1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/ADT/Hashing.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/Support/ConvertUTF.h"
31 
32 using namespace clang;
33 using namespace CodeGen;
34 
35 //===--------------------------------------------------------------------===//
36 //                        Miscellaneous Helper Methods
37 //===--------------------------------------------------------------------===//
38 
39 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
40   unsigned addressSpace =
41     cast<llvm::PointerType>(value->getType())->getAddressSpace();
42 
43   llvm::PointerType *destType = Int8PtrTy;
44   if (addressSpace)
45     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
46 
47   if (value->getType() == destType) return value;
48   return Builder.CreateBitCast(value, destType);
49 }
50 
51 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
52 /// block.
53 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
54                                                     const Twine &Name) {
55   if (!Builder.isNamePreserving())
56     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
57   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
58 }
59 
60 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
61                                      llvm::Value *Init) {
62   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
63   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
64   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
65 }
66 
67 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
68                                                 const Twine &Name) {
69   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
70   // FIXME: Should we prefer the preferred type alignment here?
71   CharUnits Align = getContext().getTypeAlignInChars(Ty);
72   Alloc->setAlignment(Align.getQuantity());
73   return Alloc;
74 }
75 
76 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
77                                                  const Twine &Name) {
78   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
79   // FIXME: Should we prefer the preferred type alignment here?
80   CharUnits Align = getContext().getTypeAlignInChars(Ty);
81   Alloc->setAlignment(Align.getQuantity());
82   return Alloc;
83 }
84 
85 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
86 /// expression and compare the result against zero, returning an Int1Ty value.
87 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
88   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
89     llvm::Value *MemPtr = EmitScalarExpr(E);
90     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
91   }
92 
93   QualType BoolTy = getContext().BoolTy;
94   if (!E->getType()->isAnyComplexType())
95     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
96 
97   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
98 }
99 
100 /// EmitIgnoredExpr - Emit code to compute the specified expression,
101 /// ignoring the result.
102 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
103   if (E->isRValue())
104     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
105 
106   // Just emit it as an l-value and drop the result.
107   EmitLValue(E);
108 }
109 
110 /// EmitAnyExpr - Emit code to compute the specified expression which
111 /// can have any type.  The result is returned as an RValue struct.
112 /// If this is an aggregate expression, AggSlot indicates where the
113 /// result should be returned.
114 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
115                                     AggValueSlot aggSlot,
116                                     bool ignoreResult) {
117   switch (getEvaluationKind(E->getType())) {
118   case TEK_Scalar:
119     return RValue::get(EmitScalarExpr(E, ignoreResult));
120   case TEK_Complex:
121     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
122   case TEK_Aggregate:
123     if (!ignoreResult && aggSlot.isIgnored())
124       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
125     EmitAggExpr(E, aggSlot);
126     return aggSlot.asRValue();
127   }
128   llvm_unreachable("bad evaluation kind");
129 }
130 
131 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
132 /// always be accessible even if no aggregate location is provided.
133 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
134   AggValueSlot AggSlot = AggValueSlot::ignored();
135 
136   if (hasAggregateEvaluationKind(E->getType()))
137     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
138   return EmitAnyExpr(E, AggSlot);
139 }
140 
141 /// EmitAnyExprToMem - Evaluate an expression into a given memory
142 /// location.
143 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
144                                        llvm::Value *Location,
145                                        Qualifiers Quals,
146                                        bool IsInit) {
147   // FIXME: This function should take an LValue as an argument.
148   switch (getEvaluationKind(E->getType())) {
149   case TEK_Complex:
150     EmitComplexExprIntoLValue(E,
151                          MakeNaturalAlignAddrLValue(Location, E->getType()),
152                               /*isInit*/ false);
153     return;
154 
155   case TEK_Aggregate: {
156     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
157     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
158                                          AggValueSlot::IsDestructed_t(IsInit),
159                                          AggValueSlot::DoesNotNeedGCBarriers,
160                                          AggValueSlot::IsAliased_t(!IsInit)));
161     return;
162   }
163 
164   case TEK_Scalar: {
165     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
166     LValue LV = MakeAddrLValue(Location, E->getType());
167     EmitStoreThroughLValue(RV, LV);
168     return;
169   }
170   }
171   llvm_unreachable("bad evaluation kind");
172 }
173 
174 static void
175 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
176                      const Expr *E, llvm::Value *ReferenceTemporary) {
177   // Objective-C++ ARC:
178   //   If we are binding a reference to a temporary that has ownership, we
179   //   need to perform retain/release operations on the temporary.
180   //
181   // FIXME: This should be looking at E, not M.
182   if (CGF.getLangOpts().ObjCAutoRefCount &&
183       M->getType()->isObjCLifetimeType()) {
184     QualType ObjCARCReferenceLifetimeType = M->getType();
185     switch (Qualifiers::ObjCLifetime Lifetime =
186                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
187     case Qualifiers::OCL_None:
188     case Qualifiers::OCL_ExplicitNone:
189       // Carry on to normal cleanup handling.
190       break;
191 
192     case Qualifiers::OCL_Autoreleasing:
193       // Nothing to do; cleaned up by an autorelease pool.
194       return;
195 
196     case Qualifiers::OCL_Strong:
197     case Qualifiers::OCL_Weak:
198       switch (StorageDuration Duration = M->getStorageDuration()) {
199       case SD_Static:
200         // Note: we intentionally do not register a cleanup to release
201         // the object on program termination.
202         return;
203 
204       case SD_Thread:
205         // FIXME: We should probably register a cleanup in this case.
206         return;
207 
208       case SD_Automatic:
209       case SD_FullExpression:
210         assert(!ObjCARCReferenceLifetimeType->isArrayType());
211         CodeGenFunction::Destroyer *Destroy;
212         CleanupKind CleanupKind;
213         if (Lifetime == Qualifiers::OCL_Strong) {
214           const ValueDecl *VD = M->getExtendingDecl();
215           bool Precise =
216               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
217           CleanupKind = CGF.getARCCleanupKind();
218           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
219                             : &CodeGenFunction::destroyARCStrongImprecise;
220         } else {
221           // __weak objects always get EH cleanups; otherwise, exceptions
222           // could cause really nasty crashes instead of mere leaks.
223           CleanupKind = NormalAndEHCleanup;
224           Destroy = &CodeGenFunction::destroyARCWeak;
225         }
226         if (Duration == SD_FullExpression)
227           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
228                           ObjCARCReferenceLifetimeType, *Destroy,
229                           CleanupKind & EHCleanup);
230         else
231           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
232                                           ObjCARCReferenceLifetimeType,
233                                           *Destroy, CleanupKind & EHCleanup);
234         return;
235 
236       case SD_Dynamic:
237         llvm_unreachable("temporary cannot have dynamic storage duration");
238       }
239       llvm_unreachable("unknown storage duration");
240     }
241   }
242 
243   CXXDestructorDecl *ReferenceTemporaryDtor = 0;
244   if (const RecordType *RT =
245           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
246     // Get the destructor for the reference temporary.
247     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
248     if (!ClassDecl->hasTrivialDestructor())
249       ReferenceTemporaryDtor = ClassDecl->getDestructor();
250   }
251 
252   if (!ReferenceTemporaryDtor)
253     return;
254 
255   // Call the destructor for the temporary.
256   switch (M->getStorageDuration()) {
257   case SD_Static:
258   case SD_Thread: {
259     llvm::Constant *CleanupFn;
260     llvm::Constant *CleanupArg;
261     if (E->getType()->isArrayType()) {
262       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
263           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
264           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
265           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
266       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
267     } else {
268       CleanupFn =
269         CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
270       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
271     }
272     CGF.CGM.getCXXABI().registerGlobalDtor(
273         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
274     break;
275   }
276 
277   case SD_FullExpression:
278     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
279                     CodeGenFunction::destroyCXXObject,
280                     CGF.getLangOpts().Exceptions);
281     break;
282 
283   case SD_Automatic:
284     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
285                                     ReferenceTemporary, E->getType(),
286                                     CodeGenFunction::destroyCXXObject,
287                                     CGF.getLangOpts().Exceptions);
288     break;
289 
290   case SD_Dynamic:
291     llvm_unreachable("temporary cannot have dynamic storage duration");
292   }
293 }
294 
295 static llvm::Value *
296 createReferenceTemporary(CodeGenFunction &CGF,
297                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
298   switch (M->getStorageDuration()) {
299   case SD_FullExpression:
300   case SD_Automatic:
301     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
302 
303   case SD_Thread:
304   case SD_Static:
305     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
306 
307   case SD_Dynamic:
308     llvm_unreachable("temporary can't have dynamic storage duration");
309   }
310   llvm_unreachable("unknown storage duration");
311 }
312 
313 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
314                                            const MaterializeTemporaryExpr *M) {
315   const Expr *E = M->GetTemporaryExpr();
316 
317   if (getLangOpts().ObjCAutoRefCount &&
318       M->getType()->isObjCLifetimeType() &&
319       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
320       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
321     // FIXME: Fold this into the general case below.
322     llvm::Value *Object = createReferenceTemporary(*this, M, E);
323     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
324 
325     if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
326       // We should not have emitted the initializer for this temporary as a
327       // constant.
328       assert(!Var->hasInitializer());
329       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
330     }
331 
332     EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
333 
334     pushTemporaryCleanup(*this, M, E, Object);
335     return RefTempDst;
336   }
337 
338   SmallVector<const Expr *, 2> CommaLHSs;
339   SmallVector<SubobjectAdjustment, 2> Adjustments;
340   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
341 
342   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
343     EmitIgnoredExpr(CommaLHSs[I]);
344 
345   if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) {
346     if (opaque->getType()->isRecordType()) {
347       assert(Adjustments.empty());
348       return EmitOpaqueValueLValue(opaque);
349     }
350   }
351 
352   // Create and initialize the reference temporary.
353   llvm::Value *Object = createReferenceTemporary(*this, M, E);
354   if (llvm::GlobalVariable *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
355     // If the temporary is a global and has a constant initializer, we may
356     // have already initialized it.
357     if (!Var->hasInitializer()) {
358       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
359       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
360     }
361   } else {
362     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
363   }
364   pushTemporaryCleanup(*this, M, E, Object);
365 
366   // Perform derived-to-base casts and/or field accesses, to get from the
367   // temporary object we created (and, potentially, for which we extended
368   // the lifetime) to the subobject we're binding the reference to.
369   for (unsigned I = Adjustments.size(); I != 0; --I) {
370     SubobjectAdjustment &Adjustment = Adjustments[I-1];
371     switch (Adjustment.Kind) {
372     case SubobjectAdjustment::DerivedToBaseAdjustment:
373       Object =
374           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
375                                 Adjustment.DerivedToBase.BasePath->path_begin(),
376                                 Adjustment.DerivedToBase.BasePath->path_end(),
377                                 /*NullCheckValue=*/ false);
378       break;
379 
380     case SubobjectAdjustment::FieldAdjustment: {
381       LValue LV = MakeAddrLValue(Object, E->getType());
382       LV = EmitLValueForField(LV, Adjustment.Field);
383       assert(LV.isSimple() &&
384              "materialized temporary field is not a simple lvalue");
385       Object = LV.getAddress();
386       break;
387     }
388 
389     case SubobjectAdjustment::MemberPointerAdjustment: {
390       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
391       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
392                     *this, Object, Ptr, Adjustment.Ptr.MPT);
393       break;
394     }
395     }
396   }
397 
398   return MakeAddrLValue(Object, M->getType());
399 }
400 
401 RValue
402 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
403   // Emit the expression as an lvalue.
404   LValue LV = EmitLValue(E);
405   assert(LV.isSimple());
406   llvm::Value *Value = LV.getAddress();
407 
408   if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
409     // C++11 [dcl.ref]p5 (as amended by core issue 453):
410     //   If a glvalue to which a reference is directly bound designates neither
411     //   an existing object or function of an appropriate type nor a region of
412     //   storage of suitable size and alignment to contain an object of the
413     //   reference's type, the behavior is undefined.
414     QualType Ty = E->getType();
415     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
416   }
417 
418   return RValue::get(Value);
419 }
420 
421 
422 /// getAccessedFieldNo - Given an encoded value and a result number, return the
423 /// input field number being accessed.
424 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
425                                              const llvm::Constant *Elts) {
426   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
427       ->getZExtValue();
428 }
429 
430 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
431 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
432                                     llvm::Value *High) {
433   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
434   llvm::Value *K47 = Builder.getInt64(47);
435   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
436   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
437   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
438   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
439   return Builder.CreateMul(B1, KMul);
440 }
441 
442 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
443                                     llvm::Value *Address,
444                                     QualType Ty, CharUnits Alignment) {
445   if (!SanitizePerformTypeCheck)
446     return;
447 
448   // Don't check pointers outside the default address space. The null check
449   // isn't correct, the object-size check isn't supported by LLVM, and we can't
450   // communicate the addresses to the runtime handler for the vptr check.
451   if (Address->getType()->getPointerAddressSpace())
452     return;
453 
454   llvm::Value *Cond = 0;
455   llvm::BasicBlock *Done = 0;
456 
457   if (SanOpts->Null) {
458     // The glvalue must not be an empty glvalue.
459     Cond = Builder.CreateICmpNE(
460         Address, llvm::Constant::getNullValue(Address->getType()));
461 
462     if (TCK == TCK_DowncastPointer) {
463       // When performing a pointer downcast, it's OK if the value is null.
464       // Skip the remaining checks in that case.
465       Done = createBasicBlock("null");
466       llvm::BasicBlock *Rest = createBasicBlock("not.null");
467       Builder.CreateCondBr(Cond, Rest, Done);
468       EmitBlock(Rest);
469       Cond = 0;
470     }
471   }
472 
473   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
474     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
475 
476     // The glvalue must refer to a large enough storage region.
477     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
478     //        to check this.
479     // FIXME: Get object address space
480     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
481     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
482     llvm::Value *Min = Builder.getFalse();
483     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
484     llvm::Value *LargeEnough =
485         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
486                               llvm::ConstantInt::get(IntPtrTy, Size));
487     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
488   }
489 
490   uint64_t AlignVal = 0;
491 
492   if (SanOpts->Alignment) {
493     AlignVal = Alignment.getQuantity();
494     if (!Ty->isIncompleteType() && !AlignVal)
495       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
496 
497     // The glvalue must be suitably aligned.
498     if (AlignVal) {
499       llvm::Value *Align =
500           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
501                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
502       llvm::Value *Aligned =
503         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
504       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
505     }
506   }
507 
508   if (Cond) {
509     llvm::Constant *StaticData[] = {
510       EmitCheckSourceLocation(Loc),
511       EmitCheckTypeDescriptor(Ty),
512       llvm::ConstantInt::get(SizeTy, AlignVal),
513       llvm::ConstantInt::get(Int8Ty, TCK)
514     };
515     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
516   }
517 
518   // If possible, check that the vptr indicates that there is a subobject of
519   // type Ty at offset zero within this object.
520   //
521   // C++11 [basic.life]p5,6:
522   //   [For storage which does not refer to an object within its lifetime]
523   //   The program has undefined behavior if:
524   //    -- the [pointer or glvalue] is used to access a non-static data member
525   //       or call a non-static member function
526   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
527   if (SanOpts->Vptr &&
528       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
529        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
530       RD && RD->hasDefinition() && RD->isDynamicClass()) {
531     // Compute a hash of the mangled name of the type.
532     //
533     // FIXME: This is not guaranteed to be deterministic! Move to a
534     //        fingerprinting mechanism once LLVM provides one. For the time
535     //        being the implementation happens to be deterministic.
536     SmallString<64> MangledName;
537     llvm::raw_svector_ostream Out(MangledName);
538     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
539                                                      Out);
540     llvm::hash_code TypeHash = hash_value(Out.str());
541 
542     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
543     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
544     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
545     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
546     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
547     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
548 
549     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
550     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
551 
552     // Look the hash up in our cache.
553     const int CacheSize = 128;
554     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
555     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
556                                                    "__ubsan_vptr_type_cache");
557     llvm::Value *Slot = Builder.CreateAnd(Hash,
558                                           llvm::ConstantInt::get(IntPtrTy,
559                                                                  CacheSize-1));
560     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
561     llvm::Value *CacheVal =
562       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
563 
564     // If the hash isn't in the cache, call a runtime handler to perform the
565     // hard work of checking whether the vptr is for an object of the right
566     // type. This will either fill in the cache and return, or produce a
567     // diagnostic.
568     llvm::Constant *StaticData[] = {
569       EmitCheckSourceLocation(Loc),
570       EmitCheckTypeDescriptor(Ty),
571       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
572       llvm::ConstantInt::get(Int8Ty, TCK)
573     };
574     llvm::Value *DynamicData[] = { Address, Hash };
575     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
576               "dynamic_type_cache_miss", StaticData, DynamicData,
577               CRK_AlwaysRecoverable);
578   }
579 
580   if (Done) {
581     Builder.CreateBr(Done);
582     EmitBlock(Done);
583   }
584 }
585 
586 /// Determine whether this expression refers to a flexible array member in a
587 /// struct. We disable array bounds checks for such members.
588 static bool isFlexibleArrayMemberExpr(const Expr *E) {
589   // For compatibility with existing code, we treat arrays of length 0 or
590   // 1 as flexible array members.
591   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
592   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) {
593     if (CAT->getSize().ugt(1))
594       return false;
595   } else if (!isa<IncompleteArrayType>(AT))
596     return false;
597 
598   E = E->IgnoreParens();
599 
600   // A flexible array member must be the last member in the class.
601   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
602     // FIXME: If the base type of the member expr is not FD->getParent(),
603     // this should not be treated as a flexible array member access.
604     if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
605       RecordDecl::field_iterator FI(
606           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
607       return ++FI == FD->getParent()->field_end();
608     }
609   }
610 
611   return false;
612 }
613 
614 /// If Base is known to point to the start of an array, return the length of
615 /// that array. Return 0 if the length cannot be determined.
616 static llvm::Value *getArrayIndexingBound(
617     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
618   // For the vector indexing extension, the bound is the number of elements.
619   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
620     IndexedType = Base->getType();
621     return CGF.Builder.getInt32(VT->getNumElements());
622   }
623 
624   Base = Base->IgnoreParens();
625 
626   if (const CastExpr *CE = dyn_cast<CastExpr>(Base)) {
627     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
628         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
629       IndexedType = CE->getSubExpr()->getType();
630       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
631       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
632         return CGF.Builder.getInt(CAT->getSize());
633       else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(AT))
634         return CGF.getVLASize(VAT).first;
635     }
636   }
637 
638   return 0;
639 }
640 
641 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
642                                       llvm::Value *Index, QualType IndexType,
643                                       bool Accessed) {
644   assert(SanOpts->Bounds && "should not be called unless adding bounds checks");
645 
646   QualType IndexedType;
647   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
648   if (!Bound)
649     return;
650 
651   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
652   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
653   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
654 
655   llvm::Constant *StaticData[] = {
656     EmitCheckSourceLocation(E->getExprLoc()),
657     EmitCheckTypeDescriptor(IndexedType),
658     EmitCheckTypeDescriptor(IndexType)
659   };
660   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
661                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
662   EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
663 }
664 
665 
666 CodeGenFunction::ComplexPairTy CodeGenFunction::
667 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
668                          bool isInc, bool isPre) {
669   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
670 
671   llvm::Value *NextVal;
672   if (isa<llvm::IntegerType>(InVal.first->getType())) {
673     uint64_t AmountVal = isInc ? 1 : -1;
674     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
675 
676     // Add the inc/dec to the real part.
677     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
678   } else {
679     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
680     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
681     if (!isInc)
682       FVal.changeSign();
683     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
684 
685     // Add the inc/dec to the real part.
686     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
687   }
688 
689   ComplexPairTy IncVal(NextVal, InVal.second);
690 
691   // Store the updated result through the lvalue.
692   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
693 
694   // If this is a postinc, return the value read from memory, otherwise use the
695   // updated value.
696   return isPre ? IncVal : InVal;
697 }
698 
699 
700 //===----------------------------------------------------------------------===//
701 //                         LValue Expression Emission
702 //===----------------------------------------------------------------------===//
703 
704 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
705   if (Ty->isVoidType())
706     return RValue::get(0);
707 
708   switch (getEvaluationKind(Ty)) {
709   case TEK_Complex: {
710     llvm::Type *EltTy =
711       ConvertType(Ty->castAs<ComplexType>()->getElementType());
712     llvm::Value *U = llvm::UndefValue::get(EltTy);
713     return RValue::getComplex(std::make_pair(U, U));
714   }
715 
716   // If this is a use of an undefined aggregate type, the aggregate must have an
717   // identifiable address.  Just because the contents of the value are undefined
718   // doesn't mean that the address can't be taken and compared.
719   case TEK_Aggregate: {
720     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
721     return RValue::getAggregate(DestPtr);
722   }
723 
724   case TEK_Scalar:
725     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
726   }
727   llvm_unreachable("bad evaluation kind");
728 }
729 
730 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
731                                               const char *Name) {
732   ErrorUnsupported(E, Name);
733   return GetUndefRValue(E->getType());
734 }
735 
736 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
737                                               const char *Name) {
738   ErrorUnsupported(E, Name);
739   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
740   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
741 }
742 
743 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
744   LValue LV;
745   if (SanOpts->Bounds && isa<ArraySubscriptExpr>(E))
746     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
747   else
748     LV = EmitLValue(E);
749   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
750     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
751                   E->getType(), LV.getAlignment());
752   return LV;
753 }
754 
755 /// EmitLValue - Emit code to compute a designator that specifies the location
756 /// of the expression.
757 ///
758 /// This can return one of two things: a simple address or a bitfield reference.
759 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
760 /// an LLVM pointer type.
761 ///
762 /// If this returns a bitfield reference, nothing about the pointee type of the
763 /// LLVM value is known: For example, it may not be a pointer to an integer.
764 ///
765 /// If this returns a normal address, and if the lvalue's C type is fixed size,
766 /// this method guarantees that the returned pointer type will point to an LLVM
767 /// type of the same size of the lvalue's type.  If the lvalue has a variable
768 /// length type, this is not possible.
769 ///
770 LValue CodeGenFunction::EmitLValue(const Expr *E) {
771   switch (E->getStmtClass()) {
772   default: return EmitUnsupportedLValue(E, "l-value expression");
773 
774   case Expr::ObjCPropertyRefExprClass:
775     llvm_unreachable("cannot emit a property reference directly");
776 
777   case Expr::ObjCSelectorExprClass:
778     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
779   case Expr::ObjCIsaExprClass:
780     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
781   case Expr::BinaryOperatorClass:
782     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
783   case Expr::CompoundAssignOperatorClass:
784     if (!E->getType()->isAnyComplexType())
785       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
786     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
787   case Expr::CallExprClass:
788   case Expr::CXXMemberCallExprClass:
789   case Expr::CXXOperatorCallExprClass:
790   case Expr::UserDefinedLiteralClass:
791     return EmitCallExprLValue(cast<CallExpr>(E));
792   case Expr::VAArgExprClass:
793     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
794   case Expr::DeclRefExprClass:
795     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
796   case Expr::ParenExprClass:
797     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
798   case Expr::GenericSelectionExprClass:
799     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
800   case Expr::PredefinedExprClass:
801     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
802   case Expr::StringLiteralClass:
803     return EmitStringLiteralLValue(cast<StringLiteral>(E));
804   case Expr::ObjCEncodeExprClass:
805     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
806   case Expr::PseudoObjectExprClass:
807     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
808   case Expr::InitListExprClass:
809     return EmitInitListLValue(cast<InitListExpr>(E));
810   case Expr::CXXTemporaryObjectExprClass:
811   case Expr::CXXConstructExprClass:
812     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
813   case Expr::CXXBindTemporaryExprClass:
814     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
815   case Expr::CXXUuidofExprClass:
816     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
817   case Expr::LambdaExprClass:
818     return EmitLambdaLValue(cast<LambdaExpr>(E));
819 
820   case Expr::ExprWithCleanupsClass: {
821     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
822     enterFullExpression(cleanups);
823     RunCleanupsScope Scope(*this);
824     return EmitLValue(cleanups->getSubExpr());
825   }
826 
827   case Expr::CXXDefaultArgExprClass:
828     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
829   case Expr::CXXDefaultInitExprClass: {
830     CXXDefaultInitExprScope Scope(*this);
831     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
832   }
833   case Expr::CXXTypeidExprClass:
834     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
835 
836   case Expr::ObjCMessageExprClass:
837     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
838   case Expr::ObjCIvarRefExprClass:
839     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
840   case Expr::StmtExprClass:
841     return EmitStmtExprLValue(cast<StmtExpr>(E));
842   case Expr::UnaryOperatorClass:
843     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
844   case Expr::ArraySubscriptExprClass:
845     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
846   case Expr::ExtVectorElementExprClass:
847     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
848   case Expr::MemberExprClass:
849     return EmitMemberExpr(cast<MemberExpr>(E));
850   case Expr::CompoundLiteralExprClass:
851     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
852   case Expr::ConditionalOperatorClass:
853     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
854   case Expr::BinaryConditionalOperatorClass:
855     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
856   case Expr::ChooseExprClass:
857     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
858   case Expr::OpaqueValueExprClass:
859     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
860   case Expr::SubstNonTypeTemplateParmExprClass:
861     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
862   case Expr::ImplicitCastExprClass:
863   case Expr::CStyleCastExprClass:
864   case Expr::CXXFunctionalCastExprClass:
865   case Expr::CXXStaticCastExprClass:
866   case Expr::CXXDynamicCastExprClass:
867   case Expr::CXXReinterpretCastExprClass:
868   case Expr::CXXConstCastExprClass:
869   case Expr::ObjCBridgedCastExprClass:
870     return EmitCastLValue(cast<CastExpr>(E));
871 
872   case Expr::MaterializeTemporaryExprClass:
873     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
874   }
875 }
876 
877 /// Given an object of the given canonical type, can we safely copy a
878 /// value out of it based on its initializer?
879 static bool isConstantEmittableObjectType(QualType type) {
880   assert(type.isCanonical());
881   assert(!type->isReferenceType());
882 
883   // Must be const-qualified but non-volatile.
884   Qualifiers qs = type.getLocalQualifiers();
885   if (!qs.hasConst() || qs.hasVolatile()) return false;
886 
887   // Otherwise, all object types satisfy this except C++ classes with
888   // mutable subobjects or non-trivial copy/destroy behavior.
889   if (const RecordType *RT = dyn_cast<RecordType>(type))
890     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
891       if (RD->hasMutableFields() || !RD->isTrivial())
892         return false;
893 
894   return true;
895 }
896 
897 /// Can we constant-emit a load of a reference to a variable of the
898 /// given type?  This is different from predicates like
899 /// Decl::isUsableInConstantExpressions because we do want it to apply
900 /// in situations that don't necessarily satisfy the language's rules
901 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
902 /// to do this with const float variables even if those variables
903 /// aren't marked 'constexpr'.
904 enum ConstantEmissionKind {
905   CEK_None,
906   CEK_AsReferenceOnly,
907   CEK_AsValueOrReference,
908   CEK_AsValueOnly
909 };
910 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
911   type = type.getCanonicalType();
912   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
913     if (isConstantEmittableObjectType(ref->getPointeeType()))
914       return CEK_AsValueOrReference;
915     return CEK_AsReferenceOnly;
916   }
917   if (isConstantEmittableObjectType(type))
918     return CEK_AsValueOnly;
919   return CEK_None;
920 }
921 
922 /// Try to emit a reference to the given value without producing it as
923 /// an l-value.  This is actually more than an optimization: we can't
924 /// produce an l-value for variables that we never actually captured
925 /// in a block or lambda, which means const int variables or constexpr
926 /// literals or similar.
927 CodeGenFunction::ConstantEmission
928 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
929   ValueDecl *value = refExpr->getDecl();
930 
931   // The value needs to be an enum constant or a constant variable.
932   ConstantEmissionKind CEK;
933   if (isa<ParmVarDecl>(value)) {
934     CEK = CEK_None;
935   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
936     CEK = checkVarTypeForConstantEmission(var->getType());
937   } else if (isa<EnumConstantDecl>(value)) {
938     CEK = CEK_AsValueOnly;
939   } else {
940     CEK = CEK_None;
941   }
942   if (CEK == CEK_None) return ConstantEmission();
943 
944   Expr::EvalResult result;
945   bool resultIsReference;
946   QualType resultType;
947 
948   // It's best to evaluate all the way as an r-value if that's permitted.
949   if (CEK != CEK_AsReferenceOnly &&
950       refExpr->EvaluateAsRValue(result, getContext())) {
951     resultIsReference = false;
952     resultType = refExpr->getType();
953 
954   // Otherwise, try to evaluate as an l-value.
955   } else if (CEK != CEK_AsValueOnly &&
956              refExpr->EvaluateAsLValue(result, getContext())) {
957     resultIsReference = true;
958     resultType = value->getType();
959 
960   // Failure.
961   } else {
962     return ConstantEmission();
963   }
964 
965   // In any case, if the initializer has side-effects, abandon ship.
966   if (result.HasSideEffects)
967     return ConstantEmission();
968 
969   // Emit as a constant.
970   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
971 
972   // Make sure we emit a debug reference to the global variable.
973   // This should probably fire even for
974   if (isa<VarDecl>(value)) {
975     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
976       EmitDeclRefExprDbgValue(refExpr, C);
977   } else {
978     assert(isa<EnumConstantDecl>(value));
979     EmitDeclRefExprDbgValue(refExpr, C);
980   }
981 
982   // If we emitted a reference constant, we need to dereference that.
983   if (resultIsReference)
984     return ConstantEmission::forReference(C);
985 
986   return ConstantEmission::forValue(C);
987 }
988 
989 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
990                                                SourceLocation Loc) {
991   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
992                           lvalue.getAlignment().getQuantity(),
993                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
994                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
995 }
996 
997 static bool hasBooleanRepresentation(QualType Ty) {
998   if (Ty->isBooleanType())
999     return true;
1000 
1001   if (const EnumType *ET = Ty->getAs<EnumType>())
1002     return ET->getDecl()->getIntegerType()->isBooleanType();
1003 
1004   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1005     return hasBooleanRepresentation(AT->getValueType());
1006 
1007   return false;
1008 }
1009 
1010 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1011                             llvm::APInt &Min, llvm::APInt &End,
1012                             bool StrictEnums) {
1013   const EnumType *ET = Ty->getAs<EnumType>();
1014   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1015                                 ET && !ET->getDecl()->isFixed();
1016   bool IsBool = hasBooleanRepresentation(Ty);
1017   if (!IsBool && !IsRegularCPlusPlusEnum)
1018     return false;
1019 
1020   if (IsBool) {
1021     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1022     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1023   } else {
1024     const EnumDecl *ED = ET->getDecl();
1025     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1026     unsigned Bitwidth = LTy->getScalarSizeInBits();
1027     unsigned NumNegativeBits = ED->getNumNegativeBits();
1028     unsigned NumPositiveBits = ED->getNumPositiveBits();
1029 
1030     if (NumNegativeBits) {
1031       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1032       assert(NumBits <= Bitwidth);
1033       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1034       Min = -End;
1035     } else {
1036       assert(NumPositiveBits <= Bitwidth);
1037       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1038       Min = llvm::APInt(Bitwidth, 0);
1039     }
1040   }
1041   return true;
1042 }
1043 
1044 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1045   llvm::APInt Min, End;
1046   if (!getRangeForType(*this, Ty, Min, End,
1047                        CGM.getCodeGenOpts().StrictEnums))
1048     return 0;
1049 
1050   llvm::MDBuilder MDHelper(getLLVMContext());
1051   return MDHelper.createRange(Min, End);
1052 }
1053 
1054 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1055                                                unsigned Alignment, QualType Ty,
1056                                                SourceLocation Loc,
1057                                                llvm::MDNode *TBAAInfo,
1058                                                QualType TBAABaseType,
1059                                                uint64_t TBAAOffset) {
1060   // For better performance, handle vector loads differently.
1061   if (Ty->isVectorType()) {
1062     llvm::Value *V;
1063     const llvm::Type *EltTy =
1064     cast<llvm::PointerType>(Addr->getType())->getElementType();
1065 
1066     const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy);
1067 
1068     // Handle vectors of size 3, like size 4 for better performance.
1069     if (VTy->getNumElements() == 3) {
1070 
1071       // Bitcast to vec4 type.
1072       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1073                                                          4);
1074       llvm::PointerType *ptVec4Ty =
1075       llvm::PointerType::get(vec4Ty,
1076                              (cast<llvm::PointerType>(
1077                                       Addr->getType()))->getAddressSpace());
1078       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1079                                                 "castToVec4");
1080       // Now load value.
1081       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1082 
1083       // Shuffle vector to get vec3.
1084       llvm::Constant *Mask[] = {
1085         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1086         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1087         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1088       };
1089 
1090       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1091       V = Builder.CreateShuffleVector(LoadVal,
1092                                       llvm::UndefValue::get(vec4Ty),
1093                                       MaskV, "extractVec");
1094       return EmitFromMemory(V, Ty);
1095     }
1096   }
1097 
1098   // Atomic operations have to be done on integral types.
1099   if (Ty->isAtomicType()) {
1100     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1101                                      CharUnits::fromQuantity(Alignment),
1102                                      getContext(), TBAAInfo);
1103     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1104   }
1105 
1106   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1107   if (Volatile)
1108     Load->setVolatile(true);
1109   if (Alignment)
1110     Load->setAlignment(Alignment);
1111   if (TBAAInfo) {
1112     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1113                                                       TBAAOffset);
1114     if (TBAAPath)
1115       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1116   }
1117 
1118   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1119       (SanOpts->Enum && Ty->getAs<EnumType>())) {
1120     llvm::APInt Min, End;
1121     if (getRangeForType(*this, Ty, Min, End, true)) {
1122       --End;
1123       llvm::Value *Check;
1124       if (!Min)
1125         Check = Builder.CreateICmpULE(
1126           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1127       else {
1128         llvm::Value *Upper = Builder.CreateICmpSLE(
1129           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1130         llvm::Value *Lower = Builder.CreateICmpSGE(
1131           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1132         Check = Builder.CreateAnd(Upper, Lower);
1133       }
1134       llvm::Constant *StaticArgs[] = {
1135         EmitCheckSourceLocation(Loc),
1136         EmitCheckTypeDescriptor(Ty)
1137       };
1138       EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load),
1139                 CRK_Recoverable);
1140     }
1141   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1142     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1143       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1144 
1145   return EmitFromMemory(Load, Ty);
1146 }
1147 
1148 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1149   // Bool has a different representation in memory than in registers.
1150   if (hasBooleanRepresentation(Ty)) {
1151     // This should really always be an i1, but sometimes it's already
1152     // an i8, and it's awkward to track those cases down.
1153     if (Value->getType()->isIntegerTy(1))
1154       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1155     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1156            "wrong value rep of bool");
1157   }
1158 
1159   return Value;
1160 }
1161 
1162 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1163   // Bool has a different representation in memory than in registers.
1164   if (hasBooleanRepresentation(Ty)) {
1165     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1166            "wrong value rep of bool");
1167     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1168   }
1169 
1170   return Value;
1171 }
1172 
1173 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1174                                         bool Volatile, unsigned Alignment,
1175                                         QualType Ty, llvm::MDNode *TBAAInfo,
1176                                         bool isInit, QualType TBAABaseType,
1177                                         uint64_t TBAAOffset) {
1178 
1179   // Handle vectors differently to get better performance.
1180   if (Ty->isVectorType()) {
1181     llvm::Type *SrcTy = Value->getType();
1182     llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy);
1183     // Handle vec3 special.
1184     if (VecTy->getNumElements() == 3) {
1185       llvm::LLVMContext &VMContext = getLLVMContext();
1186 
1187       // Our source is a vec3, do a shuffle vector to make it a vec4.
1188       SmallVector<llvm::Constant*, 4> Mask;
1189       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1190                                             0));
1191       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1192                                             1));
1193       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1194                                             2));
1195       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1196 
1197       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1198       Value = Builder.CreateShuffleVector(Value,
1199                                           llvm::UndefValue::get(VecTy),
1200                                           MaskV, "extractVec");
1201       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1202     }
1203     llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
1204     if (DstPtr->getElementType() != SrcTy) {
1205       llvm::Type *MemTy =
1206       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1207       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1208     }
1209   }
1210 
1211   Value = EmitToMemory(Value, Ty);
1212 
1213   if (Ty->isAtomicType()) {
1214     EmitAtomicStore(RValue::get(Value),
1215                     LValue::MakeAddr(Addr, Ty,
1216                                      CharUnits::fromQuantity(Alignment),
1217                                      getContext(), TBAAInfo),
1218                     isInit);
1219     return;
1220   }
1221 
1222   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1223   if (Alignment)
1224     Store->setAlignment(Alignment);
1225   if (TBAAInfo) {
1226     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1227                                                       TBAAOffset);
1228     if (TBAAPath)
1229       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1230   }
1231 }
1232 
1233 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1234                                         bool isInit) {
1235   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1236                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1237                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1238                     lvalue.getTBAAOffset());
1239 }
1240 
1241 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1242 /// method emits the address of the lvalue, then loads the result as an rvalue,
1243 /// returning the rvalue.
1244 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1245   if (LV.isObjCWeak()) {
1246     // load of a __weak object.
1247     llvm::Value *AddrWeakObj = LV.getAddress();
1248     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1249                                                              AddrWeakObj));
1250   }
1251   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1252     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1253     Object = EmitObjCConsumeObject(LV.getType(), Object);
1254     return RValue::get(Object);
1255   }
1256 
1257   if (LV.isSimple()) {
1258     assert(!LV.getType()->isFunctionType());
1259 
1260     // Everything needs a load.
1261     return RValue::get(EmitLoadOfScalar(LV, Loc));
1262   }
1263 
1264   if (LV.isVectorElt()) {
1265     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1266                                               LV.isVolatileQualified());
1267     Load->setAlignment(LV.getAlignment().getQuantity());
1268     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1269                                                     "vecext"));
1270   }
1271 
1272   // If this is a reference to a subset of the elements of a vector, either
1273   // shuffle the input or extract/insert them as appropriate.
1274   if (LV.isExtVectorElt())
1275     return EmitLoadOfExtVectorElementLValue(LV);
1276 
1277   assert(LV.isBitField() && "Unknown LValue type!");
1278   return EmitLoadOfBitfieldLValue(LV);
1279 }
1280 
1281 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1282   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1283 
1284   // Get the output type.
1285   llvm::Type *ResLTy = ConvertType(LV.getType());
1286 
1287   llvm::Value *Ptr = LV.getBitFieldAddr();
1288   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1289                                         "bf.load");
1290   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1291 
1292   if (Info.IsSigned) {
1293     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1294     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1295     if (HighBits)
1296       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1297     if (Info.Offset + HighBits)
1298       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1299   } else {
1300     if (Info.Offset)
1301       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1302     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1303       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1304                                                               Info.Size),
1305                               "bf.clear");
1306   }
1307   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1308 
1309   return RValue::get(Val);
1310 }
1311 
1312 // If this is a reference to a subset of the elements of a vector, create an
1313 // appropriate shufflevector.
1314 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1315   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1316                                             LV.isVolatileQualified());
1317   Load->setAlignment(LV.getAlignment().getQuantity());
1318   llvm::Value *Vec = Load;
1319 
1320   const llvm::Constant *Elts = LV.getExtVectorElts();
1321 
1322   // If the result of the expression is a non-vector type, we must be extracting
1323   // a single element.  Just codegen as an extractelement.
1324   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1325   if (!ExprVT) {
1326     unsigned InIdx = getAccessedFieldNo(0, Elts);
1327     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1328     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1329   }
1330 
1331   // Always use shuffle vector to try to retain the original program structure
1332   unsigned NumResultElts = ExprVT->getNumElements();
1333 
1334   SmallVector<llvm::Constant*, 4> Mask;
1335   for (unsigned i = 0; i != NumResultElts; ++i)
1336     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1337 
1338   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1339   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1340                                     MaskV);
1341   return RValue::get(Vec);
1342 }
1343 
1344 
1345 
1346 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1347 /// lvalue, where both are guaranteed to the have the same type, and that type
1348 /// is 'Ty'.
1349 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1350                                              bool isInit) {
1351   if (!Dst.isSimple()) {
1352     if (Dst.isVectorElt()) {
1353       // Read/modify/write the vector, inserting the new element.
1354       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1355                                                 Dst.isVolatileQualified());
1356       Load->setAlignment(Dst.getAlignment().getQuantity());
1357       llvm::Value *Vec = Load;
1358       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1359                                         Dst.getVectorIdx(), "vecins");
1360       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1361                                                    Dst.isVolatileQualified());
1362       Store->setAlignment(Dst.getAlignment().getQuantity());
1363       return;
1364     }
1365 
1366     // If this is an update of extended vector elements, insert them as
1367     // appropriate.
1368     if (Dst.isExtVectorElt())
1369       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1370 
1371     assert(Dst.isBitField() && "Unknown LValue type");
1372     return EmitStoreThroughBitfieldLValue(Src, Dst);
1373   }
1374 
1375   // There's special magic for assigning into an ARC-qualified l-value.
1376   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1377     switch (Lifetime) {
1378     case Qualifiers::OCL_None:
1379       llvm_unreachable("present but none");
1380 
1381     case Qualifiers::OCL_ExplicitNone:
1382       // nothing special
1383       break;
1384 
1385     case Qualifiers::OCL_Strong:
1386       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1387       return;
1388 
1389     case Qualifiers::OCL_Weak:
1390       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1391       return;
1392 
1393     case Qualifiers::OCL_Autoreleasing:
1394       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1395                                                      Src.getScalarVal()));
1396       // fall into the normal path
1397       break;
1398     }
1399   }
1400 
1401   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1402     // load of a __weak object.
1403     llvm::Value *LvalueDst = Dst.getAddress();
1404     llvm::Value *src = Src.getScalarVal();
1405      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1406     return;
1407   }
1408 
1409   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1410     // load of a __strong object.
1411     llvm::Value *LvalueDst = Dst.getAddress();
1412     llvm::Value *src = Src.getScalarVal();
1413     if (Dst.isObjCIvar()) {
1414       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1415       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1416       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1417       llvm::Value *dst = RHS;
1418       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1419       llvm::Value *LHS =
1420         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1421       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1422       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1423                                               BytesBetween);
1424     } else if (Dst.isGlobalObjCRef()) {
1425       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1426                                                 Dst.isThreadLocalRef());
1427     }
1428     else
1429       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1430     return;
1431   }
1432 
1433   assert(Src.isScalar() && "Can't emit an agg store with this method");
1434   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1435 }
1436 
1437 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1438                                                      llvm::Value **Result) {
1439   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1440   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1441   llvm::Value *Ptr = Dst.getBitFieldAddr();
1442 
1443   // Get the source value, truncated to the width of the bit-field.
1444   llvm::Value *SrcVal = Src.getScalarVal();
1445 
1446   // Cast the source to the storage type and shift it into place.
1447   SrcVal = Builder.CreateIntCast(SrcVal,
1448                                  Ptr->getType()->getPointerElementType(),
1449                                  /*IsSigned=*/false);
1450   llvm::Value *MaskedVal = SrcVal;
1451 
1452   // See if there are other bits in the bitfield's storage we'll need to load
1453   // and mask together with source before storing.
1454   if (Info.StorageSize != Info.Size) {
1455     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1456     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1457                                           "bf.load");
1458     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1459 
1460     // Mask the source value as needed.
1461     if (!hasBooleanRepresentation(Dst.getType()))
1462       SrcVal = Builder.CreateAnd(SrcVal,
1463                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1464                                                             Info.Size),
1465                                  "bf.value");
1466     MaskedVal = SrcVal;
1467     if (Info.Offset)
1468       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1469 
1470     // Mask out the original value.
1471     Val = Builder.CreateAnd(Val,
1472                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1473                                                      Info.Offset,
1474                                                      Info.Offset + Info.Size),
1475                             "bf.clear");
1476 
1477     // Or together the unchanged values and the source value.
1478     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1479   } else {
1480     assert(Info.Offset == 0);
1481   }
1482 
1483   // Write the new value back out.
1484   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1485                                                Dst.isVolatileQualified());
1486   Store->setAlignment(Info.StorageAlignment);
1487 
1488   // Return the new value of the bit-field, if requested.
1489   if (Result) {
1490     llvm::Value *ResultVal = MaskedVal;
1491 
1492     // Sign extend the value if needed.
1493     if (Info.IsSigned) {
1494       assert(Info.Size <= Info.StorageSize);
1495       unsigned HighBits = Info.StorageSize - Info.Size;
1496       if (HighBits) {
1497         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1498         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1499       }
1500     }
1501 
1502     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1503                                       "bf.result.cast");
1504     *Result = EmitFromMemory(ResultVal, Dst.getType());
1505   }
1506 }
1507 
1508 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1509                                                                LValue Dst) {
1510   // This access turns into a read/modify/write of the vector.  Load the input
1511   // value now.
1512   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1513                                             Dst.isVolatileQualified());
1514   Load->setAlignment(Dst.getAlignment().getQuantity());
1515   llvm::Value *Vec = Load;
1516   const llvm::Constant *Elts = Dst.getExtVectorElts();
1517 
1518   llvm::Value *SrcVal = Src.getScalarVal();
1519 
1520   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1521     unsigned NumSrcElts = VTy->getNumElements();
1522     unsigned NumDstElts =
1523        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1524     if (NumDstElts == NumSrcElts) {
1525       // Use shuffle vector is the src and destination are the same number of
1526       // elements and restore the vector mask since it is on the side it will be
1527       // stored.
1528       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1529       for (unsigned i = 0; i != NumSrcElts; ++i)
1530         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1531 
1532       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1533       Vec = Builder.CreateShuffleVector(SrcVal,
1534                                         llvm::UndefValue::get(Vec->getType()),
1535                                         MaskV);
1536     } else if (NumDstElts > NumSrcElts) {
1537       // Extended the source vector to the same length and then shuffle it
1538       // into the destination.
1539       // FIXME: since we're shuffling with undef, can we just use the indices
1540       //        into that?  This could be simpler.
1541       SmallVector<llvm::Constant*, 4> ExtMask;
1542       for (unsigned i = 0; i != NumSrcElts; ++i)
1543         ExtMask.push_back(Builder.getInt32(i));
1544       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1545       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1546       llvm::Value *ExtSrcVal =
1547         Builder.CreateShuffleVector(SrcVal,
1548                                     llvm::UndefValue::get(SrcVal->getType()),
1549                                     ExtMaskV);
1550       // build identity
1551       SmallVector<llvm::Constant*, 4> Mask;
1552       for (unsigned i = 0; i != NumDstElts; ++i)
1553         Mask.push_back(Builder.getInt32(i));
1554 
1555       // modify when what gets shuffled in
1556       for (unsigned i = 0; i != NumSrcElts; ++i)
1557         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1558       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1559       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1560     } else {
1561       // We should never shorten the vector
1562       llvm_unreachable("unexpected shorten vector length");
1563     }
1564   } else {
1565     // If the Src is a scalar (not a vector) it must be updating one element.
1566     unsigned InIdx = getAccessedFieldNo(0, Elts);
1567     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1568     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1569   }
1570 
1571   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1572                                                Dst.isVolatileQualified());
1573   Store->setAlignment(Dst.getAlignment().getQuantity());
1574 }
1575 
1576 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1577 // generating write-barries API. It is currently a global, ivar,
1578 // or neither.
1579 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1580                                  LValue &LV,
1581                                  bool IsMemberAccess=false) {
1582   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1583     return;
1584 
1585   if (isa<ObjCIvarRefExpr>(E)) {
1586     QualType ExpTy = E->getType();
1587     if (IsMemberAccess && ExpTy->isPointerType()) {
1588       // If ivar is a structure pointer, assigning to field of
1589       // this struct follows gcc's behavior and makes it a non-ivar
1590       // writer-barrier conservatively.
1591       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1592       if (ExpTy->isRecordType()) {
1593         LV.setObjCIvar(false);
1594         return;
1595       }
1596     }
1597     LV.setObjCIvar(true);
1598     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1599     LV.setBaseIvarExp(Exp->getBase());
1600     LV.setObjCArray(E->getType()->isArrayType());
1601     return;
1602   }
1603 
1604   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1605     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1606       if (VD->hasGlobalStorage()) {
1607         LV.setGlobalObjCRef(true);
1608         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1609       }
1610     }
1611     LV.setObjCArray(E->getType()->isArrayType());
1612     return;
1613   }
1614 
1615   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1616     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1617     return;
1618   }
1619 
1620   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1621     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1622     if (LV.isObjCIvar()) {
1623       // If cast is to a structure pointer, follow gcc's behavior and make it
1624       // a non-ivar write-barrier.
1625       QualType ExpTy = E->getType();
1626       if (ExpTy->isPointerType())
1627         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1628       if (ExpTy->isRecordType())
1629         LV.setObjCIvar(false);
1630     }
1631     return;
1632   }
1633 
1634   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1635     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1636     return;
1637   }
1638 
1639   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1640     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1641     return;
1642   }
1643 
1644   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1645     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1646     return;
1647   }
1648 
1649   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1650     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1651     return;
1652   }
1653 
1654   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1655     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1656     if (LV.isObjCIvar() && !LV.isObjCArray())
1657       // Using array syntax to assigning to what an ivar points to is not
1658       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1659       LV.setObjCIvar(false);
1660     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1661       // Using array syntax to assigning to what global points to is not
1662       // same as assigning to the global itself. {id *G;} G[i] = 0;
1663       LV.setGlobalObjCRef(false);
1664     return;
1665   }
1666 
1667   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1668     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1669     // We don't know if member is an 'ivar', but this flag is looked at
1670     // only in the context of LV.isObjCIvar().
1671     LV.setObjCArray(E->getType()->isArrayType());
1672     return;
1673   }
1674 }
1675 
1676 static llvm::Value *
1677 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1678                                 llvm::Value *V, llvm::Type *IRType,
1679                                 StringRef Name = StringRef()) {
1680   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1681   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1682 }
1683 
1684 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1685                                       const Expr *E, const VarDecl *VD) {
1686   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1687   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1688   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1689   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1690   QualType T = E->getType();
1691   LValue LV;
1692   if (VD->getType()->isReferenceType()) {
1693     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1694     LI->setAlignment(Alignment.getQuantity());
1695     V = LI;
1696     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1697   } else {
1698     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1699   }
1700   setObjCGCLValueClass(CGF.getContext(), E, LV);
1701   return LV;
1702 }
1703 
1704 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1705                                      const Expr *E, const FunctionDecl *FD) {
1706   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1707   if (!FD->hasPrototype()) {
1708     if (const FunctionProtoType *Proto =
1709             FD->getType()->getAs<FunctionProtoType>()) {
1710       // Ugly case: for a K&R-style definition, the type of the definition
1711       // isn't the same as the type of a use.  Correct for this with a
1712       // bitcast.
1713       QualType NoProtoType =
1714           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1715       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1716       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1717     }
1718   }
1719   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1720   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1721 }
1722 
1723 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1724                                       llvm::Value *ThisValue) {
1725   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1726   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1727   return CGF.EmitLValueForField(LV, FD);
1728 }
1729 
1730 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1731   const NamedDecl *ND = E->getDecl();
1732   CharUnits Alignment = getContext().getDeclAlign(ND);
1733   QualType T = E->getType();
1734 
1735   // A DeclRefExpr for a reference initialized by a constant expression can
1736   // appear without being odr-used. Directly emit the constant initializer.
1737   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1738     const Expr *Init = VD->getAnyInitializer(VD);
1739     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1740         VD->isUsableInConstantExpressions(getContext()) &&
1741         VD->checkInitIsICE()) {
1742       llvm::Constant *Val =
1743         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1744       assert(Val && "failed to emit reference constant expression");
1745       // FIXME: Eventually we will want to emit vector element references.
1746       return MakeAddrLValue(Val, T, Alignment);
1747     }
1748   }
1749 
1750   // FIXME: We should be able to assert this for FunctionDecls as well!
1751   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1752   // those with a valid source location.
1753   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1754           !E->getLocation().isValid()) &&
1755          "Should not use decl without marking it used!");
1756 
1757   if (ND->hasAttr<WeakRefAttr>()) {
1758     const ValueDecl *VD = cast<ValueDecl>(ND);
1759     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1760     return MakeAddrLValue(Aliasee, T, Alignment);
1761   }
1762 
1763   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1764     // Check if this is a global variable.
1765     if (VD->hasLinkage() || VD->isStaticDataMember()) {
1766       // If it's thread_local, emit a call to its wrapper function instead.
1767       if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1768         return CGM.getCXXABI().EmitThreadLocalDeclRefExpr(*this, E);
1769       return EmitGlobalVarDeclLValue(*this, E, VD);
1770     }
1771 
1772     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1773 
1774     llvm::Value *V = LocalDeclMap.lookup(VD);
1775     if (!V && VD->isStaticLocal())
1776       V = CGM.getStaticLocalDeclAddress(VD);
1777 
1778     // Use special handling for lambdas.
1779     if (!V) {
1780       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1781         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1782       } else if (CapturedStmtInfo) {
1783         if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1784           return EmitCapturedFieldLValue(*this, FD,
1785                                          CapturedStmtInfo->getContextValue());
1786       }
1787 
1788       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1789       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1790                             T, Alignment);
1791     }
1792 
1793     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1794 
1795     if (isBlockVariable)
1796       V = BuildBlockByrefAddress(V, VD);
1797 
1798     LValue LV;
1799     if (VD->getType()->isReferenceType()) {
1800       llvm::LoadInst *LI = Builder.CreateLoad(V);
1801       LI->setAlignment(Alignment.getQuantity());
1802       V = LI;
1803       LV = MakeNaturalAlignAddrLValue(V, T);
1804     } else {
1805       LV = MakeAddrLValue(V, T, Alignment);
1806     }
1807 
1808     bool isLocalStorage = VD->hasLocalStorage();
1809 
1810     bool NonGCable = isLocalStorage &&
1811                      !VD->getType()->isReferenceType() &&
1812                      !isBlockVariable;
1813     if (NonGCable) {
1814       LV.getQuals().removeObjCGCAttr();
1815       LV.setNonGC(true);
1816     }
1817 
1818     bool isImpreciseLifetime =
1819       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1820     if (isImpreciseLifetime)
1821       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1822     setObjCGCLValueClass(getContext(), E, LV);
1823     return LV;
1824   }
1825 
1826   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1827     return EmitFunctionDeclLValue(*this, E, fn);
1828 
1829   llvm_unreachable("Unhandled DeclRefExpr");
1830 }
1831 
1832 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1833   // __extension__ doesn't affect lvalue-ness.
1834   if (E->getOpcode() == UO_Extension)
1835     return EmitLValue(E->getSubExpr());
1836 
1837   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1838   switch (E->getOpcode()) {
1839   default: llvm_unreachable("Unknown unary operator lvalue!");
1840   case UO_Deref: {
1841     QualType T = E->getSubExpr()->getType()->getPointeeType();
1842     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1843 
1844     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1845     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1846 
1847     // We should not generate __weak write barrier on indirect reference
1848     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1849     // But, we continue to generate __strong write barrier on indirect write
1850     // into a pointer to object.
1851     if (getLangOpts().ObjC1 &&
1852         getLangOpts().getGC() != LangOptions::NonGC &&
1853         LV.isObjCWeak())
1854       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1855     return LV;
1856   }
1857   case UO_Real:
1858   case UO_Imag: {
1859     LValue LV = EmitLValue(E->getSubExpr());
1860     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1861     llvm::Value *Addr = LV.getAddress();
1862 
1863     // __real is valid on scalars.  This is a faster way of testing that.
1864     // __imag can only produce an rvalue on scalars.
1865     if (E->getOpcode() == UO_Real &&
1866         !cast<llvm::PointerType>(Addr->getType())
1867            ->getElementType()->isStructTy()) {
1868       assert(E->getSubExpr()->getType()->isArithmeticType());
1869       return LV;
1870     }
1871 
1872     assert(E->getSubExpr()->getType()->isAnyComplexType());
1873 
1874     unsigned Idx = E->getOpcode() == UO_Imag;
1875     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1876                                                   Idx, "idx"),
1877                           ExprTy);
1878   }
1879   case UO_PreInc:
1880   case UO_PreDec: {
1881     LValue LV = EmitLValue(E->getSubExpr());
1882     bool isInc = E->getOpcode() == UO_PreInc;
1883 
1884     if (E->getType()->isAnyComplexType())
1885       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1886     else
1887       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1888     return LV;
1889   }
1890   }
1891 }
1892 
1893 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1894   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1895                         E->getType());
1896 }
1897 
1898 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1899   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1900                         E->getType());
1901 }
1902 
1903 static llvm::Constant*
1904 GetAddrOfConstantWideString(StringRef Str,
1905                             const char *GlobalName,
1906                             ASTContext &Context,
1907                             QualType Ty, SourceLocation Loc,
1908                             CodeGenModule &CGM) {
1909 
1910   StringLiteral *SL = StringLiteral::Create(Context,
1911                                             Str,
1912                                             StringLiteral::Wide,
1913                                             /*Pascal = */false,
1914                                             Ty, Loc);
1915   llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL);
1916   llvm::GlobalVariable *GV =
1917     new llvm::GlobalVariable(CGM.getModule(), C->getType(),
1918                              !CGM.getLangOpts().WritableStrings,
1919                              llvm::GlobalValue::PrivateLinkage,
1920                              C, GlobalName);
1921   const unsigned WideAlignment =
1922     Context.getTypeAlignInChars(Ty).getQuantity();
1923   GV->setAlignment(WideAlignment);
1924   return GV;
1925 }
1926 
1927 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1928                                     SmallString<32>& Target) {
1929   Target.resize(CharByteWidth * (Source.size() + 1));
1930   char *ResultPtr = &Target[0];
1931   const UTF8 *ErrorPtr;
1932   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1933   (void)success;
1934   assert(success);
1935   Target.resize(ResultPtr - &Target[0]);
1936 }
1937 
1938 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1939   switch (E->getIdentType()) {
1940   default:
1941     return EmitUnsupportedLValue(E, "predefined expression");
1942 
1943   case PredefinedExpr::Func:
1944   case PredefinedExpr::Function:
1945   case PredefinedExpr::LFunction:
1946   case PredefinedExpr::PrettyFunction: {
1947     PredefinedExpr::IdentType IdentType = E->getIdentType();
1948     std::string GlobalVarName;
1949 
1950     switch (IdentType) {
1951     default: llvm_unreachable("Invalid type");
1952     case PredefinedExpr::Func:
1953       GlobalVarName = "__func__.";
1954       break;
1955     case PredefinedExpr::Function:
1956       GlobalVarName = "__FUNCTION__.";
1957       break;
1958     case PredefinedExpr::LFunction:
1959       GlobalVarName = "L__FUNCTION__.";
1960       break;
1961     case PredefinedExpr::PrettyFunction:
1962       GlobalVarName = "__PRETTY_FUNCTION__.";
1963       break;
1964     }
1965 
1966     StringRef FnName = CurFn->getName();
1967     if (FnName.startswith("\01"))
1968       FnName = FnName.substr(1);
1969     GlobalVarName += FnName;
1970 
1971     // If this is outside of a function use the top level decl.
1972     const Decl *CurDecl = CurCodeDecl;
1973     if (CurDecl == 0 || isa<VarDecl>(CurDecl))
1974       CurDecl = getContext().getTranslationUnitDecl();
1975 
1976     const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
1977     std::string FunctionName;
1978     if (isa<BlockDecl>(CurDecl)) {
1979       // Blocks use the mangled function name.
1980       // FIXME: ComputeName should handle blocks.
1981       FunctionName = FnName.str();
1982     } else if (isa<CapturedDecl>(CurDecl)) {
1983       // For a captured statement, the function name is its enclosing
1984       // function name not the one compiler generated.
1985       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
1986     } else {
1987       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
1988       assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
1989                  FunctionName.size() &&
1990              "Computed __func__ length differs from type!");
1991     }
1992 
1993     llvm::Constant *C;
1994     if (ElemType->isWideCharType()) {
1995       SmallString<32> RawChars;
1996       ConvertUTF8ToWideString(
1997           getContext().getTypeSizeInChars(ElemType).getQuantity(),
1998           FunctionName, RawChars);
1999       C = GetAddrOfConstantWideString(RawChars,
2000                                       GlobalVarName.c_str(),
2001                                       getContext(),
2002                                       E->getType(),
2003                                       E->getLocation(),
2004                                       CGM);
2005     } else {
2006       C = CGM.GetAddrOfConstantCString(FunctionName,
2007                                        GlobalVarName.c_str(),
2008                                        1);
2009     }
2010     return MakeAddrLValue(C, E->getType());
2011   }
2012   }
2013 }
2014 
2015 /// Emit a type description suitable for use by a runtime sanitizer library. The
2016 /// format of a type descriptor is
2017 ///
2018 /// \code
2019 ///   { i16 TypeKind, i16 TypeInfo }
2020 /// \endcode
2021 ///
2022 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2023 /// integer, 1 for a floating point value, and -1 for anything else.
2024 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2025   // FIXME: Only emit each type's descriptor once.
2026   uint16_t TypeKind = -1;
2027   uint16_t TypeInfo = 0;
2028 
2029   if (T->isIntegerType()) {
2030     TypeKind = 0;
2031     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2032                (T->isSignedIntegerType() ? 1 : 0);
2033   } else if (T->isFloatingType()) {
2034     TypeKind = 1;
2035     TypeInfo = getContext().getTypeSize(T);
2036   }
2037 
2038   // Format the type name as if for a diagnostic, including quotes and
2039   // optionally an 'aka'.
2040   SmallString<32> Buffer;
2041   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2042                                     (intptr_t)T.getAsOpaquePtr(),
2043                                     0, 0, 0, 0, 0, 0, Buffer,
2044                                     ArrayRef<intptr_t>());
2045 
2046   llvm::Constant *Components[] = {
2047     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2048     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2049   };
2050   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2051 
2052   llvm::GlobalVariable *GV =
2053     new llvm::GlobalVariable(CGM.getModule(), Descriptor->getType(),
2054                              /*isConstant=*/true,
2055                              llvm::GlobalVariable::PrivateLinkage,
2056                              Descriptor);
2057   GV->setUnnamedAddr(true);
2058   return GV;
2059 }
2060 
2061 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2062   llvm::Type *TargetTy = IntPtrTy;
2063 
2064   // Floating-point types which fit into intptr_t are bitcast to integers
2065   // and then passed directly (after zero-extension, if necessary).
2066   if (V->getType()->isFloatingPointTy()) {
2067     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2068     if (Bits <= TargetTy->getIntegerBitWidth())
2069       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2070                                                          Bits));
2071   }
2072 
2073   // Integers which fit in intptr_t are zero-extended and passed directly.
2074   if (V->getType()->isIntegerTy() &&
2075       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2076     return Builder.CreateZExt(V, TargetTy);
2077 
2078   // Pointers are passed directly, everything else is passed by address.
2079   if (!V->getType()->isPointerTy()) {
2080     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2081     Builder.CreateStore(V, Ptr);
2082     V = Ptr;
2083   }
2084   return Builder.CreatePtrToInt(V, TargetTy);
2085 }
2086 
2087 /// \brief Emit a representation of a SourceLocation for passing to a handler
2088 /// in a sanitizer runtime library. The format for this data is:
2089 /// \code
2090 ///   struct SourceLocation {
2091 ///     const char *Filename;
2092 ///     int32_t Line, Column;
2093 ///   };
2094 /// \endcode
2095 /// For an invalid SourceLocation, the Filename pointer is null.
2096 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2097   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2098 
2099   llvm::Constant *Data[] = {
2100     // FIXME: Only emit each file name once.
2101     PLoc.isValid() ? cast<llvm::Constant>(
2102                        Builder.CreateGlobalStringPtr(PLoc.getFilename()))
2103                    : llvm::Constant::getNullValue(Int8PtrTy),
2104     Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0),
2105     Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0)
2106   };
2107 
2108   return llvm::ConstantStruct::getAnon(Data);
2109 }
2110 
2111 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2112                                 ArrayRef<llvm::Constant *> StaticArgs,
2113                                 ArrayRef<llvm::Value *> DynamicArgs,
2114                                 CheckRecoverableKind RecoverKind) {
2115   assert(SanOpts != &SanitizerOptions::Disabled);
2116 
2117   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2118     assert (RecoverKind != CRK_AlwaysRecoverable &&
2119             "Runtime call required for AlwaysRecoverable kind!");
2120     return EmitTrapCheck(Checked);
2121   }
2122 
2123   llvm::BasicBlock *Cont = createBasicBlock("cont");
2124 
2125   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2126 
2127   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2128 
2129   // Give hint that we very much don't expect to execute the handler
2130   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2131   llvm::MDBuilder MDHelper(getLLVMContext());
2132   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2133   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2134 
2135   EmitBlock(Handler);
2136 
2137   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2138   llvm::GlobalValue *InfoPtr =
2139       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2140                                llvm::GlobalVariable::PrivateLinkage, Info);
2141   InfoPtr->setUnnamedAddr(true);
2142 
2143   SmallVector<llvm::Value *, 4> Args;
2144   SmallVector<llvm::Type *, 4> ArgTypes;
2145   Args.reserve(DynamicArgs.size() + 1);
2146   ArgTypes.reserve(DynamicArgs.size() + 1);
2147 
2148   // Handler functions take an i8* pointing to the (handler-specific) static
2149   // information block, followed by a sequence of intptr_t arguments
2150   // representing operand values.
2151   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2152   ArgTypes.push_back(Int8PtrTy);
2153   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2154     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2155     ArgTypes.push_back(IntPtrTy);
2156   }
2157 
2158   bool Recover = (RecoverKind == CRK_AlwaysRecoverable) ||
2159                  ((RecoverKind == CRK_Recoverable) &&
2160                    CGM.getCodeGenOpts().SanitizeRecover);
2161 
2162   llvm::FunctionType *FnType =
2163     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2164   llvm::AttrBuilder B;
2165   if (!Recover) {
2166     B.addAttribute(llvm::Attribute::NoReturn)
2167      .addAttribute(llvm::Attribute::NoUnwind);
2168   }
2169   B.addAttribute(llvm::Attribute::UWTable);
2170 
2171   // Checks that have two variants use a suffix to differentiate them
2172   bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) &&
2173                            !CGM.getCodeGenOpts().SanitizeRecover;
2174   std::string FunctionName = ("__ubsan_handle_" + CheckName +
2175                               (NeedsAbortSuffix? "_abort" : "")).str();
2176   llvm::Value *Fn =
2177     CGM.CreateRuntimeFunction(FnType, FunctionName,
2178                               llvm::AttributeSet::get(getLLVMContext(),
2179                                               llvm::AttributeSet::FunctionIndex,
2180                                                       B));
2181   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2182   if (Recover) {
2183     Builder.CreateBr(Cont);
2184   } else {
2185     HandlerCall->setDoesNotReturn();
2186     Builder.CreateUnreachable();
2187   }
2188 
2189   EmitBlock(Cont);
2190 }
2191 
2192 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2193   llvm::BasicBlock *Cont = createBasicBlock("cont");
2194 
2195   // If we're optimizing, collapse all calls to trap down to just one per
2196   // function to save on code size.
2197   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2198     TrapBB = createBasicBlock("trap");
2199     Builder.CreateCondBr(Checked, Cont, TrapBB);
2200     EmitBlock(TrapBB);
2201     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2202     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2203     TrapCall->setDoesNotReturn();
2204     TrapCall->setDoesNotThrow();
2205     Builder.CreateUnreachable();
2206   } else {
2207     Builder.CreateCondBr(Checked, Cont, TrapBB);
2208   }
2209 
2210   EmitBlock(Cont);
2211 }
2212 
2213 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2214 /// array to pointer, return the array subexpression.
2215 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2216   // If this isn't just an array->pointer decay, bail out.
2217   const CastExpr *CE = dyn_cast<CastExpr>(E);
2218   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
2219     return 0;
2220 
2221   // If this is a decay from variable width array, bail out.
2222   const Expr *SubExpr = CE->getSubExpr();
2223   if (SubExpr->getType()->isVariableArrayType())
2224     return 0;
2225 
2226   return SubExpr;
2227 }
2228 
2229 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2230                                                bool Accessed) {
2231   // The index must always be an integer, which is not an aggregate.  Emit it.
2232   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2233   QualType IdxTy  = E->getIdx()->getType();
2234   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2235 
2236   if (SanOpts->Bounds)
2237     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2238 
2239   // If the base is a vector type, then we are forming a vector element lvalue
2240   // with this subscript.
2241   if (E->getBase()->getType()->isVectorType()) {
2242     // Emit the vector as an lvalue to get its address.
2243     LValue LHS = EmitLValue(E->getBase());
2244     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2245     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
2246     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2247                                  E->getBase()->getType(), LHS.getAlignment());
2248   }
2249 
2250   // Extend or truncate the index type to 32 or 64-bits.
2251   if (Idx->getType() != IntPtrTy)
2252     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2253 
2254   // We know that the pointer points to a type of the correct size, unless the
2255   // size is a VLA or Objective-C interface.
2256   llvm::Value *Address = 0;
2257   CharUnits ArrayAlignment;
2258   if (const VariableArrayType *vla =
2259         getContext().getAsVariableArrayType(E->getType())) {
2260     // The base must be a pointer, which is not an aggregate.  Emit
2261     // it.  It needs to be emitted first in case it's what captures
2262     // the VLA bounds.
2263     Address = EmitScalarExpr(E->getBase());
2264 
2265     // The element count here is the total number of non-VLA elements.
2266     llvm::Value *numElements = getVLASize(vla).first;
2267 
2268     // Effectively, the multiply by the VLA size is part of the GEP.
2269     // GEP indexes are signed, and scaling an index isn't permitted to
2270     // signed-overflow, so we use the same semantics for our explicit
2271     // multiply.  We suppress this if overflow is not undefined behavior.
2272     if (getLangOpts().isSignedOverflowDefined()) {
2273       Idx = Builder.CreateMul(Idx, numElements);
2274       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2275     } else {
2276       Idx = Builder.CreateNSWMul(Idx, numElements);
2277       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2278     }
2279   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2280     // Indexing over an interface, as in "NSString *P; P[4];"
2281     llvm::Value *InterfaceSize =
2282       llvm::ConstantInt::get(Idx->getType(),
2283           getContext().getTypeSizeInChars(OIT).getQuantity());
2284 
2285     Idx = Builder.CreateMul(Idx, InterfaceSize);
2286 
2287     // The base must be a pointer, which is not an aggregate.  Emit it.
2288     llvm::Value *Base = EmitScalarExpr(E->getBase());
2289     Address = EmitCastToVoidPtr(Base);
2290     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2291     Address = Builder.CreateBitCast(Address, Base->getType());
2292   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2293     // If this is A[i] where A is an array, the frontend will have decayed the
2294     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2295     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2296     // "gep x, i" here.  Emit one "gep A, 0, i".
2297     assert(Array->getType()->isArrayType() &&
2298            "Array to pointer decay must have array source type!");
2299     LValue ArrayLV;
2300     // For simple multidimensional array indexing, set the 'accessed' flag for
2301     // better bounds-checking of the base expression.
2302     if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2303       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2304     else
2305       ArrayLV = EmitLValue(Array);
2306     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2307     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2308     llvm::Value *Args[] = { Zero, Idx };
2309 
2310     // Propagate the alignment from the array itself to the result.
2311     ArrayAlignment = ArrayLV.getAlignment();
2312 
2313     if (getLangOpts().isSignedOverflowDefined())
2314       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2315     else
2316       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2317   } else {
2318     // The base must be a pointer, which is not an aggregate.  Emit it.
2319     llvm::Value *Base = EmitScalarExpr(E->getBase());
2320     if (getLangOpts().isSignedOverflowDefined())
2321       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2322     else
2323       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2324   }
2325 
2326   QualType T = E->getBase()->getType()->getPointeeType();
2327   assert(!T.isNull() &&
2328          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2329 
2330 
2331   // Limit the alignment to that of the result type.
2332   LValue LV;
2333   if (!ArrayAlignment.isZero()) {
2334     CharUnits Align = getContext().getTypeAlignInChars(T);
2335     ArrayAlignment = std::min(Align, ArrayAlignment);
2336     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2337   } else {
2338     LV = MakeNaturalAlignAddrLValue(Address, T);
2339   }
2340 
2341   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2342 
2343   if (getLangOpts().ObjC1 &&
2344       getLangOpts().getGC() != LangOptions::NonGC) {
2345     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2346     setObjCGCLValueClass(getContext(), E, LV);
2347   }
2348   return LV;
2349 }
2350 
2351 static
2352 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2353                                        SmallVectorImpl<unsigned> &Elts) {
2354   SmallVector<llvm::Constant*, 4> CElts;
2355   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2356     CElts.push_back(Builder.getInt32(Elts[i]));
2357 
2358   return llvm::ConstantVector::get(CElts);
2359 }
2360 
2361 LValue CodeGenFunction::
2362 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2363   // Emit the base vector as an l-value.
2364   LValue Base;
2365 
2366   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2367   if (E->isArrow()) {
2368     // If it is a pointer to a vector, emit the address and form an lvalue with
2369     // it.
2370     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2371     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2372     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2373     Base.getQuals().removeObjCGCAttr();
2374   } else if (E->getBase()->isGLValue()) {
2375     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2376     // emit the base as an lvalue.
2377     assert(E->getBase()->getType()->isVectorType());
2378     Base = EmitLValue(E->getBase());
2379   } else {
2380     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2381     assert(E->getBase()->getType()->isVectorType() &&
2382            "Result must be a vector");
2383     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2384 
2385     // Store the vector to memory (because LValue wants an address).
2386     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2387     Builder.CreateStore(Vec, VecMem);
2388     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2389   }
2390 
2391   QualType type =
2392     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2393 
2394   // Encode the element access list into a vector of unsigned indices.
2395   SmallVector<unsigned, 4> Indices;
2396   E->getEncodedElementAccess(Indices);
2397 
2398   if (Base.isSimple()) {
2399     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2400     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2401                                     Base.getAlignment());
2402   }
2403   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2404 
2405   llvm::Constant *BaseElts = Base.getExtVectorElts();
2406   SmallVector<llvm::Constant *, 4> CElts;
2407 
2408   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2409     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2410   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2411   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2412                                   Base.getAlignment());
2413 }
2414 
2415 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2416   Expr *BaseExpr = E->getBase();
2417 
2418   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2419   LValue BaseLV;
2420   if (E->isArrow()) {
2421     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2422     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2423     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2424     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2425   } else
2426     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2427 
2428   NamedDecl *ND = E->getMemberDecl();
2429   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
2430     LValue LV = EmitLValueForField(BaseLV, Field);
2431     setObjCGCLValueClass(getContext(), E, LV);
2432     return LV;
2433   }
2434 
2435   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2436     return EmitGlobalVarDeclLValue(*this, E, VD);
2437 
2438   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2439     return EmitFunctionDeclLValue(*this, E, FD);
2440 
2441   llvm_unreachable("Unhandled member declaration!");
2442 }
2443 
2444 /// Given that we are currently emitting a lambda, emit an l-value for
2445 /// one of its members.
2446 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2447   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2448   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2449   QualType LambdaTagType =
2450     getContext().getTagDeclType(Field->getParent());
2451   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2452   return EmitLValueForField(LambdaLV, Field);
2453 }
2454 
2455 LValue CodeGenFunction::EmitLValueForField(LValue base,
2456                                            const FieldDecl *field) {
2457   if (field->isBitField()) {
2458     const CGRecordLayout &RL =
2459       CGM.getTypes().getCGRecordLayout(field->getParent());
2460     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2461     llvm::Value *Addr = base.getAddress();
2462     unsigned Idx = RL.getLLVMFieldNo(field);
2463     if (Idx != 0)
2464       // For structs, we GEP to the field that the record layout suggests.
2465       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2466     // Get the access type.
2467     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2468       getLLVMContext(), Info.StorageSize,
2469       CGM.getContext().getTargetAddressSpace(base.getType()));
2470     if (Addr->getType() != PtrTy)
2471       Addr = Builder.CreateBitCast(Addr, PtrTy);
2472 
2473     QualType fieldType =
2474       field->getType().withCVRQualifiers(base.getVRQualifiers());
2475     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2476   }
2477 
2478   const RecordDecl *rec = field->getParent();
2479   QualType type = field->getType();
2480   CharUnits alignment = getContext().getDeclAlign(field);
2481 
2482   // FIXME: It should be impossible to have an LValue without alignment for a
2483   // complete type.
2484   if (!base.getAlignment().isZero())
2485     alignment = std::min(alignment, base.getAlignment());
2486 
2487   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2488 
2489   llvm::Value *addr = base.getAddress();
2490   unsigned cvr = base.getVRQualifiers();
2491   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2492   if (rec->isUnion()) {
2493     // For unions, there is no pointer adjustment.
2494     assert(!type->isReferenceType() && "union has reference member");
2495     // TODO: handle path-aware TBAA for union.
2496     TBAAPath = false;
2497   } else {
2498     // For structs, we GEP to the field that the record layout suggests.
2499     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2500     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2501 
2502     // If this is a reference field, load the reference right now.
2503     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2504       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2505       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2506       load->setAlignment(alignment.getQuantity());
2507 
2508       // Loading the reference will disable path-aware TBAA.
2509       TBAAPath = false;
2510       if (CGM.shouldUseTBAA()) {
2511         llvm::MDNode *tbaa;
2512         if (mayAlias)
2513           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2514         else
2515           tbaa = CGM.getTBAAInfo(type);
2516         if (tbaa)
2517           CGM.DecorateInstruction(load, tbaa);
2518       }
2519 
2520       addr = load;
2521       mayAlias = false;
2522       type = refType->getPointeeType();
2523       if (type->isIncompleteType())
2524         alignment = CharUnits();
2525       else
2526         alignment = getContext().getTypeAlignInChars(type);
2527       cvr = 0; // qualifiers don't recursively apply to referencee
2528     }
2529   }
2530 
2531   // Make sure that the address is pointing to the right type.  This is critical
2532   // for both unions and structs.  A union needs a bitcast, a struct element
2533   // will need a bitcast if the LLVM type laid out doesn't match the desired
2534   // type.
2535   addr = EmitBitCastOfLValueToProperType(*this, addr,
2536                                          CGM.getTypes().ConvertTypeForMem(type),
2537                                          field->getName());
2538 
2539   if (field->hasAttr<AnnotateAttr>())
2540     addr = EmitFieldAnnotations(field, addr);
2541 
2542   LValue LV = MakeAddrLValue(addr, type, alignment);
2543   LV.getQuals().addCVRQualifiers(cvr);
2544   if (TBAAPath) {
2545     const ASTRecordLayout &Layout =
2546         getContext().getASTRecordLayout(field->getParent());
2547     // Set the base type to be the base type of the base LValue and
2548     // update offset to be relative to the base type.
2549     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2550     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2551                      Layout.getFieldOffset(field->getFieldIndex()) /
2552                                            getContext().getCharWidth());
2553   }
2554 
2555   // __weak attribute on a field is ignored.
2556   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2557     LV.getQuals().removeObjCGCAttr();
2558 
2559   // Fields of may_alias structs act like 'char' for TBAA purposes.
2560   // FIXME: this should get propagated down through anonymous structs
2561   // and unions.
2562   if (mayAlias && LV.getTBAAInfo())
2563     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2564 
2565   return LV;
2566 }
2567 
2568 LValue
2569 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2570                                                   const FieldDecl *Field) {
2571   QualType FieldType = Field->getType();
2572 
2573   if (!FieldType->isReferenceType())
2574     return EmitLValueForField(Base, Field);
2575 
2576   const CGRecordLayout &RL =
2577     CGM.getTypes().getCGRecordLayout(Field->getParent());
2578   unsigned idx = RL.getLLVMFieldNo(Field);
2579   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2580   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2581 
2582   // Make sure that the address is pointing to the right type.  This is critical
2583   // for both unions and structs.  A union needs a bitcast, a struct element
2584   // will need a bitcast if the LLVM type laid out doesn't match the desired
2585   // type.
2586   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2587   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2588 
2589   CharUnits Alignment = getContext().getDeclAlign(Field);
2590 
2591   // FIXME: It should be impossible to have an LValue without alignment for a
2592   // complete type.
2593   if (!Base.getAlignment().isZero())
2594     Alignment = std::min(Alignment, Base.getAlignment());
2595 
2596   return MakeAddrLValue(V, FieldType, Alignment);
2597 }
2598 
2599 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2600   if (E->isFileScope()) {
2601     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2602     return MakeAddrLValue(GlobalPtr, E->getType());
2603   }
2604   if (E->getType()->isVariablyModifiedType())
2605     // make sure to emit the VLA size.
2606     EmitVariablyModifiedType(E->getType());
2607 
2608   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2609   const Expr *InitExpr = E->getInitializer();
2610   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2611 
2612   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2613                    /*Init*/ true);
2614 
2615   return Result;
2616 }
2617 
2618 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2619   if (!E->isGLValue())
2620     // Initializing an aggregate temporary in C++11: T{...}.
2621     return EmitAggExprToLValue(E);
2622 
2623   // An lvalue initializer list must be initializing a reference.
2624   assert(E->getNumInits() == 1 && "reference init with multiple values");
2625   return EmitLValue(E->getInit(0));
2626 }
2627 
2628 LValue CodeGenFunction::
2629 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2630   if (!expr->isGLValue()) {
2631     // ?: here should be an aggregate.
2632     assert(hasAggregateEvaluationKind(expr->getType()) &&
2633            "Unexpected conditional operator!");
2634     return EmitAggExprToLValue(expr);
2635   }
2636 
2637   OpaqueValueMapping binding(*this, expr);
2638 
2639   const Expr *condExpr = expr->getCond();
2640   bool CondExprBool;
2641   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2642     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2643     if (!CondExprBool) std::swap(live, dead);
2644 
2645     if (!ContainsLabel(dead))
2646       return EmitLValue(live);
2647   }
2648 
2649   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2650   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2651   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2652 
2653   ConditionalEvaluation eval(*this);
2654   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2655 
2656   // Any temporaries created here are conditional.
2657   EmitBlock(lhsBlock);
2658   eval.begin(*this);
2659   LValue lhs = EmitLValue(expr->getTrueExpr());
2660   eval.end(*this);
2661 
2662   if (!lhs.isSimple())
2663     return EmitUnsupportedLValue(expr, "conditional operator");
2664 
2665   lhsBlock = Builder.GetInsertBlock();
2666   Builder.CreateBr(contBlock);
2667 
2668   // Any temporaries created here are conditional.
2669   EmitBlock(rhsBlock);
2670   eval.begin(*this);
2671   LValue rhs = EmitLValue(expr->getFalseExpr());
2672   eval.end(*this);
2673   if (!rhs.isSimple())
2674     return EmitUnsupportedLValue(expr, "conditional operator");
2675   rhsBlock = Builder.GetInsertBlock();
2676 
2677   EmitBlock(contBlock);
2678 
2679   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2680                                          "cond-lvalue");
2681   phi->addIncoming(lhs.getAddress(), lhsBlock);
2682   phi->addIncoming(rhs.getAddress(), rhsBlock);
2683   return MakeAddrLValue(phi, expr->getType());
2684 }
2685 
2686 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2687 /// type. If the cast is to a reference, we can have the usual lvalue result,
2688 /// otherwise if a cast is needed by the code generator in an lvalue context,
2689 /// then it must mean that we need the address of an aggregate in order to
2690 /// access one of its members.  This can happen for all the reasons that casts
2691 /// are permitted with aggregate result, including noop aggregate casts, and
2692 /// cast from scalar to union.
2693 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2694   switch (E->getCastKind()) {
2695   case CK_ToVoid:
2696   case CK_BitCast:
2697   case CK_ArrayToPointerDecay:
2698   case CK_FunctionToPointerDecay:
2699   case CK_NullToMemberPointer:
2700   case CK_NullToPointer:
2701   case CK_IntegralToPointer:
2702   case CK_PointerToIntegral:
2703   case CK_PointerToBoolean:
2704   case CK_VectorSplat:
2705   case CK_IntegralCast:
2706   case CK_IntegralToBoolean:
2707   case CK_IntegralToFloating:
2708   case CK_FloatingToIntegral:
2709   case CK_FloatingToBoolean:
2710   case CK_FloatingCast:
2711   case CK_FloatingRealToComplex:
2712   case CK_FloatingComplexToReal:
2713   case CK_FloatingComplexToBoolean:
2714   case CK_FloatingComplexCast:
2715   case CK_FloatingComplexToIntegralComplex:
2716   case CK_IntegralRealToComplex:
2717   case CK_IntegralComplexToReal:
2718   case CK_IntegralComplexToBoolean:
2719   case CK_IntegralComplexCast:
2720   case CK_IntegralComplexToFloatingComplex:
2721   case CK_DerivedToBaseMemberPointer:
2722   case CK_BaseToDerivedMemberPointer:
2723   case CK_MemberPointerToBoolean:
2724   case CK_ReinterpretMemberPointer:
2725   case CK_AnyPointerToBlockPointerCast:
2726   case CK_ARCProduceObject:
2727   case CK_ARCConsumeObject:
2728   case CK_ARCReclaimReturnedObject:
2729   case CK_ARCExtendBlockObject:
2730   case CK_CopyAndAutoreleaseBlockObject:
2731     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2732 
2733   case CK_Dependent:
2734     llvm_unreachable("dependent cast kind in IR gen!");
2735 
2736   case CK_BuiltinFnToFnPtr:
2737     llvm_unreachable("builtin functions are handled elsewhere");
2738 
2739   // These are never l-values; just use the aggregate emission code.
2740   case CK_NonAtomicToAtomic:
2741   case CK_AtomicToNonAtomic:
2742     return EmitAggExprToLValue(E);
2743 
2744   case CK_Dynamic: {
2745     LValue LV = EmitLValue(E->getSubExpr());
2746     llvm::Value *V = LV.getAddress();
2747     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2748     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2749   }
2750 
2751   case CK_ConstructorConversion:
2752   case CK_UserDefinedConversion:
2753   case CK_CPointerToObjCPointerCast:
2754   case CK_BlockPointerToObjCPointerCast:
2755   case CK_NoOp:
2756   case CK_LValueToRValue:
2757     return EmitLValue(E->getSubExpr());
2758 
2759   case CK_UncheckedDerivedToBase:
2760   case CK_DerivedToBase: {
2761     const RecordType *DerivedClassTy =
2762       E->getSubExpr()->getType()->getAs<RecordType>();
2763     CXXRecordDecl *DerivedClassDecl =
2764       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2765 
2766     LValue LV = EmitLValue(E->getSubExpr());
2767     llvm::Value *This = LV.getAddress();
2768 
2769     // Perform the derived-to-base conversion
2770     llvm::Value *Base =
2771       GetAddressOfBaseClass(This, DerivedClassDecl,
2772                             E->path_begin(), E->path_end(),
2773                             /*NullCheckValue=*/false);
2774 
2775     return MakeAddrLValue(Base, E->getType());
2776   }
2777   case CK_ToUnion:
2778     return EmitAggExprToLValue(E);
2779   case CK_BaseToDerived: {
2780     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2781     CXXRecordDecl *DerivedClassDecl =
2782       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2783 
2784     LValue LV = EmitLValue(E->getSubExpr());
2785 
2786     // Perform the base-to-derived conversion
2787     llvm::Value *Derived =
2788       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2789                                E->path_begin(), E->path_end(),
2790                                /*NullCheckValue=*/false);
2791 
2792     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2793     // performed and the object is not of the derived type.
2794     if (SanitizePerformTypeCheck)
2795       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2796                     Derived, E->getType());
2797 
2798     return MakeAddrLValue(Derived, E->getType());
2799   }
2800   case CK_LValueBitCast: {
2801     // This must be a reinterpret_cast (or c-style equivalent).
2802     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2803 
2804     LValue LV = EmitLValue(E->getSubExpr());
2805     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2806                                            ConvertType(CE->getTypeAsWritten()));
2807     return MakeAddrLValue(V, E->getType());
2808   }
2809   case CK_ObjCObjectLValueCast: {
2810     LValue LV = EmitLValue(E->getSubExpr());
2811     QualType ToType = getContext().getLValueReferenceType(E->getType());
2812     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2813                                            ConvertType(ToType));
2814     return MakeAddrLValue(V, E->getType());
2815   }
2816   case CK_ZeroToOCLEvent:
2817     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2818   }
2819 
2820   llvm_unreachable("Unhandled lvalue cast kind?");
2821 }
2822 
2823 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2824   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2825   return getOpaqueLValueMapping(e);
2826 }
2827 
2828 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2829                                            const FieldDecl *FD,
2830                                            SourceLocation Loc) {
2831   QualType FT = FD->getType();
2832   LValue FieldLV = EmitLValueForField(LV, FD);
2833   switch (getEvaluationKind(FT)) {
2834   case TEK_Complex:
2835     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
2836   case TEK_Aggregate:
2837     return FieldLV.asAggregateRValue();
2838   case TEK_Scalar:
2839     return EmitLoadOfLValue(FieldLV, Loc);
2840   }
2841   llvm_unreachable("bad evaluation kind");
2842 }
2843 
2844 //===--------------------------------------------------------------------===//
2845 //                             Expression Emission
2846 //===--------------------------------------------------------------------===//
2847 
2848 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2849                                      ReturnValueSlot ReturnValue) {
2850   if (CGDebugInfo *DI = getDebugInfo()) {
2851     SourceLocation Loc = E->getLocStart();
2852     // Force column info to be generated so we can differentiate
2853     // multiple call sites on the same line in the debug info.
2854     const FunctionDecl* Callee = E->getDirectCallee();
2855     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2856     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2857   }
2858 
2859   // Builtins never have block type.
2860   if (E->getCallee()->getType()->isBlockPointerType())
2861     return EmitBlockCallExpr(E, ReturnValue);
2862 
2863   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2864     return EmitCXXMemberCallExpr(CE, ReturnValue);
2865 
2866   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2867     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2868 
2869   const Decl *TargetDecl = E->getCalleeDecl();
2870   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2871     if (unsigned builtinID = FD->getBuiltinID())
2872       return EmitBuiltinExpr(FD, builtinID, E);
2873   }
2874 
2875   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2876     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2877       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2878 
2879   if (const CXXPseudoDestructorExpr *PseudoDtor
2880           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2881     QualType DestroyedType = PseudoDtor->getDestroyedType();
2882     if (getLangOpts().ObjCAutoRefCount &&
2883         DestroyedType->isObjCLifetimeType() &&
2884         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2885          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2886       // Automatic Reference Counting:
2887       //   If the pseudo-expression names a retainable object with weak or
2888       //   strong lifetime, the object shall be released.
2889       Expr *BaseExpr = PseudoDtor->getBase();
2890       llvm::Value *BaseValue = NULL;
2891       Qualifiers BaseQuals;
2892 
2893       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2894       if (PseudoDtor->isArrow()) {
2895         BaseValue = EmitScalarExpr(BaseExpr);
2896         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2897         BaseQuals = PTy->getPointeeType().getQualifiers();
2898       } else {
2899         LValue BaseLV = EmitLValue(BaseExpr);
2900         BaseValue = BaseLV.getAddress();
2901         QualType BaseTy = BaseExpr->getType();
2902         BaseQuals = BaseTy.getQualifiers();
2903       }
2904 
2905       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2906       case Qualifiers::OCL_None:
2907       case Qualifiers::OCL_ExplicitNone:
2908       case Qualifiers::OCL_Autoreleasing:
2909         break;
2910 
2911       case Qualifiers::OCL_Strong:
2912         EmitARCRelease(Builder.CreateLoad(BaseValue,
2913                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2914                        ARCPreciseLifetime);
2915         break;
2916 
2917       case Qualifiers::OCL_Weak:
2918         EmitARCDestroyWeak(BaseValue);
2919         break;
2920       }
2921     } else {
2922       // C++ [expr.pseudo]p1:
2923       //   The result shall only be used as the operand for the function call
2924       //   operator (), and the result of such a call has type void. The only
2925       //   effect is the evaluation of the postfix-expression before the dot or
2926       //   arrow.
2927       EmitScalarExpr(E->getCallee());
2928     }
2929 
2930     return RValue::get(0);
2931   }
2932 
2933   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2934   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2935                   E->arg_begin(), E->arg_end(), TargetDecl);
2936 }
2937 
2938 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2939   // Comma expressions just emit their LHS then their RHS as an l-value.
2940   if (E->getOpcode() == BO_Comma) {
2941     EmitIgnoredExpr(E->getLHS());
2942     EnsureInsertPoint();
2943     return EmitLValue(E->getRHS());
2944   }
2945 
2946   if (E->getOpcode() == BO_PtrMemD ||
2947       E->getOpcode() == BO_PtrMemI)
2948     return EmitPointerToDataMemberBinaryExpr(E);
2949 
2950   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2951 
2952   // Note that in all of these cases, __block variables need the RHS
2953   // evaluated first just in case the variable gets moved by the RHS.
2954 
2955   switch (getEvaluationKind(E->getType())) {
2956   case TEK_Scalar: {
2957     switch (E->getLHS()->getType().getObjCLifetime()) {
2958     case Qualifiers::OCL_Strong:
2959       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2960 
2961     case Qualifiers::OCL_Autoreleasing:
2962       return EmitARCStoreAutoreleasing(E).first;
2963 
2964     // No reason to do any of these differently.
2965     case Qualifiers::OCL_None:
2966     case Qualifiers::OCL_ExplicitNone:
2967     case Qualifiers::OCL_Weak:
2968       break;
2969     }
2970 
2971     RValue RV = EmitAnyExpr(E->getRHS());
2972     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
2973     EmitStoreThroughLValue(RV, LV);
2974     return LV;
2975   }
2976 
2977   case TEK_Complex:
2978     return EmitComplexAssignmentLValue(E);
2979 
2980   case TEK_Aggregate:
2981     return EmitAggExprToLValue(E);
2982   }
2983   llvm_unreachable("bad evaluation kind");
2984 }
2985 
2986 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2987   RValue RV = EmitCallExpr(E);
2988 
2989   if (!RV.isScalar())
2990     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2991 
2992   assert(E->getCallReturnType()->isReferenceType() &&
2993          "Can't have a scalar return unless the return type is a "
2994          "reference type!");
2995 
2996   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2997 }
2998 
2999 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3000   // FIXME: This shouldn't require another copy.
3001   return EmitAggExprToLValue(E);
3002 }
3003 
3004 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3005   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3006          && "binding l-value to type which needs a temporary");
3007   AggValueSlot Slot = CreateAggTemp(E->getType());
3008   EmitCXXConstructExpr(E, Slot);
3009   return MakeAddrLValue(Slot.getAddr(), E->getType());
3010 }
3011 
3012 LValue
3013 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3014   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3015 }
3016 
3017 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3018   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3019                                ConvertType(E->getType())->getPointerTo());
3020 }
3021 
3022 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3023   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3024 }
3025 
3026 LValue
3027 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3028   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3029   Slot.setExternallyDestructed();
3030   EmitAggExpr(E->getSubExpr(), Slot);
3031   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3032   return MakeAddrLValue(Slot.getAddr(), E->getType());
3033 }
3034 
3035 LValue
3036 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3037   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3038   EmitLambdaExpr(E, Slot);
3039   return MakeAddrLValue(Slot.getAddr(), E->getType());
3040 }
3041 
3042 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3043   RValue RV = EmitObjCMessageExpr(E);
3044 
3045   if (!RV.isScalar())
3046     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3047 
3048   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
3049          "Can't have a scalar return unless the return type is a "
3050          "reference type!");
3051 
3052   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3053 }
3054 
3055 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3056   llvm::Value *V =
3057     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3058   return MakeAddrLValue(V, E->getType());
3059 }
3060 
3061 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3062                                              const ObjCIvarDecl *Ivar) {
3063   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3064 }
3065 
3066 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3067                                           llvm::Value *BaseValue,
3068                                           const ObjCIvarDecl *Ivar,
3069                                           unsigned CVRQualifiers) {
3070   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3071                                                    Ivar, CVRQualifiers);
3072 }
3073 
3074 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3075   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3076   llvm::Value *BaseValue = 0;
3077   const Expr *BaseExpr = E->getBase();
3078   Qualifiers BaseQuals;
3079   QualType ObjectTy;
3080   if (E->isArrow()) {
3081     BaseValue = EmitScalarExpr(BaseExpr);
3082     ObjectTy = BaseExpr->getType()->getPointeeType();
3083     BaseQuals = ObjectTy.getQualifiers();
3084   } else {
3085     LValue BaseLV = EmitLValue(BaseExpr);
3086     // FIXME: this isn't right for bitfields.
3087     BaseValue = BaseLV.getAddress();
3088     ObjectTy = BaseExpr->getType();
3089     BaseQuals = ObjectTy.getQualifiers();
3090   }
3091 
3092   LValue LV =
3093     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3094                       BaseQuals.getCVRQualifiers());
3095   setObjCGCLValueClass(getContext(), E, LV);
3096   return LV;
3097 }
3098 
3099 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3100   // Can only get l-value for message expression returning aggregate type
3101   RValue RV = EmitAnyExprToTemp(E);
3102   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3103 }
3104 
3105 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3106                                  ReturnValueSlot ReturnValue,
3107                                  CallExpr::const_arg_iterator ArgBeg,
3108                                  CallExpr::const_arg_iterator ArgEnd,
3109                                  const Decl *TargetDecl) {
3110   // Get the actual function type. The callee type will always be a pointer to
3111   // function type or a block pointer type.
3112   assert(CalleeType->isFunctionPointerType() &&
3113          "Call must have function pointer type!");
3114 
3115   CalleeType = getContext().getCanonicalType(CalleeType);
3116 
3117   const FunctionType *FnType
3118     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3119 
3120   // Force column info to differentiate multiple inlined call sites on
3121   // the same line, analoguous to EmitCallExpr.
3122   bool ForceColumnInfo = false;
3123   if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3124     ForceColumnInfo = FD->isInlineSpecified();
3125 
3126   CallArgList Args;
3127   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
3128                ForceColumnInfo);
3129 
3130   const CGFunctionInfo &FnInfo =
3131     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3132 
3133   // C99 6.5.2.2p6:
3134   //   If the expression that denotes the called function has a type
3135   //   that does not include a prototype, [the default argument
3136   //   promotions are performed]. If the number of arguments does not
3137   //   equal the number of parameters, the behavior is undefined. If
3138   //   the function is defined with a type that includes a prototype,
3139   //   and either the prototype ends with an ellipsis (, ...) or the
3140   //   types of the arguments after promotion are not compatible with
3141   //   the types of the parameters, the behavior is undefined. If the
3142   //   function is defined with a type that does not include a
3143   //   prototype, and the types of the arguments after promotion are
3144   //   not compatible with those of the parameters after promotion,
3145   //   the behavior is undefined [except in some trivial cases].
3146   // That is, in the general case, we should assume that a call
3147   // through an unprototyped function type works like a *non-variadic*
3148   // call.  The way we make this work is to cast to the exact type
3149   // of the promoted arguments.
3150   if (isa<FunctionNoProtoType>(FnType)) {
3151     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3152     CalleeTy = CalleeTy->getPointerTo();
3153     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3154   }
3155 
3156   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3157 }
3158 
3159 LValue CodeGenFunction::
3160 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3161   llvm::Value *BaseV;
3162   if (E->getOpcode() == BO_PtrMemI)
3163     BaseV = EmitScalarExpr(E->getLHS());
3164   else
3165     BaseV = EmitLValue(E->getLHS()).getAddress();
3166 
3167   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3168 
3169   const MemberPointerType *MPT
3170     = E->getRHS()->getType()->getAs<MemberPointerType>();
3171 
3172   llvm::Value *AddV =
3173     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
3174 
3175   return MakeAddrLValue(AddV, MPT->getPointeeType());
3176 }
3177 
3178 /// Given the address of a temporary variable, produce an r-value of
3179 /// its type.
3180 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3181                                             QualType type,
3182                                             SourceLocation loc) {
3183   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3184   switch (getEvaluationKind(type)) {
3185   case TEK_Complex:
3186     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3187   case TEK_Aggregate:
3188     return lvalue.asAggregateRValue();
3189   case TEK_Scalar:
3190     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3191   }
3192   llvm_unreachable("bad evaluation kind");
3193 }
3194 
3195 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3196   assert(Val->getType()->isFPOrFPVectorTy());
3197   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3198     return;
3199 
3200   llvm::MDBuilder MDHelper(getLLVMContext());
3201   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3202 
3203   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3204 }
3205 
3206 namespace {
3207   struct LValueOrRValue {
3208     LValue LV;
3209     RValue RV;
3210   };
3211 }
3212 
3213 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3214                                            const PseudoObjectExpr *E,
3215                                            bool forLValue,
3216                                            AggValueSlot slot) {
3217   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3218 
3219   // Find the result expression, if any.
3220   const Expr *resultExpr = E->getResultExpr();
3221   LValueOrRValue result;
3222 
3223   for (PseudoObjectExpr::const_semantics_iterator
3224          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3225     const Expr *semantic = *i;
3226 
3227     // If this semantic expression is an opaque value, bind it
3228     // to the result of its source expression.
3229     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3230 
3231       // If this is the result expression, we may need to evaluate
3232       // directly into the slot.
3233       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3234       OVMA opaqueData;
3235       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3236           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3237         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3238 
3239         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3240         opaqueData = OVMA::bind(CGF, ov, LV);
3241         result.RV = slot.asRValue();
3242 
3243       // Otherwise, emit as normal.
3244       } else {
3245         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3246 
3247         // If this is the result, also evaluate the result now.
3248         if (ov == resultExpr) {
3249           if (forLValue)
3250             result.LV = CGF.EmitLValue(ov);
3251           else
3252             result.RV = CGF.EmitAnyExpr(ov, slot);
3253         }
3254       }
3255 
3256       opaques.push_back(opaqueData);
3257 
3258     // Otherwise, if the expression is the result, evaluate it
3259     // and remember the result.
3260     } else if (semantic == resultExpr) {
3261       if (forLValue)
3262         result.LV = CGF.EmitLValue(semantic);
3263       else
3264         result.RV = CGF.EmitAnyExpr(semantic, slot);
3265 
3266     // Otherwise, evaluate the expression in an ignored context.
3267     } else {
3268       CGF.EmitIgnoredExpr(semantic);
3269     }
3270   }
3271 
3272   // Unbind all the opaques now.
3273   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3274     opaques[i].unbind(CGF);
3275 
3276   return result;
3277 }
3278 
3279 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3280                                                AggValueSlot slot) {
3281   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3282 }
3283 
3284 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3285   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3286 }
3287