1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/ADT/Hashing.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/Support/ConvertUTF.h"
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 //===--------------------------------------------------------------------===//
37 //                        Miscellaneous Helper Methods
38 //===--------------------------------------------------------------------===//
39 
40 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
41   unsigned addressSpace =
42     cast<llvm::PointerType>(value->getType())->getAddressSpace();
43 
44   llvm::PointerType *destType = Int8PtrTy;
45   if (addressSpace)
46     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
47 
48   if (value->getType() == destType) return value;
49   return Builder.CreateBitCast(value, destType);
50 }
51 
52 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
53 /// block.
54 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
55                                                     const Twine &Name) {
56   if (!Builder.isNamePreserving())
57     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
58   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
59 }
60 
61 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
62                                      llvm::Value *Init) {
63   auto *Store = new llvm::StoreInst(Init, Var);
64   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
65   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
66 }
67 
68 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
69                                                 const Twine &Name) {
70   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
71   // FIXME: Should we prefer the preferred type alignment here?
72   CharUnits Align = getContext().getTypeAlignInChars(Ty);
73   Alloc->setAlignment(Align.getQuantity());
74   return Alloc;
75 }
76 
77 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
78                                                  const Twine &Name) {
79   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
80   // FIXME: Should we prefer the preferred type alignment here?
81   CharUnits Align = getContext().getTypeAlignInChars(Ty);
82   Alloc->setAlignment(Align.getQuantity());
83   return Alloc;
84 }
85 
86 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
87 /// expression and compare the result against zero, returning an Int1Ty value.
88 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
89   PGO.setCurrentStmt(E);
90   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
91     llvm::Value *MemPtr = EmitScalarExpr(E);
92     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
93   }
94 
95   QualType BoolTy = getContext().BoolTy;
96   if (!E->getType()->isAnyComplexType())
97     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
98 
99   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
100 }
101 
102 /// EmitIgnoredExpr - Emit code to compute the specified expression,
103 /// ignoring the result.
104 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
105   if (E->isRValue())
106     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
107 
108   // Just emit it as an l-value and drop the result.
109   EmitLValue(E);
110 }
111 
112 /// EmitAnyExpr - Emit code to compute the specified expression which
113 /// can have any type.  The result is returned as an RValue struct.
114 /// If this is an aggregate expression, AggSlot indicates where the
115 /// result should be returned.
116 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
117                                     AggValueSlot aggSlot,
118                                     bool ignoreResult) {
119   switch (getEvaluationKind(E->getType())) {
120   case TEK_Scalar:
121     return RValue::get(EmitScalarExpr(E, ignoreResult));
122   case TEK_Complex:
123     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
124   case TEK_Aggregate:
125     if (!ignoreResult && aggSlot.isIgnored())
126       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
127     EmitAggExpr(E, aggSlot);
128     return aggSlot.asRValue();
129   }
130   llvm_unreachable("bad evaluation kind");
131 }
132 
133 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
134 /// always be accessible even if no aggregate location is provided.
135 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
136   AggValueSlot AggSlot = AggValueSlot::ignored();
137 
138   if (hasAggregateEvaluationKind(E->getType()))
139     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
140   return EmitAnyExpr(E, AggSlot);
141 }
142 
143 /// EmitAnyExprToMem - Evaluate an expression into a given memory
144 /// location.
145 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
146                                        llvm::Value *Location,
147                                        Qualifiers Quals,
148                                        bool IsInit) {
149   // FIXME: This function should take an LValue as an argument.
150   switch (getEvaluationKind(E->getType())) {
151   case TEK_Complex:
152     EmitComplexExprIntoLValue(E,
153                          MakeNaturalAlignAddrLValue(Location, E->getType()),
154                               /*isInit*/ false);
155     return;
156 
157   case TEK_Aggregate: {
158     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
159     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
160                                          AggValueSlot::IsDestructed_t(IsInit),
161                                          AggValueSlot::DoesNotNeedGCBarriers,
162                                          AggValueSlot::IsAliased_t(!IsInit)));
163     return;
164   }
165 
166   case TEK_Scalar: {
167     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
168     LValue LV = MakeAddrLValue(Location, E->getType());
169     EmitStoreThroughLValue(RV, LV);
170     return;
171   }
172   }
173   llvm_unreachable("bad evaluation kind");
174 }
175 
176 static void
177 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
178                      const Expr *E, llvm::Value *ReferenceTemporary) {
179   // Objective-C++ ARC:
180   //   If we are binding a reference to a temporary that has ownership, we
181   //   need to perform retain/release operations on the temporary.
182   //
183   // FIXME: This should be looking at E, not M.
184   if (CGF.getLangOpts().ObjCAutoRefCount &&
185       M->getType()->isObjCLifetimeType()) {
186     QualType ObjCARCReferenceLifetimeType = M->getType();
187     switch (Qualifiers::ObjCLifetime Lifetime =
188                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
189     case Qualifiers::OCL_None:
190     case Qualifiers::OCL_ExplicitNone:
191       // Carry on to normal cleanup handling.
192       break;
193 
194     case Qualifiers::OCL_Autoreleasing:
195       // Nothing to do; cleaned up by an autorelease pool.
196       return;
197 
198     case Qualifiers::OCL_Strong:
199     case Qualifiers::OCL_Weak:
200       switch (StorageDuration Duration = M->getStorageDuration()) {
201       case SD_Static:
202         // Note: we intentionally do not register a cleanup to release
203         // the object on program termination.
204         return;
205 
206       case SD_Thread:
207         // FIXME: We should probably register a cleanup in this case.
208         return;
209 
210       case SD_Automatic:
211       case SD_FullExpression:
212         assert(!ObjCARCReferenceLifetimeType->isArrayType());
213         CodeGenFunction::Destroyer *Destroy;
214         CleanupKind CleanupKind;
215         if (Lifetime == Qualifiers::OCL_Strong) {
216           const ValueDecl *VD = M->getExtendingDecl();
217           bool Precise =
218               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
219           CleanupKind = CGF.getARCCleanupKind();
220           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
221                             : &CodeGenFunction::destroyARCStrongImprecise;
222         } else {
223           // __weak objects always get EH cleanups; otherwise, exceptions
224           // could cause really nasty crashes instead of mere leaks.
225           CleanupKind = NormalAndEHCleanup;
226           Destroy = &CodeGenFunction::destroyARCWeak;
227         }
228         if (Duration == SD_FullExpression)
229           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
230                           ObjCARCReferenceLifetimeType, *Destroy,
231                           CleanupKind & EHCleanup);
232         else
233           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
234                                           ObjCARCReferenceLifetimeType,
235                                           *Destroy, CleanupKind & EHCleanup);
236         return;
237 
238       case SD_Dynamic:
239         llvm_unreachable("temporary cannot have dynamic storage duration");
240       }
241       llvm_unreachable("unknown storage duration");
242     }
243   }
244 
245   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
246   if (const RecordType *RT =
247           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
248     // Get the destructor for the reference temporary.
249     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
250     if (!ClassDecl->hasTrivialDestructor())
251       ReferenceTemporaryDtor = ClassDecl->getDestructor();
252   }
253 
254   if (!ReferenceTemporaryDtor)
255     return;
256 
257   // Call the destructor for the temporary.
258   switch (M->getStorageDuration()) {
259   case SD_Static:
260   case SD_Thread: {
261     llvm::Constant *CleanupFn;
262     llvm::Constant *CleanupArg;
263     if (E->getType()->isArrayType()) {
264       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
265           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
266           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
267           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
268       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
269     } else {
270       CleanupFn =
271         CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
272       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
273     }
274     CGF.CGM.getCXXABI().registerGlobalDtor(
275         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
276     break;
277   }
278 
279   case SD_FullExpression:
280     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
281                     CodeGenFunction::destroyCXXObject,
282                     CGF.getLangOpts().Exceptions);
283     break;
284 
285   case SD_Automatic:
286     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
287                                     ReferenceTemporary, E->getType(),
288                                     CodeGenFunction::destroyCXXObject,
289                                     CGF.getLangOpts().Exceptions);
290     break;
291 
292   case SD_Dynamic:
293     llvm_unreachable("temporary cannot have dynamic storage duration");
294   }
295 }
296 
297 static llvm::Value *
298 createReferenceTemporary(CodeGenFunction &CGF,
299                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
300   switch (M->getStorageDuration()) {
301   case SD_FullExpression:
302   case SD_Automatic:
303     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
304 
305   case SD_Thread:
306   case SD_Static:
307     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
308 
309   case SD_Dynamic:
310     llvm_unreachable("temporary can't have dynamic storage duration");
311   }
312   llvm_unreachable("unknown storage duration");
313 }
314 
315 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
316                                            const MaterializeTemporaryExpr *M) {
317   const Expr *E = M->GetTemporaryExpr();
318 
319   if (getLangOpts().ObjCAutoRefCount &&
320       M->getType()->isObjCLifetimeType() &&
321       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
322       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
323     // FIXME: Fold this into the general case below.
324     llvm::Value *Object = createReferenceTemporary(*this, M, E);
325     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
326 
327     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
328       // We should not have emitted the initializer for this temporary as a
329       // constant.
330       assert(!Var->hasInitializer());
331       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
332     }
333 
334     EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
335 
336     pushTemporaryCleanup(*this, M, E, Object);
337     return RefTempDst;
338   }
339 
340   SmallVector<const Expr *, 2> CommaLHSs;
341   SmallVector<SubobjectAdjustment, 2> Adjustments;
342   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
343 
344   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
345     EmitIgnoredExpr(CommaLHSs[I]);
346 
347   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
348     if (opaque->getType()->isRecordType()) {
349       assert(Adjustments.empty());
350       return EmitOpaqueValueLValue(opaque);
351     }
352   }
353 
354   // Create and initialize the reference temporary.
355   llvm::Value *Object = createReferenceTemporary(*this, M, E);
356   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
357     // If the temporary is a global and has a constant initializer, we may
358     // have already initialized it.
359     if (!Var->hasInitializer()) {
360       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
361       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
362     }
363   } else {
364     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
365   }
366   pushTemporaryCleanup(*this, M, E, Object);
367 
368   // Perform derived-to-base casts and/or field accesses, to get from the
369   // temporary object we created (and, potentially, for which we extended
370   // the lifetime) to the subobject we're binding the reference to.
371   for (unsigned I = Adjustments.size(); I != 0; --I) {
372     SubobjectAdjustment &Adjustment = Adjustments[I-1];
373     switch (Adjustment.Kind) {
374     case SubobjectAdjustment::DerivedToBaseAdjustment:
375       Object =
376           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
377                                 Adjustment.DerivedToBase.BasePath->path_begin(),
378                                 Adjustment.DerivedToBase.BasePath->path_end(),
379                                 /*NullCheckValue=*/ false);
380       break;
381 
382     case SubobjectAdjustment::FieldAdjustment: {
383       LValue LV = MakeAddrLValue(Object, E->getType());
384       LV = EmitLValueForField(LV, Adjustment.Field);
385       assert(LV.isSimple() &&
386              "materialized temporary field is not a simple lvalue");
387       Object = LV.getAddress();
388       break;
389     }
390 
391     case SubobjectAdjustment::MemberPointerAdjustment: {
392       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
393       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
394           *this, E, Object, Ptr, Adjustment.Ptr.MPT);
395       break;
396     }
397     }
398   }
399 
400   return MakeAddrLValue(Object, M->getType());
401 }
402 
403 RValue
404 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
405   // Emit the expression as an lvalue.
406   LValue LV = EmitLValue(E);
407   assert(LV.isSimple());
408   llvm::Value *Value = LV.getAddress();
409 
410   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
411     // C++11 [dcl.ref]p5 (as amended by core issue 453):
412     //   If a glvalue to which a reference is directly bound designates neither
413     //   an existing object or function of an appropriate type nor a region of
414     //   storage of suitable size and alignment to contain an object of the
415     //   reference's type, the behavior is undefined.
416     QualType Ty = E->getType();
417     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
418   }
419 
420   return RValue::get(Value);
421 }
422 
423 
424 /// getAccessedFieldNo - Given an encoded value and a result number, return the
425 /// input field number being accessed.
426 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
427                                              const llvm::Constant *Elts) {
428   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
429       ->getZExtValue();
430 }
431 
432 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
433 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
434                                     llvm::Value *High) {
435   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
436   llvm::Value *K47 = Builder.getInt64(47);
437   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
438   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
439   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
440   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
441   return Builder.CreateMul(B1, KMul);
442 }
443 
444 bool CodeGenFunction::sanitizePerformTypeCheck() const {
445   return SanOpts->Null | SanOpts->Alignment | SanOpts->ObjectSize |
446          SanOpts->Vptr;
447 }
448 
449 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
450                                     llvm::Value *Address,
451                                     QualType Ty, CharUnits Alignment) {
452   if (!sanitizePerformTypeCheck())
453     return;
454 
455   // Don't check pointers outside the default address space. The null check
456   // isn't correct, the object-size check isn't supported by LLVM, and we can't
457   // communicate the addresses to the runtime handler for the vptr check.
458   if (Address->getType()->getPointerAddressSpace())
459     return;
460 
461   llvm::Value *Cond = nullptr;
462   llvm::BasicBlock *Done = nullptr;
463 
464   if (SanOpts->Null) {
465     // The glvalue must not be an empty glvalue.
466     Cond = Builder.CreateICmpNE(
467         Address, llvm::Constant::getNullValue(Address->getType()));
468 
469     if (TCK == TCK_DowncastPointer) {
470       // When performing a pointer downcast, it's OK if the value is null.
471       // Skip the remaining checks in that case.
472       Done = createBasicBlock("null");
473       llvm::BasicBlock *Rest = createBasicBlock("not.null");
474       Builder.CreateCondBr(Cond, Rest, Done);
475       EmitBlock(Rest);
476       Cond = nullptr;
477     }
478   }
479 
480   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
481     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
482 
483     // The glvalue must refer to a large enough storage region.
484     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
485     //        to check this.
486     // FIXME: Get object address space
487     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
488     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
489     llvm::Value *Min = Builder.getFalse();
490     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
491     llvm::Value *LargeEnough =
492         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
493                               llvm::ConstantInt::get(IntPtrTy, Size));
494     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
495   }
496 
497   uint64_t AlignVal = 0;
498 
499   if (SanOpts->Alignment) {
500     AlignVal = Alignment.getQuantity();
501     if (!Ty->isIncompleteType() && !AlignVal)
502       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
503 
504     // The glvalue must be suitably aligned.
505     if (AlignVal) {
506       llvm::Value *Align =
507           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
508                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
509       llvm::Value *Aligned =
510         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
511       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
512     }
513   }
514 
515   if (Cond) {
516     llvm::Constant *StaticData[] = {
517       EmitCheckSourceLocation(Loc),
518       EmitCheckTypeDescriptor(Ty),
519       llvm::ConstantInt::get(SizeTy, AlignVal),
520       llvm::ConstantInt::get(Int8Ty, TCK)
521     };
522     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
523   }
524 
525   // If possible, check that the vptr indicates that there is a subobject of
526   // type Ty at offset zero within this object.
527   //
528   // C++11 [basic.life]p5,6:
529   //   [For storage which does not refer to an object within its lifetime]
530   //   The program has undefined behavior if:
531   //    -- the [pointer or glvalue] is used to access a non-static data member
532   //       or call a non-static member function
533   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
534   if (SanOpts->Vptr &&
535       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
536        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
537       RD && RD->hasDefinition() && RD->isDynamicClass()) {
538     // Compute a hash of the mangled name of the type.
539     //
540     // FIXME: This is not guaranteed to be deterministic! Move to a
541     //        fingerprinting mechanism once LLVM provides one. For the time
542     //        being the implementation happens to be deterministic.
543     SmallString<64> MangledName;
544     llvm::raw_svector_ostream Out(MangledName);
545     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
546                                                      Out);
547 
548     // Blacklist based on the mangled type.
549     if (!CGM.getSanitizerBlacklist().isBlacklistedType(Out.str())) {
550       llvm::hash_code TypeHash = hash_value(Out.str());
551 
552       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
553       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
554       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
555       llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
556       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
557       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
558 
559       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
560       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
561 
562       // Look the hash up in our cache.
563       const int CacheSize = 128;
564       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
565       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
566                                                      "__ubsan_vptr_type_cache");
567       llvm::Value *Slot = Builder.CreateAnd(Hash,
568                                             llvm::ConstantInt::get(IntPtrTy,
569                                                                    CacheSize-1));
570       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
571       llvm::Value *CacheVal =
572         Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
573 
574       // If the hash isn't in the cache, call a runtime handler to perform the
575       // hard work of checking whether the vptr is for an object of the right
576       // type. This will either fill in the cache and return, or produce a
577       // diagnostic.
578       llvm::Constant *StaticData[] = {
579         EmitCheckSourceLocation(Loc),
580         EmitCheckTypeDescriptor(Ty),
581         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
582         llvm::ConstantInt::get(Int8Ty, TCK)
583       };
584       llvm::Value *DynamicData[] = { Address, Hash };
585       EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
586                 "dynamic_type_cache_miss", StaticData, DynamicData,
587                 CRK_AlwaysRecoverable);
588     }
589   }
590 
591   if (Done) {
592     Builder.CreateBr(Done);
593     EmitBlock(Done);
594   }
595 }
596 
597 /// Determine whether this expression refers to a flexible array member in a
598 /// struct. We disable array bounds checks for such members.
599 static bool isFlexibleArrayMemberExpr(const Expr *E) {
600   // For compatibility with existing code, we treat arrays of length 0 or
601   // 1 as flexible array members.
602   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
603   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
604     if (CAT->getSize().ugt(1))
605       return false;
606   } else if (!isa<IncompleteArrayType>(AT))
607     return false;
608 
609   E = E->IgnoreParens();
610 
611   // A flexible array member must be the last member in the class.
612   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
613     // FIXME: If the base type of the member expr is not FD->getParent(),
614     // this should not be treated as a flexible array member access.
615     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
616       RecordDecl::field_iterator FI(
617           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
618       return ++FI == FD->getParent()->field_end();
619     }
620   }
621 
622   return false;
623 }
624 
625 /// If Base is known to point to the start of an array, return the length of
626 /// that array. Return 0 if the length cannot be determined.
627 static llvm::Value *getArrayIndexingBound(
628     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
629   // For the vector indexing extension, the bound is the number of elements.
630   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
631     IndexedType = Base->getType();
632     return CGF.Builder.getInt32(VT->getNumElements());
633   }
634 
635   Base = Base->IgnoreParens();
636 
637   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
638     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
639         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
640       IndexedType = CE->getSubExpr()->getType();
641       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
642       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
643         return CGF.Builder.getInt(CAT->getSize());
644       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
645         return CGF.getVLASize(VAT).first;
646     }
647   }
648 
649   return nullptr;
650 }
651 
652 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
653                                       llvm::Value *Index, QualType IndexType,
654                                       bool Accessed) {
655   assert(SanOpts->ArrayBounds &&
656          "should not be called unless adding bounds checks");
657 
658   QualType IndexedType;
659   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
660   if (!Bound)
661     return;
662 
663   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
664   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
665   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
666 
667   llvm::Constant *StaticData[] = {
668     EmitCheckSourceLocation(E->getExprLoc()),
669     EmitCheckTypeDescriptor(IndexedType),
670     EmitCheckTypeDescriptor(IndexType)
671   };
672   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
673                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
674   EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
675 }
676 
677 
678 CodeGenFunction::ComplexPairTy CodeGenFunction::
679 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
680                          bool isInc, bool isPre) {
681   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
682 
683   llvm::Value *NextVal;
684   if (isa<llvm::IntegerType>(InVal.first->getType())) {
685     uint64_t AmountVal = isInc ? 1 : -1;
686     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
687 
688     // Add the inc/dec to the real part.
689     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
690   } else {
691     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
692     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
693     if (!isInc)
694       FVal.changeSign();
695     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
696 
697     // Add the inc/dec to the real part.
698     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
699   }
700 
701   ComplexPairTy IncVal(NextVal, InVal.second);
702 
703   // Store the updated result through the lvalue.
704   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
705 
706   // If this is a postinc, return the value read from memory, otherwise use the
707   // updated value.
708   return isPre ? IncVal : InVal;
709 }
710 
711 
712 //===----------------------------------------------------------------------===//
713 //                         LValue Expression Emission
714 //===----------------------------------------------------------------------===//
715 
716 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
717   if (Ty->isVoidType())
718     return RValue::get(nullptr);
719 
720   switch (getEvaluationKind(Ty)) {
721   case TEK_Complex: {
722     llvm::Type *EltTy =
723       ConvertType(Ty->castAs<ComplexType>()->getElementType());
724     llvm::Value *U = llvm::UndefValue::get(EltTy);
725     return RValue::getComplex(std::make_pair(U, U));
726   }
727 
728   // If this is a use of an undefined aggregate type, the aggregate must have an
729   // identifiable address.  Just because the contents of the value are undefined
730   // doesn't mean that the address can't be taken and compared.
731   case TEK_Aggregate: {
732     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
733     return RValue::getAggregate(DestPtr);
734   }
735 
736   case TEK_Scalar:
737     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
738   }
739   llvm_unreachable("bad evaluation kind");
740 }
741 
742 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
743                                               const char *Name) {
744   ErrorUnsupported(E, Name);
745   return GetUndefRValue(E->getType());
746 }
747 
748 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
749                                               const char *Name) {
750   ErrorUnsupported(E, Name);
751   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
752   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
753 }
754 
755 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
756   LValue LV;
757   if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E))
758     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
759   else
760     LV = EmitLValue(E);
761   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
762     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
763                   E->getType(), LV.getAlignment());
764   return LV;
765 }
766 
767 /// EmitLValue - Emit code to compute a designator that specifies the location
768 /// of the expression.
769 ///
770 /// This can return one of two things: a simple address or a bitfield reference.
771 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
772 /// an LLVM pointer type.
773 ///
774 /// If this returns a bitfield reference, nothing about the pointee type of the
775 /// LLVM value is known: For example, it may not be a pointer to an integer.
776 ///
777 /// If this returns a normal address, and if the lvalue's C type is fixed size,
778 /// this method guarantees that the returned pointer type will point to an LLVM
779 /// type of the same size of the lvalue's type.  If the lvalue has a variable
780 /// length type, this is not possible.
781 ///
782 LValue CodeGenFunction::EmitLValue(const Expr *E) {
783   switch (E->getStmtClass()) {
784   default: return EmitUnsupportedLValue(E, "l-value expression");
785 
786   case Expr::ObjCPropertyRefExprClass:
787     llvm_unreachable("cannot emit a property reference directly");
788 
789   case Expr::ObjCSelectorExprClass:
790     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
791   case Expr::ObjCIsaExprClass:
792     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
793   case Expr::BinaryOperatorClass:
794     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
795   case Expr::CompoundAssignOperatorClass:
796     if (!E->getType()->isAnyComplexType())
797       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
798     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
799   case Expr::CallExprClass:
800   case Expr::CXXMemberCallExprClass:
801   case Expr::CXXOperatorCallExprClass:
802   case Expr::UserDefinedLiteralClass:
803     return EmitCallExprLValue(cast<CallExpr>(E));
804   case Expr::VAArgExprClass:
805     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
806   case Expr::DeclRefExprClass:
807     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
808   case Expr::ParenExprClass:
809     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
810   case Expr::GenericSelectionExprClass:
811     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
812   case Expr::PredefinedExprClass:
813     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
814   case Expr::StringLiteralClass:
815     return EmitStringLiteralLValue(cast<StringLiteral>(E));
816   case Expr::ObjCEncodeExprClass:
817     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
818   case Expr::PseudoObjectExprClass:
819     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
820   case Expr::InitListExprClass:
821     return EmitInitListLValue(cast<InitListExpr>(E));
822   case Expr::CXXTemporaryObjectExprClass:
823   case Expr::CXXConstructExprClass:
824     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
825   case Expr::CXXBindTemporaryExprClass:
826     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
827   case Expr::CXXUuidofExprClass:
828     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
829   case Expr::LambdaExprClass:
830     return EmitLambdaLValue(cast<LambdaExpr>(E));
831 
832   case Expr::ExprWithCleanupsClass: {
833     const auto *cleanups = cast<ExprWithCleanups>(E);
834     enterFullExpression(cleanups);
835     RunCleanupsScope Scope(*this);
836     return EmitLValue(cleanups->getSubExpr());
837   }
838 
839   case Expr::CXXDefaultArgExprClass:
840     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
841   case Expr::CXXDefaultInitExprClass: {
842     CXXDefaultInitExprScope Scope(*this);
843     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
844   }
845   case Expr::CXXTypeidExprClass:
846     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
847 
848   case Expr::ObjCMessageExprClass:
849     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
850   case Expr::ObjCIvarRefExprClass:
851     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
852   case Expr::StmtExprClass:
853     return EmitStmtExprLValue(cast<StmtExpr>(E));
854   case Expr::UnaryOperatorClass:
855     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
856   case Expr::ArraySubscriptExprClass:
857     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
858   case Expr::ExtVectorElementExprClass:
859     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
860   case Expr::MemberExprClass:
861     return EmitMemberExpr(cast<MemberExpr>(E));
862   case Expr::CompoundLiteralExprClass:
863     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
864   case Expr::ConditionalOperatorClass:
865     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
866   case Expr::BinaryConditionalOperatorClass:
867     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
868   case Expr::ChooseExprClass:
869     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
870   case Expr::OpaqueValueExprClass:
871     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
872   case Expr::SubstNonTypeTemplateParmExprClass:
873     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
874   case Expr::ImplicitCastExprClass:
875   case Expr::CStyleCastExprClass:
876   case Expr::CXXFunctionalCastExprClass:
877   case Expr::CXXStaticCastExprClass:
878   case Expr::CXXDynamicCastExprClass:
879   case Expr::CXXReinterpretCastExprClass:
880   case Expr::CXXConstCastExprClass:
881   case Expr::ObjCBridgedCastExprClass:
882     return EmitCastLValue(cast<CastExpr>(E));
883 
884   case Expr::MaterializeTemporaryExprClass:
885     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
886   }
887 }
888 
889 /// Given an object of the given canonical type, can we safely copy a
890 /// value out of it based on its initializer?
891 static bool isConstantEmittableObjectType(QualType type) {
892   assert(type.isCanonical());
893   assert(!type->isReferenceType());
894 
895   // Must be const-qualified but non-volatile.
896   Qualifiers qs = type.getLocalQualifiers();
897   if (!qs.hasConst() || qs.hasVolatile()) return false;
898 
899   // Otherwise, all object types satisfy this except C++ classes with
900   // mutable subobjects or non-trivial copy/destroy behavior.
901   if (const auto *RT = dyn_cast<RecordType>(type))
902     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
903       if (RD->hasMutableFields() || !RD->isTrivial())
904         return false;
905 
906   return true;
907 }
908 
909 /// Can we constant-emit a load of a reference to a variable of the
910 /// given type?  This is different from predicates like
911 /// Decl::isUsableInConstantExpressions because we do want it to apply
912 /// in situations that don't necessarily satisfy the language's rules
913 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
914 /// to do this with const float variables even if those variables
915 /// aren't marked 'constexpr'.
916 enum ConstantEmissionKind {
917   CEK_None,
918   CEK_AsReferenceOnly,
919   CEK_AsValueOrReference,
920   CEK_AsValueOnly
921 };
922 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
923   type = type.getCanonicalType();
924   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
925     if (isConstantEmittableObjectType(ref->getPointeeType()))
926       return CEK_AsValueOrReference;
927     return CEK_AsReferenceOnly;
928   }
929   if (isConstantEmittableObjectType(type))
930     return CEK_AsValueOnly;
931   return CEK_None;
932 }
933 
934 /// Try to emit a reference to the given value without producing it as
935 /// an l-value.  This is actually more than an optimization: we can't
936 /// produce an l-value for variables that we never actually captured
937 /// in a block or lambda, which means const int variables or constexpr
938 /// literals or similar.
939 CodeGenFunction::ConstantEmission
940 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
941   ValueDecl *value = refExpr->getDecl();
942 
943   // The value needs to be an enum constant or a constant variable.
944   ConstantEmissionKind CEK;
945   if (isa<ParmVarDecl>(value)) {
946     CEK = CEK_None;
947   } else if (auto *var = dyn_cast<VarDecl>(value)) {
948     CEK = checkVarTypeForConstantEmission(var->getType());
949   } else if (isa<EnumConstantDecl>(value)) {
950     CEK = CEK_AsValueOnly;
951   } else {
952     CEK = CEK_None;
953   }
954   if (CEK == CEK_None) return ConstantEmission();
955 
956   Expr::EvalResult result;
957   bool resultIsReference;
958   QualType resultType;
959 
960   // It's best to evaluate all the way as an r-value if that's permitted.
961   if (CEK != CEK_AsReferenceOnly &&
962       refExpr->EvaluateAsRValue(result, getContext())) {
963     resultIsReference = false;
964     resultType = refExpr->getType();
965 
966   // Otherwise, try to evaluate as an l-value.
967   } else if (CEK != CEK_AsValueOnly &&
968              refExpr->EvaluateAsLValue(result, getContext())) {
969     resultIsReference = true;
970     resultType = value->getType();
971 
972   // Failure.
973   } else {
974     return ConstantEmission();
975   }
976 
977   // In any case, if the initializer has side-effects, abandon ship.
978   if (result.HasSideEffects)
979     return ConstantEmission();
980 
981   // Emit as a constant.
982   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
983 
984   // Make sure we emit a debug reference to the global variable.
985   // This should probably fire even for
986   if (isa<VarDecl>(value)) {
987     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
988       EmitDeclRefExprDbgValue(refExpr, C);
989   } else {
990     assert(isa<EnumConstantDecl>(value));
991     EmitDeclRefExprDbgValue(refExpr, C);
992   }
993 
994   // If we emitted a reference constant, we need to dereference that.
995   if (resultIsReference)
996     return ConstantEmission::forReference(C);
997 
998   return ConstantEmission::forValue(C);
999 }
1000 
1001 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1002                                                SourceLocation Loc) {
1003   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1004                           lvalue.getAlignment().getQuantity(),
1005                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
1006                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
1007 }
1008 
1009 static bool hasBooleanRepresentation(QualType Ty) {
1010   if (Ty->isBooleanType())
1011     return true;
1012 
1013   if (const EnumType *ET = Ty->getAs<EnumType>())
1014     return ET->getDecl()->getIntegerType()->isBooleanType();
1015 
1016   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1017     return hasBooleanRepresentation(AT->getValueType());
1018 
1019   return false;
1020 }
1021 
1022 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1023                             llvm::APInt &Min, llvm::APInt &End,
1024                             bool StrictEnums) {
1025   const EnumType *ET = Ty->getAs<EnumType>();
1026   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1027                                 ET && !ET->getDecl()->isFixed();
1028   bool IsBool = hasBooleanRepresentation(Ty);
1029   if (!IsBool && !IsRegularCPlusPlusEnum)
1030     return false;
1031 
1032   if (IsBool) {
1033     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1034     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1035   } else {
1036     const EnumDecl *ED = ET->getDecl();
1037     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1038     unsigned Bitwidth = LTy->getScalarSizeInBits();
1039     unsigned NumNegativeBits = ED->getNumNegativeBits();
1040     unsigned NumPositiveBits = ED->getNumPositiveBits();
1041 
1042     if (NumNegativeBits) {
1043       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1044       assert(NumBits <= Bitwidth);
1045       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1046       Min = -End;
1047     } else {
1048       assert(NumPositiveBits <= Bitwidth);
1049       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1050       Min = llvm::APInt(Bitwidth, 0);
1051     }
1052   }
1053   return true;
1054 }
1055 
1056 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1057   llvm::APInt Min, End;
1058   if (!getRangeForType(*this, Ty, Min, End,
1059                        CGM.getCodeGenOpts().StrictEnums))
1060     return nullptr;
1061 
1062   llvm::MDBuilder MDHelper(getLLVMContext());
1063   return MDHelper.createRange(Min, End);
1064 }
1065 
1066 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1067                                                unsigned Alignment, QualType Ty,
1068                                                SourceLocation Loc,
1069                                                llvm::MDNode *TBAAInfo,
1070                                                QualType TBAABaseType,
1071                                                uint64_t TBAAOffset) {
1072   // For better performance, handle vector loads differently.
1073   if (Ty->isVectorType()) {
1074     llvm::Value *V;
1075     const llvm::Type *EltTy =
1076     cast<llvm::PointerType>(Addr->getType())->getElementType();
1077 
1078     const auto *VTy = cast<llvm::VectorType>(EltTy);
1079 
1080     // Handle vectors of size 3, like size 4 for better performance.
1081     if (VTy->getNumElements() == 3) {
1082 
1083       // Bitcast to vec4 type.
1084       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1085                                                          4);
1086       llvm::PointerType *ptVec4Ty =
1087       llvm::PointerType::get(vec4Ty,
1088                              (cast<llvm::PointerType>(
1089                                       Addr->getType()))->getAddressSpace());
1090       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1091                                                 "castToVec4");
1092       // Now load value.
1093       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1094 
1095       // Shuffle vector to get vec3.
1096       llvm::Constant *Mask[] = {
1097         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1098         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1099         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1100       };
1101 
1102       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1103       V = Builder.CreateShuffleVector(LoadVal,
1104                                       llvm::UndefValue::get(vec4Ty),
1105                                       MaskV, "extractVec");
1106       return EmitFromMemory(V, Ty);
1107     }
1108   }
1109 
1110   // Atomic operations have to be done on integral types.
1111   if (Ty->isAtomicType()) {
1112     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1113                                      CharUnits::fromQuantity(Alignment),
1114                                      getContext(), TBAAInfo);
1115     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1116   }
1117 
1118   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1119   if (Volatile)
1120     Load->setVolatile(true);
1121   if (Alignment)
1122     Load->setAlignment(Alignment);
1123   if (TBAAInfo) {
1124     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1125                                                       TBAAOffset);
1126     if (TBAAPath)
1127       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1128   }
1129 
1130   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1131       (SanOpts->Enum && Ty->getAs<EnumType>())) {
1132     llvm::APInt Min, End;
1133     if (getRangeForType(*this, Ty, Min, End, true)) {
1134       --End;
1135       llvm::Value *Check;
1136       if (!Min)
1137         Check = Builder.CreateICmpULE(
1138           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1139       else {
1140         llvm::Value *Upper = Builder.CreateICmpSLE(
1141           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1142         llvm::Value *Lower = Builder.CreateICmpSGE(
1143           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1144         Check = Builder.CreateAnd(Upper, Lower);
1145       }
1146       llvm::Constant *StaticArgs[] = {
1147         EmitCheckSourceLocation(Loc),
1148         EmitCheckTypeDescriptor(Ty)
1149       };
1150       EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load),
1151                 CRK_Recoverable);
1152     }
1153   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1154     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1155       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1156 
1157   return EmitFromMemory(Load, Ty);
1158 }
1159 
1160 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1161   // Bool has a different representation in memory than in registers.
1162   if (hasBooleanRepresentation(Ty)) {
1163     // This should really always be an i1, but sometimes it's already
1164     // an i8, and it's awkward to track those cases down.
1165     if (Value->getType()->isIntegerTy(1))
1166       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1167     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1168            "wrong value rep of bool");
1169   }
1170 
1171   return Value;
1172 }
1173 
1174 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1175   // Bool has a different representation in memory than in registers.
1176   if (hasBooleanRepresentation(Ty)) {
1177     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1178            "wrong value rep of bool");
1179     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1180   }
1181 
1182   return Value;
1183 }
1184 
1185 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1186                                         bool Volatile, unsigned Alignment,
1187                                         QualType Ty, llvm::MDNode *TBAAInfo,
1188                                         bool isInit, QualType TBAABaseType,
1189                                         uint64_t TBAAOffset) {
1190 
1191   // Handle vectors differently to get better performance.
1192   if (Ty->isVectorType()) {
1193     llvm::Type *SrcTy = Value->getType();
1194     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1195     // Handle vec3 special.
1196     if (VecTy->getNumElements() == 3) {
1197       llvm::LLVMContext &VMContext = getLLVMContext();
1198 
1199       // Our source is a vec3, do a shuffle vector to make it a vec4.
1200       SmallVector<llvm::Constant*, 4> Mask;
1201       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1202                                             0));
1203       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1204                                             1));
1205       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1206                                             2));
1207       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1208 
1209       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1210       Value = Builder.CreateShuffleVector(Value,
1211                                           llvm::UndefValue::get(VecTy),
1212                                           MaskV, "extractVec");
1213       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1214     }
1215     auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
1216     if (DstPtr->getElementType() != SrcTy) {
1217       llvm::Type *MemTy =
1218       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1219       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1220     }
1221   }
1222 
1223   Value = EmitToMemory(Value, Ty);
1224 
1225   if (Ty->isAtomicType()) {
1226     EmitAtomicStore(RValue::get(Value),
1227                     LValue::MakeAddr(Addr, Ty,
1228                                      CharUnits::fromQuantity(Alignment),
1229                                      getContext(), TBAAInfo),
1230                     isInit);
1231     return;
1232   }
1233 
1234   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1235   if (Alignment)
1236     Store->setAlignment(Alignment);
1237   if (TBAAInfo) {
1238     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1239                                                       TBAAOffset);
1240     if (TBAAPath)
1241       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1242   }
1243 }
1244 
1245 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1246                                         bool isInit) {
1247   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1248                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1249                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1250                     lvalue.getTBAAOffset());
1251 }
1252 
1253 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1254 /// method emits the address of the lvalue, then loads the result as an rvalue,
1255 /// returning the rvalue.
1256 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1257   if (LV.isObjCWeak()) {
1258     // load of a __weak object.
1259     llvm::Value *AddrWeakObj = LV.getAddress();
1260     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1261                                                              AddrWeakObj));
1262   }
1263   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1264     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1265     Object = EmitObjCConsumeObject(LV.getType(), Object);
1266     return RValue::get(Object);
1267   }
1268 
1269   if (LV.isSimple()) {
1270     assert(!LV.getType()->isFunctionType());
1271 
1272     // Everything needs a load.
1273     return RValue::get(EmitLoadOfScalar(LV, Loc));
1274   }
1275 
1276   if (LV.isVectorElt()) {
1277     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1278                                               LV.isVolatileQualified());
1279     Load->setAlignment(LV.getAlignment().getQuantity());
1280     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1281                                                     "vecext"));
1282   }
1283 
1284   // If this is a reference to a subset of the elements of a vector, either
1285   // shuffle the input or extract/insert them as appropriate.
1286   if (LV.isExtVectorElt())
1287     return EmitLoadOfExtVectorElementLValue(LV);
1288 
1289   // Global Register variables always invoke intrinsics
1290   if (LV.isGlobalReg())
1291     return EmitLoadOfGlobalRegLValue(LV);
1292 
1293   assert(LV.isBitField() && "Unknown LValue type!");
1294   return EmitLoadOfBitfieldLValue(LV);
1295 }
1296 
1297 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1298   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1299 
1300   // Get the output type.
1301   llvm::Type *ResLTy = ConvertType(LV.getType());
1302 
1303   llvm::Value *Ptr = LV.getBitFieldAddr();
1304   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1305                                         "bf.load");
1306   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1307 
1308   if (Info.IsSigned) {
1309     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1310     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1311     if (HighBits)
1312       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1313     if (Info.Offset + HighBits)
1314       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1315   } else {
1316     if (Info.Offset)
1317       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1318     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1319       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1320                                                               Info.Size),
1321                               "bf.clear");
1322   }
1323   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1324 
1325   return RValue::get(Val);
1326 }
1327 
1328 // If this is a reference to a subset of the elements of a vector, create an
1329 // appropriate shufflevector.
1330 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1331   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1332                                             LV.isVolatileQualified());
1333   Load->setAlignment(LV.getAlignment().getQuantity());
1334   llvm::Value *Vec = Load;
1335 
1336   const llvm::Constant *Elts = LV.getExtVectorElts();
1337 
1338   // If the result of the expression is a non-vector type, we must be extracting
1339   // a single element.  Just codegen as an extractelement.
1340   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1341   if (!ExprVT) {
1342     unsigned InIdx = getAccessedFieldNo(0, Elts);
1343     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1344     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1345   }
1346 
1347   // Always use shuffle vector to try to retain the original program structure
1348   unsigned NumResultElts = ExprVT->getNumElements();
1349 
1350   SmallVector<llvm::Constant*, 4> Mask;
1351   for (unsigned i = 0; i != NumResultElts; ++i)
1352     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1353 
1354   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1355   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1356                                     MaskV);
1357   return RValue::get(Vec);
1358 }
1359 
1360 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1361 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1362   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1363          "Bad type for register variable");
1364   llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(LV.getGlobalReg());
1365   assert(RegName && "Register LValue is not metadata");
1366 
1367   // We accept integer and pointer types only
1368   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1369   llvm::Type *Ty = OrigTy;
1370   if (OrigTy->isPointerTy())
1371     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1372   llvm::Type *Types[] = { Ty };
1373 
1374   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1375   llvm::Value *Call = Builder.CreateCall(F, RegName);
1376   if (OrigTy->isPointerTy())
1377     Call = Builder.CreateIntToPtr(Call, OrigTy);
1378   return RValue::get(Call);
1379 }
1380 
1381 
1382 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1383 /// lvalue, where both are guaranteed to the have the same type, and that type
1384 /// is 'Ty'.
1385 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1386                                              bool isInit) {
1387   if (!Dst.isSimple()) {
1388     if (Dst.isVectorElt()) {
1389       // Read/modify/write the vector, inserting the new element.
1390       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1391                                                 Dst.isVolatileQualified());
1392       Load->setAlignment(Dst.getAlignment().getQuantity());
1393       llvm::Value *Vec = Load;
1394       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1395                                         Dst.getVectorIdx(), "vecins");
1396       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1397                                                    Dst.isVolatileQualified());
1398       Store->setAlignment(Dst.getAlignment().getQuantity());
1399       return;
1400     }
1401 
1402     // If this is an update of extended vector elements, insert them as
1403     // appropriate.
1404     if (Dst.isExtVectorElt())
1405       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1406 
1407     if (Dst.isGlobalReg())
1408       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1409 
1410     assert(Dst.isBitField() && "Unknown LValue type");
1411     return EmitStoreThroughBitfieldLValue(Src, Dst);
1412   }
1413 
1414   // There's special magic for assigning into an ARC-qualified l-value.
1415   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1416     switch (Lifetime) {
1417     case Qualifiers::OCL_None:
1418       llvm_unreachable("present but none");
1419 
1420     case Qualifiers::OCL_ExplicitNone:
1421       // nothing special
1422       break;
1423 
1424     case Qualifiers::OCL_Strong:
1425       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1426       return;
1427 
1428     case Qualifiers::OCL_Weak:
1429       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1430       return;
1431 
1432     case Qualifiers::OCL_Autoreleasing:
1433       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1434                                                      Src.getScalarVal()));
1435       // fall into the normal path
1436       break;
1437     }
1438   }
1439 
1440   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1441     // load of a __weak object.
1442     llvm::Value *LvalueDst = Dst.getAddress();
1443     llvm::Value *src = Src.getScalarVal();
1444      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1445     return;
1446   }
1447 
1448   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1449     // load of a __strong object.
1450     llvm::Value *LvalueDst = Dst.getAddress();
1451     llvm::Value *src = Src.getScalarVal();
1452     if (Dst.isObjCIvar()) {
1453       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1454       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1455       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1456       llvm::Value *dst = RHS;
1457       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1458       llvm::Value *LHS =
1459         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1460       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1461       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1462                                               BytesBetween);
1463     } else if (Dst.isGlobalObjCRef()) {
1464       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1465                                                 Dst.isThreadLocalRef());
1466     }
1467     else
1468       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1469     return;
1470   }
1471 
1472   assert(Src.isScalar() && "Can't emit an agg store with this method");
1473   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1474 }
1475 
1476 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1477                                                      llvm::Value **Result) {
1478   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1479   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1480   llvm::Value *Ptr = Dst.getBitFieldAddr();
1481 
1482   // Get the source value, truncated to the width of the bit-field.
1483   llvm::Value *SrcVal = Src.getScalarVal();
1484 
1485   // Cast the source to the storage type and shift it into place.
1486   SrcVal = Builder.CreateIntCast(SrcVal,
1487                                  Ptr->getType()->getPointerElementType(),
1488                                  /*IsSigned=*/false);
1489   llvm::Value *MaskedVal = SrcVal;
1490 
1491   // See if there are other bits in the bitfield's storage we'll need to load
1492   // and mask together with source before storing.
1493   if (Info.StorageSize != Info.Size) {
1494     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1495     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1496                                           "bf.load");
1497     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1498 
1499     // Mask the source value as needed.
1500     if (!hasBooleanRepresentation(Dst.getType()))
1501       SrcVal = Builder.CreateAnd(SrcVal,
1502                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1503                                                             Info.Size),
1504                                  "bf.value");
1505     MaskedVal = SrcVal;
1506     if (Info.Offset)
1507       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1508 
1509     // Mask out the original value.
1510     Val = Builder.CreateAnd(Val,
1511                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1512                                                      Info.Offset,
1513                                                      Info.Offset + Info.Size),
1514                             "bf.clear");
1515 
1516     // Or together the unchanged values and the source value.
1517     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1518   } else {
1519     assert(Info.Offset == 0);
1520   }
1521 
1522   // Write the new value back out.
1523   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1524                                                Dst.isVolatileQualified());
1525   Store->setAlignment(Info.StorageAlignment);
1526 
1527   // Return the new value of the bit-field, if requested.
1528   if (Result) {
1529     llvm::Value *ResultVal = MaskedVal;
1530 
1531     // Sign extend the value if needed.
1532     if (Info.IsSigned) {
1533       assert(Info.Size <= Info.StorageSize);
1534       unsigned HighBits = Info.StorageSize - Info.Size;
1535       if (HighBits) {
1536         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1537         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1538       }
1539     }
1540 
1541     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1542                                       "bf.result.cast");
1543     *Result = EmitFromMemory(ResultVal, Dst.getType());
1544   }
1545 }
1546 
1547 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1548                                                                LValue Dst) {
1549   // This access turns into a read/modify/write of the vector.  Load the input
1550   // value now.
1551   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1552                                             Dst.isVolatileQualified());
1553   Load->setAlignment(Dst.getAlignment().getQuantity());
1554   llvm::Value *Vec = Load;
1555   const llvm::Constant *Elts = Dst.getExtVectorElts();
1556 
1557   llvm::Value *SrcVal = Src.getScalarVal();
1558 
1559   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1560     unsigned NumSrcElts = VTy->getNumElements();
1561     unsigned NumDstElts =
1562        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1563     if (NumDstElts == NumSrcElts) {
1564       // Use shuffle vector is the src and destination are the same number of
1565       // elements and restore the vector mask since it is on the side it will be
1566       // stored.
1567       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1568       for (unsigned i = 0; i != NumSrcElts; ++i)
1569         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1570 
1571       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1572       Vec = Builder.CreateShuffleVector(SrcVal,
1573                                         llvm::UndefValue::get(Vec->getType()),
1574                                         MaskV);
1575     } else if (NumDstElts > NumSrcElts) {
1576       // Extended the source vector to the same length and then shuffle it
1577       // into the destination.
1578       // FIXME: since we're shuffling with undef, can we just use the indices
1579       //        into that?  This could be simpler.
1580       SmallVector<llvm::Constant*, 4> ExtMask;
1581       for (unsigned i = 0; i != NumSrcElts; ++i)
1582         ExtMask.push_back(Builder.getInt32(i));
1583       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1584       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1585       llvm::Value *ExtSrcVal =
1586         Builder.CreateShuffleVector(SrcVal,
1587                                     llvm::UndefValue::get(SrcVal->getType()),
1588                                     ExtMaskV);
1589       // build identity
1590       SmallVector<llvm::Constant*, 4> Mask;
1591       for (unsigned i = 0; i != NumDstElts; ++i)
1592         Mask.push_back(Builder.getInt32(i));
1593 
1594       // When the vector size is odd and .odd or .hi is used, the last element
1595       // of the Elts constant array will be one past the size of the vector.
1596       // Ignore the last element here, if it is greater than the mask size.
1597       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1598         NumSrcElts--;
1599 
1600       // modify when what gets shuffled in
1601       for (unsigned i = 0; i != NumSrcElts; ++i)
1602         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1603       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1604       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1605     } else {
1606       // We should never shorten the vector
1607       llvm_unreachable("unexpected shorten vector length");
1608     }
1609   } else {
1610     // If the Src is a scalar (not a vector) it must be updating one element.
1611     unsigned InIdx = getAccessedFieldNo(0, Elts);
1612     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1613     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1614   }
1615 
1616   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1617                                                Dst.isVolatileQualified());
1618   Store->setAlignment(Dst.getAlignment().getQuantity());
1619 }
1620 
1621 /// @brief Store of global named registers are always calls to intrinsics.
1622 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1623   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1624          "Bad type for register variable");
1625   llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(Dst.getGlobalReg());
1626   assert(RegName && "Register LValue is not metadata");
1627 
1628   // We accept integer and pointer types only
1629   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1630   llvm::Type *Ty = OrigTy;
1631   if (OrigTy->isPointerTy())
1632     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1633   llvm::Type *Types[] = { Ty };
1634 
1635   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1636   llvm::Value *Value = Src.getScalarVal();
1637   if (OrigTy->isPointerTy())
1638     Value = Builder.CreatePtrToInt(Value, Ty);
1639   Builder.CreateCall2(F, RegName, Value);
1640 }
1641 
1642 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1643 // generating write-barries API. It is currently a global, ivar,
1644 // or neither.
1645 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1646                                  LValue &LV,
1647                                  bool IsMemberAccess=false) {
1648   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1649     return;
1650 
1651   if (isa<ObjCIvarRefExpr>(E)) {
1652     QualType ExpTy = E->getType();
1653     if (IsMemberAccess && ExpTy->isPointerType()) {
1654       // If ivar is a structure pointer, assigning to field of
1655       // this struct follows gcc's behavior and makes it a non-ivar
1656       // writer-barrier conservatively.
1657       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1658       if (ExpTy->isRecordType()) {
1659         LV.setObjCIvar(false);
1660         return;
1661       }
1662     }
1663     LV.setObjCIvar(true);
1664     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1665     LV.setBaseIvarExp(Exp->getBase());
1666     LV.setObjCArray(E->getType()->isArrayType());
1667     return;
1668   }
1669 
1670   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1671     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1672       if (VD->hasGlobalStorage()) {
1673         LV.setGlobalObjCRef(true);
1674         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1675       }
1676     }
1677     LV.setObjCArray(E->getType()->isArrayType());
1678     return;
1679   }
1680 
1681   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1682     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1683     return;
1684   }
1685 
1686   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1687     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1688     if (LV.isObjCIvar()) {
1689       // If cast is to a structure pointer, follow gcc's behavior and make it
1690       // a non-ivar write-barrier.
1691       QualType ExpTy = E->getType();
1692       if (ExpTy->isPointerType())
1693         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1694       if (ExpTy->isRecordType())
1695         LV.setObjCIvar(false);
1696     }
1697     return;
1698   }
1699 
1700   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1701     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1702     return;
1703   }
1704 
1705   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1706     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1707     return;
1708   }
1709 
1710   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1711     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1712     return;
1713   }
1714 
1715   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1716     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1717     return;
1718   }
1719 
1720   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1721     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1722     if (LV.isObjCIvar() && !LV.isObjCArray())
1723       // Using array syntax to assigning to what an ivar points to is not
1724       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1725       LV.setObjCIvar(false);
1726     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1727       // Using array syntax to assigning to what global points to is not
1728       // same as assigning to the global itself. {id *G;} G[i] = 0;
1729       LV.setGlobalObjCRef(false);
1730     return;
1731   }
1732 
1733   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1734     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1735     // We don't know if member is an 'ivar', but this flag is looked at
1736     // only in the context of LV.isObjCIvar().
1737     LV.setObjCArray(E->getType()->isArrayType());
1738     return;
1739   }
1740 }
1741 
1742 static llvm::Value *
1743 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1744                                 llvm::Value *V, llvm::Type *IRType,
1745                                 StringRef Name = StringRef()) {
1746   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1747   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1748 }
1749 
1750 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1751                                       const Expr *E, const VarDecl *VD) {
1752   QualType T = E->getType();
1753 
1754   // If it's thread_local, emit a call to its wrapper function instead.
1755   if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1756     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1757 
1758   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1759   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1760   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1761   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1762   LValue LV;
1763   if (VD->getType()->isReferenceType()) {
1764     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1765     LI->setAlignment(Alignment.getQuantity());
1766     V = LI;
1767     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1768   } else {
1769     LV = CGF.MakeAddrLValue(V, T, Alignment);
1770   }
1771   setObjCGCLValueClass(CGF.getContext(), E, LV);
1772   return LV;
1773 }
1774 
1775 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1776                                      const Expr *E, const FunctionDecl *FD) {
1777   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1778   if (!FD->hasPrototype()) {
1779     if (const FunctionProtoType *Proto =
1780             FD->getType()->getAs<FunctionProtoType>()) {
1781       // Ugly case: for a K&R-style definition, the type of the definition
1782       // isn't the same as the type of a use.  Correct for this with a
1783       // bitcast.
1784       QualType NoProtoType =
1785           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1786       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1787       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1788     }
1789   }
1790   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1791   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1792 }
1793 
1794 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1795                                       llvm::Value *ThisValue) {
1796   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1797   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1798   return CGF.EmitLValueForField(LV, FD);
1799 }
1800 
1801 /// Named Registers are named metadata pointing to the register name
1802 /// which will be read from/written to as an argument to the intrinsic
1803 /// @llvm.read/write_register.
1804 /// So far, only the name is being passed down, but other options such as
1805 /// register type, allocation type or even optimization options could be
1806 /// passed down via the metadata node.
1807 static LValue EmitGlobalNamedRegister(const VarDecl *VD,
1808                                       CodeGenModule &CGM,
1809                                       CharUnits Alignment) {
1810   SmallString<64> Name("llvm.named.register.");
1811   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
1812   assert(Asm->getLabel().size() < 64-Name.size() &&
1813       "Register name too big");
1814   Name.append(Asm->getLabel());
1815   llvm::NamedMDNode *M =
1816     CGM.getModule().getOrInsertNamedMetadata(Name);
1817   if (M->getNumOperands() == 0) {
1818     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
1819                                               Asm->getLabel());
1820     llvm::Value *Ops[] = { Str };
1821     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
1822   }
1823   return LValue::MakeGlobalReg(M->getOperand(0), VD->getType(), Alignment);
1824 }
1825 
1826 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1827   const NamedDecl *ND = E->getDecl();
1828   CharUnits Alignment = getContext().getDeclAlign(ND);
1829   QualType T = E->getType();
1830 
1831   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1832     // Global Named registers access via intrinsics only
1833     if (VD->getStorageClass() == SC_Register &&
1834         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
1835       return EmitGlobalNamedRegister(VD, CGM, Alignment);
1836 
1837     // A DeclRefExpr for a reference initialized by a constant expression can
1838     // appear without being odr-used. Directly emit the constant initializer.
1839     const Expr *Init = VD->getAnyInitializer(VD);
1840     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1841         VD->isUsableInConstantExpressions(getContext()) &&
1842         VD->checkInitIsICE()) {
1843       llvm::Constant *Val =
1844         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1845       assert(Val && "failed to emit reference constant expression");
1846       // FIXME: Eventually we will want to emit vector element references.
1847       return MakeAddrLValue(Val, T, Alignment);
1848     }
1849   }
1850 
1851   // FIXME: We should be able to assert this for FunctionDecls as well!
1852   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1853   // those with a valid source location.
1854   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1855           !E->getLocation().isValid()) &&
1856          "Should not use decl without marking it used!");
1857 
1858   if (ND->hasAttr<WeakRefAttr>()) {
1859     const auto *VD = cast<ValueDecl>(ND);
1860     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1861     return MakeAddrLValue(Aliasee, T, Alignment);
1862   }
1863 
1864   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1865     // Check if this is a global variable.
1866     if (VD->hasLinkage() || VD->isStaticDataMember())
1867       return EmitGlobalVarDeclLValue(*this, E, VD);
1868 
1869     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1870 
1871     llvm::Value *V = LocalDeclMap.lookup(VD);
1872     if (!V && VD->isStaticLocal())
1873       V = CGM.getStaticLocalDeclAddress(VD);
1874 
1875     // Use special handling for lambdas.
1876     if (!V) {
1877       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1878         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1879       } else if (CapturedStmtInfo) {
1880         if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1881           return EmitCapturedFieldLValue(*this, FD,
1882                                          CapturedStmtInfo->getContextValue());
1883       }
1884 
1885       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1886       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1887                             T, Alignment);
1888     }
1889 
1890     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1891 
1892     if (isBlockVariable)
1893       V = BuildBlockByrefAddress(V, VD);
1894 
1895     LValue LV;
1896     if (VD->getType()->isReferenceType()) {
1897       llvm::LoadInst *LI = Builder.CreateLoad(V);
1898       LI->setAlignment(Alignment.getQuantity());
1899       V = LI;
1900       LV = MakeNaturalAlignAddrLValue(V, T);
1901     } else {
1902       LV = MakeAddrLValue(V, T, Alignment);
1903     }
1904 
1905     bool isLocalStorage = VD->hasLocalStorage();
1906 
1907     bool NonGCable = isLocalStorage &&
1908                      !VD->getType()->isReferenceType() &&
1909                      !isBlockVariable;
1910     if (NonGCable) {
1911       LV.getQuals().removeObjCGCAttr();
1912       LV.setNonGC(true);
1913     }
1914 
1915     bool isImpreciseLifetime =
1916       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1917     if (isImpreciseLifetime)
1918       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1919     setObjCGCLValueClass(getContext(), E, LV);
1920     return LV;
1921   }
1922 
1923   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1924     return EmitFunctionDeclLValue(*this, E, FD);
1925 
1926   llvm_unreachable("Unhandled DeclRefExpr");
1927 }
1928 
1929 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1930   // __extension__ doesn't affect lvalue-ness.
1931   if (E->getOpcode() == UO_Extension)
1932     return EmitLValue(E->getSubExpr());
1933 
1934   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1935   switch (E->getOpcode()) {
1936   default: llvm_unreachable("Unknown unary operator lvalue!");
1937   case UO_Deref: {
1938     QualType T = E->getSubExpr()->getType()->getPointeeType();
1939     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1940 
1941     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1942     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1943 
1944     // We should not generate __weak write barrier on indirect reference
1945     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1946     // But, we continue to generate __strong write barrier on indirect write
1947     // into a pointer to object.
1948     if (getLangOpts().ObjC1 &&
1949         getLangOpts().getGC() != LangOptions::NonGC &&
1950         LV.isObjCWeak())
1951       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1952     return LV;
1953   }
1954   case UO_Real:
1955   case UO_Imag: {
1956     LValue LV = EmitLValue(E->getSubExpr());
1957     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1958     llvm::Value *Addr = LV.getAddress();
1959 
1960     // __real is valid on scalars.  This is a faster way of testing that.
1961     // __imag can only produce an rvalue on scalars.
1962     if (E->getOpcode() == UO_Real &&
1963         !cast<llvm::PointerType>(Addr->getType())
1964            ->getElementType()->isStructTy()) {
1965       assert(E->getSubExpr()->getType()->isArithmeticType());
1966       return LV;
1967     }
1968 
1969     assert(E->getSubExpr()->getType()->isAnyComplexType());
1970 
1971     unsigned Idx = E->getOpcode() == UO_Imag;
1972     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1973                                                   Idx, "idx"),
1974                           ExprTy);
1975   }
1976   case UO_PreInc:
1977   case UO_PreDec: {
1978     LValue LV = EmitLValue(E->getSubExpr());
1979     bool isInc = E->getOpcode() == UO_PreInc;
1980 
1981     if (E->getType()->isAnyComplexType())
1982       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1983     else
1984       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1985     return LV;
1986   }
1987   }
1988 }
1989 
1990 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1991   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1992                         E->getType());
1993 }
1994 
1995 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1996   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1997                         E->getType());
1998 }
1999 
2000 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
2001                                     SmallString<32>& Target) {
2002   Target.resize(CharByteWidth * (Source.size() + 1));
2003   char *ResultPtr = &Target[0];
2004   const UTF8 *ErrorPtr;
2005   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
2006   (void)success;
2007   assert(success);
2008   Target.resize(ResultPtr - &Target[0]);
2009 }
2010 
2011 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2012   switch (E->getIdentType()) {
2013   default:
2014     return EmitUnsupportedLValue(E, "predefined expression");
2015 
2016   case PredefinedExpr::Func:
2017   case PredefinedExpr::Function:
2018   case PredefinedExpr::LFunction:
2019   case PredefinedExpr::FuncDName:
2020   case PredefinedExpr::FuncSig:
2021   case PredefinedExpr::PrettyFunction: {
2022     PredefinedExpr::IdentType IdentType = E->getIdentType();
2023     std::string GVName;
2024 
2025     // FIXME: We should use the string literal mangling for the Microsoft C++
2026     // ABI so that strings get merged.
2027     switch (IdentType) {
2028     default: llvm_unreachable("Invalid type");
2029     case PredefinedExpr::Func:           GVName = "__func__."; break;
2030     case PredefinedExpr::Function:       GVName = "__FUNCTION__."; break;
2031     case PredefinedExpr::FuncDName:      GVName = "__FUNCDNAME__."; break;
2032     case PredefinedExpr::FuncSig:        GVName = "__FUNCSIG__."; break;
2033     case PredefinedExpr::LFunction:      GVName = "L__FUNCTION__."; break;
2034     case PredefinedExpr::PrettyFunction: GVName = "__PRETTY_FUNCTION__."; break;
2035     }
2036 
2037     StringRef FnName = CurFn->getName();
2038     if (FnName.startswith("\01"))
2039       FnName = FnName.substr(1);
2040     GVName += FnName;
2041 
2042     // If this is outside of a function use the top level decl.
2043     const Decl *CurDecl = CurCodeDecl;
2044     if (!CurDecl || isa<VarDecl>(CurDecl))
2045       CurDecl = getContext().getTranslationUnitDecl();
2046 
2047     const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
2048     std::string FunctionName;
2049     if (isa<BlockDecl>(CurDecl)) {
2050       // Blocks use the mangled function name.
2051       // FIXME: ComputeName should handle blocks.
2052       FunctionName = FnName.str();
2053     } else if (isa<CapturedDecl>(CurDecl)) {
2054       // For a captured statement, the function name is its enclosing
2055       // function name not the one compiler generated.
2056       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2057     } else {
2058       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2059       assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
2060                  FunctionName.size() &&
2061              "Computed __func__ length differs from type!");
2062     }
2063 
2064     llvm::Constant *C;
2065     if (ElemType->isWideCharType()) {
2066       SmallString<32> RawChars;
2067       ConvertUTF8ToWideString(
2068           getContext().getTypeSizeInChars(ElemType).getQuantity(), FunctionName,
2069           RawChars);
2070       StringLiteral *SL = StringLiteral::Create(
2071           getContext(), RawChars, StringLiteral::Wide,
2072           /*Pascal = */ false, E->getType(), E->getLocation());
2073       C = CGM.GetAddrOfConstantStringFromLiteral(SL);
2074     } else {
2075       C = CGM.GetAddrOfConstantCString(FunctionName, GVName.c_str(), 1);
2076     }
2077     return MakeAddrLValue(C, E->getType());
2078   }
2079   }
2080 }
2081 
2082 /// Emit a type description suitable for use by a runtime sanitizer library. The
2083 /// format of a type descriptor is
2084 ///
2085 /// \code
2086 ///   { i16 TypeKind, i16 TypeInfo }
2087 /// \endcode
2088 ///
2089 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2090 /// integer, 1 for a floating point value, and -1 for anything else.
2091 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2092   // Only emit each type's descriptor once.
2093   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2094     return C;
2095 
2096   uint16_t TypeKind = -1;
2097   uint16_t TypeInfo = 0;
2098 
2099   if (T->isIntegerType()) {
2100     TypeKind = 0;
2101     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2102                (T->isSignedIntegerType() ? 1 : 0);
2103   } else if (T->isFloatingType()) {
2104     TypeKind = 1;
2105     TypeInfo = getContext().getTypeSize(T);
2106   }
2107 
2108   // Format the type name as if for a diagnostic, including quotes and
2109   // optionally an 'aka'.
2110   SmallString<32> Buffer;
2111   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2112                                     (intptr_t)T.getAsOpaquePtr(),
2113                                     StringRef(), StringRef(), None, Buffer,
2114                                     ArrayRef<intptr_t>());
2115 
2116   llvm::Constant *Components[] = {
2117     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2118     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2119   };
2120   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2121 
2122   auto *GV = new llvm::GlobalVariable(
2123       CGM.getModule(), Descriptor->getType(),
2124       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2125   GV->setUnnamedAddr(true);
2126 
2127   // Remember the descriptor for this type.
2128   CGM.setTypeDescriptorInMap(T, GV);
2129 
2130   return GV;
2131 }
2132 
2133 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2134   llvm::Type *TargetTy = IntPtrTy;
2135 
2136   // Floating-point types which fit into intptr_t are bitcast to integers
2137   // and then passed directly (after zero-extension, if necessary).
2138   if (V->getType()->isFloatingPointTy()) {
2139     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2140     if (Bits <= TargetTy->getIntegerBitWidth())
2141       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2142                                                          Bits));
2143   }
2144 
2145   // Integers which fit in intptr_t are zero-extended and passed directly.
2146   if (V->getType()->isIntegerTy() &&
2147       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2148     return Builder.CreateZExt(V, TargetTy);
2149 
2150   // Pointers are passed directly, everything else is passed by address.
2151   if (!V->getType()->isPointerTy()) {
2152     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2153     Builder.CreateStore(V, Ptr);
2154     V = Ptr;
2155   }
2156   return Builder.CreatePtrToInt(V, TargetTy);
2157 }
2158 
2159 /// \brief Emit a representation of a SourceLocation for passing to a handler
2160 /// in a sanitizer runtime library. The format for this data is:
2161 /// \code
2162 ///   struct SourceLocation {
2163 ///     const char *Filename;
2164 ///     int32_t Line, Column;
2165 ///   };
2166 /// \endcode
2167 /// For an invalid SourceLocation, the Filename pointer is null.
2168 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2169   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2170 
2171   llvm::Constant *Data[] = {
2172     PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src")
2173                    : llvm::Constant::getNullValue(Int8PtrTy),
2174     Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0),
2175     Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0)
2176   };
2177 
2178   return llvm::ConstantStruct::getAnon(Data);
2179 }
2180 
2181 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2182                                 ArrayRef<llvm::Constant *> StaticArgs,
2183                                 ArrayRef<llvm::Value *> DynamicArgs,
2184                                 CheckRecoverableKind RecoverKind) {
2185   assert(SanOpts != &SanitizerOptions::Disabled);
2186 
2187   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2188     assert (RecoverKind != CRK_AlwaysRecoverable &&
2189             "Runtime call required for AlwaysRecoverable kind!");
2190     return EmitTrapCheck(Checked);
2191   }
2192 
2193   llvm::BasicBlock *Cont = createBasicBlock("cont");
2194 
2195   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2196 
2197   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2198 
2199   // Give hint that we very much don't expect to execute the handler
2200   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2201   llvm::MDBuilder MDHelper(getLLVMContext());
2202   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2203   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2204 
2205   EmitBlock(Handler);
2206 
2207   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2208   auto *InfoPtr =
2209       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2210                                llvm::GlobalVariable::PrivateLinkage, Info);
2211   InfoPtr->setUnnamedAddr(true);
2212 
2213   SmallVector<llvm::Value *, 4> Args;
2214   SmallVector<llvm::Type *, 4> ArgTypes;
2215   Args.reserve(DynamicArgs.size() + 1);
2216   ArgTypes.reserve(DynamicArgs.size() + 1);
2217 
2218   // Handler functions take an i8* pointing to the (handler-specific) static
2219   // information block, followed by a sequence of intptr_t arguments
2220   // representing operand values.
2221   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2222   ArgTypes.push_back(Int8PtrTy);
2223   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2224     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2225     ArgTypes.push_back(IntPtrTy);
2226   }
2227 
2228   bool Recover = RecoverKind == CRK_AlwaysRecoverable ||
2229                  (RecoverKind == CRK_Recoverable &&
2230                   CGM.getCodeGenOpts().SanitizeRecover);
2231 
2232   llvm::FunctionType *FnType =
2233     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2234   llvm::AttrBuilder B;
2235   if (!Recover) {
2236     B.addAttribute(llvm::Attribute::NoReturn)
2237      .addAttribute(llvm::Attribute::NoUnwind);
2238   }
2239   B.addAttribute(llvm::Attribute::UWTable);
2240 
2241   // Checks that have two variants use a suffix to differentiate them
2242   bool NeedsAbortSuffix = RecoverKind != CRK_Unrecoverable &&
2243                           !CGM.getCodeGenOpts().SanitizeRecover;
2244   std::string FunctionName = ("__ubsan_handle_" + CheckName +
2245                               (NeedsAbortSuffix? "_abort" : "")).str();
2246   llvm::Value *Fn = CGM.CreateRuntimeFunction(
2247       FnType, FunctionName,
2248       llvm::AttributeSet::get(getLLVMContext(),
2249                               llvm::AttributeSet::FunctionIndex, B));
2250   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2251   if (Recover) {
2252     Builder.CreateBr(Cont);
2253   } else {
2254     HandlerCall->setDoesNotReturn();
2255     Builder.CreateUnreachable();
2256   }
2257 
2258   EmitBlock(Cont);
2259 }
2260 
2261 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2262   llvm::BasicBlock *Cont = createBasicBlock("cont");
2263 
2264   // If we're optimizing, collapse all calls to trap down to just one per
2265   // function to save on code size.
2266   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2267     TrapBB = createBasicBlock("trap");
2268     Builder.CreateCondBr(Checked, Cont, TrapBB);
2269     EmitBlock(TrapBB);
2270     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2271     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2272     TrapCall->setDoesNotReturn();
2273     TrapCall->setDoesNotThrow();
2274     Builder.CreateUnreachable();
2275   } else {
2276     Builder.CreateCondBr(Checked, Cont, TrapBB);
2277   }
2278 
2279   EmitBlock(Cont);
2280 }
2281 
2282 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2283 /// array to pointer, return the array subexpression.
2284 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2285   // If this isn't just an array->pointer decay, bail out.
2286   const auto *CE = dyn_cast<CastExpr>(E);
2287   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2288     return nullptr;
2289 
2290   // If this is a decay from variable width array, bail out.
2291   const Expr *SubExpr = CE->getSubExpr();
2292   if (SubExpr->getType()->isVariableArrayType())
2293     return nullptr;
2294 
2295   return SubExpr;
2296 }
2297 
2298 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2299                                                bool Accessed) {
2300   // The index must always be an integer, which is not an aggregate.  Emit it.
2301   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2302   QualType IdxTy  = E->getIdx()->getType();
2303   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2304 
2305   if (SanOpts->ArrayBounds)
2306     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2307 
2308   // If the base is a vector type, then we are forming a vector element lvalue
2309   // with this subscript.
2310   if (E->getBase()->getType()->isVectorType()) {
2311     // Emit the vector as an lvalue to get its address.
2312     LValue LHS = EmitLValue(E->getBase());
2313     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2314     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2315                                  E->getBase()->getType(), LHS.getAlignment());
2316   }
2317 
2318   // Extend or truncate the index type to 32 or 64-bits.
2319   if (Idx->getType() != IntPtrTy)
2320     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2321 
2322   // We know that the pointer points to a type of the correct size, unless the
2323   // size is a VLA or Objective-C interface.
2324   llvm::Value *Address = nullptr;
2325   CharUnits ArrayAlignment;
2326   if (const VariableArrayType *vla =
2327         getContext().getAsVariableArrayType(E->getType())) {
2328     // The base must be a pointer, which is not an aggregate.  Emit
2329     // it.  It needs to be emitted first in case it's what captures
2330     // the VLA bounds.
2331     Address = EmitScalarExpr(E->getBase());
2332 
2333     // The element count here is the total number of non-VLA elements.
2334     llvm::Value *numElements = getVLASize(vla).first;
2335 
2336     // Effectively, the multiply by the VLA size is part of the GEP.
2337     // GEP indexes are signed, and scaling an index isn't permitted to
2338     // signed-overflow, so we use the same semantics for our explicit
2339     // multiply.  We suppress this if overflow is not undefined behavior.
2340     if (getLangOpts().isSignedOverflowDefined()) {
2341       Idx = Builder.CreateMul(Idx, numElements);
2342       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2343     } else {
2344       Idx = Builder.CreateNSWMul(Idx, numElements);
2345       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2346     }
2347   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2348     // Indexing over an interface, as in "NSString *P; P[4];"
2349     llvm::Value *InterfaceSize =
2350       llvm::ConstantInt::get(Idx->getType(),
2351           getContext().getTypeSizeInChars(OIT).getQuantity());
2352 
2353     Idx = Builder.CreateMul(Idx, InterfaceSize);
2354 
2355     // The base must be a pointer, which is not an aggregate.  Emit it.
2356     llvm::Value *Base = EmitScalarExpr(E->getBase());
2357     Address = EmitCastToVoidPtr(Base);
2358     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2359     Address = Builder.CreateBitCast(Address, Base->getType());
2360   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2361     // If this is A[i] where A is an array, the frontend will have decayed the
2362     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2363     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2364     // "gep x, i" here.  Emit one "gep A, 0, i".
2365     assert(Array->getType()->isArrayType() &&
2366            "Array to pointer decay must have array source type!");
2367     LValue ArrayLV;
2368     // For simple multidimensional array indexing, set the 'accessed' flag for
2369     // better bounds-checking of the base expression.
2370     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2371       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2372     else
2373       ArrayLV = EmitLValue(Array);
2374     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2375     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2376     llvm::Value *Args[] = { Zero, Idx };
2377 
2378     // Propagate the alignment from the array itself to the result.
2379     ArrayAlignment = ArrayLV.getAlignment();
2380 
2381     if (getLangOpts().isSignedOverflowDefined())
2382       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2383     else
2384       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2385   } else {
2386     // The base must be a pointer, which is not an aggregate.  Emit it.
2387     llvm::Value *Base = EmitScalarExpr(E->getBase());
2388     if (getLangOpts().isSignedOverflowDefined())
2389       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2390     else
2391       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2392   }
2393 
2394   QualType T = E->getBase()->getType()->getPointeeType();
2395   assert(!T.isNull() &&
2396          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2397 
2398 
2399   // Limit the alignment to that of the result type.
2400   LValue LV;
2401   if (!ArrayAlignment.isZero()) {
2402     CharUnits Align = getContext().getTypeAlignInChars(T);
2403     ArrayAlignment = std::min(Align, ArrayAlignment);
2404     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2405   } else {
2406     LV = MakeNaturalAlignAddrLValue(Address, T);
2407   }
2408 
2409   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2410 
2411   if (getLangOpts().ObjC1 &&
2412       getLangOpts().getGC() != LangOptions::NonGC) {
2413     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2414     setObjCGCLValueClass(getContext(), E, LV);
2415   }
2416   return LV;
2417 }
2418 
2419 static
2420 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2421                                        SmallVectorImpl<unsigned> &Elts) {
2422   SmallVector<llvm::Constant*, 4> CElts;
2423   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2424     CElts.push_back(Builder.getInt32(Elts[i]));
2425 
2426   return llvm::ConstantVector::get(CElts);
2427 }
2428 
2429 LValue CodeGenFunction::
2430 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2431   // Emit the base vector as an l-value.
2432   LValue Base;
2433 
2434   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2435   if (E->isArrow()) {
2436     // If it is a pointer to a vector, emit the address and form an lvalue with
2437     // it.
2438     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2439     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2440     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2441     Base.getQuals().removeObjCGCAttr();
2442   } else if (E->getBase()->isGLValue()) {
2443     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2444     // emit the base as an lvalue.
2445     assert(E->getBase()->getType()->isVectorType());
2446     Base = EmitLValue(E->getBase());
2447   } else {
2448     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2449     assert(E->getBase()->getType()->isVectorType() &&
2450            "Result must be a vector");
2451     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2452 
2453     // Store the vector to memory (because LValue wants an address).
2454     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2455     Builder.CreateStore(Vec, VecMem);
2456     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2457   }
2458 
2459   QualType type =
2460     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2461 
2462   // Encode the element access list into a vector of unsigned indices.
2463   SmallVector<unsigned, 4> Indices;
2464   E->getEncodedElementAccess(Indices);
2465 
2466   if (Base.isSimple()) {
2467     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2468     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2469                                     Base.getAlignment());
2470   }
2471   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2472 
2473   llvm::Constant *BaseElts = Base.getExtVectorElts();
2474   SmallVector<llvm::Constant *, 4> CElts;
2475 
2476   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2477     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2478   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2479   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2480                                   Base.getAlignment());
2481 }
2482 
2483 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2484   Expr *BaseExpr = E->getBase();
2485 
2486   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2487   LValue BaseLV;
2488   if (E->isArrow()) {
2489     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2490     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2491     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2492     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2493   } else
2494     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2495 
2496   NamedDecl *ND = E->getMemberDecl();
2497   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
2498     LValue LV = EmitLValueForField(BaseLV, Field);
2499     setObjCGCLValueClass(getContext(), E, LV);
2500     return LV;
2501   }
2502 
2503   if (auto *VD = dyn_cast<VarDecl>(ND))
2504     return EmitGlobalVarDeclLValue(*this, E, VD);
2505 
2506   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2507     return EmitFunctionDeclLValue(*this, E, FD);
2508 
2509   llvm_unreachable("Unhandled member declaration!");
2510 }
2511 
2512 /// Given that we are currently emitting a lambda, emit an l-value for
2513 /// one of its members.
2514 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2515   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2516   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2517   QualType LambdaTagType =
2518     getContext().getTagDeclType(Field->getParent());
2519   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2520   return EmitLValueForField(LambdaLV, Field);
2521 }
2522 
2523 LValue CodeGenFunction::EmitLValueForField(LValue base,
2524                                            const FieldDecl *field) {
2525   if (field->isBitField()) {
2526     const CGRecordLayout &RL =
2527       CGM.getTypes().getCGRecordLayout(field->getParent());
2528     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2529     llvm::Value *Addr = base.getAddress();
2530     unsigned Idx = RL.getLLVMFieldNo(field);
2531     if (Idx != 0)
2532       // For structs, we GEP to the field that the record layout suggests.
2533       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2534     // Get the access type.
2535     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2536       getLLVMContext(), Info.StorageSize,
2537       CGM.getContext().getTargetAddressSpace(base.getType()));
2538     if (Addr->getType() != PtrTy)
2539       Addr = Builder.CreateBitCast(Addr, PtrTy);
2540 
2541     QualType fieldType =
2542       field->getType().withCVRQualifiers(base.getVRQualifiers());
2543     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2544   }
2545 
2546   const RecordDecl *rec = field->getParent();
2547   QualType type = field->getType();
2548   CharUnits alignment = getContext().getDeclAlign(field);
2549 
2550   // FIXME: It should be impossible to have an LValue without alignment for a
2551   // complete type.
2552   if (!base.getAlignment().isZero())
2553     alignment = std::min(alignment, base.getAlignment());
2554 
2555   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2556 
2557   llvm::Value *addr = base.getAddress();
2558   unsigned cvr = base.getVRQualifiers();
2559   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2560   if (rec->isUnion()) {
2561     // For unions, there is no pointer adjustment.
2562     assert(!type->isReferenceType() && "union has reference member");
2563     // TODO: handle path-aware TBAA for union.
2564     TBAAPath = false;
2565   } else {
2566     // For structs, we GEP to the field that the record layout suggests.
2567     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2568     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2569 
2570     // If this is a reference field, load the reference right now.
2571     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2572       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2573       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2574       load->setAlignment(alignment.getQuantity());
2575 
2576       // Loading the reference will disable path-aware TBAA.
2577       TBAAPath = false;
2578       if (CGM.shouldUseTBAA()) {
2579         llvm::MDNode *tbaa;
2580         if (mayAlias)
2581           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2582         else
2583           tbaa = CGM.getTBAAInfo(type);
2584         if (tbaa)
2585           CGM.DecorateInstruction(load, tbaa);
2586       }
2587 
2588       addr = load;
2589       mayAlias = false;
2590       type = refType->getPointeeType();
2591       if (type->isIncompleteType())
2592         alignment = CharUnits();
2593       else
2594         alignment = getContext().getTypeAlignInChars(type);
2595       cvr = 0; // qualifiers don't recursively apply to referencee
2596     }
2597   }
2598 
2599   // Make sure that the address is pointing to the right type.  This is critical
2600   // for both unions and structs.  A union needs a bitcast, a struct element
2601   // will need a bitcast if the LLVM type laid out doesn't match the desired
2602   // type.
2603   addr = EmitBitCastOfLValueToProperType(*this, addr,
2604                                          CGM.getTypes().ConvertTypeForMem(type),
2605                                          field->getName());
2606 
2607   if (field->hasAttr<AnnotateAttr>())
2608     addr = EmitFieldAnnotations(field, addr);
2609 
2610   LValue LV = MakeAddrLValue(addr, type, alignment);
2611   LV.getQuals().addCVRQualifiers(cvr);
2612   if (TBAAPath) {
2613     const ASTRecordLayout &Layout =
2614         getContext().getASTRecordLayout(field->getParent());
2615     // Set the base type to be the base type of the base LValue and
2616     // update offset to be relative to the base type.
2617     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2618     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2619                      Layout.getFieldOffset(field->getFieldIndex()) /
2620                                            getContext().getCharWidth());
2621   }
2622 
2623   // __weak attribute on a field is ignored.
2624   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2625     LV.getQuals().removeObjCGCAttr();
2626 
2627   // Fields of may_alias structs act like 'char' for TBAA purposes.
2628   // FIXME: this should get propagated down through anonymous structs
2629   // and unions.
2630   if (mayAlias && LV.getTBAAInfo())
2631     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2632 
2633   return LV;
2634 }
2635 
2636 LValue
2637 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2638                                                   const FieldDecl *Field) {
2639   QualType FieldType = Field->getType();
2640 
2641   if (!FieldType->isReferenceType())
2642     return EmitLValueForField(Base, Field);
2643 
2644   const CGRecordLayout &RL =
2645     CGM.getTypes().getCGRecordLayout(Field->getParent());
2646   unsigned idx = RL.getLLVMFieldNo(Field);
2647   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2648   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2649 
2650   // Make sure that the address is pointing to the right type.  This is critical
2651   // for both unions and structs.  A union needs a bitcast, a struct element
2652   // will need a bitcast if the LLVM type laid out doesn't match the desired
2653   // type.
2654   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2655   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2656 
2657   CharUnits Alignment = getContext().getDeclAlign(Field);
2658 
2659   // FIXME: It should be impossible to have an LValue without alignment for a
2660   // complete type.
2661   if (!Base.getAlignment().isZero())
2662     Alignment = std::min(Alignment, Base.getAlignment());
2663 
2664   return MakeAddrLValue(V, FieldType, Alignment);
2665 }
2666 
2667 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2668   if (E->isFileScope()) {
2669     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2670     return MakeAddrLValue(GlobalPtr, E->getType());
2671   }
2672   if (E->getType()->isVariablyModifiedType())
2673     // make sure to emit the VLA size.
2674     EmitVariablyModifiedType(E->getType());
2675 
2676   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2677   const Expr *InitExpr = E->getInitializer();
2678   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2679 
2680   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2681                    /*Init*/ true);
2682 
2683   return Result;
2684 }
2685 
2686 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2687   if (!E->isGLValue())
2688     // Initializing an aggregate temporary in C++11: T{...}.
2689     return EmitAggExprToLValue(E);
2690 
2691   // An lvalue initializer list must be initializing a reference.
2692   assert(E->getNumInits() == 1 && "reference init with multiple values");
2693   return EmitLValue(E->getInit(0));
2694 }
2695 
2696 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
2697 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
2698 /// LValue is returned and the current block has been terminated.
2699 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
2700                                                     const Expr *Operand) {
2701   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
2702     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
2703     return None;
2704   }
2705 
2706   return CGF.EmitLValue(Operand);
2707 }
2708 
2709 LValue CodeGenFunction::
2710 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2711   if (!expr->isGLValue()) {
2712     // ?: here should be an aggregate.
2713     assert(hasAggregateEvaluationKind(expr->getType()) &&
2714            "Unexpected conditional operator!");
2715     return EmitAggExprToLValue(expr);
2716   }
2717 
2718   OpaqueValueMapping binding(*this, expr);
2719   RegionCounter Cnt = getPGORegionCounter(expr);
2720 
2721   const Expr *condExpr = expr->getCond();
2722   bool CondExprBool;
2723   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2724     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2725     if (!CondExprBool) std::swap(live, dead);
2726 
2727     if (!ContainsLabel(dead)) {
2728       // If the true case is live, we need to track its region.
2729       if (CondExprBool)
2730         Cnt.beginRegion(Builder);
2731       return EmitLValue(live);
2732     }
2733   }
2734 
2735   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2736   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2737   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2738 
2739   ConditionalEvaluation eval(*this);
2740   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
2741 
2742   // Any temporaries created here are conditional.
2743   EmitBlock(lhsBlock);
2744   Cnt.beginRegion(Builder);
2745   eval.begin(*this);
2746   Optional<LValue> lhs =
2747       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
2748   eval.end(*this);
2749 
2750   if (lhs && !lhs->isSimple())
2751     return EmitUnsupportedLValue(expr, "conditional operator");
2752 
2753   lhsBlock = Builder.GetInsertBlock();
2754   if (lhs)
2755     Builder.CreateBr(contBlock);
2756 
2757   // Any temporaries created here are conditional.
2758   EmitBlock(rhsBlock);
2759   eval.begin(*this);
2760   Optional<LValue> rhs =
2761       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
2762   eval.end(*this);
2763   if (rhs && !rhs->isSimple())
2764     return EmitUnsupportedLValue(expr, "conditional operator");
2765   rhsBlock = Builder.GetInsertBlock();
2766 
2767   EmitBlock(contBlock);
2768 
2769   if (lhs && rhs) {
2770     llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
2771                                            2, "cond-lvalue");
2772     phi->addIncoming(lhs->getAddress(), lhsBlock);
2773     phi->addIncoming(rhs->getAddress(), rhsBlock);
2774     return MakeAddrLValue(phi, expr->getType());
2775   } else {
2776     assert((lhs || rhs) &&
2777            "both operands of glvalue conditional are throw-expressions?");
2778     return lhs ? *lhs : *rhs;
2779   }
2780 }
2781 
2782 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2783 /// type. If the cast is to a reference, we can have the usual lvalue result,
2784 /// otherwise if a cast is needed by the code generator in an lvalue context,
2785 /// then it must mean that we need the address of an aggregate in order to
2786 /// access one of its members.  This can happen for all the reasons that casts
2787 /// are permitted with aggregate result, including noop aggregate casts, and
2788 /// cast from scalar to union.
2789 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2790   switch (E->getCastKind()) {
2791   case CK_ToVoid:
2792   case CK_BitCast:
2793   case CK_ArrayToPointerDecay:
2794   case CK_FunctionToPointerDecay:
2795   case CK_NullToMemberPointer:
2796   case CK_NullToPointer:
2797   case CK_IntegralToPointer:
2798   case CK_PointerToIntegral:
2799   case CK_PointerToBoolean:
2800   case CK_VectorSplat:
2801   case CK_IntegralCast:
2802   case CK_IntegralToBoolean:
2803   case CK_IntegralToFloating:
2804   case CK_FloatingToIntegral:
2805   case CK_FloatingToBoolean:
2806   case CK_FloatingCast:
2807   case CK_FloatingRealToComplex:
2808   case CK_FloatingComplexToReal:
2809   case CK_FloatingComplexToBoolean:
2810   case CK_FloatingComplexCast:
2811   case CK_FloatingComplexToIntegralComplex:
2812   case CK_IntegralRealToComplex:
2813   case CK_IntegralComplexToReal:
2814   case CK_IntegralComplexToBoolean:
2815   case CK_IntegralComplexCast:
2816   case CK_IntegralComplexToFloatingComplex:
2817   case CK_DerivedToBaseMemberPointer:
2818   case CK_BaseToDerivedMemberPointer:
2819   case CK_MemberPointerToBoolean:
2820   case CK_ReinterpretMemberPointer:
2821   case CK_AnyPointerToBlockPointerCast:
2822   case CK_ARCProduceObject:
2823   case CK_ARCConsumeObject:
2824   case CK_ARCReclaimReturnedObject:
2825   case CK_ARCExtendBlockObject:
2826   case CK_CopyAndAutoreleaseBlockObject:
2827   case CK_AddressSpaceConversion:
2828     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2829 
2830   case CK_Dependent:
2831     llvm_unreachable("dependent cast kind in IR gen!");
2832 
2833   case CK_BuiltinFnToFnPtr:
2834     llvm_unreachable("builtin functions are handled elsewhere");
2835 
2836   // These are never l-values; just use the aggregate emission code.
2837   case CK_NonAtomicToAtomic:
2838   case CK_AtomicToNonAtomic:
2839     return EmitAggExprToLValue(E);
2840 
2841   case CK_Dynamic: {
2842     LValue LV = EmitLValue(E->getSubExpr());
2843     llvm::Value *V = LV.getAddress();
2844     const auto *DCE = cast<CXXDynamicCastExpr>(E);
2845     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2846   }
2847 
2848   case CK_ConstructorConversion:
2849   case CK_UserDefinedConversion:
2850   case CK_CPointerToObjCPointerCast:
2851   case CK_BlockPointerToObjCPointerCast:
2852   case CK_NoOp:
2853   case CK_LValueToRValue:
2854     return EmitLValue(E->getSubExpr());
2855 
2856   case CK_UncheckedDerivedToBase:
2857   case CK_DerivedToBase: {
2858     const RecordType *DerivedClassTy =
2859       E->getSubExpr()->getType()->getAs<RecordType>();
2860     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2861 
2862     LValue LV = EmitLValue(E->getSubExpr());
2863     llvm::Value *This = LV.getAddress();
2864 
2865     // Perform the derived-to-base conversion
2866     llvm::Value *Base =
2867       GetAddressOfBaseClass(This, DerivedClassDecl,
2868                             E->path_begin(), E->path_end(),
2869                             /*NullCheckValue=*/false);
2870 
2871     return MakeAddrLValue(Base, E->getType());
2872   }
2873   case CK_ToUnion:
2874     return EmitAggExprToLValue(E);
2875   case CK_BaseToDerived: {
2876     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2877     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2878 
2879     LValue LV = EmitLValue(E->getSubExpr());
2880 
2881     // Perform the base-to-derived conversion
2882     llvm::Value *Derived =
2883       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2884                                E->path_begin(), E->path_end(),
2885                                /*NullCheckValue=*/false);
2886 
2887     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2888     // performed and the object is not of the derived type.
2889     if (sanitizePerformTypeCheck())
2890       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2891                     Derived, E->getType());
2892 
2893     return MakeAddrLValue(Derived, E->getType());
2894   }
2895   case CK_LValueBitCast: {
2896     // This must be a reinterpret_cast (or c-style equivalent).
2897     const auto *CE = cast<ExplicitCastExpr>(E);
2898 
2899     LValue LV = EmitLValue(E->getSubExpr());
2900     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2901                                            ConvertType(CE->getTypeAsWritten()));
2902     return MakeAddrLValue(V, E->getType());
2903   }
2904   case CK_ObjCObjectLValueCast: {
2905     LValue LV = EmitLValue(E->getSubExpr());
2906     QualType ToType = getContext().getLValueReferenceType(E->getType());
2907     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2908                                            ConvertType(ToType));
2909     return MakeAddrLValue(V, E->getType());
2910   }
2911   case CK_ZeroToOCLEvent:
2912     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2913   }
2914 
2915   llvm_unreachable("Unhandled lvalue cast kind?");
2916 }
2917 
2918 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2919   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2920   return getOpaqueLValueMapping(e);
2921 }
2922 
2923 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2924                                            const FieldDecl *FD,
2925                                            SourceLocation Loc) {
2926   QualType FT = FD->getType();
2927   LValue FieldLV = EmitLValueForField(LV, FD);
2928   switch (getEvaluationKind(FT)) {
2929   case TEK_Complex:
2930     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
2931   case TEK_Aggregate:
2932     return FieldLV.asAggregateRValue();
2933   case TEK_Scalar:
2934     return EmitLoadOfLValue(FieldLV, Loc);
2935   }
2936   llvm_unreachable("bad evaluation kind");
2937 }
2938 
2939 //===--------------------------------------------------------------------===//
2940 //                             Expression Emission
2941 //===--------------------------------------------------------------------===//
2942 
2943 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2944                                      ReturnValueSlot ReturnValue) {
2945   if (CGDebugInfo *DI = getDebugInfo()) {
2946     SourceLocation Loc = E->getLocStart();
2947     // Force column info to be generated so we can differentiate
2948     // multiple call sites on the same line in the debug info.
2949     // FIXME: This is insufficient. Two calls coming from the same macro
2950     // expansion will still get the same line/column and break debug info. It's
2951     // possible that LLVM can be fixed to not rely on this uniqueness, at which
2952     // point this workaround can be removed.
2953     const FunctionDecl* Callee = E->getDirectCallee();
2954     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2955     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2956   }
2957 
2958   // Builtins never have block type.
2959   if (E->getCallee()->getType()->isBlockPointerType())
2960     return EmitBlockCallExpr(E, ReturnValue);
2961 
2962   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
2963     return EmitCXXMemberCallExpr(CE, ReturnValue);
2964 
2965   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
2966     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2967 
2968   const Decl *TargetDecl = E->getCalleeDecl();
2969   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2970     if (unsigned builtinID = FD->getBuiltinID())
2971       return EmitBuiltinExpr(FD, builtinID, E);
2972   }
2973 
2974   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
2975     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2976       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2977 
2978   if (const auto *PseudoDtor =
2979           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2980     QualType DestroyedType = PseudoDtor->getDestroyedType();
2981     if (getLangOpts().ObjCAutoRefCount &&
2982         DestroyedType->isObjCLifetimeType() &&
2983         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2984          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2985       // Automatic Reference Counting:
2986       //   If the pseudo-expression names a retainable object with weak or
2987       //   strong lifetime, the object shall be released.
2988       Expr *BaseExpr = PseudoDtor->getBase();
2989       llvm::Value *BaseValue = nullptr;
2990       Qualifiers BaseQuals;
2991 
2992       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2993       if (PseudoDtor->isArrow()) {
2994         BaseValue = EmitScalarExpr(BaseExpr);
2995         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2996         BaseQuals = PTy->getPointeeType().getQualifiers();
2997       } else {
2998         LValue BaseLV = EmitLValue(BaseExpr);
2999         BaseValue = BaseLV.getAddress();
3000         QualType BaseTy = BaseExpr->getType();
3001         BaseQuals = BaseTy.getQualifiers();
3002       }
3003 
3004       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
3005       case Qualifiers::OCL_None:
3006       case Qualifiers::OCL_ExplicitNone:
3007       case Qualifiers::OCL_Autoreleasing:
3008         break;
3009 
3010       case Qualifiers::OCL_Strong:
3011         EmitARCRelease(Builder.CreateLoad(BaseValue,
3012                           PseudoDtor->getDestroyedType().isVolatileQualified()),
3013                        ARCPreciseLifetime);
3014         break;
3015 
3016       case Qualifiers::OCL_Weak:
3017         EmitARCDestroyWeak(BaseValue);
3018         break;
3019       }
3020     } else {
3021       // C++ [expr.pseudo]p1:
3022       //   The result shall only be used as the operand for the function call
3023       //   operator (), and the result of such a call has type void. The only
3024       //   effect is the evaluation of the postfix-expression before the dot or
3025       //   arrow.
3026       EmitScalarExpr(E->getCallee());
3027     }
3028 
3029     return RValue::get(nullptr);
3030   }
3031 
3032   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3033   return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(),
3034                   ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl);
3035 }
3036 
3037 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3038   // Comma expressions just emit their LHS then their RHS as an l-value.
3039   if (E->getOpcode() == BO_Comma) {
3040     EmitIgnoredExpr(E->getLHS());
3041     EnsureInsertPoint();
3042     return EmitLValue(E->getRHS());
3043   }
3044 
3045   if (E->getOpcode() == BO_PtrMemD ||
3046       E->getOpcode() == BO_PtrMemI)
3047     return EmitPointerToDataMemberBinaryExpr(E);
3048 
3049   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3050 
3051   // Note that in all of these cases, __block variables need the RHS
3052   // evaluated first just in case the variable gets moved by the RHS.
3053 
3054   switch (getEvaluationKind(E->getType())) {
3055   case TEK_Scalar: {
3056     switch (E->getLHS()->getType().getObjCLifetime()) {
3057     case Qualifiers::OCL_Strong:
3058       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3059 
3060     case Qualifiers::OCL_Autoreleasing:
3061       return EmitARCStoreAutoreleasing(E).first;
3062 
3063     // No reason to do any of these differently.
3064     case Qualifiers::OCL_None:
3065     case Qualifiers::OCL_ExplicitNone:
3066     case Qualifiers::OCL_Weak:
3067       break;
3068     }
3069 
3070     RValue RV = EmitAnyExpr(E->getRHS());
3071     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3072     EmitStoreThroughLValue(RV, LV);
3073     return LV;
3074   }
3075 
3076   case TEK_Complex:
3077     return EmitComplexAssignmentLValue(E);
3078 
3079   case TEK_Aggregate:
3080     return EmitAggExprToLValue(E);
3081   }
3082   llvm_unreachable("bad evaluation kind");
3083 }
3084 
3085 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3086   RValue RV = EmitCallExpr(E);
3087 
3088   if (!RV.isScalar())
3089     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3090 
3091   assert(E->getCallReturnType()->isReferenceType() &&
3092          "Can't have a scalar return unless the return type is a "
3093          "reference type!");
3094 
3095   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3096 }
3097 
3098 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3099   // FIXME: This shouldn't require another copy.
3100   return EmitAggExprToLValue(E);
3101 }
3102 
3103 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3104   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3105          && "binding l-value to type which needs a temporary");
3106   AggValueSlot Slot = CreateAggTemp(E->getType());
3107   EmitCXXConstructExpr(E, Slot);
3108   return MakeAddrLValue(Slot.getAddr(), E->getType());
3109 }
3110 
3111 LValue
3112 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3113   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3114 }
3115 
3116 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3117   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3118                                ConvertType(E->getType())->getPointerTo());
3119 }
3120 
3121 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3122   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3123 }
3124 
3125 LValue
3126 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3127   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3128   Slot.setExternallyDestructed();
3129   EmitAggExpr(E->getSubExpr(), Slot);
3130   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3131   return MakeAddrLValue(Slot.getAddr(), E->getType());
3132 }
3133 
3134 LValue
3135 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3136   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3137   EmitLambdaExpr(E, Slot);
3138   return MakeAddrLValue(Slot.getAddr(), E->getType());
3139 }
3140 
3141 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3142   RValue RV = EmitObjCMessageExpr(E);
3143 
3144   if (!RV.isScalar())
3145     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3146 
3147   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3148          "Can't have a scalar return unless the return type is a "
3149          "reference type!");
3150 
3151   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3152 }
3153 
3154 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3155   llvm::Value *V =
3156     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3157   return MakeAddrLValue(V, E->getType());
3158 }
3159 
3160 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3161                                              const ObjCIvarDecl *Ivar) {
3162   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3163 }
3164 
3165 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3166                                           llvm::Value *BaseValue,
3167                                           const ObjCIvarDecl *Ivar,
3168                                           unsigned CVRQualifiers) {
3169   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3170                                                    Ivar, CVRQualifiers);
3171 }
3172 
3173 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3174   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3175   llvm::Value *BaseValue = nullptr;
3176   const Expr *BaseExpr = E->getBase();
3177   Qualifiers BaseQuals;
3178   QualType ObjectTy;
3179   if (E->isArrow()) {
3180     BaseValue = EmitScalarExpr(BaseExpr);
3181     ObjectTy = BaseExpr->getType()->getPointeeType();
3182     BaseQuals = ObjectTy.getQualifiers();
3183   } else {
3184     LValue BaseLV = EmitLValue(BaseExpr);
3185     // FIXME: this isn't right for bitfields.
3186     BaseValue = BaseLV.getAddress();
3187     ObjectTy = BaseExpr->getType();
3188     BaseQuals = ObjectTy.getQualifiers();
3189   }
3190 
3191   LValue LV =
3192     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3193                       BaseQuals.getCVRQualifiers());
3194   setObjCGCLValueClass(getContext(), E, LV);
3195   return LV;
3196 }
3197 
3198 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3199   // Can only get l-value for message expression returning aggregate type
3200   RValue RV = EmitAnyExprToTemp(E);
3201   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3202 }
3203 
3204 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3205                                  SourceLocation CallLoc,
3206                                  ReturnValueSlot ReturnValue,
3207                                  CallExpr::const_arg_iterator ArgBeg,
3208                                  CallExpr::const_arg_iterator ArgEnd,
3209                                  const Decl *TargetDecl) {
3210   // Get the actual function type. The callee type will always be a pointer to
3211   // function type or a block pointer type.
3212   assert(CalleeType->isFunctionPointerType() &&
3213          "Call must have function pointer type!");
3214 
3215   CalleeType = getContext().getCanonicalType(CalleeType);
3216 
3217   const auto *FnType =
3218       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3219 
3220   // Force column info to differentiate multiple inlined call sites on
3221   // the same line, analoguous to EmitCallExpr.
3222   // FIXME: This is insufficient. Two calls coming from the same macro expansion
3223   // will still get the same line/column and break debug info. It's possible
3224   // that LLVM can be fixed to not rely on this uniqueness, at which point this
3225   // workaround can be removed.
3226   bool ForceColumnInfo = false;
3227   if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3228     ForceColumnInfo = FD->isInlineSpecified();
3229 
3230   if (getLangOpts().CPlusPlus && SanOpts->Function &&
3231       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3232     if (llvm::Constant *PrefixSig =
3233             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3234       llvm::Constant *FTRTTIConst =
3235           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3236       llvm::Type *PrefixStructTyElems[] = {
3237         PrefixSig->getType(),
3238         FTRTTIConst->getType()
3239       };
3240       llvm::StructType *PrefixStructTy = llvm::StructType::get(
3241           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3242 
3243       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3244           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3245       llvm::Value *CalleeSigPtr =
3246           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
3247       llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3248       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3249 
3250       llvm::BasicBlock *Cont = createBasicBlock("cont");
3251       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3252       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3253 
3254       EmitBlock(TypeCheck);
3255       llvm::Value *CalleeRTTIPtr =
3256           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
3257       llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3258       llvm::Value *CalleeRTTIMatch =
3259           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3260       llvm::Constant *StaticData[] = {
3261         EmitCheckSourceLocation(CallLoc),
3262         EmitCheckTypeDescriptor(CalleeType)
3263       };
3264       EmitCheck(CalleeRTTIMatch,
3265                 "function_type_mismatch",
3266                 StaticData,
3267                 Callee,
3268                 CRK_Recoverable);
3269 
3270       Builder.CreateBr(Cont);
3271       EmitBlock(Cont);
3272     }
3273   }
3274 
3275   CallArgList Args;
3276   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
3277                ForceColumnInfo);
3278 
3279   const CGFunctionInfo &FnInfo =
3280     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3281 
3282   // C99 6.5.2.2p6:
3283   //   If the expression that denotes the called function has a type
3284   //   that does not include a prototype, [the default argument
3285   //   promotions are performed]. If the number of arguments does not
3286   //   equal the number of parameters, the behavior is undefined. If
3287   //   the function is defined with a type that includes a prototype,
3288   //   and either the prototype ends with an ellipsis (, ...) or the
3289   //   types of the arguments after promotion are not compatible with
3290   //   the types of the parameters, the behavior is undefined. If the
3291   //   function is defined with a type that does not include a
3292   //   prototype, and the types of the arguments after promotion are
3293   //   not compatible with those of the parameters after promotion,
3294   //   the behavior is undefined [except in some trivial cases].
3295   // That is, in the general case, we should assume that a call
3296   // through an unprototyped function type works like a *non-variadic*
3297   // call.  The way we make this work is to cast to the exact type
3298   // of the promoted arguments.
3299   if (isa<FunctionNoProtoType>(FnType)) {
3300     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3301     CalleeTy = CalleeTy->getPointerTo();
3302     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3303   }
3304 
3305   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3306 }
3307 
3308 LValue CodeGenFunction::
3309 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3310   llvm::Value *BaseV;
3311   if (E->getOpcode() == BO_PtrMemI)
3312     BaseV = EmitScalarExpr(E->getLHS());
3313   else
3314     BaseV = EmitLValue(E->getLHS()).getAddress();
3315 
3316   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3317 
3318   const MemberPointerType *MPT
3319     = E->getRHS()->getType()->getAs<MemberPointerType>();
3320 
3321   llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
3322       *this, E, BaseV, OffsetV, MPT);
3323 
3324   return MakeAddrLValue(AddV, MPT->getPointeeType());
3325 }
3326 
3327 /// Given the address of a temporary variable, produce an r-value of
3328 /// its type.
3329 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3330                                             QualType type,
3331                                             SourceLocation loc) {
3332   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3333   switch (getEvaluationKind(type)) {
3334   case TEK_Complex:
3335     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3336   case TEK_Aggregate:
3337     return lvalue.asAggregateRValue();
3338   case TEK_Scalar:
3339     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3340   }
3341   llvm_unreachable("bad evaluation kind");
3342 }
3343 
3344 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3345   assert(Val->getType()->isFPOrFPVectorTy());
3346   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3347     return;
3348 
3349   llvm::MDBuilder MDHelper(getLLVMContext());
3350   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3351 
3352   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3353 }
3354 
3355 namespace {
3356   struct LValueOrRValue {
3357     LValue LV;
3358     RValue RV;
3359   };
3360 }
3361 
3362 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3363                                            const PseudoObjectExpr *E,
3364                                            bool forLValue,
3365                                            AggValueSlot slot) {
3366   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3367 
3368   // Find the result expression, if any.
3369   const Expr *resultExpr = E->getResultExpr();
3370   LValueOrRValue result;
3371 
3372   for (PseudoObjectExpr::const_semantics_iterator
3373          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3374     const Expr *semantic = *i;
3375 
3376     // If this semantic expression is an opaque value, bind it
3377     // to the result of its source expression.
3378     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3379 
3380       // If this is the result expression, we may need to evaluate
3381       // directly into the slot.
3382       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3383       OVMA opaqueData;
3384       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3385           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3386         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3387 
3388         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3389         opaqueData = OVMA::bind(CGF, ov, LV);
3390         result.RV = slot.asRValue();
3391 
3392       // Otherwise, emit as normal.
3393       } else {
3394         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3395 
3396         // If this is the result, also evaluate the result now.
3397         if (ov == resultExpr) {
3398           if (forLValue)
3399             result.LV = CGF.EmitLValue(ov);
3400           else
3401             result.RV = CGF.EmitAnyExpr(ov, slot);
3402         }
3403       }
3404 
3405       opaques.push_back(opaqueData);
3406 
3407     // Otherwise, if the expression is the result, evaluate it
3408     // and remember the result.
3409     } else if (semantic == resultExpr) {
3410       if (forLValue)
3411         result.LV = CGF.EmitLValue(semantic);
3412       else
3413         result.RV = CGF.EmitAnyExpr(semantic, slot);
3414 
3415     // Otherwise, evaluate the expression in an ignored context.
3416     } else {
3417       CGF.EmitIgnoredExpr(semantic);
3418     }
3419   }
3420 
3421   // Unbind all the opaques now.
3422   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3423     opaques[i].unbind(CGF);
3424 
3425   return result;
3426 }
3427 
3428 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3429                                                AggValueSlot slot) {
3430   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3431 }
3432 
3433 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3434   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3435 }
3436