1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenModule.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/ADT/Hashing.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/Support/ConvertUTF.h" 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 //===--------------------------------------------------------------------===// 37 // Miscellaneous Helper Methods 38 //===--------------------------------------------------------------------===// 39 40 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 41 unsigned addressSpace = 42 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 43 44 llvm::PointerType *destType = Int8PtrTy; 45 if (addressSpace) 46 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 47 48 if (value->getType() == destType) return value; 49 return Builder.CreateBitCast(value, destType); 50 } 51 52 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 53 /// block. 54 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 55 const Twine &Name) { 56 if (!Builder.isNamePreserving()) 57 return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt); 58 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt); 59 } 60 61 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 62 llvm::Value *Init) { 63 auto *Store = new llvm::StoreInst(Init, Var); 64 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 65 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 66 } 67 68 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 69 const Twine &Name) { 70 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 71 // FIXME: Should we prefer the preferred type alignment here? 72 CharUnits Align = getContext().getTypeAlignInChars(Ty); 73 Alloc->setAlignment(Align.getQuantity()); 74 return Alloc; 75 } 76 77 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 78 const Twine &Name) { 79 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 80 // FIXME: Should we prefer the preferred type alignment here? 81 CharUnits Align = getContext().getTypeAlignInChars(Ty); 82 Alloc->setAlignment(Align.getQuantity()); 83 return Alloc; 84 } 85 86 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 87 /// expression and compare the result against zero, returning an Int1Ty value. 88 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 89 PGO.setCurrentStmt(E); 90 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 91 llvm::Value *MemPtr = EmitScalarExpr(E); 92 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 93 } 94 95 QualType BoolTy = getContext().BoolTy; 96 if (!E->getType()->isAnyComplexType()) 97 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 98 99 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 100 } 101 102 /// EmitIgnoredExpr - Emit code to compute the specified expression, 103 /// ignoring the result. 104 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 105 if (E->isRValue()) 106 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 107 108 // Just emit it as an l-value and drop the result. 109 EmitLValue(E); 110 } 111 112 /// EmitAnyExpr - Emit code to compute the specified expression which 113 /// can have any type. The result is returned as an RValue struct. 114 /// If this is an aggregate expression, AggSlot indicates where the 115 /// result should be returned. 116 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 117 AggValueSlot aggSlot, 118 bool ignoreResult) { 119 switch (getEvaluationKind(E->getType())) { 120 case TEK_Scalar: 121 return RValue::get(EmitScalarExpr(E, ignoreResult)); 122 case TEK_Complex: 123 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 124 case TEK_Aggregate: 125 if (!ignoreResult && aggSlot.isIgnored()) 126 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 127 EmitAggExpr(E, aggSlot); 128 return aggSlot.asRValue(); 129 } 130 llvm_unreachable("bad evaluation kind"); 131 } 132 133 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 134 /// always be accessible even if no aggregate location is provided. 135 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 136 AggValueSlot AggSlot = AggValueSlot::ignored(); 137 138 if (hasAggregateEvaluationKind(E->getType())) 139 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 140 return EmitAnyExpr(E, AggSlot); 141 } 142 143 /// EmitAnyExprToMem - Evaluate an expression into a given memory 144 /// location. 145 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 146 llvm::Value *Location, 147 Qualifiers Quals, 148 bool IsInit) { 149 // FIXME: This function should take an LValue as an argument. 150 switch (getEvaluationKind(E->getType())) { 151 case TEK_Complex: 152 EmitComplexExprIntoLValue(E, 153 MakeNaturalAlignAddrLValue(Location, E->getType()), 154 /*isInit*/ false); 155 return; 156 157 case TEK_Aggregate: { 158 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 159 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 160 AggValueSlot::IsDestructed_t(IsInit), 161 AggValueSlot::DoesNotNeedGCBarriers, 162 AggValueSlot::IsAliased_t(!IsInit))); 163 return; 164 } 165 166 case TEK_Scalar: { 167 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 168 LValue LV = MakeAddrLValue(Location, E->getType()); 169 EmitStoreThroughLValue(RV, LV); 170 return; 171 } 172 } 173 llvm_unreachable("bad evaluation kind"); 174 } 175 176 static void 177 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 178 const Expr *E, llvm::Value *ReferenceTemporary) { 179 // Objective-C++ ARC: 180 // If we are binding a reference to a temporary that has ownership, we 181 // need to perform retain/release operations on the temporary. 182 // 183 // FIXME: This should be looking at E, not M. 184 if (CGF.getLangOpts().ObjCAutoRefCount && 185 M->getType()->isObjCLifetimeType()) { 186 QualType ObjCARCReferenceLifetimeType = M->getType(); 187 switch (Qualifiers::ObjCLifetime Lifetime = 188 ObjCARCReferenceLifetimeType.getObjCLifetime()) { 189 case Qualifiers::OCL_None: 190 case Qualifiers::OCL_ExplicitNone: 191 // Carry on to normal cleanup handling. 192 break; 193 194 case Qualifiers::OCL_Autoreleasing: 195 // Nothing to do; cleaned up by an autorelease pool. 196 return; 197 198 case Qualifiers::OCL_Strong: 199 case Qualifiers::OCL_Weak: 200 switch (StorageDuration Duration = M->getStorageDuration()) { 201 case SD_Static: 202 // Note: we intentionally do not register a cleanup to release 203 // the object on program termination. 204 return; 205 206 case SD_Thread: 207 // FIXME: We should probably register a cleanup in this case. 208 return; 209 210 case SD_Automatic: 211 case SD_FullExpression: 212 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 213 CodeGenFunction::Destroyer *Destroy; 214 CleanupKind CleanupKind; 215 if (Lifetime == Qualifiers::OCL_Strong) { 216 const ValueDecl *VD = M->getExtendingDecl(); 217 bool Precise = 218 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 219 CleanupKind = CGF.getARCCleanupKind(); 220 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 221 : &CodeGenFunction::destroyARCStrongImprecise; 222 } else { 223 // __weak objects always get EH cleanups; otherwise, exceptions 224 // could cause really nasty crashes instead of mere leaks. 225 CleanupKind = NormalAndEHCleanup; 226 Destroy = &CodeGenFunction::destroyARCWeak; 227 } 228 if (Duration == SD_FullExpression) 229 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 230 ObjCARCReferenceLifetimeType, *Destroy, 231 CleanupKind & EHCleanup); 232 else 233 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 234 ObjCARCReferenceLifetimeType, 235 *Destroy, CleanupKind & EHCleanup); 236 return; 237 238 case SD_Dynamic: 239 llvm_unreachable("temporary cannot have dynamic storage duration"); 240 } 241 llvm_unreachable("unknown storage duration"); 242 } 243 } 244 245 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 246 if (const RecordType *RT = 247 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 248 // Get the destructor for the reference temporary. 249 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 250 if (!ClassDecl->hasTrivialDestructor()) 251 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 252 } 253 254 if (!ReferenceTemporaryDtor) 255 return; 256 257 // Call the destructor for the temporary. 258 switch (M->getStorageDuration()) { 259 case SD_Static: 260 case SD_Thread: { 261 llvm::Constant *CleanupFn; 262 llvm::Constant *CleanupArg; 263 if (E->getType()->isArrayType()) { 264 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 265 cast<llvm::Constant>(ReferenceTemporary), E->getType(), 266 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 267 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 268 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 269 } else { 270 CleanupFn = 271 CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 272 CleanupArg = cast<llvm::Constant>(ReferenceTemporary); 273 } 274 CGF.CGM.getCXXABI().registerGlobalDtor( 275 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 276 break; 277 } 278 279 case SD_FullExpression: 280 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 281 CodeGenFunction::destroyCXXObject, 282 CGF.getLangOpts().Exceptions); 283 break; 284 285 case SD_Automatic: 286 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 287 ReferenceTemporary, E->getType(), 288 CodeGenFunction::destroyCXXObject, 289 CGF.getLangOpts().Exceptions); 290 break; 291 292 case SD_Dynamic: 293 llvm_unreachable("temporary cannot have dynamic storage duration"); 294 } 295 } 296 297 static llvm::Value * 298 createReferenceTemporary(CodeGenFunction &CGF, 299 const MaterializeTemporaryExpr *M, const Expr *Inner) { 300 switch (M->getStorageDuration()) { 301 case SD_FullExpression: 302 case SD_Automatic: 303 return CGF.CreateMemTemp(Inner->getType(), "ref.tmp"); 304 305 case SD_Thread: 306 case SD_Static: 307 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 308 309 case SD_Dynamic: 310 llvm_unreachable("temporary can't have dynamic storage duration"); 311 } 312 llvm_unreachable("unknown storage duration"); 313 } 314 315 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 316 const MaterializeTemporaryExpr *M) { 317 const Expr *E = M->GetTemporaryExpr(); 318 319 if (getLangOpts().ObjCAutoRefCount && 320 M->getType()->isObjCLifetimeType() && 321 M->getType().getObjCLifetime() != Qualifiers::OCL_None && 322 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 323 // FIXME: Fold this into the general case below. 324 llvm::Value *Object = createReferenceTemporary(*this, M, E); 325 LValue RefTempDst = MakeAddrLValue(Object, M->getType()); 326 327 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 328 // We should not have emitted the initializer for this temporary as a 329 // constant. 330 assert(!Var->hasInitializer()); 331 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 332 } 333 334 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 335 336 pushTemporaryCleanup(*this, M, E, Object); 337 return RefTempDst; 338 } 339 340 SmallVector<const Expr *, 2> CommaLHSs; 341 SmallVector<SubobjectAdjustment, 2> Adjustments; 342 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 343 344 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) 345 EmitIgnoredExpr(CommaLHSs[I]); 346 347 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 348 if (opaque->getType()->isRecordType()) { 349 assert(Adjustments.empty()); 350 return EmitOpaqueValueLValue(opaque); 351 } 352 } 353 354 // Create and initialize the reference temporary. 355 llvm::Value *Object = createReferenceTemporary(*this, M, E); 356 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 357 // If the temporary is a global and has a constant initializer, we may 358 // have already initialized it. 359 if (!Var->hasInitializer()) { 360 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 361 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 362 } 363 } else { 364 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 365 } 366 pushTemporaryCleanup(*this, M, E, Object); 367 368 // Perform derived-to-base casts and/or field accesses, to get from the 369 // temporary object we created (and, potentially, for which we extended 370 // the lifetime) to the subobject we're binding the reference to. 371 for (unsigned I = Adjustments.size(); I != 0; --I) { 372 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 373 switch (Adjustment.Kind) { 374 case SubobjectAdjustment::DerivedToBaseAdjustment: 375 Object = 376 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 377 Adjustment.DerivedToBase.BasePath->path_begin(), 378 Adjustment.DerivedToBase.BasePath->path_end(), 379 /*NullCheckValue=*/ false); 380 break; 381 382 case SubobjectAdjustment::FieldAdjustment: { 383 LValue LV = MakeAddrLValue(Object, E->getType()); 384 LV = EmitLValueForField(LV, Adjustment.Field); 385 assert(LV.isSimple() && 386 "materialized temporary field is not a simple lvalue"); 387 Object = LV.getAddress(); 388 break; 389 } 390 391 case SubobjectAdjustment::MemberPointerAdjustment: { 392 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 393 Object = CGM.getCXXABI().EmitMemberDataPointerAddress( 394 *this, E, Object, Ptr, Adjustment.Ptr.MPT); 395 break; 396 } 397 } 398 } 399 400 return MakeAddrLValue(Object, M->getType()); 401 } 402 403 RValue 404 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 405 // Emit the expression as an lvalue. 406 LValue LV = EmitLValue(E); 407 assert(LV.isSimple()); 408 llvm::Value *Value = LV.getAddress(); 409 410 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 411 // C++11 [dcl.ref]p5 (as amended by core issue 453): 412 // If a glvalue to which a reference is directly bound designates neither 413 // an existing object or function of an appropriate type nor a region of 414 // storage of suitable size and alignment to contain an object of the 415 // reference's type, the behavior is undefined. 416 QualType Ty = E->getType(); 417 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 418 } 419 420 return RValue::get(Value); 421 } 422 423 424 /// getAccessedFieldNo - Given an encoded value and a result number, return the 425 /// input field number being accessed. 426 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 427 const llvm::Constant *Elts) { 428 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 429 ->getZExtValue(); 430 } 431 432 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 433 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 434 llvm::Value *High) { 435 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 436 llvm::Value *K47 = Builder.getInt64(47); 437 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 438 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 439 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 440 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 441 return Builder.CreateMul(B1, KMul); 442 } 443 444 bool CodeGenFunction::sanitizePerformTypeCheck() const { 445 return SanOpts->Null | SanOpts->Alignment | SanOpts->ObjectSize | 446 SanOpts->Vptr; 447 } 448 449 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 450 llvm::Value *Address, 451 QualType Ty, CharUnits Alignment) { 452 if (!sanitizePerformTypeCheck()) 453 return; 454 455 // Don't check pointers outside the default address space. The null check 456 // isn't correct, the object-size check isn't supported by LLVM, and we can't 457 // communicate the addresses to the runtime handler for the vptr check. 458 if (Address->getType()->getPointerAddressSpace()) 459 return; 460 461 llvm::Value *Cond = nullptr; 462 llvm::BasicBlock *Done = nullptr; 463 464 if (SanOpts->Null) { 465 // The glvalue must not be an empty glvalue. 466 Cond = Builder.CreateICmpNE( 467 Address, llvm::Constant::getNullValue(Address->getType())); 468 469 if (TCK == TCK_DowncastPointer) { 470 // When performing a pointer downcast, it's OK if the value is null. 471 // Skip the remaining checks in that case. 472 Done = createBasicBlock("null"); 473 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 474 Builder.CreateCondBr(Cond, Rest, Done); 475 EmitBlock(Rest); 476 Cond = nullptr; 477 } 478 } 479 480 if (SanOpts->ObjectSize && !Ty->isIncompleteType()) { 481 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 482 483 // The glvalue must refer to a large enough storage region. 484 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 485 // to check this. 486 // FIXME: Get object address space 487 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 488 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 489 llvm::Value *Min = Builder.getFalse(); 490 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 491 llvm::Value *LargeEnough = 492 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 493 llvm::ConstantInt::get(IntPtrTy, Size)); 494 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough; 495 } 496 497 uint64_t AlignVal = 0; 498 499 if (SanOpts->Alignment) { 500 AlignVal = Alignment.getQuantity(); 501 if (!Ty->isIncompleteType() && !AlignVal) 502 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 503 504 // The glvalue must be suitably aligned. 505 if (AlignVal) { 506 llvm::Value *Align = 507 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 508 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 509 llvm::Value *Aligned = 510 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 511 Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned; 512 } 513 } 514 515 if (Cond) { 516 llvm::Constant *StaticData[] = { 517 EmitCheckSourceLocation(Loc), 518 EmitCheckTypeDescriptor(Ty), 519 llvm::ConstantInt::get(SizeTy, AlignVal), 520 llvm::ConstantInt::get(Int8Ty, TCK) 521 }; 522 EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable); 523 } 524 525 // If possible, check that the vptr indicates that there is a subobject of 526 // type Ty at offset zero within this object. 527 // 528 // C++11 [basic.life]p5,6: 529 // [For storage which does not refer to an object within its lifetime] 530 // The program has undefined behavior if: 531 // -- the [pointer or glvalue] is used to access a non-static data member 532 // or call a non-static member function 533 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 534 if (SanOpts->Vptr && 535 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 536 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) && 537 RD && RD->hasDefinition() && RD->isDynamicClass()) { 538 // Compute a hash of the mangled name of the type. 539 // 540 // FIXME: This is not guaranteed to be deterministic! Move to a 541 // fingerprinting mechanism once LLVM provides one. For the time 542 // being the implementation happens to be deterministic. 543 SmallString<64> MangledName; 544 llvm::raw_svector_ostream Out(MangledName); 545 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 546 Out); 547 548 // Blacklist based on the mangled type. 549 if (!CGM.getSanitizerBlacklist().isBlacklistedType(Out.str())) { 550 llvm::hash_code TypeHash = hash_value(Out.str()); 551 552 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 553 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 554 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 555 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 556 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 557 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 558 559 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 560 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 561 562 // Look the hash up in our cache. 563 const int CacheSize = 128; 564 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 565 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 566 "__ubsan_vptr_type_cache"); 567 llvm::Value *Slot = Builder.CreateAnd(Hash, 568 llvm::ConstantInt::get(IntPtrTy, 569 CacheSize-1)); 570 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 571 llvm::Value *CacheVal = 572 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 573 574 // If the hash isn't in the cache, call a runtime handler to perform the 575 // hard work of checking whether the vptr is for an object of the right 576 // type. This will either fill in the cache and return, or produce a 577 // diagnostic. 578 llvm::Constant *StaticData[] = { 579 EmitCheckSourceLocation(Loc), 580 EmitCheckTypeDescriptor(Ty), 581 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 582 llvm::ConstantInt::get(Int8Ty, TCK) 583 }; 584 llvm::Value *DynamicData[] = { Address, Hash }; 585 EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash), 586 "dynamic_type_cache_miss", StaticData, DynamicData, 587 CRK_AlwaysRecoverable); 588 } 589 } 590 591 if (Done) { 592 Builder.CreateBr(Done); 593 EmitBlock(Done); 594 } 595 } 596 597 /// Determine whether this expression refers to a flexible array member in a 598 /// struct. We disable array bounds checks for such members. 599 static bool isFlexibleArrayMemberExpr(const Expr *E) { 600 // For compatibility with existing code, we treat arrays of length 0 or 601 // 1 as flexible array members. 602 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 603 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 604 if (CAT->getSize().ugt(1)) 605 return false; 606 } else if (!isa<IncompleteArrayType>(AT)) 607 return false; 608 609 E = E->IgnoreParens(); 610 611 // A flexible array member must be the last member in the class. 612 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 613 // FIXME: If the base type of the member expr is not FD->getParent(), 614 // this should not be treated as a flexible array member access. 615 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 616 RecordDecl::field_iterator FI( 617 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 618 return ++FI == FD->getParent()->field_end(); 619 } 620 } 621 622 return false; 623 } 624 625 /// If Base is known to point to the start of an array, return the length of 626 /// that array. Return 0 if the length cannot be determined. 627 static llvm::Value *getArrayIndexingBound( 628 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 629 // For the vector indexing extension, the bound is the number of elements. 630 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 631 IndexedType = Base->getType(); 632 return CGF.Builder.getInt32(VT->getNumElements()); 633 } 634 635 Base = Base->IgnoreParens(); 636 637 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 638 if (CE->getCastKind() == CK_ArrayToPointerDecay && 639 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 640 IndexedType = CE->getSubExpr()->getType(); 641 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 642 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 643 return CGF.Builder.getInt(CAT->getSize()); 644 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 645 return CGF.getVLASize(VAT).first; 646 } 647 } 648 649 return nullptr; 650 } 651 652 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 653 llvm::Value *Index, QualType IndexType, 654 bool Accessed) { 655 assert(SanOpts->ArrayBounds && 656 "should not be called unless adding bounds checks"); 657 658 QualType IndexedType; 659 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 660 if (!Bound) 661 return; 662 663 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 664 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 665 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 666 667 llvm::Constant *StaticData[] = { 668 EmitCheckSourceLocation(E->getExprLoc()), 669 EmitCheckTypeDescriptor(IndexedType), 670 EmitCheckTypeDescriptor(IndexType) 671 }; 672 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 673 : Builder.CreateICmpULE(IndexVal, BoundVal); 674 EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable); 675 } 676 677 678 CodeGenFunction::ComplexPairTy CodeGenFunction:: 679 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 680 bool isInc, bool isPre) { 681 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 682 683 llvm::Value *NextVal; 684 if (isa<llvm::IntegerType>(InVal.first->getType())) { 685 uint64_t AmountVal = isInc ? 1 : -1; 686 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 687 688 // Add the inc/dec to the real part. 689 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 690 } else { 691 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 692 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 693 if (!isInc) 694 FVal.changeSign(); 695 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 696 697 // Add the inc/dec to the real part. 698 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 699 } 700 701 ComplexPairTy IncVal(NextVal, InVal.second); 702 703 // Store the updated result through the lvalue. 704 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 705 706 // If this is a postinc, return the value read from memory, otherwise use the 707 // updated value. 708 return isPre ? IncVal : InVal; 709 } 710 711 712 //===----------------------------------------------------------------------===// 713 // LValue Expression Emission 714 //===----------------------------------------------------------------------===// 715 716 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 717 if (Ty->isVoidType()) 718 return RValue::get(nullptr); 719 720 switch (getEvaluationKind(Ty)) { 721 case TEK_Complex: { 722 llvm::Type *EltTy = 723 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 724 llvm::Value *U = llvm::UndefValue::get(EltTy); 725 return RValue::getComplex(std::make_pair(U, U)); 726 } 727 728 // If this is a use of an undefined aggregate type, the aggregate must have an 729 // identifiable address. Just because the contents of the value are undefined 730 // doesn't mean that the address can't be taken and compared. 731 case TEK_Aggregate: { 732 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 733 return RValue::getAggregate(DestPtr); 734 } 735 736 case TEK_Scalar: 737 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 738 } 739 llvm_unreachable("bad evaluation kind"); 740 } 741 742 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 743 const char *Name) { 744 ErrorUnsupported(E, Name); 745 return GetUndefRValue(E->getType()); 746 } 747 748 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 749 const char *Name) { 750 ErrorUnsupported(E, Name); 751 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 752 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 753 } 754 755 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 756 LValue LV; 757 if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E)) 758 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 759 else 760 LV = EmitLValue(E); 761 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 762 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 763 E->getType(), LV.getAlignment()); 764 return LV; 765 } 766 767 /// EmitLValue - Emit code to compute a designator that specifies the location 768 /// of the expression. 769 /// 770 /// This can return one of two things: a simple address or a bitfield reference. 771 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 772 /// an LLVM pointer type. 773 /// 774 /// If this returns a bitfield reference, nothing about the pointee type of the 775 /// LLVM value is known: For example, it may not be a pointer to an integer. 776 /// 777 /// If this returns a normal address, and if the lvalue's C type is fixed size, 778 /// this method guarantees that the returned pointer type will point to an LLVM 779 /// type of the same size of the lvalue's type. If the lvalue has a variable 780 /// length type, this is not possible. 781 /// 782 LValue CodeGenFunction::EmitLValue(const Expr *E) { 783 switch (E->getStmtClass()) { 784 default: return EmitUnsupportedLValue(E, "l-value expression"); 785 786 case Expr::ObjCPropertyRefExprClass: 787 llvm_unreachable("cannot emit a property reference directly"); 788 789 case Expr::ObjCSelectorExprClass: 790 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 791 case Expr::ObjCIsaExprClass: 792 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 793 case Expr::BinaryOperatorClass: 794 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 795 case Expr::CompoundAssignOperatorClass: 796 if (!E->getType()->isAnyComplexType()) 797 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 798 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 799 case Expr::CallExprClass: 800 case Expr::CXXMemberCallExprClass: 801 case Expr::CXXOperatorCallExprClass: 802 case Expr::UserDefinedLiteralClass: 803 return EmitCallExprLValue(cast<CallExpr>(E)); 804 case Expr::VAArgExprClass: 805 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 806 case Expr::DeclRefExprClass: 807 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 808 case Expr::ParenExprClass: 809 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 810 case Expr::GenericSelectionExprClass: 811 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 812 case Expr::PredefinedExprClass: 813 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 814 case Expr::StringLiteralClass: 815 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 816 case Expr::ObjCEncodeExprClass: 817 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 818 case Expr::PseudoObjectExprClass: 819 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 820 case Expr::InitListExprClass: 821 return EmitInitListLValue(cast<InitListExpr>(E)); 822 case Expr::CXXTemporaryObjectExprClass: 823 case Expr::CXXConstructExprClass: 824 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 825 case Expr::CXXBindTemporaryExprClass: 826 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 827 case Expr::CXXUuidofExprClass: 828 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 829 case Expr::LambdaExprClass: 830 return EmitLambdaLValue(cast<LambdaExpr>(E)); 831 832 case Expr::ExprWithCleanupsClass: { 833 const auto *cleanups = cast<ExprWithCleanups>(E); 834 enterFullExpression(cleanups); 835 RunCleanupsScope Scope(*this); 836 return EmitLValue(cleanups->getSubExpr()); 837 } 838 839 case Expr::CXXDefaultArgExprClass: 840 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 841 case Expr::CXXDefaultInitExprClass: { 842 CXXDefaultInitExprScope Scope(*this); 843 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 844 } 845 case Expr::CXXTypeidExprClass: 846 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 847 848 case Expr::ObjCMessageExprClass: 849 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 850 case Expr::ObjCIvarRefExprClass: 851 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 852 case Expr::StmtExprClass: 853 return EmitStmtExprLValue(cast<StmtExpr>(E)); 854 case Expr::UnaryOperatorClass: 855 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 856 case Expr::ArraySubscriptExprClass: 857 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 858 case Expr::ExtVectorElementExprClass: 859 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 860 case Expr::MemberExprClass: 861 return EmitMemberExpr(cast<MemberExpr>(E)); 862 case Expr::CompoundLiteralExprClass: 863 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 864 case Expr::ConditionalOperatorClass: 865 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 866 case Expr::BinaryConditionalOperatorClass: 867 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 868 case Expr::ChooseExprClass: 869 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 870 case Expr::OpaqueValueExprClass: 871 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 872 case Expr::SubstNonTypeTemplateParmExprClass: 873 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 874 case Expr::ImplicitCastExprClass: 875 case Expr::CStyleCastExprClass: 876 case Expr::CXXFunctionalCastExprClass: 877 case Expr::CXXStaticCastExprClass: 878 case Expr::CXXDynamicCastExprClass: 879 case Expr::CXXReinterpretCastExprClass: 880 case Expr::CXXConstCastExprClass: 881 case Expr::ObjCBridgedCastExprClass: 882 return EmitCastLValue(cast<CastExpr>(E)); 883 884 case Expr::MaterializeTemporaryExprClass: 885 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 886 } 887 } 888 889 /// Given an object of the given canonical type, can we safely copy a 890 /// value out of it based on its initializer? 891 static bool isConstantEmittableObjectType(QualType type) { 892 assert(type.isCanonical()); 893 assert(!type->isReferenceType()); 894 895 // Must be const-qualified but non-volatile. 896 Qualifiers qs = type.getLocalQualifiers(); 897 if (!qs.hasConst() || qs.hasVolatile()) return false; 898 899 // Otherwise, all object types satisfy this except C++ classes with 900 // mutable subobjects or non-trivial copy/destroy behavior. 901 if (const auto *RT = dyn_cast<RecordType>(type)) 902 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 903 if (RD->hasMutableFields() || !RD->isTrivial()) 904 return false; 905 906 return true; 907 } 908 909 /// Can we constant-emit a load of a reference to a variable of the 910 /// given type? This is different from predicates like 911 /// Decl::isUsableInConstantExpressions because we do want it to apply 912 /// in situations that don't necessarily satisfy the language's rules 913 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 914 /// to do this with const float variables even if those variables 915 /// aren't marked 'constexpr'. 916 enum ConstantEmissionKind { 917 CEK_None, 918 CEK_AsReferenceOnly, 919 CEK_AsValueOrReference, 920 CEK_AsValueOnly 921 }; 922 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 923 type = type.getCanonicalType(); 924 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 925 if (isConstantEmittableObjectType(ref->getPointeeType())) 926 return CEK_AsValueOrReference; 927 return CEK_AsReferenceOnly; 928 } 929 if (isConstantEmittableObjectType(type)) 930 return CEK_AsValueOnly; 931 return CEK_None; 932 } 933 934 /// Try to emit a reference to the given value without producing it as 935 /// an l-value. This is actually more than an optimization: we can't 936 /// produce an l-value for variables that we never actually captured 937 /// in a block or lambda, which means const int variables or constexpr 938 /// literals or similar. 939 CodeGenFunction::ConstantEmission 940 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 941 ValueDecl *value = refExpr->getDecl(); 942 943 // The value needs to be an enum constant or a constant variable. 944 ConstantEmissionKind CEK; 945 if (isa<ParmVarDecl>(value)) { 946 CEK = CEK_None; 947 } else if (auto *var = dyn_cast<VarDecl>(value)) { 948 CEK = checkVarTypeForConstantEmission(var->getType()); 949 } else if (isa<EnumConstantDecl>(value)) { 950 CEK = CEK_AsValueOnly; 951 } else { 952 CEK = CEK_None; 953 } 954 if (CEK == CEK_None) return ConstantEmission(); 955 956 Expr::EvalResult result; 957 bool resultIsReference; 958 QualType resultType; 959 960 // It's best to evaluate all the way as an r-value if that's permitted. 961 if (CEK != CEK_AsReferenceOnly && 962 refExpr->EvaluateAsRValue(result, getContext())) { 963 resultIsReference = false; 964 resultType = refExpr->getType(); 965 966 // Otherwise, try to evaluate as an l-value. 967 } else if (CEK != CEK_AsValueOnly && 968 refExpr->EvaluateAsLValue(result, getContext())) { 969 resultIsReference = true; 970 resultType = value->getType(); 971 972 // Failure. 973 } else { 974 return ConstantEmission(); 975 } 976 977 // In any case, if the initializer has side-effects, abandon ship. 978 if (result.HasSideEffects) 979 return ConstantEmission(); 980 981 // Emit as a constant. 982 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 983 984 // Make sure we emit a debug reference to the global variable. 985 // This should probably fire even for 986 if (isa<VarDecl>(value)) { 987 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 988 EmitDeclRefExprDbgValue(refExpr, C); 989 } else { 990 assert(isa<EnumConstantDecl>(value)); 991 EmitDeclRefExprDbgValue(refExpr, C); 992 } 993 994 // If we emitted a reference constant, we need to dereference that. 995 if (resultIsReference) 996 return ConstantEmission::forReference(C); 997 998 return ConstantEmission::forValue(C); 999 } 1000 1001 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1002 SourceLocation Loc) { 1003 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1004 lvalue.getAlignment().getQuantity(), 1005 lvalue.getType(), Loc, lvalue.getTBAAInfo(), 1006 lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); 1007 } 1008 1009 static bool hasBooleanRepresentation(QualType Ty) { 1010 if (Ty->isBooleanType()) 1011 return true; 1012 1013 if (const EnumType *ET = Ty->getAs<EnumType>()) 1014 return ET->getDecl()->getIntegerType()->isBooleanType(); 1015 1016 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1017 return hasBooleanRepresentation(AT->getValueType()); 1018 1019 return false; 1020 } 1021 1022 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1023 llvm::APInt &Min, llvm::APInt &End, 1024 bool StrictEnums) { 1025 const EnumType *ET = Ty->getAs<EnumType>(); 1026 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1027 ET && !ET->getDecl()->isFixed(); 1028 bool IsBool = hasBooleanRepresentation(Ty); 1029 if (!IsBool && !IsRegularCPlusPlusEnum) 1030 return false; 1031 1032 if (IsBool) { 1033 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1034 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1035 } else { 1036 const EnumDecl *ED = ET->getDecl(); 1037 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1038 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1039 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1040 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1041 1042 if (NumNegativeBits) { 1043 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1044 assert(NumBits <= Bitwidth); 1045 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1046 Min = -End; 1047 } else { 1048 assert(NumPositiveBits <= Bitwidth); 1049 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1050 Min = llvm::APInt(Bitwidth, 0); 1051 } 1052 } 1053 return true; 1054 } 1055 1056 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1057 llvm::APInt Min, End; 1058 if (!getRangeForType(*this, Ty, Min, End, 1059 CGM.getCodeGenOpts().StrictEnums)) 1060 return nullptr; 1061 1062 llvm::MDBuilder MDHelper(getLLVMContext()); 1063 return MDHelper.createRange(Min, End); 1064 } 1065 1066 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1067 unsigned Alignment, QualType Ty, 1068 SourceLocation Loc, 1069 llvm::MDNode *TBAAInfo, 1070 QualType TBAABaseType, 1071 uint64_t TBAAOffset) { 1072 // For better performance, handle vector loads differently. 1073 if (Ty->isVectorType()) { 1074 llvm::Value *V; 1075 const llvm::Type *EltTy = 1076 cast<llvm::PointerType>(Addr->getType())->getElementType(); 1077 1078 const auto *VTy = cast<llvm::VectorType>(EltTy); 1079 1080 // Handle vectors of size 3, like size 4 for better performance. 1081 if (VTy->getNumElements() == 3) { 1082 1083 // Bitcast to vec4 type. 1084 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1085 4); 1086 llvm::PointerType *ptVec4Ty = 1087 llvm::PointerType::get(vec4Ty, 1088 (cast<llvm::PointerType>( 1089 Addr->getType()))->getAddressSpace()); 1090 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1091 "castToVec4"); 1092 // Now load value. 1093 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1094 1095 // Shuffle vector to get vec3. 1096 llvm::Constant *Mask[] = { 1097 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0), 1098 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1), 1099 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2) 1100 }; 1101 1102 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1103 V = Builder.CreateShuffleVector(LoadVal, 1104 llvm::UndefValue::get(vec4Ty), 1105 MaskV, "extractVec"); 1106 return EmitFromMemory(V, Ty); 1107 } 1108 } 1109 1110 // Atomic operations have to be done on integral types. 1111 if (Ty->isAtomicType()) { 1112 LValue lvalue = LValue::MakeAddr(Addr, Ty, 1113 CharUnits::fromQuantity(Alignment), 1114 getContext(), TBAAInfo); 1115 return EmitAtomicLoad(lvalue, Loc).getScalarVal(); 1116 } 1117 1118 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1119 if (Volatile) 1120 Load->setVolatile(true); 1121 if (Alignment) 1122 Load->setAlignment(Alignment); 1123 if (TBAAInfo) { 1124 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1125 TBAAOffset); 1126 if (TBAAPath) 1127 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/); 1128 } 1129 1130 if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) || 1131 (SanOpts->Enum && Ty->getAs<EnumType>())) { 1132 llvm::APInt Min, End; 1133 if (getRangeForType(*this, Ty, Min, End, true)) { 1134 --End; 1135 llvm::Value *Check; 1136 if (!Min) 1137 Check = Builder.CreateICmpULE( 1138 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1139 else { 1140 llvm::Value *Upper = Builder.CreateICmpSLE( 1141 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1142 llvm::Value *Lower = Builder.CreateICmpSGE( 1143 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1144 Check = Builder.CreateAnd(Upper, Lower); 1145 } 1146 llvm::Constant *StaticArgs[] = { 1147 EmitCheckSourceLocation(Loc), 1148 EmitCheckTypeDescriptor(Ty) 1149 }; 1150 EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load), 1151 CRK_Recoverable); 1152 } 1153 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1154 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1155 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1156 1157 return EmitFromMemory(Load, Ty); 1158 } 1159 1160 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1161 // Bool has a different representation in memory than in registers. 1162 if (hasBooleanRepresentation(Ty)) { 1163 // This should really always be an i1, but sometimes it's already 1164 // an i8, and it's awkward to track those cases down. 1165 if (Value->getType()->isIntegerTy(1)) 1166 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1167 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1168 "wrong value rep of bool"); 1169 } 1170 1171 return Value; 1172 } 1173 1174 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1175 // Bool has a different representation in memory than in registers. 1176 if (hasBooleanRepresentation(Ty)) { 1177 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1178 "wrong value rep of bool"); 1179 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1180 } 1181 1182 return Value; 1183 } 1184 1185 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1186 bool Volatile, unsigned Alignment, 1187 QualType Ty, llvm::MDNode *TBAAInfo, 1188 bool isInit, QualType TBAABaseType, 1189 uint64_t TBAAOffset) { 1190 1191 // Handle vectors differently to get better performance. 1192 if (Ty->isVectorType()) { 1193 llvm::Type *SrcTy = Value->getType(); 1194 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1195 // Handle vec3 special. 1196 if (VecTy->getNumElements() == 3) { 1197 llvm::LLVMContext &VMContext = getLLVMContext(); 1198 1199 // Our source is a vec3, do a shuffle vector to make it a vec4. 1200 SmallVector<llvm::Constant*, 4> Mask; 1201 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1202 0)); 1203 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1204 1)); 1205 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1206 2)); 1207 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1208 1209 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1210 Value = Builder.CreateShuffleVector(Value, 1211 llvm::UndefValue::get(VecTy), 1212 MaskV, "extractVec"); 1213 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1214 } 1215 auto *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1216 if (DstPtr->getElementType() != SrcTy) { 1217 llvm::Type *MemTy = 1218 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1219 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1220 } 1221 } 1222 1223 Value = EmitToMemory(Value, Ty); 1224 1225 if (Ty->isAtomicType()) { 1226 EmitAtomicStore(RValue::get(Value), 1227 LValue::MakeAddr(Addr, Ty, 1228 CharUnits::fromQuantity(Alignment), 1229 getContext(), TBAAInfo), 1230 isInit); 1231 return; 1232 } 1233 1234 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1235 if (Alignment) 1236 Store->setAlignment(Alignment); 1237 if (TBAAInfo) { 1238 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1239 TBAAOffset); 1240 if (TBAAPath) 1241 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/); 1242 } 1243 } 1244 1245 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1246 bool isInit) { 1247 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1248 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1249 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1250 lvalue.getTBAAOffset()); 1251 } 1252 1253 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1254 /// method emits the address of the lvalue, then loads the result as an rvalue, 1255 /// returning the rvalue. 1256 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1257 if (LV.isObjCWeak()) { 1258 // load of a __weak object. 1259 llvm::Value *AddrWeakObj = LV.getAddress(); 1260 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1261 AddrWeakObj)); 1262 } 1263 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1264 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1265 Object = EmitObjCConsumeObject(LV.getType(), Object); 1266 return RValue::get(Object); 1267 } 1268 1269 if (LV.isSimple()) { 1270 assert(!LV.getType()->isFunctionType()); 1271 1272 // Everything needs a load. 1273 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1274 } 1275 1276 if (LV.isVectorElt()) { 1277 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1278 LV.isVolatileQualified()); 1279 Load->setAlignment(LV.getAlignment().getQuantity()); 1280 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1281 "vecext")); 1282 } 1283 1284 // If this is a reference to a subset of the elements of a vector, either 1285 // shuffle the input or extract/insert them as appropriate. 1286 if (LV.isExtVectorElt()) 1287 return EmitLoadOfExtVectorElementLValue(LV); 1288 1289 // Global Register variables always invoke intrinsics 1290 if (LV.isGlobalReg()) 1291 return EmitLoadOfGlobalRegLValue(LV); 1292 1293 assert(LV.isBitField() && "Unknown LValue type!"); 1294 return EmitLoadOfBitfieldLValue(LV); 1295 } 1296 1297 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1298 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1299 1300 // Get the output type. 1301 llvm::Type *ResLTy = ConvertType(LV.getType()); 1302 1303 llvm::Value *Ptr = LV.getBitFieldAddr(); 1304 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), 1305 "bf.load"); 1306 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1307 1308 if (Info.IsSigned) { 1309 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1310 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1311 if (HighBits) 1312 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1313 if (Info.Offset + HighBits) 1314 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1315 } else { 1316 if (Info.Offset) 1317 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1318 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1319 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1320 Info.Size), 1321 "bf.clear"); 1322 } 1323 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1324 1325 return RValue::get(Val); 1326 } 1327 1328 // If this is a reference to a subset of the elements of a vector, create an 1329 // appropriate shufflevector. 1330 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1331 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1332 LV.isVolatileQualified()); 1333 Load->setAlignment(LV.getAlignment().getQuantity()); 1334 llvm::Value *Vec = Load; 1335 1336 const llvm::Constant *Elts = LV.getExtVectorElts(); 1337 1338 // If the result of the expression is a non-vector type, we must be extracting 1339 // a single element. Just codegen as an extractelement. 1340 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1341 if (!ExprVT) { 1342 unsigned InIdx = getAccessedFieldNo(0, Elts); 1343 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1344 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1345 } 1346 1347 // Always use shuffle vector to try to retain the original program structure 1348 unsigned NumResultElts = ExprVT->getNumElements(); 1349 1350 SmallVector<llvm::Constant*, 4> Mask; 1351 for (unsigned i = 0; i != NumResultElts; ++i) 1352 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1353 1354 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1355 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1356 MaskV); 1357 return RValue::get(Vec); 1358 } 1359 1360 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1361 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1362 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1363 "Bad type for register variable"); 1364 llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(LV.getGlobalReg()); 1365 assert(RegName && "Register LValue is not metadata"); 1366 1367 // We accept integer and pointer types only 1368 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1369 llvm::Type *Ty = OrigTy; 1370 if (OrigTy->isPointerTy()) 1371 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1372 llvm::Type *Types[] = { Ty }; 1373 1374 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1375 llvm::Value *Call = Builder.CreateCall(F, RegName); 1376 if (OrigTy->isPointerTy()) 1377 Call = Builder.CreateIntToPtr(Call, OrigTy); 1378 return RValue::get(Call); 1379 } 1380 1381 1382 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1383 /// lvalue, where both are guaranteed to the have the same type, and that type 1384 /// is 'Ty'. 1385 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1386 bool isInit) { 1387 if (!Dst.isSimple()) { 1388 if (Dst.isVectorElt()) { 1389 // Read/modify/write the vector, inserting the new element. 1390 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1391 Dst.isVolatileQualified()); 1392 Load->setAlignment(Dst.getAlignment().getQuantity()); 1393 llvm::Value *Vec = Load; 1394 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1395 Dst.getVectorIdx(), "vecins"); 1396 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1397 Dst.isVolatileQualified()); 1398 Store->setAlignment(Dst.getAlignment().getQuantity()); 1399 return; 1400 } 1401 1402 // If this is an update of extended vector elements, insert them as 1403 // appropriate. 1404 if (Dst.isExtVectorElt()) 1405 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1406 1407 if (Dst.isGlobalReg()) 1408 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1409 1410 assert(Dst.isBitField() && "Unknown LValue type"); 1411 return EmitStoreThroughBitfieldLValue(Src, Dst); 1412 } 1413 1414 // There's special magic for assigning into an ARC-qualified l-value. 1415 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1416 switch (Lifetime) { 1417 case Qualifiers::OCL_None: 1418 llvm_unreachable("present but none"); 1419 1420 case Qualifiers::OCL_ExplicitNone: 1421 // nothing special 1422 break; 1423 1424 case Qualifiers::OCL_Strong: 1425 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1426 return; 1427 1428 case Qualifiers::OCL_Weak: 1429 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1430 return; 1431 1432 case Qualifiers::OCL_Autoreleasing: 1433 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1434 Src.getScalarVal())); 1435 // fall into the normal path 1436 break; 1437 } 1438 } 1439 1440 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1441 // load of a __weak object. 1442 llvm::Value *LvalueDst = Dst.getAddress(); 1443 llvm::Value *src = Src.getScalarVal(); 1444 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1445 return; 1446 } 1447 1448 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1449 // load of a __strong object. 1450 llvm::Value *LvalueDst = Dst.getAddress(); 1451 llvm::Value *src = Src.getScalarVal(); 1452 if (Dst.isObjCIvar()) { 1453 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1454 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1455 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1456 llvm::Value *dst = RHS; 1457 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1458 llvm::Value *LHS = 1459 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1460 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1461 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1462 BytesBetween); 1463 } else if (Dst.isGlobalObjCRef()) { 1464 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1465 Dst.isThreadLocalRef()); 1466 } 1467 else 1468 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1469 return; 1470 } 1471 1472 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1473 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1474 } 1475 1476 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1477 llvm::Value **Result) { 1478 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1479 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1480 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1481 1482 // Get the source value, truncated to the width of the bit-field. 1483 llvm::Value *SrcVal = Src.getScalarVal(); 1484 1485 // Cast the source to the storage type and shift it into place. 1486 SrcVal = Builder.CreateIntCast(SrcVal, 1487 Ptr->getType()->getPointerElementType(), 1488 /*IsSigned=*/false); 1489 llvm::Value *MaskedVal = SrcVal; 1490 1491 // See if there are other bits in the bitfield's storage we'll need to load 1492 // and mask together with source before storing. 1493 if (Info.StorageSize != Info.Size) { 1494 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1495 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 1496 "bf.load"); 1497 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1498 1499 // Mask the source value as needed. 1500 if (!hasBooleanRepresentation(Dst.getType())) 1501 SrcVal = Builder.CreateAnd(SrcVal, 1502 llvm::APInt::getLowBitsSet(Info.StorageSize, 1503 Info.Size), 1504 "bf.value"); 1505 MaskedVal = SrcVal; 1506 if (Info.Offset) 1507 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1508 1509 // Mask out the original value. 1510 Val = Builder.CreateAnd(Val, 1511 ~llvm::APInt::getBitsSet(Info.StorageSize, 1512 Info.Offset, 1513 Info.Offset + Info.Size), 1514 "bf.clear"); 1515 1516 // Or together the unchanged values and the source value. 1517 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1518 } else { 1519 assert(Info.Offset == 0); 1520 } 1521 1522 // Write the new value back out. 1523 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, 1524 Dst.isVolatileQualified()); 1525 Store->setAlignment(Info.StorageAlignment); 1526 1527 // Return the new value of the bit-field, if requested. 1528 if (Result) { 1529 llvm::Value *ResultVal = MaskedVal; 1530 1531 // Sign extend the value if needed. 1532 if (Info.IsSigned) { 1533 assert(Info.Size <= Info.StorageSize); 1534 unsigned HighBits = Info.StorageSize - Info.Size; 1535 if (HighBits) { 1536 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1537 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1538 } 1539 } 1540 1541 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1542 "bf.result.cast"); 1543 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1544 } 1545 } 1546 1547 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1548 LValue Dst) { 1549 // This access turns into a read/modify/write of the vector. Load the input 1550 // value now. 1551 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1552 Dst.isVolatileQualified()); 1553 Load->setAlignment(Dst.getAlignment().getQuantity()); 1554 llvm::Value *Vec = Load; 1555 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1556 1557 llvm::Value *SrcVal = Src.getScalarVal(); 1558 1559 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1560 unsigned NumSrcElts = VTy->getNumElements(); 1561 unsigned NumDstElts = 1562 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1563 if (NumDstElts == NumSrcElts) { 1564 // Use shuffle vector is the src and destination are the same number of 1565 // elements and restore the vector mask since it is on the side it will be 1566 // stored. 1567 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1568 for (unsigned i = 0; i != NumSrcElts; ++i) 1569 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1570 1571 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1572 Vec = Builder.CreateShuffleVector(SrcVal, 1573 llvm::UndefValue::get(Vec->getType()), 1574 MaskV); 1575 } else if (NumDstElts > NumSrcElts) { 1576 // Extended the source vector to the same length and then shuffle it 1577 // into the destination. 1578 // FIXME: since we're shuffling with undef, can we just use the indices 1579 // into that? This could be simpler. 1580 SmallVector<llvm::Constant*, 4> ExtMask; 1581 for (unsigned i = 0; i != NumSrcElts; ++i) 1582 ExtMask.push_back(Builder.getInt32(i)); 1583 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1584 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1585 llvm::Value *ExtSrcVal = 1586 Builder.CreateShuffleVector(SrcVal, 1587 llvm::UndefValue::get(SrcVal->getType()), 1588 ExtMaskV); 1589 // build identity 1590 SmallVector<llvm::Constant*, 4> Mask; 1591 for (unsigned i = 0; i != NumDstElts; ++i) 1592 Mask.push_back(Builder.getInt32(i)); 1593 1594 // When the vector size is odd and .odd or .hi is used, the last element 1595 // of the Elts constant array will be one past the size of the vector. 1596 // Ignore the last element here, if it is greater than the mask size. 1597 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1598 NumSrcElts--; 1599 1600 // modify when what gets shuffled in 1601 for (unsigned i = 0; i != NumSrcElts; ++i) 1602 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1603 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1604 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1605 } else { 1606 // We should never shorten the vector 1607 llvm_unreachable("unexpected shorten vector length"); 1608 } 1609 } else { 1610 // If the Src is a scalar (not a vector) it must be updating one element. 1611 unsigned InIdx = getAccessedFieldNo(0, Elts); 1612 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1613 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1614 } 1615 1616 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1617 Dst.isVolatileQualified()); 1618 Store->setAlignment(Dst.getAlignment().getQuantity()); 1619 } 1620 1621 /// @brief Store of global named registers are always calls to intrinsics. 1622 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1623 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1624 "Bad type for register variable"); 1625 llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(Dst.getGlobalReg()); 1626 assert(RegName && "Register LValue is not metadata"); 1627 1628 // We accept integer and pointer types only 1629 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1630 llvm::Type *Ty = OrigTy; 1631 if (OrigTy->isPointerTy()) 1632 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1633 llvm::Type *Types[] = { Ty }; 1634 1635 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1636 llvm::Value *Value = Src.getScalarVal(); 1637 if (OrigTy->isPointerTy()) 1638 Value = Builder.CreatePtrToInt(Value, Ty); 1639 Builder.CreateCall2(F, RegName, Value); 1640 } 1641 1642 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1643 // generating write-barries API. It is currently a global, ivar, 1644 // or neither. 1645 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1646 LValue &LV, 1647 bool IsMemberAccess=false) { 1648 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1649 return; 1650 1651 if (isa<ObjCIvarRefExpr>(E)) { 1652 QualType ExpTy = E->getType(); 1653 if (IsMemberAccess && ExpTy->isPointerType()) { 1654 // If ivar is a structure pointer, assigning to field of 1655 // this struct follows gcc's behavior and makes it a non-ivar 1656 // writer-barrier conservatively. 1657 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1658 if (ExpTy->isRecordType()) { 1659 LV.setObjCIvar(false); 1660 return; 1661 } 1662 } 1663 LV.setObjCIvar(true); 1664 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1665 LV.setBaseIvarExp(Exp->getBase()); 1666 LV.setObjCArray(E->getType()->isArrayType()); 1667 return; 1668 } 1669 1670 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1671 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1672 if (VD->hasGlobalStorage()) { 1673 LV.setGlobalObjCRef(true); 1674 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1675 } 1676 } 1677 LV.setObjCArray(E->getType()->isArrayType()); 1678 return; 1679 } 1680 1681 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1682 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1683 return; 1684 } 1685 1686 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1687 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1688 if (LV.isObjCIvar()) { 1689 // If cast is to a structure pointer, follow gcc's behavior and make it 1690 // a non-ivar write-barrier. 1691 QualType ExpTy = E->getType(); 1692 if (ExpTy->isPointerType()) 1693 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1694 if (ExpTy->isRecordType()) 1695 LV.setObjCIvar(false); 1696 } 1697 return; 1698 } 1699 1700 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1701 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1702 return; 1703 } 1704 1705 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1706 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1707 return; 1708 } 1709 1710 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 1711 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1712 return; 1713 } 1714 1715 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1716 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1717 return; 1718 } 1719 1720 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1721 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1722 if (LV.isObjCIvar() && !LV.isObjCArray()) 1723 // Using array syntax to assigning to what an ivar points to is not 1724 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1725 LV.setObjCIvar(false); 1726 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1727 // Using array syntax to assigning to what global points to is not 1728 // same as assigning to the global itself. {id *G;} G[i] = 0; 1729 LV.setGlobalObjCRef(false); 1730 return; 1731 } 1732 1733 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 1734 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1735 // We don't know if member is an 'ivar', but this flag is looked at 1736 // only in the context of LV.isObjCIvar(). 1737 LV.setObjCArray(E->getType()->isArrayType()); 1738 return; 1739 } 1740 } 1741 1742 static llvm::Value * 1743 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1744 llvm::Value *V, llvm::Type *IRType, 1745 StringRef Name = StringRef()) { 1746 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1747 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1748 } 1749 1750 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1751 const Expr *E, const VarDecl *VD) { 1752 QualType T = E->getType(); 1753 1754 // If it's thread_local, emit a call to its wrapper function instead. 1755 if (VD->getTLSKind() == VarDecl::TLS_Dynamic) 1756 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 1757 1758 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1759 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1760 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1761 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1762 LValue LV; 1763 if (VD->getType()->isReferenceType()) { 1764 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1765 LI->setAlignment(Alignment.getQuantity()); 1766 V = LI; 1767 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1768 } else { 1769 LV = CGF.MakeAddrLValue(V, T, Alignment); 1770 } 1771 setObjCGCLValueClass(CGF.getContext(), E, LV); 1772 return LV; 1773 } 1774 1775 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1776 const Expr *E, const FunctionDecl *FD) { 1777 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1778 if (!FD->hasPrototype()) { 1779 if (const FunctionProtoType *Proto = 1780 FD->getType()->getAs<FunctionProtoType>()) { 1781 // Ugly case: for a K&R-style definition, the type of the definition 1782 // isn't the same as the type of a use. Correct for this with a 1783 // bitcast. 1784 QualType NoProtoType = 1785 CGF.getContext().getFunctionNoProtoType(Proto->getReturnType()); 1786 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1787 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1788 } 1789 } 1790 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1791 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1792 } 1793 1794 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 1795 llvm::Value *ThisValue) { 1796 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 1797 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 1798 return CGF.EmitLValueForField(LV, FD); 1799 } 1800 1801 /// Named Registers are named metadata pointing to the register name 1802 /// which will be read from/written to as an argument to the intrinsic 1803 /// @llvm.read/write_register. 1804 /// So far, only the name is being passed down, but other options such as 1805 /// register type, allocation type or even optimization options could be 1806 /// passed down via the metadata node. 1807 static LValue EmitGlobalNamedRegister(const VarDecl *VD, 1808 CodeGenModule &CGM, 1809 CharUnits Alignment) { 1810 SmallString<64> Name("llvm.named.register."); 1811 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 1812 assert(Asm->getLabel().size() < 64-Name.size() && 1813 "Register name too big"); 1814 Name.append(Asm->getLabel()); 1815 llvm::NamedMDNode *M = 1816 CGM.getModule().getOrInsertNamedMetadata(Name); 1817 if (M->getNumOperands() == 0) { 1818 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 1819 Asm->getLabel()); 1820 llvm::Value *Ops[] = { Str }; 1821 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 1822 } 1823 return LValue::MakeGlobalReg(M->getOperand(0), VD->getType(), Alignment); 1824 } 1825 1826 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1827 const NamedDecl *ND = E->getDecl(); 1828 CharUnits Alignment = getContext().getDeclAlign(ND); 1829 QualType T = E->getType(); 1830 1831 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1832 // Global Named registers access via intrinsics only 1833 if (VD->getStorageClass() == SC_Register && 1834 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 1835 return EmitGlobalNamedRegister(VD, CGM, Alignment); 1836 1837 // A DeclRefExpr for a reference initialized by a constant expression can 1838 // appear without being odr-used. Directly emit the constant initializer. 1839 const Expr *Init = VD->getAnyInitializer(VD); 1840 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1841 VD->isUsableInConstantExpressions(getContext()) && 1842 VD->checkInitIsICE()) { 1843 llvm::Constant *Val = 1844 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1845 assert(Val && "failed to emit reference constant expression"); 1846 // FIXME: Eventually we will want to emit vector element references. 1847 return MakeAddrLValue(Val, T, Alignment); 1848 } 1849 } 1850 1851 // FIXME: We should be able to assert this for FunctionDecls as well! 1852 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1853 // those with a valid source location. 1854 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1855 !E->getLocation().isValid()) && 1856 "Should not use decl without marking it used!"); 1857 1858 if (ND->hasAttr<WeakRefAttr>()) { 1859 const auto *VD = cast<ValueDecl>(ND); 1860 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1861 return MakeAddrLValue(Aliasee, T, Alignment); 1862 } 1863 1864 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1865 // Check if this is a global variable. 1866 if (VD->hasLinkage() || VD->isStaticDataMember()) 1867 return EmitGlobalVarDeclLValue(*this, E, VD); 1868 1869 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1870 1871 llvm::Value *V = LocalDeclMap.lookup(VD); 1872 if (!V && VD->isStaticLocal()) 1873 V = CGM.getStaticLocalDeclAddress(VD); 1874 1875 // Use special handling for lambdas. 1876 if (!V) { 1877 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1878 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 1879 } else if (CapturedStmtInfo) { 1880 if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD)) 1881 return EmitCapturedFieldLValue(*this, FD, 1882 CapturedStmtInfo->getContextValue()); 1883 } 1884 1885 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1886 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1887 T, Alignment); 1888 } 1889 1890 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1891 1892 if (isBlockVariable) 1893 V = BuildBlockByrefAddress(V, VD); 1894 1895 LValue LV; 1896 if (VD->getType()->isReferenceType()) { 1897 llvm::LoadInst *LI = Builder.CreateLoad(V); 1898 LI->setAlignment(Alignment.getQuantity()); 1899 V = LI; 1900 LV = MakeNaturalAlignAddrLValue(V, T); 1901 } else { 1902 LV = MakeAddrLValue(V, T, Alignment); 1903 } 1904 1905 bool isLocalStorage = VD->hasLocalStorage(); 1906 1907 bool NonGCable = isLocalStorage && 1908 !VD->getType()->isReferenceType() && 1909 !isBlockVariable; 1910 if (NonGCable) { 1911 LV.getQuals().removeObjCGCAttr(); 1912 LV.setNonGC(true); 1913 } 1914 1915 bool isImpreciseLifetime = 1916 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 1917 if (isImpreciseLifetime) 1918 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 1919 setObjCGCLValueClass(getContext(), E, LV); 1920 return LV; 1921 } 1922 1923 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1924 return EmitFunctionDeclLValue(*this, E, FD); 1925 1926 llvm_unreachable("Unhandled DeclRefExpr"); 1927 } 1928 1929 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1930 // __extension__ doesn't affect lvalue-ness. 1931 if (E->getOpcode() == UO_Extension) 1932 return EmitLValue(E->getSubExpr()); 1933 1934 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1935 switch (E->getOpcode()) { 1936 default: llvm_unreachable("Unknown unary operator lvalue!"); 1937 case UO_Deref: { 1938 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1939 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1940 1941 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1942 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1943 1944 // We should not generate __weak write barrier on indirect reference 1945 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1946 // But, we continue to generate __strong write barrier on indirect write 1947 // into a pointer to object. 1948 if (getLangOpts().ObjC1 && 1949 getLangOpts().getGC() != LangOptions::NonGC && 1950 LV.isObjCWeak()) 1951 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1952 return LV; 1953 } 1954 case UO_Real: 1955 case UO_Imag: { 1956 LValue LV = EmitLValue(E->getSubExpr()); 1957 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1958 llvm::Value *Addr = LV.getAddress(); 1959 1960 // __real is valid on scalars. This is a faster way of testing that. 1961 // __imag can only produce an rvalue on scalars. 1962 if (E->getOpcode() == UO_Real && 1963 !cast<llvm::PointerType>(Addr->getType()) 1964 ->getElementType()->isStructTy()) { 1965 assert(E->getSubExpr()->getType()->isArithmeticType()); 1966 return LV; 1967 } 1968 1969 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1970 1971 unsigned Idx = E->getOpcode() == UO_Imag; 1972 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1973 Idx, "idx"), 1974 ExprTy); 1975 } 1976 case UO_PreInc: 1977 case UO_PreDec: { 1978 LValue LV = EmitLValue(E->getSubExpr()); 1979 bool isInc = E->getOpcode() == UO_PreInc; 1980 1981 if (E->getType()->isAnyComplexType()) 1982 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1983 else 1984 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1985 return LV; 1986 } 1987 } 1988 } 1989 1990 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1991 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1992 E->getType()); 1993 } 1994 1995 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1996 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1997 E->getType()); 1998 } 1999 2000 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, 2001 SmallString<32>& Target) { 2002 Target.resize(CharByteWidth * (Source.size() + 1)); 2003 char *ResultPtr = &Target[0]; 2004 const UTF8 *ErrorPtr; 2005 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); 2006 (void)success; 2007 assert(success); 2008 Target.resize(ResultPtr - &Target[0]); 2009 } 2010 2011 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2012 switch (E->getIdentType()) { 2013 default: 2014 return EmitUnsupportedLValue(E, "predefined expression"); 2015 2016 case PredefinedExpr::Func: 2017 case PredefinedExpr::Function: 2018 case PredefinedExpr::LFunction: 2019 case PredefinedExpr::FuncDName: 2020 case PredefinedExpr::FuncSig: 2021 case PredefinedExpr::PrettyFunction: { 2022 PredefinedExpr::IdentType IdentType = E->getIdentType(); 2023 std::string GVName; 2024 2025 // FIXME: We should use the string literal mangling for the Microsoft C++ 2026 // ABI so that strings get merged. 2027 switch (IdentType) { 2028 default: llvm_unreachable("Invalid type"); 2029 case PredefinedExpr::Func: GVName = "__func__."; break; 2030 case PredefinedExpr::Function: GVName = "__FUNCTION__."; break; 2031 case PredefinedExpr::FuncDName: GVName = "__FUNCDNAME__."; break; 2032 case PredefinedExpr::FuncSig: GVName = "__FUNCSIG__."; break; 2033 case PredefinedExpr::LFunction: GVName = "L__FUNCTION__."; break; 2034 case PredefinedExpr::PrettyFunction: GVName = "__PRETTY_FUNCTION__."; break; 2035 } 2036 2037 StringRef FnName = CurFn->getName(); 2038 if (FnName.startswith("\01")) 2039 FnName = FnName.substr(1); 2040 GVName += FnName; 2041 2042 // If this is outside of a function use the top level decl. 2043 const Decl *CurDecl = CurCodeDecl; 2044 if (!CurDecl || isa<VarDecl>(CurDecl)) 2045 CurDecl = getContext().getTranslationUnitDecl(); 2046 2047 const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual(); 2048 std::string FunctionName; 2049 if (isa<BlockDecl>(CurDecl)) { 2050 // Blocks use the mangled function name. 2051 // FIXME: ComputeName should handle blocks. 2052 FunctionName = FnName.str(); 2053 } else if (isa<CapturedDecl>(CurDecl)) { 2054 // For a captured statement, the function name is its enclosing 2055 // function name not the one compiler generated. 2056 FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl); 2057 } else { 2058 FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl); 2059 assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 == 2060 FunctionName.size() && 2061 "Computed __func__ length differs from type!"); 2062 } 2063 2064 llvm::Constant *C; 2065 if (ElemType->isWideCharType()) { 2066 SmallString<32> RawChars; 2067 ConvertUTF8ToWideString( 2068 getContext().getTypeSizeInChars(ElemType).getQuantity(), FunctionName, 2069 RawChars); 2070 StringLiteral *SL = StringLiteral::Create( 2071 getContext(), RawChars, StringLiteral::Wide, 2072 /*Pascal = */ false, E->getType(), E->getLocation()); 2073 C = CGM.GetAddrOfConstantStringFromLiteral(SL); 2074 } else { 2075 C = CGM.GetAddrOfConstantCString(FunctionName, GVName.c_str(), 1); 2076 } 2077 return MakeAddrLValue(C, E->getType()); 2078 } 2079 } 2080 } 2081 2082 /// Emit a type description suitable for use by a runtime sanitizer library. The 2083 /// format of a type descriptor is 2084 /// 2085 /// \code 2086 /// { i16 TypeKind, i16 TypeInfo } 2087 /// \endcode 2088 /// 2089 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2090 /// integer, 1 for a floating point value, and -1 for anything else. 2091 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2092 // Only emit each type's descriptor once. 2093 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2094 return C; 2095 2096 uint16_t TypeKind = -1; 2097 uint16_t TypeInfo = 0; 2098 2099 if (T->isIntegerType()) { 2100 TypeKind = 0; 2101 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2102 (T->isSignedIntegerType() ? 1 : 0); 2103 } else if (T->isFloatingType()) { 2104 TypeKind = 1; 2105 TypeInfo = getContext().getTypeSize(T); 2106 } 2107 2108 // Format the type name as if for a diagnostic, including quotes and 2109 // optionally an 'aka'. 2110 SmallString<32> Buffer; 2111 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2112 (intptr_t)T.getAsOpaquePtr(), 2113 StringRef(), StringRef(), None, Buffer, 2114 ArrayRef<intptr_t>()); 2115 2116 llvm::Constant *Components[] = { 2117 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2118 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2119 }; 2120 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2121 2122 auto *GV = new llvm::GlobalVariable( 2123 CGM.getModule(), Descriptor->getType(), 2124 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2125 GV->setUnnamedAddr(true); 2126 2127 // Remember the descriptor for this type. 2128 CGM.setTypeDescriptorInMap(T, GV); 2129 2130 return GV; 2131 } 2132 2133 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2134 llvm::Type *TargetTy = IntPtrTy; 2135 2136 // Floating-point types which fit into intptr_t are bitcast to integers 2137 // and then passed directly (after zero-extension, if necessary). 2138 if (V->getType()->isFloatingPointTy()) { 2139 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2140 if (Bits <= TargetTy->getIntegerBitWidth()) 2141 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2142 Bits)); 2143 } 2144 2145 // Integers which fit in intptr_t are zero-extended and passed directly. 2146 if (V->getType()->isIntegerTy() && 2147 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2148 return Builder.CreateZExt(V, TargetTy); 2149 2150 // Pointers are passed directly, everything else is passed by address. 2151 if (!V->getType()->isPointerTy()) { 2152 llvm::Value *Ptr = CreateTempAlloca(V->getType()); 2153 Builder.CreateStore(V, Ptr); 2154 V = Ptr; 2155 } 2156 return Builder.CreatePtrToInt(V, TargetTy); 2157 } 2158 2159 /// \brief Emit a representation of a SourceLocation for passing to a handler 2160 /// in a sanitizer runtime library. The format for this data is: 2161 /// \code 2162 /// struct SourceLocation { 2163 /// const char *Filename; 2164 /// int32_t Line, Column; 2165 /// }; 2166 /// \endcode 2167 /// For an invalid SourceLocation, the Filename pointer is null. 2168 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2169 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2170 2171 llvm::Constant *Data[] = { 2172 PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src") 2173 : llvm::Constant::getNullValue(Int8PtrTy), 2174 Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0), 2175 Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0) 2176 }; 2177 2178 return llvm::ConstantStruct::getAnon(Data); 2179 } 2180 2181 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName, 2182 ArrayRef<llvm::Constant *> StaticArgs, 2183 ArrayRef<llvm::Value *> DynamicArgs, 2184 CheckRecoverableKind RecoverKind) { 2185 assert(SanOpts != &SanitizerOptions::Disabled); 2186 2187 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) { 2188 assert (RecoverKind != CRK_AlwaysRecoverable && 2189 "Runtime call required for AlwaysRecoverable kind!"); 2190 return EmitTrapCheck(Checked); 2191 } 2192 2193 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2194 2195 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); 2196 2197 llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler); 2198 2199 // Give hint that we very much don't expect to execute the handler 2200 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2201 llvm::MDBuilder MDHelper(getLLVMContext()); 2202 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2203 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2204 2205 EmitBlock(Handler); 2206 2207 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2208 auto *InfoPtr = 2209 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2210 llvm::GlobalVariable::PrivateLinkage, Info); 2211 InfoPtr->setUnnamedAddr(true); 2212 2213 SmallVector<llvm::Value *, 4> Args; 2214 SmallVector<llvm::Type *, 4> ArgTypes; 2215 Args.reserve(DynamicArgs.size() + 1); 2216 ArgTypes.reserve(DynamicArgs.size() + 1); 2217 2218 // Handler functions take an i8* pointing to the (handler-specific) static 2219 // information block, followed by a sequence of intptr_t arguments 2220 // representing operand values. 2221 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2222 ArgTypes.push_back(Int8PtrTy); 2223 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2224 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2225 ArgTypes.push_back(IntPtrTy); 2226 } 2227 2228 bool Recover = RecoverKind == CRK_AlwaysRecoverable || 2229 (RecoverKind == CRK_Recoverable && 2230 CGM.getCodeGenOpts().SanitizeRecover); 2231 2232 llvm::FunctionType *FnType = 2233 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2234 llvm::AttrBuilder B; 2235 if (!Recover) { 2236 B.addAttribute(llvm::Attribute::NoReturn) 2237 .addAttribute(llvm::Attribute::NoUnwind); 2238 } 2239 B.addAttribute(llvm::Attribute::UWTable); 2240 2241 // Checks that have two variants use a suffix to differentiate them 2242 bool NeedsAbortSuffix = RecoverKind != CRK_Unrecoverable && 2243 !CGM.getCodeGenOpts().SanitizeRecover; 2244 std::string FunctionName = ("__ubsan_handle_" + CheckName + 2245 (NeedsAbortSuffix? "_abort" : "")).str(); 2246 llvm::Value *Fn = CGM.CreateRuntimeFunction( 2247 FnType, FunctionName, 2248 llvm::AttributeSet::get(getLLVMContext(), 2249 llvm::AttributeSet::FunctionIndex, B)); 2250 llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args); 2251 if (Recover) { 2252 Builder.CreateBr(Cont); 2253 } else { 2254 HandlerCall->setDoesNotReturn(); 2255 Builder.CreateUnreachable(); 2256 } 2257 2258 EmitBlock(Cont); 2259 } 2260 2261 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2262 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2263 2264 // If we're optimizing, collapse all calls to trap down to just one per 2265 // function to save on code size. 2266 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2267 TrapBB = createBasicBlock("trap"); 2268 Builder.CreateCondBr(Checked, Cont, TrapBB); 2269 EmitBlock(TrapBB); 2270 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2271 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2272 TrapCall->setDoesNotReturn(); 2273 TrapCall->setDoesNotThrow(); 2274 Builder.CreateUnreachable(); 2275 } else { 2276 Builder.CreateCondBr(Checked, Cont, TrapBB); 2277 } 2278 2279 EmitBlock(Cont); 2280 } 2281 2282 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2283 /// array to pointer, return the array subexpression. 2284 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2285 // If this isn't just an array->pointer decay, bail out. 2286 const auto *CE = dyn_cast<CastExpr>(E); 2287 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2288 return nullptr; 2289 2290 // If this is a decay from variable width array, bail out. 2291 const Expr *SubExpr = CE->getSubExpr(); 2292 if (SubExpr->getType()->isVariableArrayType()) 2293 return nullptr; 2294 2295 return SubExpr; 2296 } 2297 2298 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2299 bool Accessed) { 2300 // The index must always be an integer, which is not an aggregate. Emit it. 2301 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2302 QualType IdxTy = E->getIdx()->getType(); 2303 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2304 2305 if (SanOpts->ArrayBounds) 2306 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2307 2308 // If the base is a vector type, then we are forming a vector element lvalue 2309 // with this subscript. 2310 if (E->getBase()->getType()->isVectorType()) { 2311 // Emit the vector as an lvalue to get its address. 2312 LValue LHS = EmitLValue(E->getBase()); 2313 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2314 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2315 E->getBase()->getType(), LHS.getAlignment()); 2316 } 2317 2318 // Extend or truncate the index type to 32 or 64-bits. 2319 if (Idx->getType() != IntPtrTy) 2320 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2321 2322 // We know that the pointer points to a type of the correct size, unless the 2323 // size is a VLA or Objective-C interface. 2324 llvm::Value *Address = nullptr; 2325 CharUnits ArrayAlignment; 2326 if (const VariableArrayType *vla = 2327 getContext().getAsVariableArrayType(E->getType())) { 2328 // The base must be a pointer, which is not an aggregate. Emit 2329 // it. It needs to be emitted first in case it's what captures 2330 // the VLA bounds. 2331 Address = EmitScalarExpr(E->getBase()); 2332 2333 // The element count here is the total number of non-VLA elements. 2334 llvm::Value *numElements = getVLASize(vla).first; 2335 2336 // Effectively, the multiply by the VLA size is part of the GEP. 2337 // GEP indexes are signed, and scaling an index isn't permitted to 2338 // signed-overflow, so we use the same semantics for our explicit 2339 // multiply. We suppress this if overflow is not undefined behavior. 2340 if (getLangOpts().isSignedOverflowDefined()) { 2341 Idx = Builder.CreateMul(Idx, numElements); 2342 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2343 } else { 2344 Idx = Builder.CreateNSWMul(Idx, numElements); 2345 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2346 } 2347 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2348 // Indexing over an interface, as in "NSString *P; P[4];" 2349 llvm::Value *InterfaceSize = 2350 llvm::ConstantInt::get(Idx->getType(), 2351 getContext().getTypeSizeInChars(OIT).getQuantity()); 2352 2353 Idx = Builder.CreateMul(Idx, InterfaceSize); 2354 2355 // The base must be a pointer, which is not an aggregate. Emit it. 2356 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2357 Address = EmitCastToVoidPtr(Base); 2358 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2359 Address = Builder.CreateBitCast(Address, Base->getType()); 2360 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2361 // If this is A[i] where A is an array, the frontend will have decayed the 2362 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2363 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2364 // "gep x, i" here. Emit one "gep A, 0, i". 2365 assert(Array->getType()->isArrayType() && 2366 "Array to pointer decay must have array source type!"); 2367 LValue ArrayLV; 2368 // For simple multidimensional array indexing, set the 'accessed' flag for 2369 // better bounds-checking of the base expression. 2370 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2371 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2372 else 2373 ArrayLV = EmitLValue(Array); 2374 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2375 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2376 llvm::Value *Args[] = { Zero, Idx }; 2377 2378 // Propagate the alignment from the array itself to the result. 2379 ArrayAlignment = ArrayLV.getAlignment(); 2380 2381 if (getLangOpts().isSignedOverflowDefined()) 2382 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2383 else 2384 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2385 } else { 2386 // The base must be a pointer, which is not an aggregate. Emit it. 2387 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2388 if (getLangOpts().isSignedOverflowDefined()) 2389 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2390 else 2391 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2392 } 2393 2394 QualType T = E->getBase()->getType()->getPointeeType(); 2395 assert(!T.isNull() && 2396 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2397 2398 2399 // Limit the alignment to that of the result type. 2400 LValue LV; 2401 if (!ArrayAlignment.isZero()) { 2402 CharUnits Align = getContext().getTypeAlignInChars(T); 2403 ArrayAlignment = std::min(Align, ArrayAlignment); 2404 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2405 } else { 2406 LV = MakeNaturalAlignAddrLValue(Address, T); 2407 } 2408 2409 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2410 2411 if (getLangOpts().ObjC1 && 2412 getLangOpts().getGC() != LangOptions::NonGC) { 2413 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2414 setObjCGCLValueClass(getContext(), E, LV); 2415 } 2416 return LV; 2417 } 2418 2419 static 2420 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2421 SmallVectorImpl<unsigned> &Elts) { 2422 SmallVector<llvm::Constant*, 4> CElts; 2423 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2424 CElts.push_back(Builder.getInt32(Elts[i])); 2425 2426 return llvm::ConstantVector::get(CElts); 2427 } 2428 2429 LValue CodeGenFunction:: 2430 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2431 // Emit the base vector as an l-value. 2432 LValue Base; 2433 2434 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2435 if (E->isArrow()) { 2436 // If it is a pointer to a vector, emit the address and form an lvalue with 2437 // it. 2438 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2439 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2440 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2441 Base.getQuals().removeObjCGCAttr(); 2442 } else if (E->getBase()->isGLValue()) { 2443 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2444 // emit the base as an lvalue. 2445 assert(E->getBase()->getType()->isVectorType()); 2446 Base = EmitLValue(E->getBase()); 2447 } else { 2448 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2449 assert(E->getBase()->getType()->isVectorType() && 2450 "Result must be a vector"); 2451 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2452 2453 // Store the vector to memory (because LValue wants an address). 2454 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2455 Builder.CreateStore(Vec, VecMem); 2456 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2457 } 2458 2459 QualType type = 2460 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2461 2462 // Encode the element access list into a vector of unsigned indices. 2463 SmallVector<unsigned, 4> Indices; 2464 E->getEncodedElementAccess(Indices); 2465 2466 if (Base.isSimple()) { 2467 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2468 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2469 Base.getAlignment()); 2470 } 2471 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2472 2473 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2474 SmallVector<llvm::Constant *, 4> CElts; 2475 2476 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2477 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2478 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2479 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2480 Base.getAlignment()); 2481 } 2482 2483 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2484 Expr *BaseExpr = E->getBase(); 2485 2486 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2487 LValue BaseLV; 2488 if (E->isArrow()) { 2489 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2490 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2491 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2492 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2493 } else 2494 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2495 2496 NamedDecl *ND = E->getMemberDecl(); 2497 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 2498 LValue LV = EmitLValueForField(BaseLV, Field); 2499 setObjCGCLValueClass(getContext(), E, LV); 2500 return LV; 2501 } 2502 2503 if (auto *VD = dyn_cast<VarDecl>(ND)) 2504 return EmitGlobalVarDeclLValue(*this, E, VD); 2505 2506 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2507 return EmitFunctionDeclLValue(*this, E, FD); 2508 2509 llvm_unreachable("Unhandled member declaration!"); 2510 } 2511 2512 /// Given that we are currently emitting a lambda, emit an l-value for 2513 /// one of its members. 2514 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 2515 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 2516 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 2517 QualType LambdaTagType = 2518 getContext().getTagDeclType(Field->getParent()); 2519 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 2520 return EmitLValueForField(LambdaLV, Field); 2521 } 2522 2523 LValue CodeGenFunction::EmitLValueForField(LValue base, 2524 const FieldDecl *field) { 2525 if (field->isBitField()) { 2526 const CGRecordLayout &RL = 2527 CGM.getTypes().getCGRecordLayout(field->getParent()); 2528 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2529 llvm::Value *Addr = base.getAddress(); 2530 unsigned Idx = RL.getLLVMFieldNo(field); 2531 if (Idx != 0) 2532 // For structs, we GEP to the field that the record layout suggests. 2533 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 2534 // Get the access type. 2535 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2536 getLLVMContext(), Info.StorageSize, 2537 CGM.getContext().getTargetAddressSpace(base.getType())); 2538 if (Addr->getType() != PtrTy) 2539 Addr = Builder.CreateBitCast(Addr, PtrTy); 2540 2541 QualType fieldType = 2542 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2543 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2544 } 2545 2546 const RecordDecl *rec = field->getParent(); 2547 QualType type = field->getType(); 2548 CharUnits alignment = getContext().getDeclAlign(field); 2549 2550 // FIXME: It should be impossible to have an LValue without alignment for a 2551 // complete type. 2552 if (!base.getAlignment().isZero()) 2553 alignment = std::min(alignment, base.getAlignment()); 2554 2555 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2556 2557 llvm::Value *addr = base.getAddress(); 2558 unsigned cvr = base.getVRQualifiers(); 2559 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 2560 if (rec->isUnion()) { 2561 // For unions, there is no pointer adjustment. 2562 assert(!type->isReferenceType() && "union has reference member"); 2563 // TODO: handle path-aware TBAA for union. 2564 TBAAPath = false; 2565 } else { 2566 // For structs, we GEP to the field that the record layout suggests. 2567 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2568 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2569 2570 // If this is a reference field, load the reference right now. 2571 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2572 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2573 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2574 load->setAlignment(alignment.getQuantity()); 2575 2576 // Loading the reference will disable path-aware TBAA. 2577 TBAAPath = false; 2578 if (CGM.shouldUseTBAA()) { 2579 llvm::MDNode *tbaa; 2580 if (mayAlias) 2581 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2582 else 2583 tbaa = CGM.getTBAAInfo(type); 2584 if (tbaa) 2585 CGM.DecorateInstruction(load, tbaa); 2586 } 2587 2588 addr = load; 2589 mayAlias = false; 2590 type = refType->getPointeeType(); 2591 if (type->isIncompleteType()) 2592 alignment = CharUnits(); 2593 else 2594 alignment = getContext().getTypeAlignInChars(type); 2595 cvr = 0; // qualifiers don't recursively apply to referencee 2596 } 2597 } 2598 2599 // Make sure that the address is pointing to the right type. This is critical 2600 // for both unions and structs. A union needs a bitcast, a struct element 2601 // will need a bitcast if the LLVM type laid out doesn't match the desired 2602 // type. 2603 addr = EmitBitCastOfLValueToProperType(*this, addr, 2604 CGM.getTypes().ConvertTypeForMem(type), 2605 field->getName()); 2606 2607 if (field->hasAttr<AnnotateAttr>()) 2608 addr = EmitFieldAnnotations(field, addr); 2609 2610 LValue LV = MakeAddrLValue(addr, type, alignment); 2611 LV.getQuals().addCVRQualifiers(cvr); 2612 if (TBAAPath) { 2613 const ASTRecordLayout &Layout = 2614 getContext().getASTRecordLayout(field->getParent()); 2615 // Set the base type to be the base type of the base LValue and 2616 // update offset to be relative to the base type. 2617 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 2618 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 2619 Layout.getFieldOffset(field->getFieldIndex()) / 2620 getContext().getCharWidth()); 2621 } 2622 2623 // __weak attribute on a field is ignored. 2624 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2625 LV.getQuals().removeObjCGCAttr(); 2626 2627 // Fields of may_alias structs act like 'char' for TBAA purposes. 2628 // FIXME: this should get propagated down through anonymous structs 2629 // and unions. 2630 if (mayAlias && LV.getTBAAInfo()) 2631 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2632 2633 return LV; 2634 } 2635 2636 LValue 2637 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2638 const FieldDecl *Field) { 2639 QualType FieldType = Field->getType(); 2640 2641 if (!FieldType->isReferenceType()) 2642 return EmitLValueForField(Base, Field); 2643 2644 const CGRecordLayout &RL = 2645 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2646 unsigned idx = RL.getLLVMFieldNo(Field); 2647 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2648 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2649 2650 // Make sure that the address is pointing to the right type. This is critical 2651 // for both unions and structs. A union needs a bitcast, a struct element 2652 // will need a bitcast if the LLVM type laid out doesn't match the desired 2653 // type. 2654 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2655 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2656 2657 CharUnits Alignment = getContext().getDeclAlign(Field); 2658 2659 // FIXME: It should be impossible to have an LValue without alignment for a 2660 // complete type. 2661 if (!Base.getAlignment().isZero()) 2662 Alignment = std::min(Alignment, Base.getAlignment()); 2663 2664 return MakeAddrLValue(V, FieldType, Alignment); 2665 } 2666 2667 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2668 if (E->isFileScope()) { 2669 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2670 return MakeAddrLValue(GlobalPtr, E->getType()); 2671 } 2672 if (E->getType()->isVariablyModifiedType()) 2673 // make sure to emit the VLA size. 2674 EmitVariablyModifiedType(E->getType()); 2675 2676 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2677 const Expr *InitExpr = E->getInitializer(); 2678 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2679 2680 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2681 /*Init*/ true); 2682 2683 return Result; 2684 } 2685 2686 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2687 if (!E->isGLValue()) 2688 // Initializing an aggregate temporary in C++11: T{...}. 2689 return EmitAggExprToLValue(E); 2690 2691 // An lvalue initializer list must be initializing a reference. 2692 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2693 return EmitLValue(E->getInit(0)); 2694 } 2695 2696 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 2697 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 2698 /// LValue is returned and the current block has been terminated. 2699 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 2700 const Expr *Operand) { 2701 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 2702 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 2703 return None; 2704 } 2705 2706 return CGF.EmitLValue(Operand); 2707 } 2708 2709 LValue CodeGenFunction:: 2710 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2711 if (!expr->isGLValue()) { 2712 // ?: here should be an aggregate. 2713 assert(hasAggregateEvaluationKind(expr->getType()) && 2714 "Unexpected conditional operator!"); 2715 return EmitAggExprToLValue(expr); 2716 } 2717 2718 OpaqueValueMapping binding(*this, expr); 2719 RegionCounter Cnt = getPGORegionCounter(expr); 2720 2721 const Expr *condExpr = expr->getCond(); 2722 bool CondExprBool; 2723 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2724 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2725 if (!CondExprBool) std::swap(live, dead); 2726 2727 if (!ContainsLabel(dead)) { 2728 // If the true case is live, we need to track its region. 2729 if (CondExprBool) 2730 Cnt.beginRegion(Builder); 2731 return EmitLValue(live); 2732 } 2733 } 2734 2735 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2736 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2737 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2738 2739 ConditionalEvaluation eval(*this); 2740 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount()); 2741 2742 // Any temporaries created here are conditional. 2743 EmitBlock(lhsBlock); 2744 Cnt.beginRegion(Builder); 2745 eval.begin(*this); 2746 Optional<LValue> lhs = 2747 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 2748 eval.end(*this); 2749 2750 if (lhs && !lhs->isSimple()) 2751 return EmitUnsupportedLValue(expr, "conditional operator"); 2752 2753 lhsBlock = Builder.GetInsertBlock(); 2754 if (lhs) 2755 Builder.CreateBr(contBlock); 2756 2757 // Any temporaries created here are conditional. 2758 EmitBlock(rhsBlock); 2759 eval.begin(*this); 2760 Optional<LValue> rhs = 2761 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 2762 eval.end(*this); 2763 if (rhs && !rhs->isSimple()) 2764 return EmitUnsupportedLValue(expr, "conditional operator"); 2765 rhsBlock = Builder.GetInsertBlock(); 2766 2767 EmitBlock(contBlock); 2768 2769 if (lhs && rhs) { 2770 llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(), 2771 2, "cond-lvalue"); 2772 phi->addIncoming(lhs->getAddress(), lhsBlock); 2773 phi->addIncoming(rhs->getAddress(), rhsBlock); 2774 return MakeAddrLValue(phi, expr->getType()); 2775 } else { 2776 assert((lhs || rhs) && 2777 "both operands of glvalue conditional are throw-expressions?"); 2778 return lhs ? *lhs : *rhs; 2779 } 2780 } 2781 2782 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2783 /// type. If the cast is to a reference, we can have the usual lvalue result, 2784 /// otherwise if a cast is needed by the code generator in an lvalue context, 2785 /// then it must mean that we need the address of an aggregate in order to 2786 /// access one of its members. This can happen for all the reasons that casts 2787 /// are permitted with aggregate result, including noop aggregate casts, and 2788 /// cast from scalar to union. 2789 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2790 switch (E->getCastKind()) { 2791 case CK_ToVoid: 2792 case CK_BitCast: 2793 case CK_ArrayToPointerDecay: 2794 case CK_FunctionToPointerDecay: 2795 case CK_NullToMemberPointer: 2796 case CK_NullToPointer: 2797 case CK_IntegralToPointer: 2798 case CK_PointerToIntegral: 2799 case CK_PointerToBoolean: 2800 case CK_VectorSplat: 2801 case CK_IntegralCast: 2802 case CK_IntegralToBoolean: 2803 case CK_IntegralToFloating: 2804 case CK_FloatingToIntegral: 2805 case CK_FloatingToBoolean: 2806 case CK_FloatingCast: 2807 case CK_FloatingRealToComplex: 2808 case CK_FloatingComplexToReal: 2809 case CK_FloatingComplexToBoolean: 2810 case CK_FloatingComplexCast: 2811 case CK_FloatingComplexToIntegralComplex: 2812 case CK_IntegralRealToComplex: 2813 case CK_IntegralComplexToReal: 2814 case CK_IntegralComplexToBoolean: 2815 case CK_IntegralComplexCast: 2816 case CK_IntegralComplexToFloatingComplex: 2817 case CK_DerivedToBaseMemberPointer: 2818 case CK_BaseToDerivedMemberPointer: 2819 case CK_MemberPointerToBoolean: 2820 case CK_ReinterpretMemberPointer: 2821 case CK_AnyPointerToBlockPointerCast: 2822 case CK_ARCProduceObject: 2823 case CK_ARCConsumeObject: 2824 case CK_ARCReclaimReturnedObject: 2825 case CK_ARCExtendBlockObject: 2826 case CK_CopyAndAutoreleaseBlockObject: 2827 case CK_AddressSpaceConversion: 2828 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2829 2830 case CK_Dependent: 2831 llvm_unreachable("dependent cast kind in IR gen!"); 2832 2833 case CK_BuiltinFnToFnPtr: 2834 llvm_unreachable("builtin functions are handled elsewhere"); 2835 2836 // These are never l-values; just use the aggregate emission code. 2837 case CK_NonAtomicToAtomic: 2838 case CK_AtomicToNonAtomic: 2839 return EmitAggExprToLValue(E); 2840 2841 case CK_Dynamic: { 2842 LValue LV = EmitLValue(E->getSubExpr()); 2843 llvm::Value *V = LV.getAddress(); 2844 const auto *DCE = cast<CXXDynamicCastExpr>(E); 2845 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2846 } 2847 2848 case CK_ConstructorConversion: 2849 case CK_UserDefinedConversion: 2850 case CK_CPointerToObjCPointerCast: 2851 case CK_BlockPointerToObjCPointerCast: 2852 case CK_NoOp: 2853 case CK_LValueToRValue: 2854 return EmitLValue(E->getSubExpr()); 2855 2856 case CK_UncheckedDerivedToBase: 2857 case CK_DerivedToBase: { 2858 const RecordType *DerivedClassTy = 2859 E->getSubExpr()->getType()->getAs<RecordType>(); 2860 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2861 2862 LValue LV = EmitLValue(E->getSubExpr()); 2863 llvm::Value *This = LV.getAddress(); 2864 2865 // Perform the derived-to-base conversion 2866 llvm::Value *Base = 2867 GetAddressOfBaseClass(This, DerivedClassDecl, 2868 E->path_begin(), E->path_end(), 2869 /*NullCheckValue=*/false); 2870 2871 return MakeAddrLValue(Base, E->getType()); 2872 } 2873 case CK_ToUnion: 2874 return EmitAggExprToLValue(E); 2875 case CK_BaseToDerived: { 2876 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2877 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2878 2879 LValue LV = EmitLValue(E->getSubExpr()); 2880 2881 // Perform the base-to-derived conversion 2882 llvm::Value *Derived = 2883 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2884 E->path_begin(), E->path_end(), 2885 /*NullCheckValue=*/false); 2886 2887 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 2888 // performed and the object is not of the derived type. 2889 if (sanitizePerformTypeCheck()) 2890 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 2891 Derived, E->getType()); 2892 2893 return MakeAddrLValue(Derived, E->getType()); 2894 } 2895 case CK_LValueBitCast: { 2896 // This must be a reinterpret_cast (or c-style equivalent). 2897 const auto *CE = cast<ExplicitCastExpr>(E); 2898 2899 LValue LV = EmitLValue(E->getSubExpr()); 2900 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2901 ConvertType(CE->getTypeAsWritten())); 2902 return MakeAddrLValue(V, E->getType()); 2903 } 2904 case CK_ObjCObjectLValueCast: { 2905 LValue LV = EmitLValue(E->getSubExpr()); 2906 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2907 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2908 ConvertType(ToType)); 2909 return MakeAddrLValue(V, E->getType()); 2910 } 2911 case CK_ZeroToOCLEvent: 2912 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 2913 } 2914 2915 llvm_unreachable("Unhandled lvalue cast kind?"); 2916 } 2917 2918 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2919 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2920 return getOpaqueLValueMapping(e); 2921 } 2922 2923 RValue CodeGenFunction::EmitRValueForField(LValue LV, 2924 const FieldDecl *FD, 2925 SourceLocation Loc) { 2926 QualType FT = FD->getType(); 2927 LValue FieldLV = EmitLValueForField(LV, FD); 2928 switch (getEvaluationKind(FT)) { 2929 case TEK_Complex: 2930 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 2931 case TEK_Aggregate: 2932 return FieldLV.asAggregateRValue(); 2933 case TEK_Scalar: 2934 return EmitLoadOfLValue(FieldLV, Loc); 2935 } 2936 llvm_unreachable("bad evaluation kind"); 2937 } 2938 2939 //===--------------------------------------------------------------------===// 2940 // Expression Emission 2941 //===--------------------------------------------------------------------===// 2942 2943 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2944 ReturnValueSlot ReturnValue) { 2945 if (CGDebugInfo *DI = getDebugInfo()) { 2946 SourceLocation Loc = E->getLocStart(); 2947 // Force column info to be generated so we can differentiate 2948 // multiple call sites on the same line in the debug info. 2949 // FIXME: This is insufficient. Two calls coming from the same macro 2950 // expansion will still get the same line/column and break debug info. It's 2951 // possible that LLVM can be fixed to not rely on this uniqueness, at which 2952 // point this workaround can be removed. 2953 const FunctionDecl* Callee = E->getDirectCallee(); 2954 bool ForceColumnInfo = Callee && Callee->isInlineSpecified(); 2955 DI->EmitLocation(Builder, Loc, ForceColumnInfo); 2956 } 2957 2958 // Builtins never have block type. 2959 if (E->getCallee()->getType()->isBlockPointerType()) 2960 return EmitBlockCallExpr(E, ReturnValue); 2961 2962 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 2963 return EmitCXXMemberCallExpr(CE, ReturnValue); 2964 2965 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2966 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2967 2968 const Decl *TargetDecl = E->getCalleeDecl(); 2969 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2970 if (unsigned builtinID = FD->getBuiltinID()) 2971 return EmitBuiltinExpr(FD, builtinID, E); 2972 } 2973 2974 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2975 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2976 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2977 2978 if (const auto *PseudoDtor = 2979 dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2980 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2981 if (getLangOpts().ObjCAutoRefCount && 2982 DestroyedType->isObjCLifetimeType() && 2983 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2984 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2985 // Automatic Reference Counting: 2986 // If the pseudo-expression names a retainable object with weak or 2987 // strong lifetime, the object shall be released. 2988 Expr *BaseExpr = PseudoDtor->getBase(); 2989 llvm::Value *BaseValue = nullptr; 2990 Qualifiers BaseQuals; 2991 2992 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2993 if (PseudoDtor->isArrow()) { 2994 BaseValue = EmitScalarExpr(BaseExpr); 2995 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2996 BaseQuals = PTy->getPointeeType().getQualifiers(); 2997 } else { 2998 LValue BaseLV = EmitLValue(BaseExpr); 2999 BaseValue = BaseLV.getAddress(); 3000 QualType BaseTy = BaseExpr->getType(); 3001 BaseQuals = BaseTy.getQualifiers(); 3002 } 3003 3004 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 3005 case Qualifiers::OCL_None: 3006 case Qualifiers::OCL_ExplicitNone: 3007 case Qualifiers::OCL_Autoreleasing: 3008 break; 3009 3010 case Qualifiers::OCL_Strong: 3011 EmitARCRelease(Builder.CreateLoad(BaseValue, 3012 PseudoDtor->getDestroyedType().isVolatileQualified()), 3013 ARCPreciseLifetime); 3014 break; 3015 3016 case Qualifiers::OCL_Weak: 3017 EmitARCDestroyWeak(BaseValue); 3018 break; 3019 } 3020 } else { 3021 // C++ [expr.pseudo]p1: 3022 // The result shall only be used as the operand for the function call 3023 // operator (), and the result of such a call has type void. The only 3024 // effect is the evaluation of the postfix-expression before the dot or 3025 // arrow. 3026 EmitScalarExpr(E->getCallee()); 3027 } 3028 3029 return RValue::get(nullptr); 3030 } 3031 3032 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 3033 return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(), 3034 ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl); 3035 } 3036 3037 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 3038 // Comma expressions just emit their LHS then their RHS as an l-value. 3039 if (E->getOpcode() == BO_Comma) { 3040 EmitIgnoredExpr(E->getLHS()); 3041 EnsureInsertPoint(); 3042 return EmitLValue(E->getRHS()); 3043 } 3044 3045 if (E->getOpcode() == BO_PtrMemD || 3046 E->getOpcode() == BO_PtrMemI) 3047 return EmitPointerToDataMemberBinaryExpr(E); 3048 3049 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 3050 3051 // Note that in all of these cases, __block variables need the RHS 3052 // evaluated first just in case the variable gets moved by the RHS. 3053 3054 switch (getEvaluationKind(E->getType())) { 3055 case TEK_Scalar: { 3056 switch (E->getLHS()->getType().getObjCLifetime()) { 3057 case Qualifiers::OCL_Strong: 3058 return EmitARCStoreStrong(E, /*ignored*/ false).first; 3059 3060 case Qualifiers::OCL_Autoreleasing: 3061 return EmitARCStoreAutoreleasing(E).first; 3062 3063 // No reason to do any of these differently. 3064 case Qualifiers::OCL_None: 3065 case Qualifiers::OCL_ExplicitNone: 3066 case Qualifiers::OCL_Weak: 3067 break; 3068 } 3069 3070 RValue RV = EmitAnyExpr(E->getRHS()); 3071 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 3072 EmitStoreThroughLValue(RV, LV); 3073 return LV; 3074 } 3075 3076 case TEK_Complex: 3077 return EmitComplexAssignmentLValue(E); 3078 3079 case TEK_Aggregate: 3080 return EmitAggExprToLValue(E); 3081 } 3082 llvm_unreachable("bad evaluation kind"); 3083 } 3084 3085 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 3086 RValue RV = EmitCallExpr(E); 3087 3088 if (!RV.isScalar()) 3089 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3090 3091 assert(E->getCallReturnType()->isReferenceType() && 3092 "Can't have a scalar return unless the return type is a " 3093 "reference type!"); 3094 3095 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3096 } 3097 3098 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3099 // FIXME: This shouldn't require another copy. 3100 return EmitAggExprToLValue(E); 3101 } 3102 3103 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3104 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3105 && "binding l-value to type which needs a temporary"); 3106 AggValueSlot Slot = CreateAggTemp(E->getType()); 3107 EmitCXXConstructExpr(E, Slot); 3108 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3109 } 3110 3111 LValue 3112 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3113 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3114 } 3115 3116 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3117 return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E), 3118 ConvertType(E->getType())->getPointerTo()); 3119 } 3120 3121 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3122 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 3123 } 3124 3125 LValue 3126 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3127 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3128 Slot.setExternallyDestructed(); 3129 EmitAggExpr(E->getSubExpr(), Slot); 3130 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 3131 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3132 } 3133 3134 LValue 3135 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3136 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3137 EmitLambdaExpr(E, Slot); 3138 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3139 } 3140 3141 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3142 RValue RV = EmitObjCMessageExpr(E); 3143 3144 if (!RV.isScalar()) 3145 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3146 3147 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 3148 "Can't have a scalar return unless the return type is a " 3149 "reference type!"); 3150 3151 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3152 } 3153 3154 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3155 llvm::Value *V = 3156 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); 3157 return MakeAddrLValue(V, E->getType()); 3158 } 3159 3160 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3161 const ObjCIvarDecl *Ivar) { 3162 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3163 } 3164 3165 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3166 llvm::Value *BaseValue, 3167 const ObjCIvarDecl *Ivar, 3168 unsigned CVRQualifiers) { 3169 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3170 Ivar, CVRQualifiers); 3171 } 3172 3173 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3174 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3175 llvm::Value *BaseValue = nullptr; 3176 const Expr *BaseExpr = E->getBase(); 3177 Qualifiers BaseQuals; 3178 QualType ObjectTy; 3179 if (E->isArrow()) { 3180 BaseValue = EmitScalarExpr(BaseExpr); 3181 ObjectTy = BaseExpr->getType()->getPointeeType(); 3182 BaseQuals = ObjectTy.getQualifiers(); 3183 } else { 3184 LValue BaseLV = EmitLValue(BaseExpr); 3185 // FIXME: this isn't right for bitfields. 3186 BaseValue = BaseLV.getAddress(); 3187 ObjectTy = BaseExpr->getType(); 3188 BaseQuals = ObjectTy.getQualifiers(); 3189 } 3190 3191 LValue LV = 3192 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3193 BaseQuals.getCVRQualifiers()); 3194 setObjCGCLValueClass(getContext(), E, LV); 3195 return LV; 3196 } 3197 3198 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3199 // Can only get l-value for message expression returning aggregate type 3200 RValue RV = EmitAnyExprToTemp(E); 3201 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3202 } 3203 3204 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3205 SourceLocation CallLoc, 3206 ReturnValueSlot ReturnValue, 3207 CallExpr::const_arg_iterator ArgBeg, 3208 CallExpr::const_arg_iterator ArgEnd, 3209 const Decl *TargetDecl) { 3210 // Get the actual function type. The callee type will always be a pointer to 3211 // function type or a block pointer type. 3212 assert(CalleeType->isFunctionPointerType() && 3213 "Call must have function pointer type!"); 3214 3215 CalleeType = getContext().getCanonicalType(CalleeType); 3216 3217 const auto *FnType = 3218 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3219 3220 // Force column info to differentiate multiple inlined call sites on 3221 // the same line, analoguous to EmitCallExpr. 3222 // FIXME: This is insufficient. Two calls coming from the same macro expansion 3223 // will still get the same line/column and break debug info. It's possible 3224 // that LLVM can be fixed to not rely on this uniqueness, at which point this 3225 // workaround can be removed. 3226 bool ForceColumnInfo = false; 3227 if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl)) 3228 ForceColumnInfo = FD->isInlineSpecified(); 3229 3230 if (getLangOpts().CPlusPlus && SanOpts->Function && 3231 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 3232 if (llvm::Constant *PrefixSig = 3233 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 3234 llvm::Constant *FTRTTIConst = 3235 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 3236 llvm::Type *PrefixStructTyElems[] = { 3237 PrefixSig->getType(), 3238 FTRTTIConst->getType() 3239 }; 3240 llvm::StructType *PrefixStructTy = llvm::StructType::get( 3241 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 3242 3243 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 3244 Callee, llvm::PointerType::getUnqual(PrefixStructTy)); 3245 llvm::Value *CalleeSigPtr = 3246 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0); 3247 llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr); 3248 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 3249 3250 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3251 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 3252 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 3253 3254 EmitBlock(TypeCheck); 3255 llvm::Value *CalleeRTTIPtr = 3256 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1); 3257 llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr); 3258 llvm::Value *CalleeRTTIMatch = 3259 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 3260 llvm::Constant *StaticData[] = { 3261 EmitCheckSourceLocation(CallLoc), 3262 EmitCheckTypeDescriptor(CalleeType) 3263 }; 3264 EmitCheck(CalleeRTTIMatch, 3265 "function_type_mismatch", 3266 StaticData, 3267 Callee, 3268 CRK_Recoverable); 3269 3270 Builder.CreateBr(Cont); 3271 EmitBlock(Cont); 3272 } 3273 } 3274 3275 CallArgList Args; 3276 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd, 3277 ForceColumnInfo); 3278 3279 const CGFunctionInfo &FnInfo = 3280 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); 3281 3282 // C99 6.5.2.2p6: 3283 // If the expression that denotes the called function has a type 3284 // that does not include a prototype, [the default argument 3285 // promotions are performed]. If the number of arguments does not 3286 // equal the number of parameters, the behavior is undefined. If 3287 // the function is defined with a type that includes a prototype, 3288 // and either the prototype ends with an ellipsis (, ...) or the 3289 // types of the arguments after promotion are not compatible with 3290 // the types of the parameters, the behavior is undefined. If the 3291 // function is defined with a type that does not include a 3292 // prototype, and the types of the arguments after promotion are 3293 // not compatible with those of the parameters after promotion, 3294 // the behavior is undefined [except in some trivial cases]. 3295 // That is, in the general case, we should assume that a call 3296 // through an unprototyped function type works like a *non-variadic* 3297 // call. The way we make this work is to cast to the exact type 3298 // of the promoted arguments. 3299 if (isa<FunctionNoProtoType>(FnType)) { 3300 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3301 CalleeTy = CalleeTy->getPointerTo(); 3302 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3303 } 3304 3305 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3306 } 3307 3308 LValue CodeGenFunction:: 3309 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3310 llvm::Value *BaseV; 3311 if (E->getOpcode() == BO_PtrMemI) 3312 BaseV = EmitScalarExpr(E->getLHS()); 3313 else 3314 BaseV = EmitLValue(E->getLHS()).getAddress(); 3315 3316 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3317 3318 const MemberPointerType *MPT 3319 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3320 3321 llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress( 3322 *this, E, BaseV, OffsetV, MPT); 3323 3324 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3325 } 3326 3327 /// Given the address of a temporary variable, produce an r-value of 3328 /// its type. 3329 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, 3330 QualType type, 3331 SourceLocation loc) { 3332 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); 3333 switch (getEvaluationKind(type)) { 3334 case TEK_Complex: 3335 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 3336 case TEK_Aggregate: 3337 return lvalue.asAggregateRValue(); 3338 case TEK_Scalar: 3339 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 3340 } 3341 llvm_unreachable("bad evaluation kind"); 3342 } 3343 3344 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3345 assert(Val->getType()->isFPOrFPVectorTy()); 3346 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3347 return; 3348 3349 llvm::MDBuilder MDHelper(getLLVMContext()); 3350 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3351 3352 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3353 } 3354 3355 namespace { 3356 struct LValueOrRValue { 3357 LValue LV; 3358 RValue RV; 3359 }; 3360 } 3361 3362 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3363 const PseudoObjectExpr *E, 3364 bool forLValue, 3365 AggValueSlot slot) { 3366 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3367 3368 // Find the result expression, if any. 3369 const Expr *resultExpr = E->getResultExpr(); 3370 LValueOrRValue result; 3371 3372 for (PseudoObjectExpr::const_semantics_iterator 3373 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3374 const Expr *semantic = *i; 3375 3376 // If this semantic expression is an opaque value, bind it 3377 // to the result of its source expression. 3378 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3379 3380 // If this is the result expression, we may need to evaluate 3381 // directly into the slot. 3382 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3383 OVMA opaqueData; 3384 if (ov == resultExpr && ov->isRValue() && !forLValue && 3385 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 3386 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3387 3388 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3389 opaqueData = OVMA::bind(CGF, ov, LV); 3390 result.RV = slot.asRValue(); 3391 3392 // Otherwise, emit as normal. 3393 } else { 3394 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3395 3396 // If this is the result, also evaluate the result now. 3397 if (ov == resultExpr) { 3398 if (forLValue) 3399 result.LV = CGF.EmitLValue(ov); 3400 else 3401 result.RV = CGF.EmitAnyExpr(ov, slot); 3402 } 3403 } 3404 3405 opaques.push_back(opaqueData); 3406 3407 // Otherwise, if the expression is the result, evaluate it 3408 // and remember the result. 3409 } else if (semantic == resultExpr) { 3410 if (forLValue) 3411 result.LV = CGF.EmitLValue(semantic); 3412 else 3413 result.RV = CGF.EmitAnyExpr(semantic, slot); 3414 3415 // Otherwise, evaluate the expression in an ignored context. 3416 } else { 3417 CGF.EmitIgnoredExpr(semantic); 3418 } 3419 } 3420 3421 // Unbind all the opaques now. 3422 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3423 opaques[i].unbind(CGF); 3424 3425 return result; 3426 } 3427 3428 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3429 AggValueSlot slot) { 3430 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3431 } 3432 3433 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3434 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3435 } 3436