1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "llvm/ADT/Hashing.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/MatrixBuilder.h"
39 #include "llvm/Support/ConvertUTF.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Path.h"
42 #include "llvm/Support/SaveAndRestore.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 #include <string>
46 
47 using namespace clang;
48 using namespace CodeGen;
49 
50 //===--------------------------------------------------------------------===//
51 //                        Miscellaneous Helper Methods
52 //===--------------------------------------------------------------------===//
53 
54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
55   unsigned addressSpace =
56       cast<llvm::PointerType>(value->getType())->getAddressSpace();
57 
58   llvm::PointerType *destType = Int8PtrTy;
59   if (addressSpace)
60     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
61 
62   if (value->getType() == destType) return value;
63   return Builder.CreateBitCast(value, destType);
64 }
65 
66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
67 /// block.
68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
69                                                      CharUnits Align,
70                                                      const Twine &Name,
71                                                      llvm::Value *ArraySize) {
72   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
73   Alloca->setAlignment(Align.getAsAlign());
74   return Address(Alloca, Ty, Align);
75 }
76 
77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
78 /// block. The alloca is casted to default address space if necessary.
79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
80                                           const Twine &Name,
81                                           llvm::Value *ArraySize,
82                                           Address *AllocaAddr) {
83   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
84   if (AllocaAddr)
85     *AllocaAddr = Alloca;
86   llvm::Value *V = Alloca.getPointer();
87   // Alloca always returns a pointer in alloca address space, which may
88   // be different from the type defined by the language. For example,
89   // in C++ the auto variables are in the default address space. Therefore
90   // cast alloca to the default address space when necessary.
91   if (getASTAllocaAddressSpace() != LangAS::Default) {
92     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
93     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
94     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
95     // otherwise alloca is inserted at the current insertion point of the
96     // builder.
97     if (!ArraySize)
98       Builder.SetInsertPoint(getPostAllocaInsertPoint());
99     V = getTargetHooks().performAddrSpaceCast(
100         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
101         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
102   }
103 
104   return Address(V, Ty, Align);
105 }
106 
107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
109 /// insertion point of the builder.
110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
111                                                     const Twine &Name,
112                                                     llvm::Value *ArraySize) {
113   if (ArraySize)
114     return Builder.CreateAlloca(Ty, ArraySize, Name);
115   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
116                               ArraySize, Name, AllocaInsertPt);
117 }
118 
119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
120 /// default alignment of the corresponding LLVM type, which is *not*
121 /// guaranteed to be related in any way to the expected alignment of
122 /// an AST type that might have been lowered to Ty.
123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
124                                                       const Twine &Name) {
125   CharUnits Align =
126       CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty));
127   return CreateTempAlloca(Ty, Align, Name);
128 }
129 
130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
131   CharUnits Align = getContext().getTypeAlignInChars(Ty);
132   return CreateTempAlloca(ConvertType(Ty), Align, Name);
133 }
134 
135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
136                                        Address *Alloca) {
137   // FIXME: Should we prefer the preferred type alignment here?
138   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
139 }
140 
141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
142                                        const Twine &Name, Address *Alloca) {
143   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
144                                     /*ArraySize=*/nullptr, Alloca);
145 
146   if (Ty->isConstantMatrixType()) {
147     auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType());
148     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
149                                                 ArrayTy->getNumElements());
150 
151     Result = Address(
152         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
153         VectorTy, Result.getAlignment());
154   }
155   return Result;
156 }
157 
158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
159                                                   const Twine &Name) {
160   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
161 }
162 
163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
164                                                   const Twine &Name) {
165   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
166                                   Name);
167 }
168 
169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
170 /// expression and compare the result against zero, returning an Int1Ty value.
171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
172   PGO.setCurrentStmt(E);
173   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
174     llvm::Value *MemPtr = EmitScalarExpr(E);
175     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
176   }
177 
178   QualType BoolTy = getContext().BoolTy;
179   SourceLocation Loc = E->getExprLoc();
180   CGFPOptionsRAII FPOptsRAII(*this, E);
181   if (!E->getType()->isAnyComplexType())
182     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
183 
184   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
185                                        Loc);
186 }
187 
188 /// EmitIgnoredExpr - Emit code to compute the specified expression,
189 /// ignoring the result.
190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
191   if (E->isPRValue())
192     return (void)EmitAnyExpr(E, AggValueSlot::ignored(), true);
193 
194   // if this is a bitfield-resulting conditional operator, we can special case
195   // emit this. The normal 'EmitLValue' version of this is particularly
196   // difficult to codegen for, since creating a single "LValue" for two
197   // different sized arguments here is not particularly doable.
198   if (const auto *CondOp = dyn_cast<AbstractConditionalOperator>(
199           E->IgnoreParenNoopCasts(getContext()))) {
200     if (CondOp->getObjectKind() == OK_BitField)
201       return EmitIgnoredConditionalOperator(CondOp);
202   }
203 
204   // Just emit it as an l-value and drop the result.
205   EmitLValue(E);
206 }
207 
208 /// EmitAnyExpr - Emit code to compute the specified expression which
209 /// can have any type.  The result is returned as an RValue struct.
210 /// If this is an aggregate expression, AggSlot indicates where the
211 /// result should be returned.
212 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
213                                     AggValueSlot aggSlot,
214                                     bool ignoreResult) {
215   switch (getEvaluationKind(E->getType())) {
216   case TEK_Scalar:
217     return RValue::get(EmitScalarExpr(E, ignoreResult));
218   case TEK_Complex:
219     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
220   case TEK_Aggregate:
221     if (!ignoreResult && aggSlot.isIgnored())
222       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
223     EmitAggExpr(E, aggSlot);
224     return aggSlot.asRValue();
225   }
226   llvm_unreachable("bad evaluation kind");
227 }
228 
229 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
230 /// always be accessible even if no aggregate location is provided.
231 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
232   AggValueSlot AggSlot = AggValueSlot::ignored();
233 
234   if (hasAggregateEvaluationKind(E->getType()))
235     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
236   return EmitAnyExpr(E, AggSlot);
237 }
238 
239 /// EmitAnyExprToMem - Evaluate an expression into a given memory
240 /// location.
241 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
242                                        Address Location,
243                                        Qualifiers Quals,
244                                        bool IsInit) {
245   // FIXME: This function should take an LValue as an argument.
246   switch (getEvaluationKind(E->getType())) {
247   case TEK_Complex:
248     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
249                               /*isInit*/ false);
250     return;
251 
252   case TEK_Aggregate: {
253     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
254                                          AggValueSlot::IsDestructed_t(IsInit),
255                                          AggValueSlot::DoesNotNeedGCBarriers,
256                                          AggValueSlot::IsAliased_t(!IsInit),
257                                          AggValueSlot::MayOverlap));
258     return;
259   }
260 
261   case TEK_Scalar: {
262     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
263     LValue LV = MakeAddrLValue(Location, E->getType());
264     EmitStoreThroughLValue(RV, LV);
265     return;
266   }
267   }
268   llvm_unreachable("bad evaluation kind");
269 }
270 
271 static void
272 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
273                      const Expr *E, Address ReferenceTemporary) {
274   // Objective-C++ ARC:
275   //   If we are binding a reference to a temporary that has ownership, we
276   //   need to perform retain/release operations on the temporary.
277   //
278   // FIXME: This should be looking at E, not M.
279   if (auto Lifetime = M->getType().getObjCLifetime()) {
280     switch (Lifetime) {
281     case Qualifiers::OCL_None:
282     case Qualifiers::OCL_ExplicitNone:
283       // Carry on to normal cleanup handling.
284       break;
285 
286     case Qualifiers::OCL_Autoreleasing:
287       // Nothing to do; cleaned up by an autorelease pool.
288       return;
289 
290     case Qualifiers::OCL_Strong:
291     case Qualifiers::OCL_Weak:
292       switch (StorageDuration Duration = M->getStorageDuration()) {
293       case SD_Static:
294         // Note: we intentionally do not register a cleanup to release
295         // the object on program termination.
296         return;
297 
298       case SD_Thread:
299         // FIXME: We should probably register a cleanup in this case.
300         return;
301 
302       case SD_Automatic:
303       case SD_FullExpression:
304         CodeGenFunction::Destroyer *Destroy;
305         CleanupKind CleanupKind;
306         if (Lifetime == Qualifiers::OCL_Strong) {
307           const ValueDecl *VD = M->getExtendingDecl();
308           bool Precise =
309               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
310           CleanupKind = CGF.getARCCleanupKind();
311           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
312                             : &CodeGenFunction::destroyARCStrongImprecise;
313         } else {
314           // __weak objects always get EH cleanups; otherwise, exceptions
315           // could cause really nasty crashes instead of mere leaks.
316           CleanupKind = NormalAndEHCleanup;
317           Destroy = &CodeGenFunction::destroyARCWeak;
318         }
319         if (Duration == SD_FullExpression)
320           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
321                           M->getType(), *Destroy,
322                           CleanupKind & EHCleanup);
323         else
324           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
325                                           M->getType(),
326                                           *Destroy, CleanupKind & EHCleanup);
327         return;
328 
329       case SD_Dynamic:
330         llvm_unreachable("temporary cannot have dynamic storage duration");
331       }
332       llvm_unreachable("unknown storage duration");
333     }
334   }
335 
336   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
337   if (const RecordType *RT =
338           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
339     // Get the destructor for the reference temporary.
340     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
341     if (!ClassDecl->hasTrivialDestructor())
342       ReferenceTemporaryDtor = ClassDecl->getDestructor();
343   }
344 
345   if (!ReferenceTemporaryDtor)
346     return;
347 
348   // Call the destructor for the temporary.
349   switch (M->getStorageDuration()) {
350   case SD_Static:
351   case SD_Thread: {
352     llvm::FunctionCallee CleanupFn;
353     llvm::Constant *CleanupArg;
354     if (E->getType()->isArrayType()) {
355       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
356           ReferenceTemporary, E->getType(),
357           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
358           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
359       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
360     } else {
361       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
362           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
363       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
364     }
365     CGF.CGM.getCXXABI().registerGlobalDtor(
366         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
367     break;
368   }
369 
370   case SD_FullExpression:
371     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
372                     CodeGenFunction::destroyCXXObject,
373                     CGF.getLangOpts().Exceptions);
374     break;
375 
376   case SD_Automatic:
377     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
378                                     ReferenceTemporary, E->getType(),
379                                     CodeGenFunction::destroyCXXObject,
380                                     CGF.getLangOpts().Exceptions);
381     break;
382 
383   case SD_Dynamic:
384     llvm_unreachable("temporary cannot have dynamic storage duration");
385   }
386 }
387 
388 static Address createReferenceTemporary(CodeGenFunction &CGF,
389                                         const MaterializeTemporaryExpr *M,
390                                         const Expr *Inner,
391                                         Address *Alloca = nullptr) {
392   auto &TCG = CGF.getTargetHooks();
393   switch (M->getStorageDuration()) {
394   case SD_FullExpression:
395   case SD_Automatic: {
396     // If we have a constant temporary array or record try to promote it into a
397     // constant global under the same rules a normal constant would've been
398     // promoted. This is easier on the optimizer and generally emits fewer
399     // instructions.
400     QualType Ty = Inner->getType();
401     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
402         (Ty->isArrayType() || Ty->isRecordType()) &&
403         CGF.CGM.isTypeConstant(Ty, true))
404       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
405         auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
406         auto *GV = new llvm::GlobalVariable(
407             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
408             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
409             llvm::GlobalValue::NotThreadLocal,
410             CGF.getContext().getTargetAddressSpace(AS));
411         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
412         GV->setAlignment(alignment.getAsAlign());
413         llvm::Constant *C = GV;
414         if (AS != LangAS::Default)
415           C = TCG.performAddrSpaceCast(
416               CGF.CGM, GV, AS, LangAS::Default,
417               GV->getValueType()->getPointerTo(
418                   CGF.getContext().getTargetAddressSpace(LangAS::Default)));
419         // FIXME: Should we put the new global into a COMDAT?
420         return Address(C, GV->getValueType(), alignment);
421       }
422     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
423   }
424   case SD_Thread:
425   case SD_Static:
426     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
427 
428   case SD_Dynamic:
429     llvm_unreachable("temporary can't have dynamic storage duration");
430   }
431   llvm_unreachable("unknown storage duration");
432 }
433 
434 /// Helper method to check if the underlying ABI is AAPCS
435 static bool isAAPCS(const TargetInfo &TargetInfo) {
436   return TargetInfo.getABI().startswith("aapcs");
437 }
438 
439 LValue CodeGenFunction::
440 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
441   const Expr *E = M->getSubExpr();
442 
443   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
444           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
445          "Reference should never be pseudo-strong!");
446 
447   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
448   // as that will cause the lifetime adjustment to be lost for ARC
449   auto ownership = M->getType().getObjCLifetime();
450   if (ownership != Qualifiers::OCL_None &&
451       ownership != Qualifiers::OCL_ExplicitNone) {
452     Address Object = createReferenceTemporary(*this, M, E);
453     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
454       llvm::Type *Ty = ConvertTypeForMem(E->getType());
455       Object = Address(llvm::ConstantExpr::getBitCast(
456                            Var, Ty->getPointerTo(Object.getAddressSpace())),
457                        Ty, Object.getAlignment());
458 
459       // createReferenceTemporary will promote the temporary to a global with a
460       // constant initializer if it can.  It can only do this to a value of
461       // ARC-manageable type if the value is global and therefore "immune" to
462       // ref-counting operations.  Therefore we have no need to emit either a
463       // dynamic initialization or a cleanup and we can just return the address
464       // of the temporary.
465       if (Var->hasInitializer())
466         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
467 
468       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
469     }
470     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
471                                        AlignmentSource::Decl);
472 
473     switch (getEvaluationKind(E->getType())) {
474     default: llvm_unreachable("expected scalar or aggregate expression");
475     case TEK_Scalar:
476       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
477       break;
478     case TEK_Aggregate: {
479       EmitAggExpr(E, AggValueSlot::forAddr(Object,
480                                            E->getType().getQualifiers(),
481                                            AggValueSlot::IsDestructed,
482                                            AggValueSlot::DoesNotNeedGCBarriers,
483                                            AggValueSlot::IsNotAliased,
484                                            AggValueSlot::DoesNotOverlap));
485       break;
486     }
487     }
488 
489     pushTemporaryCleanup(*this, M, E, Object);
490     return RefTempDst;
491   }
492 
493   SmallVector<const Expr *, 2> CommaLHSs;
494   SmallVector<SubobjectAdjustment, 2> Adjustments;
495   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
496 
497   for (const auto &Ignored : CommaLHSs)
498     EmitIgnoredExpr(Ignored);
499 
500   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
501     if (opaque->getType()->isRecordType()) {
502       assert(Adjustments.empty());
503       return EmitOpaqueValueLValue(opaque);
504     }
505   }
506 
507   // Create and initialize the reference temporary.
508   Address Alloca = Address::invalid();
509   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
510   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
511           Object.getPointer()->stripPointerCasts())) {
512     llvm::Type *TemporaryType = ConvertTypeForMem(E->getType());
513     Object = Address(llvm::ConstantExpr::getBitCast(
514                          cast<llvm::Constant>(Object.getPointer()),
515                          TemporaryType->getPointerTo()),
516                      TemporaryType,
517                      Object.getAlignment());
518     // If the temporary is a global and has a constant initializer or is a
519     // constant temporary that we promoted to a global, we may have already
520     // initialized it.
521     if (!Var->hasInitializer()) {
522       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
523       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
524     }
525   } else {
526     switch (M->getStorageDuration()) {
527     case SD_Automatic:
528       if (auto *Size = EmitLifetimeStart(
529               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
530               Alloca.getPointer())) {
531         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
532                                                   Alloca, Size);
533       }
534       break;
535 
536     case SD_FullExpression: {
537       if (!ShouldEmitLifetimeMarkers)
538         break;
539 
540       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
541       // marker. Instead, start the lifetime of a conditional temporary earlier
542       // so that it's unconditional. Don't do this with sanitizers which need
543       // more precise lifetime marks.
544       ConditionalEvaluation *OldConditional = nullptr;
545       CGBuilderTy::InsertPoint OldIP;
546       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
547           !SanOpts.has(SanitizerKind::HWAddress) &&
548           !SanOpts.has(SanitizerKind::Memory) &&
549           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
550         OldConditional = OutermostConditional;
551         OutermostConditional = nullptr;
552 
553         OldIP = Builder.saveIP();
554         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
555         Builder.restoreIP(CGBuilderTy::InsertPoint(
556             Block, llvm::BasicBlock::iterator(Block->back())));
557       }
558 
559       if (auto *Size = EmitLifetimeStart(
560               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
561               Alloca.getPointer())) {
562         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
563                                              Size);
564       }
565 
566       if (OldConditional) {
567         OutermostConditional = OldConditional;
568         Builder.restoreIP(OldIP);
569       }
570       break;
571     }
572 
573     default:
574       break;
575     }
576     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
577   }
578   pushTemporaryCleanup(*this, M, E, Object);
579 
580   // Perform derived-to-base casts and/or field accesses, to get from the
581   // temporary object we created (and, potentially, for which we extended
582   // the lifetime) to the subobject we're binding the reference to.
583   for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) {
584     switch (Adjustment.Kind) {
585     case SubobjectAdjustment::DerivedToBaseAdjustment:
586       Object =
587           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
588                                 Adjustment.DerivedToBase.BasePath->path_begin(),
589                                 Adjustment.DerivedToBase.BasePath->path_end(),
590                                 /*NullCheckValue=*/ false, E->getExprLoc());
591       break;
592 
593     case SubobjectAdjustment::FieldAdjustment: {
594       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
595       LV = EmitLValueForField(LV, Adjustment.Field);
596       assert(LV.isSimple() &&
597              "materialized temporary field is not a simple lvalue");
598       Object = LV.getAddress(*this);
599       break;
600     }
601 
602     case SubobjectAdjustment::MemberPointerAdjustment: {
603       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
604       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
605                                                Adjustment.Ptr.MPT);
606       break;
607     }
608     }
609   }
610 
611   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
612 }
613 
614 RValue
615 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
616   // Emit the expression as an lvalue.
617   LValue LV = EmitLValue(E);
618   assert(LV.isSimple());
619   llvm::Value *Value = LV.getPointer(*this);
620 
621   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
622     // C++11 [dcl.ref]p5 (as amended by core issue 453):
623     //   If a glvalue to which a reference is directly bound designates neither
624     //   an existing object or function of an appropriate type nor a region of
625     //   storage of suitable size and alignment to contain an object of the
626     //   reference's type, the behavior is undefined.
627     QualType Ty = E->getType();
628     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
629   }
630 
631   return RValue::get(Value);
632 }
633 
634 
635 /// getAccessedFieldNo - Given an encoded value and a result number, return the
636 /// input field number being accessed.
637 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
638                                              const llvm::Constant *Elts) {
639   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
640       ->getZExtValue();
641 }
642 
643 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
644 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
645                                     llvm::Value *High) {
646   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
647   llvm::Value *K47 = Builder.getInt64(47);
648   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
649   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
650   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
651   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
652   return Builder.CreateMul(B1, KMul);
653 }
654 
655 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
656   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
657          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
658 }
659 
660 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
661   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
662   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
663          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
664           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
665           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
666 }
667 
668 bool CodeGenFunction::sanitizePerformTypeCheck() const {
669   return SanOpts.has(SanitizerKind::Null) ||
670          SanOpts.has(SanitizerKind::Alignment) ||
671          SanOpts.has(SanitizerKind::ObjectSize) ||
672          SanOpts.has(SanitizerKind::Vptr);
673 }
674 
675 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
676                                     llvm::Value *Ptr, QualType Ty,
677                                     CharUnits Alignment,
678                                     SanitizerSet SkippedChecks,
679                                     llvm::Value *ArraySize) {
680   if (!sanitizePerformTypeCheck())
681     return;
682 
683   // Don't check pointers outside the default address space. The null check
684   // isn't correct, the object-size check isn't supported by LLVM, and we can't
685   // communicate the addresses to the runtime handler for the vptr check.
686   if (Ptr->getType()->getPointerAddressSpace())
687     return;
688 
689   // Don't check pointers to volatile data. The behavior here is implementation-
690   // defined.
691   if (Ty.isVolatileQualified())
692     return;
693 
694   SanitizerScope SanScope(this);
695 
696   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
697   llvm::BasicBlock *Done = nullptr;
698 
699   // Quickly determine whether we have a pointer to an alloca. It's possible
700   // to skip null checks, and some alignment checks, for these pointers. This
701   // can reduce compile-time significantly.
702   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
703 
704   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
705   llvm::Value *IsNonNull = nullptr;
706   bool IsGuaranteedNonNull =
707       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
708   bool AllowNullPointers = isNullPointerAllowed(TCK);
709   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
710       !IsGuaranteedNonNull) {
711     // The glvalue must not be an empty glvalue.
712     IsNonNull = Builder.CreateIsNotNull(Ptr);
713 
714     // The IR builder can constant-fold the null check if the pointer points to
715     // a constant.
716     IsGuaranteedNonNull = IsNonNull == True;
717 
718     // Skip the null check if the pointer is known to be non-null.
719     if (!IsGuaranteedNonNull) {
720       if (AllowNullPointers) {
721         // When performing pointer casts, it's OK if the value is null.
722         // Skip the remaining checks in that case.
723         Done = createBasicBlock("null");
724         llvm::BasicBlock *Rest = createBasicBlock("not.null");
725         Builder.CreateCondBr(IsNonNull, Rest, Done);
726         EmitBlock(Rest);
727       } else {
728         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
729       }
730     }
731   }
732 
733   if (SanOpts.has(SanitizerKind::ObjectSize) &&
734       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
735       !Ty->isIncompleteType()) {
736     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
737     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
738     if (ArraySize)
739       Size = Builder.CreateMul(Size, ArraySize);
740 
741     // Degenerate case: new X[0] does not need an objectsize check.
742     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
743     if (!ConstantSize || !ConstantSize->isNullValue()) {
744       // The glvalue must refer to a large enough storage region.
745       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
746       //        to check this.
747       // FIXME: Get object address space
748       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
749       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
750       llvm::Value *Min = Builder.getFalse();
751       llvm::Value *NullIsUnknown = Builder.getFalse();
752       llvm::Value *Dynamic = Builder.getFalse();
753       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
754       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
755           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
756       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
757     }
758   }
759 
760   uint64_t AlignVal = 0;
761   llvm::Value *PtrAsInt = nullptr;
762 
763   if (SanOpts.has(SanitizerKind::Alignment) &&
764       !SkippedChecks.has(SanitizerKind::Alignment)) {
765     AlignVal = Alignment.getQuantity();
766     if (!Ty->isIncompleteType() && !AlignVal)
767       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
768                                              /*ForPointeeType=*/true)
769                      .getQuantity();
770 
771     // The glvalue must be suitably aligned.
772     if (AlignVal > 1 &&
773         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
774       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
775       llvm::Value *Align = Builder.CreateAnd(
776           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
777       llvm::Value *Aligned =
778           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
779       if (Aligned != True)
780         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
781     }
782   }
783 
784   if (Checks.size() > 0) {
785     // Make sure we're not losing information. Alignment needs to be a power of
786     // 2
787     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
788     llvm::Constant *StaticData[] = {
789         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
790         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
791         llvm::ConstantInt::get(Int8Ty, TCK)};
792     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
793               PtrAsInt ? PtrAsInt : Ptr);
794   }
795 
796   // If possible, check that the vptr indicates that there is a subobject of
797   // type Ty at offset zero within this object.
798   //
799   // C++11 [basic.life]p5,6:
800   //   [For storage which does not refer to an object within its lifetime]
801   //   The program has undefined behavior if:
802   //    -- the [pointer or glvalue] is used to access a non-static data member
803   //       or call a non-static member function
804   if (SanOpts.has(SanitizerKind::Vptr) &&
805       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
806     // Ensure that the pointer is non-null before loading it. If there is no
807     // compile-time guarantee, reuse the run-time null check or emit a new one.
808     if (!IsGuaranteedNonNull) {
809       if (!IsNonNull)
810         IsNonNull = Builder.CreateIsNotNull(Ptr);
811       if (!Done)
812         Done = createBasicBlock("vptr.null");
813       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
814       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
815       EmitBlock(VptrNotNull);
816     }
817 
818     // Compute a hash of the mangled name of the type.
819     //
820     // FIXME: This is not guaranteed to be deterministic! Move to a
821     //        fingerprinting mechanism once LLVM provides one. For the time
822     //        being the implementation happens to be deterministic.
823     SmallString<64> MangledName;
824     llvm::raw_svector_ostream Out(MangledName);
825     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
826                                                      Out);
827 
828     // Contained in NoSanitizeList based on the mangled type.
829     if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
830                                                            Out.str())) {
831       llvm::hash_code TypeHash = hash_value(Out.str());
832 
833       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
834       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
835       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
836       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), IntPtrTy,
837                        getPointerAlign());
838       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
839       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
840 
841       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
842       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
843 
844       // Look the hash up in our cache.
845       const int CacheSize = 128;
846       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
847       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
848                                                      "__ubsan_vptr_type_cache");
849       llvm::Value *Slot = Builder.CreateAnd(Hash,
850                                             llvm::ConstantInt::get(IntPtrTy,
851                                                                    CacheSize-1));
852       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
853       llvm::Value *CacheVal = Builder.CreateAlignedLoad(
854           IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
855           getPointerAlign());
856 
857       // If the hash isn't in the cache, call a runtime handler to perform the
858       // hard work of checking whether the vptr is for an object of the right
859       // type. This will either fill in the cache and return, or produce a
860       // diagnostic.
861       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
862       llvm::Constant *StaticData[] = {
863         EmitCheckSourceLocation(Loc),
864         EmitCheckTypeDescriptor(Ty),
865         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
866         llvm::ConstantInt::get(Int8Ty, TCK)
867       };
868       llvm::Value *DynamicData[] = { Ptr, Hash };
869       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
870                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
871                 DynamicData);
872     }
873   }
874 
875   if (Done) {
876     Builder.CreateBr(Done);
877     EmitBlock(Done);
878   }
879 }
880 
881 /// Determine whether this expression refers to a flexible array member in a
882 /// struct. We disable array bounds checks for such members.
883 static bool isFlexibleArrayMemberExpr(const Expr *E) {
884   // For compatibility with existing code, we treat arrays of length 0 or
885   // 1 as flexible array members.
886   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
887   // the two mechanisms.
888   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
889   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
890     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
891     // was produced by macro expansion.
892     if (CAT->getSize().ugt(1))
893       return false;
894   } else if (!isa<IncompleteArrayType>(AT))
895     return false;
896 
897   E = E->IgnoreParens();
898 
899   // A flexible array member must be the last member in the class.
900   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
901     // FIXME: If the base type of the member expr is not FD->getParent(),
902     // this should not be treated as a flexible array member access.
903     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
904       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
905       // member, only a T[0] or T[] member gets that treatment.
906       if (FD->getParent()->isUnion())
907         return true;
908       RecordDecl::field_iterator FI(
909           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
910       return ++FI == FD->getParent()->field_end();
911     }
912   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
913     return IRE->getDecl()->getNextIvar() == nullptr;
914   }
915 
916   return false;
917 }
918 
919 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
920                                                    QualType EltTy) {
921   ASTContext &C = getContext();
922   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
923   if (!EltSize)
924     return nullptr;
925 
926   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
927   if (!ArrayDeclRef)
928     return nullptr;
929 
930   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
931   if (!ParamDecl)
932     return nullptr;
933 
934   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
935   if (!POSAttr)
936     return nullptr;
937 
938   // Don't load the size if it's a lower bound.
939   int POSType = POSAttr->getType();
940   if (POSType != 0 && POSType != 1)
941     return nullptr;
942 
943   // Find the implicit size parameter.
944   auto PassedSizeIt = SizeArguments.find(ParamDecl);
945   if (PassedSizeIt == SizeArguments.end())
946     return nullptr;
947 
948   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
949   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
950   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
951   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
952                                               C.getSizeType(), E->getExprLoc());
953   llvm::Value *SizeOfElement =
954       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
955   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
956 }
957 
958 /// If Base is known to point to the start of an array, return the length of
959 /// that array. Return 0 if the length cannot be determined.
960 static llvm::Value *getArrayIndexingBound(
961     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
962   // For the vector indexing extension, the bound is the number of elements.
963   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
964     IndexedType = Base->getType();
965     return CGF.Builder.getInt32(VT->getNumElements());
966   }
967 
968   Base = Base->IgnoreParens();
969 
970   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
971     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
972         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
973       IndexedType = CE->getSubExpr()->getType();
974       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
975       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
976         return CGF.Builder.getInt(CAT->getSize());
977       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
978         return CGF.getVLASize(VAT).NumElts;
979       // Ignore pass_object_size here. It's not applicable on decayed pointers.
980     }
981   }
982 
983   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
984   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
985     IndexedType = Base->getType();
986     return POS;
987   }
988 
989   return nullptr;
990 }
991 
992 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
993                                       llvm::Value *Index, QualType IndexType,
994                                       bool Accessed) {
995   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
996          "should not be called unless adding bounds checks");
997   SanitizerScope SanScope(this);
998 
999   QualType IndexedType;
1000   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
1001   if (!Bound)
1002     return;
1003 
1004   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
1005   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1006   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1007 
1008   llvm::Constant *StaticData[] = {
1009     EmitCheckSourceLocation(E->getExprLoc()),
1010     EmitCheckTypeDescriptor(IndexedType),
1011     EmitCheckTypeDescriptor(IndexType)
1012   };
1013   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1014                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1015   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1016             SanitizerHandler::OutOfBounds, StaticData, Index);
1017 }
1018 
1019 
1020 CodeGenFunction::ComplexPairTy CodeGenFunction::
1021 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1022                          bool isInc, bool isPre) {
1023   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1024 
1025   llvm::Value *NextVal;
1026   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1027     uint64_t AmountVal = isInc ? 1 : -1;
1028     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1029 
1030     // Add the inc/dec to the real part.
1031     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1032   } else {
1033     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1034     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1035     if (!isInc)
1036       FVal.changeSign();
1037     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1038 
1039     // Add the inc/dec to the real part.
1040     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1041   }
1042 
1043   ComplexPairTy IncVal(NextVal, InVal.second);
1044 
1045   // Store the updated result through the lvalue.
1046   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1047   if (getLangOpts().OpenMP)
1048     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1049                                                               E->getSubExpr());
1050 
1051   // If this is a postinc, return the value read from memory, otherwise use the
1052   // updated value.
1053   return isPre ? IncVal : InVal;
1054 }
1055 
1056 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1057                                              CodeGenFunction *CGF) {
1058   // Bind VLAs in the cast type.
1059   if (CGF && E->getType()->isVariablyModifiedType())
1060     CGF->EmitVariablyModifiedType(E->getType());
1061 
1062   if (CGDebugInfo *DI = getModuleDebugInfo())
1063     DI->EmitExplicitCastType(E->getType());
1064 }
1065 
1066 //===----------------------------------------------------------------------===//
1067 //                         LValue Expression Emission
1068 //===----------------------------------------------------------------------===//
1069 
1070 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1071 /// derive a more accurate bound on the alignment of the pointer.
1072 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1073                                                   LValueBaseInfo *BaseInfo,
1074                                                   TBAAAccessInfo *TBAAInfo) {
1075   // We allow this with ObjC object pointers because of fragile ABIs.
1076   assert(E->getType()->isPointerType() ||
1077          E->getType()->isObjCObjectPointerType());
1078   E = E->IgnoreParens();
1079 
1080   // Casts:
1081   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1082     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1083       CGM.EmitExplicitCastExprType(ECE, this);
1084 
1085     switch (CE->getCastKind()) {
1086     // Non-converting casts (but not C's implicit conversion from void*).
1087     case CK_BitCast:
1088     case CK_NoOp:
1089     case CK_AddressSpaceConversion:
1090       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1091         if (PtrTy->getPointeeType()->isVoidType())
1092           break;
1093 
1094         LValueBaseInfo InnerBaseInfo;
1095         TBAAAccessInfo InnerTBAAInfo;
1096         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1097                                                 &InnerBaseInfo,
1098                                                 &InnerTBAAInfo);
1099         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1100         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1101 
1102         if (isa<ExplicitCastExpr>(CE)) {
1103           LValueBaseInfo TargetTypeBaseInfo;
1104           TBAAAccessInfo TargetTypeTBAAInfo;
1105           CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1106               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1107           if (TBAAInfo)
1108             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1109                                                  TargetTypeTBAAInfo);
1110           // If the source l-value is opaque, honor the alignment of the
1111           // casted-to type.
1112           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1113             if (BaseInfo)
1114               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1115             Addr = Address(Addr.getPointer(), Addr.getElementType(), Align);
1116           }
1117         }
1118 
1119         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1120             CE->getCastKind() == CK_BitCast) {
1121           if (auto PT = E->getType()->getAs<PointerType>())
1122             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr,
1123                                       /*MayBeNull=*/true,
1124                                       CodeGenFunction::CFITCK_UnrelatedCast,
1125                                       CE->getBeginLoc());
1126         }
1127 
1128         llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType());
1129         Addr = Builder.CreateElementBitCast(Addr, ElemTy);
1130         if (CE->getCastKind() == CK_AddressSpaceConversion)
1131           Addr = Builder.CreateAddrSpaceCast(Addr, ConvertType(E->getType()));
1132         return Addr;
1133       }
1134       break;
1135 
1136     // Array-to-pointer decay.
1137     case CK_ArrayToPointerDecay:
1138       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1139 
1140     // Derived-to-base conversions.
1141     case CK_UncheckedDerivedToBase:
1142     case CK_DerivedToBase: {
1143       // TODO: Support accesses to members of base classes in TBAA. For now, we
1144       // conservatively pretend that the complete object is of the base class
1145       // type.
1146       if (TBAAInfo)
1147         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1148       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1149       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1150       return GetAddressOfBaseClass(Addr, Derived,
1151                                    CE->path_begin(), CE->path_end(),
1152                                    ShouldNullCheckClassCastValue(CE),
1153                                    CE->getExprLoc());
1154     }
1155 
1156     // TODO: Is there any reason to treat base-to-derived conversions
1157     // specially?
1158     default:
1159       break;
1160     }
1161   }
1162 
1163   // Unary &.
1164   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1165     if (UO->getOpcode() == UO_AddrOf) {
1166       LValue LV = EmitLValue(UO->getSubExpr());
1167       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1168       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1169       return LV.getAddress(*this);
1170     }
1171   }
1172 
1173   // TODO: conditional operators, comma.
1174 
1175   // Otherwise, use the alignment of the type.
1176   CharUnits Align =
1177       CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1178   llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType());
1179   return Address(EmitScalarExpr(E), ElemTy, Align);
1180 }
1181 
1182 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1183   llvm::Value *V = RV.getScalarVal();
1184   if (auto MPT = T->getAs<MemberPointerType>())
1185     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1186   return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1187 }
1188 
1189 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1190   if (Ty->isVoidType())
1191     return RValue::get(nullptr);
1192 
1193   switch (getEvaluationKind(Ty)) {
1194   case TEK_Complex: {
1195     llvm::Type *EltTy =
1196       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1197     llvm::Value *U = llvm::UndefValue::get(EltTy);
1198     return RValue::getComplex(std::make_pair(U, U));
1199   }
1200 
1201   // If this is a use of an undefined aggregate type, the aggregate must have an
1202   // identifiable address.  Just because the contents of the value are undefined
1203   // doesn't mean that the address can't be taken and compared.
1204   case TEK_Aggregate: {
1205     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1206     return RValue::getAggregate(DestPtr);
1207   }
1208 
1209   case TEK_Scalar:
1210     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1211   }
1212   llvm_unreachable("bad evaluation kind");
1213 }
1214 
1215 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1216                                               const char *Name) {
1217   ErrorUnsupported(E, Name);
1218   return GetUndefRValue(E->getType());
1219 }
1220 
1221 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1222                                               const char *Name) {
1223   ErrorUnsupported(E, Name);
1224   llvm::Type *ElTy = ConvertType(E->getType());
1225   llvm::Type *Ty = llvm::PointerType::getUnqual(ElTy);
1226   return MakeAddrLValue(
1227       Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType());
1228 }
1229 
1230 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1231   const Expr *Base = Obj;
1232   while (!isa<CXXThisExpr>(Base)) {
1233     // The result of a dynamic_cast can be null.
1234     if (isa<CXXDynamicCastExpr>(Base))
1235       return false;
1236 
1237     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1238       Base = CE->getSubExpr();
1239     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1240       Base = PE->getSubExpr();
1241     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1242       if (UO->getOpcode() == UO_Extension)
1243         Base = UO->getSubExpr();
1244       else
1245         return false;
1246     } else {
1247       return false;
1248     }
1249   }
1250   return true;
1251 }
1252 
1253 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1254   LValue LV;
1255   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1256     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1257   else
1258     LV = EmitLValue(E);
1259   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1260     SanitizerSet SkippedChecks;
1261     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1262       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1263       if (IsBaseCXXThis)
1264         SkippedChecks.set(SanitizerKind::Alignment, true);
1265       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1266         SkippedChecks.set(SanitizerKind::Null, true);
1267     }
1268     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1269                   LV.getAlignment(), SkippedChecks);
1270   }
1271   return LV;
1272 }
1273 
1274 /// EmitLValue - Emit code to compute a designator that specifies the location
1275 /// of the expression.
1276 ///
1277 /// This can return one of two things: a simple address or a bitfield reference.
1278 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1279 /// an LLVM pointer type.
1280 ///
1281 /// If this returns a bitfield reference, nothing about the pointee type of the
1282 /// LLVM value is known: For example, it may not be a pointer to an integer.
1283 ///
1284 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1285 /// this method guarantees that the returned pointer type will point to an LLVM
1286 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1287 /// length type, this is not possible.
1288 ///
1289 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1290   ApplyDebugLocation DL(*this, E);
1291   switch (E->getStmtClass()) {
1292   default: return EmitUnsupportedLValue(E, "l-value expression");
1293 
1294   case Expr::ObjCPropertyRefExprClass:
1295     llvm_unreachable("cannot emit a property reference directly");
1296 
1297   case Expr::ObjCSelectorExprClass:
1298     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1299   case Expr::ObjCIsaExprClass:
1300     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1301   case Expr::BinaryOperatorClass:
1302     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1303   case Expr::CompoundAssignOperatorClass: {
1304     QualType Ty = E->getType();
1305     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1306       Ty = AT->getValueType();
1307     if (!Ty->isAnyComplexType())
1308       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1309     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1310   }
1311   case Expr::CallExprClass:
1312   case Expr::CXXMemberCallExprClass:
1313   case Expr::CXXOperatorCallExprClass:
1314   case Expr::UserDefinedLiteralClass:
1315     return EmitCallExprLValue(cast<CallExpr>(E));
1316   case Expr::CXXRewrittenBinaryOperatorClass:
1317     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1318   case Expr::VAArgExprClass:
1319     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1320   case Expr::DeclRefExprClass:
1321     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1322   case Expr::ConstantExprClass: {
1323     const ConstantExpr *CE = cast<ConstantExpr>(E);
1324     if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1325       QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1326                              ->getCallReturnType(getContext())
1327                              ->getPointeeType();
1328       return MakeNaturalAlignAddrLValue(Result, RetType);
1329     }
1330     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1331   }
1332   case Expr::ParenExprClass:
1333     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1334   case Expr::GenericSelectionExprClass:
1335     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1336   case Expr::PredefinedExprClass:
1337     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1338   case Expr::StringLiteralClass:
1339     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1340   case Expr::ObjCEncodeExprClass:
1341     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1342   case Expr::PseudoObjectExprClass:
1343     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1344   case Expr::InitListExprClass:
1345     return EmitInitListLValue(cast<InitListExpr>(E));
1346   case Expr::CXXTemporaryObjectExprClass:
1347   case Expr::CXXConstructExprClass:
1348     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1349   case Expr::CXXBindTemporaryExprClass:
1350     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1351   case Expr::CXXUuidofExprClass:
1352     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1353   case Expr::LambdaExprClass:
1354     return EmitAggExprToLValue(E);
1355 
1356   case Expr::ExprWithCleanupsClass: {
1357     const auto *cleanups = cast<ExprWithCleanups>(E);
1358     RunCleanupsScope Scope(*this);
1359     LValue LV = EmitLValue(cleanups->getSubExpr());
1360     if (LV.isSimple()) {
1361       // Defend against branches out of gnu statement expressions surrounded by
1362       // cleanups.
1363       Address Addr = LV.getAddress(*this);
1364       llvm::Value *V = Addr.getPointer();
1365       Scope.ForceCleanup({&V});
1366       return LValue::MakeAddr(Addr.withPointer(V), LV.getType(), getContext(),
1367                               LV.getBaseInfo(), LV.getTBAAInfo());
1368     }
1369     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1370     // bitfield lvalue or some other non-simple lvalue?
1371     return LV;
1372   }
1373 
1374   case Expr::CXXDefaultArgExprClass: {
1375     auto *DAE = cast<CXXDefaultArgExpr>(E);
1376     CXXDefaultArgExprScope Scope(*this, DAE);
1377     return EmitLValue(DAE->getExpr());
1378   }
1379   case Expr::CXXDefaultInitExprClass: {
1380     auto *DIE = cast<CXXDefaultInitExpr>(E);
1381     CXXDefaultInitExprScope Scope(*this, DIE);
1382     return EmitLValue(DIE->getExpr());
1383   }
1384   case Expr::CXXTypeidExprClass:
1385     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1386 
1387   case Expr::ObjCMessageExprClass:
1388     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1389   case Expr::ObjCIvarRefExprClass:
1390     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1391   case Expr::StmtExprClass:
1392     return EmitStmtExprLValue(cast<StmtExpr>(E));
1393   case Expr::UnaryOperatorClass:
1394     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1395   case Expr::ArraySubscriptExprClass:
1396     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1397   case Expr::MatrixSubscriptExprClass:
1398     return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1399   case Expr::OMPArraySectionExprClass:
1400     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1401   case Expr::ExtVectorElementExprClass:
1402     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1403   case Expr::MemberExprClass:
1404     return EmitMemberExpr(cast<MemberExpr>(E));
1405   case Expr::CompoundLiteralExprClass:
1406     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1407   case Expr::ConditionalOperatorClass:
1408     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1409   case Expr::BinaryConditionalOperatorClass:
1410     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1411   case Expr::ChooseExprClass:
1412     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1413   case Expr::OpaqueValueExprClass:
1414     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1415   case Expr::SubstNonTypeTemplateParmExprClass:
1416     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1417   case Expr::ImplicitCastExprClass:
1418   case Expr::CStyleCastExprClass:
1419   case Expr::CXXFunctionalCastExprClass:
1420   case Expr::CXXStaticCastExprClass:
1421   case Expr::CXXDynamicCastExprClass:
1422   case Expr::CXXReinterpretCastExprClass:
1423   case Expr::CXXConstCastExprClass:
1424   case Expr::CXXAddrspaceCastExprClass:
1425   case Expr::ObjCBridgedCastExprClass:
1426     return EmitCastLValue(cast<CastExpr>(E));
1427 
1428   case Expr::MaterializeTemporaryExprClass:
1429     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1430 
1431   case Expr::CoawaitExprClass:
1432     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1433   case Expr::CoyieldExprClass:
1434     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1435   }
1436 }
1437 
1438 /// Given an object of the given canonical type, can we safely copy a
1439 /// value out of it based on its initializer?
1440 static bool isConstantEmittableObjectType(QualType type) {
1441   assert(type.isCanonical());
1442   assert(!type->isReferenceType());
1443 
1444   // Must be const-qualified but non-volatile.
1445   Qualifiers qs = type.getLocalQualifiers();
1446   if (!qs.hasConst() || qs.hasVolatile()) return false;
1447 
1448   // Otherwise, all object types satisfy this except C++ classes with
1449   // mutable subobjects or non-trivial copy/destroy behavior.
1450   if (const auto *RT = dyn_cast<RecordType>(type))
1451     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1452       if (RD->hasMutableFields() || !RD->isTrivial())
1453         return false;
1454 
1455   return true;
1456 }
1457 
1458 /// Can we constant-emit a load of a reference to a variable of the
1459 /// given type?  This is different from predicates like
1460 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1461 /// in situations that don't necessarily satisfy the language's rules
1462 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1463 /// to do this with const float variables even if those variables
1464 /// aren't marked 'constexpr'.
1465 enum ConstantEmissionKind {
1466   CEK_None,
1467   CEK_AsReferenceOnly,
1468   CEK_AsValueOrReference,
1469   CEK_AsValueOnly
1470 };
1471 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1472   type = type.getCanonicalType();
1473   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1474     if (isConstantEmittableObjectType(ref->getPointeeType()))
1475       return CEK_AsValueOrReference;
1476     return CEK_AsReferenceOnly;
1477   }
1478   if (isConstantEmittableObjectType(type))
1479     return CEK_AsValueOnly;
1480   return CEK_None;
1481 }
1482 
1483 /// Try to emit a reference to the given value without producing it as
1484 /// an l-value.  This is just an optimization, but it avoids us needing
1485 /// to emit global copies of variables if they're named without triggering
1486 /// a formal use in a context where we can't emit a direct reference to them,
1487 /// for instance if a block or lambda or a member of a local class uses a
1488 /// const int variable or constexpr variable from an enclosing function.
1489 CodeGenFunction::ConstantEmission
1490 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1491   ValueDecl *value = refExpr->getDecl();
1492 
1493   // The value needs to be an enum constant or a constant variable.
1494   ConstantEmissionKind CEK;
1495   if (isa<ParmVarDecl>(value)) {
1496     CEK = CEK_None;
1497   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1498     CEK = checkVarTypeForConstantEmission(var->getType());
1499   } else if (isa<EnumConstantDecl>(value)) {
1500     CEK = CEK_AsValueOnly;
1501   } else {
1502     CEK = CEK_None;
1503   }
1504   if (CEK == CEK_None) return ConstantEmission();
1505 
1506   Expr::EvalResult result;
1507   bool resultIsReference;
1508   QualType resultType;
1509 
1510   // It's best to evaluate all the way as an r-value if that's permitted.
1511   if (CEK != CEK_AsReferenceOnly &&
1512       refExpr->EvaluateAsRValue(result, getContext())) {
1513     resultIsReference = false;
1514     resultType = refExpr->getType();
1515 
1516   // Otherwise, try to evaluate as an l-value.
1517   } else if (CEK != CEK_AsValueOnly &&
1518              refExpr->EvaluateAsLValue(result, getContext())) {
1519     resultIsReference = true;
1520     resultType = value->getType();
1521 
1522   // Failure.
1523   } else {
1524     return ConstantEmission();
1525   }
1526 
1527   // In any case, if the initializer has side-effects, abandon ship.
1528   if (result.HasSideEffects)
1529     return ConstantEmission();
1530 
1531   // In CUDA/HIP device compilation, a lambda may capture a reference variable
1532   // referencing a global host variable by copy. In this case the lambda should
1533   // make a copy of the value of the global host variable. The DRE of the
1534   // captured reference variable cannot be emitted as load from the host
1535   // global variable as compile time constant, since the host variable is not
1536   // accessible on device. The DRE of the captured reference variable has to be
1537   // loaded from captures.
1538   if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1539       refExpr->refersToEnclosingVariableOrCapture()) {
1540     auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1541     if (MD && MD->getParent()->isLambda() &&
1542         MD->getOverloadedOperator() == OO_Call) {
1543       const APValue::LValueBase &base = result.Val.getLValueBase();
1544       if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1545         if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1546           if (!VD->hasAttr<CUDADeviceAttr>()) {
1547             return ConstantEmission();
1548           }
1549         }
1550       }
1551     }
1552   }
1553 
1554   // Emit as a constant.
1555   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1556                                                result.Val, resultType);
1557 
1558   // Make sure we emit a debug reference to the global variable.
1559   // This should probably fire even for
1560   if (isa<VarDecl>(value)) {
1561     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1562       EmitDeclRefExprDbgValue(refExpr, result.Val);
1563   } else {
1564     assert(isa<EnumConstantDecl>(value));
1565     EmitDeclRefExprDbgValue(refExpr, result.Val);
1566   }
1567 
1568   // If we emitted a reference constant, we need to dereference that.
1569   if (resultIsReference)
1570     return ConstantEmission::forReference(C);
1571 
1572   return ConstantEmission::forValue(C);
1573 }
1574 
1575 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1576                                                         const MemberExpr *ME) {
1577   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1578     // Try to emit static variable member expressions as DREs.
1579     return DeclRefExpr::Create(
1580         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1581         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1582         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1583   }
1584   return nullptr;
1585 }
1586 
1587 CodeGenFunction::ConstantEmission
1588 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1589   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1590     return tryEmitAsConstant(DRE);
1591   return ConstantEmission();
1592 }
1593 
1594 llvm::Value *CodeGenFunction::emitScalarConstant(
1595     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1596   assert(Constant && "not a constant");
1597   if (Constant.isReference())
1598     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1599                             E->getExprLoc())
1600         .getScalarVal();
1601   return Constant.getValue();
1602 }
1603 
1604 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1605                                                SourceLocation Loc) {
1606   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1607                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1608                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1609 }
1610 
1611 static bool hasBooleanRepresentation(QualType Ty) {
1612   if (Ty->isBooleanType())
1613     return true;
1614 
1615   if (const EnumType *ET = Ty->getAs<EnumType>())
1616     return ET->getDecl()->getIntegerType()->isBooleanType();
1617 
1618   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1619     return hasBooleanRepresentation(AT->getValueType());
1620 
1621   return false;
1622 }
1623 
1624 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1625                             llvm::APInt &Min, llvm::APInt &End,
1626                             bool StrictEnums, bool IsBool) {
1627   const EnumType *ET = Ty->getAs<EnumType>();
1628   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1629                                 ET && !ET->getDecl()->isFixed();
1630   if (!IsBool && !IsRegularCPlusPlusEnum)
1631     return false;
1632 
1633   if (IsBool) {
1634     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1635     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1636   } else {
1637     const EnumDecl *ED = ET->getDecl();
1638     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1639     unsigned Bitwidth = LTy->getScalarSizeInBits();
1640     unsigned NumNegativeBits = ED->getNumNegativeBits();
1641     unsigned NumPositiveBits = ED->getNumPositiveBits();
1642 
1643     if (NumNegativeBits) {
1644       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1645       assert(NumBits <= Bitwidth);
1646       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1647       Min = -End;
1648     } else {
1649       assert(NumPositiveBits <= Bitwidth);
1650       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1651       Min = llvm::APInt::getZero(Bitwidth);
1652     }
1653   }
1654   return true;
1655 }
1656 
1657 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1658   llvm::APInt Min, End;
1659   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1660                        hasBooleanRepresentation(Ty)))
1661     return nullptr;
1662 
1663   llvm::MDBuilder MDHelper(getLLVMContext());
1664   return MDHelper.createRange(Min, End);
1665 }
1666 
1667 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1668                                            SourceLocation Loc) {
1669   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1670   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1671   if (!HasBoolCheck && !HasEnumCheck)
1672     return false;
1673 
1674   bool IsBool = hasBooleanRepresentation(Ty) ||
1675                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1676   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1677   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1678   if (!NeedsBoolCheck && !NeedsEnumCheck)
1679     return false;
1680 
1681   // Single-bit booleans don't need to be checked. Special-case this to avoid
1682   // a bit width mismatch when handling bitfield values. This is handled by
1683   // EmitFromMemory for the non-bitfield case.
1684   if (IsBool &&
1685       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1686     return false;
1687 
1688   llvm::APInt Min, End;
1689   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1690     return true;
1691 
1692   auto &Ctx = getLLVMContext();
1693   SanitizerScope SanScope(this);
1694   llvm::Value *Check;
1695   --End;
1696   if (!Min) {
1697     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1698   } else {
1699     llvm::Value *Upper =
1700         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1701     llvm::Value *Lower =
1702         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1703     Check = Builder.CreateAnd(Upper, Lower);
1704   }
1705   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1706                                   EmitCheckTypeDescriptor(Ty)};
1707   SanitizerMask Kind =
1708       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1709   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1710             StaticArgs, EmitCheckValue(Value));
1711   return true;
1712 }
1713 
1714 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1715                                                QualType Ty,
1716                                                SourceLocation Loc,
1717                                                LValueBaseInfo BaseInfo,
1718                                                TBAAAccessInfo TBAAInfo,
1719                                                bool isNontemporal) {
1720   if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
1721     // Boolean vectors use `iN` as storage type.
1722     if (ClangVecTy->isExtVectorBoolType()) {
1723       llvm::Type *ValTy = ConvertType(Ty);
1724       unsigned ValNumElems =
1725           cast<llvm::FixedVectorType>(ValTy)->getNumElements();
1726       // Load the `iP` storage object (P is the padded vector size).
1727       auto *RawIntV = Builder.CreateLoad(Addr, Volatile, "load_bits");
1728       const auto *RawIntTy = RawIntV->getType();
1729       assert(RawIntTy->isIntegerTy() && "compressed iN storage for bitvectors");
1730       // Bitcast iP --> <P x i1>.
1731       auto *PaddedVecTy = llvm::FixedVectorType::get(
1732           Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
1733       llvm::Value *V = Builder.CreateBitCast(RawIntV, PaddedVecTy);
1734       // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1735       V = emitBoolVecConversion(V, ValNumElems, "extractvec");
1736 
1737       return EmitFromMemory(V, Ty);
1738     }
1739 
1740     // Handle vectors of size 3 like size 4 for better performance.
1741     const llvm::Type *EltTy = Addr.getElementType();
1742     const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1743 
1744     if (!CGM.getCodeGenOpts().PreserveVec3Type && VTy->getNumElements() == 3) {
1745 
1746       // Bitcast to vec4 type.
1747       llvm::VectorType *vec4Ty =
1748           llvm::FixedVectorType::get(VTy->getElementType(), 4);
1749       Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1750       // Now load value.
1751       llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1752 
1753       // Shuffle vector to get vec3.
1754       V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, "extractVec");
1755       return EmitFromMemory(V, Ty);
1756     }
1757   }
1758 
1759   // Atomic operations have to be done on integral types.
1760   LValue AtomicLValue =
1761       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1762   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1763     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1764   }
1765 
1766   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1767   if (isNontemporal) {
1768     llvm::MDNode *Node = llvm::MDNode::get(
1769         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1770     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1771   }
1772 
1773   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1774 
1775   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1776     // In order to prevent the optimizer from throwing away the check, don't
1777     // attach range metadata to the load.
1778   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1779     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1780       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1781 
1782   return EmitFromMemory(Load, Ty);
1783 }
1784 
1785 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1786   // Bool has a different representation in memory than in registers.
1787   if (hasBooleanRepresentation(Ty)) {
1788     // This should really always be an i1, but sometimes it's already
1789     // an i8, and it's awkward to track those cases down.
1790     if (Value->getType()->isIntegerTy(1))
1791       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1792     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1793            "wrong value rep of bool");
1794   }
1795 
1796   return Value;
1797 }
1798 
1799 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1800   // Bool has a different representation in memory than in registers.
1801   if (hasBooleanRepresentation(Ty)) {
1802     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1803            "wrong value rep of bool");
1804     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1805   }
1806   if (Ty->isExtVectorBoolType()) {
1807     const auto *RawIntTy = Value->getType();
1808     // Bitcast iP --> <P x i1>.
1809     auto *PaddedVecTy = llvm::FixedVectorType::get(
1810         Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
1811     auto *V = Builder.CreateBitCast(Value, PaddedVecTy);
1812     // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1813     llvm::Type *ValTy = ConvertType(Ty);
1814     unsigned ValNumElems = cast<llvm::FixedVectorType>(ValTy)->getNumElements();
1815     return emitBoolVecConversion(V, ValNumElems, "extractvec");
1816   }
1817 
1818   return Value;
1819 }
1820 
1821 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1822 // MatrixType), if it points to a array (the memory type of MatrixType).
1823 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1824                                          bool IsVector = true) {
1825   auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType());
1826   if (ArrayTy && IsVector) {
1827     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1828                                                 ArrayTy->getNumElements());
1829 
1830     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1831   }
1832   auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType());
1833   if (VectorTy && !IsVector) {
1834     auto *ArrayTy = llvm::ArrayType::get(
1835         VectorTy->getElementType(),
1836         cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1837 
1838     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1839   }
1840 
1841   return Addr;
1842 }
1843 
1844 // Emit a store of a matrix LValue. This may require casting the original
1845 // pointer to memory address (ArrayType) to a pointer to the value type
1846 // (VectorType).
1847 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1848                                     bool isInit, CodeGenFunction &CGF) {
1849   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1850                                            value->getType()->isVectorTy());
1851   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1852                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1853                         lvalue.isNontemporal());
1854 }
1855 
1856 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1857                                         bool Volatile, QualType Ty,
1858                                         LValueBaseInfo BaseInfo,
1859                                         TBAAAccessInfo TBAAInfo,
1860                                         bool isInit, bool isNontemporal) {
1861   llvm::Type *SrcTy = Value->getType();
1862   if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
1863     auto *VecTy = dyn_cast<llvm::FixedVectorType>(SrcTy);
1864     if (VecTy && ClangVecTy->isExtVectorBoolType()) {
1865       auto *MemIntTy = cast<llvm::IntegerType>(Addr.getElementType());
1866       // Expand to the memory bit width.
1867       unsigned MemNumElems = MemIntTy->getPrimitiveSizeInBits();
1868       // <N x i1> --> <P x i1>.
1869       Value = emitBoolVecConversion(Value, MemNumElems, "insertvec");
1870       // <P x i1> --> iP.
1871       Value = Builder.CreateBitCast(Value, MemIntTy);
1872     } else if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1873       // Handle vec3 special.
1874       if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1875         // Our source is a vec3, do a shuffle vector to make it a vec4.
1876         Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
1877                                             "extractVec");
1878         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1879       }
1880       if (Addr.getElementType() != SrcTy) {
1881         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1882       }
1883     }
1884   }
1885 
1886   Value = EmitToMemory(Value, Ty);
1887 
1888   LValue AtomicLValue =
1889       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1890   if (Ty->isAtomicType() ||
1891       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1892     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1893     return;
1894   }
1895 
1896   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1897   if (isNontemporal) {
1898     llvm::MDNode *Node =
1899         llvm::MDNode::get(Store->getContext(),
1900                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1901     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1902   }
1903 
1904   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1905 }
1906 
1907 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1908                                         bool isInit) {
1909   if (lvalue.getType()->isConstantMatrixType()) {
1910     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1911     return;
1912   }
1913 
1914   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1915                     lvalue.getType(), lvalue.getBaseInfo(),
1916                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1917 }
1918 
1919 // Emit a load of a LValue of matrix type. This may require casting the pointer
1920 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1921 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1922                                      CodeGenFunction &CGF) {
1923   assert(LV.getType()->isConstantMatrixType());
1924   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1925   LV.setAddress(Addr);
1926   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1927 }
1928 
1929 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1930 /// method emits the address of the lvalue, then loads the result as an rvalue,
1931 /// returning the rvalue.
1932 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1933   if (LV.isObjCWeak()) {
1934     // load of a __weak object.
1935     Address AddrWeakObj = LV.getAddress(*this);
1936     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1937                                                              AddrWeakObj));
1938   }
1939   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1940     // In MRC mode, we do a load+autorelease.
1941     if (!getLangOpts().ObjCAutoRefCount) {
1942       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1943     }
1944 
1945     // In ARC mode, we load retained and then consume the value.
1946     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1947     Object = EmitObjCConsumeObject(LV.getType(), Object);
1948     return RValue::get(Object);
1949   }
1950 
1951   if (LV.isSimple()) {
1952     assert(!LV.getType()->isFunctionType());
1953 
1954     if (LV.getType()->isConstantMatrixType())
1955       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1956 
1957     // Everything needs a load.
1958     return RValue::get(EmitLoadOfScalar(LV, Loc));
1959   }
1960 
1961   if (LV.isVectorElt()) {
1962     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1963                                               LV.isVolatileQualified());
1964     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1965                                                     "vecext"));
1966   }
1967 
1968   // If this is a reference to a subset of the elements of a vector, either
1969   // shuffle the input or extract/insert them as appropriate.
1970   if (LV.isExtVectorElt()) {
1971     return EmitLoadOfExtVectorElementLValue(LV);
1972   }
1973 
1974   // Global Register variables always invoke intrinsics
1975   if (LV.isGlobalReg())
1976     return EmitLoadOfGlobalRegLValue(LV);
1977 
1978   if (LV.isMatrixElt()) {
1979     llvm::Value *Idx = LV.getMatrixIdx();
1980     if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
1981       const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>();
1982       llvm::MatrixBuilder MB(Builder);
1983       MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
1984     }
1985     llvm::LoadInst *Load =
1986         Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
1987     return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext"));
1988   }
1989 
1990   assert(LV.isBitField() && "Unknown LValue type!");
1991   return EmitLoadOfBitfieldLValue(LV, Loc);
1992 }
1993 
1994 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1995                                                  SourceLocation Loc) {
1996   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1997 
1998   // Get the output type.
1999   llvm::Type *ResLTy = ConvertType(LV.getType());
2000 
2001   Address Ptr = LV.getBitFieldAddress();
2002   llvm::Value *Val =
2003       Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
2004 
2005   bool UseVolatile = LV.isVolatileQualified() &&
2006                      Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2007   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2008   const unsigned StorageSize =
2009       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2010   if (Info.IsSigned) {
2011     assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
2012     unsigned HighBits = StorageSize - Offset - Info.Size;
2013     if (HighBits)
2014       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
2015     if (Offset + HighBits)
2016       Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
2017   } else {
2018     if (Offset)
2019       Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
2020     if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
2021       Val = Builder.CreateAnd(
2022           Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
2023   }
2024   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
2025   EmitScalarRangeCheck(Val, LV.getType(), Loc);
2026   return RValue::get(Val);
2027 }
2028 
2029 // If this is a reference to a subset of the elements of a vector, create an
2030 // appropriate shufflevector.
2031 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
2032   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
2033                                         LV.isVolatileQualified());
2034 
2035   const llvm::Constant *Elts = LV.getExtVectorElts();
2036 
2037   // If the result of the expression is a non-vector type, we must be extracting
2038   // a single element.  Just codegen as an extractelement.
2039   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2040   if (!ExprVT) {
2041     unsigned InIdx = getAccessedFieldNo(0, Elts);
2042     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2043     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
2044   }
2045 
2046   // Always use shuffle vector to try to retain the original program structure
2047   unsigned NumResultElts = ExprVT->getNumElements();
2048 
2049   SmallVector<int, 4> Mask;
2050   for (unsigned i = 0; i != NumResultElts; ++i)
2051     Mask.push_back(getAccessedFieldNo(i, Elts));
2052 
2053   Vec = Builder.CreateShuffleVector(Vec, Mask);
2054   return RValue::get(Vec);
2055 }
2056 
2057 /// Generates lvalue for partial ext_vector access.
2058 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2059   Address VectorAddress = LV.getExtVectorAddress();
2060   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2061   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2062 
2063   Address CastToPointerElement =
2064     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
2065                                  "conv.ptr.element");
2066 
2067   const llvm::Constant *Elts = LV.getExtVectorElts();
2068   unsigned ix = getAccessedFieldNo(0, Elts);
2069 
2070   Address VectorBasePtrPlusIx =
2071     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2072                                    "vector.elt");
2073 
2074   return VectorBasePtrPlusIx;
2075 }
2076 
2077 /// Load of global gamed gegisters are always calls to intrinsics.
2078 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2079   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2080          "Bad type for register variable");
2081   llvm::MDNode *RegName = cast<llvm::MDNode>(
2082       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2083 
2084   // We accept integer and pointer types only
2085   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2086   llvm::Type *Ty = OrigTy;
2087   if (OrigTy->isPointerTy())
2088     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2089   llvm::Type *Types[] = { Ty };
2090 
2091   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2092   llvm::Value *Call = Builder.CreateCall(
2093       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2094   if (OrigTy->isPointerTy())
2095     Call = Builder.CreateIntToPtr(Call, OrigTy);
2096   return RValue::get(Call);
2097 }
2098 
2099 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2100 /// lvalue, where both are guaranteed to the have the same type, and that type
2101 /// is 'Ty'.
2102 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2103                                              bool isInit) {
2104   if (!Dst.isSimple()) {
2105     if (Dst.isVectorElt()) {
2106       // Read/modify/write the vector, inserting the new element.
2107       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2108                                             Dst.isVolatileQualified());
2109       auto *IRStoreTy = dyn_cast<llvm::IntegerType>(Vec->getType());
2110       if (IRStoreTy) {
2111         auto *IRVecTy = llvm::FixedVectorType::get(
2112             Builder.getInt1Ty(), IRStoreTy->getPrimitiveSizeInBits());
2113         Vec = Builder.CreateBitCast(Vec, IRVecTy);
2114         // iN --> <N x i1>.
2115       }
2116       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2117                                         Dst.getVectorIdx(), "vecins");
2118       if (IRStoreTy) {
2119         // <N x i1> --> <iN>.
2120         Vec = Builder.CreateBitCast(Vec, IRStoreTy);
2121       }
2122       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2123                           Dst.isVolatileQualified());
2124       return;
2125     }
2126 
2127     // If this is an update of extended vector elements, insert them as
2128     // appropriate.
2129     if (Dst.isExtVectorElt())
2130       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2131 
2132     if (Dst.isGlobalReg())
2133       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2134 
2135     if (Dst.isMatrixElt()) {
2136       llvm::Value *Idx = Dst.getMatrixIdx();
2137       if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2138         const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>();
2139         llvm::MatrixBuilder MB(Builder);
2140         MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2141       }
2142       llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress());
2143       llvm::Value *Vec =
2144           Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins");
2145       Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2146                           Dst.isVolatileQualified());
2147       return;
2148     }
2149 
2150     assert(Dst.isBitField() && "Unknown LValue type");
2151     return EmitStoreThroughBitfieldLValue(Src, Dst);
2152   }
2153 
2154   // There's special magic for assigning into an ARC-qualified l-value.
2155   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2156     switch (Lifetime) {
2157     case Qualifiers::OCL_None:
2158       llvm_unreachable("present but none");
2159 
2160     case Qualifiers::OCL_ExplicitNone:
2161       // nothing special
2162       break;
2163 
2164     case Qualifiers::OCL_Strong:
2165       if (isInit) {
2166         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2167         break;
2168       }
2169       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2170       return;
2171 
2172     case Qualifiers::OCL_Weak:
2173       if (isInit)
2174         // Initialize and then skip the primitive store.
2175         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2176       else
2177         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2178                          /*ignore*/ true);
2179       return;
2180 
2181     case Qualifiers::OCL_Autoreleasing:
2182       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2183                                                      Src.getScalarVal()));
2184       // fall into the normal path
2185       break;
2186     }
2187   }
2188 
2189   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2190     // load of a __weak object.
2191     Address LvalueDst = Dst.getAddress(*this);
2192     llvm::Value *src = Src.getScalarVal();
2193      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2194     return;
2195   }
2196 
2197   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2198     // load of a __strong object.
2199     Address LvalueDst = Dst.getAddress(*this);
2200     llvm::Value *src = Src.getScalarVal();
2201     if (Dst.isObjCIvar()) {
2202       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2203       llvm::Type *ResultType = IntPtrTy;
2204       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2205       llvm::Value *RHS = dst.getPointer();
2206       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2207       llvm::Value *LHS =
2208         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2209                                "sub.ptr.lhs.cast");
2210       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2211       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2212                                               BytesBetween);
2213     } else if (Dst.isGlobalObjCRef()) {
2214       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2215                                                 Dst.isThreadLocalRef());
2216     }
2217     else
2218       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2219     return;
2220   }
2221 
2222   assert(Src.isScalar() && "Can't emit an agg store with this method");
2223   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2224 }
2225 
2226 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2227                                                      llvm::Value **Result) {
2228   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2229   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2230   Address Ptr = Dst.getBitFieldAddress();
2231 
2232   // Get the source value, truncated to the width of the bit-field.
2233   llvm::Value *SrcVal = Src.getScalarVal();
2234 
2235   // Cast the source to the storage type and shift it into place.
2236   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2237                                  /*isSigned=*/false);
2238   llvm::Value *MaskedVal = SrcVal;
2239 
2240   const bool UseVolatile =
2241       CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2242       Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2243   const unsigned StorageSize =
2244       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2245   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2246   // See if there are other bits in the bitfield's storage we'll need to load
2247   // and mask together with source before storing.
2248   if (StorageSize != Info.Size) {
2249     assert(StorageSize > Info.Size && "Invalid bitfield size.");
2250     llvm::Value *Val =
2251         Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2252 
2253     // Mask the source value as needed.
2254     if (!hasBooleanRepresentation(Dst.getType()))
2255       SrcVal = Builder.CreateAnd(
2256           SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2257           "bf.value");
2258     MaskedVal = SrcVal;
2259     if (Offset)
2260       SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2261 
2262     // Mask out the original value.
2263     Val = Builder.CreateAnd(
2264         Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2265         "bf.clear");
2266 
2267     // Or together the unchanged values and the source value.
2268     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2269   } else {
2270     assert(Offset == 0);
2271     // According to the AACPS:
2272     // When a volatile bit-field is written, and its container does not overlap
2273     // with any non-bit-field member, its container must be read exactly once
2274     // and written exactly once using the access width appropriate to the type
2275     // of the container. The two accesses are not atomic.
2276     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2277         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2278       Builder.CreateLoad(Ptr, true, "bf.load");
2279   }
2280 
2281   // Write the new value back out.
2282   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2283 
2284   // Return the new value of the bit-field, if requested.
2285   if (Result) {
2286     llvm::Value *ResultVal = MaskedVal;
2287 
2288     // Sign extend the value if needed.
2289     if (Info.IsSigned) {
2290       assert(Info.Size <= StorageSize);
2291       unsigned HighBits = StorageSize - Info.Size;
2292       if (HighBits) {
2293         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2294         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2295       }
2296     }
2297 
2298     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2299                                       "bf.result.cast");
2300     *Result = EmitFromMemory(ResultVal, Dst.getType());
2301   }
2302 }
2303 
2304 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2305                                                                LValue Dst) {
2306   // This access turns into a read/modify/write of the vector.  Load the input
2307   // value now.
2308   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2309                                         Dst.isVolatileQualified());
2310   const llvm::Constant *Elts = Dst.getExtVectorElts();
2311 
2312   llvm::Value *SrcVal = Src.getScalarVal();
2313 
2314   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2315     unsigned NumSrcElts = VTy->getNumElements();
2316     unsigned NumDstElts =
2317         cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2318     if (NumDstElts == NumSrcElts) {
2319       // Use shuffle vector is the src and destination are the same number of
2320       // elements and restore the vector mask since it is on the side it will be
2321       // stored.
2322       SmallVector<int, 4> Mask(NumDstElts);
2323       for (unsigned i = 0; i != NumSrcElts; ++i)
2324         Mask[getAccessedFieldNo(i, Elts)] = i;
2325 
2326       Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2327     } else if (NumDstElts > NumSrcElts) {
2328       // Extended the source vector to the same length and then shuffle it
2329       // into the destination.
2330       // FIXME: since we're shuffling with undef, can we just use the indices
2331       //        into that?  This could be simpler.
2332       SmallVector<int, 4> ExtMask;
2333       for (unsigned i = 0; i != NumSrcElts; ++i)
2334         ExtMask.push_back(i);
2335       ExtMask.resize(NumDstElts, -1);
2336       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2337       // build identity
2338       SmallVector<int, 4> Mask;
2339       for (unsigned i = 0; i != NumDstElts; ++i)
2340         Mask.push_back(i);
2341 
2342       // When the vector size is odd and .odd or .hi is used, the last element
2343       // of the Elts constant array will be one past the size of the vector.
2344       // Ignore the last element here, if it is greater than the mask size.
2345       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2346         NumSrcElts--;
2347 
2348       // modify when what gets shuffled in
2349       for (unsigned i = 0; i != NumSrcElts; ++i)
2350         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2351       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2352     } else {
2353       // We should never shorten the vector
2354       llvm_unreachable("unexpected shorten vector length");
2355     }
2356   } else {
2357     // If the Src is a scalar (not a vector) it must be updating one element.
2358     unsigned InIdx = getAccessedFieldNo(0, Elts);
2359     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2360     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2361   }
2362 
2363   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2364                       Dst.isVolatileQualified());
2365 }
2366 
2367 /// Store of global named registers are always calls to intrinsics.
2368 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2369   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2370          "Bad type for register variable");
2371   llvm::MDNode *RegName = cast<llvm::MDNode>(
2372       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2373   assert(RegName && "Register LValue is not metadata");
2374 
2375   // We accept integer and pointer types only
2376   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2377   llvm::Type *Ty = OrigTy;
2378   if (OrigTy->isPointerTy())
2379     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2380   llvm::Type *Types[] = { Ty };
2381 
2382   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2383   llvm::Value *Value = Src.getScalarVal();
2384   if (OrigTy->isPointerTy())
2385     Value = Builder.CreatePtrToInt(Value, Ty);
2386   Builder.CreateCall(
2387       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2388 }
2389 
2390 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2391 // generating write-barries API. It is currently a global, ivar,
2392 // or neither.
2393 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2394                                  LValue &LV,
2395                                  bool IsMemberAccess=false) {
2396   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2397     return;
2398 
2399   if (isa<ObjCIvarRefExpr>(E)) {
2400     QualType ExpTy = E->getType();
2401     if (IsMemberAccess && ExpTy->isPointerType()) {
2402       // If ivar is a structure pointer, assigning to field of
2403       // this struct follows gcc's behavior and makes it a non-ivar
2404       // writer-barrier conservatively.
2405       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2406       if (ExpTy->isRecordType()) {
2407         LV.setObjCIvar(false);
2408         return;
2409       }
2410     }
2411     LV.setObjCIvar(true);
2412     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2413     LV.setBaseIvarExp(Exp->getBase());
2414     LV.setObjCArray(E->getType()->isArrayType());
2415     return;
2416   }
2417 
2418   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2419     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2420       if (VD->hasGlobalStorage()) {
2421         LV.setGlobalObjCRef(true);
2422         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2423       }
2424     }
2425     LV.setObjCArray(E->getType()->isArrayType());
2426     return;
2427   }
2428 
2429   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2430     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2431     return;
2432   }
2433 
2434   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2435     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2436     if (LV.isObjCIvar()) {
2437       // If cast is to a structure pointer, follow gcc's behavior and make it
2438       // a non-ivar write-barrier.
2439       QualType ExpTy = E->getType();
2440       if (ExpTy->isPointerType())
2441         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2442       if (ExpTy->isRecordType())
2443         LV.setObjCIvar(false);
2444     }
2445     return;
2446   }
2447 
2448   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2449     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2450     return;
2451   }
2452 
2453   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2454     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2455     return;
2456   }
2457 
2458   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2459     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2460     return;
2461   }
2462 
2463   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2464     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2465     return;
2466   }
2467 
2468   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2469     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2470     if (LV.isObjCIvar() && !LV.isObjCArray())
2471       // Using array syntax to assigning to what an ivar points to is not
2472       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2473       LV.setObjCIvar(false);
2474     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2475       // Using array syntax to assigning to what global points to is not
2476       // same as assigning to the global itself. {id *G;} G[i] = 0;
2477       LV.setGlobalObjCRef(false);
2478     return;
2479   }
2480 
2481   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2482     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2483     // We don't know if member is an 'ivar', but this flag is looked at
2484     // only in the context of LV.isObjCIvar().
2485     LV.setObjCArray(E->getType()->isArrayType());
2486     return;
2487   }
2488 }
2489 
2490 static llvm::Value *
2491 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2492                                 llvm::Value *V, llvm::Type *IRType,
2493                                 StringRef Name = StringRef()) {
2494   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2495   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2496 }
2497 
2498 static LValue EmitThreadPrivateVarDeclLValue(
2499     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2500     llvm::Type *RealVarTy, SourceLocation Loc) {
2501   if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2502     Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2503         CGF, VD, Addr, Loc);
2504   else
2505     Addr =
2506         CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2507 
2508   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2509   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2510 }
2511 
2512 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2513                                            const VarDecl *VD, QualType T) {
2514   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2515       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2516   // Return an invalid address if variable is MT_To and unified
2517   // memory is not enabled. For all other cases: MT_Link and
2518   // MT_To with unified memory, return a valid address.
2519   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2520                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2521     return Address::invalid();
2522   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2523           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2524            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2525          "Expected link clause OR to clause with unified memory enabled.");
2526   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2527   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2528   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2529 }
2530 
2531 Address
2532 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2533                                      LValueBaseInfo *PointeeBaseInfo,
2534                                      TBAAAccessInfo *PointeeTBAAInfo) {
2535   llvm::LoadInst *Load =
2536       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2537   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2538 
2539   QualType PointeeType = RefLVal.getType()->getPointeeType();
2540   CharUnits Align = CGM.getNaturalTypeAlignment(
2541       PointeeType, PointeeBaseInfo, PointeeTBAAInfo,
2542       /* forPointeeType= */ true);
2543   return Address(Load, ConvertTypeForMem(PointeeType), Align);
2544 }
2545 
2546 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2547   LValueBaseInfo PointeeBaseInfo;
2548   TBAAAccessInfo PointeeTBAAInfo;
2549   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2550                                             &PointeeTBAAInfo);
2551   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2552                         PointeeBaseInfo, PointeeTBAAInfo);
2553 }
2554 
2555 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2556                                            const PointerType *PtrTy,
2557                                            LValueBaseInfo *BaseInfo,
2558                                            TBAAAccessInfo *TBAAInfo) {
2559   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2560   return Address(Addr, ConvertTypeForMem(PtrTy->getPointeeType()),
2561                  CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), BaseInfo,
2562                                              TBAAInfo,
2563                                              /*forPointeeType=*/true));
2564 }
2565 
2566 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2567                                                 const PointerType *PtrTy) {
2568   LValueBaseInfo BaseInfo;
2569   TBAAAccessInfo TBAAInfo;
2570   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2571   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2572 }
2573 
2574 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2575                                       const Expr *E, const VarDecl *VD) {
2576   QualType T = E->getType();
2577 
2578   // If it's thread_local, emit a call to its wrapper function instead.
2579   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2580       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2581     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2582   // Check if the variable is marked as declare target with link clause in
2583   // device codegen.
2584   if (CGF.getLangOpts().OpenMPIsDevice) {
2585     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2586     if (Addr.isValid())
2587       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2588   }
2589 
2590   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2591   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2592   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2593   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2594   Address Addr(V, RealVarTy, Alignment);
2595   // Emit reference to the private copy of the variable if it is an OpenMP
2596   // threadprivate variable.
2597   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2598       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2599     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2600                                           E->getExprLoc());
2601   }
2602   LValue LV = VD->getType()->isReferenceType() ?
2603       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2604                                     AlignmentSource::Decl) :
2605       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2606   setObjCGCLValueClass(CGF.getContext(), E, LV);
2607   return LV;
2608 }
2609 
2610 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2611                                                GlobalDecl GD) {
2612   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2613   if (FD->hasAttr<WeakRefAttr>()) {
2614     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2615     return aliasee.getPointer();
2616   }
2617 
2618   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2619   if (!FD->hasPrototype()) {
2620     if (const FunctionProtoType *Proto =
2621             FD->getType()->getAs<FunctionProtoType>()) {
2622       // Ugly case: for a K&R-style definition, the type of the definition
2623       // isn't the same as the type of a use.  Correct for this with a
2624       // bitcast.
2625       QualType NoProtoType =
2626           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2627       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2628       V = llvm::ConstantExpr::getBitCast(V,
2629                                       CGM.getTypes().ConvertType(NoProtoType));
2630     }
2631   }
2632   return V;
2633 }
2634 
2635 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2636                                      GlobalDecl GD) {
2637   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2638   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2639   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2640   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2641                             AlignmentSource::Decl);
2642 }
2643 
2644 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2645                                       llvm::Value *ThisValue) {
2646   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2647   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2648   return CGF.EmitLValueForField(LV, FD);
2649 }
2650 
2651 /// Named Registers are named metadata pointing to the register name
2652 /// which will be read from/written to as an argument to the intrinsic
2653 /// @llvm.read/write_register.
2654 /// So far, only the name is being passed down, but other options such as
2655 /// register type, allocation type or even optimization options could be
2656 /// passed down via the metadata node.
2657 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2658   SmallString<64> Name("llvm.named.register.");
2659   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2660   assert(Asm->getLabel().size() < 64-Name.size() &&
2661       "Register name too big");
2662   Name.append(Asm->getLabel());
2663   llvm::NamedMDNode *M =
2664     CGM.getModule().getOrInsertNamedMetadata(Name);
2665   if (M->getNumOperands() == 0) {
2666     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2667                                               Asm->getLabel());
2668     llvm::Metadata *Ops[] = {Str};
2669     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2670   }
2671 
2672   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2673 
2674   llvm::Value *Ptr =
2675     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2676   return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType());
2677 }
2678 
2679 /// Determine whether we can emit a reference to \p VD from the current
2680 /// context, despite not necessarily having seen an odr-use of the variable in
2681 /// this context.
2682 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2683                                                const DeclRefExpr *E,
2684                                                const VarDecl *VD,
2685                                                bool IsConstant) {
2686   // For a variable declared in an enclosing scope, do not emit a spurious
2687   // reference even if we have a capture, as that will emit an unwarranted
2688   // reference to our capture state, and will likely generate worse code than
2689   // emitting a local copy.
2690   if (E->refersToEnclosingVariableOrCapture())
2691     return false;
2692 
2693   // For a local declaration declared in this function, we can always reference
2694   // it even if we don't have an odr-use.
2695   if (VD->hasLocalStorage()) {
2696     return VD->getDeclContext() ==
2697            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2698   }
2699 
2700   // For a global declaration, we can emit a reference to it if we know
2701   // for sure that we are able to emit a definition of it.
2702   VD = VD->getDefinition(CGF.getContext());
2703   if (!VD)
2704     return false;
2705 
2706   // Don't emit a spurious reference if it might be to a variable that only
2707   // exists on a different device / target.
2708   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2709   // cross-target reference.
2710   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2711       CGF.getLangOpts().OpenCL) {
2712     return false;
2713   }
2714 
2715   // We can emit a spurious reference only if the linkage implies that we'll
2716   // be emitting a non-interposable symbol that will be retained until link
2717   // time.
2718   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2719   case llvm::GlobalValue::ExternalLinkage:
2720   case llvm::GlobalValue::LinkOnceODRLinkage:
2721   case llvm::GlobalValue::WeakODRLinkage:
2722   case llvm::GlobalValue::InternalLinkage:
2723   case llvm::GlobalValue::PrivateLinkage:
2724     return true;
2725   default:
2726     return false;
2727   }
2728 }
2729 
2730 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2731   const NamedDecl *ND = E->getDecl();
2732   QualType T = E->getType();
2733 
2734   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2735          "should not emit an unevaluated operand");
2736 
2737   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2738     // Global Named registers access via intrinsics only
2739     if (VD->getStorageClass() == SC_Register &&
2740         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2741       return EmitGlobalNamedRegister(VD, CGM);
2742 
2743     // If this DeclRefExpr does not constitute an odr-use of the variable,
2744     // we're not permitted to emit a reference to it in general, and it might
2745     // not be captured if capture would be necessary for a use. Emit the
2746     // constant value directly instead.
2747     if (E->isNonOdrUse() == NOUR_Constant &&
2748         (VD->getType()->isReferenceType() ||
2749          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2750       VD->getAnyInitializer(VD);
2751       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2752           E->getLocation(), *VD->evaluateValue(), VD->getType());
2753       assert(Val && "failed to emit constant expression");
2754 
2755       Address Addr = Address::invalid();
2756       if (!VD->getType()->isReferenceType()) {
2757         // Spill the constant value to a global.
2758         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2759                                            getContext().getDeclAlign(VD));
2760         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2761         auto *PTy = llvm::PointerType::get(
2762             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2763         Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy, VarTy);
2764       } else {
2765         // Should we be using the alignment of the constant pointer we emitted?
2766         CharUnits Alignment =
2767             CGM.getNaturalTypeAlignment(E->getType(),
2768                                         /* BaseInfo= */ nullptr,
2769                                         /* TBAAInfo= */ nullptr,
2770                                         /* forPointeeType= */ true);
2771         Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment);
2772       }
2773       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2774     }
2775 
2776     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2777 
2778     // Check for captured variables.
2779     if (E->refersToEnclosingVariableOrCapture()) {
2780       VD = VD->getCanonicalDecl();
2781       if (auto *FD = LambdaCaptureFields.lookup(VD))
2782         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2783       if (CapturedStmtInfo) {
2784         auto I = LocalDeclMap.find(VD);
2785         if (I != LocalDeclMap.end()) {
2786           LValue CapLVal;
2787           if (VD->getType()->isReferenceType())
2788             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2789                                                 AlignmentSource::Decl);
2790           else
2791             CapLVal = MakeAddrLValue(I->second, T);
2792           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2793           // in simd context.
2794           if (getLangOpts().OpenMP &&
2795               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2796             CapLVal.setNontemporal(/*Value=*/true);
2797           return CapLVal;
2798         }
2799         LValue CapLVal =
2800             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2801                                     CapturedStmtInfo->getContextValue());
2802         Address LValueAddress = CapLVal.getAddress(*this);
2803         CapLVal = MakeAddrLValue(
2804             Address(LValueAddress.getPointer(), LValueAddress.getElementType(),
2805                     getContext().getDeclAlign(VD)),
2806             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2807             CapLVal.getTBAAInfo());
2808         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2809         // in simd context.
2810         if (getLangOpts().OpenMP &&
2811             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2812           CapLVal.setNontemporal(/*Value=*/true);
2813         return CapLVal;
2814       }
2815 
2816       assert(isa<BlockDecl>(CurCodeDecl));
2817       Address addr = GetAddrOfBlockDecl(VD);
2818       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2819     }
2820   }
2821 
2822   // FIXME: We should be able to assert this for FunctionDecls as well!
2823   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2824   // those with a valid source location.
2825   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2826           !E->getLocation().isValid()) &&
2827          "Should not use decl without marking it used!");
2828 
2829   if (ND->hasAttr<WeakRefAttr>()) {
2830     const auto *VD = cast<ValueDecl>(ND);
2831     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2832     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2833   }
2834 
2835   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2836     // Check if this is a global variable.
2837     if (VD->hasLinkage() || VD->isStaticDataMember())
2838       return EmitGlobalVarDeclLValue(*this, E, VD);
2839 
2840     Address addr = Address::invalid();
2841 
2842     // The variable should generally be present in the local decl map.
2843     auto iter = LocalDeclMap.find(VD);
2844     if (iter != LocalDeclMap.end()) {
2845       addr = iter->second;
2846 
2847     // Otherwise, it might be static local we haven't emitted yet for
2848     // some reason; most likely, because it's in an outer function.
2849     } else if (VD->isStaticLocal()) {
2850       llvm::Constant *var = CGM.getOrCreateStaticVarDecl(
2851           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false));
2852       addr = Address(
2853           var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD));
2854 
2855     // No other cases for now.
2856     } else {
2857       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2858     }
2859 
2860 
2861     // Check for OpenMP threadprivate variables.
2862     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2863         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2864       return EmitThreadPrivateVarDeclLValue(
2865           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2866           E->getExprLoc());
2867     }
2868 
2869     // Drill into block byref variables.
2870     bool isBlockByref = VD->isEscapingByref();
2871     if (isBlockByref) {
2872       addr = emitBlockByrefAddress(addr, VD);
2873     }
2874 
2875     // Drill into reference types.
2876     LValue LV = VD->getType()->isReferenceType() ?
2877         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2878         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2879 
2880     bool isLocalStorage = VD->hasLocalStorage();
2881 
2882     bool NonGCable = isLocalStorage &&
2883                      !VD->getType()->isReferenceType() &&
2884                      !isBlockByref;
2885     if (NonGCable) {
2886       LV.getQuals().removeObjCGCAttr();
2887       LV.setNonGC(true);
2888     }
2889 
2890     bool isImpreciseLifetime =
2891       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2892     if (isImpreciseLifetime)
2893       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2894     setObjCGCLValueClass(getContext(), E, LV);
2895     return LV;
2896   }
2897 
2898   if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
2899     LValue LV = EmitFunctionDeclLValue(*this, E, FD);
2900 
2901     // Emit debuginfo for the function declaration if the target wants to.
2902     if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2903       if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) {
2904         auto *Fn =
2905             cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts());
2906         if (!Fn->getSubprogram())
2907           DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn);
2908       }
2909     }
2910 
2911     return LV;
2912   }
2913 
2914   // FIXME: While we're emitting a binding from an enclosing scope, all other
2915   // DeclRefExprs we see should be implicitly treated as if they also refer to
2916   // an enclosing scope.
2917   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2918     return EmitLValue(BD->getBinding());
2919 
2920   // We can form DeclRefExprs naming GUID declarations when reconstituting
2921   // non-type template parameters into expressions.
2922   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2923     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2924                           AlignmentSource::Decl);
2925 
2926   if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
2927     return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
2928                           AlignmentSource::Decl);
2929 
2930   llvm_unreachable("Unhandled DeclRefExpr");
2931 }
2932 
2933 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2934   // __extension__ doesn't affect lvalue-ness.
2935   if (E->getOpcode() == UO_Extension)
2936     return EmitLValue(E->getSubExpr());
2937 
2938   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2939   switch (E->getOpcode()) {
2940   default: llvm_unreachable("Unknown unary operator lvalue!");
2941   case UO_Deref: {
2942     QualType T = E->getSubExpr()->getType()->getPointeeType();
2943     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2944 
2945     LValueBaseInfo BaseInfo;
2946     TBAAAccessInfo TBAAInfo;
2947     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2948                                             &TBAAInfo);
2949     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2950     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2951 
2952     // We should not generate __weak write barrier on indirect reference
2953     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2954     // But, we continue to generate __strong write barrier on indirect write
2955     // into a pointer to object.
2956     if (getLangOpts().ObjC &&
2957         getLangOpts().getGC() != LangOptions::NonGC &&
2958         LV.isObjCWeak())
2959       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2960     return LV;
2961   }
2962   case UO_Real:
2963   case UO_Imag: {
2964     LValue LV = EmitLValue(E->getSubExpr());
2965     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2966 
2967     // __real is valid on scalars.  This is a faster way of testing that.
2968     // __imag can only produce an rvalue on scalars.
2969     if (E->getOpcode() == UO_Real &&
2970         !LV.getAddress(*this).getElementType()->isStructTy()) {
2971       assert(E->getSubExpr()->getType()->isArithmeticType());
2972       return LV;
2973     }
2974 
2975     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2976 
2977     Address Component =
2978         (E->getOpcode() == UO_Real
2979              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2980              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2981     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2982                                    CGM.getTBAAInfoForSubobject(LV, T));
2983     ElemLV.getQuals().addQualifiers(LV.getQuals());
2984     return ElemLV;
2985   }
2986   case UO_PreInc:
2987   case UO_PreDec: {
2988     LValue LV = EmitLValue(E->getSubExpr());
2989     bool isInc = E->getOpcode() == UO_PreInc;
2990 
2991     if (E->getType()->isAnyComplexType())
2992       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2993     else
2994       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2995     return LV;
2996   }
2997   }
2998 }
2999 
3000 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
3001   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
3002                         E->getType(), AlignmentSource::Decl);
3003 }
3004 
3005 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
3006   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
3007                         E->getType(), AlignmentSource::Decl);
3008 }
3009 
3010 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
3011   auto SL = E->getFunctionName();
3012   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
3013   StringRef FnName = CurFn->getName();
3014   if (FnName.startswith("\01"))
3015     FnName = FnName.substr(1);
3016   StringRef NameItems[] = {
3017       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
3018   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
3019   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
3020     std::string Name = std::string(SL->getString());
3021     if (!Name.empty()) {
3022       unsigned Discriminator =
3023           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
3024       if (Discriminator)
3025         Name += "_" + Twine(Discriminator + 1).str();
3026       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
3027       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3028     } else {
3029       auto C =
3030           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
3031       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3032     }
3033   }
3034   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
3035   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3036 }
3037 
3038 /// Emit a type description suitable for use by a runtime sanitizer library. The
3039 /// format of a type descriptor is
3040 ///
3041 /// \code
3042 ///   { i16 TypeKind, i16 TypeInfo }
3043 /// \endcode
3044 ///
3045 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
3046 /// integer, 1 for a floating point value, and -1 for anything else.
3047 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
3048   // Only emit each type's descriptor once.
3049   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
3050     return C;
3051 
3052   uint16_t TypeKind = -1;
3053   uint16_t TypeInfo = 0;
3054 
3055   if (T->isIntegerType()) {
3056     TypeKind = 0;
3057     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
3058                (T->isSignedIntegerType() ? 1 : 0);
3059   } else if (T->isFloatingType()) {
3060     TypeKind = 1;
3061     TypeInfo = getContext().getTypeSize(T);
3062   }
3063 
3064   // Format the type name as if for a diagnostic, including quotes and
3065   // optionally an 'aka'.
3066   SmallString<32> Buffer;
3067   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
3068                                     (intptr_t)T.getAsOpaquePtr(),
3069                                     StringRef(), StringRef(), None, Buffer,
3070                                     None);
3071 
3072   llvm::Constant *Components[] = {
3073     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3074     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3075   };
3076   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3077 
3078   auto *GV = new llvm::GlobalVariable(
3079       CGM.getModule(), Descriptor->getType(),
3080       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3081   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3082   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3083 
3084   // Remember the descriptor for this type.
3085   CGM.setTypeDescriptorInMap(T, GV);
3086 
3087   return GV;
3088 }
3089 
3090 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3091   llvm::Type *TargetTy = IntPtrTy;
3092 
3093   if (V->getType() == TargetTy)
3094     return V;
3095 
3096   // Floating-point types which fit into intptr_t are bitcast to integers
3097   // and then passed directly (after zero-extension, if necessary).
3098   if (V->getType()->isFloatingPointTy()) {
3099     unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize();
3100     if (Bits <= TargetTy->getIntegerBitWidth())
3101       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3102                                                          Bits));
3103   }
3104 
3105   // Integers which fit in intptr_t are zero-extended and passed directly.
3106   if (V->getType()->isIntegerTy() &&
3107       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3108     return Builder.CreateZExt(V, TargetTy);
3109 
3110   // Pointers are passed directly, everything else is passed by address.
3111   if (!V->getType()->isPointerTy()) {
3112     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3113     Builder.CreateStore(V, Ptr);
3114     V = Ptr.getPointer();
3115   }
3116   return Builder.CreatePtrToInt(V, TargetTy);
3117 }
3118 
3119 /// Emit a representation of a SourceLocation for passing to a handler
3120 /// in a sanitizer runtime library. The format for this data is:
3121 /// \code
3122 ///   struct SourceLocation {
3123 ///     const char *Filename;
3124 ///     int32_t Line, Column;
3125 ///   };
3126 /// \endcode
3127 /// For an invalid SourceLocation, the Filename pointer is null.
3128 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3129   llvm::Constant *Filename;
3130   int Line, Column;
3131 
3132   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3133   if (PLoc.isValid()) {
3134     StringRef FilenameString = PLoc.getFilename();
3135 
3136     int PathComponentsToStrip =
3137         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3138     if (PathComponentsToStrip < 0) {
3139       assert(PathComponentsToStrip != INT_MIN);
3140       int PathComponentsToKeep = -PathComponentsToStrip;
3141       auto I = llvm::sys::path::rbegin(FilenameString);
3142       auto E = llvm::sys::path::rend(FilenameString);
3143       while (I != E && --PathComponentsToKeep)
3144         ++I;
3145 
3146       FilenameString = FilenameString.substr(I - E);
3147     } else if (PathComponentsToStrip > 0) {
3148       auto I = llvm::sys::path::begin(FilenameString);
3149       auto E = llvm::sys::path::end(FilenameString);
3150       while (I != E && PathComponentsToStrip--)
3151         ++I;
3152 
3153       if (I != E)
3154         FilenameString =
3155             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3156       else
3157         FilenameString = llvm::sys::path::filename(FilenameString);
3158     }
3159 
3160     auto FilenameGV =
3161         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3162     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3163                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3164     Filename = FilenameGV.getPointer();
3165     Line = PLoc.getLine();
3166     Column = PLoc.getColumn();
3167   } else {
3168     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3169     Line = Column = 0;
3170   }
3171 
3172   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3173                             Builder.getInt32(Column)};
3174 
3175   return llvm::ConstantStruct::getAnon(Data);
3176 }
3177 
3178 namespace {
3179 /// Specify under what conditions this check can be recovered
3180 enum class CheckRecoverableKind {
3181   /// Always terminate program execution if this check fails.
3182   Unrecoverable,
3183   /// Check supports recovering, runtime has both fatal (noreturn) and
3184   /// non-fatal handlers for this check.
3185   Recoverable,
3186   /// Runtime conditionally aborts, always need to support recovery.
3187   AlwaysRecoverable
3188 };
3189 }
3190 
3191 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3192   assert(Kind.countPopulation() == 1);
3193   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3194     return CheckRecoverableKind::AlwaysRecoverable;
3195   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3196     return CheckRecoverableKind::Unrecoverable;
3197   else
3198     return CheckRecoverableKind::Recoverable;
3199 }
3200 
3201 namespace {
3202 struct SanitizerHandlerInfo {
3203   char const *const Name;
3204   unsigned Version;
3205 };
3206 }
3207 
3208 const SanitizerHandlerInfo SanitizerHandlers[] = {
3209 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3210     LIST_SANITIZER_CHECKS
3211 #undef SANITIZER_CHECK
3212 };
3213 
3214 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3215                                  llvm::FunctionType *FnType,
3216                                  ArrayRef<llvm::Value *> FnArgs,
3217                                  SanitizerHandler CheckHandler,
3218                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3219                                  llvm::BasicBlock *ContBB) {
3220   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3221   Optional<ApplyDebugLocation> DL;
3222   if (!CGF.Builder.getCurrentDebugLocation()) {
3223     // Ensure that the call has at least an artificial debug location.
3224     DL.emplace(CGF, SourceLocation());
3225   }
3226   bool NeedsAbortSuffix =
3227       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3228   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3229   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3230   const StringRef CheckName = CheckInfo.Name;
3231   std::string FnName = "__ubsan_handle_" + CheckName.str();
3232   if (CheckInfo.Version && !MinimalRuntime)
3233     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3234   if (MinimalRuntime)
3235     FnName += "_minimal";
3236   if (NeedsAbortSuffix)
3237     FnName += "_abort";
3238   bool MayReturn =
3239       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3240 
3241   llvm::AttrBuilder B(CGF.getLLVMContext());
3242   if (!MayReturn) {
3243     B.addAttribute(llvm::Attribute::NoReturn)
3244         .addAttribute(llvm::Attribute::NoUnwind);
3245   }
3246   B.addUWTableAttr(llvm::UWTableKind::Default);
3247 
3248   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3249       FnType, FnName,
3250       llvm::AttributeList::get(CGF.getLLVMContext(),
3251                                llvm::AttributeList::FunctionIndex, B),
3252       /*Local=*/true);
3253   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3254   if (!MayReturn) {
3255     HandlerCall->setDoesNotReturn();
3256     CGF.Builder.CreateUnreachable();
3257   } else {
3258     CGF.Builder.CreateBr(ContBB);
3259   }
3260 }
3261 
3262 void CodeGenFunction::EmitCheck(
3263     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3264     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3265     ArrayRef<llvm::Value *> DynamicArgs) {
3266   assert(IsSanitizerScope);
3267   assert(Checked.size() > 0);
3268   assert(CheckHandler >= 0 &&
3269          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3270   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3271 
3272   llvm::Value *FatalCond = nullptr;
3273   llvm::Value *RecoverableCond = nullptr;
3274   llvm::Value *TrapCond = nullptr;
3275   for (int i = 0, n = Checked.size(); i < n; ++i) {
3276     llvm::Value *Check = Checked[i].first;
3277     // -fsanitize-trap= overrides -fsanitize-recover=.
3278     llvm::Value *&Cond =
3279         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3280             ? TrapCond
3281             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3282                   ? RecoverableCond
3283                   : FatalCond;
3284     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3285   }
3286 
3287   if (TrapCond)
3288     EmitTrapCheck(TrapCond, CheckHandler);
3289   if (!FatalCond && !RecoverableCond)
3290     return;
3291 
3292   llvm::Value *JointCond;
3293   if (FatalCond && RecoverableCond)
3294     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3295   else
3296     JointCond = FatalCond ? FatalCond : RecoverableCond;
3297   assert(JointCond);
3298 
3299   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3300   assert(SanOpts.has(Checked[0].second));
3301 #ifndef NDEBUG
3302   for (int i = 1, n = Checked.size(); i < n; ++i) {
3303     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3304            "All recoverable kinds in a single check must be same!");
3305     assert(SanOpts.has(Checked[i].second));
3306   }
3307 #endif
3308 
3309   llvm::BasicBlock *Cont = createBasicBlock("cont");
3310   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3311   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3312   // Give hint that we very much don't expect to execute the handler
3313   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3314   llvm::MDBuilder MDHelper(getLLVMContext());
3315   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3316   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3317   EmitBlock(Handlers);
3318 
3319   // Handler functions take an i8* pointing to the (handler-specific) static
3320   // information block, followed by a sequence of intptr_t arguments
3321   // representing operand values.
3322   SmallVector<llvm::Value *, 4> Args;
3323   SmallVector<llvm::Type *, 4> ArgTypes;
3324   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3325     Args.reserve(DynamicArgs.size() + 1);
3326     ArgTypes.reserve(DynamicArgs.size() + 1);
3327 
3328     // Emit handler arguments and create handler function type.
3329     if (!StaticArgs.empty()) {
3330       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3331       auto *InfoPtr =
3332           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3333                                    llvm::GlobalVariable::PrivateLinkage, Info);
3334       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3335       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3336       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3337       ArgTypes.push_back(Int8PtrTy);
3338     }
3339 
3340     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3341       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3342       ArgTypes.push_back(IntPtrTy);
3343     }
3344   }
3345 
3346   llvm::FunctionType *FnType =
3347     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3348 
3349   if (!FatalCond || !RecoverableCond) {
3350     // Simple case: we need to generate a single handler call, either
3351     // fatal, or non-fatal.
3352     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3353                          (FatalCond != nullptr), Cont);
3354   } else {
3355     // Emit two handler calls: first one for set of unrecoverable checks,
3356     // another one for recoverable.
3357     llvm::BasicBlock *NonFatalHandlerBB =
3358         createBasicBlock("non_fatal." + CheckName);
3359     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3360     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3361     EmitBlock(FatalHandlerBB);
3362     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3363                          NonFatalHandlerBB);
3364     EmitBlock(NonFatalHandlerBB);
3365     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3366                          Cont);
3367   }
3368 
3369   EmitBlock(Cont);
3370 }
3371 
3372 void CodeGenFunction::EmitCfiSlowPathCheck(
3373     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3374     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3375   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3376 
3377   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3378   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3379 
3380   llvm::MDBuilder MDHelper(getLLVMContext());
3381   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3382   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3383 
3384   EmitBlock(CheckBB);
3385 
3386   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3387 
3388   llvm::CallInst *CheckCall;
3389   llvm::FunctionCallee SlowPathFn;
3390   if (WithDiag) {
3391     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3392     auto *InfoPtr =
3393         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3394                                  llvm::GlobalVariable::PrivateLinkage, Info);
3395     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3396     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3397 
3398     SlowPathFn = CGM.getModule().getOrInsertFunction(
3399         "__cfi_slowpath_diag",
3400         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3401                                 false));
3402     CheckCall = Builder.CreateCall(
3403         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3404   } else {
3405     SlowPathFn = CGM.getModule().getOrInsertFunction(
3406         "__cfi_slowpath",
3407         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3408     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3409   }
3410 
3411   CGM.setDSOLocal(
3412       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3413   CheckCall->setDoesNotThrow();
3414 
3415   EmitBlock(Cont);
3416 }
3417 
3418 // Emit a stub for __cfi_check function so that the linker knows about this
3419 // symbol in LTO mode.
3420 void CodeGenFunction::EmitCfiCheckStub() {
3421   llvm::Module *M = &CGM.getModule();
3422   auto &Ctx = M->getContext();
3423   llvm::Function *F = llvm::Function::Create(
3424       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3425       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3426   CGM.setDSOLocal(F);
3427   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3428   // FIXME: consider emitting an intrinsic call like
3429   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3430   // which can be lowered in CrossDSOCFI pass to the actual contents of
3431   // __cfi_check. This would allow inlining of __cfi_check calls.
3432   llvm::CallInst::Create(
3433       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3434   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3435 }
3436 
3437 // This function is basically a switch over the CFI failure kind, which is
3438 // extracted from CFICheckFailData (1st function argument). Each case is either
3439 // llvm.trap or a call to one of the two runtime handlers, based on
3440 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3441 // failure kind) traps, but this should really never happen.  CFICheckFailData
3442 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3443 // check kind; in this case __cfi_check_fail traps as well.
3444 void CodeGenFunction::EmitCfiCheckFail() {
3445   SanitizerScope SanScope(this);
3446   FunctionArgList Args;
3447   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3448                             ImplicitParamDecl::Other);
3449   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3450                             ImplicitParamDecl::Other);
3451   Args.push_back(&ArgData);
3452   Args.push_back(&ArgAddr);
3453 
3454   const CGFunctionInfo &FI =
3455     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3456 
3457   llvm::Function *F = llvm::Function::Create(
3458       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3459       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3460 
3461   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3462   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3463   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3464 
3465   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3466                 SourceLocation());
3467 
3468   // This function is not affected by NoSanitizeList. This function does
3469   // not have a source location, but "src:*" would still apply. Revert any
3470   // changes to SanOpts made in StartFunction.
3471   SanOpts = CGM.getLangOpts().Sanitize;
3472 
3473   llvm::Value *Data =
3474       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3475                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3476   llvm::Value *Addr =
3477       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3478                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3479 
3480   // Data == nullptr means the calling module has trap behaviour for this check.
3481   llvm::Value *DataIsNotNullPtr =
3482       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3483   EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3484 
3485   llvm::StructType *SourceLocationTy =
3486       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3487   llvm::StructType *CfiCheckFailDataTy =
3488       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3489 
3490   llvm::Value *V = Builder.CreateConstGEP2_32(
3491       CfiCheckFailDataTy,
3492       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3493       0);
3494 
3495   Address CheckKindAddr(V, Int8Ty, getIntAlign());
3496   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3497 
3498   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3499       CGM.getLLVMContext(),
3500       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3501   llvm::Value *ValidVtable = Builder.CreateZExt(
3502       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3503                          {Addr, AllVtables}),
3504       IntPtrTy);
3505 
3506   const std::pair<int, SanitizerMask> CheckKinds[] = {
3507       {CFITCK_VCall, SanitizerKind::CFIVCall},
3508       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3509       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3510       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3511       {CFITCK_ICall, SanitizerKind::CFIICall}};
3512 
3513   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3514   for (auto CheckKindMaskPair : CheckKinds) {
3515     int Kind = CheckKindMaskPair.first;
3516     SanitizerMask Mask = CheckKindMaskPair.second;
3517     llvm::Value *Cond =
3518         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3519     if (CGM.getLangOpts().Sanitize.has(Mask))
3520       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3521                 {Data, Addr, ValidVtable});
3522     else
3523       EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3524   }
3525 
3526   FinishFunction();
3527   // The only reference to this function will be created during LTO link.
3528   // Make sure it survives until then.
3529   CGM.addUsedGlobal(F);
3530 }
3531 
3532 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3533   if (SanOpts.has(SanitizerKind::Unreachable)) {
3534     SanitizerScope SanScope(this);
3535     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3536                              SanitizerKind::Unreachable),
3537               SanitizerHandler::BuiltinUnreachable,
3538               EmitCheckSourceLocation(Loc), None);
3539   }
3540   Builder.CreateUnreachable();
3541 }
3542 
3543 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3544                                     SanitizerHandler CheckHandlerID) {
3545   llvm::BasicBlock *Cont = createBasicBlock("cont");
3546 
3547   // If we're optimizing, collapse all calls to trap down to just one per
3548   // check-type per function to save on code size.
3549   if (TrapBBs.size() <= CheckHandlerID)
3550     TrapBBs.resize(CheckHandlerID + 1);
3551   llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3552 
3553   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3554     TrapBB = createBasicBlock("trap");
3555     Builder.CreateCondBr(Checked, Cont, TrapBB);
3556     EmitBlock(TrapBB);
3557 
3558     llvm::CallInst *TrapCall =
3559         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3560                            llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID));
3561 
3562     if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3563       auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3564                                     CGM.getCodeGenOpts().TrapFuncName);
3565       TrapCall->addFnAttr(A);
3566     }
3567     TrapCall->setDoesNotReturn();
3568     TrapCall->setDoesNotThrow();
3569     Builder.CreateUnreachable();
3570   } else {
3571     auto Call = TrapBB->begin();
3572     assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3573 
3574     Call->applyMergedLocation(Call->getDebugLoc(),
3575                               Builder.getCurrentDebugLocation());
3576     Builder.CreateCondBr(Checked, Cont, TrapBB);
3577   }
3578 
3579   EmitBlock(Cont);
3580 }
3581 
3582 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3583   llvm::CallInst *TrapCall =
3584       Builder.CreateCall(CGM.getIntrinsic(IntrID));
3585 
3586   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3587     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3588                                   CGM.getCodeGenOpts().TrapFuncName);
3589     TrapCall->addFnAttr(A);
3590   }
3591 
3592   return TrapCall;
3593 }
3594 
3595 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3596                                                  LValueBaseInfo *BaseInfo,
3597                                                  TBAAAccessInfo *TBAAInfo) {
3598   assert(E->getType()->isArrayType() &&
3599          "Array to pointer decay must have array source type!");
3600 
3601   // Expressions of array type can't be bitfields or vector elements.
3602   LValue LV = EmitLValue(E);
3603   Address Addr = LV.getAddress(*this);
3604 
3605   // If the array type was an incomplete type, we need to make sure
3606   // the decay ends up being the right type.
3607   llvm::Type *NewTy = ConvertType(E->getType());
3608   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3609 
3610   // Note that VLA pointers are always decayed, so we don't need to do
3611   // anything here.
3612   if (!E->getType()->isVariableArrayType()) {
3613     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3614            "Expected pointer to array");
3615     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3616   }
3617 
3618   // The result of this decay conversion points to an array element within the
3619   // base lvalue. However, since TBAA currently does not support representing
3620   // accesses to elements of member arrays, we conservatively represent accesses
3621   // to the pointee object as if it had no any base lvalue specified.
3622   // TODO: Support TBAA for member arrays.
3623   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3624   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3625   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3626 
3627   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3628 }
3629 
3630 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3631 /// array to pointer, return the array subexpression.
3632 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3633   // If this isn't just an array->pointer decay, bail out.
3634   const auto *CE = dyn_cast<CastExpr>(E);
3635   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3636     return nullptr;
3637 
3638   // If this is a decay from variable width array, bail out.
3639   const Expr *SubExpr = CE->getSubExpr();
3640   if (SubExpr->getType()->isVariableArrayType())
3641     return nullptr;
3642 
3643   return SubExpr;
3644 }
3645 
3646 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3647                                           llvm::Type *elemType,
3648                                           llvm::Value *ptr,
3649                                           ArrayRef<llvm::Value*> indices,
3650                                           bool inbounds,
3651                                           bool signedIndices,
3652                                           SourceLocation loc,
3653                                     const llvm::Twine &name = "arrayidx") {
3654   if (inbounds) {
3655     return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices,
3656                                       CodeGenFunction::NotSubtraction, loc,
3657                                       name);
3658   } else {
3659     return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3660   }
3661 }
3662 
3663 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3664                                       llvm::Value *idx,
3665                                       CharUnits eltSize) {
3666   // If we have a constant index, we can use the exact offset of the
3667   // element we're accessing.
3668   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3669     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3670     return arrayAlign.alignmentAtOffset(offset);
3671 
3672   // Otherwise, use the worst-case alignment for any element.
3673   } else {
3674     return arrayAlign.alignmentOfArrayElement(eltSize);
3675   }
3676 }
3677 
3678 static QualType getFixedSizeElementType(const ASTContext &ctx,
3679                                         const VariableArrayType *vla) {
3680   QualType eltType;
3681   do {
3682     eltType = vla->getElementType();
3683   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3684   return eltType;
3685 }
3686 
3687 /// Given an array base, check whether its member access belongs to a record
3688 /// with preserve_access_index attribute or not.
3689 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3690   if (!ArrayBase || !CGF.getDebugInfo())
3691     return false;
3692 
3693   // Only support base as either a MemberExpr or DeclRefExpr.
3694   // DeclRefExpr to cover cases like:
3695   //    struct s { int a; int b[10]; };
3696   //    struct s *p;
3697   //    p[1].a
3698   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3699   // p->b[5] is a MemberExpr example.
3700   const Expr *E = ArrayBase->IgnoreImpCasts();
3701   if (const auto *ME = dyn_cast<MemberExpr>(E))
3702     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3703 
3704   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3705     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3706     if (!VarDef)
3707       return false;
3708 
3709     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3710     if (!PtrT)
3711       return false;
3712 
3713     const auto *PointeeT = PtrT->getPointeeType()
3714                              ->getUnqualifiedDesugaredType();
3715     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3716       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3717     return false;
3718   }
3719 
3720   return false;
3721 }
3722 
3723 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3724                                      ArrayRef<llvm::Value *> indices,
3725                                      QualType eltType, bool inbounds,
3726                                      bool signedIndices, SourceLocation loc,
3727                                      QualType *arrayType = nullptr,
3728                                      const Expr *Base = nullptr,
3729                                      const llvm::Twine &name = "arrayidx") {
3730   // All the indices except that last must be zero.
3731 #ifndef NDEBUG
3732   for (auto idx : indices.drop_back())
3733     assert(isa<llvm::ConstantInt>(idx) &&
3734            cast<llvm::ConstantInt>(idx)->isZero());
3735 #endif
3736 
3737   // Determine the element size of the statically-sized base.  This is
3738   // the thing that the indices are expressed in terms of.
3739   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3740     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3741   }
3742 
3743   // We can use that to compute the best alignment of the element.
3744   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3745   CharUnits eltAlign =
3746     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3747 
3748   llvm::Value *eltPtr;
3749   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3750   if (!LastIndex ||
3751       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3752     eltPtr = emitArraySubscriptGEP(
3753         CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
3754         signedIndices, loc, name);
3755   } else {
3756     // Remember the original array subscript for bpf target
3757     unsigned idx = LastIndex->getZExtValue();
3758     llvm::DIType *DbgInfo = nullptr;
3759     if (arrayType)
3760       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3761     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3762                                                         addr.getPointer(),
3763                                                         indices.size() - 1,
3764                                                         idx, DbgInfo);
3765   }
3766 
3767   return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign);
3768 }
3769 
3770 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3771                                                bool Accessed) {
3772   // The index must always be an integer, which is not an aggregate.  Emit it
3773   // in lexical order (this complexity is, sadly, required by C++17).
3774   llvm::Value *IdxPre =
3775       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3776   bool SignedIndices = false;
3777   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3778     auto *Idx = IdxPre;
3779     if (E->getLHS() != E->getIdx()) {
3780       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3781       Idx = EmitScalarExpr(E->getIdx());
3782     }
3783 
3784     QualType IdxTy = E->getIdx()->getType();
3785     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3786     SignedIndices |= IdxSigned;
3787 
3788     if (SanOpts.has(SanitizerKind::ArrayBounds))
3789       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3790 
3791     // Extend or truncate the index type to 32 or 64-bits.
3792     if (Promote && Idx->getType() != IntPtrTy)
3793       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3794 
3795     return Idx;
3796   };
3797   IdxPre = nullptr;
3798 
3799   // If the base is a vector type, then we are forming a vector element lvalue
3800   // with this subscript.
3801   if (E->getBase()->getType()->isVectorType() &&
3802       !isa<ExtVectorElementExpr>(E->getBase())) {
3803     // Emit the vector as an lvalue to get its address.
3804     LValue LHS = EmitLValue(E->getBase());
3805     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3806     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3807     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3808                                  E->getBase()->getType(), LHS.getBaseInfo(),
3809                                  TBAAAccessInfo());
3810   }
3811 
3812   // All the other cases basically behave like simple offsetting.
3813 
3814   // Handle the extvector case we ignored above.
3815   if (isa<ExtVectorElementExpr>(E->getBase())) {
3816     LValue LV = EmitLValue(E->getBase());
3817     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3818     Address Addr = EmitExtVectorElementLValue(LV);
3819 
3820     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3821     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3822                                  SignedIndices, E->getExprLoc());
3823     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3824                           CGM.getTBAAInfoForSubobject(LV, EltType));
3825   }
3826 
3827   LValueBaseInfo EltBaseInfo;
3828   TBAAAccessInfo EltTBAAInfo;
3829   Address Addr = Address::invalid();
3830   if (const VariableArrayType *vla =
3831            getContext().getAsVariableArrayType(E->getType())) {
3832     // The base must be a pointer, which is not an aggregate.  Emit
3833     // it.  It needs to be emitted first in case it's what captures
3834     // the VLA bounds.
3835     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3836     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3837 
3838     // The element count here is the total number of non-VLA elements.
3839     llvm::Value *numElements = getVLASize(vla).NumElts;
3840 
3841     // Effectively, the multiply by the VLA size is part of the GEP.
3842     // GEP indexes are signed, and scaling an index isn't permitted to
3843     // signed-overflow, so we use the same semantics for our explicit
3844     // multiply.  We suppress this if overflow is not undefined behavior.
3845     if (getLangOpts().isSignedOverflowDefined()) {
3846       Idx = Builder.CreateMul(Idx, numElements);
3847     } else {
3848       Idx = Builder.CreateNSWMul(Idx, numElements);
3849     }
3850 
3851     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3852                                  !getLangOpts().isSignedOverflowDefined(),
3853                                  SignedIndices, E->getExprLoc());
3854 
3855   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3856     // Indexing over an interface, as in "NSString *P; P[4];"
3857 
3858     // Emit the base pointer.
3859     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3860     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3861 
3862     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3863     llvm::Value *InterfaceSizeVal =
3864         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3865 
3866     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3867 
3868     // We don't necessarily build correct LLVM struct types for ObjC
3869     // interfaces, so we can't rely on GEP to do this scaling
3870     // correctly, so we need to cast to i8*.  FIXME: is this actually
3871     // true?  A lot of other things in the fragile ABI would break...
3872     llvm::Type *OrigBaseElemTy = Addr.getElementType();
3873     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3874 
3875     // Do the GEP.
3876     CharUnits EltAlign =
3877       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3878     llvm::Value *EltPtr =
3879         emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(),
3880                               ScaledIdx, false, SignedIndices, E->getExprLoc());
3881     Addr = Address(EltPtr, Addr.getElementType(), EltAlign);
3882 
3883     // Cast back.
3884     Addr = Builder.CreateElementBitCast(Addr, OrigBaseElemTy);
3885   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3886     // If this is A[i] where A is an array, the frontend will have decayed the
3887     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3888     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3889     // "gep x, i" here.  Emit one "gep A, 0, i".
3890     assert(Array->getType()->isArrayType() &&
3891            "Array to pointer decay must have array source type!");
3892     LValue ArrayLV;
3893     // For simple multidimensional array indexing, set the 'accessed' flag for
3894     // better bounds-checking of the base expression.
3895     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3896       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3897     else
3898       ArrayLV = EmitLValue(Array);
3899     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3900 
3901     // Propagate the alignment from the array itself to the result.
3902     QualType arrayType = Array->getType();
3903     Addr = emitArraySubscriptGEP(
3904         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3905         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3906         E->getExprLoc(), &arrayType, E->getBase());
3907     EltBaseInfo = ArrayLV.getBaseInfo();
3908     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3909   } else {
3910     // The base must be a pointer; emit it with an estimate of its alignment.
3911     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3912     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3913     QualType ptrType = E->getBase()->getType();
3914     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3915                                  !getLangOpts().isSignedOverflowDefined(),
3916                                  SignedIndices, E->getExprLoc(), &ptrType,
3917                                  E->getBase());
3918   }
3919 
3920   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3921 
3922   if (getLangOpts().ObjC &&
3923       getLangOpts().getGC() != LangOptions::NonGC) {
3924     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3925     setObjCGCLValueClass(getContext(), E, LV);
3926   }
3927   return LV;
3928 }
3929 
3930 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3931   assert(
3932       !E->isIncomplete() &&
3933       "incomplete matrix subscript expressions should be rejected during Sema");
3934   LValue Base = EmitLValue(E->getBase());
3935   llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3936   llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3937   llvm::Value *NumRows = Builder.getIntN(
3938       RowIdx->getType()->getScalarSizeInBits(),
3939       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
3940   llvm::Value *FinalIdx =
3941       Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3942   return LValue::MakeMatrixElt(
3943       MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3944       E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3945 }
3946 
3947 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3948                                        LValueBaseInfo &BaseInfo,
3949                                        TBAAAccessInfo &TBAAInfo,
3950                                        QualType BaseTy, QualType ElTy,
3951                                        bool IsLowerBound) {
3952   LValue BaseLVal;
3953   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3954     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3955     if (BaseTy->isArrayType()) {
3956       Address Addr = BaseLVal.getAddress(CGF);
3957       BaseInfo = BaseLVal.getBaseInfo();
3958 
3959       // If the array type was an incomplete type, we need to make sure
3960       // the decay ends up being the right type.
3961       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3962       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3963 
3964       // Note that VLA pointers are always decayed, so we don't need to do
3965       // anything here.
3966       if (!BaseTy->isVariableArrayType()) {
3967         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3968                "Expected pointer to array");
3969         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3970       }
3971 
3972       return CGF.Builder.CreateElementBitCast(Addr,
3973                                               CGF.ConvertTypeForMem(ElTy));
3974     }
3975     LValueBaseInfo TypeBaseInfo;
3976     TBAAAccessInfo TypeTBAAInfo;
3977     CharUnits Align =
3978         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3979     BaseInfo.mergeForCast(TypeBaseInfo);
3980     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3981     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)),
3982                    CGF.ConvertTypeForMem(ElTy), Align);
3983   }
3984   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3985 }
3986 
3987 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3988                                                 bool IsLowerBound) {
3989   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3990   QualType ResultExprTy;
3991   if (auto *AT = getContext().getAsArrayType(BaseTy))
3992     ResultExprTy = AT->getElementType();
3993   else
3994     ResultExprTy = BaseTy->getPointeeType();
3995   llvm::Value *Idx = nullptr;
3996   if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
3997     // Requesting lower bound or upper bound, but without provided length and
3998     // without ':' symbol for the default length -> length = 1.
3999     // Idx = LowerBound ?: 0;
4000     if (auto *LowerBound = E->getLowerBound()) {
4001       Idx = Builder.CreateIntCast(
4002           EmitScalarExpr(LowerBound), IntPtrTy,
4003           LowerBound->getType()->hasSignedIntegerRepresentation());
4004     } else
4005       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
4006   } else {
4007     // Try to emit length or lower bound as constant. If this is possible, 1
4008     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
4009     // IR (LB + Len) - 1.
4010     auto &C = CGM.getContext();
4011     auto *Length = E->getLength();
4012     llvm::APSInt ConstLength;
4013     if (Length) {
4014       // Idx = LowerBound + Length - 1;
4015       if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
4016         ConstLength = CL->zextOrTrunc(PointerWidthInBits);
4017         Length = nullptr;
4018       }
4019       auto *LowerBound = E->getLowerBound();
4020       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
4021       if (LowerBound) {
4022         if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
4023           ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
4024           LowerBound = nullptr;
4025         }
4026       }
4027       if (!Length)
4028         --ConstLength;
4029       else if (!LowerBound)
4030         --ConstLowerBound;
4031 
4032       if (Length || LowerBound) {
4033         auto *LowerBoundVal =
4034             LowerBound
4035                 ? Builder.CreateIntCast(
4036                       EmitScalarExpr(LowerBound), IntPtrTy,
4037                       LowerBound->getType()->hasSignedIntegerRepresentation())
4038                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
4039         auto *LengthVal =
4040             Length
4041                 ? Builder.CreateIntCast(
4042                       EmitScalarExpr(Length), IntPtrTy,
4043                       Length->getType()->hasSignedIntegerRepresentation())
4044                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
4045         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
4046                                 /*HasNUW=*/false,
4047                                 !getLangOpts().isSignedOverflowDefined());
4048         if (Length && LowerBound) {
4049           Idx = Builder.CreateSub(
4050               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
4051               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4052         }
4053       } else
4054         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
4055     } else {
4056       // Idx = ArraySize - 1;
4057       QualType ArrayTy = BaseTy->isPointerType()
4058                              ? E->getBase()->IgnoreParenImpCasts()->getType()
4059                              : BaseTy;
4060       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
4061         Length = VAT->getSizeExpr();
4062         if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
4063           ConstLength = *L;
4064           Length = nullptr;
4065         }
4066       } else {
4067         auto *CAT = C.getAsConstantArrayType(ArrayTy);
4068         ConstLength = CAT->getSize();
4069       }
4070       if (Length) {
4071         auto *LengthVal = Builder.CreateIntCast(
4072             EmitScalarExpr(Length), IntPtrTy,
4073             Length->getType()->hasSignedIntegerRepresentation());
4074         Idx = Builder.CreateSub(
4075             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4076             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4077       } else {
4078         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4079         --ConstLength;
4080         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4081       }
4082     }
4083   }
4084   assert(Idx);
4085 
4086   Address EltPtr = Address::invalid();
4087   LValueBaseInfo BaseInfo;
4088   TBAAAccessInfo TBAAInfo;
4089   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4090     // The base must be a pointer, which is not an aggregate.  Emit
4091     // it.  It needs to be emitted first in case it's what captures
4092     // the VLA bounds.
4093     Address Base =
4094         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4095                                 BaseTy, VLA->getElementType(), IsLowerBound);
4096     // The element count here is the total number of non-VLA elements.
4097     llvm::Value *NumElements = getVLASize(VLA).NumElts;
4098 
4099     // Effectively, the multiply by the VLA size is part of the GEP.
4100     // GEP indexes are signed, and scaling an index isn't permitted to
4101     // signed-overflow, so we use the same semantics for our explicit
4102     // multiply.  We suppress this if overflow is not undefined behavior.
4103     if (getLangOpts().isSignedOverflowDefined())
4104       Idx = Builder.CreateMul(Idx, NumElements);
4105     else
4106       Idx = Builder.CreateNSWMul(Idx, NumElements);
4107     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4108                                    !getLangOpts().isSignedOverflowDefined(),
4109                                    /*signedIndices=*/false, E->getExprLoc());
4110   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4111     // If this is A[i] where A is an array, the frontend will have decayed the
4112     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
4113     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4114     // "gep x, i" here.  Emit one "gep A, 0, i".
4115     assert(Array->getType()->isArrayType() &&
4116            "Array to pointer decay must have array source type!");
4117     LValue ArrayLV;
4118     // For simple multidimensional array indexing, set the 'accessed' flag for
4119     // better bounds-checking of the base expression.
4120     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4121       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4122     else
4123       ArrayLV = EmitLValue(Array);
4124 
4125     // Propagate the alignment from the array itself to the result.
4126     EltPtr = emitArraySubscriptGEP(
4127         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4128         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4129         /*signedIndices=*/false, E->getExprLoc());
4130     BaseInfo = ArrayLV.getBaseInfo();
4131     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4132   } else {
4133     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4134                                            TBAAInfo, BaseTy, ResultExprTy,
4135                                            IsLowerBound);
4136     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4137                                    !getLangOpts().isSignedOverflowDefined(),
4138                                    /*signedIndices=*/false, E->getExprLoc());
4139   }
4140 
4141   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4142 }
4143 
4144 LValue CodeGenFunction::
4145 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4146   // Emit the base vector as an l-value.
4147   LValue Base;
4148 
4149   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4150   if (E->isArrow()) {
4151     // If it is a pointer to a vector, emit the address and form an lvalue with
4152     // it.
4153     LValueBaseInfo BaseInfo;
4154     TBAAAccessInfo TBAAInfo;
4155     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4156     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4157     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4158     Base.getQuals().removeObjCGCAttr();
4159   } else if (E->getBase()->isGLValue()) {
4160     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4161     // emit the base as an lvalue.
4162     assert(E->getBase()->getType()->isVectorType());
4163     Base = EmitLValue(E->getBase());
4164   } else {
4165     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4166     assert(E->getBase()->getType()->isVectorType() &&
4167            "Result must be a vector");
4168     llvm::Value *Vec = EmitScalarExpr(E->getBase());
4169 
4170     // Store the vector to memory (because LValue wants an address).
4171     Address VecMem = CreateMemTemp(E->getBase()->getType());
4172     Builder.CreateStore(Vec, VecMem);
4173     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4174                           AlignmentSource::Decl);
4175   }
4176 
4177   QualType type =
4178     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4179 
4180   // Encode the element access list into a vector of unsigned indices.
4181   SmallVector<uint32_t, 4> Indices;
4182   E->getEncodedElementAccess(Indices);
4183 
4184   if (Base.isSimple()) {
4185     llvm::Constant *CV =
4186         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4187     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4188                                     Base.getBaseInfo(), TBAAAccessInfo());
4189   }
4190   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4191 
4192   llvm::Constant *BaseElts = Base.getExtVectorElts();
4193   SmallVector<llvm::Constant *, 4> CElts;
4194 
4195   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4196     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4197   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4198   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4199                                   Base.getBaseInfo(), TBAAAccessInfo());
4200 }
4201 
4202 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4203   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4204     EmitIgnoredExpr(E->getBase());
4205     return EmitDeclRefLValue(DRE);
4206   }
4207 
4208   Expr *BaseExpr = E->getBase();
4209   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4210   LValue BaseLV;
4211   if (E->isArrow()) {
4212     LValueBaseInfo BaseInfo;
4213     TBAAAccessInfo TBAAInfo;
4214     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4215     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4216     SanitizerSet SkippedChecks;
4217     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4218     if (IsBaseCXXThis)
4219       SkippedChecks.set(SanitizerKind::Alignment, true);
4220     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4221       SkippedChecks.set(SanitizerKind::Null, true);
4222     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4223                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4224     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4225   } else
4226     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4227 
4228   NamedDecl *ND = E->getMemberDecl();
4229   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4230     LValue LV = EmitLValueForField(BaseLV, Field);
4231     setObjCGCLValueClass(getContext(), E, LV);
4232     if (getLangOpts().OpenMP) {
4233       // If the member was explicitly marked as nontemporal, mark it as
4234       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4235       // to children as nontemporal too.
4236       if ((IsWrappedCXXThis(BaseExpr) &&
4237            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4238           BaseLV.isNontemporal())
4239         LV.setNontemporal(/*Value=*/true);
4240     }
4241     return LV;
4242   }
4243 
4244   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4245     return EmitFunctionDeclLValue(*this, E, FD);
4246 
4247   llvm_unreachable("Unhandled member declaration!");
4248 }
4249 
4250 /// Given that we are currently emitting a lambda, emit an l-value for
4251 /// one of its members.
4252 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4253   if (CurCodeDecl) {
4254     assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4255     assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4256   }
4257   QualType LambdaTagType =
4258     getContext().getTagDeclType(Field->getParent());
4259   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4260   return EmitLValueForField(LambdaLV, Field);
4261 }
4262 
4263 /// Get the field index in the debug info. The debug info structure/union
4264 /// will ignore the unnamed bitfields.
4265 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4266                                              unsigned FieldIndex) {
4267   unsigned I = 0, Skipped = 0;
4268 
4269   for (auto F : Rec->getDefinition()->fields()) {
4270     if (I == FieldIndex)
4271       break;
4272     if (F->isUnnamedBitfield())
4273       Skipped++;
4274     I++;
4275   }
4276 
4277   return FieldIndex - Skipped;
4278 }
4279 
4280 /// Get the address of a zero-sized field within a record. The resulting
4281 /// address doesn't necessarily have the right type.
4282 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4283                                        const FieldDecl *Field) {
4284   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4285       CGF.getContext().getFieldOffset(Field));
4286   if (Offset.isZero())
4287     return Base;
4288   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4289   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4290 }
4291 
4292 /// Drill down to the storage of a field without walking into
4293 /// reference types.
4294 ///
4295 /// The resulting address doesn't necessarily have the right type.
4296 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4297                                       const FieldDecl *field) {
4298   if (field->isZeroSize(CGF.getContext()))
4299     return emitAddrOfZeroSizeField(CGF, base, field);
4300 
4301   const RecordDecl *rec = field->getParent();
4302 
4303   unsigned idx =
4304     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4305 
4306   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4307 }
4308 
4309 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4310                                         Address addr, const FieldDecl *field) {
4311   const RecordDecl *rec = field->getParent();
4312   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4313       base.getType(), rec->getLocation());
4314 
4315   unsigned idx =
4316       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4317 
4318   return CGF.Builder.CreatePreserveStructAccessIndex(
4319       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4320 }
4321 
4322 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4323   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4324   if (!RD)
4325     return false;
4326 
4327   if (RD->isDynamicClass())
4328     return true;
4329 
4330   for (const auto &Base : RD->bases())
4331     if (hasAnyVptr(Base.getType(), Context))
4332       return true;
4333 
4334   for (const FieldDecl *Field : RD->fields())
4335     if (hasAnyVptr(Field->getType(), Context))
4336       return true;
4337 
4338   return false;
4339 }
4340 
4341 LValue CodeGenFunction::EmitLValueForField(LValue base,
4342                                            const FieldDecl *field) {
4343   LValueBaseInfo BaseInfo = base.getBaseInfo();
4344 
4345   if (field->isBitField()) {
4346     const CGRecordLayout &RL =
4347         CGM.getTypes().getCGRecordLayout(field->getParent());
4348     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4349     const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4350                              CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4351                              Info.VolatileStorageSize != 0 &&
4352                              field->getType()
4353                                  .withCVRQualifiers(base.getVRQualifiers())
4354                                  .isVolatileQualified();
4355     Address Addr = base.getAddress(*this);
4356     unsigned Idx = RL.getLLVMFieldNo(field);
4357     const RecordDecl *rec = field->getParent();
4358     if (!UseVolatile) {
4359       if (!IsInPreservedAIRegion &&
4360           (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4361         if (Idx != 0)
4362           // For structs, we GEP to the field that the record layout suggests.
4363           Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4364       } else {
4365         llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4366             getContext().getRecordType(rec), rec->getLocation());
4367         Addr = Builder.CreatePreserveStructAccessIndex(
4368             Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4369             DbgInfo);
4370       }
4371     }
4372     const unsigned SS =
4373         UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4374     // Get the access type.
4375     llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4376     if (Addr.getElementType() != FieldIntTy)
4377       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4378     if (UseVolatile) {
4379       const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4380       if (VolatileOffset)
4381         Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4382     }
4383 
4384     QualType fieldType =
4385         field->getType().withCVRQualifiers(base.getVRQualifiers());
4386     // TODO: Support TBAA for bit fields.
4387     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4388     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4389                                 TBAAAccessInfo());
4390   }
4391 
4392   // Fields of may-alias structures are may-alias themselves.
4393   // FIXME: this should get propagated down through anonymous structs
4394   // and unions.
4395   QualType FieldType = field->getType();
4396   const RecordDecl *rec = field->getParent();
4397   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4398   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4399   TBAAAccessInfo FieldTBAAInfo;
4400   if (base.getTBAAInfo().isMayAlias() ||
4401           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4402     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4403   } else if (rec->isUnion()) {
4404     // TODO: Support TBAA for unions.
4405     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4406   } else {
4407     // If no base type been assigned for the base access, then try to generate
4408     // one for this base lvalue.
4409     FieldTBAAInfo = base.getTBAAInfo();
4410     if (!FieldTBAAInfo.BaseType) {
4411         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4412         assert(!FieldTBAAInfo.Offset &&
4413                "Nonzero offset for an access with no base type!");
4414     }
4415 
4416     // Adjust offset to be relative to the base type.
4417     const ASTRecordLayout &Layout =
4418         getContext().getASTRecordLayout(field->getParent());
4419     unsigned CharWidth = getContext().getCharWidth();
4420     if (FieldTBAAInfo.BaseType)
4421       FieldTBAAInfo.Offset +=
4422           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4423 
4424     // Update the final access type and size.
4425     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4426     FieldTBAAInfo.Size =
4427         getContext().getTypeSizeInChars(FieldType).getQuantity();
4428   }
4429 
4430   Address addr = base.getAddress(*this);
4431   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4432     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4433         ClassDef->isDynamicClass()) {
4434       // Getting to any field of dynamic object requires stripping dynamic
4435       // information provided by invariant.group.  This is because accessing
4436       // fields may leak the real address of dynamic object, which could result
4437       // in miscompilation when leaked pointer would be compared.
4438       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4439       addr = Address(stripped, addr.getElementType(), addr.getAlignment());
4440     }
4441   }
4442 
4443   unsigned RecordCVR = base.getVRQualifiers();
4444   if (rec->isUnion()) {
4445     // For unions, there is no pointer adjustment.
4446     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4447         hasAnyVptr(FieldType, getContext()))
4448       // Because unions can easily skip invariant.barriers, we need to add
4449       // a barrier every time CXXRecord field with vptr is referenced.
4450       addr = Builder.CreateLaunderInvariantGroup(addr);
4451 
4452     if (IsInPreservedAIRegion ||
4453         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4454       // Remember the original union field index
4455       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4456           rec->getLocation());
4457       addr = Address(
4458           Builder.CreatePreserveUnionAccessIndex(
4459               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4460           addr.getElementType(), addr.getAlignment());
4461     }
4462 
4463     if (FieldType->isReferenceType())
4464       addr = Builder.CreateElementBitCast(
4465           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4466   } else {
4467     if (!IsInPreservedAIRegion &&
4468         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4469       // For structs, we GEP to the field that the record layout suggests.
4470       addr = emitAddrOfFieldStorage(*this, addr, field);
4471     else
4472       // Remember the original struct field index
4473       addr = emitPreserveStructAccess(*this, base, addr, field);
4474   }
4475 
4476   // If this is a reference field, load the reference right now.
4477   if (FieldType->isReferenceType()) {
4478     LValue RefLVal =
4479         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4480     if (RecordCVR & Qualifiers::Volatile)
4481       RefLVal.getQuals().addVolatile();
4482     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4483 
4484     // Qualifiers on the struct don't apply to the referencee.
4485     RecordCVR = 0;
4486     FieldType = FieldType->getPointeeType();
4487   }
4488 
4489   // Make sure that the address is pointing to the right type.  This is critical
4490   // for both unions and structs.  A union needs a bitcast, a struct element
4491   // will need a bitcast if the LLVM type laid out doesn't match the desired
4492   // type.
4493   addr = Builder.CreateElementBitCast(
4494       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4495 
4496   if (field->hasAttr<AnnotateAttr>())
4497     addr = EmitFieldAnnotations(field, addr);
4498 
4499   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4500   LV.getQuals().addCVRQualifiers(RecordCVR);
4501 
4502   // __weak attribute on a field is ignored.
4503   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4504     LV.getQuals().removeObjCGCAttr();
4505 
4506   return LV;
4507 }
4508 
4509 LValue
4510 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4511                                                   const FieldDecl *Field) {
4512   QualType FieldType = Field->getType();
4513 
4514   if (!FieldType->isReferenceType())
4515     return EmitLValueForField(Base, Field);
4516 
4517   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4518 
4519   // Make sure that the address is pointing to the right type.
4520   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4521   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4522 
4523   // TODO: Generate TBAA information that describes this access as a structure
4524   // member access and not just an access to an object of the field's type. This
4525   // should be similar to what we do in EmitLValueForField().
4526   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4527   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4528   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4529   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4530                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4531 }
4532 
4533 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4534   if (E->isFileScope()) {
4535     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4536     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4537   }
4538   if (E->getType()->isVariablyModifiedType())
4539     // make sure to emit the VLA size.
4540     EmitVariablyModifiedType(E->getType());
4541 
4542   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4543   const Expr *InitExpr = E->getInitializer();
4544   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4545 
4546   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4547                    /*Init*/ true);
4548 
4549   // Block-scope compound literals are destroyed at the end of the enclosing
4550   // scope in C.
4551   if (!getLangOpts().CPlusPlus)
4552     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4553       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4554                                   E->getType(), getDestroyer(DtorKind),
4555                                   DtorKind & EHCleanup);
4556 
4557   return Result;
4558 }
4559 
4560 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4561   if (!E->isGLValue())
4562     // Initializing an aggregate temporary in C++11: T{...}.
4563     return EmitAggExprToLValue(E);
4564 
4565   // An lvalue initializer list must be initializing a reference.
4566   assert(E->isTransparent() && "non-transparent glvalue init list");
4567   return EmitLValue(E->getInit(0));
4568 }
4569 
4570 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4571 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4572 /// LValue is returned and the current block has been terminated.
4573 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4574                                                     const Expr *Operand) {
4575   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4576     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4577     return None;
4578   }
4579 
4580   return CGF.EmitLValue(Operand);
4581 }
4582 
4583 namespace {
4584 // Handle the case where the condition is a constant evaluatable simple integer,
4585 // which means we don't have to separately handle the true/false blocks.
4586 llvm::Optional<LValue> HandleConditionalOperatorLValueSimpleCase(
4587     CodeGenFunction &CGF, const AbstractConditionalOperator *E) {
4588   const Expr *condExpr = E->getCond();
4589   bool CondExprBool;
4590   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4591     const Expr *Live = E->getTrueExpr(), *Dead = E->getFalseExpr();
4592     if (!CondExprBool)
4593       std::swap(Live, Dead);
4594 
4595     if (!CGF.ContainsLabel(Dead)) {
4596       // If the true case is live, we need to track its region.
4597       if (CondExprBool)
4598         CGF.incrementProfileCounter(E);
4599       // If a throw expression we emit it and return an undefined lvalue
4600       // because it can't be used.
4601       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Live->IgnoreParens())) {
4602         CGF.EmitCXXThrowExpr(ThrowExpr);
4603         llvm::Type *ElemTy = CGF.ConvertType(Dead->getType());
4604         llvm::Type *Ty = llvm::PointerType::getUnqual(ElemTy);
4605         return CGF.MakeAddrLValue(
4606             Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()),
4607             Dead->getType());
4608       }
4609       return CGF.EmitLValue(Live);
4610     }
4611   }
4612   return llvm::None;
4613 }
4614 struct ConditionalInfo {
4615   llvm::BasicBlock *lhsBlock, *rhsBlock;
4616   Optional<LValue> LHS, RHS;
4617 };
4618 
4619 // Create and generate the 3 blocks for a conditional operator.
4620 // Leaves the 'current block' in the continuation basic block.
4621 template<typename FuncTy>
4622 ConditionalInfo EmitConditionalBlocks(CodeGenFunction &CGF,
4623                                       const AbstractConditionalOperator *E,
4624                                       const FuncTy &BranchGenFunc) {
4625   ConditionalInfo Info{CGF.createBasicBlock("cond.true"),
4626                        CGF.createBasicBlock("cond.false")};
4627   llvm::BasicBlock *endBlock = CGF.createBasicBlock("cond.end");
4628 
4629   CodeGenFunction::ConditionalEvaluation eval(CGF);
4630   CGF.EmitBranchOnBoolExpr(E->getCond(), Info.lhsBlock, Info.rhsBlock,
4631                            CGF.getProfileCount(E));
4632 
4633   // Any temporaries created here are conditional.
4634   CGF.EmitBlock(Info.lhsBlock);
4635   CGF.incrementProfileCounter(E);
4636   eval.begin(CGF);
4637   Info.LHS = BranchGenFunc(CGF, E->getTrueExpr());
4638   eval.end(CGF);
4639   Info.lhsBlock = CGF.Builder.GetInsertBlock();
4640 
4641   if (Info.LHS)
4642     CGF.Builder.CreateBr(endBlock);
4643 
4644   // Any temporaries created here are conditional.
4645   CGF.EmitBlock(Info.rhsBlock);
4646   eval.begin(CGF);
4647   Info.RHS = BranchGenFunc(CGF, E->getFalseExpr());
4648   eval.end(CGF);
4649   Info.rhsBlock = CGF.Builder.GetInsertBlock();
4650   CGF.EmitBlock(endBlock);
4651 
4652   return Info;
4653 }
4654 } // namespace
4655 
4656 void CodeGenFunction::EmitIgnoredConditionalOperator(
4657     const AbstractConditionalOperator *E) {
4658   if (!E->isGLValue()) {
4659     // ?: here should be an aggregate.
4660     assert(hasAggregateEvaluationKind(E->getType()) &&
4661            "Unexpected conditional operator!");
4662     return (void)EmitAggExprToLValue(E);
4663   }
4664 
4665   OpaqueValueMapping binding(*this, E);
4666   if (HandleConditionalOperatorLValueSimpleCase(*this, E))
4667     return;
4668 
4669   EmitConditionalBlocks(*this, E, [](CodeGenFunction &CGF, const Expr *E) {
4670     CGF.EmitIgnoredExpr(E);
4671     return LValue{};
4672   });
4673 }
4674 LValue CodeGenFunction::EmitConditionalOperatorLValue(
4675     const AbstractConditionalOperator *expr) {
4676   if (!expr->isGLValue()) {
4677     // ?: here should be an aggregate.
4678     assert(hasAggregateEvaluationKind(expr->getType()) &&
4679            "Unexpected conditional operator!");
4680     return EmitAggExprToLValue(expr);
4681   }
4682 
4683   OpaqueValueMapping binding(*this, expr);
4684   if (llvm::Optional<LValue> Res =
4685           HandleConditionalOperatorLValueSimpleCase(*this, expr))
4686     return *Res;
4687 
4688   ConditionalInfo Info = EmitConditionalBlocks(
4689       *this, expr, [](CodeGenFunction &CGF, const Expr *E) {
4690         return EmitLValueOrThrowExpression(CGF, E);
4691       });
4692 
4693   if ((Info.LHS && !Info.LHS->isSimple()) ||
4694       (Info.RHS && !Info.RHS->isSimple()))
4695     return EmitUnsupportedLValue(expr, "conditional operator");
4696 
4697   if (Info.LHS && Info.RHS) {
4698     Address lhsAddr = Info.LHS->getAddress(*this);
4699     Address rhsAddr = Info.RHS->getAddress(*this);
4700     llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue");
4701     phi->addIncoming(lhsAddr.getPointer(), Info.lhsBlock);
4702     phi->addIncoming(rhsAddr.getPointer(), Info.rhsBlock);
4703     Address result(phi, lhsAddr.getElementType(),
4704                    std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment()));
4705     AlignmentSource alignSource =
4706         std::max(Info.LHS->getBaseInfo().getAlignmentSource(),
4707                  Info.RHS->getBaseInfo().getAlignmentSource());
4708     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4709         Info.LHS->getTBAAInfo(), Info.RHS->getTBAAInfo());
4710     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4711                           TBAAInfo);
4712   } else {
4713     assert((Info.LHS || Info.RHS) &&
4714            "both operands of glvalue conditional are throw-expressions?");
4715     return Info.LHS ? *Info.LHS : *Info.RHS;
4716   }
4717 }
4718 
4719 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4720 /// type. If the cast is to a reference, we can have the usual lvalue result,
4721 /// otherwise if a cast is needed by the code generator in an lvalue context,
4722 /// then it must mean that we need the address of an aggregate in order to
4723 /// access one of its members.  This can happen for all the reasons that casts
4724 /// are permitted with aggregate result, including noop aggregate casts, and
4725 /// cast from scalar to union.
4726 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4727   switch (E->getCastKind()) {
4728   case CK_ToVoid:
4729   case CK_BitCast:
4730   case CK_LValueToRValueBitCast:
4731   case CK_ArrayToPointerDecay:
4732   case CK_FunctionToPointerDecay:
4733   case CK_NullToMemberPointer:
4734   case CK_NullToPointer:
4735   case CK_IntegralToPointer:
4736   case CK_PointerToIntegral:
4737   case CK_PointerToBoolean:
4738   case CK_VectorSplat:
4739   case CK_IntegralCast:
4740   case CK_BooleanToSignedIntegral:
4741   case CK_IntegralToBoolean:
4742   case CK_IntegralToFloating:
4743   case CK_FloatingToIntegral:
4744   case CK_FloatingToBoolean:
4745   case CK_FloatingCast:
4746   case CK_FloatingRealToComplex:
4747   case CK_FloatingComplexToReal:
4748   case CK_FloatingComplexToBoolean:
4749   case CK_FloatingComplexCast:
4750   case CK_FloatingComplexToIntegralComplex:
4751   case CK_IntegralRealToComplex:
4752   case CK_IntegralComplexToReal:
4753   case CK_IntegralComplexToBoolean:
4754   case CK_IntegralComplexCast:
4755   case CK_IntegralComplexToFloatingComplex:
4756   case CK_DerivedToBaseMemberPointer:
4757   case CK_BaseToDerivedMemberPointer:
4758   case CK_MemberPointerToBoolean:
4759   case CK_ReinterpretMemberPointer:
4760   case CK_AnyPointerToBlockPointerCast:
4761   case CK_ARCProduceObject:
4762   case CK_ARCConsumeObject:
4763   case CK_ARCReclaimReturnedObject:
4764   case CK_ARCExtendBlockObject:
4765   case CK_CopyAndAutoreleaseBlockObject:
4766   case CK_IntToOCLSampler:
4767   case CK_FloatingToFixedPoint:
4768   case CK_FixedPointToFloating:
4769   case CK_FixedPointCast:
4770   case CK_FixedPointToBoolean:
4771   case CK_FixedPointToIntegral:
4772   case CK_IntegralToFixedPoint:
4773   case CK_MatrixCast:
4774     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4775 
4776   case CK_Dependent:
4777     llvm_unreachable("dependent cast kind in IR gen!");
4778 
4779   case CK_BuiltinFnToFnPtr:
4780     llvm_unreachable("builtin functions are handled elsewhere");
4781 
4782   // These are never l-values; just use the aggregate emission code.
4783   case CK_NonAtomicToAtomic:
4784   case CK_AtomicToNonAtomic:
4785     return EmitAggExprToLValue(E);
4786 
4787   case CK_Dynamic: {
4788     LValue LV = EmitLValue(E->getSubExpr());
4789     Address V = LV.getAddress(*this);
4790     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4791     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4792   }
4793 
4794   case CK_ConstructorConversion:
4795   case CK_UserDefinedConversion:
4796   case CK_CPointerToObjCPointerCast:
4797   case CK_BlockPointerToObjCPointerCast:
4798   case CK_LValueToRValue:
4799     return EmitLValue(E->getSubExpr());
4800 
4801   case CK_NoOp: {
4802     // CK_NoOp can model a qualification conversion, which can remove an array
4803     // bound and change the IR type.
4804     // FIXME: Once pointee types are removed from IR, remove this.
4805     LValue LV = EmitLValue(E->getSubExpr());
4806     if (LV.isSimple()) {
4807       Address V = LV.getAddress(*this);
4808       if (V.isValid()) {
4809         llvm::Type *T = ConvertTypeForMem(E->getType());
4810         if (V.getElementType() != T)
4811           LV.setAddress(Builder.CreateElementBitCast(V, T));
4812       }
4813     }
4814     return LV;
4815   }
4816 
4817   case CK_UncheckedDerivedToBase:
4818   case CK_DerivedToBase: {
4819     const auto *DerivedClassTy =
4820         E->getSubExpr()->getType()->castAs<RecordType>();
4821     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4822 
4823     LValue LV = EmitLValue(E->getSubExpr());
4824     Address This = LV.getAddress(*this);
4825 
4826     // Perform the derived-to-base conversion
4827     Address Base = GetAddressOfBaseClass(
4828         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4829         /*NullCheckValue=*/false, E->getExprLoc());
4830 
4831     // TODO: Support accesses to members of base classes in TBAA. For now, we
4832     // conservatively pretend that the complete object is of the base class
4833     // type.
4834     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4835                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4836   }
4837   case CK_ToUnion:
4838     return EmitAggExprToLValue(E);
4839   case CK_BaseToDerived: {
4840     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4841     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4842 
4843     LValue LV = EmitLValue(E->getSubExpr());
4844 
4845     // Perform the base-to-derived conversion
4846     Address Derived = GetAddressOfDerivedClass(
4847         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4848         /*NullCheckValue=*/false);
4849 
4850     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4851     // performed and the object is not of the derived type.
4852     if (sanitizePerformTypeCheck())
4853       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4854                     Derived.getPointer(), E->getType());
4855 
4856     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4857       EmitVTablePtrCheckForCast(E->getType(), Derived,
4858                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4859                                 E->getBeginLoc());
4860 
4861     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4862                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4863   }
4864   case CK_LValueBitCast: {
4865     // This must be a reinterpret_cast (or c-style equivalent).
4866     const auto *CE = cast<ExplicitCastExpr>(E);
4867 
4868     CGM.EmitExplicitCastExprType(CE, this);
4869     LValue LV = EmitLValue(E->getSubExpr());
4870     Address V = Builder.CreateElementBitCast(
4871         LV.getAddress(*this),
4872         ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType()));
4873 
4874     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4875       EmitVTablePtrCheckForCast(E->getType(), V,
4876                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4877                                 E->getBeginLoc());
4878 
4879     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4880                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4881   }
4882   case CK_AddressSpaceConversion: {
4883     LValue LV = EmitLValue(E->getSubExpr());
4884     QualType DestTy = getContext().getPointerType(E->getType());
4885     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4886         *this, LV.getPointer(*this),
4887         E->getSubExpr()->getType().getAddressSpace(),
4888         E->getType().getAddressSpace(), ConvertType(DestTy));
4889     return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()),
4890                                   LV.getAddress(*this).getAlignment()),
4891                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4892   }
4893   case CK_ObjCObjectLValueCast: {
4894     LValue LV = EmitLValue(E->getSubExpr());
4895     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4896                                              ConvertType(E->getType()));
4897     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4898                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4899   }
4900   case CK_ZeroToOCLOpaqueType:
4901     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4902   }
4903 
4904   llvm_unreachable("Unhandled lvalue cast kind?");
4905 }
4906 
4907 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4908   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4909   return getOrCreateOpaqueLValueMapping(e);
4910 }
4911 
4912 LValue
4913 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4914   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4915 
4916   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4917       it = OpaqueLValues.find(e);
4918 
4919   if (it != OpaqueLValues.end())
4920     return it->second;
4921 
4922   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4923   return EmitLValue(e->getSourceExpr());
4924 }
4925 
4926 RValue
4927 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4928   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4929 
4930   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4931       it = OpaqueRValues.find(e);
4932 
4933   if (it != OpaqueRValues.end())
4934     return it->second;
4935 
4936   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4937   return EmitAnyExpr(e->getSourceExpr());
4938 }
4939 
4940 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4941                                            const FieldDecl *FD,
4942                                            SourceLocation Loc) {
4943   QualType FT = FD->getType();
4944   LValue FieldLV = EmitLValueForField(LV, FD);
4945   switch (getEvaluationKind(FT)) {
4946   case TEK_Complex:
4947     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4948   case TEK_Aggregate:
4949     return FieldLV.asAggregateRValue(*this);
4950   case TEK_Scalar:
4951     // This routine is used to load fields one-by-one to perform a copy, so
4952     // don't load reference fields.
4953     if (FD->getType()->isReferenceType())
4954       return RValue::get(FieldLV.getPointer(*this));
4955     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4956     // primitive load.
4957     if (FieldLV.isBitField())
4958       return EmitLoadOfLValue(FieldLV, Loc);
4959     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4960   }
4961   llvm_unreachable("bad evaluation kind");
4962 }
4963 
4964 //===--------------------------------------------------------------------===//
4965 //                             Expression Emission
4966 //===--------------------------------------------------------------------===//
4967 
4968 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4969                                      ReturnValueSlot ReturnValue) {
4970   // Builtins never have block type.
4971   if (E->getCallee()->getType()->isBlockPointerType())
4972     return EmitBlockCallExpr(E, ReturnValue);
4973 
4974   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4975     return EmitCXXMemberCallExpr(CE, ReturnValue);
4976 
4977   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4978     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4979 
4980   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4981     if (const CXXMethodDecl *MD =
4982           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4983       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4984 
4985   CGCallee callee = EmitCallee(E->getCallee());
4986 
4987   if (callee.isBuiltin()) {
4988     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4989                            E, ReturnValue);
4990   }
4991 
4992   if (callee.isPseudoDestructor()) {
4993     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4994   }
4995 
4996   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4997 }
4998 
4999 /// Emit a CallExpr without considering whether it might be a subclass.
5000 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
5001                                            ReturnValueSlot ReturnValue) {
5002   CGCallee Callee = EmitCallee(E->getCallee());
5003   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
5004 }
5005 
5006 // Detect the unusual situation where an inline version is shadowed by a
5007 // non-inline version. In that case we should pick the external one
5008 // everywhere. That's GCC behavior too.
5009 static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl *FD) {
5010   for (const FunctionDecl *PD = FD; PD; PD = PD->getPreviousDecl())
5011     if (!PD->isInlineBuiltinDeclaration())
5012       return false;
5013   return true;
5014 }
5015 
5016 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
5017   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
5018 
5019   if (auto builtinID = FD->getBuiltinID()) {
5020     std::string FDInlineName = (FD->getName() + ".inline").str();
5021     // When directing calling an inline builtin, call it through it's mangled
5022     // name to make it clear it's not the actual builtin.
5023     if (CGF.CurFn->getName() != FDInlineName &&
5024         OnlyHasInlineBuiltinDeclaration(FD)) {
5025       llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
5026       llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr);
5027       llvm::Module *M = Fn->getParent();
5028       llvm::Function *Clone = M->getFunction(FDInlineName);
5029       if (!Clone) {
5030         Clone = llvm::Function::Create(Fn->getFunctionType(),
5031                                        llvm::GlobalValue::InternalLinkage,
5032                                        Fn->getAddressSpace(), FDInlineName, M);
5033         Clone->addFnAttr(llvm::Attribute::AlwaysInline);
5034       }
5035       return CGCallee::forDirect(Clone, GD);
5036     }
5037 
5038     // Replaceable builtins provide their own implementation of a builtin. If we
5039     // are in an inline builtin implementation, avoid trivial infinite
5040     // recursion.
5041     else
5042       return CGCallee::forBuiltin(builtinID, FD);
5043   }
5044 
5045   llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
5046   if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
5047       FD->hasAttr<CUDAGlobalAttr>())
5048     CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
5049         cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
5050 
5051   return CGCallee::forDirect(CalleePtr, GD);
5052 }
5053 
5054 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
5055   E = E->IgnoreParens();
5056 
5057   // Look through function-to-pointer decay.
5058   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
5059     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
5060         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
5061       return EmitCallee(ICE->getSubExpr());
5062     }
5063 
5064   // Resolve direct calls.
5065   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
5066     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
5067       return EmitDirectCallee(*this, FD);
5068     }
5069   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
5070     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
5071       EmitIgnoredExpr(ME->getBase());
5072       return EmitDirectCallee(*this, FD);
5073     }
5074 
5075   // Look through template substitutions.
5076   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
5077     return EmitCallee(NTTP->getReplacement());
5078 
5079   // Treat pseudo-destructor calls differently.
5080   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
5081     return CGCallee::forPseudoDestructor(PDE);
5082   }
5083 
5084   // Otherwise, we have an indirect reference.
5085   llvm::Value *calleePtr;
5086   QualType functionType;
5087   if (auto ptrType = E->getType()->getAs<PointerType>()) {
5088     calleePtr = EmitScalarExpr(E);
5089     functionType = ptrType->getPointeeType();
5090   } else {
5091     functionType = E->getType();
5092     calleePtr = EmitLValue(E).getPointer(*this);
5093   }
5094   assert(functionType->isFunctionType());
5095 
5096   GlobalDecl GD;
5097   if (const auto *VD =
5098           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
5099     GD = GlobalDecl(VD);
5100 
5101   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
5102   CGCallee callee(calleeInfo, calleePtr);
5103   return callee;
5104 }
5105 
5106 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
5107   // Comma expressions just emit their LHS then their RHS as an l-value.
5108   if (E->getOpcode() == BO_Comma) {
5109     EmitIgnoredExpr(E->getLHS());
5110     EnsureInsertPoint();
5111     return EmitLValue(E->getRHS());
5112   }
5113 
5114   if (E->getOpcode() == BO_PtrMemD ||
5115       E->getOpcode() == BO_PtrMemI)
5116     return EmitPointerToDataMemberBinaryExpr(E);
5117 
5118   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
5119 
5120   // Note that in all of these cases, __block variables need the RHS
5121   // evaluated first just in case the variable gets moved by the RHS.
5122 
5123   switch (getEvaluationKind(E->getType())) {
5124   case TEK_Scalar: {
5125     switch (E->getLHS()->getType().getObjCLifetime()) {
5126     case Qualifiers::OCL_Strong:
5127       return EmitARCStoreStrong(E, /*ignored*/ false).first;
5128 
5129     case Qualifiers::OCL_Autoreleasing:
5130       return EmitARCStoreAutoreleasing(E).first;
5131 
5132     // No reason to do any of these differently.
5133     case Qualifiers::OCL_None:
5134     case Qualifiers::OCL_ExplicitNone:
5135     case Qualifiers::OCL_Weak:
5136       break;
5137     }
5138 
5139     RValue RV = EmitAnyExpr(E->getRHS());
5140     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
5141     if (RV.isScalar())
5142       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
5143     EmitStoreThroughLValue(RV, LV);
5144     if (getLangOpts().OpenMP)
5145       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5146                                                                 E->getLHS());
5147     return LV;
5148   }
5149 
5150   case TEK_Complex:
5151     return EmitComplexAssignmentLValue(E);
5152 
5153   case TEK_Aggregate:
5154     return EmitAggExprToLValue(E);
5155   }
5156   llvm_unreachable("bad evaluation kind");
5157 }
5158 
5159 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5160   RValue RV = EmitCallExpr(E);
5161 
5162   if (!RV.isScalar())
5163     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5164                           AlignmentSource::Decl);
5165 
5166   assert(E->getCallReturnType(getContext())->isReferenceType() &&
5167          "Can't have a scalar return unless the return type is a "
5168          "reference type!");
5169 
5170   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5171 }
5172 
5173 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5174   // FIXME: This shouldn't require another copy.
5175   return EmitAggExprToLValue(E);
5176 }
5177 
5178 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5179   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5180          && "binding l-value to type which needs a temporary");
5181   AggValueSlot Slot = CreateAggTemp(E->getType());
5182   EmitCXXConstructExpr(E, Slot);
5183   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5184 }
5185 
5186 LValue
5187 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5188   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5189 }
5190 
5191 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5192   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
5193                                       ConvertType(E->getType()));
5194 }
5195 
5196 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5197   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5198                         AlignmentSource::Decl);
5199 }
5200 
5201 LValue
5202 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5203   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5204   Slot.setExternallyDestructed();
5205   EmitAggExpr(E->getSubExpr(), Slot);
5206   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5207   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5208 }
5209 
5210 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5211   RValue RV = EmitObjCMessageExpr(E);
5212 
5213   if (!RV.isScalar())
5214     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5215                           AlignmentSource::Decl);
5216 
5217   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5218          "Can't have a scalar return unless the return type is a "
5219          "reference type!");
5220 
5221   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5222 }
5223 
5224 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5225   Address V =
5226     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5227   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5228 }
5229 
5230 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5231                                              const ObjCIvarDecl *Ivar) {
5232   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5233 }
5234 
5235 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5236                                           llvm::Value *BaseValue,
5237                                           const ObjCIvarDecl *Ivar,
5238                                           unsigned CVRQualifiers) {
5239   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5240                                                    Ivar, CVRQualifiers);
5241 }
5242 
5243 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5244   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5245   llvm::Value *BaseValue = nullptr;
5246   const Expr *BaseExpr = E->getBase();
5247   Qualifiers BaseQuals;
5248   QualType ObjectTy;
5249   if (E->isArrow()) {
5250     BaseValue = EmitScalarExpr(BaseExpr);
5251     ObjectTy = BaseExpr->getType()->getPointeeType();
5252     BaseQuals = ObjectTy.getQualifiers();
5253   } else {
5254     LValue BaseLV = EmitLValue(BaseExpr);
5255     BaseValue = BaseLV.getPointer(*this);
5256     ObjectTy = BaseExpr->getType();
5257     BaseQuals = ObjectTy.getQualifiers();
5258   }
5259 
5260   LValue LV =
5261     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5262                       BaseQuals.getCVRQualifiers());
5263   setObjCGCLValueClass(getContext(), E, LV);
5264   return LV;
5265 }
5266 
5267 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5268   // Can only get l-value for message expression returning aggregate type
5269   RValue RV = EmitAnyExprToTemp(E);
5270   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5271                         AlignmentSource::Decl);
5272 }
5273 
5274 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5275                                  const CallExpr *E, ReturnValueSlot ReturnValue,
5276                                  llvm::Value *Chain) {
5277   // Get the actual function type. The callee type will always be a pointer to
5278   // function type or a block pointer type.
5279   assert(CalleeType->isFunctionPointerType() &&
5280          "Call must have function pointer type!");
5281 
5282   const Decl *TargetDecl =
5283       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5284 
5285   CalleeType = getContext().getCanonicalType(CalleeType);
5286 
5287   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5288 
5289   CGCallee Callee = OrigCallee;
5290 
5291   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5292       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5293     if (llvm::Constant *PrefixSig =
5294             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5295       SanitizerScope SanScope(this);
5296       // Remove any (C++17) exception specifications, to allow calling e.g. a
5297       // noexcept function through a non-noexcept pointer.
5298       auto ProtoTy =
5299         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5300       llvm::Constant *FTRTTIConst =
5301           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5302       llvm::Type *PrefixSigType = PrefixSig->getType();
5303       llvm::StructType *PrefixStructTy = llvm::StructType::get(
5304           CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5305 
5306       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5307 
5308       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5309           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5310       llvm::Value *CalleeSigPtr =
5311           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5312       llvm::Value *CalleeSig =
5313           Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5314       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5315 
5316       llvm::BasicBlock *Cont = createBasicBlock("cont");
5317       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5318       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5319 
5320       EmitBlock(TypeCheck);
5321       llvm::Value *CalleeRTTIPtr =
5322           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5323       llvm::Value *CalleeRTTIEncoded =
5324           Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign());
5325       llvm::Value *CalleeRTTI =
5326           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5327       llvm::Value *CalleeRTTIMatch =
5328           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5329       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5330                                       EmitCheckTypeDescriptor(CalleeType)};
5331       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5332                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5333                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5334 
5335       Builder.CreateBr(Cont);
5336       EmitBlock(Cont);
5337     }
5338   }
5339 
5340   const auto *FnType = cast<FunctionType>(PointeeType);
5341 
5342   // If we are checking indirect calls and this call is indirect, check that the
5343   // function pointer is a member of the bit set for the function type.
5344   if (SanOpts.has(SanitizerKind::CFIICall) &&
5345       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5346     SanitizerScope SanScope(this);
5347     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5348 
5349     llvm::Metadata *MD;
5350     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5351       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5352     else
5353       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5354 
5355     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5356 
5357     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5358     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5359     llvm::Value *TypeTest = Builder.CreateCall(
5360         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5361 
5362     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5363     llvm::Constant *StaticData[] = {
5364         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5365         EmitCheckSourceLocation(E->getBeginLoc()),
5366         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5367     };
5368     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5369       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5370                            CastedCallee, StaticData);
5371     } else {
5372       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5373                 SanitizerHandler::CFICheckFail, StaticData,
5374                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5375     }
5376   }
5377 
5378   CallArgList Args;
5379   if (Chain)
5380     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5381              CGM.getContext().VoidPtrTy);
5382 
5383   // C++17 requires that we evaluate arguments to a call using assignment syntax
5384   // right-to-left, and that we evaluate arguments to certain other operators
5385   // left-to-right. Note that we allow this to override the order dictated by
5386   // the calling convention on the MS ABI, which means that parameter
5387   // destruction order is not necessarily reverse construction order.
5388   // FIXME: Revisit this based on C++ committee response to unimplementability.
5389   EvaluationOrder Order = EvaluationOrder::Default;
5390   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5391     if (OCE->isAssignmentOp())
5392       Order = EvaluationOrder::ForceRightToLeft;
5393     else {
5394       switch (OCE->getOperator()) {
5395       case OO_LessLess:
5396       case OO_GreaterGreater:
5397       case OO_AmpAmp:
5398       case OO_PipePipe:
5399       case OO_Comma:
5400       case OO_ArrowStar:
5401         Order = EvaluationOrder::ForceLeftToRight;
5402         break;
5403       default:
5404         break;
5405       }
5406     }
5407   }
5408 
5409   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5410                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5411 
5412   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5413       Args, FnType, /*ChainCall=*/Chain);
5414 
5415   // C99 6.5.2.2p6:
5416   //   If the expression that denotes the called function has a type
5417   //   that does not include a prototype, [the default argument
5418   //   promotions are performed]. If the number of arguments does not
5419   //   equal the number of parameters, the behavior is undefined. If
5420   //   the function is defined with a type that includes a prototype,
5421   //   and either the prototype ends with an ellipsis (, ...) or the
5422   //   types of the arguments after promotion are not compatible with
5423   //   the types of the parameters, the behavior is undefined. If the
5424   //   function is defined with a type that does not include a
5425   //   prototype, and the types of the arguments after promotion are
5426   //   not compatible with those of the parameters after promotion,
5427   //   the behavior is undefined [except in some trivial cases].
5428   // That is, in the general case, we should assume that a call
5429   // through an unprototyped function type works like a *non-variadic*
5430   // call.  The way we make this work is to cast to the exact type
5431   // of the promoted arguments.
5432   //
5433   // Chain calls use this same code path to add the invisible chain parameter
5434   // to the function type.
5435   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5436     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5437     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5438     CalleeTy = CalleeTy->getPointerTo(AS);
5439 
5440     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5441     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5442     Callee.setFunctionPointer(CalleePtr);
5443   }
5444 
5445   // HIP function pointer contains kernel handle when it is used in triple
5446   // chevron. The kernel stub needs to be loaded from kernel handle and used
5447   // as callee.
5448   if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
5449       isa<CUDAKernelCallExpr>(E) &&
5450       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5451     llvm::Value *Handle = Callee.getFunctionPointer();
5452     auto *Cast =
5453         Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo());
5454     auto *Stub = Builder.CreateLoad(
5455         Address(Cast, Handle->getType(), CGM.getPointerAlign()));
5456     Callee.setFunctionPointer(Stub);
5457   }
5458   llvm::CallBase *CallOrInvoke = nullptr;
5459   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5460                          E == MustTailCall, E->getExprLoc());
5461 
5462   // Generate function declaration DISuprogram in order to be used
5463   // in debug info about call sites.
5464   if (CGDebugInfo *DI = getDebugInfo()) {
5465     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
5466       FunctionArgList Args;
5467       QualType ResTy = BuildFunctionArgList(CalleeDecl, Args);
5468       DI->EmitFuncDeclForCallSite(CallOrInvoke,
5469                                   DI->getFunctionType(CalleeDecl, ResTy, Args),
5470                                   CalleeDecl);
5471     }
5472   }
5473 
5474   return Call;
5475 }
5476 
5477 LValue CodeGenFunction::
5478 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5479   Address BaseAddr = Address::invalid();
5480   if (E->getOpcode() == BO_PtrMemI) {
5481     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5482   } else {
5483     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5484   }
5485 
5486   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5487   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5488 
5489   LValueBaseInfo BaseInfo;
5490   TBAAAccessInfo TBAAInfo;
5491   Address MemberAddr =
5492     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5493                                     &TBAAInfo);
5494 
5495   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5496 }
5497 
5498 /// Given the address of a temporary variable, produce an r-value of
5499 /// its type.
5500 RValue CodeGenFunction::convertTempToRValue(Address addr,
5501                                             QualType type,
5502                                             SourceLocation loc) {
5503   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5504   switch (getEvaluationKind(type)) {
5505   case TEK_Complex:
5506     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5507   case TEK_Aggregate:
5508     return lvalue.asAggregateRValue(*this);
5509   case TEK_Scalar:
5510     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5511   }
5512   llvm_unreachable("bad evaluation kind");
5513 }
5514 
5515 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5516   assert(Val->getType()->isFPOrFPVectorTy());
5517   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5518     return;
5519 
5520   llvm::MDBuilder MDHelper(getLLVMContext());
5521   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5522 
5523   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5524 }
5525 
5526 namespace {
5527   struct LValueOrRValue {
5528     LValue LV;
5529     RValue RV;
5530   };
5531 }
5532 
5533 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5534                                            const PseudoObjectExpr *E,
5535                                            bool forLValue,
5536                                            AggValueSlot slot) {
5537   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5538 
5539   // Find the result expression, if any.
5540   const Expr *resultExpr = E->getResultExpr();
5541   LValueOrRValue result;
5542 
5543   for (PseudoObjectExpr::const_semantics_iterator
5544          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5545     const Expr *semantic = *i;
5546 
5547     // If this semantic expression is an opaque value, bind it
5548     // to the result of its source expression.
5549     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5550       // Skip unique OVEs.
5551       if (ov->isUnique()) {
5552         assert(ov != resultExpr &&
5553                "A unique OVE cannot be used as the result expression");
5554         continue;
5555       }
5556 
5557       // If this is the result expression, we may need to evaluate
5558       // directly into the slot.
5559       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5560       OVMA opaqueData;
5561       if (ov == resultExpr && ov->isPRValue() && !forLValue &&
5562           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5563         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5564         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5565                                        AlignmentSource::Decl);
5566         opaqueData = OVMA::bind(CGF, ov, LV);
5567         result.RV = slot.asRValue();
5568 
5569       // Otherwise, emit as normal.
5570       } else {
5571         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5572 
5573         // If this is the result, also evaluate the result now.
5574         if (ov == resultExpr) {
5575           if (forLValue)
5576             result.LV = CGF.EmitLValue(ov);
5577           else
5578             result.RV = CGF.EmitAnyExpr(ov, slot);
5579         }
5580       }
5581 
5582       opaques.push_back(opaqueData);
5583 
5584     // Otherwise, if the expression is the result, evaluate it
5585     // and remember the result.
5586     } else if (semantic == resultExpr) {
5587       if (forLValue)
5588         result.LV = CGF.EmitLValue(semantic);
5589       else
5590         result.RV = CGF.EmitAnyExpr(semantic, slot);
5591 
5592     // Otherwise, evaluate the expression in an ignored context.
5593     } else {
5594       CGF.EmitIgnoredExpr(semantic);
5595     }
5596   }
5597 
5598   // Unbind all the opaques now.
5599   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5600     opaques[i].unbind(CGF);
5601 
5602   return result;
5603 }
5604 
5605 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5606                                                AggValueSlot slot) {
5607   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5608 }
5609 
5610 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5611   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5612 }
5613