1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCall.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 65 CharUnits Align, 66 const Twine &Name, 67 llvm::Value *ArraySize) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getAsAlign()); 70 return Address(Alloca, Align); 71 } 72 73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 74 /// block. The alloca is casted to default address space if necessary. 75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 76 const Twine &Name, 77 llvm::Value *ArraySize, 78 Address *AllocaAddr) { 79 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 80 if (AllocaAddr) 81 *AllocaAddr = Alloca; 82 llvm::Value *V = Alloca.getPointer(); 83 // Alloca always returns a pointer in alloca address space, which may 84 // be different from the type defined by the language. For example, 85 // in C++ the auto variables are in the default address space. Therefore 86 // cast alloca to the default address space when necessary. 87 if (getASTAllocaAddressSpace() != LangAS::Default) { 88 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 89 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 90 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 91 // otherwise alloca is inserted at the current insertion point of the 92 // builder. 93 if (!ArraySize) 94 Builder.SetInsertPoint(AllocaInsertPt); 95 V = getTargetHooks().performAddrSpaceCast( 96 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 97 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 98 } 99 100 return Address(V, Align); 101 } 102 103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 105 /// insertion point of the builder. 106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 107 const Twine &Name, 108 llvm::Value *ArraySize) { 109 if (ArraySize) 110 return Builder.CreateAlloca(Ty, ArraySize, Name); 111 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 112 ArraySize, Name, AllocaInsertPt); 113 } 114 115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 116 /// default alignment of the corresponding LLVM type, which is *not* 117 /// guaranteed to be related in any way to the expected alignment of 118 /// an AST type that might have been lowered to Ty. 119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 120 const Twine &Name) { 121 CharUnits Align = 122 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 123 return CreateTempAlloca(Ty, Align, Name); 124 } 125 126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 127 assert(isa<llvm::AllocaInst>(Var.getPointer())); 128 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 129 Store->setAlignment(Var.getAlignment().getAsAlign()); 130 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 131 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 132 } 133 134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 135 CharUnits Align = getContext().getTypeAlignInChars(Ty); 136 return CreateTempAlloca(ConvertType(Ty), Align, Name); 137 } 138 139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 140 Address *Alloca) { 141 // FIXME: Should we prefer the preferred type alignment here? 142 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 143 } 144 145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 146 const Twine &Name, Address *Alloca) { 147 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 148 /*ArraySize=*/nullptr, Alloca); 149 } 150 151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 152 const Twine &Name) { 153 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 154 } 155 156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 157 const Twine &Name) { 158 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 159 Name); 160 } 161 162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 163 /// expression and compare the result against zero, returning an Int1Ty value. 164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 165 PGO.setCurrentStmt(E); 166 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 167 llvm::Value *MemPtr = EmitScalarExpr(E); 168 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 169 } 170 171 QualType BoolTy = getContext().BoolTy; 172 SourceLocation Loc = E->getExprLoc(); 173 if (!E->getType()->isAnyComplexType()) 174 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 175 176 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 177 Loc); 178 } 179 180 // Helper method to check if the underlying ABI is AAPCS 181 static bool isAAPCS(const TargetInfo &TargetInfo) { 182 return TargetInfo.getABI().startswith("aapcs"); 183 } 184 185 /// EmitIgnoredExpr - Emit code to compute the specified expression, 186 /// ignoring the result. 187 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 188 if (E->isRValue()) 189 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 190 191 // Just emit it as an l-value and drop the result. 192 EmitLValue(E); 193 } 194 195 /// EmitAnyExpr - Emit code to compute the specified expression which 196 /// can have any type. The result is returned as an RValue struct. 197 /// If this is an aggregate expression, AggSlot indicates where the 198 /// result should be returned. 199 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 200 AggValueSlot aggSlot, 201 bool ignoreResult) { 202 switch (getEvaluationKind(E->getType())) { 203 case TEK_Scalar: 204 return RValue::get(EmitScalarExpr(E, ignoreResult)); 205 case TEK_Complex: 206 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 207 case TEK_Aggregate: 208 if (!ignoreResult && aggSlot.isIgnored()) 209 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 210 EmitAggExpr(E, aggSlot); 211 return aggSlot.asRValue(); 212 } 213 llvm_unreachable("bad evaluation kind"); 214 } 215 216 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 217 /// always be accessible even if no aggregate location is provided. 218 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 219 AggValueSlot AggSlot = AggValueSlot::ignored(); 220 221 if (hasAggregateEvaluationKind(E->getType())) 222 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 223 return EmitAnyExpr(E, AggSlot); 224 } 225 226 /// EmitAnyExprToMem - Evaluate an expression into a given memory 227 /// location. 228 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 229 Address Location, 230 Qualifiers Quals, 231 bool IsInit) { 232 // FIXME: This function should take an LValue as an argument. 233 switch (getEvaluationKind(E->getType())) { 234 case TEK_Complex: 235 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 236 /*isInit*/ false); 237 return; 238 239 case TEK_Aggregate: { 240 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 241 AggValueSlot::IsDestructed_t(IsInit), 242 AggValueSlot::DoesNotNeedGCBarriers, 243 AggValueSlot::IsAliased_t(!IsInit), 244 AggValueSlot::MayOverlap)); 245 return; 246 } 247 248 case TEK_Scalar: { 249 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 250 LValue LV = MakeAddrLValue(Location, E->getType()); 251 EmitStoreThroughLValue(RV, LV); 252 return; 253 } 254 } 255 llvm_unreachable("bad evaluation kind"); 256 } 257 258 static void 259 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 260 const Expr *E, Address ReferenceTemporary) { 261 // Objective-C++ ARC: 262 // If we are binding a reference to a temporary that has ownership, we 263 // need to perform retain/release operations on the temporary. 264 // 265 // FIXME: This should be looking at E, not M. 266 if (auto Lifetime = M->getType().getObjCLifetime()) { 267 switch (Lifetime) { 268 case Qualifiers::OCL_None: 269 case Qualifiers::OCL_ExplicitNone: 270 // Carry on to normal cleanup handling. 271 break; 272 273 case Qualifiers::OCL_Autoreleasing: 274 // Nothing to do; cleaned up by an autorelease pool. 275 return; 276 277 case Qualifiers::OCL_Strong: 278 case Qualifiers::OCL_Weak: 279 switch (StorageDuration Duration = M->getStorageDuration()) { 280 case SD_Static: 281 // Note: we intentionally do not register a cleanup to release 282 // the object on program termination. 283 return; 284 285 case SD_Thread: 286 // FIXME: We should probably register a cleanup in this case. 287 return; 288 289 case SD_Automatic: 290 case SD_FullExpression: 291 CodeGenFunction::Destroyer *Destroy; 292 CleanupKind CleanupKind; 293 if (Lifetime == Qualifiers::OCL_Strong) { 294 const ValueDecl *VD = M->getExtendingDecl(); 295 bool Precise = 296 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 297 CleanupKind = CGF.getARCCleanupKind(); 298 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 299 : &CodeGenFunction::destroyARCStrongImprecise; 300 } else { 301 // __weak objects always get EH cleanups; otherwise, exceptions 302 // could cause really nasty crashes instead of mere leaks. 303 CleanupKind = NormalAndEHCleanup; 304 Destroy = &CodeGenFunction::destroyARCWeak; 305 } 306 if (Duration == SD_FullExpression) 307 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 308 M->getType(), *Destroy, 309 CleanupKind & EHCleanup); 310 else 311 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 312 M->getType(), 313 *Destroy, CleanupKind & EHCleanup); 314 return; 315 316 case SD_Dynamic: 317 llvm_unreachable("temporary cannot have dynamic storage duration"); 318 } 319 llvm_unreachable("unknown storage duration"); 320 } 321 } 322 323 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 324 if (const RecordType *RT = 325 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 326 // Get the destructor for the reference temporary. 327 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 328 if (!ClassDecl->hasTrivialDestructor()) 329 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 330 } 331 332 if (!ReferenceTemporaryDtor) 333 return; 334 335 // Call the destructor for the temporary. 336 switch (M->getStorageDuration()) { 337 case SD_Static: 338 case SD_Thread: { 339 llvm::FunctionCallee CleanupFn; 340 llvm::Constant *CleanupArg; 341 if (E->getType()->isArrayType()) { 342 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 343 ReferenceTemporary, E->getType(), 344 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 345 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 346 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 347 } else { 348 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 349 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 350 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 351 } 352 CGF.CGM.getCXXABI().registerGlobalDtor( 353 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 354 break; 355 } 356 357 case SD_FullExpression: 358 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 359 CodeGenFunction::destroyCXXObject, 360 CGF.getLangOpts().Exceptions); 361 break; 362 363 case SD_Automatic: 364 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 365 ReferenceTemporary, E->getType(), 366 CodeGenFunction::destroyCXXObject, 367 CGF.getLangOpts().Exceptions); 368 break; 369 370 case SD_Dynamic: 371 llvm_unreachable("temporary cannot have dynamic storage duration"); 372 } 373 } 374 375 static Address createReferenceTemporary(CodeGenFunction &CGF, 376 const MaterializeTemporaryExpr *M, 377 const Expr *Inner, 378 Address *Alloca = nullptr) { 379 auto &TCG = CGF.getTargetHooks(); 380 switch (M->getStorageDuration()) { 381 case SD_FullExpression: 382 case SD_Automatic: { 383 // If we have a constant temporary array or record try to promote it into a 384 // constant global under the same rules a normal constant would've been 385 // promoted. This is easier on the optimizer and generally emits fewer 386 // instructions. 387 QualType Ty = Inner->getType(); 388 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 389 (Ty->isArrayType() || Ty->isRecordType()) && 390 CGF.CGM.isTypeConstant(Ty, true)) 391 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 392 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 393 auto AS = AddrSpace.getValue(); 394 auto *GV = new llvm::GlobalVariable( 395 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 396 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 397 llvm::GlobalValue::NotThreadLocal, 398 CGF.getContext().getTargetAddressSpace(AS)); 399 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 400 GV->setAlignment(alignment.getAsAlign()); 401 llvm::Constant *C = GV; 402 if (AS != LangAS::Default) 403 C = TCG.performAddrSpaceCast( 404 CGF.CGM, GV, AS, LangAS::Default, 405 GV->getValueType()->getPointerTo( 406 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 407 // FIXME: Should we put the new global into a COMDAT? 408 return Address(C, alignment); 409 } 410 } 411 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 412 } 413 case SD_Thread: 414 case SD_Static: 415 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 416 417 case SD_Dynamic: 418 llvm_unreachable("temporary can't have dynamic storage duration"); 419 } 420 llvm_unreachable("unknown storage duration"); 421 } 422 423 LValue CodeGenFunction:: 424 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 425 const Expr *E = M->getSubExpr(); 426 427 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 428 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 429 "Reference should never be pseudo-strong!"); 430 431 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 432 // as that will cause the lifetime adjustment to be lost for ARC 433 auto ownership = M->getType().getObjCLifetime(); 434 if (ownership != Qualifiers::OCL_None && 435 ownership != Qualifiers::OCL_ExplicitNone) { 436 Address Object = createReferenceTemporary(*this, M, E); 437 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 438 Object = Address(llvm::ConstantExpr::getBitCast(Var, 439 ConvertTypeForMem(E->getType()) 440 ->getPointerTo(Object.getAddressSpace())), 441 Object.getAlignment()); 442 443 // createReferenceTemporary will promote the temporary to a global with a 444 // constant initializer if it can. It can only do this to a value of 445 // ARC-manageable type if the value is global and therefore "immune" to 446 // ref-counting operations. Therefore we have no need to emit either a 447 // dynamic initialization or a cleanup and we can just return the address 448 // of the temporary. 449 if (Var->hasInitializer()) 450 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 451 452 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 453 } 454 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 455 AlignmentSource::Decl); 456 457 switch (getEvaluationKind(E->getType())) { 458 default: llvm_unreachable("expected scalar or aggregate expression"); 459 case TEK_Scalar: 460 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 461 break; 462 case TEK_Aggregate: { 463 EmitAggExpr(E, AggValueSlot::forAddr(Object, 464 E->getType().getQualifiers(), 465 AggValueSlot::IsDestructed, 466 AggValueSlot::DoesNotNeedGCBarriers, 467 AggValueSlot::IsNotAliased, 468 AggValueSlot::DoesNotOverlap)); 469 break; 470 } 471 } 472 473 pushTemporaryCleanup(*this, M, E, Object); 474 return RefTempDst; 475 } 476 477 SmallVector<const Expr *, 2> CommaLHSs; 478 SmallVector<SubobjectAdjustment, 2> Adjustments; 479 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 480 481 for (const auto &Ignored : CommaLHSs) 482 EmitIgnoredExpr(Ignored); 483 484 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 485 if (opaque->getType()->isRecordType()) { 486 assert(Adjustments.empty()); 487 return EmitOpaqueValueLValue(opaque); 488 } 489 } 490 491 // Create and initialize the reference temporary. 492 Address Alloca = Address::invalid(); 493 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 494 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 495 Object.getPointer()->stripPointerCasts())) { 496 Object = Address(llvm::ConstantExpr::getBitCast( 497 cast<llvm::Constant>(Object.getPointer()), 498 ConvertTypeForMem(E->getType())->getPointerTo()), 499 Object.getAlignment()); 500 // If the temporary is a global and has a constant initializer or is a 501 // constant temporary that we promoted to a global, we may have already 502 // initialized it. 503 if (!Var->hasInitializer()) { 504 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 505 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 506 } 507 } else { 508 switch (M->getStorageDuration()) { 509 case SD_Automatic: 510 if (auto *Size = EmitLifetimeStart( 511 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 512 Alloca.getPointer())) { 513 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 514 Alloca, Size); 515 } 516 break; 517 518 case SD_FullExpression: { 519 if (!ShouldEmitLifetimeMarkers) 520 break; 521 522 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 523 // marker. Instead, start the lifetime of a conditional temporary earlier 524 // so that it's unconditional. Don't do this with sanitizers which need 525 // more precise lifetime marks. 526 ConditionalEvaluation *OldConditional = nullptr; 527 CGBuilderTy::InsertPoint OldIP; 528 if (isInConditionalBranch() && !E->getType().isDestructedType() && 529 !SanOpts.has(SanitizerKind::HWAddress) && 530 !SanOpts.has(SanitizerKind::Memory) && 531 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 532 OldConditional = OutermostConditional; 533 OutermostConditional = nullptr; 534 535 OldIP = Builder.saveIP(); 536 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 537 Builder.restoreIP(CGBuilderTy::InsertPoint( 538 Block, llvm::BasicBlock::iterator(Block->back()))); 539 } 540 541 if (auto *Size = EmitLifetimeStart( 542 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 543 Alloca.getPointer())) { 544 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 545 Size); 546 } 547 548 if (OldConditional) { 549 OutermostConditional = OldConditional; 550 Builder.restoreIP(OldIP); 551 } 552 break; 553 } 554 555 default: 556 break; 557 } 558 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 559 } 560 pushTemporaryCleanup(*this, M, E, Object); 561 562 // Perform derived-to-base casts and/or field accesses, to get from the 563 // temporary object we created (and, potentially, for which we extended 564 // the lifetime) to the subobject we're binding the reference to. 565 for (unsigned I = Adjustments.size(); I != 0; --I) { 566 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 567 switch (Adjustment.Kind) { 568 case SubobjectAdjustment::DerivedToBaseAdjustment: 569 Object = 570 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 571 Adjustment.DerivedToBase.BasePath->path_begin(), 572 Adjustment.DerivedToBase.BasePath->path_end(), 573 /*NullCheckValue=*/ false, E->getExprLoc()); 574 break; 575 576 case SubobjectAdjustment::FieldAdjustment: { 577 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 578 LV = EmitLValueForField(LV, Adjustment.Field); 579 assert(LV.isSimple() && 580 "materialized temporary field is not a simple lvalue"); 581 Object = LV.getAddress(*this); 582 break; 583 } 584 585 case SubobjectAdjustment::MemberPointerAdjustment: { 586 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 587 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 588 Adjustment.Ptr.MPT); 589 break; 590 } 591 } 592 } 593 594 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 595 } 596 597 RValue 598 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 599 // Emit the expression as an lvalue. 600 LValue LV = EmitLValue(E); 601 assert(LV.isSimple()); 602 llvm::Value *Value = LV.getPointer(*this); 603 604 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 605 // C++11 [dcl.ref]p5 (as amended by core issue 453): 606 // If a glvalue to which a reference is directly bound designates neither 607 // an existing object or function of an appropriate type nor a region of 608 // storage of suitable size and alignment to contain an object of the 609 // reference's type, the behavior is undefined. 610 QualType Ty = E->getType(); 611 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 612 } 613 614 return RValue::get(Value); 615 } 616 617 618 /// getAccessedFieldNo - Given an encoded value and a result number, return the 619 /// input field number being accessed. 620 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 621 const llvm::Constant *Elts) { 622 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 623 ->getZExtValue(); 624 } 625 626 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 627 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 628 llvm::Value *High) { 629 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 630 llvm::Value *K47 = Builder.getInt64(47); 631 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 632 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 633 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 634 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 635 return Builder.CreateMul(B1, KMul); 636 } 637 638 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 639 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 640 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 641 } 642 643 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 644 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 645 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 646 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 647 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 648 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 649 } 650 651 bool CodeGenFunction::sanitizePerformTypeCheck() const { 652 return SanOpts.has(SanitizerKind::Null) | 653 SanOpts.has(SanitizerKind::Alignment) | 654 SanOpts.has(SanitizerKind::ObjectSize) | 655 SanOpts.has(SanitizerKind::Vptr); 656 } 657 658 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 659 llvm::Value *Ptr, QualType Ty, 660 CharUnits Alignment, 661 SanitizerSet SkippedChecks, 662 llvm::Value *ArraySize) { 663 if (!sanitizePerformTypeCheck()) 664 return; 665 666 // Don't check pointers outside the default address space. The null check 667 // isn't correct, the object-size check isn't supported by LLVM, and we can't 668 // communicate the addresses to the runtime handler for the vptr check. 669 if (Ptr->getType()->getPointerAddressSpace()) 670 return; 671 672 // Don't check pointers to volatile data. The behavior here is implementation- 673 // defined. 674 if (Ty.isVolatileQualified()) 675 return; 676 677 SanitizerScope SanScope(this); 678 679 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 680 llvm::BasicBlock *Done = nullptr; 681 682 // Quickly determine whether we have a pointer to an alloca. It's possible 683 // to skip null checks, and some alignment checks, for these pointers. This 684 // can reduce compile-time significantly. 685 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 686 687 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 688 llvm::Value *IsNonNull = nullptr; 689 bool IsGuaranteedNonNull = 690 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 691 bool AllowNullPointers = isNullPointerAllowed(TCK); 692 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 693 !IsGuaranteedNonNull) { 694 // The glvalue must not be an empty glvalue. 695 IsNonNull = Builder.CreateIsNotNull(Ptr); 696 697 // The IR builder can constant-fold the null check if the pointer points to 698 // a constant. 699 IsGuaranteedNonNull = IsNonNull == True; 700 701 // Skip the null check if the pointer is known to be non-null. 702 if (!IsGuaranteedNonNull) { 703 if (AllowNullPointers) { 704 // When performing pointer casts, it's OK if the value is null. 705 // Skip the remaining checks in that case. 706 Done = createBasicBlock("null"); 707 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 708 Builder.CreateCondBr(IsNonNull, Rest, Done); 709 EmitBlock(Rest); 710 } else { 711 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 712 } 713 } 714 } 715 716 if (SanOpts.has(SanitizerKind::ObjectSize) && 717 !SkippedChecks.has(SanitizerKind::ObjectSize) && 718 !Ty->isIncompleteType()) { 719 uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity(); 720 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 721 if (ArraySize) 722 Size = Builder.CreateMul(Size, ArraySize); 723 724 // Degenerate case: new X[0] does not need an objectsize check. 725 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 726 if (!ConstantSize || !ConstantSize->isNullValue()) { 727 // The glvalue must refer to a large enough storage region. 728 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 729 // to check this. 730 // FIXME: Get object address space 731 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 732 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 733 llvm::Value *Min = Builder.getFalse(); 734 llvm::Value *NullIsUnknown = Builder.getFalse(); 735 llvm::Value *Dynamic = Builder.getFalse(); 736 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 737 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 738 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 739 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 740 } 741 } 742 743 uint64_t AlignVal = 0; 744 llvm::Value *PtrAsInt = nullptr; 745 746 if (SanOpts.has(SanitizerKind::Alignment) && 747 !SkippedChecks.has(SanitizerKind::Alignment)) { 748 AlignVal = Alignment.getQuantity(); 749 if (!Ty->isIncompleteType() && !AlignVal) 750 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 751 752 // The glvalue must be suitably aligned. 753 if (AlignVal > 1 && 754 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 755 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 756 llvm::Value *Align = Builder.CreateAnd( 757 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 758 llvm::Value *Aligned = 759 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 760 if (Aligned != True) 761 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 762 } 763 } 764 765 if (Checks.size() > 0) { 766 // Make sure we're not losing information. Alignment needs to be a power of 767 // 2 768 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 769 llvm::Constant *StaticData[] = { 770 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 771 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 772 llvm::ConstantInt::get(Int8Ty, TCK)}; 773 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 774 PtrAsInt ? PtrAsInt : Ptr); 775 } 776 777 // If possible, check that the vptr indicates that there is a subobject of 778 // type Ty at offset zero within this object. 779 // 780 // C++11 [basic.life]p5,6: 781 // [For storage which does not refer to an object within its lifetime] 782 // The program has undefined behavior if: 783 // -- the [pointer or glvalue] is used to access a non-static data member 784 // or call a non-static member function 785 if (SanOpts.has(SanitizerKind::Vptr) && 786 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 787 // Ensure that the pointer is non-null before loading it. If there is no 788 // compile-time guarantee, reuse the run-time null check or emit a new one. 789 if (!IsGuaranteedNonNull) { 790 if (!IsNonNull) 791 IsNonNull = Builder.CreateIsNotNull(Ptr); 792 if (!Done) 793 Done = createBasicBlock("vptr.null"); 794 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 795 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 796 EmitBlock(VptrNotNull); 797 } 798 799 // Compute a hash of the mangled name of the type. 800 // 801 // FIXME: This is not guaranteed to be deterministic! Move to a 802 // fingerprinting mechanism once LLVM provides one. For the time 803 // being the implementation happens to be deterministic. 804 SmallString<64> MangledName; 805 llvm::raw_svector_ostream Out(MangledName); 806 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 807 Out); 808 809 // Blacklist based on the mangled type. 810 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 811 SanitizerKind::Vptr, Out.str())) { 812 llvm::hash_code TypeHash = hash_value(Out.str()); 813 814 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 815 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 816 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 817 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 818 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 819 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 820 821 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 822 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 823 824 // Look the hash up in our cache. 825 const int CacheSize = 128; 826 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 827 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 828 "__ubsan_vptr_type_cache"); 829 llvm::Value *Slot = Builder.CreateAnd(Hash, 830 llvm::ConstantInt::get(IntPtrTy, 831 CacheSize-1)); 832 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 833 llvm::Value *CacheVal = 834 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 835 getPointerAlign()); 836 837 // If the hash isn't in the cache, call a runtime handler to perform the 838 // hard work of checking whether the vptr is for an object of the right 839 // type. This will either fill in the cache and return, or produce a 840 // diagnostic. 841 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 842 llvm::Constant *StaticData[] = { 843 EmitCheckSourceLocation(Loc), 844 EmitCheckTypeDescriptor(Ty), 845 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 846 llvm::ConstantInt::get(Int8Ty, TCK) 847 }; 848 llvm::Value *DynamicData[] = { Ptr, Hash }; 849 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 850 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 851 DynamicData); 852 } 853 } 854 855 if (Done) { 856 Builder.CreateBr(Done); 857 EmitBlock(Done); 858 } 859 } 860 861 /// Determine whether this expression refers to a flexible array member in a 862 /// struct. We disable array bounds checks for such members. 863 static bool isFlexibleArrayMemberExpr(const Expr *E) { 864 // For compatibility with existing code, we treat arrays of length 0 or 865 // 1 as flexible array members. 866 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 867 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 868 if (CAT->getSize().ugt(1)) 869 return false; 870 } else if (!isa<IncompleteArrayType>(AT)) 871 return false; 872 873 E = E->IgnoreParens(); 874 875 // A flexible array member must be the last member in the class. 876 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 877 // FIXME: If the base type of the member expr is not FD->getParent(), 878 // this should not be treated as a flexible array member access. 879 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 880 RecordDecl::field_iterator FI( 881 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 882 return ++FI == FD->getParent()->field_end(); 883 } 884 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 885 return IRE->getDecl()->getNextIvar() == nullptr; 886 } 887 888 return false; 889 } 890 891 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 892 QualType EltTy) { 893 ASTContext &C = getContext(); 894 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 895 if (!EltSize) 896 return nullptr; 897 898 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 899 if (!ArrayDeclRef) 900 return nullptr; 901 902 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 903 if (!ParamDecl) 904 return nullptr; 905 906 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 907 if (!POSAttr) 908 return nullptr; 909 910 // Don't load the size if it's a lower bound. 911 int POSType = POSAttr->getType(); 912 if (POSType != 0 && POSType != 1) 913 return nullptr; 914 915 // Find the implicit size parameter. 916 auto PassedSizeIt = SizeArguments.find(ParamDecl); 917 if (PassedSizeIt == SizeArguments.end()) 918 return nullptr; 919 920 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 921 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 922 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 923 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 924 C.getSizeType(), E->getExprLoc()); 925 llvm::Value *SizeOfElement = 926 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 927 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 928 } 929 930 /// If Base is known to point to the start of an array, return the length of 931 /// that array. Return 0 if the length cannot be determined. 932 static llvm::Value *getArrayIndexingBound( 933 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 934 // For the vector indexing extension, the bound is the number of elements. 935 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 936 IndexedType = Base->getType(); 937 return CGF.Builder.getInt32(VT->getNumElements()); 938 } 939 940 Base = Base->IgnoreParens(); 941 942 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 943 if (CE->getCastKind() == CK_ArrayToPointerDecay && 944 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 945 IndexedType = CE->getSubExpr()->getType(); 946 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 947 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 948 return CGF.Builder.getInt(CAT->getSize()); 949 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 950 return CGF.getVLASize(VAT).NumElts; 951 // Ignore pass_object_size here. It's not applicable on decayed pointers. 952 } 953 } 954 955 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 956 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 957 IndexedType = Base->getType(); 958 return POS; 959 } 960 961 return nullptr; 962 } 963 964 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 965 llvm::Value *Index, QualType IndexType, 966 bool Accessed) { 967 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 968 "should not be called unless adding bounds checks"); 969 SanitizerScope SanScope(this); 970 971 QualType IndexedType; 972 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 973 if (!Bound) 974 return; 975 976 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 977 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 978 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 979 980 llvm::Constant *StaticData[] = { 981 EmitCheckSourceLocation(E->getExprLoc()), 982 EmitCheckTypeDescriptor(IndexedType), 983 EmitCheckTypeDescriptor(IndexType) 984 }; 985 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 986 : Builder.CreateICmpULE(IndexVal, BoundVal); 987 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 988 SanitizerHandler::OutOfBounds, StaticData, Index); 989 } 990 991 992 CodeGenFunction::ComplexPairTy CodeGenFunction:: 993 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 994 bool isInc, bool isPre) { 995 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 996 997 llvm::Value *NextVal; 998 if (isa<llvm::IntegerType>(InVal.first->getType())) { 999 uint64_t AmountVal = isInc ? 1 : -1; 1000 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 1001 1002 // Add the inc/dec to the real part. 1003 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1004 } else { 1005 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1006 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1007 if (!isInc) 1008 FVal.changeSign(); 1009 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1010 1011 // Add the inc/dec to the real part. 1012 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1013 } 1014 1015 ComplexPairTy IncVal(NextVal, InVal.second); 1016 1017 // Store the updated result through the lvalue. 1018 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1019 if (getLangOpts().OpenMP) 1020 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1021 E->getSubExpr()); 1022 1023 // If this is a postinc, return the value read from memory, otherwise use the 1024 // updated value. 1025 return isPre ? IncVal : InVal; 1026 } 1027 1028 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1029 CodeGenFunction *CGF) { 1030 // Bind VLAs in the cast type. 1031 if (CGF && E->getType()->isVariablyModifiedType()) 1032 CGF->EmitVariablyModifiedType(E->getType()); 1033 1034 if (CGDebugInfo *DI = getModuleDebugInfo()) 1035 DI->EmitExplicitCastType(E->getType()); 1036 } 1037 1038 //===----------------------------------------------------------------------===// 1039 // LValue Expression Emission 1040 //===----------------------------------------------------------------------===// 1041 1042 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1043 /// derive a more accurate bound on the alignment of the pointer. 1044 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1045 LValueBaseInfo *BaseInfo, 1046 TBAAAccessInfo *TBAAInfo) { 1047 // We allow this with ObjC object pointers because of fragile ABIs. 1048 assert(E->getType()->isPointerType() || 1049 E->getType()->isObjCObjectPointerType()); 1050 E = E->IgnoreParens(); 1051 1052 // Casts: 1053 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1054 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1055 CGM.EmitExplicitCastExprType(ECE, this); 1056 1057 switch (CE->getCastKind()) { 1058 // Non-converting casts (but not C's implicit conversion from void*). 1059 case CK_BitCast: 1060 case CK_NoOp: 1061 case CK_AddressSpaceConversion: 1062 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1063 if (PtrTy->getPointeeType()->isVoidType()) 1064 break; 1065 1066 LValueBaseInfo InnerBaseInfo; 1067 TBAAAccessInfo InnerTBAAInfo; 1068 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1069 &InnerBaseInfo, 1070 &InnerTBAAInfo); 1071 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1072 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1073 1074 if (isa<ExplicitCastExpr>(CE)) { 1075 LValueBaseInfo TargetTypeBaseInfo; 1076 TBAAAccessInfo TargetTypeTBAAInfo; 1077 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1078 &TargetTypeBaseInfo, 1079 &TargetTypeTBAAInfo); 1080 if (TBAAInfo) 1081 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1082 TargetTypeTBAAInfo); 1083 // If the source l-value is opaque, honor the alignment of the 1084 // casted-to type. 1085 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1086 if (BaseInfo) 1087 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1088 Addr = Address(Addr.getPointer(), Align); 1089 } 1090 } 1091 1092 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1093 CE->getCastKind() == CK_BitCast) { 1094 if (auto PT = E->getType()->getAs<PointerType>()) 1095 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1096 /*MayBeNull=*/true, 1097 CodeGenFunction::CFITCK_UnrelatedCast, 1098 CE->getBeginLoc()); 1099 } 1100 return CE->getCastKind() != CK_AddressSpaceConversion 1101 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1102 : Builder.CreateAddrSpaceCast(Addr, 1103 ConvertType(E->getType())); 1104 } 1105 break; 1106 1107 // Array-to-pointer decay. 1108 case CK_ArrayToPointerDecay: 1109 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1110 1111 // Derived-to-base conversions. 1112 case CK_UncheckedDerivedToBase: 1113 case CK_DerivedToBase: { 1114 // TODO: Support accesses to members of base classes in TBAA. For now, we 1115 // conservatively pretend that the complete object is of the base class 1116 // type. 1117 if (TBAAInfo) 1118 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1119 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1120 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1121 return GetAddressOfBaseClass(Addr, Derived, 1122 CE->path_begin(), CE->path_end(), 1123 ShouldNullCheckClassCastValue(CE), 1124 CE->getExprLoc()); 1125 } 1126 1127 // TODO: Is there any reason to treat base-to-derived conversions 1128 // specially? 1129 default: 1130 break; 1131 } 1132 } 1133 1134 // Unary &. 1135 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1136 if (UO->getOpcode() == UO_AddrOf) { 1137 LValue LV = EmitLValue(UO->getSubExpr()); 1138 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1139 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1140 return LV.getAddress(*this); 1141 } 1142 } 1143 1144 // TODO: conditional operators, comma. 1145 1146 // Otherwise, use the alignment of the type. 1147 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1148 TBAAInfo); 1149 return Address(EmitScalarExpr(E), Align); 1150 } 1151 1152 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1153 if (Ty->isVoidType()) 1154 return RValue::get(nullptr); 1155 1156 switch (getEvaluationKind(Ty)) { 1157 case TEK_Complex: { 1158 llvm::Type *EltTy = 1159 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1160 llvm::Value *U = llvm::UndefValue::get(EltTy); 1161 return RValue::getComplex(std::make_pair(U, U)); 1162 } 1163 1164 // If this is a use of an undefined aggregate type, the aggregate must have an 1165 // identifiable address. Just because the contents of the value are undefined 1166 // doesn't mean that the address can't be taken and compared. 1167 case TEK_Aggregate: { 1168 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1169 return RValue::getAggregate(DestPtr); 1170 } 1171 1172 case TEK_Scalar: 1173 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1174 } 1175 llvm_unreachable("bad evaluation kind"); 1176 } 1177 1178 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1179 const char *Name) { 1180 ErrorUnsupported(E, Name); 1181 return GetUndefRValue(E->getType()); 1182 } 1183 1184 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1185 const char *Name) { 1186 ErrorUnsupported(E, Name); 1187 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1188 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1189 E->getType()); 1190 } 1191 1192 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1193 const Expr *Base = Obj; 1194 while (!isa<CXXThisExpr>(Base)) { 1195 // The result of a dynamic_cast can be null. 1196 if (isa<CXXDynamicCastExpr>(Base)) 1197 return false; 1198 1199 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1200 Base = CE->getSubExpr(); 1201 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1202 Base = PE->getSubExpr(); 1203 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1204 if (UO->getOpcode() == UO_Extension) 1205 Base = UO->getSubExpr(); 1206 else 1207 return false; 1208 } else { 1209 return false; 1210 } 1211 } 1212 return true; 1213 } 1214 1215 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1216 LValue LV; 1217 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1218 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1219 else 1220 LV = EmitLValue(E); 1221 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1222 SanitizerSet SkippedChecks; 1223 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1224 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1225 if (IsBaseCXXThis) 1226 SkippedChecks.set(SanitizerKind::Alignment, true); 1227 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1228 SkippedChecks.set(SanitizerKind::Null, true); 1229 } 1230 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1231 LV.getAlignment(), SkippedChecks); 1232 } 1233 return LV; 1234 } 1235 1236 /// EmitLValue - Emit code to compute a designator that specifies the location 1237 /// of the expression. 1238 /// 1239 /// This can return one of two things: a simple address or a bitfield reference. 1240 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1241 /// an LLVM pointer type. 1242 /// 1243 /// If this returns a bitfield reference, nothing about the pointee type of the 1244 /// LLVM value is known: For example, it may not be a pointer to an integer. 1245 /// 1246 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1247 /// this method guarantees that the returned pointer type will point to an LLVM 1248 /// type of the same size of the lvalue's type. If the lvalue has a variable 1249 /// length type, this is not possible. 1250 /// 1251 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1252 ApplyDebugLocation DL(*this, E); 1253 switch (E->getStmtClass()) { 1254 default: return EmitUnsupportedLValue(E, "l-value expression"); 1255 1256 case Expr::ObjCPropertyRefExprClass: 1257 llvm_unreachable("cannot emit a property reference directly"); 1258 1259 case Expr::ObjCSelectorExprClass: 1260 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1261 case Expr::ObjCIsaExprClass: 1262 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1263 case Expr::BinaryOperatorClass: 1264 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1265 case Expr::CompoundAssignOperatorClass: { 1266 QualType Ty = E->getType(); 1267 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1268 Ty = AT->getValueType(); 1269 if (!Ty->isAnyComplexType()) 1270 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1271 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1272 } 1273 case Expr::CallExprClass: 1274 case Expr::CXXMemberCallExprClass: 1275 case Expr::CXXOperatorCallExprClass: 1276 case Expr::UserDefinedLiteralClass: 1277 return EmitCallExprLValue(cast<CallExpr>(E)); 1278 case Expr::CXXRewrittenBinaryOperatorClass: 1279 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1280 case Expr::VAArgExprClass: 1281 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1282 case Expr::DeclRefExprClass: 1283 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1284 case Expr::ConstantExprClass: 1285 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1286 case Expr::ParenExprClass: 1287 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1288 case Expr::GenericSelectionExprClass: 1289 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1290 case Expr::PredefinedExprClass: 1291 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1292 case Expr::StringLiteralClass: 1293 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1294 case Expr::ObjCEncodeExprClass: 1295 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1296 case Expr::PseudoObjectExprClass: 1297 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1298 case Expr::InitListExprClass: 1299 return EmitInitListLValue(cast<InitListExpr>(E)); 1300 case Expr::CXXTemporaryObjectExprClass: 1301 case Expr::CXXConstructExprClass: 1302 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1303 case Expr::CXXBindTemporaryExprClass: 1304 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1305 case Expr::CXXUuidofExprClass: 1306 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1307 case Expr::LambdaExprClass: 1308 return EmitAggExprToLValue(E); 1309 1310 case Expr::ExprWithCleanupsClass: { 1311 const auto *cleanups = cast<ExprWithCleanups>(E); 1312 enterFullExpression(cleanups); 1313 RunCleanupsScope Scope(*this); 1314 LValue LV = EmitLValue(cleanups->getSubExpr()); 1315 if (LV.isSimple()) { 1316 // Defend against branches out of gnu statement expressions surrounded by 1317 // cleanups. 1318 llvm::Value *V = LV.getPointer(*this); 1319 Scope.ForceCleanup({&V}); 1320 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1321 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1322 } 1323 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1324 // bitfield lvalue or some other non-simple lvalue? 1325 return LV; 1326 } 1327 1328 case Expr::CXXDefaultArgExprClass: { 1329 auto *DAE = cast<CXXDefaultArgExpr>(E); 1330 CXXDefaultArgExprScope Scope(*this, DAE); 1331 return EmitLValue(DAE->getExpr()); 1332 } 1333 case Expr::CXXDefaultInitExprClass: { 1334 auto *DIE = cast<CXXDefaultInitExpr>(E); 1335 CXXDefaultInitExprScope Scope(*this, DIE); 1336 return EmitLValue(DIE->getExpr()); 1337 } 1338 case Expr::CXXTypeidExprClass: 1339 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1340 1341 case Expr::ObjCMessageExprClass: 1342 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1343 case Expr::ObjCIvarRefExprClass: 1344 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1345 case Expr::StmtExprClass: 1346 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1347 case Expr::UnaryOperatorClass: 1348 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1349 case Expr::ArraySubscriptExprClass: 1350 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1351 case Expr::OMPArraySectionExprClass: 1352 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1353 case Expr::ExtVectorElementExprClass: 1354 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1355 case Expr::MemberExprClass: 1356 return EmitMemberExpr(cast<MemberExpr>(E)); 1357 case Expr::CompoundLiteralExprClass: 1358 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1359 case Expr::ConditionalOperatorClass: 1360 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1361 case Expr::BinaryConditionalOperatorClass: 1362 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1363 case Expr::ChooseExprClass: 1364 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1365 case Expr::OpaqueValueExprClass: 1366 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1367 case Expr::SubstNonTypeTemplateParmExprClass: 1368 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1369 case Expr::ImplicitCastExprClass: 1370 case Expr::CStyleCastExprClass: 1371 case Expr::CXXFunctionalCastExprClass: 1372 case Expr::CXXStaticCastExprClass: 1373 case Expr::CXXDynamicCastExprClass: 1374 case Expr::CXXReinterpretCastExprClass: 1375 case Expr::CXXConstCastExprClass: 1376 case Expr::ObjCBridgedCastExprClass: 1377 return EmitCastLValue(cast<CastExpr>(E)); 1378 1379 case Expr::MaterializeTemporaryExprClass: 1380 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1381 1382 case Expr::CoawaitExprClass: 1383 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1384 case Expr::CoyieldExprClass: 1385 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1386 } 1387 } 1388 1389 /// Given an object of the given canonical type, can we safely copy a 1390 /// value out of it based on its initializer? 1391 static bool isConstantEmittableObjectType(QualType type) { 1392 assert(type.isCanonical()); 1393 assert(!type->isReferenceType()); 1394 1395 // Must be const-qualified but non-volatile. 1396 Qualifiers qs = type.getLocalQualifiers(); 1397 if (!qs.hasConst() || qs.hasVolatile()) return false; 1398 1399 // Otherwise, all object types satisfy this except C++ classes with 1400 // mutable subobjects or non-trivial copy/destroy behavior. 1401 if (const auto *RT = dyn_cast<RecordType>(type)) 1402 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1403 if (RD->hasMutableFields() || !RD->isTrivial()) 1404 return false; 1405 1406 return true; 1407 } 1408 1409 /// Can we constant-emit a load of a reference to a variable of the 1410 /// given type? This is different from predicates like 1411 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1412 /// in situations that don't necessarily satisfy the language's rules 1413 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1414 /// to do this with const float variables even if those variables 1415 /// aren't marked 'constexpr'. 1416 enum ConstantEmissionKind { 1417 CEK_None, 1418 CEK_AsReferenceOnly, 1419 CEK_AsValueOrReference, 1420 CEK_AsValueOnly 1421 }; 1422 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1423 type = type.getCanonicalType(); 1424 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1425 if (isConstantEmittableObjectType(ref->getPointeeType())) 1426 return CEK_AsValueOrReference; 1427 return CEK_AsReferenceOnly; 1428 } 1429 if (isConstantEmittableObjectType(type)) 1430 return CEK_AsValueOnly; 1431 return CEK_None; 1432 } 1433 1434 /// Try to emit a reference to the given value without producing it as 1435 /// an l-value. This is just an optimization, but it avoids us needing 1436 /// to emit global copies of variables if they're named without triggering 1437 /// a formal use in a context where we can't emit a direct reference to them, 1438 /// for instance if a block or lambda or a member of a local class uses a 1439 /// const int variable or constexpr variable from an enclosing function. 1440 CodeGenFunction::ConstantEmission 1441 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1442 ValueDecl *value = refExpr->getDecl(); 1443 1444 // The value needs to be an enum constant or a constant variable. 1445 ConstantEmissionKind CEK; 1446 if (isa<ParmVarDecl>(value)) { 1447 CEK = CEK_None; 1448 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1449 CEK = checkVarTypeForConstantEmission(var->getType()); 1450 } else if (isa<EnumConstantDecl>(value)) { 1451 CEK = CEK_AsValueOnly; 1452 } else { 1453 CEK = CEK_None; 1454 } 1455 if (CEK == CEK_None) return ConstantEmission(); 1456 1457 Expr::EvalResult result; 1458 bool resultIsReference; 1459 QualType resultType; 1460 1461 // It's best to evaluate all the way as an r-value if that's permitted. 1462 if (CEK != CEK_AsReferenceOnly && 1463 refExpr->EvaluateAsRValue(result, getContext())) { 1464 resultIsReference = false; 1465 resultType = refExpr->getType(); 1466 1467 // Otherwise, try to evaluate as an l-value. 1468 } else if (CEK != CEK_AsValueOnly && 1469 refExpr->EvaluateAsLValue(result, getContext())) { 1470 resultIsReference = true; 1471 resultType = value->getType(); 1472 1473 // Failure. 1474 } else { 1475 return ConstantEmission(); 1476 } 1477 1478 // In any case, if the initializer has side-effects, abandon ship. 1479 if (result.HasSideEffects) 1480 return ConstantEmission(); 1481 1482 // Emit as a constant. 1483 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1484 result.Val, resultType); 1485 1486 // Make sure we emit a debug reference to the global variable. 1487 // This should probably fire even for 1488 if (isa<VarDecl>(value)) { 1489 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1490 EmitDeclRefExprDbgValue(refExpr, result.Val); 1491 } else { 1492 assert(isa<EnumConstantDecl>(value)); 1493 EmitDeclRefExprDbgValue(refExpr, result.Val); 1494 } 1495 1496 // If we emitted a reference constant, we need to dereference that. 1497 if (resultIsReference) 1498 return ConstantEmission::forReference(C); 1499 1500 return ConstantEmission::forValue(C); 1501 } 1502 1503 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1504 const MemberExpr *ME) { 1505 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1506 // Try to emit static variable member expressions as DREs. 1507 return DeclRefExpr::Create( 1508 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1509 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1510 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1511 } 1512 return nullptr; 1513 } 1514 1515 CodeGenFunction::ConstantEmission 1516 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1517 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1518 return tryEmitAsConstant(DRE); 1519 return ConstantEmission(); 1520 } 1521 1522 llvm::Value *CodeGenFunction::emitScalarConstant( 1523 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1524 assert(Constant && "not a constant"); 1525 if (Constant.isReference()) 1526 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1527 E->getExprLoc()) 1528 .getScalarVal(); 1529 return Constant.getValue(); 1530 } 1531 1532 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1533 SourceLocation Loc) { 1534 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1535 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1536 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1537 } 1538 1539 static bool hasBooleanRepresentation(QualType Ty) { 1540 if (Ty->isBooleanType()) 1541 return true; 1542 1543 if (const EnumType *ET = Ty->getAs<EnumType>()) 1544 return ET->getDecl()->getIntegerType()->isBooleanType(); 1545 1546 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1547 return hasBooleanRepresentation(AT->getValueType()); 1548 1549 return false; 1550 } 1551 1552 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1553 llvm::APInt &Min, llvm::APInt &End, 1554 bool StrictEnums, bool IsBool) { 1555 const EnumType *ET = Ty->getAs<EnumType>(); 1556 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1557 ET && !ET->getDecl()->isFixed(); 1558 if (!IsBool && !IsRegularCPlusPlusEnum) 1559 return false; 1560 1561 if (IsBool) { 1562 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1563 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1564 } else { 1565 const EnumDecl *ED = ET->getDecl(); 1566 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1567 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1568 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1569 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1570 1571 if (NumNegativeBits) { 1572 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1573 assert(NumBits <= Bitwidth); 1574 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1575 Min = -End; 1576 } else { 1577 assert(NumPositiveBits <= Bitwidth); 1578 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1579 Min = llvm::APInt(Bitwidth, 0); 1580 } 1581 } 1582 return true; 1583 } 1584 1585 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1586 llvm::APInt Min, End; 1587 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1588 hasBooleanRepresentation(Ty))) 1589 return nullptr; 1590 1591 llvm::MDBuilder MDHelper(getLLVMContext()); 1592 return MDHelper.createRange(Min, End); 1593 } 1594 1595 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1596 SourceLocation Loc) { 1597 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1598 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1599 if (!HasBoolCheck && !HasEnumCheck) 1600 return false; 1601 1602 bool IsBool = hasBooleanRepresentation(Ty) || 1603 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1604 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1605 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1606 if (!NeedsBoolCheck && !NeedsEnumCheck) 1607 return false; 1608 1609 // Single-bit booleans don't need to be checked. Special-case this to avoid 1610 // a bit width mismatch when handling bitfield values. This is handled by 1611 // EmitFromMemory for the non-bitfield case. 1612 if (IsBool && 1613 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1614 return false; 1615 1616 llvm::APInt Min, End; 1617 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1618 return true; 1619 1620 auto &Ctx = getLLVMContext(); 1621 SanitizerScope SanScope(this); 1622 llvm::Value *Check; 1623 --End; 1624 if (!Min) { 1625 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1626 } else { 1627 llvm::Value *Upper = 1628 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1629 llvm::Value *Lower = 1630 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1631 Check = Builder.CreateAnd(Upper, Lower); 1632 } 1633 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1634 EmitCheckTypeDescriptor(Ty)}; 1635 SanitizerMask Kind = 1636 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1637 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1638 StaticArgs, EmitCheckValue(Value)); 1639 return true; 1640 } 1641 1642 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1643 QualType Ty, 1644 SourceLocation Loc, 1645 LValueBaseInfo BaseInfo, 1646 TBAAAccessInfo TBAAInfo, 1647 bool isNontemporal) { 1648 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1649 // For better performance, handle vector loads differently. 1650 if (Ty->isVectorType()) { 1651 const llvm::Type *EltTy = Addr.getElementType(); 1652 1653 const auto *VTy = cast<llvm::VectorType>(EltTy); 1654 1655 // Handle vectors of size 3 like size 4 for better performance. 1656 if (VTy->getNumElements() == 3) { 1657 1658 // Bitcast to vec4 type. 1659 llvm::VectorType *vec4Ty = 1660 llvm::VectorType::get(VTy->getElementType(), 4); 1661 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1662 // Now load value. 1663 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1664 1665 // Shuffle vector to get vec3. 1666 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1667 {0, 1, 2}, "extractVec"); 1668 return EmitFromMemory(V, Ty); 1669 } 1670 } 1671 } 1672 1673 // Atomic operations have to be done on integral types. 1674 LValue AtomicLValue = 1675 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1676 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1677 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1678 } 1679 1680 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1681 if (isNontemporal) { 1682 llvm::MDNode *Node = llvm::MDNode::get( 1683 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1684 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1685 } 1686 1687 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1688 1689 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1690 // In order to prevent the optimizer from throwing away the check, don't 1691 // attach range metadata to the load. 1692 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1693 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1694 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1695 1696 return EmitFromMemory(Load, Ty); 1697 } 1698 1699 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1700 // Bool has a different representation in memory than in registers. 1701 if (hasBooleanRepresentation(Ty)) { 1702 // This should really always be an i1, but sometimes it's already 1703 // an i8, and it's awkward to track those cases down. 1704 if (Value->getType()->isIntegerTy(1)) 1705 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1706 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1707 "wrong value rep of bool"); 1708 } 1709 1710 return Value; 1711 } 1712 1713 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1714 // Bool has a different representation in memory than in registers. 1715 if (hasBooleanRepresentation(Ty)) { 1716 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1717 "wrong value rep of bool"); 1718 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1719 } 1720 1721 return Value; 1722 } 1723 1724 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1725 bool Volatile, QualType Ty, 1726 LValueBaseInfo BaseInfo, 1727 TBAAAccessInfo TBAAInfo, 1728 bool isInit, bool isNontemporal) { 1729 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1730 // Handle vectors differently to get better performance. 1731 if (Ty->isVectorType()) { 1732 llvm::Type *SrcTy = Value->getType(); 1733 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1734 // Handle vec3 special. 1735 if (VecTy && VecTy->getNumElements() == 3) { 1736 // Our source is a vec3, do a shuffle vector to make it a vec4. 1737 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1738 Builder.getInt32(2), 1739 llvm::UndefValue::get(Builder.getInt32Ty())}; 1740 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1741 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1742 MaskV, "extractVec"); 1743 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1744 } 1745 if (Addr.getElementType() != SrcTy) { 1746 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1747 } 1748 } 1749 } 1750 1751 Value = EmitToMemory(Value, Ty); 1752 1753 LValue AtomicLValue = 1754 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1755 if (Ty->isAtomicType() || 1756 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1757 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1758 return; 1759 } 1760 1761 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1762 if (isNontemporal) { 1763 llvm::MDNode *Node = 1764 llvm::MDNode::get(Store->getContext(), 1765 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1766 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1767 } 1768 1769 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1770 } 1771 1772 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1773 bool isInit) { 1774 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1775 lvalue.getType(), lvalue.getBaseInfo(), 1776 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1777 } 1778 1779 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1780 /// method emits the address of the lvalue, then loads the result as an rvalue, 1781 /// returning the rvalue. 1782 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1783 if (LV.isObjCWeak()) { 1784 // load of a __weak object. 1785 Address AddrWeakObj = LV.getAddress(*this); 1786 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1787 AddrWeakObj)); 1788 } 1789 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1790 // In MRC mode, we do a load+autorelease. 1791 if (!getLangOpts().ObjCAutoRefCount) { 1792 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1793 } 1794 1795 // In ARC mode, we load retained and then consume the value. 1796 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1797 Object = EmitObjCConsumeObject(LV.getType(), Object); 1798 return RValue::get(Object); 1799 } 1800 1801 if (LV.isSimple()) { 1802 assert(!LV.getType()->isFunctionType()); 1803 1804 // Everything needs a load. 1805 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1806 } 1807 1808 if (LV.isVectorElt()) { 1809 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1810 LV.isVolatileQualified()); 1811 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1812 "vecext")); 1813 } 1814 1815 // If this is a reference to a subset of the elements of a vector, either 1816 // shuffle the input or extract/insert them as appropriate. 1817 if (LV.isExtVectorElt()) 1818 return EmitLoadOfExtVectorElementLValue(LV); 1819 1820 // Global Register variables always invoke intrinsics 1821 if (LV.isGlobalReg()) 1822 return EmitLoadOfGlobalRegLValue(LV); 1823 1824 assert(LV.isBitField() && "Unknown LValue type!"); 1825 return EmitLoadOfBitfieldLValue(LV, Loc); 1826 } 1827 1828 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1829 SourceLocation Loc) { 1830 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1831 1832 // Get the output type. 1833 llvm::Type *ResLTy = ConvertType(LV.getType()); 1834 1835 Address Ptr = LV.getBitFieldAddress(); 1836 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1837 1838 if (Info.IsSigned) { 1839 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1840 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1841 if (HighBits) 1842 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1843 if (Info.Offset + HighBits) 1844 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1845 } else { 1846 if (Info.Offset) 1847 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1848 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1849 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1850 Info.Size), 1851 "bf.clear"); 1852 } 1853 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1854 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1855 return RValue::get(Val); 1856 } 1857 1858 // If this is a reference to a subset of the elements of a vector, create an 1859 // appropriate shufflevector. 1860 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1861 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1862 LV.isVolatileQualified()); 1863 1864 const llvm::Constant *Elts = LV.getExtVectorElts(); 1865 1866 // If the result of the expression is a non-vector type, we must be extracting 1867 // a single element. Just codegen as an extractelement. 1868 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1869 if (!ExprVT) { 1870 unsigned InIdx = getAccessedFieldNo(0, Elts); 1871 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1872 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1873 } 1874 1875 // Always use shuffle vector to try to retain the original program structure 1876 unsigned NumResultElts = ExprVT->getNumElements(); 1877 1878 SmallVector<llvm::Constant*, 4> Mask; 1879 for (unsigned i = 0; i != NumResultElts; ++i) 1880 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1881 1882 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1883 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1884 MaskV); 1885 return RValue::get(Vec); 1886 } 1887 1888 /// Generates lvalue for partial ext_vector access. 1889 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1890 Address VectorAddress = LV.getExtVectorAddress(); 1891 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 1892 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1893 1894 Address CastToPointerElement = 1895 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1896 "conv.ptr.element"); 1897 1898 const llvm::Constant *Elts = LV.getExtVectorElts(); 1899 unsigned ix = getAccessedFieldNo(0, Elts); 1900 1901 Address VectorBasePtrPlusIx = 1902 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1903 "vector.elt"); 1904 1905 return VectorBasePtrPlusIx; 1906 } 1907 1908 /// Load of global gamed gegisters are always calls to intrinsics. 1909 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1910 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1911 "Bad type for register variable"); 1912 llvm::MDNode *RegName = cast<llvm::MDNode>( 1913 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1914 1915 // We accept integer and pointer types only 1916 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1917 llvm::Type *Ty = OrigTy; 1918 if (OrigTy->isPointerTy()) 1919 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1920 llvm::Type *Types[] = { Ty }; 1921 1922 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1923 llvm::Value *Call = Builder.CreateCall( 1924 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1925 if (OrigTy->isPointerTy()) 1926 Call = Builder.CreateIntToPtr(Call, OrigTy); 1927 return RValue::get(Call); 1928 } 1929 1930 1931 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1932 /// lvalue, where both are guaranteed to the have the same type, and that type 1933 /// is 'Ty'. 1934 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1935 bool isInit) { 1936 if (!Dst.isSimple()) { 1937 if (Dst.isVectorElt()) { 1938 // Read/modify/write the vector, inserting the new element. 1939 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1940 Dst.isVolatileQualified()); 1941 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1942 Dst.getVectorIdx(), "vecins"); 1943 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1944 Dst.isVolatileQualified()); 1945 return; 1946 } 1947 1948 // If this is an update of extended vector elements, insert them as 1949 // appropriate. 1950 if (Dst.isExtVectorElt()) 1951 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1952 1953 if (Dst.isGlobalReg()) 1954 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1955 1956 assert(Dst.isBitField() && "Unknown LValue type"); 1957 return EmitStoreThroughBitfieldLValue(Src, Dst); 1958 } 1959 1960 // There's special magic for assigning into an ARC-qualified l-value. 1961 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1962 switch (Lifetime) { 1963 case Qualifiers::OCL_None: 1964 llvm_unreachable("present but none"); 1965 1966 case Qualifiers::OCL_ExplicitNone: 1967 // nothing special 1968 break; 1969 1970 case Qualifiers::OCL_Strong: 1971 if (isInit) { 1972 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1973 break; 1974 } 1975 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1976 return; 1977 1978 case Qualifiers::OCL_Weak: 1979 if (isInit) 1980 // Initialize and then skip the primitive store. 1981 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 1982 else 1983 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 1984 /*ignore*/ true); 1985 return; 1986 1987 case Qualifiers::OCL_Autoreleasing: 1988 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1989 Src.getScalarVal())); 1990 // fall into the normal path 1991 break; 1992 } 1993 } 1994 1995 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1996 // load of a __weak object. 1997 Address LvalueDst = Dst.getAddress(*this); 1998 llvm::Value *src = Src.getScalarVal(); 1999 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2000 return; 2001 } 2002 2003 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2004 // load of a __strong object. 2005 Address LvalueDst = Dst.getAddress(*this); 2006 llvm::Value *src = Src.getScalarVal(); 2007 if (Dst.isObjCIvar()) { 2008 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2009 llvm::Type *ResultType = IntPtrTy; 2010 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2011 llvm::Value *RHS = dst.getPointer(); 2012 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2013 llvm::Value *LHS = 2014 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2015 "sub.ptr.lhs.cast"); 2016 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2017 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2018 BytesBetween); 2019 } else if (Dst.isGlobalObjCRef()) { 2020 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2021 Dst.isThreadLocalRef()); 2022 } 2023 else 2024 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2025 return; 2026 } 2027 2028 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2029 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2030 } 2031 2032 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2033 llvm::Value **Result) { 2034 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2035 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2036 Address Ptr = Dst.getBitFieldAddress(); 2037 2038 // Get the source value, truncated to the width of the bit-field. 2039 llvm::Value *SrcVal = Src.getScalarVal(); 2040 2041 // Cast the source to the storage type and shift it into place. 2042 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2043 /*isSigned=*/false); 2044 llvm::Value *MaskedVal = SrcVal; 2045 2046 // See if there are other bits in the bitfield's storage we'll need to load 2047 // and mask together with source before storing. 2048 if (Info.StorageSize != Info.Size) { 2049 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2050 llvm::Value *Val = 2051 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2052 2053 // Mask the source value as needed. 2054 if (!hasBooleanRepresentation(Dst.getType())) 2055 SrcVal = Builder.CreateAnd(SrcVal, 2056 llvm::APInt::getLowBitsSet(Info.StorageSize, 2057 Info.Size), 2058 "bf.value"); 2059 MaskedVal = SrcVal; 2060 if (Info.Offset) 2061 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2062 2063 // Mask out the original value. 2064 Val = Builder.CreateAnd(Val, 2065 ~llvm::APInt::getBitsSet(Info.StorageSize, 2066 Info.Offset, 2067 Info.Offset + Info.Size), 2068 "bf.clear"); 2069 2070 // Or together the unchanged values and the source value. 2071 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2072 } else { 2073 assert(Info.Offset == 0); 2074 } 2075 2076 // Write the new value back out. 2077 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2078 2079 // Return the new value of the bit-field, if requested. 2080 if (Result) { 2081 llvm::Value *ResultVal = MaskedVal; 2082 2083 // Sign extend the value if needed. 2084 if (Info.IsSigned) { 2085 assert(Info.Size <= Info.StorageSize); 2086 unsigned HighBits = Info.StorageSize - Info.Size; 2087 if (HighBits) { 2088 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2089 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2090 } 2091 } 2092 2093 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2094 "bf.result.cast"); 2095 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2096 } 2097 } 2098 2099 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2100 LValue Dst) { 2101 // This access turns into a read/modify/write of the vector. Load the input 2102 // value now. 2103 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2104 Dst.isVolatileQualified()); 2105 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2106 2107 llvm::Value *SrcVal = Src.getScalarVal(); 2108 2109 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2110 unsigned NumSrcElts = VTy->getNumElements(); 2111 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2112 if (NumDstElts == NumSrcElts) { 2113 // Use shuffle vector is the src and destination are the same number of 2114 // elements and restore the vector mask since it is on the side it will be 2115 // stored. 2116 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2117 for (unsigned i = 0; i != NumSrcElts; ++i) 2118 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2119 2120 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2121 Vec = Builder.CreateShuffleVector(SrcVal, 2122 llvm::UndefValue::get(Vec->getType()), 2123 MaskV); 2124 } else if (NumDstElts > NumSrcElts) { 2125 // Extended the source vector to the same length and then shuffle it 2126 // into the destination. 2127 // FIXME: since we're shuffling with undef, can we just use the indices 2128 // into that? This could be simpler. 2129 SmallVector<llvm::Constant*, 4> ExtMask; 2130 for (unsigned i = 0; i != NumSrcElts; ++i) 2131 ExtMask.push_back(Builder.getInt32(i)); 2132 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2133 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2134 llvm::Value *ExtSrcVal = 2135 Builder.CreateShuffleVector(SrcVal, 2136 llvm::UndefValue::get(SrcVal->getType()), 2137 ExtMaskV); 2138 // build identity 2139 SmallVector<llvm::Constant*, 4> Mask; 2140 for (unsigned i = 0; i != NumDstElts; ++i) 2141 Mask.push_back(Builder.getInt32(i)); 2142 2143 // When the vector size is odd and .odd or .hi is used, the last element 2144 // of the Elts constant array will be one past the size of the vector. 2145 // Ignore the last element here, if it is greater than the mask size. 2146 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2147 NumSrcElts--; 2148 2149 // modify when what gets shuffled in 2150 for (unsigned i = 0; i != NumSrcElts; ++i) 2151 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2152 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2153 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2154 } else { 2155 // We should never shorten the vector 2156 llvm_unreachable("unexpected shorten vector length"); 2157 } 2158 } else { 2159 // If the Src is a scalar (not a vector) it must be updating one element. 2160 unsigned InIdx = getAccessedFieldNo(0, Elts); 2161 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2162 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2163 } 2164 2165 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2166 Dst.isVolatileQualified()); 2167 } 2168 2169 /// Store of global named registers are always calls to intrinsics. 2170 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2171 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2172 "Bad type for register variable"); 2173 llvm::MDNode *RegName = cast<llvm::MDNode>( 2174 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2175 assert(RegName && "Register LValue is not metadata"); 2176 2177 // We accept integer and pointer types only 2178 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2179 llvm::Type *Ty = OrigTy; 2180 if (OrigTy->isPointerTy()) 2181 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2182 llvm::Type *Types[] = { Ty }; 2183 2184 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2185 llvm::Value *Value = Src.getScalarVal(); 2186 if (OrigTy->isPointerTy()) 2187 Value = Builder.CreatePtrToInt(Value, Ty); 2188 Builder.CreateCall( 2189 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2190 } 2191 2192 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2193 // generating write-barries API. It is currently a global, ivar, 2194 // or neither. 2195 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2196 LValue &LV, 2197 bool IsMemberAccess=false) { 2198 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2199 return; 2200 2201 if (isa<ObjCIvarRefExpr>(E)) { 2202 QualType ExpTy = E->getType(); 2203 if (IsMemberAccess && ExpTy->isPointerType()) { 2204 // If ivar is a structure pointer, assigning to field of 2205 // this struct follows gcc's behavior and makes it a non-ivar 2206 // writer-barrier conservatively. 2207 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2208 if (ExpTy->isRecordType()) { 2209 LV.setObjCIvar(false); 2210 return; 2211 } 2212 } 2213 LV.setObjCIvar(true); 2214 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2215 LV.setBaseIvarExp(Exp->getBase()); 2216 LV.setObjCArray(E->getType()->isArrayType()); 2217 return; 2218 } 2219 2220 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2221 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2222 if (VD->hasGlobalStorage()) { 2223 LV.setGlobalObjCRef(true); 2224 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2225 } 2226 } 2227 LV.setObjCArray(E->getType()->isArrayType()); 2228 return; 2229 } 2230 2231 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2232 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2233 return; 2234 } 2235 2236 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2237 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2238 if (LV.isObjCIvar()) { 2239 // If cast is to a structure pointer, follow gcc's behavior and make it 2240 // a non-ivar write-barrier. 2241 QualType ExpTy = E->getType(); 2242 if (ExpTy->isPointerType()) 2243 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2244 if (ExpTy->isRecordType()) 2245 LV.setObjCIvar(false); 2246 } 2247 return; 2248 } 2249 2250 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2251 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2252 return; 2253 } 2254 2255 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2256 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2257 return; 2258 } 2259 2260 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2261 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2262 return; 2263 } 2264 2265 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2266 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2267 return; 2268 } 2269 2270 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2271 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2272 if (LV.isObjCIvar() && !LV.isObjCArray()) 2273 // Using array syntax to assigning to what an ivar points to is not 2274 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2275 LV.setObjCIvar(false); 2276 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2277 // Using array syntax to assigning to what global points to is not 2278 // same as assigning to the global itself. {id *G;} G[i] = 0; 2279 LV.setGlobalObjCRef(false); 2280 return; 2281 } 2282 2283 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2284 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2285 // We don't know if member is an 'ivar', but this flag is looked at 2286 // only in the context of LV.isObjCIvar(). 2287 LV.setObjCArray(E->getType()->isArrayType()); 2288 return; 2289 } 2290 } 2291 2292 static llvm::Value * 2293 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2294 llvm::Value *V, llvm::Type *IRType, 2295 StringRef Name = StringRef()) { 2296 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2297 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2298 } 2299 2300 static LValue EmitThreadPrivateVarDeclLValue( 2301 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2302 llvm::Type *RealVarTy, SourceLocation Loc) { 2303 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2304 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2305 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2306 } 2307 2308 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2309 const VarDecl *VD, QualType T) { 2310 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2311 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2312 // Return an invalid address if variable is MT_To and unified 2313 // memory is not enabled. For all other cases: MT_Link and 2314 // MT_To with unified memory, return a valid address. 2315 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2316 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2317 return Address::invalid(); 2318 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2319 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2320 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2321 "Expected link clause OR to clause with unified memory enabled."); 2322 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2323 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2324 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2325 } 2326 2327 Address 2328 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2329 LValueBaseInfo *PointeeBaseInfo, 2330 TBAAAccessInfo *PointeeTBAAInfo) { 2331 llvm::LoadInst *Load = 2332 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2333 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2334 2335 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2336 PointeeBaseInfo, PointeeTBAAInfo, 2337 /* forPointeeType= */ true); 2338 return Address(Load, Align); 2339 } 2340 2341 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2342 LValueBaseInfo PointeeBaseInfo; 2343 TBAAAccessInfo PointeeTBAAInfo; 2344 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2345 &PointeeTBAAInfo); 2346 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2347 PointeeBaseInfo, PointeeTBAAInfo); 2348 } 2349 2350 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2351 const PointerType *PtrTy, 2352 LValueBaseInfo *BaseInfo, 2353 TBAAAccessInfo *TBAAInfo) { 2354 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2355 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2356 BaseInfo, TBAAInfo, 2357 /*forPointeeType=*/true)); 2358 } 2359 2360 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2361 const PointerType *PtrTy) { 2362 LValueBaseInfo BaseInfo; 2363 TBAAAccessInfo TBAAInfo; 2364 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2365 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2366 } 2367 2368 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2369 const Expr *E, const VarDecl *VD) { 2370 QualType T = E->getType(); 2371 2372 // If it's thread_local, emit a call to its wrapper function instead. 2373 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2374 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2375 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2376 // Check if the variable is marked as declare target with link clause in 2377 // device codegen. 2378 if (CGF.getLangOpts().OpenMPIsDevice) { 2379 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2380 if (Addr.isValid()) 2381 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2382 } 2383 2384 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2385 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2386 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2387 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2388 Address Addr(V, Alignment); 2389 // Emit reference to the private copy of the variable if it is an OpenMP 2390 // threadprivate variable. 2391 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2392 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2393 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2394 E->getExprLoc()); 2395 } 2396 LValue LV = VD->getType()->isReferenceType() ? 2397 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2398 AlignmentSource::Decl) : 2399 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2400 setObjCGCLValueClass(CGF.getContext(), E, LV); 2401 return LV; 2402 } 2403 2404 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2405 const FunctionDecl *FD) { 2406 if (FD->hasAttr<WeakRefAttr>()) { 2407 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2408 return aliasee.getPointer(); 2409 } 2410 2411 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2412 if (!FD->hasPrototype()) { 2413 if (const FunctionProtoType *Proto = 2414 FD->getType()->getAs<FunctionProtoType>()) { 2415 // Ugly case: for a K&R-style definition, the type of the definition 2416 // isn't the same as the type of a use. Correct for this with a 2417 // bitcast. 2418 QualType NoProtoType = 2419 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2420 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2421 V = llvm::ConstantExpr::getBitCast(V, 2422 CGM.getTypes().ConvertType(NoProtoType)); 2423 } 2424 } 2425 return V; 2426 } 2427 2428 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2429 const Expr *E, const FunctionDecl *FD) { 2430 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2431 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2432 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2433 AlignmentSource::Decl); 2434 } 2435 2436 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2437 llvm::Value *ThisValue) { 2438 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2439 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2440 return CGF.EmitLValueForField(LV, FD); 2441 } 2442 2443 /// Named Registers are named metadata pointing to the register name 2444 /// which will be read from/written to as an argument to the intrinsic 2445 /// @llvm.read/write_register. 2446 /// So far, only the name is being passed down, but other options such as 2447 /// register type, allocation type or even optimization options could be 2448 /// passed down via the metadata node. 2449 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2450 SmallString<64> Name("llvm.named.register."); 2451 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2452 assert(Asm->getLabel().size() < 64-Name.size() && 2453 "Register name too big"); 2454 Name.append(Asm->getLabel()); 2455 llvm::NamedMDNode *M = 2456 CGM.getModule().getOrInsertNamedMetadata(Name); 2457 if (M->getNumOperands() == 0) { 2458 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2459 Asm->getLabel()); 2460 llvm::Metadata *Ops[] = {Str}; 2461 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2462 } 2463 2464 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2465 2466 llvm::Value *Ptr = 2467 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2468 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2469 } 2470 2471 /// Determine whether we can emit a reference to \p VD from the current 2472 /// context, despite not necessarily having seen an odr-use of the variable in 2473 /// this context. 2474 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2475 const DeclRefExpr *E, 2476 const VarDecl *VD, 2477 bool IsConstant) { 2478 // For a variable declared in an enclosing scope, do not emit a spurious 2479 // reference even if we have a capture, as that will emit an unwarranted 2480 // reference to our capture state, and will likely generate worse code than 2481 // emitting a local copy. 2482 if (E->refersToEnclosingVariableOrCapture()) 2483 return false; 2484 2485 // For a local declaration declared in this function, we can always reference 2486 // it even if we don't have an odr-use. 2487 if (VD->hasLocalStorage()) { 2488 return VD->getDeclContext() == 2489 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2490 } 2491 2492 // For a global declaration, we can emit a reference to it if we know 2493 // for sure that we are able to emit a definition of it. 2494 VD = VD->getDefinition(CGF.getContext()); 2495 if (!VD) 2496 return false; 2497 2498 // Don't emit a spurious reference if it might be to a variable that only 2499 // exists on a different device / target. 2500 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2501 // cross-target reference. 2502 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2503 CGF.getLangOpts().OpenCL) { 2504 return false; 2505 } 2506 2507 // We can emit a spurious reference only if the linkage implies that we'll 2508 // be emitting a non-interposable symbol that will be retained until link 2509 // time. 2510 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2511 case llvm::GlobalValue::ExternalLinkage: 2512 case llvm::GlobalValue::LinkOnceODRLinkage: 2513 case llvm::GlobalValue::WeakODRLinkage: 2514 case llvm::GlobalValue::InternalLinkage: 2515 case llvm::GlobalValue::PrivateLinkage: 2516 return true; 2517 default: 2518 return false; 2519 } 2520 } 2521 2522 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2523 const NamedDecl *ND = E->getDecl(); 2524 QualType T = E->getType(); 2525 2526 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2527 "should not emit an unevaluated operand"); 2528 2529 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2530 // Global Named registers access via intrinsics only 2531 if (VD->getStorageClass() == SC_Register && 2532 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2533 return EmitGlobalNamedRegister(VD, CGM); 2534 2535 // If this DeclRefExpr does not constitute an odr-use of the variable, 2536 // we're not permitted to emit a reference to it in general, and it might 2537 // not be captured if capture would be necessary for a use. Emit the 2538 // constant value directly instead. 2539 if (E->isNonOdrUse() == NOUR_Constant && 2540 (VD->getType()->isReferenceType() || 2541 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2542 VD->getAnyInitializer(VD); 2543 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2544 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2545 assert(Val && "failed to emit constant expression"); 2546 2547 Address Addr = Address::invalid(); 2548 if (!VD->getType()->isReferenceType()) { 2549 // Spill the constant value to a global. 2550 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2551 getContext().getDeclAlign(VD)); 2552 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2553 auto *PTy = llvm::PointerType::get( 2554 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2555 if (PTy != Addr.getType()) 2556 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); 2557 } else { 2558 // Should we be using the alignment of the constant pointer we emitted? 2559 CharUnits Alignment = 2560 getNaturalTypeAlignment(E->getType(), 2561 /* BaseInfo= */ nullptr, 2562 /* TBAAInfo= */ nullptr, 2563 /* forPointeeType= */ true); 2564 Addr = Address(Val, Alignment); 2565 } 2566 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2567 } 2568 2569 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2570 2571 // Check for captured variables. 2572 if (E->refersToEnclosingVariableOrCapture()) { 2573 VD = VD->getCanonicalDecl(); 2574 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2575 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2576 if (CapturedStmtInfo) { 2577 auto I = LocalDeclMap.find(VD); 2578 if (I != LocalDeclMap.end()) { 2579 LValue CapLVal; 2580 if (VD->getType()->isReferenceType()) 2581 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2582 AlignmentSource::Decl); 2583 else 2584 CapLVal = MakeAddrLValue(I->second, T); 2585 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2586 // in simd context. 2587 if (getLangOpts().OpenMP && 2588 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2589 CapLVal.setNontemporal(/*Value=*/true); 2590 return CapLVal; 2591 } 2592 LValue CapLVal = 2593 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2594 CapturedStmtInfo->getContextValue()); 2595 CapLVal = MakeAddrLValue( 2596 Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)), 2597 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2598 CapLVal.getTBAAInfo()); 2599 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2600 // in simd context. 2601 if (getLangOpts().OpenMP && 2602 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2603 CapLVal.setNontemporal(/*Value=*/true); 2604 return CapLVal; 2605 } 2606 2607 assert(isa<BlockDecl>(CurCodeDecl)); 2608 Address addr = GetAddrOfBlockDecl(VD); 2609 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2610 } 2611 } 2612 2613 // FIXME: We should be able to assert this for FunctionDecls as well! 2614 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2615 // those with a valid source location. 2616 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2617 !E->getLocation().isValid()) && 2618 "Should not use decl without marking it used!"); 2619 2620 if (ND->hasAttr<WeakRefAttr>()) { 2621 const auto *VD = cast<ValueDecl>(ND); 2622 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2623 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2624 } 2625 2626 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2627 // Check if this is a global variable. 2628 if (VD->hasLinkage() || VD->isStaticDataMember()) 2629 return EmitGlobalVarDeclLValue(*this, E, VD); 2630 2631 Address addr = Address::invalid(); 2632 2633 // The variable should generally be present in the local decl map. 2634 auto iter = LocalDeclMap.find(VD); 2635 if (iter != LocalDeclMap.end()) { 2636 addr = iter->second; 2637 2638 // Otherwise, it might be static local we haven't emitted yet for 2639 // some reason; most likely, because it's in an outer function. 2640 } else if (VD->isStaticLocal()) { 2641 addr = Address(CGM.getOrCreateStaticVarDecl( 2642 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)), 2643 getContext().getDeclAlign(VD)); 2644 2645 // No other cases for now. 2646 } else { 2647 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2648 } 2649 2650 2651 // Check for OpenMP threadprivate variables. 2652 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2653 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2654 return EmitThreadPrivateVarDeclLValue( 2655 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2656 E->getExprLoc()); 2657 } 2658 2659 // Drill into block byref variables. 2660 bool isBlockByref = VD->isEscapingByref(); 2661 if (isBlockByref) { 2662 addr = emitBlockByrefAddress(addr, VD); 2663 } 2664 2665 // Drill into reference types. 2666 LValue LV = VD->getType()->isReferenceType() ? 2667 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2668 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2669 2670 bool isLocalStorage = VD->hasLocalStorage(); 2671 2672 bool NonGCable = isLocalStorage && 2673 !VD->getType()->isReferenceType() && 2674 !isBlockByref; 2675 if (NonGCable) { 2676 LV.getQuals().removeObjCGCAttr(); 2677 LV.setNonGC(true); 2678 } 2679 2680 bool isImpreciseLifetime = 2681 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2682 if (isImpreciseLifetime) 2683 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2684 setObjCGCLValueClass(getContext(), E, LV); 2685 return LV; 2686 } 2687 2688 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2689 return EmitFunctionDeclLValue(*this, E, FD); 2690 2691 // FIXME: While we're emitting a binding from an enclosing scope, all other 2692 // DeclRefExprs we see should be implicitly treated as if they also refer to 2693 // an enclosing scope. 2694 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2695 return EmitLValue(BD->getBinding()); 2696 2697 llvm_unreachable("Unhandled DeclRefExpr"); 2698 } 2699 2700 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2701 // __extension__ doesn't affect lvalue-ness. 2702 if (E->getOpcode() == UO_Extension) 2703 return EmitLValue(E->getSubExpr()); 2704 2705 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2706 switch (E->getOpcode()) { 2707 default: llvm_unreachable("Unknown unary operator lvalue!"); 2708 case UO_Deref: { 2709 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2710 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2711 2712 LValueBaseInfo BaseInfo; 2713 TBAAAccessInfo TBAAInfo; 2714 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2715 &TBAAInfo); 2716 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2717 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2718 2719 // We should not generate __weak write barrier on indirect reference 2720 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2721 // But, we continue to generate __strong write barrier on indirect write 2722 // into a pointer to object. 2723 if (getLangOpts().ObjC && 2724 getLangOpts().getGC() != LangOptions::NonGC && 2725 LV.isObjCWeak()) 2726 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2727 return LV; 2728 } 2729 case UO_Real: 2730 case UO_Imag: { 2731 LValue LV = EmitLValue(E->getSubExpr()); 2732 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2733 2734 // __real is valid on scalars. This is a faster way of testing that. 2735 // __imag can only produce an rvalue on scalars. 2736 if (E->getOpcode() == UO_Real && 2737 !LV.getAddress(*this).getElementType()->isStructTy()) { 2738 assert(E->getSubExpr()->getType()->isArithmeticType()); 2739 return LV; 2740 } 2741 2742 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2743 2744 Address Component = 2745 (E->getOpcode() == UO_Real 2746 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2747 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2748 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2749 CGM.getTBAAInfoForSubobject(LV, T)); 2750 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2751 return ElemLV; 2752 } 2753 case UO_PreInc: 2754 case UO_PreDec: { 2755 LValue LV = EmitLValue(E->getSubExpr()); 2756 bool isInc = E->getOpcode() == UO_PreInc; 2757 2758 if (E->getType()->isAnyComplexType()) 2759 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2760 else 2761 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2762 return LV; 2763 } 2764 } 2765 } 2766 2767 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2768 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2769 E->getType(), AlignmentSource::Decl); 2770 } 2771 2772 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2773 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2774 E->getType(), AlignmentSource::Decl); 2775 } 2776 2777 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2778 auto SL = E->getFunctionName(); 2779 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2780 StringRef FnName = CurFn->getName(); 2781 if (FnName.startswith("\01")) 2782 FnName = FnName.substr(1); 2783 StringRef NameItems[] = { 2784 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2785 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2786 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2787 std::string Name = SL->getString(); 2788 if (!Name.empty()) { 2789 unsigned Discriminator = 2790 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2791 if (Discriminator) 2792 Name += "_" + Twine(Discriminator + 1).str(); 2793 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2794 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2795 } else { 2796 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2797 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2798 } 2799 } 2800 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2801 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2802 } 2803 2804 /// Emit a type description suitable for use by a runtime sanitizer library. The 2805 /// format of a type descriptor is 2806 /// 2807 /// \code 2808 /// { i16 TypeKind, i16 TypeInfo } 2809 /// \endcode 2810 /// 2811 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2812 /// integer, 1 for a floating point value, and -1 for anything else. 2813 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2814 // Only emit each type's descriptor once. 2815 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2816 return C; 2817 2818 uint16_t TypeKind = -1; 2819 uint16_t TypeInfo = 0; 2820 2821 if (T->isIntegerType()) { 2822 TypeKind = 0; 2823 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2824 (T->isSignedIntegerType() ? 1 : 0); 2825 } else if (T->isFloatingType()) { 2826 TypeKind = 1; 2827 TypeInfo = getContext().getTypeSize(T); 2828 } 2829 2830 // Format the type name as if for a diagnostic, including quotes and 2831 // optionally an 'aka'. 2832 SmallString<32> Buffer; 2833 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2834 (intptr_t)T.getAsOpaquePtr(), 2835 StringRef(), StringRef(), None, Buffer, 2836 None); 2837 2838 llvm::Constant *Components[] = { 2839 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2840 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2841 }; 2842 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2843 2844 auto *GV = new llvm::GlobalVariable( 2845 CGM.getModule(), Descriptor->getType(), 2846 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2847 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2848 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2849 2850 // Remember the descriptor for this type. 2851 CGM.setTypeDescriptorInMap(T, GV); 2852 2853 return GV; 2854 } 2855 2856 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2857 llvm::Type *TargetTy = IntPtrTy; 2858 2859 if (V->getType() == TargetTy) 2860 return V; 2861 2862 // Floating-point types which fit into intptr_t are bitcast to integers 2863 // and then passed directly (after zero-extension, if necessary). 2864 if (V->getType()->isFloatingPointTy()) { 2865 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2866 if (Bits <= TargetTy->getIntegerBitWidth()) 2867 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2868 Bits)); 2869 } 2870 2871 // Integers which fit in intptr_t are zero-extended and passed directly. 2872 if (V->getType()->isIntegerTy() && 2873 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2874 return Builder.CreateZExt(V, TargetTy); 2875 2876 // Pointers are passed directly, everything else is passed by address. 2877 if (!V->getType()->isPointerTy()) { 2878 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2879 Builder.CreateStore(V, Ptr); 2880 V = Ptr.getPointer(); 2881 } 2882 return Builder.CreatePtrToInt(V, TargetTy); 2883 } 2884 2885 /// Emit a representation of a SourceLocation for passing to a handler 2886 /// in a sanitizer runtime library. The format for this data is: 2887 /// \code 2888 /// struct SourceLocation { 2889 /// const char *Filename; 2890 /// int32_t Line, Column; 2891 /// }; 2892 /// \endcode 2893 /// For an invalid SourceLocation, the Filename pointer is null. 2894 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2895 llvm::Constant *Filename; 2896 int Line, Column; 2897 2898 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2899 if (PLoc.isValid()) { 2900 StringRef FilenameString = PLoc.getFilename(); 2901 2902 int PathComponentsToStrip = 2903 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2904 if (PathComponentsToStrip < 0) { 2905 assert(PathComponentsToStrip != INT_MIN); 2906 int PathComponentsToKeep = -PathComponentsToStrip; 2907 auto I = llvm::sys::path::rbegin(FilenameString); 2908 auto E = llvm::sys::path::rend(FilenameString); 2909 while (I != E && --PathComponentsToKeep) 2910 ++I; 2911 2912 FilenameString = FilenameString.substr(I - E); 2913 } else if (PathComponentsToStrip > 0) { 2914 auto I = llvm::sys::path::begin(FilenameString); 2915 auto E = llvm::sys::path::end(FilenameString); 2916 while (I != E && PathComponentsToStrip--) 2917 ++I; 2918 2919 if (I != E) 2920 FilenameString = 2921 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2922 else 2923 FilenameString = llvm::sys::path::filename(FilenameString); 2924 } 2925 2926 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2927 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2928 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2929 Filename = FilenameGV.getPointer(); 2930 Line = PLoc.getLine(); 2931 Column = PLoc.getColumn(); 2932 } else { 2933 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2934 Line = Column = 0; 2935 } 2936 2937 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2938 Builder.getInt32(Column)}; 2939 2940 return llvm::ConstantStruct::getAnon(Data); 2941 } 2942 2943 namespace { 2944 /// Specify under what conditions this check can be recovered 2945 enum class CheckRecoverableKind { 2946 /// Always terminate program execution if this check fails. 2947 Unrecoverable, 2948 /// Check supports recovering, runtime has both fatal (noreturn) and 2949 /// non-fatal handlers for this check. 2950 Recoverable, 2951 /// Runtime conditionally aborts, always need to support recovery. 2952 AlwaysRecoverable 2953 }; 2954 } 2955 2956 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2957 assert(Kind.countPopulation() == 1); 2958 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 2959 return CheckRecoverableKind::AlwaysRecoverable; 2960 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 2961 return CheckRecoverableKind::Unrecoverable; 2962 else 2963 return CheckRecoverableKind::Recoverable; 2964 } 2965 2966 namespace { 2967 struct SanitizerHandlerInfo { 2968 char const *const Name; 2969 unsigned Version; 2970 }; 2971 } 2972 2973 const SanitizerHandlerInfo SanitizerHandlers[] = { 2974 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2975 LIST_SANITIZER_CHECKS 2976 #undef SANITIZER_CHECK 2977 }; 2978 2979 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2980 llvm::FunctionType *FnType, 2981 ArrayRef<llvm::Value *> FnArgs, 2982 SanitizerHandler CheckHandler, 2983 CheckRecoverableKind RecoverKind, bool IsFatal, 2984 llvm::BasicBlock *ContBB) { 2985 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2986 Optional<ApplyDebugLocation> DL; 2987 if (!CGF.Builder.getCurrentDebugLocation()) { 2988 // Ensure that the call has at least an artificial debug location. 2989 DL.emplace(CGF, SourceLocation()); 2990 } 2991 bool NeedsAbortSuffix = 2992 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2993 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2994 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2995 const StringRef CheckName = CheckInfo.Name; 2996 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2997 if (CheckInfo.Version && !MinimalRuntime) 2998 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2999 if (MinimalRuntime) 3000 FnName += "_minimal"; 3001 if (NeedsAbortSuffix) 3002 FnName += "_abort"; 3003 bool MayReturn = 3004 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3005 3006 llvm::AttrBuilder B; 3007 if (!MayReturn) { 3008 B.addAttribute(llvm::Attribute::NoReturn) 3009 .addAttribute(llvm::Attribute::NoUnwind); 3010 } 3011 B.addAttribute(llvm::Attribute::UWTable); 3012 3013 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3014 FnType, FnName, 3015 llvm::AttributeList::get(CGF.getLLVMContext(), 3016 llvm::AttributeList::FunctionIndex, B), 3017 /*Local=*/true); 3018 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3019 if (!MayReturn) { 3020 HandlerCall->setDoesNotReturn(); 3021 CGF.Builder.CreateUnreachable(); 3022 } else { 3023 CGF.Builder.CreateBr(ContBB); 3024 } 3025 } 3026 3027 void CodeGenFunction::EmitCheck( 3028 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3029 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3030 ArrayRef<llvm::Value *> DynamicArgs) { 3031 assert(IsSanitizerScope); 3032 assert(Checked.size() > 0); 3033 assert(CheckHandler >= 0 && 3034 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3035 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3036 3037 llvm::Value *FatalCond = nullptr; 3038 llvm::Value *RecoverableCond = nullptr; 3039 llvm::Value *TrapCond = nullptr; 3040 for (int i = 0, n = Checked.size(); i < n; ++i) { 3041 llvm::Value *Check = Checked[i].first; 3042 // -fsanitize-trap= overrides -fsanitize-recover=. 3043 llvm::Value *&Cond = 3044 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3045 ? TrapCond 3046 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3047 ? RecoverableCond 3048 : FatalCond; 3049 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3050 } 3051 3052 if (TrapCond) 3053 EmitTrapCheck(TrapCond); 3054 if (!FatalCond && !RecoverableCond) 3055 return; 3056 3057 llvm::Value *JointCond; 3058 if (FatalCond && RecoverableCond) 3059 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3060 else 3061 JointCond = FatalCond ? FatalCond : RecoverableCond; 3062 assert(JointCond); 3063 3064 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3065 assert(SanOpts.has(Checked[0].second)); 3066 #ifndef NDEBUG 3067 for (int i = 1, n = Checked.size(); i < n; ++i) { 3068 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3069 "All recoverable kinds in a single check must be same!"); 3070 assert(SanOpts.has(Checked[i].second)); 3071 } 3072 #endif 3073 3074 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3075 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3076 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3077 // Give hint that we very much don't expect to execute the handler 3078 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3079 llvm::MDBuilder MDHelper(getLLVMContext()); 3080 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3081 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3082 EmitBlock(Handlers); 3083 3084 // Handler functions take an i8* pointing to the (handler-specific) static 3085 // information block, followed by a sequence of intptr_t arguments 3086 // representing operand values. 3087 SmallVector<llvm::Value *, 4> Args; 3088 SmallVector<llvm::Type *, 4> ArgTypes; 3089 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3090 Args.reserve(DynamicArgs.size() + 1); 3091 ArgTypes.reserve(DynamicArgs.size() + 1); 3092 3093 // Emit handler arguments and create handler function type. 3094 if (!StaticArgs.empty()) { 3095 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3096 auto *InfoPtr = 3097 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3098 llvm::GlobalVariable::PrivateLinkage, Info); 3099 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3100 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3101 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3102 ArgTypes.push_back(Int8PtrTy); 3103 } 3104 3105 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3106 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3107 ArgTypes.push_back(IntPtrTy); 3108 } 3109 } 3110 3111 llvm::FunctionType *FnType = 3112 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3113 3114 if (!FatalCond || !RecoverableCond) { 3115 // Simple case: we need to generate a single handler call, either 3116 // fatal, or non-fatal. 3117 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3118 (FatalCond != nullptr), Cont); 3119 } else { 3120 // Emit two handler calls: first one for set of unrecoverable checks, 3121 // another one for recoverable. 3122 llvm::BasicBlock *NonFatalHandlerBB = 3123 createBasicBlock("non_fatal." + CheckName); 3124 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3125 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3126 EmitBlock(FatalHandlerBB); 3127 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3128 NonFatalHandlerBB); 3129 EmitBlock(NonFatalHandlerBB); 3130 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3131 Cont); 3132 } 3133 3134 EmitBlock(Cont); 3135 } 3136 3137 void CodeGenFunction::EmitCfiSlowPathCheck( 3138 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3139 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3140 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3141 3142 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3143 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3144 3145 llvm::MDBuilder MDHelper(getLLVMContext()); 3146 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3147 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3148 3149 EmitBlock(CheckBB); 3150 3151 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3152 3153 llvm::CallInst *CheckCall; 3154 llvm::FunctionCallee SlowPathFn; 3155 if (WithDiag) { 3156 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3157 auto *InfoPtr = 3158 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3159 llvm::GlobalVariable::PrivateLinkage, Info); 3160 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3161 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3162 3163 SlowPathFn = CGM.getModule().getOrInsertFunction( 3164 "__cfi_slowpath_diag", 3165 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3166 false)); 3167 CheckCall = Builder.CreateCall( 3168 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3169 } else { 3170 SlowPathFn = CGM.getModule().getOrInsertFunction( 3171 "__cfi_slowpath", 3172 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3173 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3174 } 3175 3176 CGM.setDSOLocal( 3177 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3178 CheckCall->setDoesNotThrow(); 3179 3180 EmitBlock(Cont); 3181 } 3182 3183 // Emit a stub for __cfi_check function so that the linker knows about this 3184 // symbol in LTO mode. 3185 void CodeGenFunction::EmitCfiCheckStub() { 3186 llvm::Module *M = &CGM.getModule(); 3187 auto &Ctx = M->getContext(); 3188 llvm::Function *F = llvm::Function::Create( 3189 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3190 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3191 CGM.setDSOLocal(F); 3192 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3193 // FIXME: consider emitting an intrinsic call like 3194 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3195 // which can be lowered in CrossDSOCFI pass to the actual contents of 3196 // __cfi_check. This would allow inlining of __cfi_check calls. 3197 llvm::CallInst::Create( 3198 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3199 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3200 } 3201 3202 // This function is basically a switch over the CFI failure kind, which is 3203 // extracted from CFICheckFailData (1st function argument). Each case is either 3204 // llvm.trap or a call to one of the two runtime handlers, based on 3205 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3206 // failure kind) traps, but this should really never happen. CFICheckFailData 3207 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3208 // check kind; in this case __cfi_check_fail traps as well. 3209 void CodeGenFunction::EmitCfiCheckFail() { 3210 SanitizerScope SanScope(this); 3211 FunctionArgList Args; 3212 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3213 ImplicitParamDecl::Other); 3214 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3215 ImplicitParamDecl::Other); 3216 Args.push_back(&ArgData); 3217 Args.push_back(&ArgAddr); 3218 3219 const CGFunctionInfo &FI = 3220 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3221 3222 llvm::Function *F = llvm::Function::Create( 3223 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3224 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3225 3226 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F); 3227 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3228 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3229 3230 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3231 SourceLocation()); 3232 3233 // This function should not be affected by blacklist. This function does 3234 // not have a source location, but "src:*" would still apply. Revert any 3235 // changes to SanOpts made in StartFunction. 3236 SanOpts = CGM.getLangOpts().Sanitize; 3237 3238 llvm::Value *Data = 3239 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3240 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3241 llvm::Value *Addr = 3242 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3243 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3244 3245 // Data == nullptr means the calling module has trap behaviour for this check. 3246 llvm::Value *DataIsNotNullPtr = 3247 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3248 EmitTrapCheck(DataIsNotNullPtr); 3249 3250 llvm::StructType *SourceLocationTy = 3251 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3252 llvm::StructType *CfiCheckFailDataTy = 3253 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3254 3255 llvm::Value *V = Builder.CreateConstGEP2_32( 3256 CfiCheckFailDataTy, 3257 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3258 0); 3259 Address CheckKindAddr(V, getIntAlign()); 3260 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3261 3262 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3263 CGM.getLLVMContext(), 3264 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3265 llvm::Value *ValidVtable = Builder.CreateZExt( 3266 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3267 {Addr, AllVtables}), 3268 IntPtrTy); 3269 3270 const std::pair<int, SanitizerMask> CheckKinds[] = { 3271 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3272 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3273 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3274 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3275 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3276 3277 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3278 for (auto CheckKindMaskPair : CheckKinds) { 3279 int Kind = CheckKindMaskPair.first; 3280 SanitizerMask Mask = CheckKindMaskPair.second; 3281 llvm::Value *Cond = 3282 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3283 if (CGM.getLangOpts().Sanitize.has(Mask)) 3284 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3285 {Data, Addr, ValidVtable}); 3286 else 3287 EmitTrapCheck(Cond); 3288 } 3289 3290 FinishFunction(); 3291 // The only reference to this function will be created during LTO link. 3292 // Make sure it survives until then. 3293 CGM.addUsedGlobal(F); 3294 } 3295 3296 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3297 if (SanOpts.has(SanitizerKind::Unreachable)) { 3298 SanitizerScope SanScope(this); 3299 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3300 SanitizerKind::Unreachable), 3301 SanitizerHandler::BuiltinUnreachable, 3302 EmitCheckSourceLocation(Loc), None); 3303 } 3304 Builder.CreateUnreachable(); 3305 } 3306 3307 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3308 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3309 3310 // If we're optimizing, collapse all calls to trap down to just one per 3311 // function to save on code size. 3312 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3313 TrapBB = createBasicBlock("trap"); 3314 Builder.CreateCondBr(Checked, Cont, TrapBB); 3315 EmitBlock(TrapBB); 3316 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3317 TrapCall->setDoesNotReturn(); 3318 TrapCall->setDoesNotThrow(); 3319 Builder.CreateUnreachable(); 3320 } else { 3321 Builder.CreateCondBr(Checked, Cont, TrapBB); 3322 } 3323 3324 EmitBlock(Cont); 3325 } 3326 3327 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3328 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3329 3330 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3331 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3332 CGM.getCodeGenOpts().TrapFuncName); 3333 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3334 } 3335 3336 return TrapCall; 3337 } 3338 3339 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3340 LValueBaseInfo *BaseInfo, 3341 TBAAAccessInfo *TBAAInfo) { 3342 assert(E->getType()->isArrayType() && 3343 "Array to pointer decay must have array source type!"); 3344 3345 // Expressions of array type can't be bitfields or vector elements. 3346 LValue LV = EmitLValue(E); 3347 Address Addr = LV.getAddress(*this); 3348 3349 // If the array type was an incomplete type, we need to make sure 3350 // the decay ends up being the right type. 3351 llvm::Type *NewTy = ConvertType(E->getType()); 3352 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3353 3354 // Note that VLA pointers are always decayed, so we don't need to do 3355 // anything here. 3356 if (!E->getType()->isVariableArrayType()) { 3357 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3358 "Expected pointer to array"); 3359 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3360 } 3361 3362 // The result of this decay conversion points to an array element within the 3363 // base lvalue. However, since TBAA currently does not support representing 3364 // accesses to elements of member arrays, we conservatively represent accesses 3365 // to the pointee object as if it had no any base lvalue specified. 3366 // TODO: Support TBAA for member arrays. 3367 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3368 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3369 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3370 3371 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3372 } 3373 3374 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3375 /// array to pointer, return the array subexpression. 3376 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3377 // If this isn't just an array->pointer decay, bail out. 3378 const auto *CE = dyn_cast<CastExpr>(E); 3379 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3380 return nullptr; 3381 3382 // If this is a decay from variable width array, bail out. 3383 const Expr *SubExpr = CE->getSubExpr(); 3384 if (SubExpr->getType()->isVariableArrayType()) 3385 return nullptr; 3386 3387 return SubExpr; 3388 } 3389 3390 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3391 llvm::Value *ptr, 3392 ArrayRef<llvm::Value*> indices, 3393 bool inbounds, 3394 bool signedIndices, 3395 SourceLocation loc, 3396 const llvm::Twine &name = "arrayidx") { 3397 if (inbounds) { 3398 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3399 CodeGenFunction::NotSubtraction, loc, 3400 name); 3401 } else { 3402 return CGF.Builder.CreateGEP(ptr, indices, name); 3403 } 3404 } 3405 3406 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3407 llvm::Value *idx, 3408 CharUnits eltSize) { 3409 // If we have a constant index, we can use the exact offset of the 3410 // element we're accessing. 3411 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3412 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3413 return arrayAlign.alignmentAtOffset(offset); 3414 3415 // Otherwise, use the worst-case alignment for any element. 3416 } else { 3417 return arrayAlign.alignmentOfArrayElement(eltSize); 3418 } 3419 } 3420 3421 static QualType getFixedSizeElementType(const ASTContext &ctx, 3422 const VariableArrayType *vla) { 3423 QualType eltType; 3424 do { 3425 eltType = vla->getElementType(); 3426 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3427 return eltType; 3428 } 3429 3430 /// Given an array base, check whether its member access belongs to a record 3431 /// with preserve_access_index attribute or not. 3432 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3433 if (!ArrayBase || !CGF.getDebugInfo()) 3434 return false; 3435 3436 // Only support base as either a MemberExpr or DeclRefExpr. 3437 // DeclRefExpr to cover cases like: 3438 // struct s { int a; int b[10]; }; 3439 // struct s *p; 3440 // p[1].a 3441 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3442 // p->b[5] is a MemberExpr example. 3443 const Expr *E = ArrayBase->IgnoreImpCasts(); 3444 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3445 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3446 3447 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3448 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3449 if (!VarDef) 3450 return false; 3451 3452 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3453 if (!PtrT) 3454 return false; 3455 3456 const auto *PointeeT = PtrT->getPointeeType() 3457 ->getUnqualifiedDesugaredType(); 3458 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3459 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3460 return false; 3461 } 3462 3463 return false; 3464 } 3465 3466 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3467 ArrayRef<llvm::Value *> indices, 3468 QualType eltType, bool inbounds, 3469 bool signedIndices, SourceLocation loc, 3470 QualType *arrayType = nullptr, 3471 const Expr *Base = nullptr, 3472 const llvm::Twine &name = "arrayidx") { 3473 // All the indices except that last must be zero. 3474 #ifndef NDEBUG 3475 for (auto idx : indices.drop_back()) 3476 assert(isa<llvm::ConstantInt>(idx) && 3477 cast<llvm::ConstantInt>(idx)->isZero()); 3478 #endif 3479 3480 // Determine the element size of the statically-sized base. This is 3481 // the thing that the indices are expressed in terms of. 3482 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3483 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3484 } 3485 3486 // We can use that to compute the best alignment of the element. 3487 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3488 CharUnits eltAlign = 3489 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3490 3491 llvm::Value *eltPtr; 3492 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3493 if (!LastIndex || 3494 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3495 eltPtr = emitArraySubscriptGEP( 3496 CGF, addr.getPointer(), indices, inbounds, signedIndices, 3497 loc, name); 3498 } else { 3499 // Remember the original array subscript for bpf target 3500 unsigned idx = LastIndex->getZExtValue(); 3501 llvm::DIType *DbgInfo = nullptr; 3502 if (arrayType) 3503 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3504 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3505 addr.getPointer(), 3506 indices.size() - 1, 3507 idx, DbgInfo); 3508 } 3509 3510 return Address(eltPtr, eltAlign); 3511 } 3512 3513 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3514 bool Accessed) { 3515 // The index must always be an integer, which is not an aggregate. Emit it 3516 // in lexical order (this complexity is, sadly, required by C++17). 3517 llvm::Value *IdxPre = 3518 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3519 bool SignedIndices = false; 3520 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3521 auto *Idx = IdxPre; 3522 if (E->getLHS() != E->getIdx()) { 3523 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3524 Idx = EmitScalarExpr(E->getIdx()); 3525 } 3526 3527 QualType IdxTy = E->getIdx()->getType(); 3528 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3529 SignedIndices |= IdxSigned; 3530 3531 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3532 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3533 3534 // Extend or truncate the index type to 32 or 64-bits. 3535 if (Promote && Idx->getType() != IntPtrTy) 3536 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3537 3538 return Idx; 3539 }; 3540 IdxPre = nullptr; 3541 3542 // If the base is a vector type, then we are forming a vector element lvalue 3543 // with this subscript. 3544 if (E->getBase()->getType()->isVectorType() && 3545 !isa<ExtVectorElementExpr>(E->getBase())) { 3546 // Emit the vector as an lvalue to get its address. 3547 LValue LHS = EmitLValue(E->getBase()); 3548 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3549 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3550 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3551 E->getBase()->getType(), LHS.getBaseInfo(), 3552 TBAAAccessInfo()); 3553 } 3554 3555 // All the other cases basically behave like simple offsetting. 3556 3557 // Handle the extvector case we ignored above. 3558 if (isa<ExtVectorElementExpr>(E->getBase())) { 3559 LValue LV = EmitLValue(E->getBase()); 3560 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3561 Address Addr = EmitExtVectorElementLValue(LV); 3562 3563 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3564 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3565 SignedIndices, E->getExprLoc()); 3566 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3567 CGM.getTBAAInfoForSubobject(LV, EltType)); 3568 } 3569 3570 LValueBaseInfo EltBaseInfo; 3571 TBAAAccessInfo EltTBAAInfo; 3572 Address Addr = Address::invalid(); 3573 if (const VariableArrayType *vla = 3574 getContext().getAsVariableArrayType(E->getType())) { 3575 // The base must be a pointer, which is not an aggregate. Emit 3576 // it. It needs to be emitted first in case it's what captures 3577 // the VLA bounds. 3578 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3579 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3580 3581 // The element count here is the total number of non-VLA elements. 3582 llvm::Value *numElements = getVLASize(vla).NumElts; 3583 3584 // Effectively, the multiply by the VLA size is part of the GEP. 3585 // GEP indexes are signed, and scaling an index isn't permitted to 3586 // signed-overflow, so we use the same semantics for our explicit 3587 // multiply. We suppress this if overflow is not undefined behavior. 3588 if (getLangOpts().isSignedOverflowDefined()) { 3589 Idx = Builder.CreateMul(Idx, numElements); 3590 } else { 3591 Idx = Builder.CreateNSWMul(Idx, numElements); 3592 } 3593 3594 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3595 !getLangOpts().isSignedOverflowDefined(), 3596 SignedIndices, E->getExprLoc()); 3597 3598 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3599 // Indexing over an interface, as in "NSString *P; P[4];" 3600 3601 // Emit the base pointer. 3602 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3603 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3604 3605 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3606 llvm::Value *InterfaceSizeVal = 3607 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3608 3609 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3610 3611 // We don't necessarily build correct LLVM struct types for ObjC 3612 // interfaces, so we can't rely on GEP to do this scaling 3613 // correctly, so we need to cast to i8*. FIXME: is this actually 3614 // true? A lot of other things in the fragile ABI would break... 3615 llvm::Type *OrigBaseTy = Addr.getType(); 3616 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3617 3618 // Do the GEP. 3619 CharUnits EltAlign = 3620 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3621 llvm::Value *EltPtr = 3622 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3623 SignedIndices, E->getExprLoc()); 3624 Addr = Address(EltPtr, EltAlign); 3625 3626 // Cast back. 3627 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3628 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3629 // If this is A[i] where A is an array, the frontend will have decayed the 3630 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3631 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3632 // "gep x, i" here. Emit one "gep A, 0, i". 3633 assert(Array->getType()->isArrayType() && 3634 "Array to pointer decay must have array source type!"); 3635 LValue ArrayLV; 3636 // For simple multidimensional array indexing, set the 'accessed' flag for 3637 // better bounds-checking of the base expression. 3638 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3639 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3640 else 3641 ArrayLV = EmitLValue(Array); 3642 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3643 3644 // Propagate the alignment from the array itself to the result. 3645 QualType arrayType = Array->getType(); 3646 Addr = emitArraySubscriptGEP( 3647 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3648 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3649 E->getExprLoc(), &arrayType, E->getBase()); 3650 EltBaseInfo = ArrayLV.getBaseInfo(); 3651 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3652 } else { 3653 // The base must be a pointer; emit it with an estimate of its alignment. 3654 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3655 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3656 QualType ptrType = E->getBase()->getType(); 3657 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3658 !getLangOpts().isSignedOverflowDefined(), 3659 SignedIndices, E->getExprLoc(), &ptrType, 3660 E->getBase()); 3661 } 3662 3663 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3664 3665 if (getLangOpts().ObjC && 3666 getLangOpts().getGC() != LangOptions::NonGC) { 3667 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3668 setObjCGCLValueClass(getContext(), E, LV); 3669 } 3670 return LV; 3671 } 3672 3673 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3674 LValueBaseInfo &BaseInfo, 3675 TBAAAccessInfo &TBAAInfo, 3676 QualType BaseTy, QualType ElTy, 3677 bool IsLowerBound) { 3678 LValue BaseLVal; 3679 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3680 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3681 if (BaseTy->isArrayType()) { 3682 Address Addr = BaseLVal.getAddress(CGF); 3683 BaseInfo = BaseLVal.getBaseInfo(); 3684 3685 // If the array type was an incomplete type, we need to make sure 3686 // the decay ends up being the right type. 3687 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3688 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3689 3690 // Note that VLA pointers are always decayed, so we don't need to do 3691 // anything here. 3692 if (!BaseTy->isVariableArrayType()) { 3693 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3694 "Expected pointer to array"); 3695 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3696 } 3697 3698 return CGF.Builder.CreateElementBitCast(Addr, 3699 CGF.ConvertTypeForMem(ElTy)); 3700 } 3701 LValueBaseInfo TypeBaseInfo; 3702 TBAAAccessInfo TypeTBAAInfo; 3703 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3704 &TypeTBAAInfo); 3705 BaseInfo.mergeForCast(TypeBaseInfo); 3706 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3707 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align); 3708 } 3709 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3710 } 3711 3712 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3713 bool IsLowerBound) { 3714 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3715 QualType ResultExprTy; 3716 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3717 ResultExprTy = AT->getElementType(); 3718 else 3719 ResultExprTy = BaseTy->getPointeeType(); 3720 llvm::Value *Idx = nullptr; 3721 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3722 // Requesting lower bound or upper bound, but without provided length and 3723 // without ':' symbol for the default length -> length = 1. 3724 // Idx = LowerBound ?: 0; 3725 if (auto *LowerBound = E->getLowerBound()) { 3726 Idx = Builder.CreateIntCast( 3727 EmitScalarExpr(LowerBound), IntPtrTy, 3728 LowerBound->getType()->hasSignedIntegerRepresentation()); 3729 } else 3730 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3731 } else { 3732 // Try to emit length or lower bound as constant. If this is possible, 1 3733 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3734 // IR (LB + Len) - 1. 3735 auto &C = CGM.getContext(); 3736 auto *Length = E->getLength(); 3737 llvm::APSInt ConstLength; 3738 if (Length) { 3739 // Idx = LowerBound + Length - 1; 3740 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3741 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3742 Length = nullptr; 3743 } 3744 auto *LowerBound = E->getLowerBound(); 3745 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3746 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3747 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3748 LowerBound = nullptr; 3749 } 3750 if (!Length) 3751 --ConstLength; 3752 else if (!LowerBound) 3753 --ConstLowerBound; 3754 3755 if (Length || LowerBound) { 3756 auto *LowerBoundVal = 3757 LowerBound 3758 ? Builder.CreateIntCast( 3759 EmitScalarExpr(LowerBound), IntPtrTy, 3760 LowerBound->getType()->hasSignedIntegerRepresentation()) 3761 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3762 auto *LengthVal = 3763 Length 3764 ? Builder.CreateIntCast( 3765 EmitScalarExpr(Length), IntPtrTy, 3766 Length->getType()->hasSignedIntegerRepresentation()) 3767 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3768 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3769 /*HasNUW=*/false, 3770 !getLangOpts().isSignedOverflowDefined()); 3771 if (Length && LowerBound) { 3772 Idx = Builder.CreateSub( 3773 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3774 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3775 } 3776 } else 3777 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3778 } else { 3779 // Idx = ArraySize - 1; 3780 QualType ArrayTy = BaseTy->isPointerType() 3781 ? E->getBase()->IgnoreParenImpCasts()->getType() 3782 : BaseTy; 3783 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3784 Length = VAT->getSizeExpr(); 3785 if (Length->isIntegerConstantExpr(ConstLength, C)) 3786 Length = nullptr; 3787 } else { 3788 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3789 ConstLength = CAT->getSize(); 3790 } 3791 if (Length) { 3792 auto *LengthVal = Builder.CreateIntCast( 3793 EmitScalarExpr(Length), IntPtrTy, 3794 Length->getType()->hasSignedIntegerRepresentation()); 3795 Idx = Builder.CreateSub( 3796 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3797 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3798 } else { 3799 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3800 --ConstLength; 3801 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3802 } 3803 } 3804 } 3805 assert(Idx); 3806 3807 Address EltPtr = Address::invalid(); 3808 LValueBaseInfo BaseInfo; 3809 TBAAAccessInfo TBAAInfo; 3810 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3811 // The base must be a pointer, which is not an aggregate. Emit 3812 // it. It needs to be emitted first in case it's what captures 3813 // the VLA bounds. 3814 Address Base = 3815 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3816 BaseTy, VLA->getElementType(), IsLowerBound); 3817 // The element count here is the total number of non-VLA elements. 3818 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3819 3820 // Effectively, the multiply by the VLA size is part of the GEP. 3821 // GEP indexes are signed, and scaling an index isn't permitted to 3822 // signed-overflow, so we use the same semantics for our explicit 3823 // multiply. We suppress this if overflow is not undefined behavior. 3824 if (getLangOpts().isSignedOverflowDefined()) 3825 Idx = Builder.CreateMul(Idx, NumElements); 3826 else 3827 Idx = Builder.CreateNSWMul(Idx, NumElements); 3828 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3829 !getLangOpts().isSignedOverflowDefined(), 3830 /*signedIndices=*/false, E->getExprLoc()); 3831 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3832 // If this is A[i] where A is an array, the frontend will have decayed the 3833 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3834 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3835 // "gep x, i" here. Emit one "gep A, 0, i". 3836 assert(Array->getType()->isArrayType() && 3837 "Array to pointer decay must have array source type!"); 3838 LValue ArrayLV; 3839 // For simple multidimensional array indexing, set the 'accessed' flag for 3840 // better bounds-checking of the base expression. 3841 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3842 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3843 else 3844 ArrayLV = EmitLValue(Array); 3845 3846 // Propagate the alignment from the array itself to the result. 3847 EltPtr = emitArraySubscriptGEP( 3848 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3849 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3850 /*signedIndices=*/false, E->getExprLoc()); 3851 BaseInfo = ArrayLV.getBaseInfo(); 3852 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3853 } else { 3854 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3855 TBAAInfo, BaseTy, ResultExprTy, 3856 IsLowerBound); 3857 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3858 !getLangOpts().isSignedOverflowDefined(), 3859 /*signedIndices=*/false, E->getExprLoc()); 3860 } 3861 3862 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3863 } 3864 3865 LValue CodeGenFunction:: 3866 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3867 // Emit the base vector as an l-value. 3868 LValue Base; 3869 3870 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3871 if (E->isArrow()) { 3872 // If it is a pointer to a vector, emit the address and form an lvalue with 3873 // it. 3874 LValueBaseInfo BaseInfo; 3875 TBAAAccessInfo TBAAInfo; 3876 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3877 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 3878 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3879 Base.getQuals().removeObjCGCAttr(); 3880 } else if (E->getBase()->isGLValue()) { 3881 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3882 // emit the base as an lvalue. 3883 assert(E->getBase()->getType()->isVectorType()); 3884 Base = EmitLValue(E->getBase()); 3885 } else { 3886 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3887 assert(E->getBase()->getType()->isVectorType() && 3888 "Result must be a vector"); 3889 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3890 3891 // Store the vector to memory (because LValue wants an address). 3892 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3893 Builder.CreateStore(Vec, VecMem); 3894 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3895 AlignmentSource::Decl); 3896 } 3897 3898 QualType type = 3899 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3900 3901 // Encode the element access list into a vector of unsigned indices. 3902 SmallVector<uint32_t, 4> Indices; 3903 E->getEncodedElementAccess(Indices); 3904 3905 if (Base.isSimple()) { 3906 llvm::Constant *CV = 3907 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3908 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 3909 Base.getBaseInfo(), TBAAAccessInfo()); 3910 } 3911 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3912 3913 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3914 SmallVector<llvm::Constant *, 4> CElts; 3915 3916 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3917 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3918 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3919 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3920 Base.getBaseInfo(), TBAAAccessInfo()); 3921 } 3922 3923 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3924 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3925 EmitIgnoredExpr(E->getBase()); 3926 return EmitDeclRefLValue(DRE); 3927 } 3928 3929 Expr *BaseExpr = E->getBase(); 3930 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3931 LValue BaseLV; 3932 if (E->isArrow()) { 3933 LValueBaseInfo BaseInfo; 3934 TBAAAccessInfo TBAAInfo; 3935 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3936 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3937 SanitizerSet SkippedChecks; 3938 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3939 if (IsBaseCXXThis) 3940 SkippedChecks.set(SanitizerKind::Alignment, true); 3941 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3942 SkippedChecks.set(SanitizerKind::Null, true); 3943 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3944 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3945 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3946 } else 3947 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3948 3949 NamedDecl *ND = E->getMemberDecl(); 3950 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3951 LValue LV = EmitLValueForField(BaseLV, Field); 3952 setObjCGCLValueClass(getContext(), E, LV); 3953 if (getLangOpts().OpenMP) { 3954 // If the member was explicitly marked as nontemporal, mark it as 3955 // nontemporal. If the base lvalue is marked as nontemporal, mark access 3956 // to children as nontemporal too. 3957 if ((IsWrappedCXXThis(BaseExpr) && 3958 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 3959 BaseLV.isNontemporal()) 3960 LV.setNontemporal(/*Value=*/true); 3961 } 3962 return LV; 3963 } 3964 3965 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3966 return EmitFunctionDeclLValue(*this, E, FD); 3967 3968 llvm_unreachable("Unhandled member declaration!"); 3969 } 3970 3971 /// Given that we are currently emitting a lambda, emit an l-value for 3972 /// one of its members. 3973 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3974 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3975 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3976 QualType LambdaTagType = 3977 getContext().getTagDeclType(Field->getParent()); 3978 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3979 return EmitLValueForField(LambdaLV, Field); 3980 } 3981 3982 /// Get the field index in the debug info. The debug info structure/union 3983 /// will ignore the unnamed bitfields. 3984 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 3985 unsigned FieldIndex) { 3986 unsigned I = 0, Skipped = 0; 3987 3988 for (auto F : Rec->getDefinition()->fields()) { 3989 if (I == FieldIndex) 3990 break; 3991 if (F->isUnnamedBitfield()) 3992 Skipped++; 3993 I++; 3994 } 3995 3996 return FieldIndex - Skipped; 3997 } 3998 3999 /// Get the address of a zero-sized field within a record. The resulting 4000 /// address doesn't necessarily have the right type. 4001 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4002 const FieldDecl *Field) { 4003 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4004 CGF.getContext().getFieldOffset(Field)); 4005 if (Offset.isZero()) 4006 return Base; 4007 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4008 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4009 } 4010 4011 /// Drill down to the storage of a field without walking into 4012 /// reference types. 4013 /// 4014 /// The resulting address doesn't necessarily have the right type. 4015 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4016 const FieldDecl *field) { 4017 if (field->isZeroSize(CGF.getContext())) 4018 return emitAddrOfZeroSizeField(CGF, base, field); 4019 4020 const RecordDecl *rec = field->getParent(); 4021 4022 unsigned idx = 4023 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4024 4025 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4026 } 4027 4028 static Address emitPreserveStructAccess(CodeGenFunction &CGF, Address base, 4029 const FieldDecl *field) { 4030 const RecordDecl *rec = field->getParent(); 4031 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateRecordType( 4032 CGF.getContext().getRecordType(rec), rec->getLocation()); 4033 4034 unsigned idx = 4035 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4036 4037 return CGF.Builder.CreatePreserveStructAccessIndex( 4038 base, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4039 } 4040 4041 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4042 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4043 if (!RD) 4044 return false; 4045 4046 if (RD->isDynamicClass()) 4047 return true; 4048 4049 for (const auto &Base : RD->bases()) 4050 if (hasAnyVptr(Base.getType(), Context)) 4051 return true; 4052 4053 for (const FieldDecl *Field : RD->fields()) 4054 if (hasAnyVptr(Field->getType(), Context)) 4055 return true; 4056 4057 return false; 4058 } 4059 4060 // AAPCS requires volatile bitfield accesses to be performed using the 4061 // natural alignment / width of the bitfield declarative type, if that 4062 // won't cause overlap over a non-bitfield member nor access outside the 4063 // the data structure. 4064 bool CodeGenFunction::AdjustAAPCSBitfieldLValue(Address &Base, 4065 CGBitFieldInfo &Info, 4066 const FieldDecl *Field, 4067 const QualType FieldType, 4068 const CGRecordLayout &RL) { 4069 llvm::Type *ResLTy = ConvertTypeForMem(FieldType); 4070 // CGRecordLowering::setBitFieldInfo() pre-adjusts the bitfield offsets for 4071 // big-endian targets, but it assumes a container of width Info.StorageSize. 4072 // Since AAPCS uses a different container size (width of the type), we first 4073 // undo that calculation here and redo it once the bitfield offset within the 4074 // new container is calculated 4075 const bool BE = CGM.getTypes().getDataLayout().isBigEndian(); 4076 const unsigned OldOffset = 4077 BE ? Info.StorageSize - (Info.Offset + Info.Size) : Info.Offset; 4078 // Offset to the bitfield from the beginning of the struct 4079 const unsigned AbsoluteOffset = 4080 getContext().toBits(Info.StorageOffset) + OldOffset; 4081 4082 // Container size is the width of the bitfield type 4083 const unsigned ContainerSize = ResLTy->getPrimitiveSizeInBits(); 4084 // Nothing to do if the access uses the desired 4085 // container width and is naturally aligned 4086 if (Info.StorageSize == ContainerSize && (OldOffset % ContainerSize == 0)) 4087 return false; 4088 4089 // Offset within the container 4090 unsigned MemberOffset = AbsoluteOffset & (ContainerSize - 1); 4091 4092 // Bail out if an aligned load of the container cannot cover the entire 4093 // bitfield. This can happen for example, if the bitfield is part of a packed 4094 // struct. AAPCS does not define access rules for such cases, we let clang to 4095 // follow its own rules. 4096 if (MemberOffset + Info.Size > ContainerSize) { 4097 return false; 4098 } 4099 // Re-adjust offsets for big-endian targets 4100 if (BE) 4101 MemberOffset = ContainerSize - (MemberOffset + Info.Size); 4102 4103 const CharUnits NewOffset = 4104 getContext().toCharUnitsFromBits(AbsoluteOffset & ~(ContainerSize - 1)); 4105 const CharUnits End = NewOffset + 4106 getContext().toCharUnitsFromBits(ContainerSize) - 4107 CharUnits::One(); 4108 4109 const ASTRecordLayout &Layout = 4110 getContext().getASTRecordLayout(Field->getParent()); 4111 // If we access outside memory outside the record, than bail out 4112 const CharUnits RecordSize = Layout.getSize(); 4113 if (End >= RecordSize) { 4114 return false; 4115 } 4116 4117 // Bail out if performing this load would access non-bitfields members 4118 4119 for (auto it : Field->getParent()->fields()) { 4120 const FieldDecl &F = *it; 4121 // We distinct allow bitfields overlaps 4122 if (F.isBitField()) 4123 continue; 4124 const CharUnits FOffset = getContext().toCharUnitsFromBits( 4125 Layout.getFieldOffset(F.getFieldIndex())); 4126 const CharUnits FEnd = 4127 FOffset + 4128 getContext().toCharUnitsFromBits( 4129 ConvertTypeForMem(F.getType())->getPrimitiveSizeInBits()) - 4130 CharUnits::One(); 4131 if (End < FOffset) { 4132 // The other field starts after the desired load end. 4133 break; 4134 } 4135 if (FEnd < NewOffset) { 4136 // The other field ends before the desired load offset. 4137 continue; 4138 } 4139 // The desired load overlaps a non-bitfiel member, bail out. 4140 return false; 4141 } 4142 4143 // Write the new bitfield access parameters 4144 Info.StorageOffset = NewOffset; 4145 Info.StorageSize = ContainerSize; 4146 Info.Offset = MemberOffset; 4147 // GEP into the bitfield container. Here we essentially treat the Base as a 4148 // pointer to a block of containers and index into it appropriately 4149 Base = 4150 Builder.CreateConstInBoundsGEP(Builder.CreateElementBitCast(Base, ResLTy), 4151 AbsoluteOffset / ContainerSize); 4152 return true; 4153 } 4154 4155 LValue CodeGenFunction::EmitLValueForField(LValue base, 4156 const FieldDecl *field) { 4157 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4158 4159 if (field->isBitField()) { 4160 const CGRecordLayout &RL = 4161 CGM.getTypes().getCGRecordLayout(field->getParent()); 4162 CGBitFieldInfo Info = RL.getBitFieldInfo(field); 4163 Address Addr = base.getAddress(*this); 4164 const QualType FieldType = 4165 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4166 4167 if (isAAPCS(CGM.getTarget()) && FieldType.isVolatileQualified()) { 4168 if (AdjustAAPCSBitfieldLValue(Addr, Info, field, FieldType, RL)) { 4169 return LValue::MakeBitfield(Addr, Info, FieldType, BaseInfo, 4170 TBAAAccessInfo()); 4171 } 4172 } 4173 4174 unsigned Idx = RL.getLLVMFieldNo(field); 4175 const RecordDecl *rec = field->getParent(); 4176 if (!IsInPreservedAIRegion && 4177 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4178 if (Idx != 0) 4179 // For structs, we GEP to the field that the record layout suggests. 4180 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4181 } else { 4182 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4183 getContext().getRecordType(rec), rec->getLocation()); 4184 Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx, 4185 getDebugInfoFIndex(rec, field->getFieldIndex()), 4186 DbgInfo); 4187 } 4188 4189 // Get the access type. 4190 llvm::Type *FieldIntTy = 4191 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 4192 if (Addr.getElementType() != FieldIntTy) 4193 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4194 4195 // TODO: Support TBAA for bit fields. 4196 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4197 return LValue::MakeBitfield(Addr, Info, FieldType, FieldBaseInfo, 4198 TBAAAccessInfo()); 4199 } 4200 4201 // Fields of may-alias structures are may-alias themselves. 4202 // FIXME: this should get propagated down through anonymous structs 4203 // and unions. 4204 QualType FieldType = field->getType(); 4205 const RecordDecl *rec = field->getParent(); 4206 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4207 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4208 TBAAAccessInfo FieldTBAAInfo; 4209 if (base.getTBAAInfo().isMayAlias() || 4210 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4211 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4212 } else if (rec->isUnion()) { 4213 // TODO: Support TBAA for unions. 4214 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4215 } else { 4216 // If no base type been assigned for the base access, then try to generate 4217 // one for this base lvalue. 4218 FieldTBAAInfo = base.getTBAAInfo(); 4219 if (!FieldTBAAInfo.BaseType) { 4220 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4221 assert(!FieldTBAAInfo.Offset && 4222 "Nonzero offset for an access with no base type!"); 4223 } 4224 4225 // Adjust offset to be relative to the base type. 4226 const ASTRecordLayout &Layout = 4227 getContext().getASTRecordLayout(field->getParent()); 4228 unsigned CharWidth = getContext().getCharWidth(); 4229 if (FieldTBAAInfo.BaseType) 4230 FieldTBAAInfo.Offset += 4231 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4232 4233 // Update the final access type and size. 4234 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4235 FieldTBAAInfo.Size = 4236 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4237 } 4238 4239 Address addr = base.getAddress(*this); 4240 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4241 if (CGM.getCodeGenOpts().StrictVTablePointers && 4242 ClassDef->isDynamicClass()) { 4243 // Getting to any field of dynamic object requires stripping dynamic 4244 // information provided by invariant.group. This is because accessing 4245 // fields may leak the real address of dynamic object, which could result 4246 // in miscompilation when leaked pointer would be compared. 4247 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4248 addr = Address(stripped, addr.getAlignment()); 4249 } 4250 } 4251 4252 unsigned RecordCVR = base.getVRQualifiers(); 4253 if (rec->isUnion()) { 4254 // For unions, there is no pointer adjustment. 4255 if (CGM.getCodeGenOpts().StrictVTablePointers && 4256 hasAnyVptr(FieldType, getContext())) 4257 // Because unions can easily skip invariant.barriers, we need to add 4258 // a barrier every time CXXRecord field with vptr is referenced. 4259 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 4260 addr.getAlignment()); 4261 4262 if (IsInPreservedAIRegion || 4263 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4264 // Remember the original union field index 4265 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4266 getContext().getRecordType(rec), rec->getLocation()); 4267 addr = Address( 4268 Builder.CreatePreserveUnionAccessIndex( 4269 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4270 addr.getAlignment()); 4271 } 4272 4273 if (FieldType->isReferenceType()) 4274 addr = Builder.CreateElementBitCast( 4275 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4276 } else { 4277 if (!IsInPreservedAIRegion && 4278 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4279 // For structs, we GEP to the field that the record layout suggests. 4280 addr = emitAddrOfFieldStorage(*this, addr, field); 4281 else 4282 // Remember the original struct field index 4283 addr = emitPreserveStructAccess(*this, addr, field); 4284 } 4285 4286 // If this is a reference field, load the reference right now. 4287 if (FieldType->isReferenceType()) { 4288 LValue RefLVal = 4289 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4290 if (RecordCVR & Qualifiers::Volatile) 4291 RefLVal.getQuals().addVolatile(); 4292 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4293 4294 // Qualifiers on the struct don't apply to the referencee. 4295 RecordCVR = 0; 4296 FieldType = FieldType->getPointeeType(); 4297 } 4298 4299 // Make sure that the address is pointing to the right type. This is critical 4300 // for both unions and structs. A union needs a bitcast, a struct element 4301 // will need a bitcast if the LLVM type laid out doesn't match the desired 4302 // type. 4303 addr = Builder.CreateElementBitCast( 4304 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4305 4306 if (field->hasAttr<AnnotateAttr>()) 4307 addr = EmitFieldAnnotations(field, addr); 4308 4309 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4310 LV.getQuals().addCVRQualifiers(RecordCVR); 4311 4312 // __weak attribute on a field is ignored. 4313 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4314 LV.getQuals().removeObjCGCAttr(); 4315 4316 return LV; 4317 } 4318 4319 LValue 4320 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4321 const FieldDecl *Field) { 4322 QualType FieldType = Field->getType(); 4323 4324 if (!FieldType->isReferenceType()) 4325 return EmitLValueForField(Base, Field); 4326 4327 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4328 4329 // Make sure that the address is pointing to the right type. 4330 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4331 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4332 4333 // TODO: Generate TBAA information that describes this access as a structure 4334 // member access and not just an access to an object of the field's type. This 4335 // should be similar to what we do in EmitLValueForField(). 4336 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4337 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4338 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4339 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4340 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4341 } 4342 4343 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4344 if (E->isFileScope()) { 4345 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4346 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4347 } 4348 if (E->getType()->isVariablyModifiedType()) 4349 // make sure to emit the VLA size. 4350 EmitVariablyModifiedType(E->getType()); 4351 4352 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4353 const Expr *InitExpr = E->getInitializer(); 4354 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4355 4356 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4357 /*Init*/ true); 4358 4359 return Result; 4360 } 4361 4362 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4363 if (!E->isGLValue()) 4364 // Initializing an aggregate temporary in C++11: T{...}. 4365 return EmitAggExprToLValue(E); 4366 4367 // An lvalue initializer list must be initializing a reference. 4368 assert(E->isTransparent() && "non-transparent glvalue init list"); 4369 return EmitLValue(E->getInit(0)); 4370 } 4371 4372 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4373 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4374 /// LValue is returned and the current block has been terminated. 4375 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4376 const Expr *Operand) { 4377 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4378 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4379 return None; 4380 } 4381 4382 return CGF.EmitLValue(Operand); 4383 } 4384 4385 LValue CodeGenFunction:: 4386 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4387 if (!expr->isGLValue()) { 4388 // ?: here should be an aggregate. 4389 assert(hasAggregateEvaluationKind(expr->getType()) && 4390 "Unexpected conditional operator!"); 4391 return EmitAggExprToLValue(expr); 4392 } 4393 4394 OpaqueValueMapping binding(*this, expr); 4395 4396 const Expr *condExpr = expr->getCond(); 4397 bool CondExprBool; 4398 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4399 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4400 if (!CondExprBool) std::swap(live, dead); 4401 4402 if (!ContainsLabel(dead)) { 4403 // If the true case is live, we need to track its region. 4404 if (CondExprBool) 4405 incrementProfileCounter(expr); 4406 return EmitLValue(live); 4407 } 4408 } 4409 4410 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4411 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4412 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4413 4414 ConditionalEvaluation eval(*this); 4415 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4416 4417 // Any temporaries created here are conditional. 4418 EmitBlock(lhsBlock); 4419 incrementProfileCounter(expr); 4420 eval.begin(*this); 4421 Optional<LValue> lhs = 4422 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4423 eval.end(*this); 4424 4425 if (lhs && !lhs->isSimple()) 4426 return EmitUnsupportedLValue(expr, "conditional operator"); 4427 4428 lhsBlock = Builder.GetInsertBlock(); 4429 if (lhs) 4430 Builder.CreateBr(contBlock); 4431 4432 // Any temporaries created here are conditional. 4433 EmitBlock(rhsBlock); 4434 eval.begin(*this); 4435 Optional<LValue> rhs = 4436 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4437 eval.end(*this); 4438 if (rhs && !rhs->isSimple()) 4439 return EmitUnsupportedLValue(expr, "conditional operator"); 4440 rhsBlock = Builder.GetInsertBlock(); 4441 4442 EmitBlock(contBlock); 4443 4444 if (lhs && rhs) { 4445 llvm::PHINode *phi = 4446 Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue"); 4447 phi->addIncoming(lhs->getPointer(*this), lhsBlock); 4448 phi->addIncoming(rhs->getPointer(*this), rhsBlock); 4449 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4450 AlignmentSource alignSource = 4451 std::max(lhs->getBaseInfo().getAlignmentSource(), 4452 rhs->getBaseInfo().getAlignmentSource()); 4453 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4454 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4455 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4456 TBAAInfo); 4457 } else { 4458 assert((lhs || rhs) && 4459 "both operands of glvalue conditional are throw-expressions?"); 4460 return lhs ? *lhs : *rhs; 4461 } 4462 } 4463 4464 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4465 /// type. If the cast is to a reference, we can have the usual lvalue result, 4466 /// otherwise if a cast is needed by the code generator in an lvalue context, 4467 /// then it must mean that we need the address of an aggregate in order to 4468 /// access one of its members. This can happen for all the reasons that casts 4469 /// are permitted with aggregate result, including noop aggregate casts, and 4470 /// cast from scalar to union. 4471 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4472 switch (E->getCastKind()) { 4473 case CK_ToVoid: 4474 case CK_BitCast: 4475 case CK_LValueToRValueBitCast: 4476 case CK_ArrayToPointerDecay: 4477 case CK_FunctionToPointerDecay: 4478 case CK_NullToMemberPointer: 4479 case CK_NullToPointer: 4480 case CK_IntegralToPointer: 4481 case CK_PointerToIntegral: 4482 case CK_PointerToBoolean: 4483 case CK_VectorSplat: 4484 case CK_IntegralCast: 4485 case CK_BooleanToSignedIntegral: 4486 case CK_IntegralToBoolean: 4487 case CK_IntegralToFloating: 4488 case CK_FloatingToIntegral: 4489 case CK_FloatingToBoolean: 4490 case CK_FloatingCast: 4491 case CK_FloatingRealToComplex: 4492 case CK_FloatingComplexToReal: 4493 case CK_FloatingComplexToBoolean: 4494 case CK_FloatingComplexCast: 4495 case CK_FloatingComplexToIntegralComplex: 4496 case CK_IntegralRealToComplex: 4497 case CK_IntegralComplexToReal: 4498 case CK_IntegralComplexToBoolean: 4499 case CK_IntegralComplexCast: 4500 case CK_IntegralComplexToFloatingComplex: 4501 case CK_DerivedToBaseMemberPointer: 4502 case CK_BaseToDerivedMemberPointer: 4503 case CK_MemberPointerToBoolean: 4504 case CK_ReinterpretMemberPointer: 4505 case CK_AnyPointerToBlockPointerCast: 4506 case CK_ARCProduceObject: 4507 case CK_ARCConsumeObject: 4508 case CK_ARCReclaimReturnedObject: 4509 case CK_ARCExtendBlockObject: 4510 case CK_CopyAndAutoreleaseBlockObject: 4511 case CK_IntToOCLSampler: 4512 case CK_FixedPointCast: 4513 case CK_FixedPointToBoolean: 4514 case CK_FixedPointToIntegral: 4515 case CK_IntegralToFixedPoint: 4516 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4517 4518 case CK_Dependent: 4519 llvm_unreachable("dependent cast kind in IR gen!"); 4520 4521 case CK_BuiltinFnToFnPtr: 4522 llvm_unreachable("builtin functions are handled elsewhere"); 4523 4524 // These are never l-values; just use the aggregate emission code. 4525 case CK_NonAtomicToAtomic: 4526 case CK_AtomicToNonAtomic: 4527 return EmitAggExprToLValue(E); 4528 4529 case CK_Dynamic: { 4530 LValue LV = EmitLValue(E->getSubExpr()); 4531 Address V = LV.getAddress(*this); 4532 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4533 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4534 } 4535 4536 case CK_ConstructorConversion: 4537 case CK_UserDefinedConversion: 4538 case CK_CPointerToObjCPointerCast: 4539 case CK_BlockPointerToObjCPointerCast: 4540 case CK_NoOp: 4541 case CK_LValueToRValue: 4542 return EmitLValue(E->getSubExpr()); 4543 4544 case CK_UncheckedDerivedToBase: 4545 case CK_DerivedToBase: { 4546 const auto *DerivedClassTy = 4547 E->getSubExpr()->getType()->castAs<RecordType>(); 4548 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4549 4550 LValue LV = EmitLValue(E->getSubExpr()); 4551 Address This = LV.getAddress(*this); 4552 4553 // Perform the derived-to-base conversion 4554 Address Base = GetAddressOfBaseClass( 4555 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4556 /*NullCheckValue=*/false, E->getExprLoc()); 4557 4558 // TODO: Support accesses to members of base classes in TBAA. For now, we 4559 // conservatively pretend that the complete object is of the base class 4560 // type. 4561 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4562 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4563 } 4564 case CK_ToUnion: 4565 return EmitAggExprToLValue(E); 4566 case CK_BaseToDerived: { 4567 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4568 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4569 4570 LValue LV = EmitLValue(E->getSubExpr()); 4571 4572 // Perform the base-to-derived conversion 4573 Address Derived = GetAddressOfDerivedClass( 4574 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4575 /*NullCheckValue=*/false); 4576 4577 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4578 // performed and the object is not of the derived type. 4579 if (sanitizePerformTypeCheck()) 4580 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4581 Derived.getPointer(), E->getType()); 4582 4583 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4584 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4585 /*MayBeNull=*/false, CFITCK_DerivedCast, 4586 E->getBeginLoc()); 4587 4588 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4589 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4590 } 4591 case CK_LValueBitCast: { 4592 // This must be a reinterpret_cast (or c-style equivalent). 4593 const auto *CE = cast<ExplicitCastExpr>(E); 4594 4595 CGM.EmitExplicitCastExprType(CE, this); 4596 LValue LV = EmitLValue(E->getSubExpr()); 4597 Address V = Builder.CreateBitCast(LV.getAddress(*this), 4598 ConvertType(CE->getTypeAsWritten())); 4599 4600 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4601 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4602 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4603 E->getBeginLoc()); 4604 4605 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4606 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4607 } 4608 case CK_AddressSpaceConversion: { 4609 LValue LV = EmitLValue(E->getSubExpr()); 4610 QualType DestTy = getContext().getPointerType(E->getType()); 4611 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4612 *this, LV.getPointer(*this), 4613 E->getSubExpr()->getType().getAddressSpace(), 4614 E->getType().getAddressSpace(), ConvertType(DestTy)); 4615 return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()), 4616 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4617 } 4618 case CK_ObjCObjectLValueCast: { 4619 LValue LV = EmitLValue(E->getSubExpr()); 4620 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4621 ConvertType(E->getType())); 4622 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4623 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4624 } 4625 case CK_ZeroToOCLOpaqueType: 4626 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4627 } 4628 4629 llvm_unreachable("Unhandled lvalue cast kind?"); 4630 } 4631 4632 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4633 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4634 return getOrCreateOpaqueLValueMapping(e); 4635 } 4636 4637 LValue 4638 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4639 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4640 4641 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4642 it = OpaqueLValues.find(e); 4643 4644 if (it != OpaqueLValues.end()) 4645 return it->second; 4646 4647 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4648 return EmitLValue(e->getSourceExpr()); 4649 } 4650 4651 RValue 4652 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4653 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4654 4655 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4656 it = OpaqueRValues.find(e); 4657 4658 if (it != OpaqueRValues.end()) 4659 return it->second; 4660 4661 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4662 return EmitAnyExpr(e->getSourceExpr()); 4663 } 4664 4665 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4666 const FieldDecl *FD, 4667 SourceLocation Loc) { 4668 QualType FT = FD->getType(); 4669 LValue FieldLV = EmitLValueForField(LV, FD); 4670 switch (getEvaluationKind(FT)) { 4671 case TEK_Complex: 4672 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4673 case TEK_Aggregate: 4674 return FieldLV.asAggregateRValue(*this); 4675 case TEK_Scalar: 4676 // This routine is used to load fields one-by-one to perform a copy, so 4677 // don't load reference fields. 4678 if (FD->getType()->isReferenceType()) 4679 return RValue::get(FieldLV.getPointer(*this)); 4680 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4681 // primitive load. 4682 if (FieldLV.isBitField()) 4683 return EmitLoadOfLValue(FieldLV, Loc); 4684 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4685 } 4686 llvm_unreachable("bad evaluation kind"); 4687 } 4688 4689 //===--------------------------------------------------------------------===// 4690 // Expression Emission 4691 //===--------------------------------------------------------------------===// 4692 4693 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4694 ReturnValueSlot ReturnValue) { 4695 // Builtins never have block type. 4696 if (E->getCallee()->getType()->isBlockPointerType()) 4697 return EmitBlockCallExpr(E, ReturnValue); 4698 4699 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4700 return EmitCXXMemberCallExpr(CE, ReturnValue); 4701 4702 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4703 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4704 4705 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4706 if (const CXXMethodDecl *MD = 4707 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4708 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4709 4710 CGCallee callee = EmitCallee(E->getCallee()); 4711 4712 if (callee.isBuiltin()) { 4713 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4714 E, ReturnValue); 4715 } 4716 4717 if (callee.isPseudoDestructor()) { 4718 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4719 } 4720 4721 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4722 } 4723 4724 /// Emit a CallExpr without considering whether it might be a subclass. 4725 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4726 ReturnValueSlot ReturnValue) { 4727 CGCallee Callee = EmitCallee(E->getCallee()); 4728 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4729 } 4730 4731 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4732 4733 if (auto builtinID = FD->getBuiltinID()) { 4734 // Replaceable builtin provide their own implementation of a builtin. Unless 4735 // we are in the builtin implementation itself, don't call the actual 4736 // builtin. If we are in the builtin implementation, avoid trivial infinite 4737 // recursion. 4738 if (!FD->isInlineBuiltinDeclaration() || 4739 CGF.CurFn->getName() == FD->getName()) 4740 return CGCallee::forBuiltin(builtinID, FD); 4741 } 4742 4743 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4744 return CGCallee::forDirect(calleePtr, GlobalDecl(FD)); 4745 } 4746 4747 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4748 E = E->IgnoreParens(); 4749 4750 // Look through function-to-pointer decay. 4751 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4752 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4753 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4754 return EmitCallee(ICE->getSubExpr()); 4755 } 4756 4757 // Resolve direct calls. 4758 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4759 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4760 return EmitDirectCallee(*this, FD); 4761 } 4762 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4763 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4764 EmitIgnoredExpr(ME->getBase()); 4765 return EmitDirectCallee(*this, FD); 4766 } 4767 4768 // Look through template substitutions. 4769 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4770 return EmitCallee(NTTP->getReplacement()); 4771 4772 // Treat pseudo-destructor calls differently. 4773 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4774 return CGCallee::forPseudoDestructor(PDE); 4775 } 4776 4777 // Otherwise, we have an indirect reference. 4778 llvm::Value *calleePtr; 4779 QualType functionType; 4780 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4781 calleePtr = EmitScalarExpr(E); 4782 functionType = ptrType->getPointeeType(); 4783 } else { 4784 functionType = E->getType(); 4785 calleePtr = EmitLValue(E).getPointer(*this); 4786 } 4787 assert(functionType->isFunctionType()); 4788 4789 GlobalDecl GD; 4790 if (const auto *VD = 4791 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4792 GD = GlobalDecl(VD); 4793 4794 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4795 CGCallee callee(calleeInfo, calleePtr); 4796 return callee; 4797 } 4798 4799 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4800 // Comma expressions just emit their LHS then their RHS as an l-value. 4801 if (E->getOpcode() == BO_Comma) { 4802 EmitIgnoredExpr(E->getLHS()); 4803 EnsureInsertPoint(); 4804 return EmitLValue(E->getRHS()); 4805 } 4806 4807 if (E->getOpcode() == BO_PtrMemD || 4808 E->getOpcode() == BO_PtrMemI) 4809 return EmitPointerToDataMemberBinaryExpr(E); 4810 4811 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4812 4813 // Note that in all of these cases, __block variables need the RHS 4814 // evaluated first just in case the variable gets moved by the RHS. 4815 4816 switch (getEvaluationKind(E->getType())) { 4817 case TEK_Scalar: { 4818 switch (E->getLHS()->getType().getObjCLifetime()) { 4819 case Qualifiers::OCL_Strong: 4820 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4821 4822 case Qualifiers::OCL_Autoreleasing: 4823 return EmitARCStoreAutoreleasing(E).first; 4824 4825 // No reason to do any of these differently. 4826 case Qualifiers::OCL_None: 4827 case Qualifiers::OCL_ExplicitNone: 4828 case Qualifiers::OCL_Weak: 4829 break; 4830 } 4831 4832 RValue RV = EmitAnyExpr(E->getRHS()); 4833 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4834 if (RV.isScalar()) 4835 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4836 EmitStoreThroughLValue(RV, LV); 4837 if (getLangOpts().OpenMP) 4838 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 4839 E->getLHS()); 4840 return LV; 4841 } 4842 4843 case TEK_Complex: 4844 return EmitComplexAssignmentLValue(E); 4845 4846 case TEK_Aggregate: 4847 return EmitAggExprToLValue(E); 4848 } 4849 llvm_unreachable("bad evaluation kind"); 4850 } 4851 4852 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4853 RValue RV = EmitCallExpr(E); 4854 4855 if (!RV.isScalar()) 4856 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4857 AlignmentSource::Decl); 4858 4859 assert(E->getCallReturnType(getContext())->isReferenceType() && 4860 "Can't have a scalar return unless the return type is a " 4861 "reference type!"); 4862 4863 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4864 } 4865 4866 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4867 // FIXME: This shouldn't require another copy. 4868 return EmitAggExprToLValue(E); 4869 } 4870 4871 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4872 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4873 && "binding l-value to type which needs a temporary"); 4874 AggValueSlot Slot = CreateAggTemp(E->getType()); 4875 EmitCXXConstructExpr(E, Slot); 4876 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4877 } 4878 4879 LValue 4880 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4881 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4882 } 4883 4884 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4885 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4886 ConvertType(E->getType())); 4887 } 4888 4889 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4890 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4891 AlignmentSource::Decl); 4892 } 4893 4894 LValue 4895 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4896 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4897 Slot.setExternallyDestructed(); 4898 EmitAggExpr(E->getSubExpr(), Slot); 4899 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4900 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4901 } 4902 4903 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4904 RValue RV = EmitObjCMessageExpr(E); 4905 4906 if (!RV.isScalar()) 4907 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4908 AlignmentSource::Decl); 4909 4910 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4911 "Can't have a scalar return unless the return type is a " 4912 "reference type!"); 4913 4914 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4915 } 4916 4917 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4918 Address V = 4919 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4920 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4921 } 4922 4923 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4924 const ObjCIvarDecl *Ivar) { 4925 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4926 } 4927 4928 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4929 llvm::Value *BaseValue, 4930 const ObjCIvarDecl *Ivar, 4931 unsigned CVRQualifiers) { 4932 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4933 Ivar, CVRQualifiers); 4934 } 4935 4936 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4937 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4938 llvm::Value *BaseValue = nullptr; 4939 const Expr *BaseExpr = E->getBase(); 4940 Qualifiers BaseQuals; 4941 QualType ObjectTy; 4942 if (E->isArrow()) { 4943 BaseValue = EmitScalarExpr(BaseExpr); 4944 ObjectTy = BaseExpr->getType()->getPointeeType(); 4945 BaseQuals = ObjectTy.getQualifiers(); 4946 } else { 4947 LValue BaseLV = EmitLValue(BaseExpr); 4948 BaseValue = BaseLV.getPointer(*this); 4949 ObjectTy = BaseExpr->getType(); 4950 BaseQuals = ObjectTy.getQualifiers(); 4951 } 4952 4953 LValue LV = 4954 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4955 BaseQuals.getCVRQualifiers()); 4956 setObjCGCLValueClass(getContext(), E, LV); 4957 return LV; 4958 } 4959 4960 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4961 // Can only get l-value for message expression returning aggregate type 4962 RValue RV = EmitAnyExprToTemp(E); 4963 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4964 AlignmentSource::Decl); 4965 } 4966 4967 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4968 const CallExpr *E, ReturnValueSlot ReturnValue, 4969 llvm::Value *Chain) { 4970 // Get the actual function type. The callee type will always be a pointer to 4971 // function type or a block pointer type. 4972 assert(CalleeType->isFunctionPointerType() && 4973 "Call must have function pointer type!"); 4974 4975 const Decl *TargetDecl = 4976 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4977 4978 CalleeType = getContext().getCanonicalType(CalleeType); 4979 4980 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4981 4982 CGCallee Callee = OrigCallee; 4983 4984 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4985 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4986 if (llvm::Constant *PrefixSig = 4987 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4988 SanitizerScope SanScope(this); 4989 // Remove any (C++17) exception specifications, to allow calling e.g. a 4990 // noexcept function through a non-noexcept pointer. 4991 auto ProtoTy = 4992 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4993 llvm::Constant *FTRTTIConst = 4994 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4995 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4996 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4997 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4998 4999 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5000 5001 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 5002 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 5003 llvm::Value *CalleeSigPtr = 5004 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 5005 llvm::Value *CalleeSig = 5006 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 5007 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 5008 5009 llvm::BasicBlock *Cont = createBasicBlock("cont"); 5010 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 5011 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 5012 5013 EmitBlock(TypeCheck); 5014 llvm::Value *CalleeRTTIPtr = 5015 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 5016 llvm::Value *CalleeRTTIEncoded = 5017 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 5018 llvm::Value *CalleeRTTI = 5019 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 5020 llvm::Value *CalleeRTTIMatch = 5021 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 5022 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 5023 EmitCheckTypeDescriptor(CalleeType)}; 5024 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 5025 SanitizerHandler::FunctionTypeMismatch, StaticData, 5026 {CalleePtr, CalleeRTTI, FTRTTIConst}); 5027 5028 Builder.CreateBr(Cont); 5029 EmitBlock(Cont); 5030 } 5031 } 5032 5033 const auto *FnType = cast<FunctionType>(PointeeType); 5034 5035 // If we are checking indirect calls and this call is indirect, check that the 5036 // function pointer is a member of the bit set for the function type. 5037 if (SanOpts.has(SanitizerKind::CFIICall) && 5038 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5039 SanitizerScope SanScope(this); 5040 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 5041 5042 llvm::Metadata *MD; 5043 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 5044 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 5045 else 5046 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 5047 5048 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 5049 5050 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5051 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 5052 llvm::Value *TypeTest = Builder.CreateCall( 5053 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 5054 5055 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 5056 llvm::Constant *StaticData[] = { 5057 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 5058 EmitCheckSourceLocation(E->getBeginLoc()), 5059 EmitCheckTypeDescriptor(QualType(FnType, 0)), 5060 }; 5061 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 5062 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 5063 CastedCallee, StaticData); 5064 } else { 5065 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 5066 SanitizerHandler::CFICheckFail, StaticData, 5067 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 5068 } 5069 } 5070 5071 CallArgList Args; 5072 if (Chain) 5073 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 5074 CGM.getContext().VoidPtrTy); 5075 5076 // C++17 requires that we evaluate arguments to a call using assignment syntax 5077 // right-to-left, and that we evaluate arguments to certain other operators 5078 // left-to-right. Note that we allow this to override the order dictated by 5079 // the calling convention on the MS ABI, which means that parameter 5080 // destruction order is not necessarily reverse construction order. 5081 // FIXME: Revisit this based on C++ committee response to unimplementability. 5082 EvaluationOrder Order = EvaluationOrder::Default; 5083 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 5084 if (OCE->isAssignmentOp()) 5085 Order = EvaluationOrder::ForceRightToLeft; 5086 else { 5087 switch (OCE->getOperator()) { 5088 case OO_LessLess: 5089 case OO_GreaterGreater: 5090 case OO_AmpAmp: 5091 case OO_PipePipe: 5092 case OO_Comma: 5093 case OO_ArrowStar: 5094 Order = EvaluationOrder::ForceLeftToRight; 5095 break; 5096 default: 5097 break; 5098 } 5099 } 5100 } 5101 5102 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5103 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5104 5105 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5106 Args, FnType, /*ChainCall=*/Chain); 5107 5108 // C99 6.5.2.2p6: 5109 // If the expression that denotes the called function has a type 5110 // that does not include a prototype, [the default argument 5111 // promotions are performed]. If the number of arguments does not 5112 // equal the number of parameters, the behavior is undefined. If 5113 // the function is defined with a type that includes a prototype, 5114 // and either the prototype ends with an ellipsis (, ...) or the 5115 // types of the arguments after promotion are not compatible with 5116 // the types of the parameters, the behavior is undefined. If the 5117 // function is defined with a type that does not include a 5118 // prototype, and the types of the arguments after promotion are 5119 // not compatible with those of the parameters after promotion, 5120 // the behavior is undefined [except in some trivial cases]. 5121 // That is, in the general case, we should assume that a call 5122 // through an unprototyped function type works like a *non-variadic* 5123 // call. The way we make this work is to cast to the exact type 5124 // of the promoted arguments. 5125 // 5126 // Chain calls use this same code path to add the invisible chain parameter 5127 // to the function type. 5128 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5129 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5130 CalleeTy = CalleeTy->getPointerTo(); 5131 5132 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5133 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5134 Callee.setFunctionPointer(CalleePtr); 5135 } 5136 5137 llvm::CallBase *CallOrInvoke = nullptr; 5138 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5139 E->getExprLoc()); 5140 5141 // Generate function declaration DISuprogram in order to be used 5142 // in debug info about call sites. 5143 if (CGDebugInfo *DI = getDebugInfo()) { 5144 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 5145 DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0), 5146 CalleeDecl); 5147 } 5148 5149 return Call; 5150 } 5151 5152 LValue CodeGenFunction:: 5153 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5154 Address BaseAddr = Address::invalid(); 5155 if (E->getOpcode() == BO_PtrMemI) { 5156 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5157 } else { 5158 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5159 } 5160 5161 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5162 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5163 5164 LValueBaseInfo BaseInfo; 5165 TBAAAccessInfo TBAAInfo; 5166 Address MemberAddr = 5167 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5168 &TBAAInfo); 5169 5170 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5171 } 5172 5173 /// Given the address of a temporary variable, produce an r-value of 5174 /// its type. 5175 RValue CodeGenFunction::convertTempToRValue(Address addr, 5176 QualType type, 5177 SourceLocation loc) { 5178 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5179 switch (getEvaluationKind(type)) { 5180 case TEK_Complex: 5181 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5182 case TEK_Aggregate: 5183 return lvalue.asAggregateRValue(*this); 5184 case TEK_Scalar: 5185 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5186 } 5187 llvm_unreachable("bad evaluation kind"); 5188 } 5189 5190 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5191 assert(Val->getType()->isFPOrFPVectorTy()); 5192 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5193 return; 5194 5195 llvm::MDBuilder MDHelper(getLLVMContext()); 5196 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5197 5198 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5199 } 5200 5201 namespace { 5202 struct LValueOrRValue { 5203 LValue LV; 5204 RValue RV; 5205 }; 5206 } 5207 5208 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5209 const PseudoObjectExpr *E, 5210 bool forLValue, 5211 AggValueSlot slot) { 5212 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5213 5214 // Find the result expression, if any. 5215 const Expr *resultExpr = E->getResultExpr(); 5216 LValueOrRValue result; 5217 5218 for (PseudoObjectExpr::const_semantics_iterator 5219 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5220 const Expr *semantic = *i; 5221 5222 // If this semantic expression is an opaque value, bind it 5223 // to the result of its source expression. 5224 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5225 // Skip unique OVEs. 5226 if (ov->isUnique()) { 5227 assert(ov != resultExpr && 5228 "A unique OVE cannot be used as the result expression"); 5229 continue; 5230 } 5231 5232 // If this is the result expression, we may need to evaluate 5233 // directly into the slot. 5234 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5235 OVMA opaqueData; 5236 if (ov == resultExpr && ov->isRValue() && !forLValue && 5237 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5238 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5239 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5240 AlignmentSource::Decl); 5241 opaqueData = OVMA::bind(CGF, ov, LV); 5242 result.RV = slot.asRValue(); 5243 5244 // Otherwise, emit as normal. 5245 } else { 5246 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5247 5248 // If this is the result, also evaluate the result now. 5249 if (ov == resultExpr) { 5250 if (forLValue) 5251 result.LV = CGF.EmitLValue(ov); 5252 else 5253 result.RV = CGF.EmitAnyExpr(ov, slot); 5254 } 5255 } 5256 5257 opaques.push_back(opaqueData); 5258 5259 // Otherwise, if the expression is the result, evaluate it 5260 // and remember the result. 5261 } else if (semantic == resultExpr) { 5262 if (forLValue) 5263 result.LV = CGF.EmitLValue(semantic); 5264 else 5265 result.RV = CGF.EmitAnyExpr(semantic, slot); 5266 5267 // Otherwise, evaluate the expression in an ignored context. 5268 } else { 5269 CGF.EmitIgnoredExpr(semantic); 5270 } 5271 } 5272 5273 // Unbind all the opaques now. 5274 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5275 opaques[i].unbind(CGF); 5276 5277 return result; 5278 } 5279 5280 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5281 AggValueSlot slot) { 5282 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5283 } 5284 5285 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5286 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5287 } 5288