 bool SignedIndices = false; 3289 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3290 auto *Idx = IdxPre; 3291 if (E->getLHS() != E->getIdx()) { 3292 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3293 Idx = EmitScalarExpr(E->getIdx()); 3294 } 3295 3296 QualType IdxTy = E->getIdx()->getType(); 3297 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3298 SignedIndices |= IdxSigned; 3299 3300 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3301 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3302 3303 // Extend or truncate the index type to 32 or 64-bits. 3304 if (Promote && Idx->getType() != IntPtrTy) 3305 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3306 3307 return Idx; 3308 }; 3309 IdxPre = nullptr; 3310 3311 // If the base is a vector type, then we are forming a vector element lvalue 3312 // with this subscript. 3313 if (E->getBase()->getType()->isVectorType() && 3314 !isa<ExtVectorElementExpr>(E->getBase())) { 3315 // Emit the vector as an lvalue to get its address. 3316 LValue LHS = EmitLValue(E->getBase()); 3317 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3318 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3319 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3320 LHS.getBaseInfo(), TBAAAccessInfo()); 3321 } 3322 3323 // All the other cases basically behave like simple offsetting. 3324 3325 // Handle the extvector case we ignored above. 3326 if (isa<ExtVectorElementExpr>(E->getBase())) { 3327 LValue LV = EmitLValue(E->getBase()); 3328 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3329 Address Addr = EmitExtVectorElementLValue(LV); 3330 3331 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3332 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3333 SignedIndices, E->getExprLoc()); 3334 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3335 CGM.getTBAAInfoForSubobject(LV, EltType)); 3336 } 3337 3338 LValueBaseInfo EltBaseInfo; 3339 TBAAAccessInfo EltTBAAInfo; 3340 Address Addr = Address::invalid(); 3341 if (const VariableArrayType *vla = 3342 getContext().getAsVariableArrayType(E->getType())) { 3343 // The base must be a pointer, which is not an aggregate. Emit 3344 // it. It needs to be emitted first in case it's what captures 3345 // the VLA bounds. 3346 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3347 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3348 3349 // The element count here is the total number of non-VLA elements. 3350 llvm::Value *numElements = getVLASize(vla).NumElts; 3351 3352 // Effectively, the multiply by the VLA size is part of the GEP. 3353 // GEP indexes are signed, and scaling an index isn't permitted to 3354 // signed-overflow, so we use the same semantics for our explicit 3355 // multiply. We suppress this if overflow is not undefined behavior. 3356 if (getLangOpts().isSignedOverflowDefined()) { 3357 Idx = Builder.CreateMul(Idx, numElements); 3358 } else { 3359 Idx = Builder.CreateNSWMul(Idx, numElements); 3360 } 3361 3362 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3363 !getLangOpts().isSignedOverflowDefined(), 3364 SignedIndices, E->getExprLoc()); 3365 3366 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3367 // Indexing over an interface, as in "NSString *P; P[4];" 3368 3369 // Emit the base pointer. 3370 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3371 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3372 3373 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3374 llvm::Value *InterfaceSizeVal = 3375 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3376 3377 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3378 3379 // We don't necessarily build correct LLVM struct types for ObjC 3380 // interfaces, so we can't rely on GEP to do this scaling 3381 // correctly, so we need to cast to i8*. FIXME: is this actually 3382 // true? A lot of other things in the fragile ABI would break... 3383 llvm::Type *OrigBaseTy = Addr.getType(); 3384 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3385 3386 // Do the GEP. 3387 CharUnits EltAlign = 3388 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3389 llvm::Value *EltPtr = 3390 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3391 SignedIndices, E->getExprLoc()); 3392 Addr = Address(EltPtr, EltAlign); 3393 3394 // Cast back. 3395 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3396 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3397 // If this is A[i] where A is an array, the frontend will have decayed the 3398 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3399 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3400 // "gep x, i" here. Emit one "gep A, 0, i". 3401 assert(Array->getType()->isArrayType() && 3402 "Array to pointer decay must have array source type!"); 3403 LValue ArrayLV; 3404 // For simple multidimensional array indexing, set the 'accessed' flag for 3405 // better bounds-checking of the base expression. 3406 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3407 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3408 else 3409 ArrayLV = EmitLValue(Array); 3410 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3411 3412 // Propagate the alignment from the array itself to the result. 3413 Addr = emitArraySubscriptGEP( 3414 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3415 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3416 E->getExprLoc()); 3417 EltBaseInfo = ArrayLV.getBaseInfo(); 3418 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3419 } else { 3420 // The base must be a pointer; emit it with an estimate of its alignment. 3421 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3422 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3423 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3424 !getLangOpts().isSignedOverflowDefined(), 3425 SignedIndices, E->getExprLoc()); 3426 } 3427 3428 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3429 3430 if (getLangOpts().ObjC1 && 3431 getLangOpts().getGC() != LangOptions::NonGC) { 3432 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3433 setObjCGCLValueClass(getContext(), E, LV); 3434 } 3435 return LV; 3436 } 3437 3438 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3439 LValueBaseInfo &BaseInfo, 3440 TBAAAccessInfo &TBAAInfo, 3441 QualType BaseTy, QualType ElTy, 3442 bool IsLowerBound) { 3443 LValue BaseLVal; 3444 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3445 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3446 if (BaseTy->isArrayType()) { 3447 Address Addr = BaseLVal.getAddress(); 3448 BaseInfo = BaseLVal.getBaseInfo(); 3449 3450 // If the array type was an incomplete type, we need to make sure 3451 // the decay ends up being the right type. 3452 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3453 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3454 3455 // Note that VLA pointers are always decayed, so we don't need to do 3456 // anything here. 3457 if (!BaseTy->isVariableArrayType()) { 3458 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3459 "Expected pointer to array"); 3460 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3461 "arraydecay"); 3462 } 3463 3464 return CGF.Builder.CreateElementBitCast(Addr, 3465 CGF.ConvertTypeForMem(ElTy)); 3466 } 3467 LValueBaseInfo TypeBaseInfo; 3468 TBAAAccessInfo TypeTBAAInfo; 3469 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3470 &TypeTBAAInfo); 3471 BaseInfo.mergeForCast(TypeBaseInfo); 3472 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3473 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3474 } 3475 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3476 } 3477 3478 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3479 bool IsLowerBound) { 3480 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3481 QualType ResultExprTy; 3482 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3483 ResultExprTy = AT->getElementType(); 3484 else 3485 ResultExprTy = BaseTy->getPointeeType(); 3486 llvm::Value *Idx = nullptr; 3487 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3488 // Requesting lower bound or upper bound, but without provided length and 3489 // without ':' symbol for the default length -> length = 1. 3490 // Idx = LowerBound ?: 0; 3491 if (auto *LowerBound = E->getLowerBound()) { 3492 Idx = Builder.CreateIntCast( 3493 EmitScalarExpr(LowerBound), IntPtrTy, 3494 LowerBound->getType()->hasSignedIntegerRepresentation()); 3495 } else 3496 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3497 } else { 3498 // Try to emit length or lower bound as constant. If this is possible, 1 3499 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3500 // IR (LB + Len) - 1. 3501 auto &C = CGM.getContext(); 3502 auto *Length = E->getLength(); 3503 llvm::APSInt ConstLength; 3504 if (Length) { 3505 // Idx = LowerBound + Length - 1; 3506 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3507 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3508 Length = nullptr; 3509 } 3510 auto *LowerBound = E->getLowerBound(); 3511 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3512 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3513 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3514 LowerBound = nullptr; 3515 } 3516 if (!Length) 3517 --ConstLength; 3518 else if (!LowerBound) 3519 --ConstLowerBound; 3520 3521 if (Length || LowerBound) { 3522 auto *LowerBoundVal = 3523 LowerBound 3524 ? Builder.CreateIntCast( 3525 EmitScalarExpr(LowerBound), IntPtrTy, 3526 LowerBound->getType()->hasSignedIntegerRepresentation()) 3527 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3528 auto *LengthVal = 3529 Length 3530 ? Builder.CreateIntCast( 3531 EmitScalarExpr(Length), IntPtrTy, 3532 Length->getType()->hasSignedIntegerRepresentation()) 3533 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3534 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3535 /*HasNUW=*/false, 3536 !getLangOpts().isSignedOverflowDefined()); 3537 if (Length && LowerBound) { 3538 Idx = Builder.CreateSub( 3539 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3540 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3541 } 3542 } else 3543 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3544 } else { 3545 // Idx = ArraySize - 1; 3546 QualType ArrayTy = BaseTy->isPointerType() 3547 ? E->getBase()->IgnoreParenImpCasts()->getType() 3548 : BaseTy; 3549 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3550 Length = VAT->getSizeExpr(); 3551 if (Length->isIntegerConstantExpr(ConstLength, C)) 3552 Length = nullptr; 3553 } else { 3554 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3555 ConstLength = CAT->getSize(); 3556 } 3557 if (Length) { 3558 auto *LengthVal = Builder.CreateIntCast( 3559 EmitScalarExpr(Length), IntPtrTy, 3560 Length->getType()->hasSignedIntegerRepresentation()); 3561 Idx = Builder.CreateSub( 3562 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3563 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3564 } else { 3565 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3566 --ConstLength; 3567 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3568 } 3569 } 3570 } 3571 assert(Idx); 3572 3573 Address EltPtr = Address::invalid(); 3574 LValueBaseInfo BaseInfo; 3575 TBAAAccessInfo TBAAInfo; 3576 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3577 // The base must be a pointer, which is not an aggregate. Emit 3578 // it. It needs to be emitted first in case it's what captures 3579 // the VLA bounds. 3580 Address Base = 3581 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3582 BaseTy, VLA->getElementType(), IsLowerBound); 3583 // The element count here is the total number of non-VLA elements. 3584 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3585 3586 // Effectively, the multiply by the VLA size is part of the GEP. 3587 // GEP indexes are signed, and scaling an index isn't permitted to 3588 // signed-overflow, so we use the same semantics for our explicit 3589 // multiply. We suppress this if overflow is not undefined behavior. 3590 if (getLangOpts().isSignedOverflowDefined()) 3591 Idx = Builder.CreateMul(Idx, NumElements); 3592 else 3593 Idx = Builder.CreateNSWMul(Idx, NumElements); 3594 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3595 !getLangOpts().isSignedOverflowDefined(), 3596 /*SignedIndices=*/false, E->getExprLoc()); 3597 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3598 // If this is A[i] where A is an array, the frontend will have decayed the 3599 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3600 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3601 // "gep x, i" here. Emit one "gep A, 0, i". 3602 assert(Array->getType()->isArrayType() && 3603 "Array to pointer decay must have array source type!"); 3604 LValue ArrayLV; 3605 // For simple multidimensional array indexing, set the 'accessed' flag for 3606 // better bounds-checking of the base expression. 3607 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3608 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3609 else 3610 ArrayLV = EmitLValue(Array); 3611 3612 // Propagate the alignment from the array itself to the result. 3613 EltPtr = emitArraySubscriptGEP( 3614 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3615 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3616 /*SignedIndices=*/false, E->getExprLoc()); 3617 BaseInfo = ArrayLV.getBaseInfo(); 3618 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3619 } else { 3620 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3621 TBAAInfo, BaseTy, ResultExprTy, 3622 IsLowerBound); 3623 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3624 !getLangOpts().isSignedOverflowDefined(), 3625 /*SignedIndices=*/false, E->getExprLoc()); 3626 } 3627 3628 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3629 } 3630 3631 LValue CodeGenFunction:: 3632 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3633 // Emit the base vector as an l-value. 3634 LValue Base; 3635 3636 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3637 if (E->isArrow()) { 3638 // If it is a pointer to a vector, emit the address and form an lvalue with 3639 // it. 3640 LValueBaseInfo BaseInfo; 3641 TBAAAccessInfo TBAAInfo; 3642 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3643 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3644 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3645 Base.getQuals().removeObjCGCAttr(); 3646 } else if (E->getBase()->isGLValue()) { 3647 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3648 // emit the base as an lvalue. 3649 assert(E->getBase()->getType()->isVectorType()); 3650 Base = EmitLValue(E->getBase()); 3651 } else { 3652 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3653 assert(E->getBase()->getType()->isVectorType() && 3654 "Result must be a vector"); 3655 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3656 3657 // Store the vector to memory (because LValue wants an address). 3658 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3659 Builder.CreateStore(Vec, VecMem); 3660 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3661 AlignmentSource::Decl); 3662 } 3663 3664 QualType type = 3665 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3666 3667 // Encode the element access list into a vector of unsigned indices. 3668 SmallVector<uint32_t, 4> Indices; 3669 E->getEncodedElementAccess(Indices); 3670 3671 if (Base.isSimple()) { 3672 llvm::Constant *CV = 3673 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3674 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3675 Base.getBaseInfo(), TBAAAccessInfo()); 3676 } 3677 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3678 3679 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3680 SmallVector<llvm::Constant *, 4> CElts; 3681 3682 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3683 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3684 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3685 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3686 Base.getBaseInfo(), TBAAAccessInfo()); 3687 } 3688 3689 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3690 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3691 EmitIgnoredExpr(E->getBase()); 3692 return EmitDeclRefLValue(DRE); 3693 } 3694 3695 Expr *BaseExpr = E->getBase(); 3696 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3697 LValue BaseLV; 3698 if (E->isArrow()) { 3699 LValueBaseInfo BaseInfo; 3700 TBAAAccessInfo TBAAInfo; 3701 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3702 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3703 SanitizerSet SkippedChecks; 3704 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3705 if (IsBaseCXXThis) 3706 SkippedChecks.set(SanitizerKind::Alignment, true); 3707 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3708 SkippedChecks.set(SanitizerKind::Null, true); 3709 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3710 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3711 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3712 } else 3713 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3714 3715 NamedDecl *ND = E->getMemberDecl(); 3716 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3717 LValue LV = EmitLValueForField(BaseLV, Field); 3718 setObjCGCLValueClass(getContext(), E, LV); 3719 return LV; 3720 } 3721 3722 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3723 return EmitFunctionDeclLValue(*this, E, FD); 3724 3725 llvm_unreachable("Unhandled member declaration!"); 3726 } 3727 3728 /// Given that we are currently emitting a lambda, emit an l-value for 3729 /// one of its members. 3730 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3731 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3732 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3733 QualType LambdaTagType = 3734 getContext().getTagDeclType(Field->getParent()); 3735 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3736 return EmitLValueForField(LambdaLV, Field); 3737 } 3738 3739 /// Drill down to the storage of a field without walking into 3740 /// reference types. 3741 /// 3742 /// The resulting address doesn't necessarily have the right type. 3743 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3744 const FieldDecl *field) { 3745 const RecordDecl *rec = field->getParent(); 3746 3747 unsigned idx = 3748 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3749 3750 CharUnits offset; 3751 // Adjust the alignment down to the given offset. 3752 // As a special case, if the LLVM field index is 0, we know that this 3753 // is zero. 3754 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3755 .getFieldOffset(field->getFieldIndex()) == 0) && 3756 "LLVM field at index zero had non-zero offset?"); 3757 if (idx != 0) { 3758 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3759 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3760 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3761 } 3762 3763 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3764 } 3765 3766 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3767 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3768 if (!RD) 3769 return false; 3770 3771 if (RD->isDynamicClass()) 3772 return true; 3773 3774 for (const auto &Base : RD->bases()) 3775 if (hasAnyVptr(Base.getType(), Context)) 3776 return true; 3777 3778 for (const FieldDecl *Field : RD->fields()) 3779 if (hasAnyVptr(Field->getType(), Context)) 3780 return true; 3781 3782 return false; 3783 } 3784 3785 LValue CodeGenFunction::EmitLValueForField(LValue base, 3786 const FieldDecl *field) { 3787 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3788 3789 if (field->isBitField()) { 3790 const CGRecordLayout &RL = 3791 CGM.getTypes().getCGRecordLayout(field->getParent()); 3792 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3793 Address Addr = base.getAddress(); 3794 unsigned Idx = RL.getLLVMFieldNo(field); 3795 if (Idx != 0) 3796 // For structs, we GEP to the field that the record layout suggests. 3797 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3798 field->getName()); 3799 // Get the access type. 3800 llvm::Type *FieldIntTy = 3801 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3802 if (Addr.getElementType() != FieldIntTy) 3803 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3804 3805 QualType fieldType = 3806 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3807 // TODO: Support TBAA for bit fields. 3808 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 3809 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 3810 TBAAAccessInfo()); 3811 } 3812 3813 // Fields of may-alias structures are may-alias themselves. 3814 // FIXME: this should get propagated down through anonymous structs 3815 // and unions. 3816 QualType FieldType = field->getType(); 3817 const RecordDecl *rec = field->getParent(); 3818 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 3819 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 3820 TBAAAccessInfo FieldTBAAInfo; 3821 if (base.getTBAAInfo().isMayAlias() || 3822 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 3823 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3824 } else if (rec->isUnion()) { 3825 // TODO: Support TBAA for unions. 3826 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3827 } else { 3828 // If no base type been assigned for the base access, then try to generate 3829 // one for this base lvalue. 3830 FieldTBAAInfo = base.getTBAAInfo(); 3831 if (!FieldTBAAInfo.BaseType) { 3832 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3833 assert(!FieldTBAAInfo.Offset && 3834 "Nonzero offset for an access with no base type!"); 3835 } 3836 3837 // Adjust offset to be relative to the base type. 3838 const ASTRecordLayout &Layout = 3839 getContext().getASTRecordLayout(field->getParent()); 3840 unsigned CharWidth = getContext().getCharWidth(); 3841 if (FieldTBAAInfo.BaseType) 3842 FieldTBAAInfo.Offset += 3843 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3844 3845 // Update the final access type and size. 3846 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 3847 FieldTBAAInfo.Size = 3848 getContext().getTypeSizeInChars(FieldType).getQuantity(); 3849 } 3850 3851 Address addr = base.getAddress(); 3852 unsigned RecordCVR = base.getVRQualifiers(); 3853 if (rec->isUnion()) { 3854 // For unions, there is no pointer adjustment. 3855 assert(!FieldType->isReferenceType() && "union has reference member"); 3856 if (CGM.getCodeGenOpts().StrictVTablePointers && 3857 hasAnyVptr(FieldType, getContext())) 3858 // Because unions can easily skip invariant.barriers, we need to add 3859 // a barrier every time CXXRecord field with vptr is referenced. 3860 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 3861 addr.getAlignment()); 3862 } else { 3863 // For structs, we GEP to the field that the record layout suggests. 3864 addr = emitAddrOfFieldStorage(*this, addr, field); 3865 3866 // If this is a reference field, load the reference right now. 3867 if (FieldType->isReferenceType()) { 3868 LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo, 3869 FieldTBAAInfo); 3870 if (RecordCVR & Qualifiers::Volatile) 3871 RefLVal.getQuals().setVolatile(true); 3872 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 3873 3874 // Qualifiers on the struct don't apply to the referencee. 3875 RecordCVR = 0; 3876 FieldType = FieldType->getPointeeType(); 3877 } 3878 } 3879 3880 // Make sure that the address is pointing to the right type. This is critical 3881 // for both unions and structs. A union needs a bitcast, a struct element 3882 // will need a bitcast if the LLVM type laid out doesn't match the desired 3883 // type. 3884 addr = Builder.CreateElementBitCast( 3885 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 3886 3887 if (field->hasAttr<AnnotateAttr>()) 3888 addr = EmitFieldAnnotations(field, addr); 3889 3890 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 3891 LV.getQuals().addCVRQualifiers(RecordCVR); 3892 3893 // __weak attribute on a field is ignored. 3894 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3895 LV.getQuals().removeObjCGCAttr(); 3896 3897 return LV; 3898 } 3899 3900 LValue 3901 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3902 const FieldDecl *Field) { 3903 QualType FieldType = Field->getType(); 3904 3905 if (!FieldType->isReferenceType()) 3906 return EmitLValueForField(Base, Field); 3907 3908 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3909 3910 // Make sure that the address is pointing to the right type. 3911 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3912 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3913 3914 // TODO: Generate TBAA information that describes this access as a structure 3915 // member access and not just an access to an object of the field's type. This 3916 // should be similar to what we do in EmitLValueForField(). 3917 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3918 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 3919 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 3920 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 3921 CGM.getTBAAInfoForSubobject(Base, FieldType)); 3922 } 3923 3924 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3925 if (E->isFileScope()) { 3926 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3927 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3928 } 3929 if (E->getType()->isVariablyModifiedType()) 3930 // make sure to emit the VLA size. 3931 EmitVariablyModifiedType(E->getType()); 3932 3933 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3934 const Expr *InitExpr = E->getInitializer(); 3935 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3936 3937 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3938 /*Init*/ true); 3939 3940 return Result; 3941 } 3942 3943 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3944 if (!E->isGLValue()) 3945 // Initializing an aggregate temporary in C++11: T{...}. 3946 return EmitAggExprToLValue(E); 3947 3948 // An lvalue initializer list must be initializing a reference. 3949 assert(E->isTransparent() && "non-transparent glvalue init list"); 3950 return EmitLValue(E->getInit(0)); 3951 } 3952 3953 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3954 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3955 /// LValue is returned and the current block has been terminated. 3956 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3957 const Expr *Operand) { 3958 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3959 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3960 return None; 3961 } 3962 3963 return CGF.EmitLValue(Operand); 3964 } 3965 3966 LValue CodeGenFunction:: 3967 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3968 if (!expr->isGLValue()) { 3969 // ?: here should be an aggregate. 3970 assert(hasAggregateEvaluationKind(expr->getType()) && 3971 "Unexpected conditional operator!"); 3972 return EmitAggExprToLValue(expr); 3973 } 3974 3975 OpaqueValueMapping binding(*this, expr); 3976 3977 const Expr *condExpr = expr->getCond(); 3978 bool CondExprBool; 3979 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3980 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3981 if (!CondExprBool) std::swap(live, dead); 3982 3983 if (!ContainsLabel(dead)) { 3984 // If the true case is live, we need to track its region. 3985 if (CondExprBool) 3986 incrementProfileCounter(expr); 3987 return EmitLValue(live); 3988 } 3989 } 3990 3991 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3992 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3993 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3994 3995 ConditionalEvaluation eval(*this); 3996 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3997 3998 // Any temporaries created here are conditional. 3999 EmitBlock(lhsBlock); 4000 incrementProfileCounter(expr); 4001 eval.begin(*this); 4002 Optional<LValue> lhs = 4003 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4004 eval.end(*this); 4005 4006 if (lhs && !lhs->isSimple()) 4007 return EmitUnsupportedLValue(expr, "conditional operator"); 4008 4009 lhsBlock = Builder.GetInsertBlock(); 4010 if (lhs) 4011 Builder.CreateBr(contBlock); 4012 4013 // Any temporaries created here are conditional. 4014 EmitBlock(rhsBlock); 4015 eval.begin(*this); 4016 Optional<LValue> rhs = 4017 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4018 eval.end(*this); 4019 if (rhs && !rhs->isSimple()) 4020 return EmitUnsupportedLValue(expr, "conditional operator"); 4021 rhsBlock = Builder.GetInsertBlock(); 4022 4023 EmitBlock(contBlock); 4024 4025 if (lhs && rhs) { 4026 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 4027 2, "cond-lvalue"); 4028 phi->addIncoming(lhs->getPointer(), lhsBlock); 4029 phi->addIncoming(rhs->getPointer(), rhsBlock); 4030 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4031 AlignmentSource alignSource = 4032 std::max(lhs->getBaseInfo().getAlignmentSource(), 4033 rhs->getBaseInfo().getAlignmentSource()); 4034 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4035 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4036 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4037 TBAAInfo); 4038 } else { 4039 assert((lhs || rhs) && 4040 "both operands of glvalue conditional are throw-expressions?"); 4041 return lhs ? *lhs : *rhs; 4042 } 4043 } 4044 4045 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4046 /// type. If the cast is to a reference, we can have the usual lvalue result, 4047 /// otherwise if a cast is needed by the code generator in an lvalue context, 4048 /// then it must mean that we need the address of an aggregate in order to 4049 /// access one of its members. This can happen for all the reasons that casts 4050 /// are permitted with aggregate result, including noop aggregate casts, and 4051 /// cast from scalar to union. 4052 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4053 switch (E->getCastKind()) { 4054 case CK_ToVoid: 4055 case CK_BitCast: 4056 case CK_ArrayToPointerDecay: 4057 case CK_FunctionToPointerDecay: 4058 case CK_NullToMemberPointer: 4059 case CK_NullToPointer: 4060 case CK_IntegralToPointer: 4061 case CK_PointerToIntegral: 4062 case CK_PointerToBoolean: 4063 case CK_VectorSplat: 4064 case CK_IntegralCast: 4065 case CK_BooleanToSignedIntegral: 4066 case CK_IntegralToBoolean: 4067 case CK_IntegralToFloating: 4068 case CK_FloatingToIntegral: 4069 case CK_FloatingToBoolean: 4070 case CK_FloatingCast: 4071 case CK_FloatingRealToComplex: 4072 case CK_FloatingComplexToReal: 4073 case CK_FloatingComplexToBoolean: 4074 case CK_FloatingComplexCast: 4075 case CK_FloatingComplexToIntegralComplex: 4076 case CK_IntegralRealToComplex: 4077 case CK_IntegralComplexToReal: 4078 case CK_IntegralComplexToBoolean: 4079 case CK_IntegralComplexCast: 4080 case CK_IntegralComplexToFloatingComplex: 4081 case CK_DerivedToBaseMemberPointer: 4082 case CK_BaseToDerivedMemberPointer: 4083 case CK_MemberPointerToBoolean: 4084 case CK_ReinterpretMemberPointer: 4085 case CK_AnyPointerToBlockPointerCast: 4086 case CK_ARCProduceObject: 4087 case CK_ARCConsumeObject: 4088 case CK_ARCReclaimReturnedObject: 4089 case CK_ARCExtendBlockObject: 4090 case CK_CopyAndAutoreleaseBlockObject: 4091 case CK_AddressSpaceConversion: 4092 case CK_IntToOCLSampler: 4093 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4094 4095 case CK_Dependent: 4096 llvm_unreachable("dependent cast kind in IR gen!"); 4097 4098 case CK_BuiltinFnToFnPtr: 4099 llvm_unreachable("builtin functions are handled elsewhere"); 4100 4101 // These are never l-values; just use the aggregate emission code. 4102 case CK_NonAtomicToAtomic: 4103 case CK_AtomicToNonAtomic: 4104 return EmitAggExprToLValue(E); 4105 4106 case CK_Dynamic: { 4107 LValue LV = EmitLValue(E->getSubExpr()); 4108 Address V = LV.getAddress(); 4109 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4110 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4111 } 4112 4113 case CK_ConstructorConversion: 4114 case CK_UserDefinedConversion: 4115 case CK_CPointerToObjCPointerCast: 4116 case CK_BlockPointerToObjCPointerCast: 4117 case CK_NoOp: 4118 case CK_LValueToRValue: 4119 return EmitLValue(E->getSubExpr()); 4120 4121 case CK_UncheckedDerivedToBase: 4122 case CK_DerivedToBase: { 4123 const RecordType *DerivedClassTy = 4124 E->getSubExpr()->getType()->getAs<RecordType>(); 4125 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4126 4127 LValue LV = EmitLValue(E->getSubExpr()); 4128 Address This = LV.getAddress(); 4129 4130 // Perform the derived-to-base conversion 4131 Address Base = GetAddressOfBaseClass( 4132 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4133 /*NullCheckValue=*/false, E->getExprLoc()); 4134 4135 // TODO: Support accesses to members of base classes in TBAA. For now, we 4136 // conservatively pretend that the complete object is of the base class 4137 // type. 4138 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4139 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4140 } 4141 case CK_ToUnion: 4142 return EmitAggExprToLValue(E); 4143 case CK_BaseToDerived: { 4144 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4145 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4146 4147 LValue LV = EmitLValue(E->getSubExpr()); 4148 4149 // Perform the base-to-derived conversion 4150 Address Derived = 4151 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4152 E->path_begin(), E->path_end(), 4153 /*NullCheckValue=*/false); 4154 4155 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4156 // performed and the object is not of the derived type. 4157 if (sanitizePerformTypeCheck()) 4158 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4159 Derived.getPointer(), E->getType()); 4160 4161 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4162 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4163 /*MayBeNull=*/false, 4164 CFITCK_DerivedCast, E->getLocStart()); 4165 4166 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4167 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4168 } 4169 case CK_LValueBitCast: { 4170 // This must be a reinterpret_cast (or c-style equivalent). 4171 const auto *CE = cast<ExplicitCastExpr>(E); 4172 4173 CGM.EmitExplicitCastExprType(CE, this); 4174 LValue LV = EmitLValue(E->getSubExpr()); 4175 Address V = Builder.CreateBitCast(LV.getAddress(), 4176 ConvertType(CE->getTypeAsWritten())); 4177 4178 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4179 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4180 /*MayBeNull=*/false, 4181 CFITCK_UnrelatedCast, E->getLocStart()); 4182 4183 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4184 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4185 } 4186 case CK_ObjCObjectLValueCast: { 4187 LValue LV = EmitLValue(E->getSubExpr()); 4188 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4189 ConvertType(E->getType())); 4190 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4191 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4192 } 4193 case CK_ZeroToOCLQueue: 4194 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 4195 case CK_ZeroToOCLEvent: 4196 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 4197 } 4198 4199 llvm_unreachable("Unhandled lvalue cast kind?"); 4200 } 4201 4202 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4203 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4204 return getOrCreateOpaqueLValueMapping(e); 4205 } 4206 4207 LValue 4208 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4209 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4210 4211 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4212 it = OpaqueLValues.find(e); 4213 4214 if (it != OpaqueLValues.end()) 4215 return it->second; 4216 4217 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4218 return EmitLValue(e->getSourceExpr()); 4219 } 4220 4221 RValue 4222 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4223 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4224 4225 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4226 it = OpaqueRValues.find(e); 4227 4228 if (it != OpaqueRValues.end()) 4229 return it->second; 4230 4231 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4232 return EmitAnyExpr(e->getSourceExpr()); 4233 } 4234 4235 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4236 const FieldDecl *FD, 4237 SourceLocation Loc) { 4238 QualType FT = FD->getType(); 4239 LValue FieldLV = EmitLValueForField(LV, FD); 4240 switch (getEvaluationKind(FT)) { 4241 case TEK_Complex: 4242 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4243 case TEK_Aggregate: 4244 return FieldLV.asAggregateRValue(); 4245 case TEK_Scalar: 4246 // This routine is used to load fields one-by-one to perform a copy, so 4247 // don't load reference fields. 4248 if (FD->getType()->isReferenceType()) 4249 return RValue::get(FieldLV.getPointer()); 4250 return EmitLoadOfLValue(FieldLV, Loc); 4251 } 4252 llvm_unreachable("bad evaluation kind"); 4253 } 4254 4255 //===--------------------------------------------------------------------===// 4256 // Expression Emission 4257 //===--------------------------------------------------------------------===// 4258 4259 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4260 ReturnValueSlot ReturnValue) { 4261 // Builtins never have block type. 4262 if (E->getCallee()->getType()->isBlockPointerType()) 4263 return EmitBlockCallExpr(E, ReturnValue); 4264 4265 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4266 return EmitCXXMemberCallExpr(CE, ReturnValue); 4267 4268 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4269 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4270 4271 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4272 if (const CXXMethodDecl *MD = 4273 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4274 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4275 4276 CGCallee callee = EmitCallee(E->getCallee()); 4277 4278 if (callee.isBuiltin()) { 4279 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4280 E, ReturnValue); 4281 } 4282 4283 if (callee.isPseudoDestructor()) { 4284 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4285 } 4286 4287 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4288 } 4289 4290 /// Emit a CallExpr without considering whether it might be a subclass. 4291 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4292 ReturnValueSlot ReturnValue) { 4293 CGCallee Callee = EmitCallee(E->getCallee()); 4294 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4295 } 4296 4297 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4298 if (auto builtinID = FD->getBuiltinID()) { 4299 return CGCallee::forBuiltin(builtinID, FD); 4300 } 4301 4302 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4303 return CGCallee::forDirect(calleePtr, FD); 4304 } 4305 4306 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4307 E = E->IgnoreParens(); 4308 4309 // Look through function-to-pointer decay. 4310 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4311 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4312 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4313 return EmitCallee(ICE->getSubExpr()); 4314 } 4315 4316 // Resolve direct calls. 4317 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4318 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4319 return EmitDirectCallee(*this, FD); 4320 } 4321 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4322 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4323 EmitIgnoredExpr(ME->getBase()); 4324 return EmitDirectCallee(*this, FD); 4325 } 4326 4327 // Look through template substitutions. 4328 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4329 return EmitCallee(NTTP->getReplacement()); 4330 4331 // Treat pseudo-destructor calls differently. 4332 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4333 return CGCallee::forPseudoDestructor(PDE); 4334 } 4335 4336 // Otherwise, we have an indirect reference. 4337 llvm::Value *calleePtr; 4338 QualType functionType; 4339 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4340 calleePtr = EmitScalarExpr(E); 4341 functionType = ptrType->getPointeeType(); 4342 } else { 4343 functionType = E->getType(); 4344 calleePtr = EmitLValue(E).getPointer(); 4345 } 4346 assert(functionType->isFunctionType()); 4347 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4348 E->getReferencedDeclOfCallee()); 4349 CGCallee callee(calleeInfo, calleePtr); 4350 return callee; 4351 } 4352 4353 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4354 // Comma expressions just emit their LHS then their RHS as an l-value. 4355 if (E->getOpcode() == BO_Comma) { 4356 EmitIgnoredExpr(E->getLHS()); 4357 EnsureInsertPoint(); 4358 return EmitLValue(E->getRHS()); 4359 } 4360 4361 if (E->getOpcode() == BO_PtrMemD || 4362 E->getOpcode() == BO_PtrMemI) 4363 return EmitPointerToDataMemberBinaryExpr(E); 4364 4365 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4366 4367 // Note that in all of these cases, __block variables need the RHS 4368 // evaluated first just in case the variable gets moved by the RHS. 4369 4370 switch (getEvaluationKind(E->getType())) { 4371 case TEK_Scalar: { 4372 switch (E->getLHS()->getType().getObjCLifetime()) { 4373 case Qualifiers::OCL_Strong: 4374 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4375 4376 case Qualifiers::OCL_Autoreleasing: 4377 return EmitARCStoreAutoreleasing(E).first; 4378 4379 // No reason to do any of these differently. 4380 case Qualifiers::OCL_None: 4381 case Qualifiers::OCL_ExplicitNone: 4382 case Qualifiers::OCL_Weak: 4383 break; 4384 } 4385 4386 RValue RV = EmitAnyExpr(E->getRHS()); 4387 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4388 if (RV.isScalar()) 4389 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4390 EmitStoreThroughLValue(RV, LV); 4391 return LV; 4392 } 4393 4394 case TEK_Complex: 4395 return EmitComplexAssignmentLValue(E); 4396 4397 case TEK_Aggregate: 4398 return EmitAggExprToLValue(E); 4399 } 4400 llvm_unreachable("bad evaluation kind"); 4401 } 4402 4403 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4404 RValue RV = EmitCallExpr(E); 4405 4406 if (!RV.isScalar()) 4407 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4408 AlignmentSource::Decl); 4409 4410 assert(E->getCallReturnType(getContext())->isReferenceType() && 4411 "Can't have a scalar return unless the return type is a " 4412 "reference type!"); 4413 4414 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4415 } 4416 4417 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4418 // FIXME: This shouldn't require another copy. 4419 return EmitAggExprToLValue(E); 4420 } 4421 4422 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4423 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4424 && "binding l-value to type which needs a temporary"); 4425 AggValueSlot Slot = CreateAggTemp(E->getType()); 4426 EmitCXXConstructExpr(E, Slot); 4427 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4428 } 4429 4430 LValue 4431 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4432 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4433 } 4434 4435 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4436 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4437 ConvertType(E->getType())); 4438 } 4439 4440 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4441 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4442 AlignmentSource::Decl); 4443 } 4444 4445 LValue 4446 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4447 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4448 Slot.setExternallyDestructed(); 4449 EmitAggExpr(E->getSubExpr(), Slot); 4450 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4451 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4452 } 4453 4454 LValue 4455 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4456 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4457 EmitLambdaExpr(E, Slot); 4458 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4459 } 4460 4461 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4462 RValue RV = EmitObjCMessageExpr(E); 4463 4464 if (!RV.isScalar()) 4465 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4466 AlignmentSource::Decl); 4467 4468 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4469 "Can't have a scalar return unless the return type is a " 4470 "reference type!"); 4471 4472 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4473 } 4474 4475 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4476 Address V = 4477 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4478 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4479 } 4480 4481 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4482 const ObjCIvarDecl *Ivar) { 4483 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4484 } 4485 4486 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4487 llvm::Value *BaseValue, 4488 const ObjCIvarDecl *Ivar, 4489 unsigned CVRQualifiers) { 4490 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4491 Ivar, CVRQualifiers); 4492 } 4493 4494 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4495 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4496 llvm::Value *BaseValue = nullptr; 4497 const Expr *BaseExpr = E->getBase(); 4498 Qualifiers BaseQuals; 4499 QualType ObjectTy; 4500 if (E->isArrow()) { 4501 BaseValue = EmitScalarExpr(BaseExpr); 4502 ObjectTy = BaseExpr->getType()->getPointeeType(); 4503 BaseQuals = ObjectTy.getQualifiers(); 4504 } else { 4505 LValue BaseLV = EmitLValue(BaseExpr); 4506 BaseValue = BaseLV.getPointer(); 4507 ObjectTy = BaseExpr->getType(); 4508 BaseQuals = ObjectTy.getQualifiers(); 4509 } 4510 4511 LValue LV = 4512 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4513 BaseQuals.getCVRQualifiers()); 4514 setObjCGCLValueClass(getContext(), E, LV); 4515 return LV; 4516 } 4517 4518 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4519 // Can only get l-value for message expression returning aggregate type 4520 RValue RV = EmitAnyExprToTemp(E); 4521 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4522 AlignmentSource::Decl); 4523 } 4524 4525 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4526 const CallExpr *E, ReturnValueSlot ReturnValue, 4527 llvm::Value *Chain) { 4528 // Get the actual function type. The callee type will always be a pointer to 4529 // function type or a block pointer type. 4530 assert(CalleeType->isFunctionPointerType() && 4531 "Call must have function pointer type!"); 4532 4533 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4534 4535 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4536 // We can only guarantee that a function is called from the correct 4537 // context/function based on the appropriate target attributes, 4538 // so only check in the case where we have both always_inline and target 4539 // since otherwise we could be making a conditional call after a check for 4540 // the proper cpu features (and it won't cause code generation issues due to 4541 // function based code generation). 4542 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4543 TargetDecl->hasAttr<TargetAttr>()) 4544 checkTargetFeatures(E, FD); 4545 4546 CalleeType = getContext().getCanonicalType(CalleeType); 4547 4548 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4549 4550 CGCallee Callee = OrigCallee; 4551 4552 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4553 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4554 if (llvm::Constant *PrefixSig = 4555 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4556 SanitizerScope SanScope(this); 4557 // Remove any (C++17) exception specifications, to allow calling e.g. a 4558 // noexcept function through a non-noexcept pointer. 4559 auto ProtoTy = 4560 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4561 llvm::Constant *FTRTTIConst = 4562 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4563 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4564 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4565 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4566 4567 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4568 4569 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4570 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4571 llvm::Value *CalleeSigPtr = 4572 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4573 llvm::Value *CalleeSig = 4574 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4575 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4576 4577 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4578 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4579 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4580 4581 EmitBlock(TypeCheck); 4582 llvm::Value *CalleeRTTIPtr = 4583 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4584 llvm::Value *CalleeRTTIEncoded = 4585 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4586 llvm::Value *CalleeRTTI = 4587 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4588 llvm::Value *CalleeRTTIMatch = 4589 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4590 llvm::Constant *StaticData[] = { 4591 EmitCheckSourceLocation(E->getLocStart()), 4592 EmitCheckTypeDescriptor(CalleeType) 4593 }; 4594 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4595 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4596 4597 Builder.CreateBr(Cont); 4598 EmitBlock(Cont); 4599 } 4600 } 4601 4602 const auto *FnType = cast<FunctionType>(PointeeType); 4603 4604 // If we are checking indirect calls and this call is indirect, check that the 4605 // function pointer is a member of the bit set for the function type. 4606 if (SanOpts.has(SanitizerKind::CFIICall) && 4607 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4608 SanitizerScope SanScope(this); 4609 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4610 4611 llvm::Metadata *MD; 4612 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4613 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4614 else 4615 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4616 4617 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4618 4619 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4620 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4621 llvm::Value *TypeTest = Builder.CreateCall( 4622 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4623 4624 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4625 llvm::Constant *StaticData[] = { 4626 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4627 EmitCheckSourceLocation(E->getLocStart()), 4628 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4629 }; 4630 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4631 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4632 CastedCallee, StaticData); 4633 } else { 4634 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4635 SanitizerHandler::CFICheckFail, StaticData, 4636 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4637 } 4638 } 4639 4640 CallArgList Args; 4641 if (Chain) 4642 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4643 CGM.getContext().VoidPtrTy); 4644 4645 // C++17 requires that we evaluate arguments to a call using assignment syntax 4646 // right-to-left, and that we evaluate arguments to certain other operators 4647 // left-to-right. Note that we allow this to override the order dictated by 4648 // the calling convention on the MS ABI, which means that parameter 4649 // destruction order is not necessarily reverse construction order. 4650 // FIXME: Revisit this based on C++ committee response to unimplementability. 4651 EvaluationOrder Order = EvaluationOrder::Default; 4652 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4653 if (OCE->isAssignmentOp()) 4654 Order = EvaluationOrder::ForceRightToLeft; 4655 else { 4656 switch (OCE->getOperator()) { 4657 case OO_LessLess: 4658 case OO_GreaterGreater: 4659 case OO_AmpAmp: 4660 case OO_PipePipe: 4661 case OO_Comma: 4662 case OO_ArrowStar: 4663 Order = EvaluationOrder::ForceLeftToRight; 4664 break; 4665 default: 4666 break; 4667 } 4668 } 4669 } 4670 4671 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4672 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4673 4674 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4675 Args, FnType, /*isChainCall=*/Chain); 4676 4677 // C99 6.5.2.2p6: 4678 // If the expression that denotes the called function has a type 4679 // that does not include a prototype, [the default argument 4680 // promotions are performed]. If the number of arguments does not 4681 // equal the number of parameters, the behavior is undefined. If 4682 // the function is defined with a type that includes a prototype, 4683 // and either the prototype ends with an ellipsis (, ...) or the 4684 // types of the arguments after promotion are not compatible with 4685 // the types of the parameters, the behavior is undefined. If the 4686 // function is defined with a type that does not include a 4687 // prototype, and the types of the arguments after promotion are 4688 // not compatible with those of the parameters after promotion, 4689 // the behavior is undefined [except in some trivial cases]. 4690 // That is, in the general case, we should assume that a call 4691 // through an unprototyped function type works like a *non-variadic* 4692 // call. The way we make this work is to cast to the exact type 4693 // of the promoted arguments. 4694 // 4695 // Chain calls use this same code path to add the invisible chain parameter 4696 // to the function type. 4697 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4698 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4699 CalleeTy = CalleeTy->getPointerTo(); 4700 4701 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4702 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4703 Callee.setFunctionPointer(CalleePtr); 4704 } 4705 4706 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 4707 } 4708 4709 LValue CodeGenFunction:: 4710 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4711 Address BaseAddr = Address::invalid(); 4712 if (E->getOpcode() == BO_PtrMemI) { 4713 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4714 } else { 4715 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4716 } 4717 4718 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4719 4720 const MemberPointerType *MPT 4721 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4722 4723 LValueBaseInfo BaseInfo; 4724 TBAAAccessInfo TBAAInfo; 4725 Address MemberAddr = 4726 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4727 &TBAAInfo); 4728 4729 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4730 } 4731 4732 /// Given the address of a temporary variable, produce an r-value of 4733 /// its type. 4734 RValue CodeGenFunction::convertTempToRValue(Address addr, 4735 QualType type, 4736 SourceLocation loc) { 4737 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4738 switch (getEvaluationKind(type)) { 4739 case TEK_Complex: 4740 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4741 case TEK_Aggregate: 4742 return lvalue.asAggregateRValue(); 4743 case TEK_Scalar: 4744 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4745 } 4746 llvm_unreachable("bad evaluation kind"); 4747 } 4748 4749 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4750 assert(Val->getType()->isFPOrFPVectorTy()); 4751 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4752 return; 4753 4754 llvm::MDBuilder MDHelper(getLLVMContext()); 4755 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4756 4757 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4758 } 4759 4760 namespace { 4761 struct LValueOrRValue { 4762 LValue LV; 4763 RValue RV; 4764 }; 4765 } 4766 4767 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4768 const PseudoObjectExpr *E, 4769 bool forLValue, 4770 AggValueSlot slot) { 4771 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4772 4773 // Find the result expression, if any. 4774 const Expr *resultExpr = E->getResultExpr(); 4775 LValueOrRValue result; 4776 4777 for (PseudoObjectExpr::const_semantics_iterator 4778 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4779 const Expr *semantic = *i; 4780 4781 // If this semantic expression is an opaque value, bind it 4782 // to the result of its source expression. 4783 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4784 // Skip unique OVEs. 4785 if (ov->isUnique()) { 4786 assert(ov != resultExpr && 4787 "A unique OVE cannot be used as the result expression"); 4788 continue; 4789 } 4790 4791 // If this is the result expression, we may need to evaluate 4792 // directly into the slot. 4793 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4794 OVMA opaqueData; 4795 if (ov == resultExpr && ov->isRValue() && !forLValue && 4796 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4797 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4798 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4799 AlignmentSource::Decl); 4800 opaqueData = OVMA::bind(CGF, ov, LV); 4801 result.RV = slot.asRValue(); 4802 4803 // Otherwise, emit as normal. 4804 } else { 4805 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4806 4807 // If this is the result, also evaluate the result now. 4808 if (ov == resultExpr) { 4809 if (forLValue) 4810 result.LV = CGF.EmitLValue(ov); 4811 else 4812 result.RV = CGF.EmitAnyExpr(ov, slot); 4813 } 4814 } 4815 4816 opaques.push_back(opaqueData); 4817 4818 // Otherwise, if the expression is the result, evaluate it 4819 // and remember the result. 4820 } else if (semantic == resultExpr) { 4821 if (forLValue) 4822 result.LV = CGF.EmitLValue(semantic); 4823 else 4824 result.RV = CGF.EmitAnyExpr(semantic, slot); 4825 4826 // Otherwise, evaluate the expression in an ignored context. 4827 } else { 4828 CGF.EmitIgnoredExpr(semantic); 4829 } 4830 } 4831 4832 // Unbind all the opaques now. 4833 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4834 opaques[i].unbind(CGF); 4835 4836 return result; 4837 } 4838 4839 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4840 AggValueSlot slot) { 4841 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4842 } 4843 4844 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4845 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4846 } 4847