1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
65                                                      CharUnits Align,
66                                                      const Twine &Name,
67                                                      llvm::Value *ArraySize) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getAsAlign());
70   return Address(Alloca, Align);
71 }
72 
73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
74 /// block. The alloca is casted to default address space if necessary.
75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
76                                           const Twine &Name,
77                                           llvm::Value *ArraySize,
78                                           Address *AllocaAddr) {
79   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
80   if (AllocaAddr)
81     *AllocaAddr = Alloca;
82   llvm::Value *V = Alloca.getPointer();
83   // Alloca always returns a pointer in alloca address space, which may
84   // be different from the type defined by the language. For example,
85   // in C++ the auto variables are in the default address space. Therefore
86   // cast alloca to the default address space when necessary.
87   if (getASTAllocaAddressSpace() != LangAS::Default) {
88     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
89     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
90     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
91     // otherwise alloca is inserted at the current insertion point of the
92     // builder.
93     if (!ArraySize)
94       Builder.SetInsertPoint(AllocaInsertPt);
95     V = getTargetHooks().performAddrSpaceCast(
96         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
97         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
98   }
99 
100   return Address(V, Align);
101 }
102 
103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
105 /// insertion point of the builder.
106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
107                                                     const Twine &Name,
108                                                     llvm::Value *ArraySize) {
109   if (ArraySize)
110     return Builder.CreateAlloca(Ty, ArraySize, Name);
111   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
112                               ArraySize, Name, AllocaInsertPt);
113 }
114 
115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
116 /// default alignment of the corresponding LLVM type, which is *not*
117 /// guaranteed to be related in any way to the expected alignment of
118 /// an AST type that might have been lowered to Ty.
119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
120                                                       const Twine &Name) {
121   CharUnits Align =
122     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
123   return CreateTempAlloca(Ty, Align, Name);
124 }
125 
126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
127   assert(isa<llvm::AllocaInst>(Var.getPointer()));
128   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
129   Store->setAlignment(Var.getAlignment().getAsAlign());
130   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
131   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
132 }
133 
134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
135   CharUnits Align = getContext().getTypeAlignInChars(Ty);
136   return CreateTempAlloca(ConvertType(Ty), Align, Name);
137 }
138 
139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
140                                        Address *Alloca) {
141   // FIXME: Should we prefer the preferred type alignment here?
142   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
143 }
144 
145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
146                                        const Twine &Name, Address *Alloca) {
147   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
148                           /*ArraySize=*/nullptr, Alloca);
149 }
150 
151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
152                                                   const Twine &Name) {
153   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
154 }
155 
156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
157                                                   const Twine &Name) {
158   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
159                                   Name);
160 }
161 
162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
163 /// expression and compare the result against zero, returning an Int1Ty value.
164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
165   PGO.setCurrentStmt(E);
166   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
167     llvm::Value *MemPtr = EmitScalarExpr(E);
168     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
169   }
170 
171   QualType BoolTy = getContext().BoolTy;
172   SourceLocation Loc = E->getExprLoc();
173   if (!E->getType()->isAnyComplexType())
174     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
175 
176   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
177                                        Loc);
178 }
179 
180 // Helper method to check if the underlying ABI is AAPCS
181 static bool isAAPCS(const TargetInfo &TargetInfo) {
182   return TargetInfo.getABI().startswith("aapcs");
183 }
184 
185 /// EmitIgnoredExpr - Emit code to compute the specified expression,
186 /// ignoring the result.
187 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
188   if (E->isRValue())
189     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
190 
191   // Just emit it as an l-value and drop the result.
192   EmitLValue(E);
193 }
194 
195 /// EmitAnyExpr - Emit code to compute the specified expression which
196 /// can have any type.  The result is returned as an RValue struct.
197 /// If this is an aggregate expression, AggSlot indicates where the
198 /// result should be returned.
199 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
200                                     AggValueSlot aggSlot,
201                                     bool ignoreResult) {
202   switch (getEvaluationKind(E->getType())) {
203   case TEK_Scalar:
204     return RValue::get(EmitScalarExpr(E, ignoreResult));
205   case TEK_Complex:
206     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
207   case TEK_Aggregate:
208     if (!ignoreResult && aggSlot.isIgnored())
209       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
210     EmitAggExpr(E, aggSlot);
211     return aggSlot.asRValue();
212   }
213   llvm_unreachable("bad evaluation kind");
214 }
215 
216 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
217 /// always be accessible even if no aggregate location is provided.
218 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
219   AggValueSlot AggSlot = AggValueSlot::ignored();
220 
221   if (hasAggregateEvaluationKind(E->getType()))
222     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
223   return EmitAnyExpr(E, AggSlot);
224 }
225 
226 /// EmitAnyExprToMem - Evaluate an expression into a given memory
227 /// location.
228 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
229                                        Address Location,
230                                        Qualifiers Quals,
231                                        bool IsInit) {
232   // FIXME: This function should take an LValue as an argument.
233   switch (getEvaluationKind(E->getType())) {
234   case TEK_Complex:
235     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
236                               /*isInit*/ false);
237     return;
238 
239   case TEK_Aggregate: {
240     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
241                                          AggValueSlot::IsDestructed_t(IsInit),
242                                          AggValueSlot::DoesNotNeedGCBarriers,
243                                          AggValueSlot::IsAliased_t(!IsInit),
244                                          AggValueSlot::MayOverlap));
245     return;
246   }
247 
248   case TEK_Scalar: {
249     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
250     LValue LV = MakeAddrLValue(Location, E->getType());
251     EmitStoreThroughLValue(RV, LV);
252     return;
253   }
254   }
255   llvm_unreachable("bad evaluation kind");
256 }
257 
258 static void
259 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
260                      const Expr *E, Address ReferenceTemporary) {
261   // Objective-C++ ARC:
262   //   If we are binding a reference to a temporary that has ownership, we
263   //   need to perform retain/release operations on the temporary.
264   //
265   // FIXME: This should be looking at E, not M.
266   if (auto Lifetime = M->getType().getObjCLifetime()) {
267     switch (Lifetime) {
268     case Qualifiers::OCL_None:
269     case Qualifiers::OCL_ExplicitNone:
270       // Carry on to normal cleanup handling.
271       break;
272 
273     case Qualifiers::OCL_Autoreleasing:
274       // Nothing to do; cleaned up by an autorelease pool.
275       return;
276 
277     case Qualifiers::OCL_Strong:
278     case Qualifiers::OCL_Weak:
279       switch (StorageDuration Duration = M->getStorageDuration()) {
280       case SD_Static:
281         // Note: we intentionally do not register a cleanup to release
282         // the object on program termination.
283         return;
284 
285       case SD_Thread:
286         // FIXME: We should probably register a cleanup in this case.
287         return;
288 
289       case SD_Automatic:
290       case SD_FullExpression:
291         CodeGenFunction::Destroyer *Destroy;
292         CleanupKind CleanupKind;
293         if (Lifetime == Qualifiers::OCL_Strong) {
294           const ValueDecl *VD = M->getExtendingDecl();
295           bool Precise =
296               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
297           CleanupKind = CGF.getARCCleanupKind();
298           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
299                             : &CodeGenFunction::destroyARCStrongImprecise;
300         } else {
301           // __weak objects always get EH cleanups; otherwise, exceptions
302           // could cause really nasty crashes instead of mere leaks.
303           CleanupKind = NormalAndEHCleanup;
304           Destroy = &CodeGenFunction::destroyARCWeak;
305         }
306         if (Duration == SD_FullExpression)
307           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
308                           M->getType(), *Destroy,
309                           CleanupKind & EHCleanup);
310         else
311           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
312                                           M->getType(),
313                                           *Destroy, CleanupKind & EHCleanup);
314         return;
315 
316       case SD_Dynamic:
317         llvm_unreachable("temporary cannot have dynamic storage duration");
318       }
319       llvm_unreachable("unknown storage duration");
320     }
321   }
322 
323   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
324   if (const RecordType *RT =
325           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
326     // Get the destructor for the reference temporary.
327     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
328     if (!ClassDecl->hasTrivialDestructor())
329       ReferenceTemporaryDtor = ClassDecl->getDestructor();
330   }
331 
332   if (!ReferenceTemporaryDtor)
333     return;
334 
335   // Call the destructor for the temporary.
336   switch (M->getStorageDuration()) {
337   case SD_Static:
338   case SD_Thread: {
339     llvm::FunctionCallee CleanupFn;
340     llvm::Constant *CleanupArg;
341     if (E->getType()->isArrayType()) {
342       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
343           ReferenceTemporary, E->getType(),
344           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
345           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
346       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
347     } else {
348       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
349           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
350       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
351     }
352     CGF.CGM.getCXXABI().registerGlobalDtor(
353         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
354     break;
355   }
356 
357   case SD_FullExpression:
358     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
359                     CodeGenFunction::destroyCXXObject,
360                     CGF.getLangOpts().Exceptions);
361     break;
362 
363   case SD_Automatic:
364     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
365                                     ReferenceTemporary, E->getType(),
366                                     CodeGenFunction::destroyCXXObject,
367                                     CGF.getLangOpts().Exceptions);
368     break;
369 
370   case SD_Dynamic:
371     llvm_unreachable("temporary cannot have dynamic storage duration");
372   }
373 }
374 
375 static Address createReferenceTemporary(CodeGenFunction &CGF,
376                                         const MaterializeTemporaryExpr *M,
377                                         const Expr *Inner,
378                                         Address *Alloca = nullptr) {
379   auto &TCG = CGF.getTargetHooks();
380   switch (M->getStorageDuration()) {
381   case SD_FullExpression:
382   case SD_Automatic: {
383     // If we have a constant temporary array or record try to promote it into a
384     // constant global under the same rules a normal constant would've been
385     // promoted. This is easier on the optimizer and generally emits fewer
386     // instructions.
387     QualType Ty = Inner->getType();
388     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
389         (Ty->isArrayType() || Ty->isRecordType()) &&
390         CGF.CGM.isTypeConstant(Ty, true))
391       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
392         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
393           auto AS = AddrSpace.getValue();
394           auto *GV = new llvm::GlobalVariable(
395               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
396               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
397               llvm::GlobalValue::NotThreadLocal,
398               CGF.getContext().getTargetAddressSpace(AS));
399           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
400           GV->setAlignment(alignment.getAsAlign());
401           llvm::Constant *C = GV;
402           if (AS != LangAS::Default)
403             C = TCG.performAddrSpaceCast(
404                 CGF.CGM, GV, AS, LangAS::Default,
405                 GV->getValueType()->getPointerTo(
406                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
407           // FIXME: Should we put the new global into a COMDAT?
408           return Address(C, alignment);
409         }
410       }
411     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
412   }
413   case SD_Thread:
414   case SD_Static:
415     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
416 
417   case SD_Dynamic:
418     llvm_unreachable("temporary can't have dynamic storage duration");
419   }
420   llvm_unreachable("unknown storage duration");
421 }
422 
423 LValue CodeGenFunction::
424 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
425   const Expr *E = M->getSubExpr();
426 
427   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
428           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
429          "Reference should never be pseudo-strong!");
430 
431   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
432   // as that will cause the lifetime adjustment to be lost for ARC
433   auto ownership = M->getType().getObjCLifetime();
434   if (ownership != Qualifiers::OCL_None &&
435       ownership != Qualifiers::OCL_ExplicitNone) {
436     Address Object = createReferenceTemporary(*this, M, E);
437     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
438       Object = Address(llvm::ConstantExpr::getBitCast(Var,
439                            ConvertTypeForMem(E->getType())
440                              ->getPointerTo(Object.getAddressSpace())),
441                        Object.getAlignment());
442 
443       // createReferenceTemporary will promote the temporary to a global with a
444       // constant initializer if it can.  It can only do this to a value of
445       // ARC-manageable type if the value is global and therefore "immune" to
446       // ref-counting operations.  Therefore we have no need to emit either a
447       // dynamic initialization or a cleanup and we can just return the address
448       // of the temporary.
449       if (Var->hasInitializer())
450         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
451 
452       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
453     }
454     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
455                                        AlignmentSource::Decl);
456 
457     switch (getEvaluationKind(E->getType())) {
458     default: llvm_unreachable("expected scalar or aggregate expression");
459     case TEK_Scalar:
460       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
461       break;
462     case TEK_Aggregate: {
463       EmitAggExpr(E, AggValueSlot::forAddr(Object,
464                                            E->getType().getQualifiers(),
465                                            AggValueSlot::IsDestructed,
466                                            AggValueSlot::DoesNotNeedGCBarriers,
467                                            AggValueSlot::IsNotAliased,
468                                            AggValueSlot::DoesNotOverlap));
469       break;
470     }
471     }
472 
473     pushTemporaryCleanup(*this, M, E, Object);
474     return RefTempDst;
475   }
476 
477   SmallVector<const Expr *, 2> CommaLHSs;
478   SmallVector<SubobjectAdjustment, 2> Adjustments;
479   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
480 
481   for (const auto &Ignored : CommaLHSs)
482     EmitIgnoredExpr(Ignored);
483 
484   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
485     if (opaque->getType()->isRecordType()) {
486       assert(Adjustments.empty());
487       return EmitOpaqueValueLValue(opaque);
488     }
489   }
490 
491   // Create and initialize the reference temporary.
492   Address Alloca = Address::invalid();
493   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
494   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
495           Object.getPointer()->stripPointerCasts())) {
496     Object = Address(llvm::ConstantExpr::getBitCast(
497                          cast<llvm::Constant>(Object.getPointer()),
498                          ConvertTypeForMem(E->getType())->getPointerTo()),
499                      Object.getAlignment());
500     // If the temporary is a global and has a constant initializer or is a
501     // constant temporary that we promoted to a global, we may have already
502     // initialized it.
503     if (!Var->hasInitializer()) {
504       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
505       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
506     }
507   } else {
508     switch (M->getStorageDuration()) {
509     case SD_Automatic:
510       if (auto *Size = EmitLifetimeStart(
511               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
512               Alloca.getPointer())) {
513         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
514                                                   Alloca, Size);
515       }
516       break;
517 
518     case SD_FullExpression: {
519       if (!ShouldEmitLifetimeMarkers)
520         break;
521 
522       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
523       // marker. Instead, start the lifetime of a conditional temporary earlier
524       // so that it's unconditional. Don't do this with sanitizers which need
525       // more precise lifetime marks.
526       ConditionalEvaluation *OldConditional = nullptr;
527       CGBuilderTy::InsertPoint OldIP;
528       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
529           !SanOpts.has(SanitizerKind::HWAddress) &&
530           !SanOpts.has(SanitizerKind::Memory) &&
531           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
532         OldConditional = OutermostConditional;
533         OutermostConditional = nullptr;
534 
535         OldIP = Builder.saveIP();
536         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
537         Builder.restoreIP(CGBuilderTy::InsertPoint(
538             Block, llvm::BasicBlock::iterator(Block->back())));
539       }
540 
541       if (auto *Size = EmitLifetimeStart(
542               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
543               Alloca.getPointer())) {
544         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
545                                              Size);
546       }
547 
548       if (OldConditional) {
549         OutermostConditional = OldConditional;
550         Builder.restoreIP(OldIP);
551       }
552       break;
553     }
554 
555     default:
556       break;
557     }
558     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
559   }
560   pushTemporaryCleanup(*this, M, E, Object);
561 
562   // Perform derived-to-base casts and/or field accesses, to get from the
563   // temporary object we created (and, potentially, for which we extended
564   // the lifetime) to the subobject we're binding the reference to.
565   for (unsigned I = Adjustments.size(); I != 0; --I) {
566     SubobjectAdjustment &Adjustment = Adjustments[I-1];
567     switch (Adjustment.Kind) {
568     case SubobjectAdjustment::DerivedToBaseAdjustment:
569       Object =
570           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
571                                 Adjustment.DerivedToBase.BasePath->path_begin(),
572                                 Adjustment.DerivedToBase.BasePath->path_end(),
573                                 /*NullCheckValue=*/ false, E->getExprLoc());
574       break;
575 
576     case SubobjectAdjustment::FieldAdjustment: {
577       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
578       LV = EmitLValueForField(LV, Adjustment.Field);
579       assert(LV.isSimple() &&
580              "materialized temporary field is not a simple lvalue");
581       Object = LV.getAddress(*this);
582       break;
583     }
584 
585     case SubobjectAdjustment::MemberPointerAdjustment: {
586       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
587       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
588                                                Adjustment.Ptr.MPT);
589       break;
590     }
591     }
592   }
593 
594   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
595 }
596 
597 RValue
598 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
599   // Emit the expression as an lvalue.
600   LValue LV = EmitLValue(E);
601   assert(LV.isSimple());
602   llvm::Value *Value = LV.getPointer(*this);
603 
604   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
605     // C++11 [dcl.ref]p5 (as amended by core issue 453):
606     //   If a glvalue to which a reference is directly bound designates neither
607     //   an existing object or function of an appropriate type nor a region of
608     //   storage of suitable size and alignment to contain an object of the
609     //   reference's type, the behavior is undefined.
610     QualType Ty = E->getType();
611     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
612   }
613 
614   return RValue::get(Value);
615 }
616 
617 
618 /// getAccessedFieldNo - Given an encoded value and a result number, return the
619 /// input field number being accessed.
620 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
621                                              const llvm::Constant *Elts) {
622   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
623       ->getZExtValue();
624 }
625 
626 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
627 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
628                                     llvm::Value *High) {
629   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
630   llvm::Value *K47 = Builder.getInt64(47);
631   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
632   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
633   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
634   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
635   return Builder.CreateMul(B1, KMul);
636 }
637 
638 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
639   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
640          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
641 }
642 
643 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
644   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
645   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
646          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
647           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
648           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
649 }
650 
651 bool CodeGenFunction::sanitizePerformTypeCheck() const {
652   return SanOpts.has(SanitizerKind::Null) |
653          SanOpts.has(SanitizerKind::Alignment) |
654          SanOpts.has(SanitizerKind::ObjectSize) |
655          SanOpts.has(SanitizerKind::Vptr);
656 }
657 
658 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
659                                     llvm::Value *Ptr, QualType Ty,
660                                     CharUnits Alignment,
661                                     SanitizerSet SkippedChecks,
662                                     llvm::Value *ArraySize) {
663   if (!sanitizePerformTypeCheck())
664     return;
665 
666   // Don't check pointers outside the default address space. The null check
667   // isn't correct, the object-size check isn't supported by LLVM, and we can't
668   // communicate the addresses to the runtime handler for the vptr check.
669   if (Ptr->getType()->getPointerAddressSpace())
670     return;
671 
672   // Don't check pointers to volatile data. The behavior here is implementation-
673   // defined.
674   if (Ty.isVolatileQualified())
675     return;
676 
677   SanitizerScope SanScope(this);
678 
679   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
680   llvm::BasicBlock *Done = nullptr;
681 
682   // Quickly determine whether we have a pointer to an alloca. It's possible
683   // to skip null checks, and some alignment checks, for these pointers. This
684   // can reduce compile-time significantly.
685   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
686 
687   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
688   llvm::Value *IsNonNull = nullptr;
689   bool IsGuaranteedNonNull =
690       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
691   bool AllowNullPointers = isNullPointerAllowed(TCK);
692   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
693       !IsGuaranteedNonNull) {
694     // The glvalue must not be an empty glvalue.
695     IsNonNull = Builder.CreateIsNotNull(Ptr);
696 
697     // The IR builder can constant-fold the null check if the pointer points to
698     // a constant.
699     IsGuaranteedNonNull = IsNonNull == True;
700 
701     // Skip the null check if the pointer is known to be non-null.
702     if (!IsGuaranteedNonNull) {
703       if (AllowNullPointers) {
704         // When performing pointer casts, it's OK if the value is null.
705         // Skip the remaining checks in that case.
706         Done = createBasicBlock("null");
707         llvm::BasicBlock *Rest = createBasicBlock("not.null");
708         Builder.CreateCondBr(IsNonNull, Rest, Done);
709         EmitBlock(Rest);
710       } else {
711         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
712       }
713     }
714   }
715 
716   if (SanOpts.has(SanitizerKind::ObjectSize) &&
717       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
718       !Ty->isIncompleteType()) {
719     uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
720     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
721     if (ArraySize)
722       Size = Builder.CreateMul(Size, ArraySize);
723 
724     // Degenerate case: new X[0] does not need an objectsize check.
725     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
726     if (!ConstantSize || !ConstantSize->isNullValue()) {
727       // The glvalue must refer to a large enough storage region.
728       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
729       //        to check this.
730       // FIXME: Get object address space
731       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
732       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
733       llvm::Value *Min = Builder.getFalse();
734       llvm::Value *NullIsUnknown = Builder.getFalse();
735       llvm::Value *Dynamic = Builder.getFalse();
736       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
737       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
738           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
739       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
740     }
741   }
742 
743   uint64_t AlignVal = 0;
744   llvm::Value *PtrAsInt = nullptr;
745 
746   if (SanOpts.has(SanitizerKind::Alignment) &&
747       !SkippedChecks.has(SanitizerKind::Alignment)) {
748     AlignVal = Alignment.getQuantity();
749     if (!Ty->isIncompleteType() && !AlignVal)
750       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
751 
752     // The glvalue must be suitably aligned.
753     if (AlignVal > 1 &&
754         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
755       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
756       llvm::Value *Align = Builder.CreateAnd(
757           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
758       llvm::Value *Aligned =
759           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
760       if (Aligned != True)
761         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
762     }
763   }
764 
765   if (Checks.size() > 0) {
766     // Make sure we're not losing information. Alignment needs to be a power of
767     // 2
768     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
769     llvm::Constant *StaticData[] = {
770         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
771         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
772         llvm::ConstantInt::get(Int8Ty, TCK)};
773     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
774               PtrAsInt ? PtrAsInt : Ptr);
775   }
776 
777   // If possible, check that the vptr indicates that there is a subobject of
778   // type Ty at offset zero within this object.
779   //
780   // C++11 [basic.life]p5,6:
781   //   [For storage which does not refer to an object within its lifetime]
782   //   The program has undefined behavior if:
783   //    -- the [pointer or glvalue] is used to access a non-static data member
784   //       or call a non-static member function
785   if (SanOpts.has(SanitizerKind::Vptr) &&
786       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
787     // Ensure that the pointer is non-null before loading it. If there is no
788     // compile-time guarantee, reuse the run-time null check or emit a new one.
789     if (!IsGuaranteedNonNull) {
790       if (!IsNonNull)
791         IsNonNull = Builder.CreateIsNotNull(Ptr);
792       if (!Done)
793         Done = createBasicBlock("vptr.null");
794       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
795       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
796       EmitBlock(VptrNotNull);
797     }
798 
799     // Compute a hash of the mangled name of the type.
800     //
801     // FIXME: This is not guaranteed to be deterministic! Move to a
802     //        fingerprinting mechanism once LLVM provides one. For the time
803     //        being the implementation happens to be deterministic.
804     SmallString<64> MangledName;
805     llvm::raw_svector_ostream Out(MangledName);
806     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
807                                                      Out);
808 
809     // Blacklist based on the mangled type.
810     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
811             SanitizerKind::Vptr, Out.str())) {
812       llvm::hash_code TypeHash = hash_value(Out.str());
813 
814       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
815       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
816       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
817       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
818       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
819       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
820 
821       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
822       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
823 
824       // Look the hash up in our cache.
825       const int CacheSize = 128;
826       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
827       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
828                                                      "__ubsan_vptr_type_cache");
829       llvm::Value *Slot = Builder.CreateAnd(Hash,
830                                             llvm::ConstantInt::get(IntPtrTy,
831                                                                    CacheSize-1));
832       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
833       llvm::Value *CacheVal =
834         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
835                                   getPointerAlign());
836 
837       // If the hash isn't in the cache, call a runtime handler to perform the
838       // hard work of checking whether the vptr is for an object of the right
839       // type. This will either fill in the cache and return, or produce a
840       // diagnostic.
841       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
842       llvm::Constant *StaticData[] = {
843         EmitCheckSourceLocation(Loc),
844         EmitCheckTypeDescriptor(Ty),
845         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
846         llvm::ConstantInt::get(Int8Ty, TCK)
847       };
848       llvm::Value *DynamicData[] = { Ptr, Hash };
849       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
850                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
851                 DynamicData);
852     }
853   }
854 
855   if (Done) {
856     Builder.CreateBr(Done);
857     EmitBlock(Done);
858   }
859 }
860 
861 /// Determine whether this expression refers to a flexible array member in a
862 /// struct. We disable array bounds checks for such members.
863 static bool isFlexibleArrayMemberExpr(const Expr *E) {
864   // For compatibility with existing code, we treat arrays of length 0 or
865   // 1 as flexible array members.
866   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
867   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
868     if (CAT->getSize().ugt(1))
869       return false;
870   } else if (!isa<IncompleteArrayType>(AT))
871     return false;
872 
873   E = E->IgnoreParens();
874 
875   // A flexible array member must be the last member in the class.
876   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
877     // FIXME: If the base type of the member expr is not FD->getParent(),
878     // this should not be treated as a flexible array member access.
879     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
880       RecordDecl::field_iterator FI(
881           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
882       return ++FI == FD->getParent()->field_end();
883     }
884   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
885     return IRE->getDecl()->getNextIvar() == nullptr;
886   }
887 
888   return false;
889 }
890 
891 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
892                                                    QualType EltTy) {
893   ASTContext &C = getContext();
894   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
895   if (!EltSize)
896     return nullptr;
897 
898   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
899   if (!ArrayDeclRef)
900     return nullptr;
901 
902   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
903   if (!ParamDecl)
904     return nullptr;
905 
906   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
907   if (!POSAttr)
908     return nullptr;
909 
910   // Don't load the size if it's a lower bound.
911   int POSType = POSAttr->getType();
912   if (POSType != 0 && POSType != 1)
913     return nullptr;
914 
915   // Find the implicit size parameter.
916   auto PassedSizeIt = SizeArguments.find(ParamDecl);
917   if (PassedSizeIt == SizeArguments.end())
918     return nullptr;
919 
920   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
921   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
922   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
923   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
924                                               C.getSizeType(), E->getExprLoc());
925   llvm::Value *SizeOfElement =
926       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
927   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
928 }
929 
930 /// If Base is known to point to the start of an array, return the length of
931 /// that array. Return 0 if the length cannot be determined.
932 static llvm::Value *getArrayIndexingBound(
933     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
934   // For the vector indexing extension, the bound is the number of elements.
935   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
936     IndexedType = Base->getType();
937     return CGF.Builder.getInt32(VT->getNumElements());
938   }
939 
940   Base = Base->IgnoreParens();
941 
942   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
943     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
944         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
945       IndexedType = CE->getSubExpr()->getType();
946       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
947       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
948         return CGF.Builder.getInt(CAT->getSize());
949       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
950         return CGF.getVLASize(VAT).NumElts;
951       // Ignore pass_object_size here. It's not applicable on decayed pointers.
952     }
953   }
954 
955   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
956   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
957     IndexedType = Base->getType();
958     return POS;
959   }
960 
961   return nullptr;
962 }
963 
964 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
965                                       llvm::Value *Index, QualType IndexType,
966                                       bool Accessed) {
967   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
968          "should not be called unless adding bounds checks");
969   SanitizerScope SanScope(this);
970 
971   QualType IndexedType;
972   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
973   if (!Bound)
974     return;
975 
976   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
977   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
978   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
979 
980   llvm::Constant *StaticData[] = {
981     EmitCheckSourceLocation(E->getExprLoc()),
982     EmitCheckTypeDescriptor(IndexedType),
983     EmitCheckTypeDescriptor(IndexType)
984   };
985   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
986                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
987   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
988             SanitizerHandler::OutOfBounds, StaticData, Index);
989 }
990 
991 
992 CodeGenFunction::ComplexPairTy CodeGenFunction::
993 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
994                          bool isInc, bool isPre) {
995   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
996 
997   llvm::Value *NextVal;
998   if (isa<llvm::IntegerType>(InVal.first->getType())) {
999     uint64_t AmountVal = isInc ? 1 : -1;
1000     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1001 
1002     // Add the inc/dec to the real part.
1003     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1004   } else {
1005     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1006     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1007     if (!isInc)
1008       FVal.changeSign();
1009     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1010 
1011     // Add the inc/dec to the real part.
1012     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1013   }
1014 
1015   ComplexPairTy IncVal(NextVal, InVal.second);
1016 
1017   // Store the updated result through the lvalue.
1018   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1019   if (getLangOpts().OpenMP)
1020     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1021                                                               E->getSubExpr());
1022 
1023   // If this is a postinc, return the value read from memory, otherwise use the
1024   // updated value.
1025   return isPre ? IncVal : InVal;
1026 }
1027 
1028 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1029                                              CodeGenFunction *CGF) {
1030   // Bind VLAs in the cast type.
1031   if (CGF && E->getType()->isVariablyModifiedType())
1032     CGF->EmitVariablyModifiedType(E->getType());
1033 
1034   if (CGDebugInfo *DI = getModuleDebugInfo())
1035     DI->EmitExplicitCastType(E->getType());
1036 }
1037 
1038 //===----------------------------------------------------------------------===//
1039 //                         LValue Expression Emission
1040 //===----------------------------------------------------------------------===//
1041 
1042 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1043 /// derive a more accurate bound on the alignment of the pointer.
1044 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1045                                                   LValueBaseInfo *BaseInfo,
1046                                                   TBAAAccessInfo *TBAAInfo) {
1047   // We allow this with ObjC object pointers because of fragile ABIs.
1048   assert(E->getType()->isPointerType() ||
1049          E->getType()->isObjCObjectPointerType());
1050   E = E->IgnoreParens();
1051 
1052   // Casts:
1053   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1054     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1055       CGM.EmitExplicitCastExprType(ECE, this);
1056 
1057     switch (CE->getCastKind()) {
1058     // Non-converting casts (but not C's implicit conversion from void*).
1059     case CK_BitCast:
1060     case CK_NoOp:
1061     case CK_AddressSpaceConversion:
1062       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1063         if (PtrTy->getPointeeType()->isVoidType())
1064           break;
1065 
1066         LValueBaseInfo InnerBaseInfo;
1067         TBAAAccessInfo InnerTBAAInfo;
1068         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1069                                                 &InnerBaseInfo,
1070                                                 &InnerTBAAInfo);
1071         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1072         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1073 
1074         if (isa<ExplicitCastExpr>(CE)) {
1075           LValueBaseInfo TargetTypeBaseInfo;
1076           TBAAAccessInfo TargetTypeTBAAInfo;
1077           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1078                                                            &TargetTypeBaseInfo,
1079                                                            &TargetTypeTBAAInfo);
1080           if (TBAAInfo)
1081             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1082                                                  TargetTypeTBAAInfo);
1083           // If the source l-value is opaque, honor the alignment of the
1084           // casted-to type.
1085           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1086             if (BaseInfo)
1087               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1088             Addr = Address(Addr.getPointer(), Align);
1089           }
1090         }
1091 
1092         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1093             CE->getCastKind() == CK_BitCast) {
1094           if (auto PT = E->getType()->getAs<PointerType>())
1095             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1096                                       /*MayBeNull=*/true,
1097                                       CodeGenFunction::CFITCK_UnrelatedCast,
1098                                       CE->getBeginLoc());
1099         }
1100         return CE->getCastKind() != CK_AddressSpaceConversion
1101                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1102                    : Builder.CreateAddrSpaceCast(Addr,
1103                                                  ConvertType(E->getType()));
1104       }
1105       break;
1106 
1107     // Array-to-pointer decay.
1108     case CK_ArrayToPointerDecay:
1109       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1110 
1111     // Derived-to-base conversions.
1112     case CK_UncheckedDerivedToBase:
1113     case CK_DerivedToBase: {
1114       // TODO: Support accesses to members of base classes in TBAA. For now, we
1115       // conservatively pretend that the complete object is of the base class
1116       // type.
1117       if (TBAAInfo)
1118         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1119       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1120       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1121       return GetAddressOfBaseClass(Addr, Derived,
1122                                    CE->path_begin(), CE->path_end(),
1123                                    ShouldNullCheckClassCastValue(CE),
1124                                    CE->getExprLoc());
1125     }
1126 
1127     // TODO: Is there any reason to treat base-to-derived conversions
1128     // specially?
1129     default:
1130       break;
1131     }
1132   }
1133 
1134   // Unary &.
1135   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1136     if (UO->getOpcode() == UO_AddrOf) {
1137       LValue LV = EmitLValue(UO->getSubExpr());
1138       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1139       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1140       return LV.getAddress(*this);
1141     }
1142   }
1143 
1144   // TODO: conditional operators, comma.
1145 
1146   // Otherwise, use the alignment of the type.
1147   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1148                                                    TBAAInfo);
1149   return Address(EmitScalarExpr(E), Align);
1150 }
1151 
1152 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1153   if (Ty->isVoidType())
1154     return RValue::get(nullptr);
1155 
1156   switch (getEvaluationKind(Ty)) {
1157   case TEK_Complex: {
1158     llvm::Type *EltTy =
1159       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1160     llvm::Value *U = llvm::UndefValue::get(EltTy);
1161     return RValue::getComplex(std::make_pair(U, U));
1162   }
1163 
1164   // If this is a use of an undefined aggregate type, the aggregate must have an
1165   // identifiable address.  Just because the contents of the value are undefined
1166   // doesn't mean that the address can't be taken and compared.
1167   case TEK_Aggregate: {
1168     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1169     return RValue::getAggregate(DestPtr);
1170   }
1171 
1172   case TEK_Scalar:
1173     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1174   }
1175   llvm_unreachable("bad evaluation kind");
1176 }
1177 
1178 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1179                                               const char *Name) {
1180   ErrorUnsupported(E, Name);
1181   return GetUndefRValue(E->getType());
1182 }
1183 
1184 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1185                                               const char *Name) {
1186   ErrorUnsupported(E, Name);
1187   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1188   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1189                         E->getType());
1190 }
1191 
1192 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1193   const Expr *Base = Obj;
1194   while (!isa<CXXThisExpr>(Base)) {
1195     // The result of a dynamic_cast can be null.
1196     if (isa<CXXDynamicCastExpr>(Base))
1197       return false;
1198 
1199     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1200       Base = CE->getSubExpr();
1201     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1202       Base = PE->getSubExpr();
1203     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1204       if (UO->getOpcode() == UO_Extension)
1205         Base = UO->getSubExpr();
1206       else
1207         return false;
1208     } else {
1209       return false;
1210     }
1211   }
1212   return true;
1213 }
1214 
1215 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1216   LValue LV;
1217   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1218     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1219   else
1220     LV = EmitLValue(E);
1221   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1222     SanitizerSet SkippedChecks;
1223     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1224       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1225       if (IsBaseCXXThis)
1226         SkippedChecks.set(SanitizerKind::Alignment, true);
1227       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1228         SkippedChecks.set(SanitizerKind::Null, true);
1229     }
1230     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1231                   LV.getAlignment(), SkippedChecks);
1232   }
1233   return LV;
1234 }
1235 
1236 /// EmitLValue - Emit code to compute a designator that specifies the location
1237 /// of the expression.
1238 ///
1239 /// This can return one of two things: a simple address or a bitfield reference.
1240 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1241 /// an LLVM pointer type.
1242 ///
1243 /// If this returns a bitfield reference, nothing about the pointee type of the
1244 /// LLVM value is known: For example, it may not be a pointer to an integer.
1245 ///
1246 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1247 /// this method guarantees that the returned pointer type will point to an LLVM
1248 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1249 /// length type, this is not possible.
1250 ///
1251 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1252   ApplyDebugLocation DL(*this, E);
1253   switch (E->getStmtClass()) {
1254   default: return EmitUnsupportedLValue(E, "l-value expression");
1255 
1256   case Expr::ObjCPropertyRefExprClass:
1257     llvm_unreachable("cannot emit a property reference directly");
1258 
1259   case Expr::ObjCSelectorExprClass:
1260     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1261   case Expr::ObjCIsaExprClass:
1262     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1263   case Expr::BinaryOperatorClass:
1264     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1265   case Expr::CompoundAssignOperatorClass: {
1266     QualType Ty = E->getType();
1267     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1268       Ty = AT->getValueType();
1269     if (!Ty->isAnyComplexType())
1270       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1271     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1272   }
1273   case Expr::CallExprClass:
1274   case Expr::CXXMemberCallExprClass:
1275   case Expr::CXXOperatorCallExprClass:
1276   case Expr::UserDefinedLiteralClass:
1277     return EmitCallExprLValue(cast<CallExpr>(E));
1278   case Expr::CXXRewrittenBinaryOperatorClass:
1279     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1280   case Expr::VAArgExprClass:
1281     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1282   case Expr::DeclRefExprClass:
1283     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1284   case Expr::ConstantExprClass:
1285     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1286   case Expr::ParenExprClass:
1287     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1288   case Expr::GenericSelectionExprClass:
1289     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1290   case Expr::PredefinedExprClass:
1291     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1292   case Expr::StringLiteralClass:
1293     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1294   case Expr::ObjCEncodeExprClass:
1295     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1296   case Expr::PseudoObjectExprClass:
1297     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1298   case Expr::InitListExprClass:
1299     return EmitInitListLValue(cast<InitListExpr>(E));
1300   case Expr::CXXTemporaryObjectExprClass:
1301   case Expr::CXXConstructExprClass:
1302     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1303   case Expr::CXXBindTemporaryExprClass:
1304     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1305   case Expr::CXXUuidofExprClass:
1306     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1307   case Expr::LambdaExprClass:
1308     return EmitAggExprToLValue(E);
1309 
1310   case Expr::ExprWithCleanupsClass: {
1311     const auto *cleanups = cast<ExprWithCleanups>(E);
1312     enterFullExpression(cleanups);
1313     RunCleanupsScope Scope(*this);
1314     LValue LV = EmitLValue(cleanups->getSubExpr());
1315     if (LV.isSimple()) {
1316       // Defend against branches out of gnu statement expressions surrounded by
1317       // cleanups.
1318       llvm::Value *V = LV.getPointer(*this);
1319       Scope.ForceCleanup({&V});
1320       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1321                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1322     }
1323     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1324     // bitfield lvalue or some other non-simple lvalue?
1325     return LV;
1326   }
1327 
1328   case Expr::CXXDefaultArgExprClass: {
1329     auto *DAE = cast<CXXDefaultArgExpr>(E);
1330     CXXDefaultArgExprScope Scope(*this, DAE);
1331     return EmitLValue(DAE->getExpr());
1332   }
1333   case Expr::CXXDefaultInitExprClass: {
1334     auto *DIE = cast<CXXDefaultInitExpr>(E);
1335     CXXDefaultInitExprScope Scope(*this, DIE);
1336     return EmitLValue(DIE->getExpr());
1337   }
1338   case Expr::CXXTypeidExprClass:
1339     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1340 
1341   case Expr::ObjCMessageExprClass:
1342     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1343   case Expr::ObjCIvarRefExprClass:
1344     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1345   case Expr::StmtExprClass:
1346     return EmitStmtExprLValue(cast<StmtExpr>(E));
1347   case Expr::UnaryOperatorClass:
1348     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1349   case Expr::ArraySubscriptExprClass:
1350     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1351   case Expr::OMPArraySectionExprClass:
1352     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1353   case Expr::ExtVectorElementExprClass:
1354     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1355   case Expr::MemberExprClass:
1356     return EmitMemberExpr(cast<MemberExpr>(E));
1357   case Expr::CompoundLiteralExprClass:
1358     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1359   case Expr::ConditionalOperatorClass:
1360     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1361   case Expr::BinaryConditionalOperatorClass:
1362     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1363   case Expr::ChooseExprClass:
1364     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1365   case Expr::OpaqueValueExprClass:
1366     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1367   case Expr::SubstNonTypeTemplateParmExprClass:
1368     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1369   case Expr::ImplicitCastExprClass:
1370   case Expr::CStyleCastExprClass:
1371   case Expr::CXXFunctionalCastExprClass:
1372   case Expr::CXXStaticCastExprClass:
1373   case Expr::CXXDynamicCastExprClass:
1374   case Expr::CXXReinterpretCastExprClass:
1375   case Expr::CXXConstCastExprClass:
1376   case Expr::ObjCBridgedCastExprClass:
1377     return EmitCastLValue(cast<CastExpr>(E));
1378 
1379   case Expr::MaterializeTemporaryExprClass:
1380     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1381 
1382   case Expr::CoawaitExprClass:
1383     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1384   case Expr::CoyieldExprClass:
1385     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1386   }
1387 }
1388 
1389 /// Given an object of the given canonical type, can we safely copy a
1390 /// value out of it based on its initializer?
1391 static bool isConstantEmittableObjectType(QualType type) {
1392   assert(type.isCanonical());
1393   assert(!type->isReferenceType());
1394 
1395   // Must be const-qualified but non-volatile.
1396   Qualifiers qs = type.getLocalQualifiers();
1397   if (!qs.hasConst() || qs.hasVolatile()) return false;
1398 
1399   // Otherwise, all object types satisfy this except C++ classes with
1400   // mutable subobjects or non-trivial copy/destroy behavior.
1401   if (const auto *RT = dyn_cast<RecordType>(type))
1402     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1403       if (RD->hasMutableFields() || !RD->isTrivial())
1404         return false;
1405 
1406   return true;
1407 }
1408 
1409 /// Can we constant-emit a load of a reference to a variable of the
1410 /// given type?  This is different from predicates like
1411 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1412 /// in situations that don't necessarily satisfy the language's rules
1413 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1414 /// to do this with const float variables even if those variables
1415 /// aren't marked 'constexpr'.
1416 enum ConstantEmissionKind {
1417   CEK_None,
1418   CEK_AsReferenceOnly,
1419   CEK_AsValueOrReference,
1420   CEK_AsValueOnly
1421 };
1422 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1423   type = type.getCanonicalType();
1424   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1425     if (isConstantEmittableObjectType(ref->getPointeeType()))
1426       return CEK_AsValueOrReference;
1427     return CEK_AsReferenceOnly;
1428   }
1429   if (isConstantEmittableObjectType(type))
1430     return CEK_AsValueOnly;
1431   return CEK_None;
1432 }
1433 
1434 /// Try to emit a reference to the given value without producing it as
1435 /// an l-value.  This is just an optimization, but it avoids us needing
1436 /// to emit global copies of variables if they're named without triggering
1437 /// a formal use in a context where we can't emit a direct reference to them,
1438 /// for instance if a block or lambda or a member of a local class uses a
1439 /// const int variable or constexpr variable from an enclosing function.
1440 CodeGenFunction::ConstantEmission
1441 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1442   ValueDecl *value = refExpr->getDecl();
1443 
1444   // The value needs to be an enum constant or a constant variable.
1445   ConstantEmissionKind CEK;
1446   if (isa<ParmVarDecl>(value)) {
1447     CEK = CEK_None;
1448   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1449     CEK = checkVarTypeForConstantEmission(var->getType());
1450   } else if (isa<EnumConstantDecl>(value)) {
1451     CEK = CEK_AsValueOnly;
1452   } else {
1453     CEK = CEK_None;
1454   }
1455   if (CEK == CEK_None) return ConstantEmission();
1456 
1457   Expr::EvalResult result;
1458   bool resultIsReference;
1459   QualType resultType;
1460 
1461   // It's best to evaluate all the way as an r-value if that's permitted.
1462   if (CEK != CEK_AsReferenceOnly &&
1463       refExpr->EvaluateAsRValue(result, getContext())) {
1464     resultIsReference = false;
1465     resultType = refExpr->getType();
1466 
1467   // Otherwise, try to evaluate as an l-value.
1468   } else if (CEK != CEK_AsValueOnly &&
1469              refExpr->EvaluateAsLValue(result, getContext())) {
1470     resultIsReference = true;
1471     resultType = value->getType();
1472 
1473   // Failure.
1474   } else {
1475     return ConstantEmission();
1476   }
1477 
1478   // In any case, if the initializer has side-effects, abandon ship.
1479   if (result.HasSideEffects)
1480     return ConstantEmission();
1481 
1482   // Emit as a constant.
1483   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1484                                                result.Val, resultType);
1485 
1486   // Make sure we emit a debug reference to the global variable.
1487   // This should probably fire even for
1488   if (isa<VarDecl>(value)) {
1489     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1490       EmitDeclRefExprDbgValue(refExpr, result.Val);
1491   } else {
1492     assert(isa<EnumConstantDecl>(value));
1493     EmitDeclRefExprDbgValue(refExpr, result.Val);
1494   }
1495 
1496   // If we emitted a reference constant, we need to dereference that.
1497   if (resultIsReference)
1498     return ConstantEmission::forReference(C);
1499 
1500   return ConstantEmission::forValue(C);
1501 }
1502 
1503 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1504                                                         const MemberExpr *ME) {
1505   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1506     // Try to emit static variable member expressions as DREs.
1507     return DeclRefExpr::Create(
1508         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1509         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1510         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1511   }
1512   return nullptr;
1513 }
1514 
1515 CodeGenFunction::ConstantEmission
1516 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1517   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1518     return tryEmitAsConstant(DRE);
1519   return ConstantEmission();
1520 }
1521 
1522 llvm::Value *CodeGenFunction::emitScalarConstant(
1523     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1524   assert(Constant && "not a constant");
1525   if (Constant.isReference())
1526     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1527                             E->getExprLoc())
1528         .getScalarVal();
1529   return Constant.getValue();
1530 }
1531 
1532 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1533                                                SourceLocation Loc) {
1534   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1535                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1536                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1537 }
1538 
1539 static bool hasBooleanRepresentation(QualType Ty) {
1540   if (Ty->isBooleanType())
1541     return true;
1542 
1543   if (const EnumType *ET = Ty->getAs<EnumType>())
1544     return ET->getDecl()->getIntegerType()->isBooleanType();
1545 
1546   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1547     return hasBooleanRepresentation(AT->getValueType());
1548 
1549   return false;
1550 }
1551 
1552 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1553                             llvm::APInt &Min, llvm::APInt &End,
1554                             bool StrictEnums, bool IsBool) {
1555   const EnumType *ET = Ty->getAs<EnumType>();
1556   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1557                                 ET && !ET->getDecl()->isFixed();
1558   if (!IsBool && !IsRegularCPlusPlusEnum)
1559     return false;
1560 
1561   if (IsBool) {
1562     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1563     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1564   } else {
1565     const EnumDecl *ED = ET->getDecl();
1566     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1567     unsigned Bitwidth = LTy->getScalarSizeInBits();
1568     unsigned NumNegativeBits = ED->getNumNegativeBits();
1569     unsigned NumPositiveBits = ED->getNumPositiveBits();
1570 
1571     if (NumNegativeBits) {
1572       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1573       assert(NumBits <= Bitwidth);
1574       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1575       Min = -End;
1576     } else {
1577       assert(NumPositiveBits <= Bitwidth);
1578       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1579       Min = llvm::APInt(Bitwidth, 0);
1580     }
1581   }
1582   return true;
1583 }
1584 
1585 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1586   llvm::APInt Min, End;
1587   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1588                        hasBooleanRepresentation(Ty)))
1589     return nullptr;
1590 
1591   llvm::MDBuilder MDHelper(getLLVMContext());
1592   return MDHelper.createRange(Min, End);
1593 }
1594 
1595 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1596                                            SourceLocation Loc) {
1597   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1598   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1599   if (!HasBoolCheck && !HasEnumCheck)
1600     return false;
1601 
1602   bool IsBool = hasBooleanRepresentation(Ty) ||
1603                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1604   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1605   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1606   if (!NeedsBoolCheck && !NeedsEnumCheck)
1607     return false;
1608 
1609   // Single-bit booleans don't need to be checked. Special-case this to avoid
1610   // a bit width mismatch when handling bitfield values. This is handled by
1611   // EmitFromMemory for the non-bitfield case.
1612   if (IsBool &&
1613       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1614     return false;
1615 
1616   llvm::APInt Min, End;
1617   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1618     return true;
1619 
1620   auto &Ctx = getLLVMContext();
1621   SanitizerScope SanScope(this);
1622   llvm::Value *Check;
1623   --End;
1624   if (!Min) {
1625     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1626   } else {
1627     llvm::Value *Upper =
1628         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1629     llvm::Value *Lower =
1630         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1631     Check = Builder.CreateAnd(Upper, Lower);
1632   }
1633   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1634                                   EmitCheckTypeDescriptor(Ty)};
1635   SanitizerMask Kind =
1636       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1637   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1638             StaticArgs, EmitCheckValue(Value));
1639   return true;
1640 }
1641 
1642 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1643                                                QualType Ty,
1644                                                SourceLocation Loc,
1645                                                LValueBaseInfo BaseInfo,
1646                                                TBAAAccessInfo TBAAInfo,
1647                                                bool isNontemporal) {
1648   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1649     // For better performance, handle vector loads differently.
1650     if (Ty->isVectorType()) {
1651       const llvm::Type *EltTy = Addr.getElementType();
1652 
1653       const auto *VTy = cast<llvm::VectorType>(EltTy);
1654 
1655       // Handle vectors of size 3 like size 4 for better performance.
1656       if (VTy->getNumElements() == 3) {
1657 
1658         // Bitcast to vec4 type.
1659         llvm::VectorType *vec4Ty =
1660             llvm::VectorType::get(VTy->getElementType(), 4);
1661         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1662         // Now load value.
1663         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1664 
1665         // Shuffle vector to get vec3.
1666         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1667                                         {0, 1, 2}, "extractVec");
1668         return EmitFromMemory(V, Ty);
1669       }
1670     }
1671   }
1672 
1673   // Atomic operations have to be done on integral types.
1674   LValue AtomicLValue =
1675       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1676   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1677     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1678   }
1679 
1680   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1681   if (isNontemporal) {
1682     llvm::MDNode *Node = llvm::MDNode::get(
1683         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1684     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1685   }
1686 
1687   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1688 
1689   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1690     // In order to prevent the optimizer from throwing away the check, don't
1691     // attach range metadata to the load.
1692   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1693     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1694       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1695 
1696   return EmitFromMemory(Load, Ty);
1697 }
1698 
1699 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1700   // Bool has a different representation in memory than in registers.
1701   if (hasBooleanRepresentation(Ty)) {
1702     // This should really always be an i1, but sometimes it's already
1703     // an i8, and it's awkward to track those cases down.
1704     if (Value->getType()->isIntegerTy(1))
1705       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1706     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1707            "wrong value rep of bool");
1708   }
1709 
1710   return Value;
1711 }
1712 
1713 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1714   // Bool has a different representation in memory than in registers.
1715   if (hasBooleanRepresentation(Ty)) {
1716     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1717            "wrong value rep of bool");
1718     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1719   }
1720 
1721   return Value;
1722 }
1723 
1724 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1725                                         bool Volatile, QualType Ty,
1726                                         LValueBaseInfo BaseInfo,
1727                                         TBAAAccessInfo TBAAInfo,
1728                                         bool isInit, bool isNontemporal) {
1729   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1730     // Handle vectors differently to get better performance.
1731     if (Ty->isVectorType()) {
1732       llvm::Type *SrcTy = Value->getType();
1733       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1734       // Handle vec3 special.
1735       if (VecTy && VecTy->getNumElements() == 3) {
1736         // Our source is a vec3, do a shuffle vector to make it a vec4.
1737         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1738                                   Builder.getInt32(2),
1739                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1740         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1741         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1742                                             MaskV, "extractVec");
1743         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1744       }
1745       if (Addr.getElementType() != SrcTy) {
1746         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1747       }
1748     }
1749   }
1750 
1751   Value = EmitToMemory(Value, Ty);
1752 
1753   LValue AtomicLValue =
1754       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1755   if (Ty->isAtomicType() ||
1756       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1757     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1758     return;
1759   }
1760 
1761   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1762   if (isNontemporal) {
1763     llvm::MDNode *Node =
1764         llvm::MDNode::get(Store->getContext(),
1765                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1766     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1767   }
1768 
1769   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1770 }
1771 
1772 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1773                                         bool isInit) {
1774   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1775                     lvalue.getType(), lvalue.getBaseInfo(),
1776                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1777 }
1778 
1779 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1780 /// method emits the address of the lvalue, then loads the result as an rvalue,
1781 /// returning the rvalue.
1782 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1783   if (LV.isObjCWeak()) {
1784     // load of a __weak object.
1785     Address AddrWeakObj = LV.getAddress(*this);
1786     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1787                                                              AddrWeakObj));
1788   }
1789   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1790     // In MRC mode, we do a load+autorelease.
1791     if (!getLangOpts().ObjCAutoRefCount) {
1792       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1793     }
1794 
1795     // In ARC mode, we load retained and then consume the value.
1796     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1797     Object = EmitObjCConsumeObject(LV.getType(), Object);
1798     return RValue::get(Object);
1799   }
1800 
1801   if (LV.isSimple()) {
1802     assert(!LV.getType()->isFunctionType());
1803 
1804     // Everything needs a load.
1805     return RValue::get(EmitLoadOfScalar(LV, Loc));
1806   }
1807 
1808   if (LV.isVectorElt()) {
1809     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1810                                               LV.isVolatileQualified());
1811     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1812                                                     "vecext"));
1813   }
1814 
1815   // If this is a reference to a subset of the elements of a vector, either
1816   // shuffle the input or extract/insert them as appropriate.
1817   if (LV.isExtVectorElt())
1818     return EmitLoadOfExtVectorElementLValue(LV);
1819 
1820   // Global Register variables always invoke intrinsics
1821   if (LV.isGlobalReg())
1822     return EmitLoadOfGlobalRegLValue(LV);
1823 
1824   assert(LV.isBitField() && "Unknown LValue type!");
1825   return EmitLoadOfBitfieldLValue(LV, Loc);
1826 }
1827 
1828 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1829                                                  SourceLocation Loc) {
1830   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1831 
1832   // Get the output type.
1833   llvm::Type *ResLTy = ConvertType(LV.getType());
1834 
1835   Address Ptr = LV.getBitFieldAddress();
1836   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1837 
1838   if (Info.IsSigned) {
1839     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1840     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1841     if (HighBits)
1842       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1843     if (Info.Offset + HighBits)
1844       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1845   } else {
1846     if (Info.Offset)
1847       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1848     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1849       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1850                                                               Info.Size),
1851                               "bf.clear");
1852   }
1853   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1854   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1855   return RValue::get(Val);
1856 }
1857 
1858 // If this is a reference to a subset of the elements of a vector, create an
1859 // appropriate shufflevector.
1860 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1861   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1862                                         LV.isVolatileQualified());
1863 
1864   const llvm::Constant *Elts = LV.getExtVectorElts();
1865 
1866   // If the result of the expression is a non-vector type, we must be extracting
1867   // a single element.  Just codegen as an extractelement.
1868   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1869   if (!ExprVT) {
1870     unsigned InIdx = getAccessedFieldNo(0, Elts);
1871     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1872     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1873   }
1874 
1875   // Always use shuffle vector to try to retain the original program structure
1876   unsigned NumResultElts = ExprVT->getNumElements();
1877 
1878   SmallVector<llvm::Constant*, 4> Mask;
1879   for (unsigned i = 0; i != NumResultElts; ++i)
1880     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1881 
1882   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1883   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1884                                     MaskV);
1885   return RValue::get(Vec);
1886 }
1887 
1888 /// Generates lvalue for partial ext_vector access.
1889 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1890   Address VectorAddress = LV.getExtVectorAddress();
1891   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
1892   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1893 
1894   Address CastToPointerElement =
1895     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1896                                  "conv.ptr.element");
1897 
1898   const llvm::Constant *Elts = LV.getExtVectorElts();
1899   unsigned ix = getAccessedFieldNo(0, Elts);
1900 
1901   Address VectorBasePtrPlusIx =
1902     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1903                                    "vector.elt");
1904 
1905   return VectorBasePtrPlusIx;
1906 }
1907 
1908 /// Load of global gamed gegisters are always calls to intrinsics.
1909 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1910   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1911          "Bad type for register variable");
1912   llvm::MDNode *RegName = cast<llvm::MDNode>(
1913       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1914 
1915   // We accept integer and pointer types only
1916   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1917   llvm::Type *Ty = OrigTy;
1918   if (OrigTy->isPointerTy())
1919     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1920   llvm::Type *Types[] = { Ty };
1921 
1922   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1923   llvm::Value *Call = Builder.CreateCall(
1924       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1925   if (OrigTy->isPointerTy())
1926     Call = Builder.CreateIntToPtr(Call, OrigTy);
1927   return RValue::get(Call);
1928 }
1929 
1930 
1931 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1932 /// lvalue, where both are guaranteed to the have the same type, and that type
1933 /// is 'Ty'.
1934 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1935                                              bool isInit) {
1936   if (!Dst.isSimple()) {
1937     if (Dst.isVectorElt()) {
1938       // Read/modify/write the vector, inserting the new element.
1939       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1940                                             Dst.isVolatileQualified());
1941       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1942                                         Dst.getVectorIdx(), "vecins");
1943       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1944                           Dst.isVolatileQualified());
1945       return;
1946     }
1947 
1948     // If this is an update of extended vector elements, insert them as
1949     // appropriate.
1950     if (Dst.isExtVectorElt())
1951       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1952 
1953     if (Dst.isGlobalReg())
1954       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1955 
1956     assert(Dst.isBitField() && "Unknown LValue type");
1957     return EmitStoreThroughBitfieldLValue(Src, Dst);
1958   }
1959 
1960   // There's special magic for assigning into an ARC-qualified l-value.
1961   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1962     switch (Lifetime) {
1963     case Qualifiers::OCL_None:
1964       llvm_unreachable("present but none");
1965 
1966     case Qualifiers::OCL_ExplicitNone:
1967       // nothing special
1968       break;
1969 
1970     case Qualifiers::OCL_Strong:
1971       if (isInit) {
1972         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1973         break;
1974       }
1975       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1976       return;
1977 
1978     case Qualifiers::OCL_Weak:
1979       if (isInit)
1980         // Initialize and then skip the primitive store.
1981         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
1982       else
1983         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
1984                          /*ignore*/ true);
1985       return;
1986 
1987     case Qualifiers::OCL_Autoreleasing:
1988       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1989                                                      Src.getScalarVal()));
1990       // fall into the normal path
1991       break;
1992     }
1993   }
1994 
1995   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1996     // load of a __weak object.
1997     Address LvalueDst = Dst.getAddress(*this);
1998     llvm::Value *src = Src.getScalarVal();
1999      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2000     return;
2001   }
2002 
2003   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2004     // load of a __strong object.
2005     Address LvalueDst = Dst.getAddress(*this);
2006     llvm::Value *src = Src.getScalarVal();
2007     if (Dst.isObjCIvar()) {
2008       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2009       llvm::Type *ResultType = IntPtrTy;
2010       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2011       llvm::Value *RHS = dst.getPointer();
2012       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2013       llvm::Value *LHS =
2014         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2015                                "sub.ptr.lhs.cast");
2016       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2017       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2018                                               BytesBetween);
2019     } else if (Dst.isGlobalObjCRef()) {
2020       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2021                                                 Dst.isThreadLocalRef());
2022     }
2023     else
2024       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2025     return;
2026   }
2027 
2028   assert(Src.isScalar() && "Can't emit an agg store with this method");
2029   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2030 }
2031 
2032 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2033                                                      llvm::Value **Result) {
2034   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2035   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2036   Address Ptr = Dst.getBitFieldAddress();
2037 
2038   // Get the source value, truncated to the width of the bit-field.
2039   llvm::Value *SrcVal = Src.getScalarVal();
2040 
2041   // Cast the source to the storage type and shift it into place.
2042   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2043                                  /*isSigned=*/false);
2044   llvm::Value *MaskedVal = SrcVal;
2045 
2046   // See if there are other bits in the bitfield's storage we'll need to load
2047   // and mask together with source before storing.
2048   if (Info.StorageSize != Info.Size) {
2049     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2050     llvm::Value *Val =
2051       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2052 
2053     // Mask the source value as needed.
2054     if (!hasBooleanRepresentation(Dst.getType()))
2055       SrcVal = Builder.CreateAnd(SrcVal,
2056                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2057                                                             Info.Size),
2058                                  "bf.value");
2059     MaskedVal = SrcVal;
2060     if (Info.Offset)
2061       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2062 
2063     // Mask out the original value.
2064     Val = Builder.CreateAnd(Val,
2065                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2066                                                      Info.Offset,
2067                                                      Info.Offset + Info.Size),
2068                             "bf.clear");
2069 
2070     // Or together the unchanged values and the source value.
2071     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2072   } else {
2073     assert(Info.Offset == 0);
2074   }
2075 
2076   // Write the new value back out.
2077   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2078 
2079   // Return the new value of the bit-field, if requested.
2080   if (Result) {
2081     llvm::Value *ResultVal = MaskedVal;
2082 
2083     // Sign extend the value if needed.
2084     if (Info.IsSigned) {
2085       assert(Info.Size <= Info.StorageSize);
2086       unsigned HighBits = Info.StorageSize - Info.Size;
2087       if (HighBits) {
2088         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2089         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2090       }
2091     }
2092 
2093     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2094                                       "bf.result.cast");
2095     *Result = EmitFromMemory(ResultVal, Dst.getType());
2096   }
2097 }
2098 
2099 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2100                                                                LValue Dst) {
2101   // This access turns into a read/modify/write of the vector.  Load the input
2102   // value now.
2103   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2104                                         Dst.isVolatileQualified());
2105   const llvm::Constant *Elts = Dst.getExtVectorElts();
2106 
2107   llvm::Value *SrcVal = Src.getScalarVal();
2108 
2109   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2110     unsigned NumSrcElts = VTy->getNumElements();
2111     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2112     if (NumDstElts == NumSrcElts) {
2113       // Use shuffle vector is the src and destination are the same number of
2114       // elements and restore the vector mask since it is on the side it will be
2115       // stored.
2116       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2117       for (unsigned i = 0; i != NumSrcElts; ++i)
2118         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2119 
2120       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2121       Vec = Builder.CreateShuffleVector(SrcVal,
2122                                         llvm::UndefValue::get(Vec->getType()),
2123                                         MaskV);
2124     } else if (NumDstElts > NumSrcElts) {
2125       // Extended the source vector to the same length and then shuffle it
2126       // into the destination.
2127       // FIXME: since we're shuffling with undef, can we just use the indices
2128       //        into that?  This could be simpler.
2129       SmallVector<llvm::Constant*, 4> ExtMask;
2130       for (unsigned i = 0; i != NumSrcElts; ++i)
2131         ExtMask.push_back(Builder.getInt32(i));
2132       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2133       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2134       llvm::Value *ExtSrcVal =
2135         Builder.CreateShuffleVector(SrcVal,
2136                                     llvm::UndefValue::get(SrcVal->getType()),
2137                                     ExtMaskV);
2138       // build identity
2139       SmallVector<llvm::Constant*, 4> Mask;
2140       for (unsigned i = 0; i != NumDstElts; ++i)
2141         Mask.push_back(Builder.getInt32(i));
2142 
2143       // When the vector size is odd and .odd or .hi is used, the last element
2144       // of the Elts constant array will be one past the size of the vector.
2145       // Ignore the last element here, if it is greater than the mask size.
2146       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2147         NumSrcElts--;
2148 
2149       // modify when what gets shuffled in
2150       for (unsigned i = 0; i != NumSrcElts; ++i)
2151         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2152       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2153       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2154     } else {
2155       // We should never shorten the vector
2156       llvm_unreachable("unexpected shorten vector length");
2157     }
2158   } else {
2159     // If the Src is a scalar (not a vector) it must be updating one element.
2160     unsigned InIdx = getAccessedFieldNo(0, Elts);
2161     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2162     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2163   }
2164 
2165   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2166                       Dst.isVolatileQualified());
2167 }
2168 
2169 /// Store of global named registers are always calls to intrinsics.
2170 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2171   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2172          "Bad type for register variable");
2173   llvm::MDNode *RegName = cast<llvm::MDNode>(
2174       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2175   assert(RegName && "Register LValue is not metadata");
2176 
2177   // We accept integer and pointer types only
2178   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2179   llvm::Type *Ty = OrigTy;
2180   if (OrigTy->isPointerTy())
2181     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2182   llvm::Type *Types[] = { Ty };
2183 
2184   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2185   llvm::Value *Value = Src.getScalarVal();
2186   if (OrigTy->isPointerTy())
2187     Value = Builder.CreatePtrToInt(Value, Ty);
2188   Builder.CreateCall(
2189       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2190 }
2191 
2192 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2193 // generating write-barries API. It is currently a global, ivar,
2194 // or neither.
2195 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2196                                  LValue &LV,
2197                                  bool IsMemberAccess=false) {
2198   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2199     return;
2200 
2201   if (isa<ObjCIvarRefExpr>(E)) {
2202     QualType ExpTy = E->getType();
2203     if (IsMemberAccess && ExpTy->isPointerType()) {
2204       // If ivar is a structure pointer, assigning to field of
2205       // this struct follows gcc's behavior and makes it a non-ivar
2206       // writer-barrier conservatively.
2207       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2208       if (ExpTy->isRecordType()) {
2209         LV.setObjCIvar(false);
2210         return;
2211       }
2212     }
2213     LV.setObjCIvar(true);
2214     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2215     LV.setBaseIvarExp(Exp->getBase());
2216     LV.setObjCArray(E->getType()->isArrayType());
2217     return;
2218   }
2219 
2220   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2221     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2222       if (VD->hasGlobalStorage()) {
2223         LV.setGlobalObjCRef(true);
2224         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2225       }
2226     }
2227     LV.setObjCArray(E->getType()->isArrayType());
2228     return;
2229   }
2230 
2231   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2232     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2233     return;
2234   }
2235 
2236   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2237     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2238     if (LV.isObjCIvar()) {
2239       // If cast is to a structure pointer, follow gcc's behavior and make it
2240       // a non-ivar write-barrier.
2241       QualType ExpTy = E->getType();
2242       if (ExpTy->isPointerType())
2243         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2244       if (ExpTy->isRecordType())
2245         LV.setObjCIvar(false);
2246     }
2247     return;
2248   }
2249 
2250   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2251     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2252     return;
2253   }
2254 
2255   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2256     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2257     return;
2258   }
2259 
2260   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2261     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2262     return;
2263   }
2264 
2265   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2266     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2267     return;
2268   }
2269 
2270   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2271     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2272     if (LV.isObjCIvar() && !LV.isObjCArray())
2273       // Using array syntax to assigning to what an ivar points to is not
2274       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2275       LV.setObjCIvar(false);
2276     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2277       // Using array syntax to assigning to what global points to is not
2278       // same as assigning to the global itself. {id *G;} G[i] = 0;
2279       LV.setGlobalObjCRef(false);
2280     return;
2281   }
2282 
2283   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2284     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2285     // We don't know if member is an 'ivar', but this flag is looked at
2286     // only in the context of LV.isObjCIvar().
2287     LV.setObjCArray(E->getType()->isArrayType());
2288     return;
2289   }
2290 }
2291 
2292 static llvm::Value *
2293 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2294                                 llvm::Value *V, llvm::Type *IRType,
2295                                 StringRef Name = StringRef()) {
2296   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2297   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2298 }
2299 
2300 static LValue EmitThreadPrivateVarDeclLValue(
2301     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2302     llvm::Type *RealVarTy, SourceLocation Loc) {
2303   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2304   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2305   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2306 }
2307 
2308 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2309                                            const VarDecl *VD, QualType T) {
2310   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2311       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2312   // Return an invalid address if variable is MT_To and unified
2313   // memory is not enabled. For all other cases: MT_Link and
2314   // MT_To with unified memory, return a valid address.
2315   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2316                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2317     return Address::invalid();
2318   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2319           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2320            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2321          "Expected link clause OR to clause with unified memory enabled.");
2322   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2323   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2324   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2325 }
2326 
2327 Address
2328 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2329                                      LValueBaseInfo *PointeeBaseInfo,
2330                                      TBAAAccessInfo *PointeeTBAAInfo) {
2331   llvm::LoadInst *Load =
2332       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2333   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2334 
2335   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2336                                             PointeeBaseInfo, PointeeTBAAInfo,
2337                                             /* forPointeeType= */ true);
2338   return Address(Load, Align);
2339 }
2340 
2341 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2342   LValueBaseInfo PointeeBaseInfo;
2343   TBAAAccessInfo PointeeTBAAInfo;
2344   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2345                                             &PointeeTBAAInfo);
2346   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2347                         PointeeBaseInfo, PointeeTBAAInfo);
2348 }
2349 
2350 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2351                                            const PointerType *PtrTy,
2352                                            LValueBaseInfo *BaseInfo,
2353                                            TBAAAccessInfo *TBAAInfo) {
2354   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2355   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2356                                                BaseInfo, TBAAInfo,
2357                                                /*forPointeeType=*/true));
2358 }
2359 
2360 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2361                                                 const PointerType *PtrTy) {
2362   LValueBaseInfo BaseInfo;
2363   TBAAAccessInfo TBAAInfo;
2364   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2365   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2366 }
2367 
2368 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2369                                       const Expr *E, const VarDecl *VD) {
2370   QualType T = E->getType();
2371 
2372   // If it's thread_local, emit a call to its wrapper function instead.
2373   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2374       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2375     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2376   // Check if the variable is marked as declare target with link clause in
2377   // device codegen.
2378   if (CGF.getLangOpts().OpenMPIsDevice) {
2379     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2380     if (Addr.isValid())
2381       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2382   }
2383 
2384   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2385   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2386   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2387   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2388   Address Addr(V, Alignment);
2389   // Emit reference to the private copy of the variable if it is an OpenMP
2390   // threadprivate variable.
2391   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2392       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2393     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2394                                           E->getExprLoc());
2395   }
2396   LValue LV = VD->getType()->isReferenceType() ?
2397       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2398                                     AlignmentSource::Decl) :
2399       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2400   setObjCGCLValueClass(CGF.getContext(), E, LV);
2401   return LV;
2402 }
2403 
2404 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2405                                                const FunctionDecl *FD) {
2406   if (FD->hasAttr<WeakRefAttr>()) {
2407     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2408     return aliasee.getPointer();
2409   }
2410 
2411   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2412   if (!FD->hasPrototype()) {
2413     if (const FunctionProtoType *Proto =
2414             FD->getType()->getAs<FunctionProtoType>()) {
2415       // Ugly case: for a K&R-style definition, the type of the definition
2416       // isn't the same as the type of a use.  Correct for this with a
2417       // bitcast.
2418       QualType NoProtoType =
2419           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2420       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2421       V = llvm::ConstantExpr::getBitCast(V,
2422                                       CGM.getTypes().ConvertType(NoProtoType));
2423     }
2424   }
2425   return V;
2426 }
2427 
2428 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2429                                      const Expr *E, const FunctionDecl *FD) {
2430   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2431   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2432   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2433                             AlignmentSource::Decl);
2434 }
2435 
2436 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2437                                       llvm::Value *ThisValue) {
2438   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2439   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2440   return CGF.EmitLValueForField(LV, FD);
2441 }
2442 
2443 /// Named Registers are named metadata pointing to the register name
2444 /// which will be read from/written to as an argument to the intrinsic
2445 /// @llvm.read/write_register.
2446 /// So far, only the name is being passed down, but other options such as
2447 /// register type, allocation type or even optimization options could be
2448 /// passed down via the metadata node.
2449 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2450   SmallString<64> Name("llvm.named.register.");
2451   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2452   assert(Asm->getLabel().size() < 64-Name.size() &&
2453       "Register name too big");
2454   Name.append(Asm->getLabel());
2455   llvm::NamedMDNode *M =
2456     CGM.getModule().getOrInsertNamedMetadata(Name);
2457   if (M->getNumOperands() == 0) {
2458     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2459                                               Asm->getLabel());
2460     llvm::Metadata *Ops[] = {Str};
2461     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2462   }
2463 
2464   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2465 
2466   llvm::Value *Ptr =
2467     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2468   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2469 }
2470 
2471 /// Determine whether we can emit a reference to \p VD from the current
2472 /// context, despite not necessarily having seen an odr-use of the variable in
2473 /// this context.
2474 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2475                                                const DeclRefExpr *E,
2476                                                const VarDecl *VD,
2477                                                bool IsConstant) {
2478   // For a variable declared in an enclosing scope, do not emit a spurious
2479   // reference even if we have a capture, as that will emit an unwarranted
2480   // reference to our capture state, and will likely generate worse code than
2481   // emitting a local copy.
2482   if (E->refersToEnclosingVariableOrCapture())
2483     return false;
2484 
2485   // For a local declaration declared in this function, we can always reference
2486   // it even if we don't have an odr-use.
2487   if (VD->hasLocalStorage()) {
2488     return VD->getDeclContext() ==
2489            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2490   }
2491 
2492   // For a global declaration, we can emit a reference to it if we know
2493   // for sure that we are able to emit a definition of it.
2494   VD = VD->getDefinition(CGF.getContext());
2495   if (!VD)
2496     return false;
2497 
2498   // Don't emit a spurious reference if it might be to a variable that only
2499   // exists on a different device / target.
2500   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2501   // cross-target reference.
2502   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2503       CGF.getLangOpts().OpenCL) {
2504     return false;
2505   }
2506 
2507   // We can emit a spurious reference only if the linkage implies that we'll
2508   // be emitting a non-interposable symbol that will be retained until link
2509   // time.
2510   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2511   case llvm::GlobalValue::ExternalLinkage:
2512   case llvm::GlobalValue::LinkOnceODRLinkage:
2513   case llvm::GlobalValue::WeakODRLinkage:
2514   case llvm::GlobalValue::InternalLinkage:
2515   case llvm::GlobalValue::PrivateLinkage:
2516     return true;
2517   default:
2518     return false;
2519   }
2520 }
2521 
2522 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2523   const NamedDecl *ND = E->getDecl();
2524   QualType T = E->getType();
2525 
2526   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2527          "should not emit an unevaluated operand");
2528 
2529   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2530     // Global Named registers access via intrinsics only
2531     if (VD->getStorageClass() == SC_Register &&
2532         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2533       return EmitGlobalNamedRegister(VD, CGM);
2534 
2535     // If this DeclRefExpr does not constitute an odr-use of the variable,
2536     // we're not permitted to emit a reference to it in general, and it might
2537     // not be captured if capture would be necessary for a use. Emit the
2538     // constant value directly instead.
2539     if (E->isNonOdrUse() == NOUR_Constant &&
2540         (VD->getType()->isReferenceType() ||
2541          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2542       VD->getAnyInitializer(VD);
2543       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2544           E->getLocation(), *VD->evaluateValue(), VD->getType());
2545       assert(Val && "failed to emit constant expression");
2546 
2547       Address Addr = Address::invalid();
2548       if (!VD->getType()->isReferenceType()) {
2549         // Spill the constant value to a global.
2550         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2551                                            getContext().getDeclAlign(VD));
2552         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2553         auto *PTy = llvm::PointerType::get(
2554             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2555         if (PTy != Addr.getType())
2556           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2557       } else {
2558         // Should we be using the alignment of the constant pointer we emitted?
2559         CharUnits Alignment =
2560             getNaturalTypeAlignment(E->getType(),
2561                                     /* BaseInfo= */ nullptr,
2562                                     /* TBAAInfo= */ nullptr,
2563                                     /* forPointeeType= */ true);
2564         Addr = Address(Val, Alignment);
2565       }
2566       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2567     }
2568 
2569     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2570 
2571     // Check for captured variables.
2572     if (E->refersToEnclosingVariableOrCapture()) {
2573       VD = VD->getCanonicalDecl();
2574       if (auto *FD = LambdaCaptureFields.lookup(VD))
2575         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2576       if (CapturedStmtInfo) {
2577         auto I = LocalDeclMap.find(VD);
2578         if (I != LocalDeclMap.end()) {
2579           LValue CapLVal;
2580           if (VD->getType()->isReferenceType())
2581             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2582                                                 AlignmentSource::Decl);
2583           else
2584             CapLVal = MakeAddrLValue(I->second, T);
2585           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2586           // in simd context.
2587           if (getLangOpts().OpenMP &&
2588               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2589             CapLVal.setNontemporal(/*Value=*/true);
2590           return CapLVal;
2591         }
2592         LValue CapLVal =
2593             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2594                                     CapturedStmtInfo->getContextValue());
2595         CapLVal = MakeAddrLValue(
2596             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2597             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2598             CapLVal.getTBAAInfo());
2599         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2600         // in simd context.
2601         if (getLangOpts().OpenMP &&
2602             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2603           CapLVal.setNontemporal(/*Value=*/true);
2604         return CapLVal;
2605       }
2606 
2607       assert(isa<BlockDecl>(CurCodeDecl));
2608       Address addr = GetAddrOfBlockDecl(VD);
2609       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2610     }
2611   }
2612 
2613   // FIXME: We should be able to assert this for FunctionDecls as well!
2614   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2615   // those with a valid source location.
2616   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2617           !E->getLocation().isValid()) &&
2618          "Should not use decl without marking it used!");
2619 
2620   if (ND->hasAttr<WeakRefAttr>()) {
2621     const auto *VD = cast<ValueDecl>(ND);
2622     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2623     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2624   }
2625 
2626   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2627     // Check if this is a global variable.
2628     if (VD->hasLinkage() || VD->isStaticDataMember())
2629       return EmitGlobalVarDeclLValue(*this, E, VD);
2630 
2631     Address addr = Address::invalid();
2632 
2633     // The variable should generally be present in the local decl map.
2634     auto iter = LocalDeclMap.find(VD);
2635     if (iter != LocalDeclMap.end()) {
2636       addr = iter->second;
2637 
2638     // Otherwise, it might be static local we haven't emitted yet for
2639     // some reason; most likely, because it's in an outer function.
2640     } else if (VD->isStaticLocal()) {
2641       addr = Address(CGM.getOrCreateStaticVarDecl(
2642           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2643                      getContext().getDeclAlign(VD));
2644 
2645     // No other cases for now.
2646     } else {
2647       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2648     }
2649 
2650 
2651     // Check for OpenMP threadprivate variables.
2652     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2653         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2654       return EmitThreadPrivateVarDeclLValue(
2655           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2656           E->getExprLoc());
2657     }
2658 
2659     // Drill into block byref variables.
2660     bool isBlockByref = VD->isEscapingByref();
2661     if (isBlockByref) {
2662       addr = emitBlockByrefAddress(addr, VD);
2663     }
2664 
2665     // Drill into reference types.
2666     LValue LV = VD->getType()->isReferenceType() ?
2667         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2668         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2669 
2670     bool isLocalStorage = VD->hasLocalStorage();
2671 
2672     bool NonGCable = isLocalStorage &&
2673                      !VD->getType()->isReferenceType() &&
2674                      !isBlockByref;
2675     if (NonGCable) {
2676       LV.getQuals().removeObjCGCAttr();
2677       LV.setNonGC(true);
2678     }
2679 
2680     bool isImpreciseLifetime =
2681       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2682     if (isImpreciseLifetime)
2683       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2684     setObjCGCLValueClass(getContext(), E, LV);
2685     return LV;
2686   }
2687 
2688   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2689     return EmitFunctionDeclLValue(*this, E, FD);
2690 
2691   // FIXME: While we're emitting a binding from an enclosing scope, all other
2692   // DeclRefExprs we see should be implicitly treated as if they also refer to
2693   // an enclosing scope.
2694   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2695     return EmitLValue(BD->getBinding());
2696 
2697   llvm_unreachable("Unhandled DeclRefExpr");
2698 }
2699 
2700 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2701   // __extension__ doesn't affect lvalue-ness.
2702   if (E->getOpcode() == UO_Extension)
2703     return EmitLValue(E->getSubExpr());
2704 
2705   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2706   switch (E->getOpcode()) {
2707   default: llvm_unreachable("Unknown unary operator lvalue!");
2708   case UO_Deref: {
2709     QualType T = E->getSubExpr()->getType()->getPointeeType();
2710     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2711 
2712     LValueBaseInfo BaseInfo;
2713     TBAAAccessInfo TBAAInfo;
2714     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2715                                             &TBAAInfo);
2716     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2717     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2718 
2719     // We should not generate __weak write barrier on indirect reference
2720     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2721     // But, we continue to generate __strong write barrier on indirect write
2722     // into a pointer to object.
2723     if (getLangOpts().ObjC &&
2724         getLangOpts().getGC() != LangOptions::NonGC &&
2725         LV.isObjCWeak())
2726       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2727     return LV;
2728   }
2729   case UO_Real:
2730   case UO_Imag: {
2731     LValue LV = EmitLValue(E->getSubExpr());
2732     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2733 
2734     // __real is valid on scalars.  This is a faster way of testing that.
2735     // __imag can only produce an rvalue on scalars.
2736     if (E->getOpcode() == UO_Real &&
2737         !LV.getAddress(*this).getElementType()->isStructTy()) {
2738       assert(E->getSubExpr()->getType()->isArithmeticType());
2739       return LV;
2740     }
2741 
2742     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2743 
2744     Address Component =
2745         (E->getOpcode() == UO_Real
2746              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2747              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2748     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2749                                    CGM.getTBAAInfoForSubobject(LV, T));
2750     ElemLV.getQuals().addQualifiers(LV.getQuals());
2751     return ElemLV;
2752   }
2753   case UO_PreInc:
2754   case UO_PreDec: {
2755     LValue LV = EmitLValue(E->getSubExpr());
2756     bool isInc = E->getOpcode() == UO_PreInc;
2757 
2758     if (E->getType()->isAnyComplexType())
2759       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2760     else
2761       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2762     return LV;
2763   }
2764   }
2765 }
2766 
2767 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2768   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2769                         E->getType(), AlignmentSource::Decl);
2770 }
2771 
2772 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2773   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2774                         E->getType(), AlignmentSource::Decl);
2775 }
2776 
2777 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2778   auto SL = E->getFunctionName();
2779   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2780   StringRef FnName = CurFn->getName();
2781   if (FnName.startswith("\01"))
2782     FnName = FnName.substr(1);
2783   StringRef NameItems[] = {
2784       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2785   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2786   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2787     std::string Name = SL->getString();
2788     if (!Name.empty()) {
2789       unsigned Discriminator =
2790           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2791       if (Discriminator)
2792         Name += "_" + Twine(Discriminator + 1).str();
2793       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2794       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2795     } else {
2796       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2797       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2798     }
2799   }
2800   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2801   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2802 }
2803 
2804 /// Emit a type description suitable for use by a runtime sanitizer library. The
2805 /// format of a type descriptor is
2806 ///
2807 /// \code
2808 ///   { i16 TypeKind, i16 TypeInfo }
2809 /// \endcode
2810 ///
2811 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2812 /// integer, 1 for a floating point value, and -1 for anything else.
2813 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2814   // Only emit each type's descriptor once.
2815   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2816     return C;
2817 
2818   uint16_t TypeKind = -1;
2819   uint16_t TypeInfo = 0;
2820 
2821   if (T->isIntegerType()) {
2822     TypeKind = 0;
2823     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2824                (T->isSignedIntegerType() ? 1 : 0);
2825   } else if (T->isFloatingType()) {
2826     TypeKind = 1;
2827     TypeInfo = getContext().getTypeSize(T);
2828   }
2829 
2830   // Format the type name as if for a diagnostic, including quotes and
2831   // optionally an 'aka'.
2832   SmallString<32> Buffer;
2833   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2834                                     (intptr_t)T.getAsOpaquePtr(),
2835                                     StringRef(), StringRef(), None, Buffer,
2836                                     None);
2837 
2838   llvm::Constant *Components[] = {
2839     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2840     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2841   };
2842   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2843 
2844   auto *GV = new llvm::GlobalVariable(
2845       CGM.getModule(), Descriptor->getType(),
2846       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2847   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2848   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2849 
2850   // Remember the descriptor for this type.
2851   CGM.setTypeDescriptorInMap(T, GV);
2852 
2853   return GV;
2854 }
2855 
2856 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2857   llvm::Type *TargetTy = IntPtrTy;
2858 
2859   if (V->getType() == TargetTy)
2860     return V;
2861 
2862   // Floating-point types which fit into intptr_t are bitcast to integers
2863   // and then passed directly (after zero-extension, if necessary).
2864   if (V->getType()->isFloatingPointTy()) {
2865     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2866     if (Bits <= TargetTy->getIntegerBitWidth())
2867       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2868                                                          Bits));
2869   }
2870 
2871   // Integers which fit in intptr_t are zero-extended and passed directly.
2872   if (V->getType()->isIntegerTy() &&
2873       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2874     return Builder.CreateZExt(V, TargetTy);
2875 
2876   // Pointers are passed directly, everything else is passed by address.
2877   if (!V->getType()->isPointerTy()) {
2878     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2879     Builder.CreateStore(V, Ptr);
2880     V = Ptr.getPointer();
2881   }
2882   return Builder.CreatePtrToInt(V, TargetTy);
2883 }
2884 
2885 /// Emit a representation of a SourceLocation for passing to a handler
2886 /// in a sanitizer runtime library. The format for this data is:
2887 /// \code
2888 ///   struct SourceLocation {
2889 ///     const char *Filename;
2890 ///     int32_t Line, Column;
2891 ///   };
2892 /// \endcode
2893 /// For an invalid SourceLocation, the Filename pointer is null.
2894 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2895   llvm::Constant *Filename;
2896   int Line, Column;
2897 
2898   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2899   if (PLoc.isValid()) {
2900     StringRef FilenameString = PLoc.getFilename();
2901 
2902     int PathComponentsToStrip =
2903         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2904     if (PathComponentsToStrip < 0) {
2905       assert(PathComponentsToStrip != INT_MIN);
2906       int PathComponentsToKeep = -PathComponentsToStrip;
2907       auto I = llvm::sys::path::rbegin(FilenameString);
2908       auto E = llvm::sys::path::rend(FilenameString);
2909       while (I != E && --PathComponentsToKeep)
2910         ++I;
2911 
2912       FilenameString = FilenameString.substr(I - E);
2913     } else if (PathComponentsToStrip > 0) {
2914       auto I = llvm::sys::path::begin(FilenameString);
2915       auto E = llvm::sys::path::end(FilenameString);
2916       while (I != E && PathComponentsToStrip--)
2917         ++I;
2918 
2919       if (I != E)
2920         FilenameString =
2921             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2922       else
2923         FilenameString = llvm::sys::path::filename(FilenameString);
2924     }
2925 
2926     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2927     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2928                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2929     Filename = FilenameGV.getPointer();
2930     Line = PLoc.getLine();
2931     Column = PLoc.getColumn();
2932   } else {
2933     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2934     Line = Column = 0;
2935   }
2936 
2937   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2938                             Builder.getInt32(Column)};
2939 
2940   return llvm::ConstantStruct::getAnon(Data);
2941 }
2942 
2943 namespace {
2944 /// Specify under what conditions this check can be recovered
2945 enum class CheckRecoverableKind {
2946   /// Always terminate program execution if this check fails.
2947   Unrecoverable,
2948   /// Check supports recovering, runtime has both fatal (noreturn) and
2949   /// non-fatal handlers for this check.
2950   Recoverable,
2951   /// Runtime conditionally aborts, always need to support recovery.
2952   AlwaysRecoverable
2953 };
2954 }
2955 
2956 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2957   assert(Kind.countPopulation() == 1);
2958   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
2959     return CheckRecoverableKind::AlwaysRecoverable;
2960   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
2961     return CheckRecoverableKind::Unrecoverable;
2962   else
2963     return CheckRecoverableKind::Recoverable;
2964 }
2965 
2966 namespace {
2967 struct SanitizerHandlerInfo {
2968   char const *const Name;
2969   unsigned Version;
2970 };
2971 }
2972 
2973 const SanitizerHandlerInfo SanitizerHandlers[] = {
2974 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2975     LIST_SANITIZER_CHECKS
2976 #undef SANITIZER_CHECK
2977 };
2978 
2979 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2980                                  llvm::FunctionType *FnType,
2981                                  ArrayRef<llvm::Value *> FnArgs,
2982                                  SanitizerHandler CheckHandler,
2983                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2984                                  llvm::BasicBlock *ContBB) {
2985   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2986   Optional<ApplyDebugLocation> DL;
2987   if (!CGF.Builder.getCurrentDebugLocation()) {
2988     // Ensure that the call has at least an artificial debug location.
2989     DL.emplace(CGF, SourceLocation());
2990   }
2991   bool NeedsAbortSuffix =
2992       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2993   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2994   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2995   const StringRef CheckName = CheckInfo.Name;
2996   std::string FnName = "__ubsan_handle_" + CheckName.str();
2997   if (CheckInfo.Version && !MinimalRuntime)
2998     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2999   if (MinimalRuntime)
3000     FnName += "_minimal";
3001   if (NeedsAbortSuffix)
3002     FnName += "_abort";
3003   bool MayReturn =
3004       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3005 
3006   llvm::AttrBuilder B;
3007   if (!MayReturn) {
3008     B.addAttribute(llvm::Attribute::NoReturn)
3009         .addAttribute(llvm::Attribute::NoUnwind);
3010   }
3011   B.addAttribute(llvm::Attribute::UWTable);
3012 
3013   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3014       FnType, FnName,
3015       llvm::AttributeList::get(CGF.getLLVMContext(),
3016                                llvm::AttributeList::FunctionIndex, B),
3017       /*Local=*/true);
3018   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3019   if (!MayReturn) {
3020     HandlerCall->setDoesNotReturn();
3021     CGF.Builder.CreateUnreachable();
3022   } else {
3023     CGF.Builder.CreateBr(ContBB);
3024   }
3025 }
3026 
3027 void CodeGenFunction::EmitCheck(
3028     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3029     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3030     ArrayRef<llvm::Value *> DynamicArgs) {
3031   assert(IsSanitizerScope);
3032   assert(Checked.size() > 0);
3033   assert(CheckHandler >= 0 &&
3034          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3035   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3036 
3037   llvm::Value *FatalCond = nullptr;
3038   llvm::Value *RecoverableCond = nullptr;
3039   llvm::Value *TrapCond = nullptr;
3040   for (int i = 0, n = Checked.size(); i < n; ++i) {
3041     llvm::Value *Check = Checked[i].first;
3042     // -fsanitize-trap= overrides -fsanitize-recover=.
3043     llvm::Value *&Cond =
3044         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3045             ? TrapCond
3046             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3047                   ? RecoverableCond
3048                   : FatalCond;
3049     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3050   }
3051 
3052   if (TrapCond)
3053     EmitTrapCheck(TrapCond);
3054   if (!FatalCond && !RecoverableCond)
3055     return;
3056 
3057   llvm::Value *JointCond;
3058   if (FatalCond && RecoverableCond)
3059     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3060   else
3061     JointCond = FatalCond ? FatalCond : RecoverableCond;
3062   assert(JointCond);
3063 
3064   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3065   assert(SanOpts.has(Checked[0].second));
3066 #ifndef NDEBUG
3067   for (int i = 1, n = Checked.size(); i < n; ++i) {
3068     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3069            "All recoverable kinds in a single check must be same!");
3070     assert(SanOpts.has(Checked[i].second));
3071   }
3072 #endif
3073 
3074   llvm::BasicBlock *Cont = createBasicBlock("cont");
3075   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3076   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3077   // Give hint that we very much don't expect to execute the handler
3078   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3079   llvm::MDBuilder MDHelper(getLLVMContext());
3080   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3081   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3082   EmitBlock(Handlers);
3083 
3084   // Handler functions take an i8* pointing to the (handler-specific) static
3085   // information block, followed by a sequence of intptr_t arguments
3086   // representing operand values.
3087   SmallVector<llvm::Value *, 4> Args;
3088   SmallVector<llvm::Type *, 4> ArgTypes;
3089   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3090     Args.reserve(DynamicArgs.size() + 1);
3091     ArgTypes.reserve(DynamicArgs.size() + 1);
3092 
3093     // Emit handler arguments and create handler function type.
3094     if (!StaticArgs.empty()) {
3095       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3096       auto *InfoPtr =
3097           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3098                                    llvm::GlobalVariable::PrivateLinkage, Info);
3099       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3100       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3101       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3102       ArgTypes.push_back(Int8PtrTy);
3103     }
3104 
3105     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3106       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3107       ArgTypes.push_back(IntPtrTy);
3108     }
3109   }
3110 
3111   llvm::FunctionType *FnType =
3112     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3113 
3114   if (!FatalCond || !RecoverableCond) {
3115     // Simple case: we need to generate a single handler call, either
3116     // fatal, or non-fatal.
3117     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3118                          (FatalCond != nullptr), Cont);
3119   } else {
3120     // Emit two handler calls: first one for set of unrecoverable checks,
3121     // another one for recoverable.
3122     llvm::BasicBlock *NonFatalHandlerBB =
3123         createBasicBlock("non_fatal." + CheckName);
3124     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3125     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3126     EmitBlock(FatalHandlerBB);
3127     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3128                          NonFatalHandlerBB);
3129     EmitBlock(NonFatalHandlerBB);
3130     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3131                          Cont);
3132   }
3133 
3134   EmitBlock(Cont);
3135 }
3136 
3137 void CodeGenFunction::EmitCfiSlowPathCheck(
3138     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3139     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3140   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3141 
3142   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3143   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3144 
3145   llvm::MDBuilder MDHelper(getLLVMContext());
3146   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3147   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3148 
3149   EmitBlock(CheckBB);
3150 
3151   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3152 
3153   llvm::CallInst *CheckCall;
3154   llvm::FunctionCallee SlowPathFn;
3155   if (WithDiag) {
3156     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3157     auto *InfoPtr =
3158         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3159                                  llvm::GlobalVariable::PrivateLinkage, Info);
3160     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3161     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3162 
3163     SlowPathFn = CGM.getModule().getOrInsertFunction(
3164         "__cfi_slowpath_diag",
3165         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3166                                 false));
3167     CheckCall = Builder.CreateCall(
3168         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3169   } else {
3170     SlowPathFn = CGM.getModule().getOrInsertFunction(
3171         "__cfi_slowpath",
3172         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3173     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3174   }
3175 
3176   CGM.setDSOLocal(
3177       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3178   CheckCall->setDoesNotThrow();
3179 
3180   EmitBlock(Cont);
3181 }
3182 
3183 // Emit a stub for __cfi_check function so that the linker knows about this
3184 // symbol in LTO mode.
3185 void CodeGenFunction::EmitCfiCheckStub() {
3186   llvm::Module *M = &CGM.getModule();
3187   auto &Ctx = M->getContext();
3188   llvm::Function *F = llvm::Function::Create(
3189       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3190       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3191   CGM.setDSOLocal(F);
3192   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3193   // FIXME: consider emitting an intrinsic call like
3194   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3195   // which can be lowered in CrossDSOCFI pass to the actual contents of
3196   // __cfi_check. This would allow inlining of __cfi_check calls.
3197   llvm::CallInst::Create(
3198       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3199   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3200 }
3201 
3202 // This function is basically a switch over the CFI failure kind, which is
3203 // extracted from CFICheckFailData (1st function argument). Each case is either
3204 // llvm.trap or a call to one of the two runtime handlers, based on
3205 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3206 // failure kind) traps, but this should really never happen.  CFICheckFailData
3207 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3208 // check kind; in this case __cfi_check_fail traps as well.
3209 void CodeGenFunction::EmitCfiCheckFail() {
3210   SanitizerScope SanScope(this);
3211   FunctionArgList Args;
3212   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3213                             ImplicitParamDecl::Other);
3214   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3215                             ImplicitParamDecl::Other);
3216   Args.push_back(&ArgData);
3217   Args.push_back(&ArgAddr);
3218 
3219   const CGFunctionInfo &FI =
3220     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3221 
3222   llvm::Function *F = llvm::Function::Create(
3223       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3224       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3225 
3226   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
3227   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3228   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3229 
3230   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3231                 SourceLocation());
3232 
3233   // This function should not be affected by blacklist. This function does
3234   // not have a source location, but "src:*" would still apply. Revert any
3235   // changes to SanOpts made in StartFunction.
3236   SanOpts = CGM.getLangOpts().Sanitize;
3237 
3238   llvm::Value *Data =
3239       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3240                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3241   llvm::Value *Addr =
3242       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3243                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3244 
3245   // Data == nullptr means the calling module has trap behaviour for this check.
3246   llvm::Value *DataIsNotNullPtr =
3247       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3248   EmitTrapCheck(DataIsNotNullPtr);
3249 
3250   llvm::StructType *SourceLocationTy =
3251       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3252   llvm::StructType *CfiCheckFailDataTy =
3253       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3254 
3255   llvm::Value *V = Builder.CreateConstGEP2_32(
3256       CfiCheckFailDataTy,
3257       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3258       0);
3259   Address CheckKindAddr(V, getIntAlign());
3260   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3261 
3262   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3263       CGM.getLLVMContext(),
3264       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3265   llvm::Value *ValidVtable = Builder.CreateZExt(
3266       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3267                          {Addr, AllVtables}),
3268       IntPtrTy);
3269 
3270   const std::pair<int, SanitizerMask> CheckKinds[] = {
3271       {CFITCK_VCall, SanitizerKind::CFIVCall},
3272       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3273       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3274       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3275       {CFITCK_ICall, SanitizerKind::CFIICall}};
3276 
3277   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3278   for (auto CheckKindMaskPair : CheckKinds) {
3279     int Kind = CheckKindMaskPair.first;
3280     SanitizerMask Mask = CheckKindMaskPair.second;
3281     llvm::Value *Cond =
3282         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3283     if (CGM.getLangOpts().Sanitize.has(Mask))
3284       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3285                 {Data, Addr, ValidVtable});
3286     else
3287       EmitTrapCheck(Cond);
3288   }
3289 
3290   FinishFunction();
3291   // The only reference to this function will be created during LTO link.
3292   // Make sure it survives until then.
3293   CGM.addUsedGlobal(F);
3294 }
3295 
3296 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3297   if (SanOpts.has(SanitizerKind::Unreachable)) {
3298     SanitizerScope SanScope(this);
3299     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3300                              SanitizerKind::Unreachable),
3301               SanitizerHandler::BuiltinUnreachable,
3302               EmitCheckSourceLocation(Loc), None);
3303   }
3304   Builder.CreateUnreachable();
3305 }
3306 
3307 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3308   llvm::BasicBlock *Cont = createBasicBlock("cont");
3309 
3310   // If we're optimizing, collapse all calls to trap down to just one per
3311   // function to save on code size.
3312   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3313     TrapBB = createBasicBlock("trap");
3314     Builder.CreateCondBr(Checked, Cont, TrapBB);
3315     EmitBlock(TrapBB);
3316     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3317     TrapCall->setDoesNotReturn();
3318     TrapCall->setDoesNotThrow();
3319     Builder.CreateUnreachable();
3320   } else {
3321     Builder.CreateCondBr(Checked, Cont, TrapBB);
3322   }
3323 
3324   EmitBlock(Cont);
3325 }
3326 
3327 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3328   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3329 
3330   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3331     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3332                                   CGM.getCodeGenOpts().TrapFuncName);
3333     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3334   }
3335 
3336   return TrapCall;
3337 }
3338 
3339 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3340                                                  LValueBaseInfo *BaseInfo,
3341                                                  TBAAAccessInfo *TBAAInfo) {
3342   assert(E->getType()->isArrayType() &&
3343          "Array to pointer decay must have array source type!");
3344 
3345   // Expressions of array type can't be bitfields or vector elements.
3346   LValue LV = EmitLValue(E);
3347   Address Addr = LV.getAddress(*this);
3348 
3349   // If the array type was an incomplete type, we need to make sure
3350   // the decay ends up being the right type.
3351   llvm::Type *NewTy = ConvertType(E->getType());
3352   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3353 
3354   // Note that VLA pointers are always decayed, so we don't need to do
3355   // anything here.
3356   if (!E->getType()->isVariableArrayType()) {
3357     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3358            "Expected pointer to array");
3359     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3360   }
3361 
3362   // The result of this decay conversion points to an array element within the
3363   // base lvalue. However, since TBAA currently does not support representing
3364   // accesses to elements of member arrays, we conservatively represent accesses
3365   // to the pointee object as if it had no any base lvalue specified.
3366   // TODO: Support TBAA for member arrays.
3367   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3368   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3369   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3370 
3371   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3372 }
3373 
3374 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3375 /// array to pointer, return the array subexpression.
3376 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3377   // If this isn't just an array->pointer decay, bail out.
3378   const auto *CE = dyn_cast<CastExpr>(E);
3379   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3380     return nullptr;
3381 
3382   // If this is a decay from variable width array, bail out.
3383   const Expr *SubExpr = CE->getSubExpr();
3384   if (SubExpr->getType()->isVariableArrayType())
3385     return nullptr;
3386 
3387   return SubExpr;
3388 }
3389 
3390 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3391                                           llvm::Value *ptr,
3392                                           ArrayRef<llvm::Value*> indices,
3393                                           bool inbounds,
3394                                           bool signedIndices,
3395                                           SourceLocation loc,
3396                                     const llvm::Twine &name = "arrayidx") {
3397   if (inbounds) {
3398     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3399                                       CodeGenFunction::NotSubtraction, loc,
3400                                       name);
3401   } else {
3402     return CGF.Builder.CreateGEP(ptr, indices, name);
3403   }
3404 }
3405 
3406 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3407                                       llvm::Value *idx,
3408                                       CharUnits eltSize) {
3409   // If we have a constant index, we can use the exact offset of the
3410   // element we're accessing.
3411   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3412     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3413     return arrayAlign.alignmentAtOffset(offset);
3414 
3415   // Otherwise, use the worst-case alignment for any element.
3416   } else {
3417     return arrayAlign.alignmentOfArrayElement(eltSize);
3418   }
3419 }
3420 
3421 static QualType getFixedSizeElementType(const ASTContext &ctx,
3422                                         const VariableArrayType *vla) {
3423   QualType eltType;
3424   do {
3425     eltType = vla->getElementType();
3426   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3427   return eltType;
3428 }
3429 
3430 /// Given an array base, check whether its member access belongs to a record
3431 /// with preserve_access_index attribute or not.
3432 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3433   if (!ArrayBase || !CGF.getDebugInfo())
3434     return false;
3435 
3436   // Only support base as either a MemberExpr or DeclRefExpr.
3437   // DeclRefExpr to cover cases like:
3438   //    struct s { int a; int b[10]; };
3439   //    struct s *p;
3440   //    p[1].a
3441   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3442   // p->b[5] is a MemberExpr example.
3443   const Expr *E = ArrayBase->IgnoreImpCasts();
3444   if (const auto *ME = dyn_cast<MemberExpr>(E))
3445     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3446 
3447   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3448     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3449     if (!VarDef)
3450       return false;
3451 
3452     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3453     if (!PtrT)
3454       return false;
3455 
3456     const auto *PointeeT = PtrT->getPointeeType()
3457                              ->getUnqualifiedDesugaredType();
3458     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3459       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3460     return false;
3461   }
3462 
3463   return false;
3464 }
3465 
3466 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3467                                      ArrayRef<llvm::Value *> indices,
3468                                      QualType eltType, bool inbounds,
3469                                      bool signedIndices, SourceLocation loc,
3470                                      QualType *arrayType = nullptr,
3471                                      const Expr *Base = nullptr,
3472                                      const llvm::Twine &name = "arrayidx") {
3473   // All the indices except that last must be zero.
3474 #ifndef NDEBUG
3475   for (auto idx : indices.drop_back())
3476     assert(isa<llvm::ConstantInt>(idx) &&
3477            cast<llvm::ConstantInt>(idx)->isZero());
3478 #endif
3479 
3480   // Determine the element size of the statically-sized base.  This is
3481   // the thing that the indices are expressed in terms of.
3482   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3483     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3484   }
3485 
3486   // We can use that to compute the best alignment of the element.
3487   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3488   CharUnits eltAlign =
3489     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3490 
3491   llvm::Value *eltPtr;
3492   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3493   if (!LastIndex ||
3494       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3495     eltPtr = emitArraySubscriptGEP(
3496         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3497         loc, name);
3498   } else {
3499     // Remember the original array subscript for bpf target
3500     unsigned idx = LastIndex->getZExtValue();
3501     llvm::DIType *DbgInfo = nullptr;
3502     if (arrayType)
3503       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3504     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3505                                                         addr.getPointer(),
3506                                                         indices.size() - 1,
3507                                                         idx, DbgInfo);
3508   }
3509 
3510   return Address(eltPtr, eltAlign);
3511 }
3512 
3513 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3514                                                bool Accessed) {
3515   // The index must always be an integer, which is not an aggregate.  Emit it
3516   // in lexical order (this complexity is, sadly, required by C++17).
3517   llvm::Value *IdxPre =
3518       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3519   bool SignedIndices = false;
3520   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3521     auto *Idx = IdxPre;
3522     if (E->getLHS() != E->getIdx()) {
3523       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3524       Idx = EmitScalarExpr(E->getIdx());
3525     }
3526 
3527     QualType IdxTy = E->getIdx()->getType();
3528     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3529     SignedIndices |= IdxSigned;
3530 
3531     if (SanOpts.has(SanitizerKind::ArrayBounds))
3532       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3533 
3534     // Extend or truncate the index type to 32 or 64-bits.
3535     if (Promote && Idx->getType() != IntPtrTy)
3536       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3537 
3538     return Idx;
3539   };
3540   IdxPre = nullptr;
3541 
3542   // If the base is a vector type, then we are forming a vector element lvalue
3543   // with this subscript.
3544   if (E->getBase()->getType()->isVectorType() &&
3545       !isa<ExtVectorElementExpr>(E->getBase())) {
3546     // Emit the vector as an lvalue to get its address.
3547     LValue LHS = EmitLValue(E->getBase());
3548     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3549     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3550     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3551                                  E->getBase()->getType(), LHS.getBaseInfo(),
3552                                  TBAAAccessInfo());
3553   }
3554 
3555   // All the other cases basically behave like simple offsetting.
3556 
3557   // Handle the extvector case we ignored above.
3558   if (isa<ExtVectorElementExpr>(E->getBase())) {
3559     LValue LV = EmitLValue(E->getBase());
3560     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3561     Address Addr = EmitExtVectorElementLValue(LV);
3562 
3563     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3564     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3565                                  SignedIndices, E->getExprLoc());
3566     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3567                           CGM.getTBAAInfoForSubobject(LV, EltType));
3568   }
3569 
3570   LValueBaseInfo EltBaseInfo;
3571   TBAAAccessInfo EltTBAAInfo;
3572   Address Addr = Address::invalid();
3573   if (const VariableArrayType *vla =
3574            getContext().getAsVariableArrayType(E->getType())) {
3575     // The base must be a pointer, which is not an aggregate.  Emit
3576     // it.  It needs to be emitted first in case it's what captures
3577     // the VLA bounds.
3578     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3579     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3580 
3581     // The element count here is the total number of non-VLA elements.
3582     llvm::Value *numElements = getVLASize(vla).NumElts;
3583 
3584     // Effectively, the multiply by the VLA size is part of the GEP.
3585     // GEP indexes are signed, and scaling an index isn't permitted to
3586     // signed-overflow, so we use the same semantics for our explicit
3587     // multiply.  We suppress this if overflow is not undefined behavior.
3588     if (getLangOpts().isSignedOverflowDefined()) {
3589       Idx = Builder.CreateMul(Idx, numElements);
3590     } else {
3591       Idx = Builder.CreateNSWMul(Idx, numElements);
3592     }
3593 
3594     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3595                                  !getLangOpts().isSignedOverflowDefined(),
3596                                  SignedIndices, E->getExprLoc());
3597 
3598   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3599     // Indexing over an interface, as in "NSString *P; P[4];"
3600 
3601     // Emit the base pointer.
3602     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3603     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3604 
3605     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3606     llvm::Value *InterfaceSizeVal =
3607         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3608 
3609     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3610 
3611     // We don't necessarily build correct LLVM struct types for ObjC
3612     // interfaces, so we can't rely on GEP to do this scaling
3613     // correctly, so we need to cast to i8*.  FIXME: is this actually
3614     // true?  A lot of other things in the fragile ABI would break...
3615     llvm::Type *OrigBaseTy = Addr.getType();
3616     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3617 
3618     // Do the GEP.
3619     CharUnits EltAlign =
3620       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3621     llvm::Value *EltPtr =
3622         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3623                               SignedIndices, E->getExprLoc());
3624     Addr = Address(EltPtr, EltAlign);
3625 
3626     // Cast back.
3627     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3628   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3629     // If this is A[i] where A is an array, the frontend will have decayed the
3630     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3631     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3632     // "gep x, i" here.  Emit one "gep A, 0, i".
3633     assert(Array->getType()->isArrayType() &&
3634            "Array to pointer decay must have array source type!");
3635     LValue ArrayLV;
3636     // For simple multidimensional array indexing, set the 'accessed' flag for
3637     // better bounds-checking of the base expression.
3638     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3639       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3640     else
3641       ArrayLV = EmitLValue(Array);
3642     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3643 
3644     // Propagate the alignment from the array itself to the result.
3645     QualType arrayType = Array->getType();
3646     Addr = emitArraySubscriptGEP(
3647         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3648         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3649         E->getExprLoc(), &arrayType, E->getBase());
3650     EltBaseInfo = ArrayLV.getBaseInfo();
3651     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3652   } else {
3653     // The base must be a pointer; emit it with an estimate of its alignment.
3654     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3655     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3656     QualType ptrType = E->getBase()->getType();
3657     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3658                                  !getLangOpts().isSignedOverflowDefined(),
3659                                  SignedIndices, E->getExprLoc(), &ptrType,
3660                                  E->getBase());
3661   }
3662 
3663   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3664 
3665   if (getLangOpts().ObjC &&
3666       getLangOpts().getGC() != LangOptions::NonGC) {
3667     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3668     setObjCGCLValueClass(getContext(), E, LV);
3669   }
3670   return LV;
3671 }
3672 
3673 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3674                                        LValueBaseInfo &BaseInfo,
3675                                        TBAAAccessInfo &TBAAInfo,
3676                                        QualType BaseTy, QualType ElTy,
3677                                        bool IsLowerBound) {
3678   LValue BaseLVal;
3679   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3680     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3681     if (BaseTy->isArrayType()) {
3682       Address Addr = BaseLVal.getAddress(CGF);
3683       BaseInfo = BaseLVal.getBaseInfo();
3684 
3685       // If the array type was an incomplete type, we need to make sure
3686       // the decay ends up being the right type.
3687       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3688       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3689 
3690       // Note that VLA pointers are always decayed, so we don't need to do
3691       // anything here.
3692       if (!BaseTy->isVariableArrayType()) {
3693         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3694                "Expected pointer to array");
3695         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3696       }
3697 
3698       return CGF.Builder.CreateElementBitCast(Addr,
3699                                               CGF.ConvertTypeForMem(ElTy));
3700     }
3701     LValueBaseInfo TypeBaseInfo;
3702     TBAAAccessInfo TypeTBAAInfo;
3703     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3704                                                   &TypeTBAAInfo);
3705     BaseInfo.mergeForCast(TypeBaseInfo);
3706     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3707     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3708   }
3709   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3710 }
3711 
3712 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3713                                                 bool IsLowerBound) {
3714   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3715   QualType ResultExprTy;
3716   if (auto *AT = getContext().getAsArrayType(BaseTy))
3717     ResultExprTy = AT->getElementType();
3718   else
3719     ResultExprTy = BaseTy->getPointeeType();
3720   llvm::Value *Idx = nullptr;
3721   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3722     // Requesting lower bound or upper bound, but without provided length and
3723     // without ':' symbol for the default length -> length = 1.
3724     // Idx = LowerBound ?: 0;
3725     if (auto *LowerBound = E->getLowerBound()) {
3726       Idx = Builder.CreateIntCast(
3727           EmitScalarExpr(LowerBound), IntPtrTy,
3728           LowerBound->getType()->hasSignedIntegerRepresentation());
3729     } else
3730       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3731   } else {
3732     // Try to emit length or lower bound as constant. If this is possible, 1
3733     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3734     // IR (LB + Len) - 1.
3735     auto &C = CGM.getContext();
3736     auto *Length = E->getLength();
3737     llvm::APSInt ConstLength;
3738     if (Length) {
3739       // Idx = LowerBound + Length - 1;
3740       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3741         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3742         Length = nullptr;
3743       }
3744       auto *LowerBound = E->getLowerBound();
3745       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3746       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3747         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3748         LowerBound = nullptr;
3749       }
3750       if (!Length)
3751         --ConstLength;
3752       else if (!LowerBound)
3753         --ConstLowerBound;
3754 
3755       if (Length || LowerBound) {
3756         auto *LowerBoundVal =
3757             LowerBound
3758                 ? Builder.CreateIntCast(
3759                       EmitScalarExpr(LowerBound), IntPtrTy,
3760                       LowerBound->getType()->hasSignedIntegerRepresentation())
3761                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3762         auto *LengthVal =
3763             Length
3764                 ? Builder.CreateIntCast(
3765                       EmitScalarExpr(Length), IntPtrTy,
3766                       Length->getType()->hasSignedIntegerRepresentation())
3767                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3768         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3769                                 /*HasNUW=*/false,
3770                                 !getLangOpts().isSignedOverflowDefined());
3771         if (Length && LowerBound) {
3772           Idx = Builder.CreateSub(
3773               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3774               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3775         }
3776       } else
3777         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3778     } else {
3779       // Idx = ArraySize - 1;
3780       QualType ArrayTy = BaseTy->isPointerType()
3781                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3782                              : BaseTy;
3783       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3784         Length = VAT->getSizeExpr();
3785         if (Length->isIntegerConstantExpr(ConstLength, C))
3786           Length = nullptr;
3787       } else {
3788         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3789         ConstLength = CAT->getSize();
3790       }
3791       if (Length) {
3792         auto *LengthVal = Builder.CreateIntCast(
3793             EmitScalarExpr(Length), IntPtrTy,
3794             Length->getType()->hasSignedIntegerRepresentation());
3795         Idx = Builder.CreateSub(
3796             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3797             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3798       } else {
3799         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3800         --ConstLength;
3801         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3802       }
3803     }
3804   }
3805   assert(Idx);
3806 
3807   Address EltPtr = Address::invalid();
3808   LValueBaseInfo BaseInfo;
3809   TBAAAccessInfo TBAAInfo;
3810   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3811     // The base must be a pointer, which is not an aggregate.  Emit
3812     // it.  It needs to be emitted first in case it's what captures
3813     // the VLA bounds.
3814     Address Base =
3815         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3816                                 BaseTy, VLA->getElementType(), IsLowerBound);
3817     // The element count here is the total number of non-VLA elements.
3818     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3819 
3820     // Effectively, the multiply by the VLA size is part of the GEP.
3821     // GEP indexes are signed, and scaling an index isn't permitted to
3822     // signed-overflow, so we use the same semantics for our explicit
3823     // multiply.  We suppress this if overflow is not undefined behavior.
3824     if (getLangOpts().isSignedOverflowDefined())
3825       Idx = Builder.CreateMul(Idx, NumElements);
3826     else
3827       Idx = Builder.CreateNSWMul(Idx, NumElements);
3828     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3829                                    !getLangOpts().isSignedOverflowDefined(),
3830                                    /*signedIndices=*/false, E->getExprLoc());
3831   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3832     // If this is A[i] where A is an array, the frontend will have decayed the
3833     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3834     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3835     // "gep x, i" here.  Emit one "gep A, 0, i".
3836     assert(Array->getType()->isArrayType() &&
3837            "Array to pointer decay must have array source type!");
3838     LValue ArrayLV;
3839     // For simple multidimensional array indexing, set the 'accessed' flag for
3840     // better bounds-checking of the base expression.
3841     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3842       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3843     else
3844       ArrayLV = EmitLValue(Array);
3845 
3846     // Propagate the alignment from the array itself to the result.
3847     EltPtr = emitArraySubscriptGEP(
3848         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3849         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3850         /*signedIndices=*/false, E->getExprLoc());
3851     BaseInfo = ArrayLV.getBaseInfo();
3852     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3853   } else {
3854     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3855                                            TBAAInfo, BaseTy, ResultExprTy,
3856                                            IsLowerBound);
3857     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3858                                    !getLangOpts().isSignedOverflowDefined(),
3859                                    /*signedIndices=*/false, E->getExprLoc());
3860   }
3861 
3862   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3863 }
3864 
3865 LValue CodeGenFunction::
3866 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3867   // Emit the base vector as an l-value.
3868   LValue Base;
3869 
3870   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3871   if (E->isArrow()) {
3872     // If it is a pointer to a vector, emit the address and form an lvalue with
3873     // it.
3874     LValueBaseInfo BaseInfo;
3875     TBAAAccessInfo TBAAInfo;
3876     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3877     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
3878     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3879     Base.getQuals().removeObjCGCAttr();
3880   } else if (E->getBase()->isGLValue()) {
3881     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3882     // emit the base as an lvalue.
3883     assert(E->getBase()->getType()->isVectorType());
3884     Base = EmitLValue(E->getBase());
3885   } else {
3886     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3887     assert(E->getBase()->getType()->isVectorType() &&
3888            "Result must be a vector");
3889     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3890 
3891     // Store the vector to memory (because LValue wants an address).
3892     Address VecMem = CreateMemTemp(E->getBase()->getType());
3893     Builder.CreateStore(Vec, VecMem);
3894     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3895                           AlignmentSource::Decl);
3896   }
3897 
3898   QualType type =
3899     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3900 
3901   // Encode the element access list into a vector of unsigned indices.
3902   SmallVector<uint32_t, 4> Indices;
3903   E->getEncodedElementAccess(Indices);
3904 
3905   if (Base.isSimple()) {
3906     llvm::Constant *CV =
3907         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3908     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
3909                                     Base.getBaseInfo(), TBAAAccessInfo());
3910   }
3911   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3912 
3913   llvm::Constant *BaseElts = Base.getExtVectorElts();
3914   SmallVector<llvm::Constant *, 4> CElts;
3915 
3916   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3917     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3918   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3919   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3920                                   Base.getBaseInfo(), TBAAAccessInfo());
3921 }
3922 
3923 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3924   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3925     EmitIgnoredExpr(E->getBase());
3926     return EmitDeclRefLValue(DRE);
3927   }
3928 
3929   Expr *BaseExpr = E->getBase();
3930   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3931   LValue BaseLV;
3932   if (E->isArrow()) {
3933     LValueBaseInfo BaseInfo;
3934     TBAAAccessInfo TBAAInfo;
3935     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3936     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3937     SanitizerSet SkippedChecks;
3938     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3939     if (IsBaseCXXThis)
3940       SkippedChecks.set(SanitizerKind::Alignment, true);
3941     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3942       SkippedChecks.set(SanitizerKind::Null, true);
3943     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3944                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3945     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3946   } else
3947     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3948 
3949   NamedDecl *ND = E->getMemberDecl();
3950   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3951     LValue LV = EmitLValueForField(BaseLV, Field);
3952     setObjCGCLValueClass(getContext(), E, LV);
3953     if (getLangOpts().OpenMP) {
3954       // If the member was explicitly marked as nontemporal, mark it as
3955       // nontemporal. If the base lvalue is marked as nontemporal, mark access
3956       // to children as nontemporal too.
3957       if ((IsWrappedCXXThis(BaseExpr) &&
3958            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
3959           BaseLV.isNontemporal())
3960         LV.setNontemporal(/*Value=*/true);
3961     }
3962     return LV;
3963   }
3964 
3965   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3966     return EmitFunctionDeclLValue(*this, E, FD);
3967 
3968   llvm_unreachable("Unhandled member declaration!");
3969 }
3970 
3971 /// Given that we are currently emitting a lambda, emit an l-value for
3972 /// one of its members.
3973 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3974   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3975   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3976   QualType LambdaTagType =
3977     getContext().getTagDeclType(Field->getParent());
3978   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3979   return EmitLValueForField(LambdaLV, Field);
3980 }
3981 
3982 /// Get the field index in the debug info. The debug info structure/union
3983 /// will ignore the unnamed bitfields.
3984 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
3985                                              unsigned FieldIndex) {
3986   unsigned I = 0, Skipped = 0;
3987 
3988   for (auto F : Rec->getDefinition()->fields()) {
3989     if (I == FieldIndex)
3990       break;
3991     if (F->isUnnamedBitfield())
3992       Skipped++;
3993     I++;
3994   }
3995 
3996   return FieldIndex - Skipped;
3997 }
3998 
3999 /// Get the address of a zero-sized field within a record. The resulting
4000 /// address doesn't necessarily have the right type.
4001 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4002                                        const FieldDecl *Field) {
4003   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4004       CGF.getContext().getFieldOffset(Field));
4005   if (Offset.isZero())
4006     return Base;
4007   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4008   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4009 }
4010 
4011 /// Drill down to the storage of a field without walking into
4012 /// reference types.
4013 ///
4014 /// The resulting address doesn't necessarily have the right type.
4015 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4016                                       const FieldDecl *field) {
4017   if (field->isZeroSize(CGF.getContext()))
4018     return emitAddrOfZeroSizeField(CGF, base, field);
4019 
4020   const RecordDecl *rec = field->getParent();
4021 
4022   unsigned idx =
4023     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4024 
4025   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4026 }
4027 
4028 static Address emitPreserveStructAccess(CodeGenFunction &CGF, Address base,
4029                                         const FieldDecl *field) {
4030   const RecordDecl *rec = field->getParent();
4031   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateRecordType(
4032       CGF.getContext().getRecordType(rec), rec->getLocation());
4033 
4034   unsigned idx =
4035       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4036 
4037   return CGF.Builder.CreatePreserveStructAccessIndex(
4038       base, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4039 }
4040 
4041 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4042   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4043   if (!RD)
4044     return false;
4045 
4046   if (RD->isDynamicClass())
4047     return true;
4048 
4049   for (const auto &Base : RD->bases())
4050     if (hasAnyVptr(Base.getType(), Context))
4051       return true;
4052 
4053   for (const FieldDecl *Field : RD->fields())
4054     if (hasAnyVptr(Field->getType(), Context))
4055       return true;
4056 
4057   return false;
4058 }
4059 
4060 // AAPCS requires volatile bitfield accesses to be performed using the
4061 // natural alignment / width of the bitfield declarative type, if that
4062 // won't cause overlap over a non-bitfield member nor access outside the
4063 // the data structure.
4064 bool CodeGenFunction::AdjustAAPCSBitfieldLValue(Address &Base,
4065                                                 CGBitFieldInfo &Info,
4066                                                 const FieldDecl *Field,
4067                                                 const QualType FieldType,
4068                                                 const CGRecordLayout &RL) {
4069   llvm::Type *ResLTy = ConvertTypeForMem(FieldType);
4070   // CGRecordLowering::setBitFieldInfo() pre-adjusts the bitfield offsets for
4071   // big-endian targets, but it assumes a container of width Info.StorageSize.
4072   // Since AAPCS uses a different container size (width of the type), we first
4073   // undo that calculation here and redo it once the bitfield offset within the
4074   // new container is calculated
4075   const bool BE = CGM.getTypes().getDataLayout().isBigEndian();
4076   const unsigned OldOffset =
4077       BE ? Info.StorageSize - (Info.Offset + Info.Size) : Info.Offset;
4078   // Offset to the bitfield from the beginning of the struct
4079   const unsigned AbsoluteOffset =
4080       getContext().toBits(Info.StorageOffset) + OldOffset;
4081 
4082   // Container size is the width of the bitfield type
4083   const unsigned ContainerSize = ResLTy->getPrimitiveSizeInBits();
4084   // Nothing to do if the access uses the desired
4085   // container width and is naturally aligned
4086   if (Info.StorageSize == ContainerSize && (OldOffset % ContainerSize == 0))
4087     return false;
4088 
4089   // Offset within the container
4090   unsigned MemberOffset = AbsoluteOffset & (ContainerSize - 1);
4091 
4092   // Bail out if an aligned load of the container cannot cover the entire
4093   // bitfield. This can happen for example, if the bitfield is part of a packed
4094   // struct. AAPCS does not define access rules for such cases, we let clang to
4095   // follow its own rules.
4096   if (MemberOffset + Info.Size > ContainerSize) {
4097     return false;
4098   }
4099   // Re-adjust offsets for big-endian targets
4100   if (BE)
4101     MemberOffset = ContainerSize - (MemberOffset + Info.Size);
4102 
4103   const CharUnits NewOffset =
4104       getContext().toCharUnitsFromBits(AbsoluteOffset & ~(ContainerSize - 1));
4105   const CharUnits End = NewOffset +
4106                         getContext().toCharUnitsFromBits(ContainerSize) -
4107                         CharUnits::One();
4108 
4109   const ASTRecordLayout &Layout =
4110       getContext().getASTRecordLayout(Field->getParent());
4111   // If we access outside memory outside the record, than bail out
4112   const CharUnits RecordSize = Layout.getSize();
4113   if (End >= RecordSize) {
4114     return false;
4115   }
4116 
4117   // Bail out if performing this load would access non-bitfields members
4118 
4119   for (auto it : Field->getParent()->fields()) {
4120     const FieldDecl &F = *it;
4121     // We distinct allow bitfields overlaps
4122     if (F.isBitField())
4123       continue;
4124     const CharUnits FOffset = getContext().toCharUnitsFromBits(
4125         Layout.getFieldOffset(F.getFieldIndex()));
4126     const CharUnits FEnd =
4127         FOffset +
4128         getContext().toCharUnitsFromBits(
4129             ConvertTypeForMem(F.getType())->getPrimitiveSizeInBits()) -
4130         CharUnits::One();
4131     if (End < FOffset) {
4132       // The other field starts after the desired load end.
4133       break;
4134     }
4135     if (FEnd < NewOffset) {
4136       // The other field ends before the desired load offset.
4137       continue;
4138     }
4139     // The desired load overlaps a non-bitfiel member, bail out.
4140     return false;
4141   }
4142 
4143   // Write the new bitfield access parameters
4144   Info.StorageOffset = NewOffset;
4145   Info.StorageSize = ContainerSize;
4146   Info.Offset = MemberOffset;
4147   // GEP into the bitfield container. Here we essentially treat the Base as a
4148   // pointer to a block of containers and index into it appropriately
4149   Base =
4150       Builder.CreateConstInBoundsGEP(Builder.CreateElementBitCast(Base, ResLTy),
4151                                      AbsoluteOffset / ContainerSize);
4152   return true;
4153 }
4154 
4155 LValue CodeGenFunction::EmitLValueForField(LValue base,
4156                                            const FieldDecl *field) {
4157   LValueBaseInfo BaseInfo = base.getBaseInfo();
4158 
4159   if (field->isBitField()) {
4160     const CGRecordLayout &RL =
4161         CGM.getTypes().getCGRecordLayout(field->getParent());
4162     CGBitFieldInfo Info = RL.getBitFieldInfo(field);
4163     Address Addr = base.getAddress(*this);
4164     const QualType FieldType =
4165         field->getType().withCVRQualifiers(base.getVRQualifiers());
4166 
4167     if (isAAPCS(CGM.getTarget()) && FieldType.isVolatileQualified()) {
4168       if (AdjustAAPCSBitfieldLValue(Addr, Info, field, FieldType, RL)) {
4169         return LValue::MakeBitfield(Addr, Info, FieldType, BaseInfo,
4170                                     TBAAAccessInfo());
4171       }
4172     }
4173 
4174     unsigned Idx = RL.getLLVMFieldNo(field);
4175     const RecordDecl *rec = field->getParent();
4176     if (!IsInPreservedAIRegion &&
4177         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4178       if (Idx != 0)
4179         // For structs, we GEP to the field that the record layout suggests.
4180         Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4181     } else {
4182       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4183           getContext().getRecordType(rec), rec->getLocation());
4184       Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx,
4185           getDebugInfoFIndex(rec, field->getFieldIndex()),
4186           DbgInfo);
4187     }
4188 
4189     // Get the access type.
4190     llvm::Type *FieldIntTy =
4191       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
4192     if (Addr.getElementType() != FieldIntTy)
4193       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4194 
4195     // TODO: Support TBAA for bit fields.
4196     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4197     return LValue::MakeBitfield(Addr, Info, FieldType, FieldBaseInfo,
4198                                 TBAAAccessInfo());
4199   }
4200 
4201   // Fields of may-alias structures are may-alias themselves.
4202   // FIXME: this should get propagated down through anonymous structs
4203   // and unions.
4204   QualType FieldType = field->getType();
4205   const RecordDecl *rec = field->getParent();
4206   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4207   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4208   TBAAAccessInfo FieldTBAAInfo;
4209   if (base.getTBAAInfo().isMayAlias() ||
4210           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4211     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4212   } else if (rec->isUnion()) {
4213     // TODO: Support TBAA for unions.
4214     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4215   } else {
4216     // If no base type been assigned for the base access, then try to generate
4217     // one for this base lvalue.
4218     FieldTBAAInfo = base.getTBAAInfo();
4219     if (!FieldTBAAInfo.BaseType) {
4220         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4221         assert(!FieldTBAAInfo.Offset &&
4222                "Nonzero offset for an access with no base type!");
4223     }
4224 
4225     // Adjust offset to be relative to the base type.
4226     const ASTRecordLayout &Layout =
4227         getContext().getASTRecordLayout(field->getParent());
4228     unsigned CharWidth = getContext().getCharWidth();
4229     if (FieldTBAAInfo.BaseType)
4230       FieldTBAAInfo.Offset +=
4231           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4232 
4233     // Update the final access type and size.
4234     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4235     FieldTBAAInfo.Size =
4236         getContext().getTypeSizeInChars(FieldType).getQuantity();
4237   }
4238 
4239   Address addr = base.getAddress(*this);
4240   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4241     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4242         ClassDef->isDynamicClass()) {
4243       // Getting to any field of dynamic object requires stripping dynamic
4244       // information provided by invariant.group.  This is because accessing
4245       // fields may leak the real address of dynamic object, which could result
4246       // in miscompilation when leaked pointer would be compared.
4247       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4248       addr = Address(stripped, addr.getAlignment());
4249     }
4250   }
4251 
4252   unsigned RecordCVR = base.getVRQualifiers();
4253   if (rec->isUnion()) {
4254     // For unions, there is no pointer adjustment.
4255     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4256         hasAnyVptr(FieldType, getContext()))
4257       // Because unions can easily skip invariant.barriers, we need to add
4258       // a barrier every time CXXRecord field with vptr is referenced.
4259       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4260                      addr.getAlignment());
4261 
4262     if (IsInPreservedAIRegion ||
4263         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4264       // Remember the original union field index
4265       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4266           getContext().getRecordType(rec), rec->getLocation());
4267       addr = Address(
4268           Builder.CreatePreserveUnionAccessIndex(
4269               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4270           addr.getAlignment());
4271     }
4272 
4273     if (FieldType->isReferenceType())
4274       addr = Builder.CreateElementBitCast(
4275           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4276   } else {
4277     if (!IsInPreservedAIRegion &&
4278         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4279       // For structs, we GEP to the field that the record layout suggests.
4280       addr = emitAddrOfFieldStorage(*this, addr, field);
4281     else
4282       // Remember the original struct field index
4283       addr = emitPreserveStructAccess(*this, addr, field);
4284   }
4285 
4286   // If this is a reference field, load the reference right now.
4287   if (FieldType->isReferenceType()) {
4288     LValue RefLVal =
4289         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4290     if (RecordCVR & Qualifiers::Volatile)
4291       RefLVal.getQuals().addVolatile();
4292     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4293 
4294     // Qualifiers on the struct don't apply to the referencee.
4295     RecordCVR = 0;
4296     FieldType = FieldType->getPointeeType();
4297   }
4298 
4299   // Make sure that the address is pointing to the right type.  This is critical
4300   // for both unions and structs.  A union needs a bitcast, a struct element
4301   // will need a bitcast if the LLVM type laid out doesn't match the desired
4302   // type.
4303   addr = Builder.CreateElementBitCast(
4304       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4305 
4306   if (field->hasAttr<AnnotateAttr>())
4307     addr = EmitFieldAnnotations(field, addr);
4308 
4309   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4310   LV.getQuals().addCVRQualifiers(RecordCVR);
4311 
4312   // __weak attribute on a field is ignored.
4313   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4314     LV.getQuals().removeObjCGCAttr();
4315 
4316   return LV;
4317 }
4318 
4319 LValue
4320 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4321                                                   const FieldDecl *Field) {
4322   QualType FieldType = Field->getType();
4323 
4324   if (!FieldType->isReferenceType())
4325     return EmitLValueForField(Base, Field);
4326 
4327   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4328 
4329   // Make sure that the address is pointing to the right type.
4330   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4331   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4332 
4333   // TODO: Generate TBAA information that describes this access as a structure
4334   // member access and not just an access to an object of the field's type. This
4335   // should be similar to what we do in EmitLValueForField().
4336   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4337   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4338   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4339   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4340                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4341 }
4342 
4343 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4344   if (E->isFileScope()) {
4345     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4346     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4347   }
4348   if (E->getType()->isVariablyModifiedType())
4349     // make sure to emit the VLA size.
4350     EmitVariablyModifiedType(E->getType());
4351 
4352   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4353   const Expr *InitExpr = E->getInitializer();
4354   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4355 
4356   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4357                    /*Init*/ true);
4358 
4359   return Result;
4360 }
4361 
4362 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4363   if (!E->isGLValue())
4364     // Initializing an aggregate temporary in C++11: T{...}.
4365     return EmitAggExprToLValue(E);
4366 
4367   // An lvalue initializer list must be initializing a reference.
4368   assert(E->isTransparent() && "non-transparent glvalue init list");
4369   return EmitLValue(E->getInit(0));
4370 }
4371 
4372 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4373 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4374 /// LValue is returned and the current block has been terminated.
4375 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4376                                                     const Expr *Operand) {
4377   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4378     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4379     return None;
4380   }
4381 
4382   return CGF.EmitLValue(Operand);
4383 }
4384 
4385 LValue CodeGenFunction::
4386 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4387   if (!expr->isGLValue()) {
4388     // ?: here should be an aggregate.
4389     assert(hasAggregateEvaluationKind(expr->getType()) &&
4390            "Unexpected conditional operator!");
4391     return EmitAggExprToLValue(expr);
4392   }
4393 
4394   OpaqueValueMapping binding(*this, expr);
4395 
4396   const Expr *condExpr = expr->getCond();
4397   bool CondExprBool;
4398   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4399     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4400     if (!CondExprBool) std::swap(live, dead);
4401 
4402     if (!ContainsLabel(dead)) {
4403       // If the true case is live, we need to track its region.
4404       if (CondExprBool)
4405         incrementProfileCounter(expr);
4406       return EmitLValue(live);
4407     }
4408   }
4409 
4410   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4411   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4412   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4413 
4414   ConditionalEvaluation eval(*this);
4415   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4416 
4417   // Any temporaries created here are conditional.
4418   EmitBlock(lhsBlock);
4419   incrementProfileCounter(expr);
4420   eval.begin(*this);
4421   Optional<LValue> lhs =
4422       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4423   eval.end(*this);
4424 
4425   if (lhs && !lhs->isSimple())
4426     return EmitUnsupportedLValue(expr, "conditional operator");
4427 
4428   lhsBlock = Builder.GetInsertBlock();
4429   if (lhs)
4430     Builder.CreateBr(contBlock);
4431 
4432   // Any temporaries created here are conditional.
4433   EmitBlock(rhsBlock);
4434   eval.begin(*this);
4435   Optional<LValue> rhs =
4436       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4437   eval.end(*this);
4438   if (rhs && !rhs->isSimple())
4439     return EmitUnsupportedLValue(expr, "conditional operator");
4440   rhsBlock = Builder.GetInsertBlock();
4441 
4442   EmitBlock(contBlock);
4443 
4444   if (lhs && rhs) {
4445     llvm::PHINode *phi =
4446         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4447     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4448     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4449     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4450     AlignmentSource alignSource =
4451       std::max(lhs->getBaseInfo().getAlignmentSource(),
4452                rhs->getBaseInfo().getAlignmentSource());
4453     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4454         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4455     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4456                           TBAAInfo);
4457   } else {
4458     assert((lhs || rhs) &&
4459            "both operands of glvalue conditional are throw-expressions?");
4460     return lhs ? *lhs : *rhs;
4461   }
4462 }
4463 
4464 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4465 /// type. If the cast is to a reference, we can have the usual lvalue result,
4466 /// otherwise if a cast is needed by the code generator in an lvalue context,
4467 /// then it must mean that we need the address of an aggregate in order to
4468 /// access one of its members.  This can happen for all the reasons that casts
4469 /// are permitted with aggregate result, including noop aggregate casts, and
4470 /// cast from scalar to union.
4471 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4472   switch (E->getCastKind()) {
4473   case CK_ToVoid:
4474   case CK_BitCast:
4475   case CK_LValueToRValueBitCast:
4476   case CK_ArrayToPointerDecay:
4477   case CK_FunctionToPointerDecay:
4478   case CK_NullToMemberPointer:
4479   case CK_NullToPointer:
4480   case CK_IntegralToPointer:
4481   case CK_PointerToIntegral:
4482   case CK_PointerToBoolean:
4483   case CK_VectorSplat:
4484   case CK_IntegralCast:
4485   case CK_BooleanToSignedIntegral:
4486   case CK_IntegralToBoolean:
4487   case CK_IntegralToFloating:
4488   case CK_FloatingToIntegral:
4489   case CK_FloatingToBoolean:
4490   case CK_FloatingCast:
4491   case CK_FloatingRealToComplex:
4492   case CK_FloatingComplexToReal:
4493   case CK_FloatingComplexToBoolean:
4494   case CK_FloatingComplexCast:
4495   case CK_FloatingComplexToIntegralComplex:
4496   case CK_IntegralRealToComplex:
4497   case CK_IntegralComplexToReal:
4498   case CK_IntegralComplexToBoolean:
4499   case CK_IntegralComplexCast:
4500   case CK_IntegralComplexToFloatingComplex:
4501   case CK_DerivedToBaseMemberPointer:
4502   case CK_BaseToDerivedMemberPointer:
4503   case CK_MemberPointerToBoolean:
4504   case CK_ReinterpretMemberPointer:
4505   case CK_AnyPointerToBlockPointerCast:
4506   case CK_ARCProduceObject:
4507   case CK_ARCConsumeObject:
4508   case CK_ARCReclaimReturnedObject:
4509   case CK_ARCExtendBlockObject:
4510   case CK_CopyAndAutoreleaseBlockObject:
4511   case CK_IntToOCLSampler:
4512   case CK_FixedPointCast:
4513   case CK_FixedPointToBoolean:
4514   case CK_FixedPointToIntegral:
4515   case CK_IntegralToFixedPoint:
4516     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4517 
4518   case CK_Dependent:
4519     llvm_unreachable("dependent cast kind in IR gen!");
4520 
4521   case CK_BuiltinFnToFnPtr:
4522     llvm_unreachable("builtin functions are handled elsewhere");
4523 
4524   // These are never l-values; just use the aggregate emission code.
4525   case CK_NonAtomicToAtomic:
4526   case CK_AtomicToNonAtomic:
4527     return EmitAggExprToLValue(E);
4528 
4529   case CK_Dynamic: {
4530     LValue LV = EmitLValue(E->getSubExpr());
4531     Address V = LV.getAddress(*this);
4532     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4533     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4534   }
4535 
4536   case CK_ConstructorConversion:
4537   case CK_UserDefinedConversion:
4538   case CK_CPointerToObjCPointerCast:
4539   case CK_BlockPointerToObjCPointerCast:
4540   case CK_NoOp:
4541   case CK_LValueToRValue:
4542     return EmitLValue(E->getSubExpr());
4543 
4544   case CK_UncheckedDerivedToBase:
4545   case CK_DerivedToBase: {
4546     const auto *DerivedClassTy =
4547         E->getSubExpr()->getType()->castAs<RecordType>();
4548     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4549 
4550     LValue LV = EmitLValue(E->getSubExpr());
4551     Address This = LV.getAddress(*this);
4552 
4553     // Perform the derived-to-base conversion
4554     Address Base = GetAddressOfBaseClass(
4555         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4556         /*NullCheckValue=*/false, E->getExprLoc());
4557 
4558     // TODO: Support accesses to members of base classes in TBAA. For now, we
4559     // conservatively pretend that the complete object is of the base class
4560     // type.
4561     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4562                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4563   }
4564   case CK_ToUnion:
4565     return EmitAggExprToLValue(E);
4566   case CK_BaseToDerived: {
4567     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4568     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4569 
4570     LValue LV = EmitLValue(E->getSubExpr());
4571 
4572     // Perform the base-to-derived conversion
4573     Address Derived = GetAddressOfDerivedClass(
4574         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4575         /*NullCheckValue=*/false);
4576 
4577     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4578     // performed and the object is not of the derived type.
4579     if (sanitizePerformTypeCheck())
4580       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4581                     Derived.getPointer(), E->getType());
4582 
4583     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4584       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4585                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4586                                 E->getBeginLoc());
4587 
4588     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4589                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4590   }
4591   case CK_LValueBitCast: {
4592     // This must be a reinterpret_cast (or c-style equivalent).
4593     const auto *CE = cast<ExplicitCastExpr>(E);
4594 
4595     CGM.EmitExplicitCastExprType(CE, this);
4596     LValue LV = EmitLValue(E->getSubExpr());
4597     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4598                                       ConvertType(CE->getTypeAsWritten()));
4599 
4600     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4601       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4602                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4603                                 E->getBeginLoc());
4604 
4605     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4606                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4607   }
4608   case CK_AddressSpaceConversion: {
4609     LValue LV = EmitLValue(E->getSubExpr());
4610     QualType DestTy = getContext().getPointerType(E->getType());
4611     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4612         *this, LV.getPointer(*this),
4613         E->getSubExpr()->getType().getAddressSpace(),
4614         E->getType().getAddressSpace(), ConvertType(DestTy));
4615     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4616                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4617   }
4618   case CK_ObjCObjectLValueCast: {
4619     LValue LV = EmitLValue(E->getSubExpr());
4620     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4621                                              ConvertType(E->getType()));
4622     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4623                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4624   }
4625   case CK_ZeroToOCLOpaqueType:
4626     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4627   }
4628 
4629   llvm_unreachable("Unhandled lvalue cast kind?");
4630 }
4631 
4632 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4633   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4634   return getOrCreateOpaqueLValueMapping(e);
4635 }
4636 
4637 LValue
4638 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4639   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4640 
4641   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4642       it = OpaqueLValues.find(e);
4643 
4644   if (it != OpaqueLValues.end())
4645     return it->second;
4646 
4647   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4648   return EmitLValue(e->getSourceExpr());
4649 }
4650 
4651 RValue
4652 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4653   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4654 
4655   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4656       it = OpaqueRValues.find(e);
4657 
4658   if (it != OpaqueRValues.end())
4659     return it->second;
4660 
4661   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4662   return EmitAnyExpr(e->getSourceExpr());
4663 }
4664 
4665 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4666                                            const FieldDecl *FD,
4667                                            SourceLocation Loc) {
4668   QualType FT = FD->getType();
4669   LValue FieldLV = EmitLValueForField(LV, FD);
4670   switch (getEvaluationKind(FT)) {
4671   case TEK_Complex:
4672     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4673   case TEK_Aggregate:
4674     return FieldLV.asAggregateRValue(*this);
4675   case TEK_Scalar:
4676     // This routine is used to load fields one-by-one to perform a copy, so
4677     // don't load reference fields.
4678     if (FD->getType()->isReferenceType())
4679       return RValue::get(FieldLV.getPointer(*this));
4680     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4681     // primitive load.
4682     if (FieldLV.isBitField())
4683       return EmitLoadOfLValue(FieldLV, Loc);
4684     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4685   }
4686   llvm_unreachable("bad evaluation kind");
4687 }
4688 
4689 //===--------------------------------------------------------------------===//
4690 //                             Expression Emission
4691 //===--------------------------------------------------------------------===//
4692 
4693 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4694                                      ReturnValueSlot ReturnValue) {
4695   // Builtins never have block type.
4696   if (E->getCallee()->getType()->isBlockPointerType())
4697     return EmitBlockCallExpr(E, ReturnValue);
4698 
4699   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4700     return EmitCXXMemberCallExpr(CE, ReturnValue);
4701 
4702   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4703     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4704 
4705   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4706     if (const CXXMethodDecl *MD =
4707           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4708       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4709 
4710   CGCallee callee = EmitCallee(E->getCallee());
4711 
4712   if (callee.isBuiltin()) {
4713     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4714                            E, ReturnValue);
4715   }
4716 
4717   if (callee.isPseudoDestructor()) {
4718     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4719   }
4720 
4721   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4722 }
4723 
4724 /// Emit a CallExpr without considering whether it might be a subclass.
4725 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4726                                            ReturnValueSlot ReturnValue) {
4727   CGCallee Callee = EmitCallee(E->getCallee());
4728   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4729 }
4730 
4731 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4732 
4733   if (auto builtinID = FD->getBuiltinID()) {
4734     // Replaceable builtin provide their own implementation of a builtin. Unless
4735     // we are in the builtin implementation itself, don't call the actual
4736     // builtin. If we are in the builtin implementation, avoid trivial infinite
4737     // recursion.
4738     if (!FD->isInlineBuiltinDeclaration() ||
4739         CGF.CurFn->getName() == FD->getName())
4740       return CGCallee::forBuiltin(builtinID, FD);
4741   }
4742 
4743   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4744   return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4745 }
4746 
4747 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4748   E = E->IgnoreParens();
4749 
4750   // Look through function-to-pointer decay.
4751   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4752     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4753         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4754       return EmitCallee(ICE->getSubExpr());
4755     }
4756 
4757   // Resolve direct calls.
4758   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4759     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4760       return EmitDirectCallee(*this, FD);
4761     }
4762   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4763     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4764       EmitIgnoredExpr(ME->getBase());
4765       return EmitDirectCallee(*this, FD);
4766     }
4767 
4768   // Look through template substitutions.
4769   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4770     return EmitCallee(NTTP->getReplacement());
4771 
4772   // Treat pseudo-destructor calls differently.
4773   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4774     return CGCallee::forPseudoDestructor(PDE);
4775   }
4776 
4777   // Otherwise, we have an indirect reference.
4778   llvm::Value *calleePtr;
4779   QualType functionType;
4780   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4781     calleePtr = EmitScalarExpr(E);
4782     functionType = ptrType->getPointeeType();
4783   } else {
4784     functionType = E->getType();
4785     calleePtr = EmitLValue(E).getPointer(*this);
4786   }
4787   assert(functionType->isFunctionType());
4788 
4789   GlobalDecl GD;
4790   if (const auto *VD =
4791           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4792     GD = GlobalDecl(VD);
4793 
4794   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4795   CGCallee callee(calleeInfo, calleePtr);
4796   return callee;
4797 }
4798 
4799 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4800   // Comma expressions just emit their LHS then their RHS as an l-value.
4801   if (E->getOpcode() == BO_Comma) {
4802     EmitIgnoredExpr(E->getLHS());
4803     EnsureInsertPoint();
4804     return EmitLValue(E->getRHS());
4805   }
4806 
4807   if (E->getOpcode() == BO_PtrMemD ||
4808       E->getOpcode() == BO_PtrMemI)
4809     return EmitPointerToDataMemberBinaryExpr(E);
4810 
4811   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4812 
4813   // Note that in all of these cases, __block variables need the RHS
4814   // evaluated first just in case the variable gets moved by the RHS.
4815 
4816   switch (getEvaluationKind(E->getType())) {
4817   case TEK_Scalar: {
4818     switch (E->getLHS()->getType().getObjCLifetime()) {
4819     case Qualifiers::OCL_Strong:
4820       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4821 
4822     case Qualifiers::OCL_Autoreleasing:
4823       return EmitARCStoreAutoreleasing(E).first;
4824 
4825     // No reason to do any of these differently.
4826     case Qualifiers::OCL_None:
4827     case Qualifiers::OCL_ExplicitNone:
4828     case Qualifiers::OCL_Weak:
4829       break;
4830     }
4831 
4832     RValue RV = EmitAnyExpr(E->getRHS());
4833     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4834     if (RV.isScalar())
4835       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4836     EmitStoreThroughLValue(RV, LV);
4837     if (getLangOpts().OpenMP)
4838       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4839                                                                 E->getLHS());
4840     return LV;
4841   }
4842 
4843   case TEK_Complex:
4844     return EmitComplexAssignmentLValue(E);
4845 
4846   case TEK_Aggregate:
4847     return EmitAggExprToLValue(E);
4848   }
4849   llvm_unreachable("bad evaluation kind");
4850 }
4851 
4852 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4853   RValue RV = EmitCallExpr(E);
4854 
4855   if (!RV.isScalar())
4856     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4857                           AlignmentSource::Decl);
4858 
4859   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4860          "Can't have a scalar return unless the return type is a "
4861          "reference type!");
4862 
4863   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4864 }
4865 
4866 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4867   // FIXME: This shouldn't require another copy.
4868   return EmitAggExprToLValue(E);
4869 }
4870 
4871 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4872   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4873          && "binding l-value to type which needs a temporary");
4874   AggValueSlot Slot = CreateAggTemp(E->getType());
4875   EmitCXXConstructExpr(E, Slot);
4876   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4877 }
4878 
4879 LValue
4880 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4881   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4882 }
4883 
4884 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4885   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4886                                       ConvertType(E->getType()));
4887 }
4888 
4889 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4890   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4891                         AlignmentSource::Decl);
4892 }
4893 
4894 LValue
4895 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4896   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4897   Slot.setExternallyDestructed();
4898   EmitAggExpr(E->getSubExpr(), Slot);
4899   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4900   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4901 }
4902 
4903 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4904   RValue RV = EmitObjCMessageExpr(E);
4905 
4906   if (!RV.isScalar())
4907     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4908                           AlignmentSource::Decl);
4909 
4910   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4911          "Can't have a scalar return unless the return type is a "
4912          "reference type!");
4913 
4914   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4915 }
4916 
4917 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4918   Address V =
4919     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4920   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4921 }
4922 
4923 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4924                                              const ObjCIvarDecl *Ivar) {
4925   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4926 }
4927 
4928 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4929                                           llvm::Value *BaseValue,
4930                                           const ObjCIvarDecl *Ivar,
4931                                           unsigned CVRQualifiers) {
4932   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4933                                                    Ivar, CVRQualifiers);
4934 }
4935 
4936 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4937   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4938   llvm::Value *BaseValue = nullptr;
4939   const Expr *BaseExpr = E->getBase();
4940   Qualifiers BaseQuals;
4941   QualType ObjectTy;
4942   if (E->isArrow()) {
4943     BaseValue = EmitScalarExpr(BaseExpr);
4944     ObjectTy = BaseExpr->getType()->getPointeeType();
4945     BaseQuals = ObjectTy.getQualifiers();
4946   } else {
4947     LValue BaseLV = EmitLValue(BaseExpr);
4948     BaseValue = BaseLV.getPointer(*this);
4949     ObjectTy = BaseExpr->getType();
4950     BaseQuals = ObjectTy.getQualifiers();
4951   }
4952 
4953   LValue LV =
4954     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4955                       BaseQuals.getCVRQualifiers());
4956   setObjCGCLValueClass(getContext(), E, LV);
4957   return LV;
4958 }
4959 
4960 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4961   // Can only get l-value for message expression returning aggregate type
4962   RValue RV = EmitAnyExprToTemp(E);
4963   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4964                         AlignmentSource::Decl);
4965 }
4966 
4967 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4968                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4969                                  llvm::Value *Chain) {
4970   // Get the actual function type. The callee type will always be a pointer to
4971   // function type or a block pointer type.
4972   assert(CalleeType->isFunctionPointerType() &&
4973          "Call must have function pointer type!");
4974 
4975   const Decl *TargetDecl =
4976       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4977 
4978   CalleeType = getContext().getCanonicalType(CalleeType);
4979 
4980   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4981 
4982   CGCallee Callee = OrigCallee;
4983 
4984   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4985       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4986     if (llvm::Constant *PrefixSig =
4987             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4988       SanitizerScope SanScope(this);
4989       // Remove any (C++17) exception specifications, to allow calling e.g. a
4990       // noexcept function through a non-noexcept pointer.
4991       auto ProtoTy =
4992         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4993       llvm::Constant *FTRTTIConst =
4994           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4995       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4996       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4997           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4998 
4999       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5000 
5001       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5002           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5003       llvm::Value *CalleeSigPtr =
5004           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5005       llvm::Value *CalleeSig =
5006           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
5007       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5008 
5009       llvm::BasicBlock *Cont = createBasicBlock("cont");
5010       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5011       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5012 
5013       EmitBlock(TypeCheck);
5014       llvm::Value *CalleeRTTIPtr =
5015           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5016       llvm::Value *CalleeRTTIEncoded =
5017           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
5018       llvm::Value *CalleeRTTI =
5019           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5020       llvm::Value *CalleeRTTIMatch =
5021           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5022       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5023                                       EmitCheckTypeDescriptor(CalleeType)};
5024       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5025                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5026                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5027 
5028       Builder.CreateBr(Cont);
5029       EmitBlock(Cont);
5030     }
5031   }
5032 
5033   const auto *FnType = cast<FunctionType>(PointeeType);
5034 
5035   // If we are checking indirect calls and this call is indirect, check that the
5036   // function pointer is a member of the bit set for the function type.
5037   if (SanOpts.has(SanitizerKind::CFIICall) &&
5038       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5039     SanitizerScope SanScope(this);
5040     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5041 
5042     llvm::Metadata *MD;
5043     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5044       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5045     else
5046       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5047 
5048     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5049 
5050     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5051     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5052     llvm::Value *TypeTest = Builder.CreateCall(
5053         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5054 
5055     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5056     llvm::Constant *StaticData[] = {
5057         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5058         EmitCheckSourceLocation(E->getBeginLoc()),
5059         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5060     };
5061     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5062       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5063                            CastedCallee, StaticData);
5064     } else {
5065       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5066                 SanitizerHandler::CFICheckFail, StaticData,
5067                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5068     }
5069   }
5070 
5071   CallArgList Args;
5072   if (Chain)
5073     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5074              CGM.getContext().VoidPtrTy);
5075 
5076   // C++17 requires that we evaluate arguments to a call using assignment syntax
5077   // right-to-left, and that we evaluate arguments to certain other operators
5078   // left-to-right. Note that we allow this to override the order dictated by
5079   // the calling convention on the MS ABI, which means that parameter
5080   // destruction order is not necessarily reverse construction order.
5081   // FIXME: Revisit this based on C++ committee response to unimplementability.
5082   EvaluationOrder Order = EvaluationOrder::Default;
5083   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5084     if (OCE->isAssignmentOp())
5085       Order = EvaluationOrder::ForceRightToLeft;
5086     else {
5087       switch (OCE->getOperator()) {
5088       case OO_LessLess:
5089       case OO_GreaterGreater:
5090       case OO_AmpAmp:
5091       case OO_PipePipe:
5092       case OO_Comma:
5093       case OO_ArrowStar:
5094         Order = EvaluationOrder::ForceLeftToRight;
5095         break;
5096       default:
5097         break;
5098       }
5099     }
5100   }
5101 
5102   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5103                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5104 
5105   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5106       Args, FnType, /*ChainCall=*/Chain);
5107 
5108   // C99 6.5.2.2p6:
5109   //   If the expression that denotes the called function has a type
5110   //   that does not include a prototype, [the default argument
5111   //   promotions are performed]. If the number of arguments does not
5112   //   equal the number of parameters, the behavior is undefined. If
5113   //   the function is defined with a type that includes a prototype,
5114   //   and either the prototype ends with an ellipsis (, ...) or the
5115   //   types of the arguments after promotion are not compatible with
5116   //   the types of the parameters, the behavior is undefined. If the
5117   //   function is defined with a type that does not include a
5118   //   prototype, and the types of the arguments after promotion are
5119   //   not compatible with those of the parameters after promotion,
5120   //   the behavior is undefined [except in some trivial cases].
5121   // That is, in the general case, we should assume that a call
5122   // through an unprototyped function type works like a *non-variadic*
5123   // call.  The way we make this work is to cast to the exact type
5124   // of the promoted arguments.
5125   //
5126   // Chain calls use this same code path to add the invisible chain parameter
5127   // to the function type.
5128   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5129     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5130     CalleeTy = CalleeTy->getPointerTo();
5131 
5132     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5133     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5134     Callee.setFunctionPointer(CalleePtr);
5135   }
5136 
5137   llvm::CallBase *CallOrInvoke = nullptr;
5138   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5139                          E->getExprLoc());
5140 
5141   // Generate function declaration DISuprogram in order to be used
5142   // in debug info about call sites.
5143   if (CGDebugInfo *DI = getDebugInfo()) {
5144     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5145       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5146                                   CalleeDecl);
5147   }
5148 
5149   return Call;
5150 }
5151 
5152 LValue CodeGenFunction::
5153 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5154   Address BaseAddr = Address::invalid();
5155   if (E->getOpcode() == BO_PtrMemI) {
5156     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5157   } else {
5158     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5159   }
5160 
5161   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5162   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5163 
5164   LValueBaseInfo BaseInfo;
5165   TBAAAccessInfo TBAAInfo;
5166   Address MemberAddr =
5167     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5168                                     &TBAAInfo);
5169 
5170   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5171 }
5172 
5173 /// Given the address of a temporary variable, produce an r-value of
5174 /// its type.
5175 RValue CodeGenFunction::convertTempToRValue(Address addr,
5176                                             QualType type,
5177                                             SourceLocation loc) {
5178   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5179   switch (getEvaluationKind(type)) {
5180   case TEK_Complex:
5181     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5182   case TEK_Aggregate:
5183     return lvalue.asAggregateRValue(*this);
5184   case TEK_Scalar:
5185     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5186   }
5187   llvm_unreachable("bad evaluation kind");
5188 }
5189 
5190 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5191   assert(Val->getType()->isFPOrFPVectorTy());
5192   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5193     return;
5194 
5195   llvm::MDBuilder MDHelper(getLLVMContext());
5196   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5197 
5198   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5199 }
5200 
5201 namespace {
5202   struct LValueOrRValue {
5203     LValue LV;
5204     RValue RV;
5205   };
5206 }
5207 
5208 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5209                                            const PseudoObjectExpr *E,
5210                                            bool forLValue,
5211                                            AggValueSlot slot) {
5212   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5213 
5214   // Find the result expression, if any.
5215   const Expr *resultExpr = E->getResultExpr();
5216   LValueOrRValue result;
5217 
5218   for (PseudoObjectExpr::const_semantics_iterator
5219          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5220     const Expr *semantic = *i;
5221 
5222     // If this semantic expression is an opaque value, bind it
5223     // to the result of its source expression.
5224     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5225       // Skip unique OVEs.
5226       if (ov->isUnique()) {
5227         assert(ov != resultExpr &&
5228                "A unique OVE cannot be used as the result expression");
5229         continue;
5230       }
5231 
5232       // If this is the result expression, we may need to evaluate
5233       // directly into the slot.
5234       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5235       OVMA opaqueData;
5236       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5237           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5238         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5239         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5240                                        AlignmentSource::Decl);
5241         opaqueData = OVMA::bind(CGF, ov, LV);
5242         result.RV = slot.asRValue();
5243 
5244       // Otherwise, emit as normal.
5245       } else {
5246         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5247 
5248         // If this is the result, also evaluate the result now.
5249         if (ov == resultExpr) {
5250           if (forLValue)
5251             result.LV = CGF.EmitLValue(ov);
5252           else
5253             result.RV = CGF.EmitAnyExpr(ov, slot);
5254         }
5255       }
5256 
5257       opaques.push_back(opaqueData);
5258 
5259     // Otherwise, if the expression is the result, evaluate it
5260     // and remember the result.
5261     } else if (semantic == resultExpr) {
5262       if (forLValue)
5263         result.LV = CGF.EmitLValue(semantic);
5264       else
5265         result.RV = CGF.EmitAnyExpr(semantic, slot);
5266 
5267     // Otherwise, evaluate the expression in an ignored context.
5268     } else {
5269       CGF.EmitIgnoredExpr(semantic);
5270     }
5271   }
5272 
5273   // Unbind all the opaques now.
5274   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5275     opaques[i].unbind(CGF);
5276 
5277   return result;
5278 }
5279 
5280 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5281                                                AggValueSlot slot) {
5282   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5283 }
5284 
5285 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5286   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5287 }
5288