1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/ADT/Hashing.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/Support/ConvertUTF.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Transforms/Utils/SanitizerStats.h" 39 40 #include <string> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 //===--------------------------------------------------------------------===// 46 // Miscellaneous Helper Methods 47 //===--------------------------------------------------------------------===// 48 49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 50 unsigned addressSpace = 51 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 52 53 llvm::PointerType *destType = Int8PtrTy; 54 if (addressSpace) 55 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 56 57 if (value->getType() == destType) return value; 58 return Builder.CreateBitCast(value, destType); 59 } 60 61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 62 /// block. 63 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 64 const Twine &Name) { 65 auto Alloca = CreateTempAlloca(Ty, Name); 66 Alloca->setAlignment(Align.getQuantity()); 67 return Address(Alloca, Align); 68 } 69 70 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 71 /// block. 72 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 73 const Twine &Name) { 74 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 75 nullptr, Name, AllocaInsertPt); 76 } 77 78 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 79 /// default alignment of the corresponding LLVM type, which is *not* 80 /// guaranteed to be related in any way to the expected alignment of 81 /// an AST type that might have been lowered to Ty. 82 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 83 const Twine &Name) { 84 CharUnits Align = 85 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 86 return CreateTempAlloca(Ty, Align, Name); 87 } 88 89 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 90 assert(isa<llvm::AllocaInst>(Var.getPointer())); 91 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 92 Store->setAlignment(Var.getAlignment().getQuantity()); 93 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 94 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 95 } 96 97 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 98 CharUnits Align = getContext().getTypeAlignInChars(Ty); 99 return CreateTempAlloca(ConvertType(Ty), Align, Name); 100 } 101 102 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) { 103 // FIXME: Should we prefer the preferred type alignment here? 104 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name); 105 } 106 107 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 108 const Twine &Name) { 109 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name); 110 } 111 112 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 113 /// expression and compare the result against zero, returning an Int1Ty value. 114 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 115 PGO.setCurrentStmt(E); 116 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 117 llvm::Value *MemPtr = EmitScalarExpr(E); 118 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 119 } 120 121 QualType BoolTy = getContext().BoolTy; 122 SourceLocation Loc = E->getExprLoc(); 123 if (!E->getType()->isAnyComplexType()) 124 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 125 126 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 127 Loc); 128 } 129 130 /// EmitIgnoredExpr - Emit code to compute the specified expression, 131 /// ignoring the result. 132 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 133 if (E->isRValue()) 134 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 135 136 // Just emit it as an l-value and drop the result. 137 EmitLValue(E); 138 } 139 140 /// EmitAnyExpr - Emit code to compute the specified expression which 141 /// can have any type. The result is returned as an RValue struct. 142 /// If this is an aggregate expression, AggSlot indicates where the 143 /// result should be returned. 144 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 145 AggValueSlot aggSlot, 146 bool ignoreResult) { 147 switch (getEvaluationKind(E->getType())) { 148 case TEK_Scalar: 149 return RValue::get(EmitScalarExpr(E, ignoreResult)); 150 case TEK_Complex: 151 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 152 case TEK_Aggregate: 153 if (!ignoreResult && aggSlot.isIgnored()) 154 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 155 EmitAggExpr(E, aggSlot); 156 return aggSlot.asRValue(); 157 } 158 llvm_unreachable("bad evaluation kind"); 159 } 160 161 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 162 /// always be accessible even if no aggregate location is provided. 163 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 164 AggValueSlot AggSlot = AggValueSlot::ignored(); 165 166 if (hasAggregateEvaluationKind(E->getType())) 167 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 168 return EmitAnyExpr(E, AggSlot); 169 } 170 171 /// EmitAnyExprToMem - Evaluate an expression into a given memory 172 /// location. 173 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 174 Address Location, 175 Qualifiers Quals, 176 bool IsInit) { 177 // FIXME: This function should take an LValue as an argument. 178 switch (getEvaluationKind(E->getType())) { 179 case TEK_Complex: 180 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 181 /*isInit*/ false); 182 return; 183 184 case TEK_Aggregate: { 185 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 186 AggValueSlot::IsDestructed_t(IsInit), 187 AggValueSlot::DoesNotNeedGCBarriers, 188 AggValueSlot::IsAliased_t(!IsInit))); 189 return; 190 } 191 192 case TEK_Scalar: { 193 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 194 LValue LV = MakeAddrLValue(Location, E->getType()); 195 EmitStoreThroughLValue(RV, LV); 196 return; 197 } 198 } 199 llvm_unreachable("bad evaluation kind"); 200 } 201 202 static void 203 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 204 const Expr *E, Address ReferenceTemporary) { 205 // Objective-C++ ARC: 206 // If we are binding a reference to a temporary that has ownership, we 207 // need to perform retain/release operations on the temporary. 208 // 209 // FIXME: This should be looking at E, not M. 210 if (auto Lifetime = M->getType().getObjCLifetime()) { 211 switch (Lifetime) { 212 case Qualifiers::OCL_None: 213 case Qualifiers::OCL_ExplicitNone: 214 // Carry on to normal cleanup handling. 215 break; 216 217 case Qualifiers::OCL_Autoreleasing: 218 // Nothing to do; cleaned up by an autorelease pool. 219 return; 220 221 case Qualifiers::OCL_Strong: 222 case Qualifiers::OCL_Weak: 223 switch (StorageDuration Duration = M->getStorageDuration()) { 224 case SD_Static: 225 // Note: we intentionally do not register a cleanup to release 226 // the object on program termination. 227 return; 228 229 case SD_Thread: 230 // FIXME: We should probably register a cleanup in this case. 231 return; 232 233 case SD_Automatic: 234 case SD_FullExpression: 235 CodeGenFunction::Destroyer *Destroy; 236 CleanupKind CleanupKind; 237 if (Lifetime == Qualifiers::OCL_Strong) { 238 const ValueDecl *VD = M->getExtendingDecl(); 239 bool Precise = 240 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 241 CleanupKind = CGF.getARCCleanupKind(); 242 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 243 : &CodeGenFunction::destroyARCStrongImprecise; 244 } else { 245 // __weak objects always get EH cleanups; otherwise, exceptions 246 // could cause really nasty crashes instead of mere leaks. 247 CleanupKind = NormalAndEHCleanup; 248 Destroy = &CodeGenFunction::destroyARCWeak; 249 } 250 if (Duration == SD_FullExpression) 251 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 252 M->getType(), *Destroy, 253 CleanupKind & EHCleanup); 254 else 255 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 256 M->getType(), 257 *Destroy, CleanupKind & EHCleanup); 258 return; 259 260 case SD_Dynamic: 261 llvm_unreachable("temporary cannot have dynamic storage duration"); 262 } 263 llvm_unreachable("unknown storage duration"); 264 } 265 } 266 267 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 268 if (const RecordType *RT = 269 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 270 // Get the destructor for the reference temporary. 271 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 272 if (!ClassDecl->hasTrivialDestructor()) 273 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 274 } 275 276 if (!ReferenceTemporaryDtor) 277 return; 278 279 // Call the destructor for the temporary. 280 switch (M->getStorageDuration()) { 281 case SD_Static: 282 case SD_Thread: { 283 llvm::Constant *CleanupFn; 284 llvm::Constant *CleanupArg; 285 if (E->getType()->isArrayType()) { 286 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 287 ReferenceTemporary, E->getType(), 288 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 289 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 290 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 291 } else { 292 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 293 StructorType::Complete); 294 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 295 } 296 CGF.CGM.getCXXABI().registerGlobalDtor( 297 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 298 break; 299 } 300 301 case SD_FullExpression: 302 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 303 CodeGenFunction::destroyCXXObject, 304 CGF.getLangOpts().Exceptions); 305 break; 306 307 case SD_Automatic: 308 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 309 ReferenceTemporary, E->getType(), 310 CodeGenFunction::destroyCXXObject, 311 CGF.getLangOpts().Exceptions); 312 break; 313 314 case SD_Dynamic: 315 llvm_unreachable("temporary cannot have dynamic storage duration"); 316 } 317 } 318 319 static Address 320 createReferenceTemporary(CodeGenFunction &CGF, 321 const MaterializeTemporaryExpr *M, const Expr *Inner) { 322 switch (M->getStorageDuration()) { 323 case SD_FullExpression: 324 case SD_Automatic: { 325 // If we have a constant temporary array or record try to promote it into a 326 // constant global under the same rules a normal constant would've been 327 // promoted. This is easier on the optimizer and generally emits fewer 328 // instructions. 329 QualType Ty = Inner->getType(); 330 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 331 (Ty->isArrayType() || Ty->isRecordType()) && 332 CGF.CGM.isTypeConstant(Ty, true)) 333 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 334 auto *GV = new llvm::GlobalVariable( 335 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 336 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp"); 337 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 338 GV->setAlignment(alignment.getQuantity()); 339 // FIXME: Should we put the new global into a COMDAT? 340 return Address(GV, alignment); 341 } 342 return CGF.CreateMemTemp(Ty, "ref.tmp"); 343 } 344 case SD_Thread: 345 case SD_Static: 346 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 347 348 case SD_Dynamic: 349 llvm_unreachable("temporary can't have dynamic storage duration"); 350 } 351 llvm_unreachable("unknown storage duration"); 352 } 353 354 LValue CodeGenFunction:: 355 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 356 const Expr *E = M->GetTemporaryExpr(); 357 358 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 359 // as that will cause the lifetime adjustment to be lost for ARC 360 auto ownership = M->getType().getObjCLifetime(); 361 if (ownership != Qualifiers::OCL_None && 362 ownership != Qualifiers::OCL_ExplicitNone) { 363 Address Object = createReferenceTemporary(*this, M, E); 364 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 365 Object = Address(llvm::ConstantExpr::getBitCast(Var, 366 ConvertTypeForMem(E->getType()) 367 ->getPointerTo(Object.getAddressSpace())), 368 Object.getAlignment()); 369 370 // createReferenceTemporary will promote the temporary to a global with a 371 // constant initializer if it can. It can only do this to a value of 372 // ARC-manageable type if the value is global and therefore "immune" to 373 // ref-counting operations. Therefore we have no need to emit either a 374 // dynamic initialization or a cleanup and we can just return the address 375 // of the temporary. 376 if (Var->hasInitializer()) 377 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 378 379 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 380 } 381 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 382 AlignmentSource::Decl); 383 384 switch (getEvaluationKind(E->getType())) { 385 default: llvm_unreachable("expected scalar or aggregate expression"); 386 case TEK_Scalar: 387 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 388 break; 389 case TEK_Aggregate: { 390 EmitAggExpr(E, AggValueSlot::forAddr(Object, 391 E->getType().getQualifiers(), 392 AggValueSlot::IsDestructed, 393 AggValueSlot::DoesNotNeedGCBarriers, 394 AggValueSlot::IsNotAliased)); 395 break; 396 } 397 } 398 399 pushTemporaryCleanup(*this, M, E, Object); 400 return RefTempDst; 401 } 402 403 SmallVector<const Expr *, 2> CommaLHSs; 404 SmallVector<SubobjectAdjustment, 2> Adjustments; 405 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 406 407 for (const auto &Ignored : CommaLHSs) 408 EmitIgnoredExpr(Ignored); 409 410 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 411 if (opaque->getType()->isRecordType()) { 412 assert(Adjustments.empty()); 413 return EmitOpaqueValueLValue(opaque); 414 } 415 } 416 417 // Create and initialize the reference temporary. 418 Address Object = createReferenceTemporary(*this, M, E); 419 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 420 Object = Address(llvm::ConstantExpr::getBitCast( 421 Var, ConvertTypeForMem(E->getType())->getPointerTo()), 422 Object.getAlignment()); 423 // If the temporary is a global and has a constant initializer or is a 424 // constant temporary that we promoted to a global, we may have already 425 // initialized it. 426 if (!Var->hasInitializer()) { 427 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 428 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 429 } 430 } else { 431 switch (M->getStorageDuration()) { 432 case SD_Automatic: 433 case SD_FullExpression: 434 if (auto *Size = EmitLifetimeStart( 435 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 436 Object.getPointer())) { 437 if (M->getStorageDuration() == SD_Automatic) 438 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 439 Object, Size); 440 else 441 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 442 Size); 443 } 444 break; 445 default: 446 break; 447 } 448 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 449 } 450 pushTemporaryCleanup(*this, M, E, Object); 451 452 // Perform derived-to-base casts and/or field accesses, to get from the 453 // temporary object we created (and, potentially, for which we extended 454 // the lifetime) to the subobject we're binding the reference to. 455 for (unsigned I = Adjustments.size(); I != 0; --I) { 456 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 457 switch (Adjustment.Kind) { 458 case SubobjectAdjustment::DerivedToBaseAdjustment: 459 Object = 460 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 461 Adjustment.DerivedToBase.BasePath->path_begin(), 462 Adjustment.DerivedToBase.BasePath->path_end(), 463 /*NullCheckValue=*/ false, E->getExprLoc()); 464 break; 465 466 case SubobjectAdjustment::FieldAdjustment: { 467 LValue LV = MakeAddrLValue(Object, E->getType(), 468 AlignmentSource::Decl); 469 LV = EmitLValueForField(LV, Adjustment.Field); 470 assert(LV.isSimple() && 471 "materialized temporary field is not a simple lvalue"); 472 Object = LV.getAddress(); 473 break; 474 } 475 476 case SubobjectAdjustment::MemberPointerAdjustment: { 477 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 478 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 479 Adjustment.Ptr.MPT); 480 break; 481 } 482 } 483 } 484 485 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 486 } 487 488 RValue 489 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 490 // Emit the expression as an lvalue. 491 LValue LV = EmitLValue(E); 492 assert(LV.isSimple()); 493 llvm::Value *Value = LV.getPointer(); 494 495 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 496 // C++11 [dcl.ref]p5 (as amended by core issue 453): 497 // If a glvalue to which a reference is directly bound designates neither 498 // an existing object or function of an appropriate type nor a region of 499 // storage of suitable size and alignment to contain an object of the 500 // reference's type, the behavior is undefined. 501 QualType Ty = E->getType(); 502 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 503 } 504 505 return RValue::get(Value); 506 } 507 508 509 /// getAccessedFieldNo - Given an encoded value and a result number, return the 510 /// input field number being accessed. 511 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 512 const llvm::Constant *Elts) { 513 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 514 ->getZExtValue(); 515 } 516 517 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 518 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 519 llvm::Value *High) { 520 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 521 llvm::Value *K47 = Builder.getInt64(47); 522 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 523 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 524 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 525 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 526 return Builder.CreateMul(B1, KMul); 527 } 528 529 bool CodeGenFunction::sanitizePerformTypeCheck() const { 530 return SanOpts.has(SanitizerKind::Null) | 531 SanOpts.has(SanitizerKind::Alignment) | 532 SanOpts.has(SanitizerKind::ObjectSize) | 533 SanOpts.has(SanitizerKind::Vptr); 534 } 535 536 /// Check if a runtime null check for \p Ptr can be omitted. 537 static bool canOmitPointerNullCheck(llvm::Value *Ptr) { 538 // Note: do not perform any constant-folding in this function. That is best 539 // left to the IR builder. 540 541 // Pointers to alloca'd memory are non-null. 542 return isa<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 543 } 544 545 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 546 llvm::Value *Ptr, QualType Ty, 547 CharUnits Alignment, 548 SanitizerSet SkippedChecks) { 549 if (!sanitizePerformTypeCheck()) 550 return; 551 552 // Don't check pointers outside the default address space. The null check 553 // isn't correct, the object-size check isn't supported by LLVM, and we can't 554 // communicate the addresses to the runtime handler for the vptr check. 555 if (Ptr->getType()->getPointerAddressSpace()) 556 return; 557 558 SanitizerScope SanScope(this); 559 560 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 561 llvm::BasicBlock *Done = nullptr; 562 563 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 564 TCK == TCK_UpcastToVirtualBase; 565 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 566 !SkippedChecks.has(SanitizerKind::Null) && 567 !canOmitPointerNullCheck(Ptr)) { 568 // The glvalue must not be an empty glvalue. 569 llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr); 570 571 // The IR builder can constant-fold the null check if the pointer points to 572 // a constant. 573 bool PtrIsNonNull = 574 IsNonNull == llvm::ConstantInt::getTrue(getLLVMContext()); 575 576 // Skip the null check if the pointer is known to be non-null. 577 if (!PtrIsNonNull) { 578 if (AllowNullPointers) { 579 // When performing pointer casts, it's OK if the value is null. 580 // Skip the remaining checks in that case. 581 Done = createBasicBlock("null"); 582 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 583 Builder.CreateCondBr(IsNonNull, Rest, Done); 584 EmitBlock(Rest); 585 } else { 586 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 587 } 588 } 589 } 590 591 if (SanOpts.has(SanitizerKind::ObjectSize) && 592 !SkippedChecks.has(SanitizerKind::ObjectSize) && 593 !Ty->isIncompleteType()) { 594 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 595 596 // The glvalue must refer to a large enough storage region. 597 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 598 // to check this. 599 // FIXME: Get object address space 600 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 601 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 602 llvm::Value *Min = Builder.getFalse(); 603 llvm::Value *NullIsUnknown = Builder.getFalse(); 604 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 605 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 606 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 607 llvm::ConstantInt::get(IntPtrTy, Size)); 608 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 609 } 610 611 uint64_t AlignVal = 0; 612 613 if (SanOpts.has(SanitizerKind::Alignment) && 614 !SkippedChecks.has(SanitizerKind::Alignment)) { 615 AlignVal = Alignment.getQuantity(); 616 if (!Ty->isIncompleteType() && !AlignVal) 617 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 618 619 // The glvalue must be suitably aligned. 620 if (AlignVal > 1) { 621 llvm::Value *Align = 622 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy), 623 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 624 llvm::Value *Aligned = 625 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 626 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 627 } 628 } 629 630 if (Checks.size() > 0) { 631 // Make sure we're not losing information. Alignment needs to be a power of 632 // 2 633 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 634 llvm::Constant *StaticData[] = { 635 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 636 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 637 llvm::ConstantInt::get(Int8Ty, TCK)}; 638 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr); 639 } 640 641 // If possible, check that the vptr indicates that there is a subobject of 642 // type Ty at offset zero within this object. 643 // 644 // C++11 [basic.life]p5,6: 645 // [For storage which does not refer to an object within its lifetime] 646 // The program has undefined behavior if: 647 // -- the [pointer or glvalue] is used to access a non-static data member 648 // or call a non-static member function 649 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 650 if (SanOpts.has(SanitizerKind::Vptr) && 651 !SkippedChecks.has(SanitizerKind::Vptr) && 652 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 653 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 654 TCK == TCK_UpcastToVirtualBase) && 655 RD && RD->hasDefinition() && RD->isDynamicClass()) { 656 // Compute a hash of the mangled name of the type. 657 // 658 // FIXME: This is not guaranteed to be deterministic! Move to a 659 // fingerprinting mechanism once LLVM provides one. For the time 660 // being the implementation happens to be deterministic. 661 SmallString<64> MangledName; 662 llvm::raw_svector_ostream Out(MangledName); 663 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 664 Out); 665 666 // Blacklist based on the mangled type. 667 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 668 Out.str())) { 669 llvm::hash_code TypeHash = hash_value(Out.str()); 670 671 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 672 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 673 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 674 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 675 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 676 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 677 678 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 679 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 680 681 // Look the hash up in our cache. 682 const int CacheSize = 128; 683 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 684 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 685 "__ubsan_vptr_type_cache"); 686 llvm::Value *Slot = Builder.CreateAnd(Hash, 687 llvm::ConstantInt::get(IntPtrTy, 688 CacheSize-1)); 689 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 690 llvm::Value *CacheVal = 691 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 692 getPointerAlign()); 693 694 // If the hash isn't in the cache, call a runtime handler to perform the 695 // hard work of checking whether the vptr is for an object of the right 696 // type. This will either fill in the cache and return, or produce a 697 // diagnostic. 698 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 699 llvm::Constant *StaticData[] = { 700 EmitCheckSourceLocation(Loc), 701 EmitCheckTypeDescriptor(Ty), 702 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 703 llvm::ConstantInt::get(Int8Ty, TCK) 704 }; 705 llvm::Value *DynamicData[] = { Ptr, Hash }; 706 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 707 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 708 DynamicData); 709 } 710 } 711 712 if (Done) { 713 Builder.CreateBr(Done); 714 EmitBlock(Done); 715 } 716 } 717 718 /// Determine whether this expression refers to a flexible array member in a 719 /// struct. We disable array bounds checks for such members. 720 static bool isFlexibleArrayMemberExpr(const Expr *E) { 721 // For compatibility with existing code, we treat arrays of length 0 or 722 // 1 as flexible array members. 723 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 724 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 725 if (CAT->getSize().ugt(1)) 726 return false; 727 } else if (!isa<IncompleteArrayType>(AT)) 728 return false; 729 730 E = E->IgnoreParens(); 731 732 // A flexible array member must be the last member in the class. 733 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 734 // FIXME: If the base type of the member expr is not FD->getParent(), 735 // this should not be treated as a flexible array member access. 736 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 737 RecordDecl::field_iterator FI( 738 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 739 return ++FI == FD->getParent()->field_end(); 740 } 741 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 742 return IRE->getDecl()->getNextIvar() == nullptr; 743 } 744 745 return false; 746 } 747 748 /// If Base is known to point to the start of an array, return the length of 749 /// that array. Return 0 if the length cannot be determined. 750 static llvm::Value *getArrayIndexingBound( 751 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 752 // For the vector indexing extension, the bound is the number of elements. 753 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 754 IndexedType = Base->getType(); 755 return CGF.Builder.getInt32(VT->getNumElements()); 756 } 757 758 Base = Base->IgnoreParens(); 759 760 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 761 if (CE->getCastKind() == CK_ArrayToPointerDecay && 762 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 763 IndexedType = CE->getSubExpr()->getType(); 764 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 765 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 766 return CGF.Builder.getInt(CAT->getSize()); 767 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 768 return CGF.getVLASize(VAT).first; 769 } 770 } 771 772 return nullptr; 773 } 774 775 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 776 llvm::Value *Index, QualType IndexType, 777 bool Accessed) { 778 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 779 "should not be called unless adding bounds checks"); 780 SanitizerScope SanScope(this); 781 782 QualType IndexedType; 783 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 784 if (!Bound) 785 return; 786 787 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 788 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 789 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 790 791 llvm::Constant *StaticData[] = { 792 EmitCheckSourceLocation(E->getExprLoc()), 793 EmitCheckTypeDescriptor(IndexedType), 794 EmitCheckTypeDescriptor(IndexType) 795 }; 796 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 797 : Builder.CreateICmpULE(IndexVal, BoundVal); 798 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 799 SanitizerHandler::OutOfBounds, StaticData, Index); 800 } 801 802 803 CodeGenFunction::ComplexPairTy CodeGenFunction:: 804 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 805 bool isInc, bool isPre) { 806 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 807 808 llvm::Value *NextVal; 809 if (isa<llvm::IntegerType>(InVal.first->getType())) { 810 uint64_t AmountVal = isInc ? 1 : -1; 811 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 812 813 // Add the inc/dec to the real part. 814 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 815 } else { 816 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 817 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 818 if (!isInc) 819 FVal.changeSign(); 820 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 821 822 // Add the inc/dec to the real part. 823 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 824 } 825 826 ComplexPairTy IncVal(NextVal, InVal.second); 827 828 // Store the updated result through the lvalue. 829 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 830 831 // If this is a postinc, return the value read from memory, otherwise use the 832 // updated value. 833 return isPre ? IncVal : InVal; 834 } 835 836 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 837 CodeGenFunction *CGF) { 838 // Bind VLAs in the cast type. 839 if (CGF && E->getType()->isVariablyModifiedType()) 840 CGF->EmitVariablyModifiedType(E->getType()); 841 842 if (CGDebugInfo *DI = getModuleDebugInfo()) 843 DI->EmitExplicitCastType(E->getType()); 844 } 845 846 //===----------------------------------------------------------------------===// 847 // LValue Expression Emission 848 //===----------------------------------------------------------------------===// 849 850 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 851 /// derive a more accurate bound on the alignment of the pointer. 852 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 853 AlignmentSource *Source) { 854 // We allow this with ObjC object pointers because of fragile ABIs. 855 assert(E->getType()->isPointerType() || 856 E->getType()->isObjCObjectPointerType()); 857 E = E->IgnoreParens(); 858 859 // Casts: 860 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 861 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 862 CGM.EmitExplicitCastExprType(ECE, this); 863 864 switch (CE->getCastKind()) { 865 // Non-converting casts (but not C's implicit conversion from void*). 866 case CK_BitCast: 867 case CK_NoOp: 868 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 869 if (PtrTy->getPointeeType()->isVoidType()) 870 break; 871 872 AlignmentSource InnerSource; 873 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource); 874 if (Source) *Source = InnerSource; 875 876 // If this is an explicit bitcast, and the source l-value is 877 // opaque, honor the alignment of the casted-to type. 878 if (isa<ExplicitCastExpr>(CE) && 879 InnerSource != AlignmentSource::Decl) { 880 Addr = Address(Addr.getPointer(), 881 getNaturalPointeeTypeAlignment(E->getType(), Source)); 882 } 883 884 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 885 CE->getCastKind() == CK_BitCast) { 886 if (auto PT = E->getType()->getAs<PointerType>()) 887 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 888 /*MayBeNull=*/true, 889 CodeGenFunction::CFITCK_UnrelatedCast, 890 CE->getLocStart()); 891 } 892 893 return Builder.CreateBitCast(Addr, ConvertType(E->getType())); 894 } 895 break; 896 897 // Array-to-pointer decay. 898 case CK_ArrayToPointerDecay: 899 return EmitArrayToPointerDecay(CE->getSubExpr(), Source); 900 901 // Derived-to-base conversions. 902 case CK_UncheckedDerivedToBase: 903 case CK_DerivedToBase: { 904 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source); 905 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 906 return GetAddressOfBaseClass(Addr, Derived, 907 CE->path_begin(), CE->path_end(), 908 ShouldNullCheckClassCastValue(CE), 909 CE->getExprLoc()); 910 } 911 912 // TODO: Is there any reason to treat base-to-derived conversions 913 // specially? 914 default: 915 break; 916 } 917 } 918 919 // Unary &. 920 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 921 if (UO->getOpcode() == UO_AddrOf) { 922 LValue LV = EmitLValue(UO->getSubExpr()); 923 if (Source) *Source = LV.getAlignmentSource(); 924 return LV.getAddress(); 925 } 926 } 927 928 // TODO: conditional operators, comma. 929 930 // Otherwise, use the alignment of the type. 931 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source); 932 return Address(EmitScalarExpr(E), Align); 933 } 934 935 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 936 if (Ty->isVoidType()) 937 return RValue::get(nullptr); 938 939 switch (getEvaluationKind(Ty)) { 940 case TEK_Complex: { 941 llvm::Type *EltTy = 942 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 943 llvm::Value *U = llvm::UndefValue::get(EltTy); 944 return RValue::getComplex(std::make_pair(U, U)); 945 } 946 947 // If this is a use of an undefined aggregate type, the aggregate must have an 948 // identifiable address. Just because the contents of the value are undefined 949 // doesn't mean that the address can't be taken and compared. 950 case TEK_Aggregate: { 951 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 952 return RValue::getAggregate(DestPtr); 953 } 954 955 case TEK_Scalar: 956 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 957 } 958 llvm_unreachable("bad evaluation kind"); 959 } 960 961 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 962 const char *Name) { 963 ErrorUnsupported(E, Name); 964 return GetUndefRValue(E->getType()); 965 } 966 967 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 968 const char *Name) { 969 ErrorUnsupported(E, Name); 970 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 971 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 972 E->getType()); 973 } 974 975 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 976 const Expr *Base = Obj; 977 while (!isa<CXXThisExpr>(Base)) { 978 // The result of a dynamic_cast can be null. 979 if (isa<CXXDynamicCastExpr>(Base)) 980 return false; 981 982 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 983 Base = CE->getSubExpr(); 984 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 985 Base = PE->getSubExpr(); 986 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 987 if (UO->getOpcode() == UO_Extension) 988 Base = UO->getSubExpr(); 989 else 990 return false; 991 } else { 992 return false; 993 } 994 } 995 return true; 996 } 997 998 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 999 LValue LV; 1000 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1001 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1002 else 1003 LV = EmitLValue(E); 1004 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1005 SanitizerSet SkippedChecks; 1006 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1007 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1008 if (IsBaseCXXThis) 1009 SkippedChecks.set(SanitizerKind::Alignment, true); 1010 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1011 SkippedChecks.set(SanitizerKind::Null, true); 1012 } 1013 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1014 E->getType(), LV.getAlignment(), SkippedChecks); 1015 } 1016 return LV; 1017 } 1018 1019 /// EmitLValue - Emit code to compute a designator that specifies the location 1020 /// of the expression. 1021 /// 1022 /// This can return one of two things: a simple address or a bitfield reference. 1023 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1024 /// an LLVM pointer type. 1025 /// 1026 /// If this returns a bitfield reference, nothing about the pointee type of the 1027 /// LLVM value is known: For example, it may not be a pointer to an integer. 1028 /// 1029 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1030 /// this method guarantees that the returned pointer type will point to an LLVM 1031 /// type of the same size of the lvalue's type. If the lvalue has a variable 1032 /// length type, this is not possible. 1033 /// 1034 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1035 ApplyDebugLocation DL(*this, E); 1036 switch (E->getStmtClass()) { 1037 default: return EmitUnsupportedLValue(E, "l-value expression"); 1038 1039 case Expr::ObjCPropertyRefExprClass: 1040 llvm_unreachable("cannot emit a property reference directly"); 1041 1042 case Expr::ObjCSelectorExprClass: 1043 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1044 case Expr::ObjCIsaExprClass: 1045 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1046 case Expr::BinaryOperatorClass: 1047 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1048 case Expr::CompoundAssignOperatorClass: { 1049 QualType Ty = E->getType(); 1050 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1051 Ty = AT->getValueType(); 1052 if (!Ty->isAnyComplexType()) 1053 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1054 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1055 } 1056 case Expr::CallExprClass: 1057 case Expr::CXXMemberCallExprClass: 1058 case Expr::CXXOperatorCallExprClass: 1059 case Expr::UserDefinedLiteralClass: 1060 return EmitCallExprLValue(cast<CallExpr>(E)); 1061 case Expr::VAArgExprClass: 1062 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1063 case Expr::DeclRefExprClass: 1064 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1065 case Expr::ParenExprClass: 1066 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1067 case Expr::GenericSelectionExprClass: 1068 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1069 case Expr::PredefinedExprClass: 1070 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1071 case Expr::StringLiteralClass: 1072 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1073 case Expr::ObjCEncodeExprClass: 1074 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1075 case Expr::PseudoObjectExprClass: 1076 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1077 case Expr::InitListExprClass: 1078 return EmitInitListLValue(cast<InitListExpr>(E)); 1079 case Expr::CXXTemporaryObjectExprClass: 1080 case Expr::CXXConstructExprClass: 1081 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1082 case Expr::CXXBindTemporaryExprClass: 1083 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1084 case Expr::CXXUuidofExprClass: 1085 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1086 case Expr::LambdaExprClass: 1087 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1088 1089 case Expr::ExprWithCleanupsClass: { 1090 const auto *cleanups = cast<ExprWithCleanups>(E); 1091 enterFullExpression(cleanups); 1092 RunCleanupsScope Scope(*this); 1093 LValue LV = EmitLValue(cleanups->getSubExpr()); 1094 if (LV.isSimple()) { 1095 // Defend against branches out of gnu statement expressions surrounded by 1096 // cleanups. 1097 llvm::Value *V = LV.getPointer(); 1098 Scope.ForceCleanup({&V}); 1099 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1100 getContext(), LV.getAlignmentSource(), 1101 LV.getTBAAInfo()); 1102 } 1103 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1104 // bitfield lvalue or some other non-simple lvalue? 1105 return LV; 1106 } 1107 1108 case Expr::CXXDefaultArgExprClass: 1109 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1110 case Expr::CXXDefaultInitExprClass: { 1111 CXXDefaultInitExprScope Scope(*this); 1112 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1113 } 1114 case Expr::CXXTypeidExprClass: 1115 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1116 1117 case Expr::ObjCMessageExprClass: 1118 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1119 case Expr::ObjCIvarRefExprClass: 1120 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1121 case Expr::StmtExprClass: 1122 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1123 case Expr::UnaryOperatorClass: 1124 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1125 case Expr::ArraySubscriptExprClass: 1126 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1127 case Expr::OMPArraySectionExprClass: 1128 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1129 case Expr::ExtVectorElementExprClass: 1130 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1131 case Expr::MemberExprClass: 1132 return EmitMemberExpr(cast<MemberExpr>(E)); 1133 case Expr::CompoundLiteralExprClass: 1134 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1135 case Expr::ConditionalOperatorClass: 1136 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1137 case Expr::BinaryConditionalOperatorClass: 1138 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1139 case Expr::ChooseExprClass: 1140 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1141 case Expr::OpaqueValueExprClass: 1142 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1143 case Expr::SubstNonTypeTemplateParmExprClass: 1144 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1145 case Expr::ImplicitCastExprClass: 1146 case Expr::CStyleCastExprClass: 1147 case Expr::CXXFunctionalCastExprClass: 1148 case Expr::CXXStaticCastExprClass: 1149 case Expr::CXXDynamicCastExprClass: 1150 case Expr::CXXReinterpretCastExprClass: 1151 case Expr::CXXConstCastExprClass: 1152 case Expr::ObjCBridgedCastExprClass: 1153 return EmitCastLValue(cast<CastExpr>(E)); 1154 1155 case Expr::MaterializeTemporaryExprClass: 1156 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1157 } 1158 } 1159 1160 /// Given an object of the given canonical type, can we safely copy a 1161 /// value out of it based on its initializer? 1162 static bool isConstantEmittableObjectType(QualType type) { 1163 assert(type.isCanonical()); 1164 assert(!type->isReferenceType()); 1165 1166 // Must be const-qualified but non-volatile. 1167 Qualifiers qs = type.getLocalQualifiers(); 1168 if (!qs.hasConst() || qs.hasVolatile()) return false; 1169 1170 // Otherwise, all object types satisfy this except C++ classes with 1171 // mutable subobjects or non-trivial copy/destroy behavior. 1172 if (const auto *RT = dyn_cast<RecordType>(type)) 1173 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1174 if (RD->hasMutableFields() || !RD->isTrivial()) 1175 return false; 1176 1177 return true; 1178 } 1179 1180 /// Can we constant-emit a load of a reference to a variable of the 1181 /// given type? This is different from predicates like 1182 /// Decl::isUsableInConstantExpressions because we do want it to apply 1183 /// in situations that don't necessarily satisfy the language's rules 1184 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1185 /// to do this with const float variables even if those variables 1186 /// aren't marked 'constexpr'. 1187 enum ConstantEmissionKind { 1188 CEK_None, 1189 CEK_AsReferenceOnly, 1190 CEK_AsValueOrReference, 1191 CEK_AsValueOnly 1192 }; 1193 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1194 type = type.getCanonicalType(); 1195 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1196 if (isConstantEmittableObjectType(ref->getPointeeType())) 1197 return CEK_AsValueOrReference; 1198 return CEK_AsReferenceOnly; 1199 } 1200 if (isConstantEmittableObjectType(type)) 1201 return CEK_AsValueOnly; 1202 return CEK_None; 1203 } 1204 1205 /// Try to emit a reference to the given value without producing it as 1206 /// an l-value. This is actually more than an optimization: we can't 1207 /// produce an l-value for variables that we never actually captured 1208 /// in a block or lambda, which means const int variables or constexpr 1209 /// literals or similar. 1210 CodeGenFunction::ConstantEmission 1211 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1212 ValueDecl *value = refExpr->getDecl(); 1213 1214 // The value needs to be an enum constant or a constant variable. 1215 ConstantEmissionKind CEK; 1216 if (isa<ParmVarDecl>(value)) { 1217 CEK = CEK_None; 1218 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1219 CEK = checkVarTypeForConstantEmission(var->getType()); 1220 } else if (isa<EnumConstantDecl>(value)) { 1221 CEK = CEK_AsValueOnly; 1222 } else { 1223 CEK = CEK_None; 1224 } 1225 if (CEK == CEK_None) return ConstantEmission(); 1226 1227 Expr::EvalResult result; 1228 bool resultIsReference; 1229 QualType resultType; 1230 1231 // It's best to evaluate all the way as an r-value if that's permitted. 1232 if (CEK != CEK_AsReferenceOnly && 1233 refExpr->EvaluateAsRValue(result, getContext())) { 1234 resultIsReference = false; 1235 resultType = refExpr->getType(); 1236 1237 // Otherwise, try to evaluate as an l-value. 1238 } else if (CEK != CEK_AsValueOnly && 1239 refExpr->EvaluateAsLValue(result, getContext())) { 1240 resultIsReference = true; 1241 resultType = value->getType(); 1242 1243 // Failure. 1244 } else { 1245 return ConstantEmission(); 1246 } 1247 1248 // In any case, if the initializer has side-effects, abandon ship. 1249 if (result.HasSideEffects) 1250 return ConstantEmission(); 1251 1252 // Emit as a constant. 1253 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1254 1255 // Make sure we emit a debug reference to the global variable. 1256 // This should probably fire even for 1257 if (isa<VarDecl>(value)) { 1258 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1259 EmitDeclRefExprDbgValue(refExpr, result.Val); 1260 } else { 1261 assert(isa<EnumConstantDecl>(value)); 1262 EmitDeclRefExprDbgValue(refExpr, result.Val); 1263 } 1264 1265 // If we emitted a reference constant, we need to dereference that. 1266 if (resultIsReference) 1267 return ConstantEmission::forReference(C); 1268 1269 return ConstantEmission::forValue(C); 1270 } 1271 1272 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1273 SourceLocation Loc) { 1274 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1275 lvalue.getType(), Loc, lvalue.getAlignmentSource(), 1276 lvalue.getTBAAInfo(), 1277 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(), 1278 lvalue.isNontemporal()); 1279 } 1280 1281 static bool hasBooleanRepresentation(QualType Ty) { 1282 if (Ty->isBooleanType()) 1283 return true; 1284 1285 if (const EnumType *ET = Ty->getAs<EnumType>()) 1286 return ET->getDecl()->getIntegerType()->isBooleanType(); 1287 1288 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1289 return hasBooleanRepresentation(AT->getValueType()); 1290 1291 return false; 1292 } 1293 1294 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1295 llvm::APInt &Min, llvm::APInt &End, 1296 bool StrictEnums, bool IsBool) { 1297 const EnumType *ET = Ty->getAs<EnumType>(); 1298 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1299 ET && !ET->getDecl()->isFixed(); 1300 if (!IsBool && !IsRegularCPlusPlusEnum) 1301 return false; 1302 1303 if (IsBool) { 1304 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1305 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1306 } else { 1307 const EnumDecl *ED = ET->getDecl(); 1308 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1309 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1310 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1311 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1312 1313 if (NumNegativeBits) { 1314 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1315 assert(NumBits <= Bitwidth); 1316 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1317 Min = -End; 1318 } else { 1319 assert(NumPositiveBits <= Bitwidth); 1320 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1321 Min = llvm::APInt(Bitwidth, 0); 1322 } 1323 } 1324 return true; 1325 } 1326 1327 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1328 llvm::APInt Min, End; 1329 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1330 hasBooleanRepresentation(Ty))) 1331 return nullptr; 1332 1333 llvm::MDBuilder MDHelper(getLLVMContext()); 1334 return MDHelper.createRange(Min, End); 1335 } 1336 1337 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1338 SourceLocation Loc) { 1339 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1340 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1341 if (!HasBoolCheck && !HasEnumCheck) 1342 return false; 1343 1344 bool IsBool = hasBooleanRepresentation(Ty) || 1345 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1346 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1347 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1348 if (!NeedsBoolCheck && !NeedsEnumCheck) 1349 return false; 1350 1351 // Single-bit booleans don't need to be checked. Special-case this to avoid 1352 // a bit width mismatch when handling bitfield values. This is handled by 1353 // EmitFromMemory for the non-bitfield case. 1354 if (IsBool && 1355 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1356 return false; 1357 1358 llvm::APInt Min, End; 1359 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1360 return true; 1361 1362 SanitizerScope SanScope(this); 1363 llvm::Value *Check; 1364 --End; 1365 if (!Min) { 1366 Check = Builder.CreateICmpULE( 1367 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1368 } else { 1369 llvm::Value *Upper = Builder.CreateICmpSLE( 1370 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1371 llvm::Value *Lower = Builder.CreateICmpSGE( 1372 Value, llvm::ConstantInt::get(getLLVMContext(), Min)); 1373 Check = Builder.CreateAnd(Upper, Lower); 1374 } 1375 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1376 EmitCheckTypeDescriptor(Ty)}; 1377 SanitizerMask Kind = 1378 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1379 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1380 StaticArgs, EmitCheckValue(Value)); 1381 return true; 1382 } 1383 1384 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1385 QualType Ty, 1386 SourceLocation Loc, 1387 AlignmentSource AlignSource, 1388 llvm::MDNode *TBAAInfo, 1389 QualType TBAABaseType, 1390 uint64_t TBAAOffset, 1391 bool isNontemporal) { 1392 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1393 // For better performance, handle vector loads differently. 1394 if (Ty->isVectorType()) { 1395 const llvm::Type *EltTy = Addr.getElementType(); 1396 1397 const auto *VTy = cast<llvm::VectorType>(EltTy); 1398 1399 // Handle vectors of size 3 like size 4 for better performance. 1400 if (VTy->getNumElements() == 3) { 1401 1402 // Bitcast to vec4 type. 1403 llvm::VectorType *vec4Ty = 1404 llvm::VectorType::get(VTy->getElementType(), 4); 1405 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1406 // Now load value. 1407 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1408 1409 // Shuffle vector to get vec3. 1410 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1411 {0, 1, 2}, "extractVec"); 1412 return EmitFromMemory(V, Ty); 1413 } 1414 } 1415 } 1416 1417 // Atomic operations have to be done on integral types. 1418 LValue AtomicLValue = 1419 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1420 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1421 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1422 } 1423 1424 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1425 if (isNontemporal) { 1426 llvm::MDNode *Node = llvm::MDNode::get( 1427 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1428 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1429 } 1430 if (TBAAInfo) { 1431 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1432 TBAAOffset); 1433 if (TBAAPath) 1434 CGM.DecorateInstructionWithTBAA(Load, TBAAPath, 1435 false /*ConvertTypeToTag*/); 1436 } 1437 1438 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1439 // In order to prevent the optimizer from throwing away the check, don't 1440 // attach range metadata to the load. 1441 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1442 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1443 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1444 1445 return EmitFromMemory(Load, Ty); 1446 } 1447 1448 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1449 // Bool has a different representation in memory than in registers. 1450 if (hasBooleanRepresentation(Ty)) { 1451 // This should really always be an i1, but sometimes it's already 1452 // an i8, and it's awkward to track those cases down. 1453 if (Value->getType()->isIntegerTy(1)) 1454 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1455 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1456 "wrong value rep of bool"); 1457 } 1458 1459 return Value; 1460 } 1461 1462 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1463 // Bool has a different representation in memory than in registers. 1464 if (hasBooleanRepresentation(Ty)) { 1465 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1466 "wrong value rep of bool"); 1467 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1468 } 1469 1470 return Value; 1471 } 1472 1473 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1474 bool Volatile, QualType Ty, 1475 AlignmentSource AlignSource, 1476 llvm::MDNode *TBAAInfo, 1477 bool isInit, QualType TBAABaseType, 1478 uint64_t TBAAOffset, 1479 bool isNontemporal) { 1480 1481 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1482 // Handle vectors differently to get better performance. 1483 if (Ty->isVectorType()) { 1484 llvm::Type *SrcTy = Value->getType(); 1485 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1486 // Handle vec3 special. 1487 if (VecTy->getNumElements() == 3) { 1488 // Our source is a vec3, do a shuffle vector to make it a vec4. 1489 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1490 Builder.getInt32(2), 1491 llvm::UndefValue::get(Builder.getInt32Ty())}; 1492 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1493 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1494 MaskV, "extractVec"); 1495 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1496 } 1497 if (Addr.getElementType() != SrcTy) { 1498 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1499 } 1500 } 1501 } 1502 1503 Value = EmitToMemory(Value, Ty); 1504 1505 LValue AtomicLValue = 1506 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1507 if (Ty->isAtomicType() || 1508 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1509 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1510 return; 1511 } 1512 1513 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1514 if (isNontemporal) { 1515 llvm::MDNode *Node = 1516 llvm::MDNode::get(Store->getContext(), 1517 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1518 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1519 } 1520 if (TBAAInfo) { 1521 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1522 TBAAOffset); 1523 if (TBAAPath) 1524 CGM.DecorateInstructionWithTBAA(Store, TBAAPath, 1525 false /*ConvertTypeToTag*/); 1526 } 1527 } 1528 1529 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1530 bool isInit) { 1531 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1532 lvalue.getType(), lvalue.getAlignmentSource(), 1533 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1534 lvalue.getTBAAOffset(), lvalue.isNontemporal()); 1535 } 1536 1537 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1538 /// method emits the address of the lvalue, then loads the result as an rvalue, 1539 /// returning the rvalue. 1540 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1541 if (LV.isObjCWeak()) { 1542 // load of a __weak object. 1543 Address AddrWeakObj = LV.getAddress(); 1544 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1545 AddrWeakObj)); 1546 } 1547 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1548 // In MRC mode, we do a load+autorelease. 1549 if (!getLangOpts().ObjCAutoRefCount) { 1550 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1551 } 1552 1553 // In ARC mode, we load retained and then consume the value. 1554 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1555 Object = EmitObjCConsumeObject(LV.getType(), Object); 1556 return RValue::get(Object); 1557 } 1558 1559 if (LV.isSimple()) { 1560 assert(!LV.getType()->isFunctionType()); 1561 1562 // Everything needs a load. 1563 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1564 } 1565 1566 if (LV.isVectorElt()) { 1567 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1568 LV.isVolatileQualified()); 1569 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1570 "vecext")); 1571 } 1572 1573 // If this is a reference to a subset of the elements of a vector, either 1574 // shuffle the input or extract/insert them as appropriate. 1575 if (LV.isExtVectorElt()) 1576 return EmitLoadOfExtVectorElementLValue(LV); 1577 1578 // Global Register variables always invoke intrinsics 1579 if (LV.isGlobalReg()) 1580 return EmitLoadOfGlobalRegLValue(LV); 1581 1582 assert(LV.isBitField() && "Unknown LValue type!"); 1583 return EmitLoadOfBitfieldLValue(LV, Loc); 1584 } 1585 1586 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1587 SourceLocation Loc) { 1588 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1589 1590 // Get the output type. 1591 llvm::Type *ResLTy = ConvertType(LV.getType()); 1592 1593 Address Ptr = LV.getBitFieldAddress(); 1594 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1595 1596 if (Info.IsSigned) { 1597 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1598 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1599 if (HighBits) 1600 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1601 if (Info.Offset + HighBits) 1602 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1603 } else { 1604 if (Info.Offset) 1605 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1606 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1607 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1608 Info.Size), 1609 "bf.clear"); 1610 } 1611 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1612 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1613 return RValue::get(Val); 1614 } 1615 1616 // If this is a reference to a subset of the elements of a vector, create an 1617 // appropriate shufflevector. 1618 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1619 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1620 LV.isVolatileQualified()); 1621 1622 const llvm::Constant *Elts = LV.getExtVectorElts(); 1623 1624 // If the result of the expression is a non-vector type, we must be extracting 1625 // a single element. Just codegen as an extractelement. 1626 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1627 if (!ExprVT) { 1628 unsigned InIdx = getAccessedFieldNo(0, Elts); 1629 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1630 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1631 } 1632 1633 // Always use shuffle vector to try to retain the original program structure 1634 unsigned NumResultElts = ExprVT->getNumElements(); 1635 1636 SmallVector<llvm::Constant*, 4> Mask; 1637 for (unsigned i = 0; i != NumResultElts; ++i) 1638 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1639 1640 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1641 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1642 MaskV); 1643 return RValue::get(Vec); 1644 } 1645 1646 /// @brief Generates lvalue for partial ext_vector access. 1647 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1648 Address VectorAddress = LV.getExtVectorAddress(); 1649 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1650 QualType EQT = ExprVT->getElementType(); 1651 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1652 1653 Address CastToPointerElement = 1654 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1655 "conv.ptr.element"); 1656 1657 const llvm::Constant *Elts = LV.getExtVectorElts(); 1658 unsigned ix = getAccessedFieldNo(0, Elts); 1659 1660 Address VectorBasePtrPlusIx = 1661 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1662 getContext().getTypeSizeInChars(EQT), 1663 "vector.elt"); 1664 1665 return VectorBasePtrPlusIx; 1666 } 1667 1668 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1669 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1670 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1671 "Bad type for register variable"); 1672 llvm::MDNode *RegName = cast<llvm::MDNode>( 1673 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1674 1675 // We accept integer and pointer types only 1676 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1677 llvm::Type *Ty = OrigTy; 1678 if (OrigTy->isPointerTy()) 1679 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1680 llvm::Type *Types[] = { Ty }; 1681 1682 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1683 llvm::Value *Call = Builder.CreateCall( 1684 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1685 if (OrigTy->isPointerTy()) 1686 Call = Builder.CreateIntToPtr(Call, OrigTy); 1687 return RValue::get(Call); 1688 } 1689 1690 1691 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1692 /// lvalue, where both are guaranteed to the have the same type, and that type 1693 /// is 'Ty'. 1694 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1695 bool isInit) { 1696 if (!Dst.isSimple()) { 1697 if (Dst.isVectorElt()) { 1698 // Read/modify/write the vector, inserting the new element. 1699 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1700 Dst.isVolatileQualified()); 1701 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1702 Dst.getVectorIdx(), "vecins"); 1703 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1704 Dst.isVolatileQualified()); 1705 return; 1706 } 1707 1708 // If this is an update of extended vector elements, insert them as 1709 // appropriate. 1710 if (Dst.isExtVectorElt()) 1711 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1712 1713 if (Dst.isGlobalReg()) 1714 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1715 1716 assert(Dst.isBitField() && "Unknown LValue type"); 1717 return EmitStoreThroughBitfieldLValue(Src, Dst); 1718 } 1719 1720 // There's special magic for assigning into an ARC-qualified l-value. 1721 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1722 switch (Lifetime) { 1723 case Qualifiers::OCL_None: 1724 llvm_unreachable("present but none"); 1725 1726 case Qualifiers::OCL_ExplicitNone: 1727 // nothing special 1728 break; 1729 1730 case Qualifiers::OCL_Strong: 1731 if (isInit) { 1732 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1733 break; 1734 } 1735 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1736 return; 1737 1738 case Qualifiers::OCL_Weak: 1739 if (isInit) 1740 // Initialize and then skip the primitive store. 1741 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1742 else 1743 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1744 return; 1745 1746 case Qualifiers::OCL_Autoreleasing: 1747 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1748 Src.getScalarVal())); 1749 // fall into the normal path 1750 break; 1751 } 1752 } 1753 1754 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1755 // load of a __weak object. 1756 Address LvalueDst = Dst.getAddress(); 1757 llvm::Value *src = Src.getScalarVal(); 1758 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1759 return; 1760 } 1761 1762 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1763 // load of a __strong object. 1764 Address LvalueDst = Dst.getAddress(); 1765 llvm::Value *src = Src.getScalarVal(); 1766 if (Dst.isObjCIvar()) { 1767 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1768 llvm::Type *ResultType = IntPtrTy; 1769 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1770 llvm::Value *RHS = dst.getPointer(); 1771 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1772 llvm::Value *LHS = 1773 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1774 "sub.ptr.lhs.cast"); 1775 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1776 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1777 BytesBetween); 1778 } else if (Dst.isGlobalObjCRef()) { 1779 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1780 Dst.isThreadLocalRef()); 1781 } 1782 else 1783 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1784 return; 1785 } 1786 1787 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1788 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1789 } 1790 1791 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1792 llvm::Value **Result) { 1793 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1794 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1795 Address Ptr = Dst.getBitFieldAddress(); 1796 1797 // Get the source value, truncated to the width of the bit-field. 1798 llvm::Value *SrcVal = Src.getScalarVal(); 1799 1800 // Cast the source to the storage type and shift it into place. 1801 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1802 /*IsSigned=*/false); 1803 llvm::Value *MaskedVal = SrcVal; 1804 1805 // See if there are other bits in the bitfield's storage we'll need to load 1806 // and mask together with source before storing. 1807 if (Info.StorageSize != Info.Size) { 1808 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1809 llvm::Value *Val = 1810 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1811 1812 // Mask the source value as needed. 1813 if (!hasBooleanRepresentation(Dst.getType())) 1814 SrcVal = Builder.CreateAnd(SrcVal, 1815 llvm::APInt::getLowBitsSet(Info.StorageSize, 1816 Info.Size), 1817 "bf.value"); 1818 MaskedVal = SrcVal; 1819 if (Info.Offset) 1820 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1821 1822 // Mask out the original value. 1823 Val = Builder.CreateAnd(Val, 1824 ~llvm::APInt::getBitsSet(Info.StorageSize, 1825 Info.Offset, 1826 Info.Offset + Info.Size), 1827 "bf.clear"); 1828 1829 // Or together the unchanged values and the source value. 1830 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1831 } else { 1832 assert(Info.Offset == 0); 1833 } 1834 1835 // Write the new value back out. 1836 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1837 1838 // Return the new value of the bit-field, if requested. 1839 if (Result) { 1840 llvm::Value *ResultVal = MaskedVal; 1841 1842 // Sign extend the value if needed. 1843 if (Info.IsSigned) { 1844 assert(Info.Size <= Info.StorageSize); 1845 unsigned HighBits = Info.StorageSize - Info.Size; 1846 if (HighBits) { 1847 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1848 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1849 } 1850 } 1851 1852 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1853 "bf.result.cast"); 1854 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1855 } 1856 } 1857 1858 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1859 LValue Dst) { 1860 // This access turns into a read/modify/write of the vector. Load the input 1861 // value now. 1862 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1863 Dst.isVolatileQualified()); 1864 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1865 1866 llvm::Value *SrcVal = Src.getScalarVal(); 1867 1868 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1869 unsigned NumSrcElts = VTy->getNumElements(); 1870 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1871 if (NumDstElts == NumSrcElts) { 1872 // Use shuffle vector is the src and destination are the same number of 1873 // elements and restore the vector mask since it is on the side it will be 1874 // stored. 1875 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1876 for (unsigned i = 0; i != NumSrcElts; ++i) 1877 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1878 1879 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1880 Vec = Builder.CreateShuffleVector(SrcVal, 1881 llvm::UndefValue::get(Vec->getType()), 1882 MaskV); 1883 } else if (NumDstElts > NumSrcElts) { 1884 // Extended the source vector to the same length and then shuffle it 1885 // into the destination. 1886 // FIXME: since we're shuffling with undef, can we just use the indices 1887 // into that? This could be simpler. 1888 SmallVector<llvm::Constant*, 4> ExtMask; 1889 for (unsigned i = 0; i != NumSrcElts; ++i) 1890 ExtMask.push_back(Builder.getInt32(i)); 1891 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1892 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1893 llvm::Value *ExtSrcVal = 1894 Builder.CreateShuffleVector(SrcVal, 1895 llvm::UndefValue::get(SrcVal->getType()), 1896 ExtMaskV); 1897 // build identity 1898 SmallVector<llvm::Constant*, 4> Mask; 1899 for (unsigned i = 0; i != NumDstElts; ++i) 1900 Mask.push_back(Builder.getInt32(i)); 1901 1902 // When the vector size is odd and .odd or .hi is used, the last element 1903 // of the Elts constant array will be one past the size of the vector. 1904 // Ignore the last element here, if it is greater than the mask size. 1905 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1906 NumSrcElts--; 1907 1908 // modify when what gets shuffled in 1909 for (unsigned i = 0; i != NumSrcElts; ++i) 1910 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1911 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1912 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1913 } else { 1914 // We should never shorten the vector 1915 llvm_unreachable("unexpected shorten vector length"); 1916 } 1917 } else { 1918 // If the Src is a scalar (not a vector) it must be updating one element. 1919 unsigned InIdx = getAccessedFieldNo(0, Elts); 1920 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1921 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1922 } 1923 1924 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 1925 Dst.isVolatileQualified()); 1926 } 1927 1928 /// @brief Store of global named registers are always calls to intrinsics. 1929 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1930 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1931 "Bad type for register variable"); 1932 llvm::MDNode *RegName = cast<llvm::MDNode>( 1933 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1934 assert(RegName && "Register LValue is not metadata"); 1935 1936 // We accept integer and pointer types only 1937 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1938 llvm::Type *Ty = OrigTy; 1939 if (OrigTy->isPointerTy()) 1940 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1941 llvm::Type *Types[] = { Ty }; 1942 1943 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1944 llvm::Value *Value = Src.getScalarVal(); 1945 if (OrigTy->isPointerTy()) 1946 Value = Builder.CreatePtrToInt(Value, Ty); 1947 Builder.CreateCall( 1948 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 1949 } 1950 1951 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1952 // generating write-barries API. It is currently a global, ivar, 1953 // or neither. 1954 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1955 LValue &LV, 1956 bool IsMemberAccess=false) { 1957 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1958 return; 1959 1960 if (isa<ObjCIvarRefExpr>(E)) { 1961 QualType ExpTy = E->getType(); 1962 if (IsMemberAccess && ExpTy->isPointerType()) { 1963 // If ivar is a structure pointer, assigning to field of 1964 // this struct follows gcc's behavior and makes it a non-ivar 1965 // writer-barrier conservatively. 1966 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1967 if (ExpTy->isRecordType()) { 1968 LV.setObjCIvar(false); 1969 return; 1970 } 1971 } 1972 LV.setObjCIvar(true); 1973 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1974 LV.setBaseIvarExp(Exp->getBase()); 1975 LV.setObjCArray(E->getType()->isArrayType()); 1976 return; 1977 } 1978 1979 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1980 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1981 if (VD->hasGlobalStorage()) { 1982 LV.setGlobalObjCRef(true); 1983 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1984 } 1985 } 1986 LV.setObjCArray(E->getType()->isArrayType()); 1987 return; 1988 } 1989 1990 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1991 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1992 return; 1993 } 1994 1995 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1996 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1997 if (LV.isObjCIvar()) { 1998 // If cast is to a structure pointer, follow gcc's behavior and make it 1999 // a non-ivar write-barrier. 2000 QualType ExpTy = E->getType(); 2001 if (ExpTy->isPointerType()) 2002 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2003 if (ExpTy->isRecordType()) 2004 LV.setObjCIvar(false); 2005 } 2006 return; 2007 } 2008 2009 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2010 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2011 return; 2012 } 2013 2014 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2015 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2016 return; 2017 } 2018 2019 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2020 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2021 return; 2022 } 2023 2024 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2025 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2026 return; 2027 } 2028 2029 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2030 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2031 if (LV.isObjCIvar() && !LV.isObjCArray()) 2032 // Using array syntax to assigning to what an ivar points to is not 2033 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2034 LV.setObjCIvar(false); 2035 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2036 // Using array syntax to assigning to what global points to is not 2037 // same as assigning to the global itself. {id *G;} G[i] = 0; 2038 LV.setGlobalObjCRef(false); 2039 return; 2040 } 2041 2042 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2043 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2044 // We don't know if member is an 'ivar', but this flag is looked at 2045 // only in the context of LV.isObjCIvar(). 2046 LV.setObjCArray(E->getType()->isArrayType()); 2047 return; 2048 } 2049 } 2050 2051 static llvm::Value * 2052 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2053 llvm::Value *V, llvm::Type *IRType, 2054 StringRef Name = StringRef()) { 2055 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2056 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2057 } 2058 2059 static LValue EmitThreadPrivateVarDeclLValue( 2060 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2061 llvm::Type *RealVarTy, SourceLocation Loc) { 2062 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2063 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2064 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2065 } 2066 2067 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 2068 const ReferenceType *RefTy, 2069 AlignmentSource *Source) { 2070 llvm::Value *Ptr = Builder.CreateLoad(Addr); 2071 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 2072 Source, /*forPointee*/ true)); 2073 2074 } 2075 2076 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 2077 const ReferenceType *RefTy) { 2078 AlignmentSource Source; 2079 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source); 2080 return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source); 2081 } 2082 2083 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2084 const PointerType *PtrTy, 2085 AlignmentSource *Source) { 2086 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2087 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), Source, 2088 /*forPointeeType=*/true)); 2089 } 2090 2091 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2092 const PointerType *PtrTy) { 2093 AlignmentSource Source; 2094 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &Source); 2095 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), Source); 2096 } 2097 2098 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2099 const Expr *E, const VarDecl *VD) { 2100 QualType T = E->getType(); 2101 2102 // If it's thread_local, emit a call to its wrapper function instead. 2103 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2104 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2105 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2106 2107 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2108 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2109 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2110 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2111 Address Addr(V, Alignment); 2112 LValue LV; 2113 // Emit reference to the private copy of the variable if it is an OpenMP 2114 // threadprivate variable. 2115 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2116 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2117 E->getExprLoc()); 2118 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2119 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2120 } else { 2121 LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2122 } 2123 setObjCGCLValueClass(CGF.getContext(), E, LV); 2124 return LV; 2125 } 2126 2127 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2128 const FunctionDecl *FD) { 2129 if (FD->hasAttr<WeakRefAttr>()) { 2130 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2131 return aliasee.getPointer(); 2132 } 2133 2134 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2135 if (!FD->hasPrototype()) { 2136 if (const FunctionProtoType *Proto = 2137 FD->getType()->getAs<FunctionProtoType>()) { 2138 // Ugly case: for a K&R-style definition, the type of the definition 2139 // isn't the same as the type of a use. Correct for this with a 2140 // bitcast. 2141 QualType NoProtoType = 2142 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2143 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2144 V = llvm::ConstantExpr::getBitCast(V, 2145 CGM.getTypes().ConvertType(NoProtoType)); 2146 } 2147 } 2148 return V; 2149 } 2150 2151 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2152 const Expr *E, const FunctionDecl *FD) { 2153 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2154 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2155 return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl); 2156 } 2157 2158 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2159 llvm::Value *ThisValue) { 2160 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2161 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2162 return CGF.EmitLValueForField(LV, FD); 2163 } 2164 2165 /// Named Registers are named metadata pointing to the register name 2166 /// which will be read from/written to as an argument to the intrinsic 2167 /// @llvm.read/write_register. 2168 /// So far, only the name is being passed down, but other options such as 2169 /// register type, allocation type or even optimization options could be 2170 /// passed down via the metadata node. 2171 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2172 SmallString<64> Name("llvm.named.register."); 2173 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2174 assert(Asm->getLabel().size() < 64-Name.size() && 2175 "Register name too big"); 2176 Name.append(Asm->getLabel()); 2177 llvm::NamedMDNode *M = 2178 CGM.getModule().getOrInsertNamedMetadata(Name); 2179 if (M->getNumOperands() == 0) { 2180 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2181 Asm->getLabel()); 2182 llvm::Metadata *Ops[] = {Str}; 2183 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2184 } 2185 2186 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2187 2188 llvm::Value *Ptr = 2189 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2190 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2191 } 2192 2193 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2194 const NamedDecl *ND = E->getDecl(); 2195 QualType T = E->getType(); 2196 2197 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2198 // Global Named registers access via intrinsics only 2199 if (VD->getStorageClass() == SC_Register && 2200 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2201 return EmitGlobalNamedRegister(VD, CGM); 2202 2203 // A DeclRefExpr for a reference initialized by a constant expression can 2204 // appear without being odr-used. Directly emit the constant initializer. 2205 const Expr *Init = VD->getAnyInitializer(VD); 2206 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2207 VD->isUsableInConstantExpressions(getContext()) && 2208 VD->checkInitIsICE() && 2209 // Do not emit if it is private OpenMP variable. 2210 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo && 2211 LocalDeclMap.count(VD))) { 2212 llvm::Constant *Val = 2213 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 2214 assert(Val && "failed to emit reference constant expression"); 2215 // FIXME: Eventually we will want to emit vector element references. 2216 2217 // Should we be using the alignment of the constant pointer we emitted? 2218 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2219 /*pointee*/ true); 2220 2221 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2222 } 2223 2224 // Check for captured variables. 2225 if (E->refersToEnclosingVariableOrCapture()) { 2226 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2227 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2228 else if (CapturedStmtInfo) { 2229 auto I = LocalDeclMap.find(VD); 2230 if (I != LocalDeclMap.end()) { 2231 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2232 return EmitLoadOfReferenceLValue(I->second, RefTy); 2233 return MakeAddrLValue(I->second, T); 2234 } 2235 LValue CapLVal = 2236 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2237 CapturedStmtInfo->getContextValue()); 2238 return MakeAddrLValue( 2239 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2240 CapLVal.getType(), AlignmentSource::Decl); 2241 } 2242 2243 assert(isa<BlockDecl>(CurCodeDecl)); 2244 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2245 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2246 } 2247 } 2248 2249 // FIXME: We should be able to assert this for FunctionDecls as well! 2250 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2251 // those with a valid source location. 2252 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2253 !E->getLocation().isValid()) && 2254 "Should not use decl without marking it used!"); 2255 2256 if (ND->hasAttr<WeakRefAttr>()) { 2257 const auto *VD = cast<ValueDecl>(ND); 2258 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2259 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2260 } 2261 2262 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2263 // Check if this is a global variable. 2264 if (VD->hasLinkage() || VD->isStaticDataMember()) 2265 return EmitGlobalVarDeclLValue(*this, E, VD); 2266 2267 Address addr = Address::invalid(); 2268 2269 // The variable should generally be present in the local decl map. 2270 auto iter = LocalDeclMap.find(VD); 2271 if (iter != LocalDeclMap.end()) { 2272 addr = iter->second; 2273 2274 // Otherwise, it might be static local we haven't emitted yet for 2275 // some reason; most likely, because it's in an outer function. 2276 } else if (VD->isStaticLocal()) { 2277 addr = Address(CGM.getOrCreateStaticVarDecl( 2278 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2279 getContext().getDeclAlign(VD)); 2280 2281 // No other cases for now. 2282 } else { 2283 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2284 } 2285 2286 2287 // Check for OpenMP threadprivate variables. 2288 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2289 return EmitThreadPrivateVarDeclLValue( 2290 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2291 E->getExprLoc()); 2292 } 2293 2294 // Drill into block byref variables. 2295 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2296 if (isBlockByref) { 2297 addr = emitBlockByrefAddress(addr, VD); 2298 } 2299 2300 // Drill into reference types. 2301 LValue LV; 2302 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2303 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2304 } else { 2305 LV = MakeAddrLValue(addr, T, AlignmentSource::Decl); 2306 } 2307 2308 bool isLocalStorage = VD->hasLocalStorage(); 2309 2310 bool NonGCable = isLocalStorage && 2311 !VD->getType()->isReferenceType() && 2312 !isBlockByref; 2313 if (NonGCable) { 2314 LV.getQuals().removeObjCGCAttr(); 2315 LV.setNonGC(true); 2316 } 2317 2318 bool isImpreciseLifetime = 2319 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2320 if (isImpreciseLifetime) 2321 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2322 setObjCGCLValueClass(getContext(), E, LV); 2323 return LV; 2324 } 2325 2326 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2327 return EmitFunctionDeclLValue(*this, E, FD); 2328 2329 // FIXME: While we're emitting a binding from an enclosing scope, all other 2330 // DeclRefExprs we see should be implicitly treated as if they also refer to 2331 // an enclosing scope. 2332 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2333 return EmitLValue(BD->getBinding()); 2334 2335 llvm_unreachable("Unhandled DeclRefExpr"); 2336 } 2337 2338 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2339 // __extension__ doesn't affect lvalue-ness. 2340 if (E->getOpcode() == UO_Extension) 2341 return EmitLValue(E->getSubExpr()); 2342 2343 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2344 switch (E->getOpcode()) { 2345 default: llvm_unreachable("Unknown unary operator lvalue!"); 2346 case UO_Deref: { 2347 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2348 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2349 2350 AlignmentSource AlignSource; 2351 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource); 2352 LValue LV = MakeAddrLValue(Addr, T, AlignSource); 2353 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2354 2355 // We should not generate __weak write barrier on indirect reference 2356 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2357 // But, we continue to generate __strong write barrier on indirect write 2358 // into a pointer to object. 2359 if (getLangOpts().ObjC1 && 2360 getLangOpts().getGC() != LangOptions::NonGC && 2361 LV.isObjCWeak()) 2362 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2363 return LV; 2364 } 2365 case UO_Real: 2366 case UO_Imag: { 2367 LValue LV = EmitLValue(E->getSubExpr()); 2368 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2369 2370 // __real is valid on scalars. This is a faster way of testing that. 2371 // __imag can only produce an rvalue on scalars. 2372 if (E->getOpcode() == UO_Real && 2373 !LV.getAddress().getElementType()->isStructTy()) { 2374 assert(E->getSubExpr()->getType()->isArithmeticType()); 2375 return LV; 2376 } 2377 2378 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2379 2380 Address Component = 2381 (E->getOpcode() == UO_Real 2382 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2383 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2384 LValue ElemLV = MakeAddrLValue(Component, T, LV.getAlignmentSource()); 2385 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2386 return ElemLV; 2387 } 2388 case UO_PreInc: 2389 case UO_PreDec: { 2390 LValue LV = EmitLValue(E->getSubExpr()); 2391 bool isInc = E->getOpcode() == UO_PreInc; 2392 2393 if (E->getType()->isAnyComplexType()) 2394 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2395 else 2396 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2397 return LV; 2398 } 2399 } 2400 } 2401 2402 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2403 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2404 E->getType(), AlignmentSource::Decl); 2405 } 2406 2407 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2408 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2409 E->getType(), AlignmentSource::Decl); 2410 } 2411 2412 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2413 auto SL = E->getFunctionName(); 2414 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2415 StringRef FnName = CurFn->getName(); 2416 if (FnName.startswith("\01")) 2417 FnName = FnName.substr(1); 2418 StringRef NameItems[] = { 2419 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2420 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2421 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2422 std::string Name = SL->getString(); 2423 if (!Name.empty()) { 2424 unsigned Discriminator = 2425 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2426 if (Discriminator) 2427 Name += "_" + Twine(Discriminator + 1).str(); 2428 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2429 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2430 } else { 2431 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2432 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2433 } 2434 } 2435 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2436 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2437 } 2438 2439 /// Emit a type description suitable for use by a runtime sanitizer library. The 2440 /// format of a type descriptor is 2441 /// 2442 /// \code 2443 /// { i16 TypeKind, i16 TypeInfo } 2444 /// \endcode 2445 /// 2446 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2447 /// integer, 1 for a floating point value, and -1 for anything else. 2448 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2449 // Only emit each type's descriptor once. 2450 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2451 return C; 2452 2453 uint16_t TypeKind = -1; 2454 uint16_t TypeInfo = 0; 2455 2456 if (T->isIntegerType()) { 2457 TypeKind = 0; 2458 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2459 (T->isSignedIntegerType() ? 1 : 0); 2460 } else if (T->isFloatingType()) { 2461 TypeKind = 1; 2462 TypeInfo = getContext().getTypeSize(T); 2463 } 2464 2465 // Format the type name as if for a diagnostic, including quotes and 2466 // optionally an 'aka'. 2467 SmallString<32> Buffer; 2468 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2469 (intptr_t)T.getAsOpaquePtr(), 2470 StringRef(), StringRef(), None, Buffer, 2471 None); 2472 2473 llvm::Constant *Components[] = { 2474 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2475 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2476 }; 2477 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2478 2479 auto *GV = new llvm::GlobalVariable( 2480 CGM.getModule(), Descriptor->getType(), 2481 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2482 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2483 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2484 2485 // Remember the descriptor for this type. 2486 CGM.setTypeDescriptorInMap(T, GV); 2487 2488 return GV; 2489 } 2490 2491 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2492 llvm::Type *TargetTy = IntPtrTy; 2493 2494 // Floating-point types which fit into intptr_t are bitcast to integers 2495 // and then passed directly (after zero-extension, if necessary). 2496 if (V->getType()->isFloatingPointTy()) { 2497 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2498 if (Bits <= TargetTy->getIntegerBitWidth()) 2499 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2500 Bits)); 2501 } 2502 2503 // Integers which fit in intptr_t are zero-extended and passed directly. 2504 if (V->getType()->isIntegerTy() && 2505 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2506 return Builder.CreateZExt(V, TargetTy); 2507 2508 // Pointers are passed directly, everything else is passed by address. 2509 if (!V->getType()->isPointerTy()) { 2510 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2511 Builder.CreateStore(V, Ptr); 2512 V = Ptr.getPointer(); 2513 } 2514 return Builder.CreatePtrToInt(V, TargetTy); 2515 } 2516 2517 /// \brief Emit a representation of a SourceLocation for passing to a handler 2518 /// in a sanitizer runtime library. The format for this data is: 2519 /// \code 2520 /// struct SourceLocation { 2521 /// const char *Filename; 2522 /// int32_t Line, Column; 2523 /// }; 2524 /// \endcode 2525 /// For an invalid SourceLocation, the Filename pointer is null. 2526 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2527 llvm::Constant *Filename; 2528 int Line, Column; 2529 2530 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2531 if (PLoc.isValid()) { 2532 StringRef FilenameString = PLoc.getFilename(); 2533 2534 int PathComponentsToStrip = 2535 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2536 if (PathComponentsToStrip < 0) { 2537 assert(PathComponentsToStrip != INT_MIN); 2538 int PathComponentsToKeep = -PathComponentsToStrip; 2539 auto I = llvm::sys::path::rbegin(FilenameString); 2540 auto E = llvm::sys::path::rend(FilenameString); 2541 while (I != E && --PathComponentsToKeep) 2542 ++I; 2543 2544 FilenameString = FilenameString.substr(I - E); 2545 } else if (PathComponentsToStrip > 0) { 2546 auto I = llvm::sys::path::begin(FilenameString); 2547 auto E = llvm::sys::path::end(FilenameString); 2548 while (I != E && PathComponentsToStrip--) 2549 ++I; 2550 2551 if (I != E) 2552 FilenameString = 2553 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2554 else 2555 FilenameString = llvm::sys::path::filename(FilenameString); 2556 } 2557 2558 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2559 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2560 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2561 Filename = FilenameGV.getPointer(); 2562 Line = PLoc.getLine(); 2563 Column = PLoc.getColumn(); 2564 } else { 2565 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2566 Line = Column = 0; 2567 } 2568 2569 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2570 Builder.getInt32(Column)}; 2571 2572 return llvm::ConstantStruct::getAnon(Data); 2573 } 2574 2575 namespace { 2576 /// \brief Specify under what conditions this check can be recovered 2577 enum class CheckRecoverableKind { 2578 /// Always terminate program execution if this check fails. 2579 Unrecoverable, 2580 /// Check supports recovering, runtime has both fatal (noreturn) and 2581 /// non-fatal handlers for this check. 2582 Recoverable, 2583 /// Runtime conditionally aborts, always need to support recovery. 2584 AlwaysRecoverable 2585 }; 2586 } 2587 2588 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2589 assert(llvm::countPopulation(Kind) == 1); 2590 switch (Kind) { 2591 case SanitizerKind::Vptr: 2592 return CheckRecoverableKind::AlwaysRecoverable; 2593 case SanitizerKind::Return: 2594 case SanitizerKind::Unreachable: 2595 return CheckRecoverableKind::Unrecoverable; 2596 default: 2597 return CheckRecoverableKind::Recoverable; 2598 } 2599 } 2600 2601 namespace { 2602 struct SanitizerHandlerInfo { 2603 char const *const Name; 2604 unsigned Version; 2605 }; 2606 } 2607 2608 const SanitizerHandlerInfo SanitizerHandlers[] = { 2609 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2610 LIST_SANITIZER_CHECKS 2611 #undef SANITIZER_CHECK 2612 }; 2613 2614 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2615 llvm::FunctionType *FnType, 2616 ArrayRef<llvm::Value *> FnArgs, 2617 SanitizerHandler CheckHandler, 2618 CheckRecoverableKind RecoverKind, bool IsFatal, 2619 llvm::BasicBlock *ContBB) { 2620 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2621 bool NeedsAbortSuffix = 2622 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2623 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2624 const StringRef CheckName = CheckInfo.Name; 2625 std::string FnName = 2626 ("__ubsan_handle_" + CheckName + 2627 (CheckInfo.Version ? "_v" + llvm::utostr(CheckInfo.Version) : "") + 2628 (NeedsAbortSuffix ? "_abort" : "")) 2629 .str(); 2630 bool MayReturn = 2631 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2632 2633 llvm::AttrBuilder B; 2634 if (!MayReturn) { 2635 B.addAttribute(llvm::Attribute::NoReturn) 2636 .addAttribute(llvm::Attribute::NoUnwind); 2637 } 2638 B.addAttribute(llvm::Attribute::UWTable); 2639 2640 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2641 FnType, FnName, 2642 llvm::AttributeList::get(CGF.getLLVMContext(), 2643 llvm::AttributeList::FunctionIndex, B), 2644 /*Local=*/true); 2645 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2646 if (!MayReturn) { 2647 HandlerCall->setDoesNotReturn(); 2648 CGF.Builder.CreateUnreachable(); 2649 } else { 2650 CGF.Builder.CreateBr(ContBB); 2651 } 2652 } 2653 2654 void CodeGenFunction::EmitCheck( 2655 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2656 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2657 ArrayRef<llvm::Value *> DynamicArgs) { 2658 assert(IsSanitizerScope); 2659 assert(Checked.size() > 0); 2660 assert(CheckHandler >= 0 && 2661 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2662 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2663 2664 llvm::Value *FatalCond = nullptr; 2665 llvm::Value *RecoverableCond = nullptr; 2666 llvm::Value *TrapCond = nullptr; 2667 for (int i = 0, n = Checked.size(); i < n; ++i) { 2668 llvm::Value *Check = Checked[i].first; 2669 // -fsanitize-trap= overrides -fsanitize-recover=. 2670 llvm::Value *&Cond = 2671 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2672 ? TrapCond 2673 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2674 ? RecoverableCond 2675 : FatalCond; 2676 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2677 } 2678 2679 if (TrapCond) 2680 EmitTrapCheck(TrapCond); 2681 if (!FatalCond && !RecoverableCond) 2682 return; 2683 2684 llvm::Value *JointCond; 2685 if (FatalCond && RecoverableCond) 2686 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2687 else 2688 JointCond = FatalCond ? FatalCond : RecoverableCond; 2689 assert(JointCond); 2690 2691 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2692 assert(SanOpts.has(Checked[0].second)); 2693 #ifndef NDEBUG 2694 for (int i = 1, n = Checked.size(); i < n; ++i) { 2695 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2696 "All recoverable kinds in a single check must be same!"); 2697 assert(SanOpts.has(Checked[i].second)); 2698 } 2699 #endif 2700 2701 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2702 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2703 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2704 // Give hint that we very much don't expect to execute the handler 2705 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2706 llvm::MDBuilder MDHelper(getLLVMContext()); 2707 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2708 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2709 EmitBlock(Handlers); 2710 2711 // Handler functions take an i8* pointing to the (handler-specific) static 2712 // information block, followed by a sequence of intptr_t arguments 2713 // representing operand values. 2714 SmallVector<llvm::Value *, 4> Args; 2715 SmallVector<llvm::Type *, 4> ArgTypes; 2716 Args.reserve(DynamicArgs.size() + 1); 2717 ArgTypes.reserve(DynamicArgs.size() + 1); 2718 2719 // Emit handler arguments and create handler function type. 2720 if (!StaticArgs.empty()) { 2721 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2722 auto *InfoPtr = 2723 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2724 llvm::GlobalVariable::PrivateLinkage, Info); 2725 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2726 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2727 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2728 ArgTypes.push_back(Int8PtrTy); 2729 } 2730 2731 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2732 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2733 ArgTypes.push_back(IntPtrTy); 2734 } 2735 2736 llvm::FunctionType *FnType = 2737 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2738 2739 if (!FatalCond || !RecoverableCond) { 2740 // Simple case: we need to generate a single handler call, either 2741 // fatal, or non-fatal. 2742 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2743 (FatalCond != nullptr), Cont); 2744 } else { 2745 // Emit two handler calls: first one for set of unrecoverable checks, 2746 // another one for recoverable. 2747 llvm::BasicBlock *NonFatalHandlerBB = 2748 createBasicBlock("non_fatal." + CheckName); 2749 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2750 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2751 EmitBlock(FatalHandlerBB); 2752 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2753 NonFatalHandlerBB); 2754 EmitBlock(NonFatalHandlerBB); 2755 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2756 Cont); 2757 } 2758 2759 EmitBlock(Cont); 2760 } 2761 2762 void CodeGenFunction::EmitCfiSlowPathCheck( 2763 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2764 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2765 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2766 2767 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2768 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2769 2770 llvm::MDBuilder MDHelper(getLLVMContext()); 2771 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2772 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2773 2774 EmitBlock(CheckBB); 2775 2776 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2777 2778 llvm::CallInst *CheckCall; 2779 if (WithDiag) { 2780 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2781 auto *InfoPtr = 2782 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2783 llvm::GlobalVariable::PrivateLinkage, Info); 2784 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2785 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2786 2787 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2788 "__cfi_slowpath_diag", 2789 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2790 false)); 2791 CheckCall = Builder.CreateCall( 2792 SlowPathDiagFn, 2793 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2794 } else { 2795 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2796 "__cfi_slowpath", 2797 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2798 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2799 } 2800 2801 CheckCall->setDoesNotThrow(); 2802 2803 EmitBlock(Cont); 2804 } 2805 2806 // Emit a stub for __cfi_check function so that the linker knows about this 2807 // symbol in LTO mode. 2808 void CodeGenFunction::EmitCfiCheckStub() { 2809 llvm::Module *M = &CGM.getModule(); 2810 auto &Ctx = M->getContext(); 2811 llvm::Function *F = llvm::Function::Create( 2812 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 2813 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 2814 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 2815 // FIXME: consider emitting an intrinsic call like 2816 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 2817 // which can be lowered in CrossDSOCFI pass to the actual contents of 2818 // __cfi_check. This would allow inlining of __cfi_check calls. 2819 llvm::CallInst::Create( 2820 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 2821 llvm::ReturnInst::Create(Ctx, nullptr, BB); 2822 } 2823 2824 // This function is basically a switch over the CFI failure kind, which is 2825 // extracted from CFICheckFailData (1st function argument). Each case is either 2826 // llvm.trap or a call to one of the two runtime handlers, based on 2827 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2828 // failure kind) traps, but this should really never happen. CFICheckFailData 2829 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2830 // check kind; in this case __cfi_check_fail traps as well. 2831 void CodeGenFunction::EmitCfiCheckFail() { 2832 SanitizerScope SanScope(this); 2833 FunctionArgList Args; 2834 ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr, 2835 getContext().VoidPtrTy); 2836 ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr, 2837 getContext().VoidPtrTy); 2838 Args.push_back(&ArgData); 2839 Args.push_back(&ArgAddr); 2840 2841 const CGFunctionInfo &FI = 2842 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2843 2844 llvm::Function *F = llvm::Function::Create( 2845 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2846 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2847 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2848 2849 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2850 SourceLocation()); 2851 2852 llvm::Value *Data = 2853 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2854 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2855 llvm::Value *Addr = 2856 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2857 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2858 2859 // Data == nullptr means the calling module has trap behaviour for this check. 2860 llvm::Value *DataIsNotNullPtr = 2861 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2862 EmitTrapCheck(DataIsNotNullPtr); 2863 2864 llvm::StructType *SourceLocationTy = 2865 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty, nullptr); 2866 llvm::StructType *CfiCheckFailDataTy = 2867 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy, nullptr); 2868 2869 llvm::Value *V = Builder.CreateConstGEP2_32( 2870 CfiCheckFailDataTy, 2871 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2872 0); 2873 Address CheckKindAddr(V, getIntAlign()); 2874 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2875 2876 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2877 CGM.getLLVMContext(), 2878 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2879 llvm::Value *ValidVtable = Builder.CreateZExt( 2880 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2881 {Addr, AllVtables}), 2882 IntPtrTy); 2883 2884 const std::pair<int, SanitizerMask> CheckKinds[] = { 2885 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2886 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2887 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2888 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2889 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2890 2891 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2892 for (auto CheckKindMaskPair : CheckKinds) { 2893 int Kind = CheckKindMaskPair.first; 2894 SanitizerMask Mask = CheckKindMaskPair.second; 2895 llvm::Value *Cond = 2896 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2897 if (CGM.getLangOpts().Sanitize.has(Mask)) 2898 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 2899 {Data, Addr, ValidVtable}); 2900 else 2901 EmitTrapCheck(Cond); 2902 } 2903 2904 FinishFunction(); 2905 // The only reference to this function will be created during LTO link. 2906 // Make sure it survives until then. 2907 CGM.addUsedGlobal(F); 2908 } 2909 2910 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2911 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2912 2913 // If we're optimizing, collapse all calls to trap down to just one per 2914 // function to save on code size. 2915 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2916 TrapBB = createBasicBlock("trap"); 2917 Builder.CreateCondBr(Checked, Cont, TrapBB); 2918 EmitBlock(TrapBB); 2919 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2920 TrapCall->setDoesNotReturn(); 2921 TrapCall->setDoesNotThrow(); 2922 Builder.CreateUnreachable(); 2923 } else { 2924 Builder.CreateCondBr(Checked, Cont, TrapBB); 2925 } 2926 2927 EmitBlock(Cont); 2928 } 2929 2930 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 2931 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 2932 2933 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 2934 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 2935 CGM.getCodeGenOpts().TrapFuncName); 2936 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 2937 } 2938 2939 return TrapCall; 2940 } 2941 2942 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 2943 AlignmentSource *AlignSource) { 2944 assert(E->getType()->isArrayType() && 2945 "Array to pointer decay must have array source type!"); 2946 2947 // Expressions of array type can't be bitfields or vector elements. 2948 LValue LV = EmitLValue(E); 2949 Address Addr = LV.getAddress(); 2950 if (AlignSource) *AlignSource = LV.getAlignmentSource(); 2951 2952 // If the array type was an incomplete type, we need to make sure 2953 // the decay ends up being the right type. 2954 llvm::Type *NewTy = ConvertType(E->getType()); 2955 Addr = Builder.CreateElementBitCast(Addr, NewTy); 2956 2957 // Note that VLA pointers are always decayed, so we don't need to do 2958 // anything here. 2959 if (!E->getType()->isVariableArrayType()) { 2960 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 2961 "Expected pointer to array"); 2962 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 2963 } 2964 2965 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 2966 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 2967 } 2968 2969 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2970 /// array to pointer, return the array subexpression. 2971 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2972 // If this isn't just an array->pointer decay, bail out. 2973 const auto *CE = dyn_cast<CastExpr>(E); 2974 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2975 return nullptr; 2976 2977 // If this is a decay from variable width array, bail out. 2978 const Expr *SubExpr = CE->getSubExpr(); 2979 if (SubExpr->getType()->isVariableArrayType()) 2980 return nullptr; 2981 2982 return SubExpr; 2983 } 2984 2985 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 2986 llvm::Value *ptr, 2987 ArrayRef<llvm::Value*> indices, 2988 bool inbounds, 2989 const llvm::Twine &name = "arrayidx") { 2990 if (inbounds) { 2991 return CGF.Builder.CreateInBoundsGEP(ptr, indices, name); 2992 } else { 2993 return CGF.Builder.CreateGEP(ptr, indices, name); 2994 } 2995 } 2996 2997 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 2998 llvm::Value *idx, 2999 CharUnits eltSize) { 3000 // If we have a constant index, we can use the exact offset of the 3001 // element we're accessing. 3002 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3003 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3004 return arrayAlign.alignmentAtOffset(offset); 3005 3006 // Otherwise, use the worst-case alignment for any element. 3007 } else { 3008 return arrayAlign.alignmentOfArrayElement(eltSize); 3009 } 3010 } 3011 3012 static QualType getFixedSizeElementType(const ASTContext &ctx, 3013 const VariableArrayType *vla) { 3014 QualType eltType; 3015 do { 3016 eltType = vla->getElementType(); 3017 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3018 return eltType; 3019 } 3020 3021 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3022 ArrayRef<llvm::Value*> indices, 3023 QualType eltType, bool inbounds, 3024 const llvm::Twine &name = "arrayidx") { 3025 // All the indices except that last must be zero. 3026 #ifndef NDEBUG 3027 for (auto idx : indices.drop_back()) 3028 assert(isa<llvm::ConstantInt>(idx) && 3029 cast<llvm::ConstantInt>(idx)->isZero()); 3030 #endif 3031 3032 // Determine the element size of the statically-sized base. This is 3033 // the thing that the indices are expressed in terms of. 3034 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3035 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3036 } 3037 3038 // We can use that to compute the best alignment of the element. 3039 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3040 CharUnits eltAlign = 3041 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3042 3043 llvm::Value *eltPtr = 3044 emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name); 3045 return Address(eltPtr, eltAlign); 3046 } 3047 3048 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3049 bool Accessed) { 3050 // The index must always be an integer, which is not an aggregate. Emit it 3051 // in lexical order (this complexity is, sadly, required by C++17). 3052 llvm::Value *IdxPre = 3053 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3054 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3055 auto *Idx = IdxPre; 3056 if (E->getLHS() != E->getIdx()) { 3057 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3058 Idx = EmitScalarExpr(E->getIdx()); 3059 } 3060 3061 QualType IdxTy = E->getIdx()->getType(); 3062 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3063 3064 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3065 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3066 3067 // Extend or truncate the index type to 32 or 64-bits. 3068 if (Promote && Idx->getType() != IntPtrTy) 3069 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3070 3071 return Idx; 3072 }; 3073 IdxPre = nullptr; 3074 3075 // If the base is a vector type, then we are forming a vector element lvalue 3076 // with this subscript. 3077 if (E->getBase()->getType()->isVectorType() && 3078 !isa<ExtVectorElementExpr>(E->getBase())) { 3079 // Emit the vector as an lvalue to get its address. 3080 LValue LHS = EmitLValue(E->getBase()); 3081 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3082 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3083 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 3084 E->getBase()->getType(), 3085 LHS.getAlignmentSource()); 3086 } 3087 3088 // All the other cases basically behave like simple offsetting. 3089 3090 // Handle the extvector case we ignored above. 3091 if (isa<ExtVectorElementExpr>(E->getBase())) { 3092 LValue LV = EmitLValue(E->getBase()); 3093 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3094 Address Addr = EmitExtVectorElementLValue(LV); 3095 3096 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3097 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true); 3098 return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource()); 3099 } 3100 3101 AlignmentSource AlignSource; 3102 Address Addr = Address::invalid(); 3103 if (const VariableArrayType *vla = 3104 getContext().getAsVariableArrayType(E->getType())) { 3105 // The base must be a pointer, which is not an aggregate. Emit 3106 // it. It needs to be emitted first in case it's what captures 3107 // the VLA bounds. 3108 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3109 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3110 3111 // The element count here is the total number of non-VLA elements. 3112 llvm::Value *numElements = getVLASize(vla).first; 3113 3114 // Effectively, the multiply by the VLA size is part of the GEP. 3115 // GEP indexes are signed, and scaling an index isn't permitted to 3116 // signed-overflow, so we use the same semantics for our explicit 3117 // multiply. We suppress this if overflow is not undefined behavior. 3118 if (getLangOpts().isSignedOverflowDefined()) { 3119 Idx = Builder.CreateMul(Idx, numElements); 3120 } else { 3121 Idx = Builder.CreateNSWMul(Idx, numElements); 3122 } 3123 3124 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3125 !getLangOpts().isSignedOverflowDefined()); 3126 3127 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3128 // Indexing over an interface, as in "NSString *P; P[4];" 3129 3130 // Emit the base pointer. 3131 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3132 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3133 3134 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3135 llvm::Value *InterfaceSizeVal = 3136 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3137 3138 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3139 3140 // We don't necessarily build correct LLVM struct types for ObjC 3141 // interfaces, so we can't rely on GEP to do this scaling 3142 // correctly, so we need to cast to i8*. FIXME: is this actually 3143 // true? A lot of other things in the fragile ABI would break... 3144 llvm::Type *OrigBaseTy = Addr.getType(); 3145 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3146 3147 // Do the GEP. 3148 CharUnits EltAlign = 3149 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3150 llvm::Value *EltPtr = 3151 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false); 3152 Addr = Address(EltPtr, EltAlign); 3153 3154 // Cast back. 3155 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3156 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3157 // If this is A[i] where A is an array, the frontend will have decayed the 3158 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3159 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3160 // "gep x, i" here. Emit one "gep A, 0, i". 3161 assert(Array->getType()->isArrayType() && 3162 "Array to pointer decay must have array source type!"); 3163 LValue ArrayLV; 3164 // For simple multidimensional array indexing, set the 'accessed' flag for 3165 // better bounds-checking of the base expression. 3166 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3167 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3168 else 3169 ArrayLV = EmitLValue(Array); 3170 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3171 3172 // Propagate the alignment from the array itself to the result. 3173 Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(), 3174 {CGM.getSize(CharUnits::Zero()), Idx}, 3175 E->getType(), 3176 !getLangOpts().isSignedOverflowDefined()); 3177 AlignSource = ArrayLV.getAlignmentSource(); 3178 } else { 3179 // The base must be a pointer; emit it with an estimate of its alignment. 3180 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3181 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3182 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3183 !getLangOpts().isSignedOverflowDefined()); 3184 } 3185 3186 LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource); 3187 3188 // TODO: Preserve/extend path TBAA metadata? 3189 3190 if (getLangOpts().ObjC1 && 3191 getLangOpts().getGC() != LangOptions::NonGC) { 3192 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3193 setObjCGCLValueClass(getContext(), E, LV); 3194 } 3195 return LV; 3196 } 3197 3198 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3199 AlignmentSource &AlignSource, 3200 QualType BaseTy, QualType ElTy, 3201 bool IsLowerBound) { 3202 LValue BaseLVal; 3203 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3204 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3205 if (BaseTy->isArrayType()) { 3206 Address Addr = BaseLVal.getAddress(); 3207 AlignSource = BaseLVal.getAlignmentSource(); 3208 3209 // If the array type was an incomplete type, we need to make sure 3210 // the decay ends up being the right type. 3211 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3212 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3213 3214 // Note that VLA pointers are always decayed, so we don't need to do 3215 // anything here. 3216 if (!BaseTy->isVariableArrayType()) { 3217 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3218 "Expected pointer to array"); 3219 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3220 "arraydecay"); 3221 } 3222 3223 return CGF.Builder.CreateElementBitCast(Addr, 3224 CGF.ConvertTypeForMem(ElTy)); 3225 } 3226 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &AlignSource); 3227 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3228 } 3229 return CGF.EmitPointerWithAlignment(Base, &AlignSource); 3230 } 3231 3232 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3233 bool IsLowerBound) { 3234 QualType BaseTy; 3235 if (auto *ASE = 3236 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 3237 BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE); 3238 else 3239 BaseTy = E->getBase()->getType(); 3240 QualType ResultExprTy; 3241 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3242 ResultExprTy = AT->getElementType(); 3243 else 3244 ResultExprTy = BaseTy->getPointeeType(); 3245 llvm::Value *Idx = nullptr; 3246 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3247 // Requesting lower bound or upper bound, but without provided length and 3248 // without ':' symbol for the default length -> length = 1. 3249 // Idx = LowerBound ?: 0; 3250 if (auto *LowerBound = E->getLowerBound()) { 3251 Idx = Builder.CreateIntCast( 3252 EmitScalarExpr(LowerBound), IntPtrTy, 3253 LowerBound->getType()->hasSignedIntegerRepresentation()); 3254 } else 3255 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3256 } else { 3257 // Try to emit length or lower bound as constant. If this is possible, 1 3258 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3259 // IR (LB + Len) - 1. 3260 auto &C = CGM.getContext(); 3261 auto *Length = E->getLength(); 3262 llvm::APSInt ConstLength; 3263 if (Length) { 3264 // Idx = LowerBound + Length - 1; 3265 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3266 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3267 Length = nullptr; 3268 } 3269 auto *LowerBound = E->getLowerBound(); 3270 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3271 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3272 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3273 LowerBound = nullptr; 3274 } 3275 if (!Length) 3276 --ConstLength; 3277 else if (!LowerBound) 3278 --ConstLowerBound; 3279 3280 if (Length || LowerBound) { 3281 auto *LowerBoundVal = 3282 LowerBound 3283 ? Builder.CreateIntCast( 3284 EmitScalarExpr(LowerBound), IntPtrTy, 3285 LowerBound->getType()->hasSignedIntegerRepresentation()) 3286 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3287 auto *LengthVal = 3288 Length 3289 ? Builder.CreateIntCast( 3290 EmitScalarExpr(Length), IntPtrTy, 3291 Length->getType()->hasSignedIntegerRepresentation()) 3292 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3293 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3294 /*HasNUW=*/false, 3295 !getLangOpts().isSignedOverflowDefined()); 3296 if (Length && LowerBound) { 3297 Idx = Builder.CreateSub( 3298 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3299 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3300 } 3301 } else 3302 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3303 } else { 3304 // Idx = ArraySize - 1; 3305 QualType ArrayTy = BaseTy->isPointerType() 3306 ? E->getBase()->IgnoreParenImpCasts()->getType() 3307 : BaseTy; 3308 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3309 Length = VAT->getSizeExpr(); 3310 if (Length->isIntegerConstantExpr(ConstLength, C)) 3311 Length = nullptr; 3312 } else { 3313 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3314 ConstLength = CAT->getSize(); 3315 } 3316 if (Length) { 3317 auto *LengthVal = Builder.CreateIntCast( 3318 EmitScalarExpr(Length), IntPtrTy, 3319 Length->getType()->hasSignedIntegerRepresentation()); 3320 Idx = Builder.CreateSub( 3321 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3322 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3323 } else { 3324 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3325 --ConstLength; 3326 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3327 } 3328 } 3329 } 3330 assert(Idx); 3331 3332 Address EltPtr = Address::invalid(); 3333 AlignmentSource AlignSource; 3334 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3335 // The base must be a pointer, which is not an aggregate. Emit 3336 // it. It needs to be emitted first in case it's what captures 3337 // the VLA bounds. 3338 Address Base = 3339 emitOMPArraySectionBase(*this, E->getBase(), AlignSource, BaseTy, 3340 VLA->getElementType(), IsLowerBound); 3341 // The element count here is the total number of non-VLA elements. 3342 llvm::Value *NumElements = getVLASize(VLA).first; 3343 3344 // Effectively, the multiply by the VLA size is part of the GEP. 3345 // GEP indexes are signed, and scaling an index isn't permitted to 3346 // signed-overflow, so we use the same semantics for our explicit 3347 // multiply. We suppress this if overflow is not undefined behavior. 3348 if (getLangOpts().isSignedOverflowDefined()) 3349 Idx = Builder.CreateMul(Idx, NumElements); 3350 else 3351 Idx = Builder.CreateNSWMul(Idx, NumElements); 3352 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3353 !getLangOpts().isSignedOverflowDefined()); 3354 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3355 // If this is A[i] where A is an array, the frontend will have decayed the 3356 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3357 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3358 // "gep x, i" here. Emit one "gep A, 0, i". 3359 assert(Array->getType()->isArrayType() && 3360 "Array to pointer decay must have array source type!"); 3361 LValue ArrayLV; 3362 // For simple multidimensional array indexing, set the 'accessed' flag for 3363 // better bounds-checking of the base expression. 3364 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3365 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3366 else 3367 ArrayLV = EmitLValue(Array); 3368 3369 // Propagate the alignment from the array itself to the result. 3370 EltPtr = emitArraySubscriptGEP( 3371 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3372 ResultExprTy, !getLangOpts().isSignedOverflowDefined()); 3373 AlignSource = ArrayLV.getAlignmentSource(); 3374 } else { 3375 Address Base = emitOMPArraySectionBase(*this, E->getBase(), AlignSource, 3376 BaseTy, ResultExprTy, IsLowerBound); 3377 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3378 !getLangOpts().isSignedOverflowDefined()); 3379 } 3380 3381 return MakeAddrLValue(EltPtr, ResultExprTy, AlignSource); 3382 } 3383 3384 LValue CodeGenFunction:: 3385 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3386 // Emit the base vector as an l-value. 3387 LValue Base; 3388 3389 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3390 if (E->isArrow()) { 3391 // If it is a pointer to a vector, emit the address and form an lvalue with 3392 // it. 3393 AlignmentSource AlignSource; 3394 Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3395 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3396 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource); 3397 Base.getQuals().removeObjCGCAttr(); 3398 } else if (E->getBase()->isGLValue()) { 3399 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3400 // emit the base as an lvalue. 3401 assert(E->getBase()->getType()->isVectorType()); 3402 Base = EmitLValue(E->getBase()); 3403 } else { 3404 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3405 assert(E->getBase()->getType()->isVectorType() && 3406 "Result must be a vector"); 3407 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3408 3409 // Store the vector to memory (because LValue wants an address). 3410 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3411 Builder.CreateStore(Vec, VecMem); 3412 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3413 AlignmentSource::Decl); 3414 } 3415 3416 QualType type = 3417 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3418 3419 // Encode the element access list into a vector of unsigned indices. 3420 SmallVector<uint32_t, 4> Indices; 3421 E->getEncodedElementAccess(Indices); 3422 3423 if (Base.isSimple()) { 3424 llvm::Constant *CV = 3425 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3426 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3427 Base.getAlignmentSource()); 3428 } 3429 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3430 3431 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3432 SmallVector<llvm::Constant *, 4> CElts; 3433 3434 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3435 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3436 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3437 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3438 Base.getAlignmentSource()); 3439 } 3440 3441 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3442 Expr *BaseExpr = E->getBase(); 3443 3444 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3445 LValue BaseLV; 3446 if (E->isArrow()) { 3447 AlignmentSource AlignSource; 3448 Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource); 3449 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3450 SanitizerSet SkippedChecks; 3451 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3452 if (IsBaseCXXThis) 3453 SkippedChecks.set(SanitizerKind::Alignment, true); 3454 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3455 SkippedChecks.set(SanitizerKind::Null, true); 3456 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3457 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3458 BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource); 3459 } else 3460 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3461 3462 NamedDecl *ND = E->getMemberDecl(); 3463 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3464 LValue LV = EmitLValueForField(BaseLV, Field); 3465 setObjCGCLValueClass(getContext(), E, LV); 3466 return LV; 3467 } 3468 3469 if (auto *VD = dyn_cast<VarDecl>(ND)) 3470 return EmitGlobalVarDeclLValue(*this, E, VD); 3471 3472 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3473 return EmitFunctionDeclLValue(*this, E, FD); 3474 3475 llvm_unreachable("Unhandled member declaration!"); 3476 } 3477 3478 /// Given that we are currently emitting a lambda, emit an l-value for 3479 /// one of its members. 3480 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3481 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3482 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3483 QualType LambdaTagType = 3484 getContext().getTagDeclType(Field->getParent()); 3485 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3486 return EmitLValueForField(LambdaLV, Field); 3487 } 3488 3489 /// Drill down to the storage of a field without walking into 3490 /// reference types. 3491 /// 3492 /// The resulting address doesn't necessarily have the right type. 3493 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3494 const FieldDecl *field) { 3495 const RecordDecl *rec = field->getParent(); 3496 3497 unsigned idx = 3498 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3499 3500 CharUnits offset; 3501 // Adjust the alignment down to the given offset. 3502 // As a special case, if the LLVM field index is 0, we know that this 3503 // is zero. 3504 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3505 .getFieldOffset(field->getFieldIndex()) == 0) && 3506 "LLVM field at index zero had non-zero offset?"); 3507 if (idx != 0) { 3508 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3509 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3510 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3511 } 3512 3513 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3514 } 3515 3516 LValue CodeGenFunction::EmitLValueForField(LValue base, 3517 const FieldDecl *field) { 3518 AlignmentSource fieldAlignSource = 3519 getFieldAlignmentSource(base.getAlignmentSource()); 3520 3521 if (field->isBitField()) { 3522 const CGRecordLayout &RL = 3523 CGM.getTypes().getCGRecordLayout(field->getParent()); 3524 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3525 Address Addr = base.getAddress(); 3526 unsigned Idx = RL.getLLVMFieldNo(field); 3527 if (Idx != 0) 3528 // For structs, we GEP to the field that the record layout suggests. 3529 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3530 field->getName()); 3531 // Get the access type. 3532 llvm::Type *FieldIntTy = 3533 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3534 if (Addr.getElementType() != FieldIntTy) 3535 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3536 3537 QualType fieldType = 3538 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3539 return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource); 3540 } 3541 3542 const RecordDecl *rec = field->getParent(); 3543 QualType type = field->getType(); 3544 3545 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 3546 3547 Address addr = base.getAddress(); 3548 unsigned cvr = base.getVRQualifiers(); 3549 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3550 if (rec->isUnion()) { 3551 // For unions, there is no pointer adjustment. 3552 assert(!type->isReferenceType() && "union has reference member"); 3553 // TODO: handle path-aware TBAA for union. 3554 TBAAPath = false; 3555 } else { 3556 // For structs, we GEP to the field that the record layout suggests. 3557 addr = emitAddrOfFieldStorage(*this, addr, field); 3558 3559 // If this is a reference field, load the reference right now. 3560 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3561 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3562 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3563 3564 // Loading the reference will disable path-aware TBAA. 3565 TBAAPath = false; 3566 if (CGM.shouldUseTBAA()) { 3567 llvm::MDNode *tbaa; 3568 if (mayAlias) 3569 tbaa = CGM.getTBAAInfo(getContext().CharTy); 3570 else 3571 tbaa = CGM.getTBAAInfo(type); 3572 if (tbaa) 3573 CGM.DecorateInstructionWithTBAA(load, tbaa); 3574 } 3575 3576 mayAlias = false; 3577 type = refType->getPointeeType(); 3578 3579 CharUnits alignment = 3580 getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true); 3581 addr = Address(load, alignment); 3582 3583 // Qualifiers on the struct don't apply to the referencee, and 3584 // we'll pick up CVR from the actual type later, so reset these 3585 // additional qualifiers now. 3586 cvr = 0; 3587 } 3588 } 3589 3590 // Make sure that the address is pointing to the right type. This is critical 3591 // for both unions and structs. A union needs a bitcast, a struct element 3592 // will need a bitcast if the LLVM type laid out doesn't match the desired 3593 // type. 3594 addr = Builder.CreateElementBitCast(addr, 3595 CGM.getTypes().ConvertTypeForMem(type), 3596 field->getName()); 3597 3598 if (field->hasAttr<AnnotateAttr>()) 3599 addr = EmitFieldAnnotations(field, addr); 3600 3601 LValue LV = MakeAddrLValue(addr, type, fieldAlignSource); 3602 LV.getQuals().addCVRQualifiers(cvr); 3603 if (TBAAPath) { 3604 const ASTRecordLayout &Layout = 3605 getContext().getASTRecordLayout(field->getParent()); 3606 // Set the base type to be the base type of the base LValue and 3607 // update offset to be relative to the base type. 3608 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 3609 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 3610 Layout.getFieldOffset(field->getFieldIndex()) / 3611 getContext().getCharWidth()); 3612 } 3613 3614 // __weak attribute on a field is ignored. 3615 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3616 LV.getQuals().removeObjCGCAttr(); 3617 3618 // Fields of may_alias structs act like 'char' for TBAA purposes. 3619 // FIXME: this should get propagated down through anonymous structs 3620 // and unions. 3621 if (mayAlias && LV.getTBAAInfo()) 3622 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 3623 3624 return LV; 3625 } 3626 3627 LValue 3628 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3629 const FieldDecl *Field) { 3630 QualType FieldType = Field->getType(); 3631 3632 if (!FieldType->isReferenceType()) 3633 return EmitLValueForField(Base, Field); 3634 3635 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3636 3637 // Make sure that the address is pointing to the right type. 3638 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3639 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3640 3641 // TODO: access-path TBAA? 3642 auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource()); 3643 return MakeAddrLValue(V, FieldType, FieldAlignSource); 3644 } 3645 3646 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3647 if (E->isFileScope()) { 3648 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3649 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3650 } 3651 if (E->getType()->isVariablyModifiedType()) 3652 // make sure to emit the VLA size. 3653 EmitVariablyModifiedType(E->getType()); 3654 3655 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3656 const Expr *InitExpr = E->getInitializer(); 3657 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3658 3659 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3660 /*Init*/ true); 3661 3662 return Result; 3663 } 3664 3665 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3666 if (!E->isGLValue()) 3667 // Initializing an aggregate temporary in C++11: T{...}. 3668 return EmitAggExprToLValue(E); 3669 3670 // An lvalue initializer list must be initializing a reference. 3671 assert(E->isTransparent() && "non-transparent glvalue init list"); 3672 return EmitLValue(E->getInit(0)); 3673 } 3674 3675 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3676 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3677 /// LValue is returned and the current block has been terminated. 3678 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3679 const Expr *Operand) { 3680 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3681 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3682 return None; 3683 } 3684 3685 return CGF.EmitLValue(Operand); 3686 } 3687 3688 LValue CodeGenFunction:: 3689 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3690 if (!expr->isGLValue()) { 3691 // ?: here should be an aggregate. 3692 assert(hasAggregateEvaluationKind(expr->getType()) && 3693 "Unexpected conditional operator!"); 3694 return EmitAggExprToLValue(expr); 3695 } 3696 3697 OpaqueValueMapping binding(*this, expr); 3698 3699 const Expr *condExpr = expr->getCond(); 3700 bool CondExprBool; 3701 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3702 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3703 if (!CondExprBool) std::swap(live, dead); 3704 3705 if (!ContainsLabel(dead)) { 3706 // If the true case is live, we need to track its region. 3707 if (CondExprBool) 3708 incrementProfileCounter(expr); 3709 return EmitLValue(live); 3710 } 3711 } 3712 3713 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3714 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3715 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3716 3717 ConditionalEvaluation eval(*this); 3718 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3719 3720 // Any temporaries created here are conditional. 3721 EmitBlock(lhsBlock); 3722 incrementProfileCounter(expr); 3723 eval.begin(*this); 3724 Optional<LValue> lhs = 3725 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3726 eval.end(*this); 3727 3728 if (lhs && !lhs->isSimple()) 3729 return EmitUnsupportedLValue(expr, "conditional operator"); 3730 3731 lhsBlock = Builder.GetInsertBlock(); 3732 if (lhs) 3733 Builder.CreateBr(contBlock); 3734 3735 // Any temporaries created here are conditional. 3736 EmitBlock(rhsBlock); 3737 eval.begin(*this); 3738 Optional<LValue> rhs = 3739 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3740 eval.end(*this); 3741 if (rhs && !rhs->isSimple()) 3742 return EmitUnsupportedLValue(expr, "conditional operator"); 3743 rhsBlock = Builder.GetInsertBlock(); 3744 3745 EmitBlock(contBlock); 3746 3747 if (lhs && rhs) { 3748 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3749 2, "cond-lvalue"); 3750 phi->addIncoming(lhs->getPointer(), lhsBlock); 3751 phi->addIncoming(rhs->getPointer(), rhsBlock); 3752 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3753 AlignmentSource alignSource = 3754 std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource()); 3755 return MakeAddrLValue(result, expr->getType(), alignSource); 3756 } else { 3757 assert((lhs || rhs) && 3758 "both operands of glvalue conditional are throw-expressions?"); 3759 return lhs ? *lhs : *rhs; 3760 } 3761 } 3762 3763 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3764 /// type. If the cast is to a reference, we can have the usual lvalue result, 3765 /// otherwise if a cast is needed by the code generator in an lvalue context, 3766 /// then it must mean that we need the address of an aggregate in order to 3767 /// access one of its members. This can happen for all the reasons that casts 3768 /// are permitted with aggregate result, including noop aggregate casts, and 3769 /// cast from scalar to union. 3770 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3771 switch (E->getCastKind()) { 3772 case CK_ToVoid: 3773 case CK_BitCast: 3774 case CK_ArrayToPointerDecay: 3775 case CK_FunctionToPointerDecay: 3776 case CK_NullToMemberPointer: 3777 case CK_NullToPointer: 3778 case CK_IntegralToPointer: 3779 case CK_PointerToIntegral: 3780 case CK_PointerToBoolean: 3781 case CK_VectorSplat: 3782 case CK_IntegralCast: 3783 case CK_BooleanToSignedIntegral: 3784 case CK_IntegralToBoolean: 3785 case CK_IntegralToFloating: 3786 case CK_FloatingToIntegral: 3787 case CK_FloatingToBoolean: 3788 case CK_FloatingCast: 3789 case CK_FloatingRealToComplex: 3790 case CK_FloatingComplexToReal: 3791 case CK_FloatingComplexToBoolean: 3792 case CK_FloatingComplexCast: 3793 case CK_FloatingComplexToIntegralComplex: 3794 case CK_IntegralRealToComplex: 3795 case CK_IntegralComplexToReal: 3796 case CK_IntegralComplexToBoolean: 3797 case CK_IntegralComplexCast: 3798 case CK_IntegralComplexToFloatingComplex: 3799 case CK_DerivedToBaseMemberPointer: 3800 case CK_BaseToDerivedMemberPointer: 3801 case CK_MemberPointerToBoolean: 3802 case CK_ReinterpretMemberPointer: 3803 case CK_AnyPointerToBlockPointerCast: 3804 case CK_ARCProduceObject: 3805 case CK_ARCConsumeObject: 3806 case CK_ARCReclaimReturnedObject: 3807 case CK_ARCExtendBlockObject: 3808 case CK_CopyAndAutoreleaseBlockObject: 3809 case CK_AddressSpaceConversion: 3810 case CK_IntToOCLSampler: 3811 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3812 3813 case CK_Dependent: 3814 llvm_unreachable("dependent cast kind in IR gen!"); 3815 3816 case CK_BuiltinFnToFnPtr: 3817 llvm_unreachable("builtin functions are handled elsewhere"); 3818 3819 // These are never l-values; just use the aggregate emission code. 3820 case CK_NonAtomicToAtomic: 3821 case CK_AtomicToNonAtomic: 3822 return EmitAggExprToLValue(E); 3823 3824 case CK_Dynamic: { 3825 LValue LV = EmitLValue(E->getSubExpr()); 3826 Address V = LV.getAddress(); 3827 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3828 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3829 } 3830 3831 case CK_ConstructorConversion: 3832 case CK_UserDefinedConversion: 3833 case CK_CPointerToObjCPointerCast: 3834 case CK_BlockPointerToObjCPointerCast: 3835 case CK_NoOp: 3836 case CK_LValueToRValue: 3837 return EmitLValue(E->getSubExpr()); 3838 3839 case CK_UncheckedDerivedToBase: 3840 case CK_DerivedToBase: { 3841 const RecordType *DerivedClassTy = 3842 E->getSubExpr()->getType()->getAs<RecordType>(); 3843 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3844 3845 LValue LV = EmitLValue(E->getSubExpr()); 3846 Address This = LV.getAddress(); 3847 3848 // Perform the derived-to-base conversion 3849 Address Base = GetAddressOfBaseClass( 3850 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3851 /*NullCheckValue=*/false, E->getExprLoc()); 3852 3853 return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource()); 3854 } 3855 case CK_ToUnion: 3856 return EmitAggExprToLValue(E); 3857 case CK_BaseToDerived: { 3858 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3859 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3860 3861 LValue LV = EmitLValue(E->getSubExpr()); 3862 3863 // Perform the base-to-derived conversion 3864 Address Derived = 3865 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3866 E->path_begin(), E->path_end(), 3867 /*NullCheckValue=*/false); 3868 3869 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3870 // performed and the object is not of the derived type. 3871 if (sanitizePerformTypeCheck()) 3872 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3873 Derived.getPointer(), E->getType()); 3874 3875 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3876 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 3877 /*MayBeNull=*/false, 3878 CFITCK_DerivedCast, E->getLocStart()); 3879 3880 return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource()); 3881 } 3882 case CK_LValueBitCast: { 3883 // This must be a reinterpret_cast (or c-style equivalent). 3884 const auto *CE = cast<ExplicitCastExpr>(E); 3885 3886 CGM.EmitExplicitCastExprType(CE, this); 3887 LValue LV = EmitLValue(E->getSubExpr()); 3888 Address V = Builder.CreateBitCast(LV.getAddress(), 3889 ConvertType(CE->getTypeAsWritten())); 3890 3891 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 3892 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 3893 /*MayBeNull=*/false, 3894 CFITCK_UnrelatedCast, E->getLocStart()); 3895 3896 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3897 } 3898 case CK_ObjCObjectLValueCast: { 3899 LValue LV = EmitLValue(E->getSubExpr()); 3900 Address V = Builder.CreateElementBitCast(LV.getAddress(), 3901 ConvertType(E->getType())); 3902 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3903 } 3904 case CK_ZeroToOCLQueue: 3905 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 3906 case CK_ZeroToOCLEvent: 3907 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 3908 } 3909 3910 llvm_unreachable("Unhandled lvalue cast kind?"); 3911 } 3912 3913 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 3914 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 3915 return getOpaqueLValueMapping(e); 3916 } 3917 3918 RValue CodeGenFunction::EmitRValueForField(LValue LV, 3919 const FieldDecl *FD, 3920 SourceLocation Loc) { 3921 QualType FT = FD->getType(); 3922 LValue FieldLV = EmitLValueForField(LV, FD); 3923 switch (getEvaluationKind(FT)) { 3924 case TEK_Complex: 3925 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 3926 case TEK_Aggregate: 3927 return FieldLV.asAggregateRValue(); 3928 case TEK_Scalar: 3929 // This routine is used to load fields one-by-one to perform a copy, so 3930 // don't load reference fields. 3931 if (FD->getType()->isReferenceType()) 3932 return RValue::get(FieldLV.getPointer()); 3933 return EmitLoadOfLValue(FieldLV, Loc); 3934 } 3935 llvm_unreachable("bad evaluation kind"); 3936 } 3937 3938 //===--------------------------------------------------------------------===// 3939 // Expression Emission 3940 //===--------------------------------------------------------------------===// 3941 3942 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 3943 ReturnValueSlot ReturnValue) { 3944 // Builtins never have block type. 3945 if (E->getCallee()->getType()->isBlockPointerType()) 3946 return EmitBlockCallExpr(E, ReturnValue); 3947 3948 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 3949 return EmitCXXMemberCallExpr(CE, ReturnValue); 3950 3951 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 3952 return EmitCUDAKernelCallExpr(CE, ReturnValue); 3953 3954 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 3955 if (const CXXMethodDecl *MD = 3956 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 3957 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 3958 3959 CGCallee callee = EmitCallee(E->getCallee()); 3960 3961 if (callee.isBuiltin()) { 3962 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 3963 E, ReturnValue); 3964 } 3965 3966 if (callee.isPseudoDestructor()) { 3967 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 3968 } 3969 3970 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 3971 } 3972 3973 /// Emit a CallExpr without considering whether it might be a subclass. 3974 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 3975 ReturnValueSlot ReturnValue) { 3976 CGCallee Callee = EmitCallee(E->getCallee()); 3977 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 3978 } 3979 3980 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 3981 if (auto builtinID = FD->getBuiltinID()) { 3982 return CGCallee::forBuiltin(builtinID, FD); 3983 } 3984 3985 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 3986 return CGCallee::forDirect(calleePtr, FD); 3987 } 3988 3989 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 3990 E = E->IgnoreParens(); 3991 3992 // Look through function-to-pointer decay. 3993 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 3994 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 3995 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 3996 return EmitCallee(ICE->getSubExpr()); 3997 } 3998 3999 // Resolve direct calls. 4000 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4001 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4002 return EmitDirectCallee(*this, FD); 4003 } 4004 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4005 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4006 EmitIgnoredExpr(ME->getBase()); 4007 return EmitDirectCallee(*this, FD); 4008 } 4009 4010 // Look through template substitutions. 4011 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4012 return EmitCallee(NTTP->getReplacement()); 4013 4014 // Treat pseudo-destructor calls differently. 4015 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4016 return CGCallee::forPseudoDestructor(PDE); 4017 } 4018 4019 // Otherwise, we have an indirect reference. 4020 llvm::Value *calleePtr; 4021 QualType functionType; 4022 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4023 calleePtr = EmitScalarExpr(E); 4024 functionType = ptrType->getPointeeType(); 4025 } else { 4026 functionType = E->getType(); 4027 calleePtr = EmitLValue(E).getPointer(); 4028 } 4029 assert(functionType->isFunctionType()); 4030 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4031 E->getReferencedDeclOfCallee()); 4032 CGCallee callee(calleeInfo, calleePtr); 4033 return callee; 4034 } 4035 4036 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4037 // Comma expressions just emit their LHS then their RHS as an l-value. 4038 if (E->getOpcode() == BO_Comma) { 4039 EmitIgnoredExpr(E->getLHS()); 4040 EnsureInsertPoint(); 4041 return EmitLValue(E->getRHS()); 4042 } 4043 4044 if (E->getOpcode() == BO_PtrMemD || 4045 E->getOpcode() == BO_PtrMemI) 4046 return EmitPointerToDataMemberBinaryExpr(E); 4047 4048 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4049 4050 // Note that in all of these cases, __block variables need the RHS 4051 // evaluated first just in case the variable gets moved by the RHS. 4052 4053 switch (getEvaluationKind(E->getType())) { 4054 case TEK_Scalar: { 4055 switch (E->getLHS()->getType().getObjCLifetime()) { 4056 case Qualifiers::OCL_Strong: 4057 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4058 4059 case Qualifiers::OCL_Autoreleasing: 4060 return EmitARCStoreAutoreleasing(E).first; 4061 4062 // No reason to do any of these differently. 4063 case Qualifiers::OCL_None: 4064 case Qualifiers::OCL_ExplicitNone: 4065 case Qualifiers::OCL_Weak: 4066 break; 4067 } 4068 4069 RValue RV = EmitAnyExpr(E->getRHS()); 4070 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4071 EmitStoreThroughLValue(RV, LV); 4072 return LV; 4073 } 4074 4075 case TEK_Complex: 4076 return EmitComplexAssignmentLValue(E); 4077 4078 case TEK_Aggregate: 4079 return EmitAggExprToLValue(E); 4080 } 4081 llvm_unreachable("bad evaluation kind"); 4082 } 4083 4084 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4085 RValue RV = EmitCallExpr(E); 4086 4087 if (!RV.isScalar()) 4088 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4089 AlignmentSource::Decl); 4090 4091 assert(E->getCallReturnType(getContext())->isReferenceType() && 4092 "Can't have a scalar return unless the return type is a " 4093 "reference type!"); 4094 4095 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4096 } 4097 4098 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4099 // FIXME: This shouldn't require another copy. 4100 return EmitAggExprToLValue(E); 4101 } 4102 4103 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4104 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4105 && "binding l-value to type which needs a temporary"); 4106 AggValueSlot Slot = CreateAggTemp(E->getType()); 4107 EmitCXXConstructExpr(E, Slot); 4108 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4109 AlignmentSource::Decl); 4110 } 4111 4112 LValue 4113 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4114 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4115 } 4116 4117 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4118 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4119 ConvertType(E->getType())); 4120 } 4121 4122 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4123 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4124 AlignmentSource::Decl); 4125 } 4126 4127 LValue 4128 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4129 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4130 Slot.setExternallyDestructed(); 4131 EmitAggExpr(E->getSubExpr(), Slot); 4132 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4133 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4134 AlignmentSource::Decl); 4135 } 4136 4137 LValue 4138 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4139 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4140 EmitLambdaExpr(E, Slot); 4141 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4142 AlignmentSource::Decl); 4143 } 4144 4145 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4146 RValue RV = EmitObjCMessageExpr(E); 4147 4148 if (!RV.isScalar()) 4149 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4150 AlignmentSource::Decl); 4151 4152 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4153 "Can't have a scalar return unless the return type is a " 4154 "reference type!"); 4155 4156 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4157 } 4158 4159 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4160 Address V = 4161 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4162 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4163 } 4164 4165 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4166 const ObjCIvarDecl *Ivar) { 4167 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4168 } 4169 4170 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4171 llvm::Value *BaseValue, 4172 const ObjCIvarDecl *Ivar, 4173 unsigned CVRQualifiers) { 4174 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4175 Ivar, CVRQualifiers); 4176 } 4177 4178 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4179 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4180 llvm::Value *BaseValue = nullptr; 4181 const Expr *BaseExpr = E->getBase(); 4182 Qualifiers BaseQuals; 4183 QualType ObjectTy; 4184 if (E->isArrow()) { 4185 BaseValue = EmitScalarExpr(BaseExpr); 4186 ObjectTy = BaseExpr->getType()->getPointeeType(); 4187 BaseQuals = ObjectTy.getQualifiers(); 4188 } else { 4189 LValue BaseLV = EmitLValue(BaseExpr); 4190 BaseValue = BaseLV.getPointer(); 4191 ObjectTy = BaseExpr->getType(); 4192 BaseQuals = ObjectTy.getQualifiers(); 4193 } 4194 4195 LValue LV = 4196 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4197 BaseQuals.getCVRQualifiers()); 4198 setObjCGCLValueClass(getContext(), E, LV); 4199 return LV; 4200 } 4201 4202 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4203 // Can only get l-value for message expression returning aggregate type 4204 RValue RV = EmitAnyExprToTemp(E); 4205 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4206 AlignmentSource::Decl); 4207 } 4208 4209 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4210 const CallExpr *E, ReturnValueSlot ReturnValue, 4211 llvm::Value *Chain) { 4212 // Get the actual function type. The callee type will always be a pointer to 4213 // function type or a block pointer type. 4214 assert(CalleeType->isFunctionPointerType() && 4215 "Call must have function pointer type!"); 4216 4217 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4218 4219 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4220 // We can only guarantee that a function is called from the correct 4221 // context/function based on the appropriate target attributes, 4222 // so only check in the case where we have both always_inline and target 4223 // since otherwise we could be making a conditional call after a check for 4224 // the proper cpu features (and it won't cause code generation issues due to 4225 // function based code generation). 4226 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4227 TargetDecl->hasAttr<TargetAttr>()) 4228 checkTargetFeatures(E, FD); 4229 4230 CalleeType = getContext().getCanonicalType(CalleeType); 4231 4232 const auto *FnType = 4233 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4234 4235 CGCallee Callee = OrigCallee; 4236 4237 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4238 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4239 if (llvm::Constant *PrefixSig = 4240 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4241 SanitizerScope SanScope(this); 4242 llvm::Constant *FTRTTIConst = 4243 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4244 llvm::Type *PrefixStructTyElems[] = { 4245 PrefixSig->getType(), 4246 FTRTTIConst->getType() 4247 }; 4248 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4249 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4250 4251 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4252 4253 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4254 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4255 llvm::Value *CalleeSigPtr = 4256 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4257 llvm::Value *CalleeSig = 4258 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4259 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4260 4261 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4262 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4263 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4264 4265 EmitBlock(TypeCheck); 4266 llvm::Value *CalleeRTTIPtr = 4267 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4268 llvm::Value *CalleeRTTI = 4269 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4270 llvm::Value *CalleeRTTIMatch = 4271 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4272 llvm::Constant *StaticData[] = { 4273 EmitCheckSourceLocation(E->getLocStart()), 4274 EmitCheckTypeDescriptor(CalleeType) 4275 }; 4276 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4277 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4278 4279 Builder.CreateBr(Cont); 4280 EmitBlock(Cont); 4281 } 4282 } 4283 4284 // If we are checking indirect calls and this call is indirect, check that the 4285 // function pointer is a member of the bit set for the function type. 4286 if (SanOpts.has(SanitizerKind::CFIICall) && 4287 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4288 SanitizerScope SanScope(this); 4289 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4290 4291 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4292 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4293 4294 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4295 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4296 llvm::Value *TypeTest = Builder.CreateCall( 4297 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4298 4299 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4300 llvm::Constant *StaticData[] = { 4301 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4302 EmitCheckSourceLocation(E->getLocStart()), 4303 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4304 }; 4305 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4306 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4307 CastedCallee, StaticData); 4308 } else { 4309 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4310 SanitizerHandler::CFICheckFail, StaticData, 4311 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4312 } 4313 } 4314 4315 CallArgList Args; 4316 if (Chain) 4317 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4318 CGM.getContext().VoidPtrTy); 4319 4320 // C++17 requires that we evaluate arguments to a call using assignment syntax 4321 // right-to-left, and that we evaluate arguments to certain other operators 4322 // left-to-right. Note that we allow this to override the order dictated by 4323 // the calling convention on the MS ABI, which means that parameter 4324 // destruction order is not necessarily reverse construction order. 4325 // FIXME: Revisit this based on C++ committee response to unimplementability. 4326 EvaluationOrder Order = EvaluationOrder::Default; 4327 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4328 if (OCE->isAssignmentOp()) 4329 Order = EvaluationOrder::ForceRightToLeft; 4330 else { 4331 switch (OCE->getOperator()) { 4332 case OO_LessLess: 4333 case OO_GreaterGreater: 4334 case OO_AmpAmp: 4335 case OO_PipePipe: 4336 case OO_Comma: 4337 case OO_ArrowStar: 4338 Order = EvaluationOrder::ForceLeftToRight; 4339 break; 4340 default: 4341 break; 4342 } 4343 } 4344 } 4345 4346 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4347 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4348 4349 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4350 Args, FnType, /*isChainCall=*/Chain); 4351 4352 // C99 6.5.2.2p6: 4353 // If the expression that denotes the called function has a type 4354 // that does not include a prototype, [the default argument 4355 // promotions are performed]. If the number of arguments does not 4356 // equal the number of parameters, the behavior is undefined. If 4357 // the function is defined with a type that includes a prototype, 4358 // and either the prototype ends with an ellipsis (, ...) or the 4359 // types of the arguments after promotion are not compatible with 4360 // the types of the parameters, the behavior is undefined. If the 4361 // function is defined with a type that does not include a 4362 // prototype, and the types of the arguments after promotion are 4363 // not compatible with those of the parameters after promotion, 4364 // the behavior is undefined [except in some trivial cases]. 4365 // That is, in the general case, we should assume that a call 4366 // through an unprototyped function type works like a *non-variadic* 4367 // call. The way we make this work is to cast to the exact type 4368 // of the promoted arguments. 4369 // 4370 // Chain calls use this same code path to add the invisible chain parameter 4371 // to the function type. 4372 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4373 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4374 CalleeTy = CalleeTy->getPointerTo(); 4375 4376 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4377 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4378 Callee.setFunctionPointer(CalleePtr); 4379 } 4380 4381 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4382 } 4383 4384 LValue CodeGenFunction:: 4385 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4386 Address BaseAddr = Address::invalid(); 4387 if (E->getOpcode() == BO_PtrMemI) { 4388 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4389 } else { 4390 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4391 } 4392 4393 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4394 4395 const MemberPointerType *MPT 4396 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4397 4398 AlignmentSource AlignSource; 4399 Address MemberAddr = 4400 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, 4401 &AlignSource); 4402 4403 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource); 4404 } 4405 4406 /// Given the address of a temporary variable, produce an r-value of 4407 /// its type. 4408 RValue CodeGenFunction::convertTempToRValue(Address addr, 4409 QualType type, 4410 SourceLocation loc) { 4411 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4412 switch (getEvaluationKind(type)) { 4413 case TEK_Complex: 4414 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4415 case TEK_Aggregate: 4416 return lvalue.asAggregateRValue(); 4417 case TEK_Scalar: 4418 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4419 } 4420 llvm_unreachable("bad evaluation kind"); 4421 } 4422 4423 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4424 assert(Val->getType()->isFPOrFPVectorTy()); 4425 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4426 return; 4427 4428 llvm::MDBuilder MDHelper(getLLVMContext()); 4429 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4430 4431 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4432 } 4433 4434 namespace { 4435 struct LValueOrRValue { 4436 LValue LV; 4437 RValue RV; 4438 }; 4439 } 4440 4441 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4442 const PseudoObjectExpr *E, 4443 bool forLValue, 4444 AggValueSlot slot) { 4445 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4446 4447 // Find the result expression, if any. 4448 const Expr *resultExpr = E->getResultExpr(); 4449 LValueOrRValue result; 4450 4451 for (PseudoObjectExpr::const_semantics_iterator 4452 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4453 const Expr *semantic = *i; 4454 4455 // If this semantic expression is an opaque value, bind it 4456 // to the result of its source expression. 4457 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4458 4459 // If this is the result expression, we may need to evaluate 4460 // directly into the slot. 4461 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4462 OVMA opaqueData; 4463 if (ov == resultExpr && ov->isRValue() && !forLValue && 4464 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4465 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4466 4467 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4468 AlignmentSource::Decl); 4469 opaqueData = OVMA::bind(CGF, ov, LV); 4470 result.RV = slot.asRValue(); 4471 4472 // Otherwise, emit as normal. 4473 } else { 4474 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4475 4476 // If this is the result, also evaluate the result now. 4477 if (ov == resultExpr) { 4478 if (forLValue) 4479 result.LV = CGF.EmitLValue(ov); 4480 else 4481 result.RV = CGF.EmitAnyExpr(ov, slot); 4482 } 4483 } 4484 4485 opaques.push_back(opaqueData); 4486 4487 // Otherwise, if the expression is the result, evaluate it 4488 // and remember the result. 4489 } else if (semantic == resultExpr) { 4490 if (forLValue) 4491 result.LV = CGF.EmitLValue(semantic); 4492 else 4493 result.RV = CGF.EmitAnyExpr(semantic, slot); 4494 4495 // Otherwise, evaluate the expression in an ignored context. 4496 } else { 4497 CGF.EmitIgnoredExpr(semantic); 4498 } 4499 } 4500 4501 // Unbind all the opaques now. 4502 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4503 opaques[i].unbind(CGF); 4504 4505 return result; 4506 } 4507 4508 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4509 AggValueSlot slot) { 4510 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4511 } 4512 4513 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4514 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4515 } 4516