1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "llvm/ADT/Hashing.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/Support/ConvertUTF.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/Path.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 #include <string>
43 
44 using namespace clang;
45 using namespace CodeGen;
46 
47 //===--------------------------------------------------------------------===//
48 //                        Miscellaneous Helper Methods
49 //===--------------------------------------------------------------------===//
50 
51 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
52   unsigned addressSpace =
53       cast<llvm::PointerType>(value->getType())->getAddressSpace();
54 
55   llvm::PointerType *destType = Int8PtrTy;
56   if (addressSpace)
57     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
58 
59   if (value->getType() == destType) return value;
60   return Builder.CreateBitCast(value, destType);
61 }
62 
63 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
64 /// block.
65 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
66                                                      CharUnits Align,
67                                                      const Twine &Name,
68                                                      llvm::Value *ArraySize) {
69   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
70   Alloca->setAlignment(Align.getAsAlign());
71   return Address(Alloca, Align);
72 }
73 
74 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
75 /// block. The alloca is casted to default address space if necessary.
76 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
77                                           const Twine &Name,
78                                           llvm::Value *ArraySize,
79                                           Address *AllocaAddr) {
80   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
81   if (AllocaAddr)
82     *AllocaAddr = Alloca;
83   llvm::Value *V = Alloca.getPointer();
84   // Alloca always returns a pointer in alloca address space, which may
85   // be different from the type defined by the language. For example,
86   // in C++ the auto variables are in the default address space. Therefore
87   // cast alloca to the default address space when necessary.
88   if (getASTAllocaAddressSpace() != LangAS::Default) {
89     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
90     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
91     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
92     // otherwise alloca is inserted at the current insertion point of the
93     // builder.
94     if (!ArraySize)
95       Builder.SetInsertPoint(AllocaInsertPt);
96     V = getTargetHooks().performAddrSpaceCast(
97         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
98         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
99   }
100 
101   return Address(V, Align);
102 }
103 
104 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
105 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
106 /// insertion point of the builder.
107 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
108                                                     const Twine &Name,
109                                                     llvm::Value *ArraySize) {
110   if (ArraySize)
111     return Builder.CreateAlloca(Ty, ArraySize, Name);
112   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
113                               ArraySize, Name, AllocaInsertPt);
114 }
115 
116 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
117 /// default alignment of the corresponding LLVM type, which is *not*
118 /// guaranteed to be related in any way to the expected alignment of
119 /// an AST type that might have been lowered to Ty.
120 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
121                                                       const Twine &Name) {
122   CharUnits Align =
123     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
124   return CreateTempAlloca(Ty, Align, Name);
125 }
126 
127 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
128   assert(isa<llvm::AllocaInst>(Var.getPointer()));
129   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
130   Store->setAlignment(Var.getAlignment().getAsAlign());
131   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
132   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
133 }
134 
135 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
136   CharUnits Align = getContext().getTypeAlignInChars(Ty);
137   return CreateTempAlloca(ConvertType(Ty), Align, Name);
138 }
139 
140 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
141                                        Address *Alloca) {
142   // FIXME: Should we prefer the preferred type alignment here?
143   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
144 }
145 
146 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
147                                        const Twine &Name, Address *Alloca) {
148   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
149                                     /*ArraySize=*/nullptr, Alloca);
150 
151   if (Ty->isConstantMatrixType()) {
152     auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
153     auto *VectorTy = llvm::VectorType::get(ArrayTy->getElementType(),
154                                            ArrayTy->getNumElements());
155 
156     Result = Address(
157         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
158         Result.getAlignment());
159   }
160   return Result;
161 }
162 
163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
164                                                   const Twine &Name) {
165   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
166 }
167 
168 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
169                                                   const Twine &Name) {
170   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
171                                   Name);
172 }
173 
174 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
175 /// expression and compare the result against zero, returning an Int1Ty value.
176 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
177   PGO.setCurrentStmt(E);
178   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
179     llvm::Value *MemPtr = EmitScalarExpr(E);
180     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
181   }
182 
183   QualType BoolTy = getContext().BoolTy;
184   SourceLocation Loc = E->getExprLoc();
185   if (!E->getType()->isAnyComplexType())
186     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
187 
188   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
189                                        Loc);
190 }
191 
192 /// EmitIgnoredExpr - Emit code to compute the specified expression,
193 /// ignoring the result.
194 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
195   if (E->isRValue())
196     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
197 
198   // Just emit it as an l-value and drop the result.
199   EmitLValue(E);
200 }
201 
202 /// EmitAnyExpr - Emit code to compute the specified expression which
203 /// can have any type.  The result is returned as an RValue struct.
204 /// If this is an aggregate expression, AggSlot indicates where the
205 /// result should be returned.
206 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
207                                     AggValueSlot aggSlot,
208                                     bool ignoreResult) {
209   switch (getEvaluationKind(E->getType())) {
210   case TEK_Scalar:
211     return RValue::get(EmitScalarExpr(E, ignoreResult));
212   case TEK_Complex:
213     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
214   case TEK_Aggregate:
215     if (!ignoreResult && aggSlot.isIgnored())
216       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
217     EmitAggExpr(E, aggSlot);
218     return aggSlot.asRValue();
219   }
220   llvm_unreachable("bad evaluation kind");
221 }
222 
223 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
224 /// always be accessible even if no aggregate location is provided.
225 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
226   AggValueSlot AggSlot = AggValueSlot::ignored();
227 
228   if (hasAggregateEvaluationKind(E->getType()))
229     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
230   return EmitAnyExpr(E, AggSlot);
231 }
232 
233 /// EmitAnyExprToMem - Evaluate an expression into a given memory
234 /// location.
235 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
236                                        Address Location,
237                                        Qualifiers Quals,
238                                        bool IsInit) {
239   // FIXME: This function should take an LValue as an argument.
240   switch (getEvaluationKind(E->getType())) {
241   case TEK_Complex:
242     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
243                               /*isInit*/ false);
244     return;
245 
246   case TEK_Aggregate: {
247     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
248                                          AggValueSlot::IsDestructed_t(IsInit),
249                                          AggValueSlot::DoesNotNeedGCBarriers,
250                                          AggValueSlot::IsAliased_t(!IsInit),
251                                          AggValueSlot::MayOverlap));
252     return;
253   }
254 
255   case TEK_Scalar: {
256     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
257     LValue LV = MakeAddrLValue(Location, E->getType());
258     EmitStoreThroughLValue(RV, LV);
259     return;
260   }
261   }
262   llvm_unreachable("bad evaluation kind");
263 }
264 
265 static void
266 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
267                      const Expr *E, Address ReferenceTemporary) {
268   // Objective-C++ ARC:
269   //   If we are binding a reference to a temporary that has ownership, we
270   //   need to perform retain/release operations on the temporary.
271   //
272   // FIXME: This should be looking at E, not M.
273   if (auto Lifetime = M->getType().getObjCLifetime()) {
274     switch (Lifetime) {
275     case Qualifiers::OCL_None:
276     case Qualifiers::OCL_ExplicitNone:
277       // Carry on to normal cleanup handling.
278       break;
279 
280     case Qualifiers::OCL_Autoreleasing:
281       // Nothing to do; cleaned up by an autorelease pool.
282       return;
283 
284     case Qualifiers::OCL_Strong:
285     case Qualifiers::OCL_Weak:
286       switch (StorageDuration Duration = M->getStorageDuration()) {
287       case SD_Static:
288         // Note: we intentionally do not register a cleanup to release
289         // the object on program termination.
290         return;
291 
292       case SD_Thread:
293         // FIXME: We should probably register a cleanup in this case.
294         return;
295 
296       case SD_Automatic:
297       case SD_FullExpression:
298         CodeGenFunction::Destroyer *Destroy;
299         CleanupKind CleanupKind;
300         if (Lifetime == Qualifiers::OCL_Strong) {
301           const ValueDecl *VD = M->getExtendingDecl();
302           bool Precise =
303               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
304           CleanupKind = CGF.getARCCleanupKind();
305           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
306                             : &CodeGenFunction::destroyARCStrongImprecise;
307         } else {
308           // __weak objects always get EH cleanups; otherwise, exceptions
309           // could cause really nasty crashes instead of mere leaks.
310           CleanupKind = NormalAndEHCleanup;
311           Destroy = &CodeGenFunction::destroyARCWeak;
312         }
313         if (Duration == SD_FullExpression)
314           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
315                           M->getType(), *Destroy,
316                           CleanupKind & EHCleanup);
317         else
318           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
319                                           M->getType(),
320                                           *Destroy, CleanupKind & EHCleanup);
321         return;
322 
323       case SD_Dynamic:
324         llvm_unreachable("temporary cannot have dynamic storage duration");
325       }
326       llvm_unreachable("unknown storage duration");
327     }
328   }
329 
330   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
331   if (const RecordType *RT =
332           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
333     // Get the destructor for the reference temporary.
334     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
335     if (!ClassDecl->hasTrivialDestructor())
336       ReferenceTemporaryDtor = ClassDecl->getDestructor();
337   }
338 
339   if (!ReferenceTemporaryDtor)
340     return;
341 
342   // Call the destructor for the temporary.
343   switch (M->getStorageDuration()) {
344   case SD_Static:
345   case SD_Thread: {
346     llvm::FunctionCallee CleanupFn;
347     llvm::Constant *CleanupArg;
348     if (E->getType()->isArrayType()) {
349       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
350           ReferenceTemporary, E->getType(),
351           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
352           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
353       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
354     } else {
355       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
356           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
357       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
358     }
359     CGF.CGM.getCXXABI().registerGlobalDtor(
360         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
361     break;
362   }
363 
364   case SD_FullExpression:
365     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
366                     CodeGenFunction::destroyCXXObject,
367                     CGF.getLangOpts().Exceptions);
368     break;
369 
370   case SD_Automatic:
371     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
372                                     ReferenceTemporary, E->getType(),
373                                     CodeGenFunction::destroyCXXObject,
374                                     CGF.getLangOpts().Exceptions);
375     break;
376 
377   case SD_Dynamic:
378     llvm_unreachable("temporary cannot have dynamic storage duration");
379   }
380 }
381 
382 static Address createReferenceTemporary(CodeGenFunction &CGF,
383                                         const MaterializeTemporaryExpr *M,
384                                         const Expr *Inner,
385                                         Address *Alloca = nullptr) {
386   auto &TCG = CGF.getTargetHooks();
387   switch (M->getStorageDuration()) {
388   case SD_FullExpression:
389   case SD_Automatic: {
390     // If we have a constant temporary array or record try to promote it into a
391     // constant global under the same rules a normal constant would've been
392     // promoted. This is easier on the optimizer and generally emits fewer
393     // instructions.
394     QualType Ty = Inner->getType();
395     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
396         (Ty->isArrayType() || Ty->isRecordType()) &&
397         CGF.CGM.isTypeConstant(Ty, true))
398       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
399         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
400           auto AS = AddrSpace.getValue();
401           auto *GV = new llvm::GlobalVariable(
402               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
403               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
404               llvm::GlobalValue::NotThreadLocal,
405               CGF.getContext().getTargetAddressSpace(AS));
406           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
407           GV->setAlignment(alignment.getAsAlign());
408           llvm::Constant *C = GV;
409           if (AS != LangAS::Default)
410             C = TCG.performAddrSpaceCast(
411                 CGF.CGM, GV, AS, LangAS::Default,
412                 GV->getValueType()->getPointerTo(
413                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
414           // FIXME: Should we put the new global into a COMDAT?
415           return Address(C, alignment);
416         }
417       }
418     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
419   }
420   case SD_Thread:
421   case SD_Static:
422     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
423 
424   case SD_Dynamic:
425     llvm_unreachable("temporary can't have dynamic storage duration");
426   }
427   llvm_unreachable("unknown storage duration");
428 }
429 
430 /// Helper method to check if the underlying ABI is AAPCS
431 static bool isAAPCS(const TargetInfo &TargetInfo) {
432   return TargetInfo.getABI().startswith("aapcs");
433 }
434 
435 LValue CodeGenFunction::
436 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
437   const Expr *E = M->getSubExpr();
438 
439   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
440           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
441          "Reference should never be pseudo-strong!");
442 
443   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
444   // as that will cause the lifetime adjustment to be lost for ARC
445   auto ownership = M->getType().getObjCLifetime();
446   if (ownership != Qualifiers::OCL_None &&
447       ownership != Qualifiers::OCL_ExplicitNone) {
448     Address Object = createReferenceTemporary(*this, M, E);
449     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
450       Object = Address(llvm::ConstantExpr::getBitCast(Var,
451                            ConvertTypeForMem(E->getType())
452                              ->getPointerTo(Object.getAddressSpace())),
453                        Object.getAlignment());
454 
455       // createReferenceTemporary will promote the temporary to a global with a
456       // constant initializer if it can.  It can only do this to a value of
457       // ARC-manageable type if the value is global and therefore "immune" to
458       // ref-counting operations.  Therefore we have no need to emit either a
459       // dynamic initialization or a cleanup and we can just return the address
460       // of the temporary.
461       if (Var->hasInitializer())
462         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
463 
464       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
465     }
466     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
467                                        AlignmentSource::Decl);
468 
469     switch (getEvaluationKind(E->getType())) {
470     default: llvm_unreachable("expected scalar or aggregate expression");
471     case TEK_Scalar:
472       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
473       break;
474     case TEK_Aggregate: {
475       EmitAggExpr(E, AggValueSlot::forAddr(Object,
476                                            E->getType().getQualifiers(),
477                                            AggValueSlot::IsDestructed,
478                                            AggValueSlot::DoesNotNeedGCBarriers,
479                                            AggValueSlot::IsNotAliased,
480                                            AggValueSlot::DoesNotOverlap));
481       break;
482     }
483     }
484 
485     pushTemporaryCleanup(*this, M, E, Object);
486     return RefTempDst;
487   }
488 
489   SmallVector<const Expr *, 2> CommaLHSs;
490   SmallVector<SubobjectAdjustment, 2> Adjustments;
491   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
492 
493   for (const auto &Ignored : CommaLHSs)
494     EmitIgnoredExpr(Ignored);
495 
496   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
497     if (opaque->getType()->isRecordType()) {
498       assert(Adjustments.empty());
499       return EmitOpaqueValueLValue(opaque);
500     }
501   }
502 
503   // Create and initialize the reference temporary.
504   Address Alloca = Address::invalid();
505   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
506   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
507           Object.getPointer()->stripPointerCasts())) {
508     Object = Address(llvm::ConstantExpr::getBitCast(
509                          cast<llvm::Constant>(Object.getPointer()),
510                          ConvertTypeForMem(E->getType())->getPointerTo()),
511                      Object.getAlignment());
512     // If the temporary is a global and has a constant initializer or is a
513     // constant temporary that we promoted to a global, we may have already
514     // initialized it.
515     if (!Var->hasInitializer()) {
516       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
517       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
518     }
519   } else {
520     switch (M->getStorageDuration()) {
521     case SD_Automatic:
522       if (auto *Size = EmitLifetimeStart(
523               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
524               Alloca.getPointer())) {
525         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
526                                                   Alloca, Size);
527       }
528       break;
529 
530     case SD_FullExpression: {
531       if (!ShouldEmitLifetimeMarkers)
532         break;
533 
534       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
535       // marker. Instead, start the lifetime of a conditional temporary earlier
536       // so that it's unconditional. Don't do this with sanitizers which need
537       // more precise lifetime marks.
538       ConditionalEvaluation *OldConditional = nullptr;
539       CGBuilderTy::InsertPoint OldIP;
540       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
541           !SanOpts.has(SanitizerKind::HWAddress) &&
542           !SanOpts.has(SanitizerKind::Memory) &&
543           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
544         OldConditional = OutermostConditional;
545         OutermostConditional = nullptr;
546 
547         OldIP = Builder.saveIP();
548         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
549         Builder.restoreIP(CGBuilderTy::InsertPoint(
550             Block, llvm::BasicBlock::iterator(Block->back())));
551       }
552 
553       if (auto *Size = EmitLifetimeStart(
554               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
555               Alloca.getPointer())) {
556         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
557                                              Size);
558       }
559 
560       if (OldConditional) {
561         OutermostConditional = OldConditional;
562         Builder.restoreIP(OldIP);
563       }
564       break;
565     }
566 
567     default:
568       break;
569     }
570     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
571   }
572   pushTemporaryCleanup(*this, M, E, Object);
573 
574   // Perform derived-to-base casts and/or field accesses, to get from the
575   // temporary object we created (and, potentially, for which we extended
576   // the lifetime) to the subobject we're binding the reference to.
577   for (unsigned I = Adjustments.size(); I != 0; --I) {
578     SubobjectAdjustment &Adjustment = Adjustments[I-1];
579     switch (Adjustment.Kind) {
580     case SubobjectAdjustment::DerivedToBaseAdjustment:
581       Object =
582           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
583                                 Adjustment.DerivedToBase.BasePath->path_begin(),
584                                 Adjustment.DerivedToBase.BasePath->path_end(),
585                                 /*NullCheckValue=*/ false, E->getExprLoc());
586       break;
587 
588     case SubobjectAdjustment::FieldAdjustment: {
589       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
590       LV = EmitLValueForField(LV, Adjustment.Field);
591       assert(LV.isSimple() &&
592              "materialized temporary field is not a simple lvalue");
593       Object = LV.getAddress(*this);
594       break;
595     }
596 
597     case SubobjectAdjustment::MemberPointerAdjustment: {
598       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
599       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
600                                                Adjustment.Ptr.MPT);
601       break;
602     }
603     }
604   }
605 
606   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
607 }
608 
609 RValue
610 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
611   // Emit the expression as an lvalue.
612   LValue LV = EmitLValue(E);
613   assert(LV.isSimple());
614   llvm::Value *Value = LV.getPointer(*this);
615 
616   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
617     // C++11 [dcl.ref]p5 (as amended by core issue 453):
618     //   If a glvalue to which a reference is directly bound designates neither
619     //   an existing object or function of an appropriate type nor a region of
620     //   storage of suitable size and alignment to contain an object of the
621     //   reference's type, the behavior is undefined.
622     QualType Ty = E->getType();
623     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
624   }
625 
626   return RValue::get(Value);
627 }
628 
629 
630 /// getAccessedFieldNo - Given an encoded value and a result number, return the
631 /// input field number being accessed.
632 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
633                                              const llvm::Constant *Elts) {
634   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
635       ->getZExtValue();
636 }
637 
638 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
639 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
640                                     llvm::Value *High) {
641   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
642   llvm::Value *K47 = Builder.getInt64(47);
643   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
644   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
645   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
646   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
647   return Builder.CreateMul(B1, KMul);
648 }
649 
650 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
651   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
652          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
653 }
654 
655 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
656   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
657   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
658          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
659           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
660           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
661 }
662 
663 bool CodeGenFunction::sanitizePerformTypeCheck() const {
664   return SanOpts.has(SanitizerKind::Null) |
665          SanOpts.has(SanitizerKind::Alignment) |
666          SanOpts.has(SanitizerKind::ObjectSize) |
667          SanOpts.has(SanitizerKind::Vptr);
668 }
669 
670 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
671                                     llvm::Value *Ptr, QualType Ty,
672                                     CharUnits Alignment,
673                                     SanitizerSet SkippedChecks,
674                                     llvm::Value *ArraySize) {
675   if (!sanitizePerformTypeCheck())
676     return;
677 
678   // Don't check pointers outside the default address space. The null check
679   // isn't correct, the object-size check isn't supported by LLVM, and we can't
680   // communicate the addresses to the runtime handler for the vptr check.
681   if (Ptr->getType()->getPointerAddressSpace())
682     return;
683 
684   // Don't check pointers to volatile data. The behavior here is implementation-
685   // defined.
686   if (Ty.isVolatileQualified())
687     return;
688 
689   SanitizerScope SanScope(this);
690 
691   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
692   llvm::BasicBlock *Done = nullptr;
693 
694   // Quickly determine whether we have a pointer to an alloca. It's possible
695   // to skip null checks, and some alignment checks, for these pointers. This
696   // can reduce compile-time significantly.
697   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
698 
699   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
700   llvm::Value *IsNonNull = nullptr;
701   bool IsGuaranteedNonNull =
702       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
703   bool AllowNullPointers = isNullPointerAllowed(TCK);
704   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
705       !IsGuaranteedNonNull) {
706     // The glvalue must not be an empty glvalue.
707     IsNonNull = Builder.CreateIsNotNull(Ptr);
708 
709     // The IR builder can constant-fold the null check if the pointer points to
710     // a constant.
711     IsGuaranteedNonNull = IsNonNull == True;
712 
713     // Skip the null check if the pointer is known to be non-null.
714     if (!IsGuaranteedNonNull) {
715       if (AllowNullPointers) {
716         // When performing pointer casts, it's OK if the value is null.
717         // Skip the remaining checks in that case.
718         Done = createBasicBlock("null");
719         llvm::BasicBlock *Rest = createBasicBlock("not.null");
720         Builder.CreateCondBr(IsNonNull, Rest, Done);
721         EmitBlock(Rest);
722       } else {
723         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
724       }
725     }
726   }
727 
728   if (SanOpts.has(SanitizerKind::ObjectSize) &&
729       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
730       !Ty->isIncompleteType()) {
731     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
732     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
733     if (ArraySize)
734       Size = Builder.CreateMul(Size, ArraySize);
735 
736     // Degenerate case: new X[0] does not need an objectsize check.
737     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
738     if (!ConstantSize || !ConstantSize->isNullValue()) {
739       // The glvalue must refer to a large enough storage region.
740       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
741       //        to check this.
742       // FIXME: Get object address space
743       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
744       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
745       llvm::Value *Min = Builder.getFalse();
746       llvm::Value *NullIsUnknown = Builder.getFalse();
747       llvm::Value *Dynamic = Builder.getFalse();
748       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
749       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
750           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
751       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
752     }
753   }
754 
755   uint64_t AlignVal = 0;
756   llvm::Value *PtrAsInt = nullptr;
757 
758   if (SanOpts.has(SanitizerKind::Alignment) &&
759       !SkippedChecks.has(SanitizerKind::Alignment)) {
760     AlignVal = Alignment.getQuantity();
761     if (!Ty->isIncompleteType() && !AlignVal)
762       AlignVal =
763           getNaturalTypeAlignment(Ty, nullptr, nullptr, /*ForPointeeType=*/true)
764               .getQuantity();
765 
766     // The glvalue must be suitably aligned.
767     if (AlignVal > 1 &&
768         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
769       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
770       llvm::Value *Align = Builder.CreateAnd(
771           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
772       llvm::Value *Aligned =
773           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
774       if (Aligned != True)
775         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
776     }
777   }
778 
779   if (Checks.size() > 0) {
780     // Make sure we're not losing information. Alignment needs to be a power of
781     // 2
782     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
783     llvm::Constant *StaticData[] = {
784         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
785         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
786         llvm::ConstantInt::get(Int8Ty, TCK)};
787     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
788               PtrAsInt ? PtrAsInt : Ptr);
789   }
790 
791   // If possible, check that the vptr indicates that there is a subobject of
792   // type Ty at offset zero within this object.
793   //
794   // C++11 [basic.life]p5,6:
795   //   [For storage which does not refer to an object within its lifetime]
796   //   The program has undefined behavior if:
797   //    -- the [pointer or glvalue] is used to access a non-static data member
798   //       or call a non-static member function
799   if (SanOpts.has(SanitizerKind::Vptr) &&
800       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
801     // Ensure that the pointer is non-null before loading it. If there is no
802     // compile-time guarantee, reuse the run-time null check or emit a new one.
803     if (!IsGuaranteedNonNull) {
804       if (!IsNonNull)
805         IsNonNull = Builder.CreateIsNotNull(Ptr);
806       if (!Done)
807         Done = createBasicBlock("vptr.null");
808       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
809       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
810       EmitBlock(VptrNotNull);
811     }
812 
813     // Compute a hash of the mangled name of the type.
814     //
815     // FIXME: This is not guaranteed to be deterministic! Move to a
816     //        fingerprinting mechanism once LLVM provides one. For the time
817     //        being the implementation happens to be deterministic.
818     SmallString<64> MangledName;
819     llvm::raw_svector_ostream Out(MangledName);
820     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
821                                                      Out);
822 
823     // Blacklist based on the mangled type.
824     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
825             SanitizerKind::Vptr, Out.str())) {
826       llvm::hash_code TypeHash = hash_value(Out.str());
827 
828       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
829       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
830       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
831       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
832       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
833       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
834 
835       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
836       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
837 
838       // Look the hash up in our cache.
839       const int CacheSize = 128;
840       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
841       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
842                                                      "__ubsan_vptr_type_cache");
843       llvm::Value *Slot = Builder.CreateAnd(Hash,
844                                             llvm::ConstantInt::get(IntPtrTy,
845                                                                    CacheSize-1));
846       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
847       llvm::Value *CacheVal =
848         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
849                                   getPointerAlign());
850 
851       // If the hash isn't in the cache, call a runtime handler to perform the
852       // hard work of checking whether the vptr is for an object of the right
853       // type. This will either fill in the cache and return, or produce a
854       // diagnostic.
855       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
856       llvm::Constant *StaticData[] = {
857         EmitCheckSourceLocation(Loc),
858         EmitCheckTypeDescriptor(Ty),
859         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
860         llvm::ConstantInt::get(Int8Ty, TCK)
861       };
862       llvm::Value *DynamicData[] = { Ptr, Hash };
863       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
864                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
865                 DynamicData);
866     }
867   }
868 
869   if (Done) {
870     Builder.CreateBr(Done);
871     EmitBlock(Done);
872   }
873 }
874 
875 /// Determine whether this expression refers to a flexible array member in a
876 /// struct. We disable array bounds checks for such members.
877 static bool isFlexibleArrayMemberExpr(const Expr *E) {
878   // For compatibility with existing code, we treat arrays of length 0 or
879   // 1 as flexible array members.
880   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
881   // the two mechanisms.
882   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
883   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
884     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
885     // was produced by macro expansion.
886     if (CAT->getSize().ugt(1))
887       return false;
888   } else if (!isa<IncompleteArrayType>(AT))
889     return false;
890 
891   E = E->IgnoreParens();
892 
893   // A flexible array member must be the last member in the class.
894   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
895     // FIXME: If the base type of the member expr is not FD->getParent(),
896     // this should not be treated as a flexible array member access.
897     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
898       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
899       // member, only a T[0] or T[] member gets that treatment.
900       if (FD->getParent()->isUnion())
901         return true;
902       RecordDecl::field_iterator FI(
903           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
904       return ++FI == FD->getParent()->field_end();
905     }
906   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
907     return IRE->getDecl()->getNextIvar() == nullptr;
908   }
909 
910   return false;
911 }
912 
913 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
914                                                    QualType EltTy) {
915   ASTContext &C = getContext();
916   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
917   if (!EltSize)
918     return nullptr;
919 
920   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
921   if (!ArrayDeclRef)
922     return nullptr;
923 
924   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
925   if (!ParamDecl)
926     return nullptr;
927 
928   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
929   if (!POSAttr)
930     return nullptr;
931 
932   // Don't load the size if it's a lower bound.
933   int POSType = POSAttr->getType();
934   if (POSType != 0 && POSType != 1)
935     return nullptr;
936 
937   // Find the implicit size parameter.
938   auto PassedSizeIt = SizeArguments.find(ParamDecl);
939   if (PassedSizeIt == SizeArguments.end())
940     return nullptr;
941 
942   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
943   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
944   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
945   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
946                                               C.getSizeType(), E->getExprLoc());
947   llvm::Value *SizeOfElement =
948       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
949   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
950 }
951 
952 /// If Base is known to point to the start of an array, return the length of
953 /// that array. Return 0 if the length cannot be determined.
954 static llvm::Value *getArrayIndexingBound(
955     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
956   // For the vector indexing extension, the bound is the number of elements.
957   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
958     IndexedType = Base->getType();
959     return CGF.Builder.getInt32(VT->getNumElements());
960   }
961 
962   Base = Base->IgnoreParens();
963 
964   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
965     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
966         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
967       IndexedType = CE->getSubExpr()->getType();
968       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
969       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
970         return CGF.Builder.getInt(CAT->getSize());
971       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
972         return CGF.getVLASize(VAT).NumElts;
973       // Ignore pass_object_size here. It's not applicable on decayed pointers.
974     }
975   }
976 
977   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
978   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
979     IndexedType = Base->getType();
980     return POS;
981   }
982 
983   return nullptr;
984 }
985 
986 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
987                                       llvm::Value *Index, QualType IndexType,
988                                       bool Accessed) {
989   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
990          "should not be called unless adding bounds checks");
991   SanitizerScope SanScope(this);
992 
993   QualType IndexedType;
994   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
995   if (!Bound)
996     return;
997 
998   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
999   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1000   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1001 
1002   llvm::Constant *StaticData[] = {
1003     EmitCheckSourceLocation(E->getExprLoc()),
1004     EmitCheckTypeDescriptor(IndexedType),
1005     EmitCheckTypeDescriptor(IndexType)
1006   };
1007   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1008                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1009   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1010             SanitizerHandler::OutOfBounds, StaticData, Index);
1011 }
1012 
1013 
1014 CodeGenFunction::ComplexPairTy CodeGenFunction::
1015 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1016                          bool isInc, bool isPre) {
1017   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1018 
1019   llvm::Value *NextVal;
1020   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1021     uint64_t AmountVal = isInc ? 1 : -1;
1022     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1023 
1024     // Add the inc/dec to the real part.
1025     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1026   } else {
1027     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1028     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1029     if (!isInc)
1030       FVal.changeSign();
1031     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1032 
1033     // Add the inc/dec to the real part.
1034     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1035   }
1036 
1037   ComplexPairTy IncVal(NextVal, InVal.second);
1038 
1039   // Store the updated result through the lvalue.
1040   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1041   if (getLangOpts().OpenMP)
1042     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1043                                                               E->getSubExpr());
1044 
1045   // If this is a postinc, return the value read from memory, otherwise use the
1046   // updated value.
1047   return isPre ? IncVal : InVal;
1048 }
1049 
1050 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1051                                              CodeGenFunction *CGF) {
1052   // Bind VLAs in the cast type.
1053   if (CGF && E->getType()->isVariablyModifiedType())
1054     CGF->EmitVariablyModifiedType(E->getType());
1055 
1056   if (CGDebugInfo *DI = getModuleDebugInfo())
1057     DI->EmitExplicitCastType(E->getType());
1058 }
1059 
1060 //===----------------------------------------------------------------------===//
1061 //                         LValue Expression Emission
1062 //===----------------------------------------------------------------------===//
1063 
1064 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1065 /// derive a more accurate bound on the alignment of the pointer.
1066 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1067                                                   LValueBaseInfo *BaseInfo,
1068                                                   TBAAAccessInfo *TBAAInfo) {
1069   // We allow this with ObjC object pointers because of fragile ABIs.
1070   assert(E->getType()->isPointerType() ||
1071          E->getType()->isObjCObjectPointerType());
1072   E = E->IgnoreParens();
1073 
1074   // Casts:
1075   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1076     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1077       CGM.EmitExplicitCastExprType(ECE, this);
1078 
1079     switch (CE->getCastKind()) {
1080     // Non-converting casts (but not C's implicit conversion from void*).
1081     case CK_BitCast:
1082     case CK_NoOp:
1083     case CK_AddressSpaceConversion:
1084       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1085         if (PtrTy->getPointeeType()->isVoidType())
1086           break;
1087 
1088         LValueBaseInfo InnerBaseInfo;
1089         TBAAAccessInfo InnerTBAAInfo;
1090         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1091                                                 &InnerBaseInfo,
1092                                                 &InnerTBAAInfo);
1093         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1094         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1095 
1096         if (isa<ExplicitCastExpr>(CE)) {
1097           LValueBaseInfo TargetTypeBaseInfo;
1098           TBAAAccessInfo TargetTypeTBAAInfo;
1099           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1100                                                            &TargetTypeBaseInfo,
1101                                                            &TargetTypeTBAAInfo);
1102           if (TBAAInfo)
1103             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1104                                                  TargetTypeTBAAInfo);
1105           // If the source l-value is opaque, honor the alignment of the
1106           // casted-to type.
1107           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1108             if (BaseInfo)
1109               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1110             Addr = Address(Addr.getPointer(), Align);
1111           }
1112         }
1113 
1114         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1115             CE->getCastKind() == CK_BitCast) {
1116           if (auto PT = E->getType()->getAs<PointerType>())
1117             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1118                                       /*MayBeNull=*/true,
1119                                       CodeGenFunction::CFITCK_UnrelatedCast,
1120                                       CE->getBeginLoc());
1121         }
1122         return CE->getCastKind() != CK_AddressSpaceConversion
1123                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1124                    : Builder.CreateAddrSpaceCast(Addr,
1125                                                  ConvertType(E->getType()));
1126       }
1127       break;
1128 
1129     // Array-to-pointer decay.
1130     case CK_ArrayToPointerDecay:
1131       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1132 
1133     // Derived-to-base conversions.
1134     case CK_UncheckedDerivedToBase:
1135     case CK_DerivedToBase: {
1136       // TODO: Support accesses to members of base classes in TBAA. For now, we
1137       // conservatively pretend that the complete object is of the base class
1138       // type.
1139       if (TBAAInfo)
1140         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1141       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1142       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1143       return GetAddressOfBaseClass(Addr, Derived,
1144                                    CE->path_begin(), CE->path_end(),
1145                                    ShouldNullCheckClassCastValue(CE),
1146                                    CE->getExprLoc());
1147     }
1148 
1149     // TODO: Is there any reason to treat base-to-derived conversions
1150     // specially?
1151     default:
1152       break;
1153     }
1154   }
1155 
1156   // Unary &.
1157   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1158     if (UO->getOpcode() == UO_AddrOf) {
1159       LValue LV = EmitLValue(UO->getSubExpr());
1160       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1161       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1162       return LV.getAddress(*this);
1163     }
1164   }
1165 
1166   // TODO: conditional operators, comma.
1167 
1168   // Otherwise, use the alignment of the type.
1169   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1170                                                    TBAAInfo);
1171   return Address(EmitScalarExpr(E), Align);
1172 }
1173 
1174 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1175   if (Ty->isVoidType())
1176     return RValue::get(nullptr);
1177 
1178   switch (getEvaluationKind(Ty)) {
1179   case TEK_Complex: {
1180     llvm::Type *EltTy =
1181       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1182     llvm::Value *U = llvm::UndefValue::get(EltTy);
1183     return RValue::getComplex(std::make_pair(U, U));
1184   }
1185 
1186   // If this is a use of an undefined aggregate type, the aggregate must have an
1187   // identifiable address.  Just because the contents of the value are undefined
1188   // doesn't mean that the address can't be taken and compared.
1189   case TEK_Aggregate: {
1190     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1191     return RValue::getAggregate(DestPtr);
1192   }
1193 
1194   case TEK_Scalar:
1195     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1196   }
1197   llvm_unreachable("bad evaluation kind");
1198 }
1199 
1200 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1201                                               const char *Name) {
1202   ErrorUnsupported(E, Name);
1203   return GetUndefRValue(E->getType());
1204 }
1205 
1206 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1207                                               const char *Name) {
1208   ErrorUnsupported(E, Name);
1209   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1210   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1211                         E->getType());
1212 }
1213 
1214 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1215   const Expr *Base = Obj;
1216   while (!isa<CXXThisExpr>(Base)) {
1217     // The result of a dynamic_cast can be null.
1218     if (isa<CXXDynamicCastExpr>(Base))
1219       return false;
1220 
1221     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1222       Base = CE->getSubExpr();
1223     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1224       Base = PE->getSubExpr();
1225     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1226       if (UO->getOpcode() == UO_Extension)
1227         Base = UO->getSubExpr();
1228       else
1229         return false;
1230     } else {
1231       return false;
1232     }
1233   }
1234   return true;
1235 }
1236 
1237 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1238   LValue LV;
1239   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1240     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1241   else
1242     LV = EmitLValue(E);
1243   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1244     SanitizerSet SkippedChecks;
1245     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1246       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1247       if (IsBaseCXXThis)
1248         SkippedChecks.set(SanitizerKind::Alignment, true);
1249       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1250         SkippedChecks.set(SanitizerKind::Null, true);
1251     }
1252     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1253                   LV.getAlignment(), SkippedChecks);
1254   }
1255   return LV;
1256 }
1257 
1258 /// EmitLValue - Emit code to compute a designator that specifies the location
1259 /// of the expression.
1260 ///
1261 /// This can return one of two things: a simple address or a bitfield reference.
1262 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1263 /// an LLVM pointer type.
1264 ///
1265 /// If this returns a bitfield reference, nothing about the pointee type of the
1266 /// LLVM value is known: For example, it may not be a pointer to an integer.
1267 ///
1268 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1269 /// this method guarantees that the returned pointer type will point to an LLVM
1270 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1271 /// length type, this is not possible.
1272 ///
1273 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1274   ApplyDebugLocation DL(*this, E);
1275   switch (E->getStmtClass()) {
1276   default: return EmitUnsupportedLValue(E, "l-value expression");
1277 
1278   case Expr::ObjCPropertyRefExprClass:
1279     llvm_unreachable("cannot emit a property reference directly");
1280 
1281   case Expr::ObjCSelectorExprClass:
1282     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1283   case Expr::ObjCIsaExprClass:
1284     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1285   case Expr::BinaryOperatorClass:
1286     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1287   case Expr::CompoundAssignOperatorClass: {
1288     QualType Ty = E->getType();
1289     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1290       Ty = AT->getValueType();
1291     if (!Ty->isAnyComplexType())
1292       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1293     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1294   }
1295   case Expr::CallExprClass:
1296   case Expr::CXXMemberCallExprClass:
1297   case Expr::CXXOperatorCallExprClass:
1298   case Expr::UserDefinedLiteralClass:
1299     return EmitCallExprLValue(cast<CallExpr>(E));
1300   case Expr::CXXRewrittenBinaryOperatorClass:
1301     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1302   case Expr::VAArgExprClass:
1303     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1304   case Expr::DeclRefExprClass:
1305     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1306   case Expr::ConstantExprClass:
1307     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1308   case Expr::ParenExprClass:
1309     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1310   case Expr::GenericSelectionExprClass:
1311     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1312   case Expr::PredefinedExprClass:
1313     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1314   case Expr::StringLiteralClass:
1315     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1316   case Expr::ObjCEncodeExprClass:
1317     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1318   case Expr::PseudoObjectExprClass:
1319     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1320   case Expr::InitListExprClass:
1321     return EmitInitListLValue(cast<InitListExpr>(E));
1322   case Expr::CXXTemporaryObjectExprClass:
1323   case Expr::CXXConstructExprClass:
1324     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1325   case Expr::CXXBindTemporaryExprClass:
1326     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1327   case Expr::CXXUuidofExprClass:
1328     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1329   case Expr::LambdaExprClass:
1330     return EmitAggExprToLValue(E);
1331 
1332   case Expr::ExprWithCleanupsClass: {
1333     const auto *cleanups = cast<ExprWithCleanups>(E);
1334     enterFullExpression(cleanups);
1335     RunCleanupsScope Scope(*this);
1336     LValue LV = EmitLValue(cleanups->getSubExpr());
1337     if (LV.isSimple()) {
1338       // Defend against branches out of gnu statement expressions surrounded by
1339       // cleanups.
1340       llvm::Value *V = LV.getPointer(*this);
1341       Scope.ForceCleanup({&V});
1342       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1343                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1344     }
1345     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1346     // bitfield lvalue or some other non-simple lvalue?
1347     return LV;
1348   }
1349 
1350   case Expr::CXXDefaultArgExprClass: {
1351     auto *DAE = cast<CXXDefaultArgExpr>(E);
1352     CXXDefaultArgExprScope Scope(*this, DAE);
1353     return EmitLValue(DAE->getExpr());
1354   }
1355   case Expr::CXXDefaultInitExprClass: {
1356     auto *DIE = cast<CXXDefaultInitExpr>(E);
1357     CXXDefaultInitExprScope Scope(*this, DIE);
1358     return EmitLValue(DIE->getExpr());
1359   }
1360   case Expr::CXXTypeidExprClass:
1361     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1362 
1363   case Expr::ObjCMessageExprClass:
1364     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1365   case Expr::ObjCIvarRefExprClass:
1366     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1367   case Expr::StmtExprClass:
1368     return EmitStmtExprLValue(cast<StmtExpr>(E));
1369   case Expr::UnaryOperatorClass:
1370     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1371   case Expr::ArraySubscriptExprClass:
1372     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1373   case Expr::OMPArraySectionExprClass:
1374     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1375   case Expr::ExtVectorElementExprClass:
1376     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1377   case Expr::MemberExprClass:
1378     return EmitMemberExpr(cast<MemberExpr>(E));
1379   case Expr::CompoundLiteralExprClass:
1380     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1381   case Expr::ConditionalOperatorClass:
1382     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1383   case Expr::BinaryConditionalOperatorClass:
1384     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1385   case Expr::ChooseExprClass:
1386     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1387   case Expr::OpaqueValueExprClass:
1388     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1389   case Expr::SubstNonTypeTemplateParmExprClass:
1390     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1391   case Expr::ImplicitCastExprClass:
1392   case Expr::CStyleCastExprClass:
1393   case Expr::CXXFunctionalCastExprClass:
1394   case Expr::CXXStaticCastExprClass:
1395   case Expr::CXXDynamicCastExprClass:
1396   case Expr::CXXReinterpretCastExprClass:
1397   case Expr::CXXConstCastExprClass:
1398   case Expr::ObjCBridgedCastExprClass:
1399     return EmitCastLValue(cast<CastExpr>(E));
1400 
1401   case Expr::MaterializeTemporaryExprClass:
1402     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1403 
1404   case Expr::CoawaitExprClass:
1405     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1406   case Expr::CoyieldExprClass:
1407     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1408   }
1409 }
1410 
1411 /// Given an object of the given canonical type, can we safely copy a
1412 /// value out of it based on its initializer?
1413 static bool isConstantEmittableObjectType(QualType type) {
1414   assert(type.isCanonical());
1415   assert(!type->isReferenceType());
1416 
1417   // Must be const-qualified but non-volatile.
1418   Qualifiers qs = type.getLocalQualifiers();
1419   if (!qs.hasConst() || qs.hasVolatile()) return false;
1420 
1421   // Otherwise, all object types satisfy this except C++ classes with
1422   // mutable subobjects or non-trivial copy/destroy behavior.
1423   if (const auto *RT = dyn_cast<RecordType>(type))
1424     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1425       if (RD->hasMutableFields() || !RD->isTrivial())
1426         return false;
1427 
1428   return true;
1429 }
1430 
1431 /// Can we constant-emit a load of a reference to a variable of the
1432 /// given type?  This is different from predicates like
1433 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1434 /// in situations that don't necessarily satisfy the language's rules
1435 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1436 /// to do this with const float variables even if those variables
1437 /// aren't marked 'constexpr'.
1438 enum ConstantEmissionKind {
1439   CEK_None,
1440   CEK_AsReferenceOnly,
1441   CEK_AsValueOrReference,
1442   CEK_AsValueOnly
1443 };
1444 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1445   type = type.getCanonicalType();
1446   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1447     if (isConstantEmittableObjectType(ref->getPointeeType()))
1448       return CEK_AsValueOrReference;
1449     return CEK_AsReferenceOnly;
1450   }
1451   if (isConstantEmittableObjectType(type))
1452     return CEK_AsValueOnly;
1453   return CEK_None;
1454 }
1455 
1456 /// Try to emit a reference to the given value without producing it as
1457 /// an l-value.  This is just an optimization, but it avoids us needing
1458 /// to emit global copies of variables if they're named without triggering
1459 /// a formal use in a context where we can't emit a direct reference to them,
1460 /// for instance if a block or lambda or a member of a local class uses a
1461 /// const int variable or constexpr variable from an enclosing function.
1462 CodeGenFunction::ConstantEmission
1463 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1464   ValueDecl *value = refExpr->getDecl();
1465 
1466   // The value needs to be an enum constant or a constant variable.
1467   ConstantEmissionKind CEK;
1468   if (isa<ParmVarDecl>(value)) {
1469     CEK = CEK_None;
1470   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1471     CEK = checkVarTypeForConstantEmission(var->getType());
1472   } else if (isa<EnumConstantDecl>(value)) {
1473     CEK = CEK_AsValueOnly;
1474   } else {
1475     CEK = CEK_None;
1476   }
1477   if (CEK == CEK_None) return ConstantEmission();
1478 
1479   Expr::EvalResult result;
1480   bool resultIsReference;
1481   QualType resultType;
1482 
1483   // It's best to evaluate all the way as an r-value if that's permitted.
1484   if (CEK != CEK_AsReferenceOnly &&
1485       refExpr->EvaluateAsRValue(result, getContext())) {
1486     resultIsReference = false;
1487     resultType = refExpr->getType();
1488 
1489   // Otherwise, try to evaluate as an l-value.
1490   } else if (CEK != CEK_AsValueOnly &&
1491              refExpr->EvaluateAsLValue(result, getContext())) {
1492     resultIsReference = true;
1493     resultType = value->getType();
1494 
1495   // Failure.
1496   } else {
1497     return ConstantEmission();
1498   }
1499 
1500   // In any case, if the initializer has side-effects, abandon ship.
1501   if (result.HasSideEffects)
1502     return ConstantEmission();
1503 
1504   // Emit as a constant.
1505   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1506                                                result.Val, resultType);
1507 
1508   // Make sure we emit a debug reference to the global variable.
1509   // This should probably fire even for
1510   if (isa<VarDecl>(value)) {
1511     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1512       EmitDeclRefExprDbgValue(refExpr, result.Val);
1513   } else {
1514     assert(isa<EnumConstantDecl>(value));
1515     EmitDeclRefExprDbgValue(refExpr, result.Val);
1516   }
1517 
1518   // If we emitted a reference constant, we need to dereference that.
1519   if (resultIsReference)
1520     return ConstantEmission::forReference(C);
1521 
1522   return ConstantEmission::forValue(C);
1523 }
1524 
1525 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1526                                                         const MemberExpr *ME) {
1527   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1528     // Try to emit static variable member expressions as DREs.
1529     return DeclRefExpr::Create(
1530         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1531         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1532         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1533   }
1534   return nullptr;
1535 }
1536 
1537 CodeGenFunction::ConstantEmission
1538 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1539   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1540     return tryEmitAsConstant(DRE);
1541   return ConstantEmission();
1542 }
1543 
1544 llvm::Value *CodeGenFunction::emitScalarConstant(
1545     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1546   assert(Constant && "not a constant");
1547   if (Constant.isReference())
1548     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1549                             E->getExprLoc())
1550         .getScalarVal();
1551   return Constant.getValue();
1552 }
1553 
1554 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1555                                                SourceLocation Loc) {
1556   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1557                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1558                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1559 }
1560 
1561 static bool hasBooleanRepresentation(QualType Ty) {
1562   if (Ty->isBooleanType())
1563     return true;
1564 
1565   if (const EnumType *ET = Ty->getAs<EnumType>())
1566     return ET->getDecl()->getIntegerType()->isBooleanType();
1567 
1568   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1569     return hasBooleanRepresentation(AT->getValueType());
1570 
1571   return false;
1572 }
1573 
1574 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1575                             llvm::APInt &Min, llvm::APInt &End,
1576                             bool StrictEnums, bool IsBool) {
1577   const EnumType *ET = Ty->getAs<EnumType>();
1578   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1579                                 ET && !ET->getDecl()->isFixed();
1580   if (!IsBool && !IsRegularCPlusPlusEnum)
1581     return false;
1582 
1583   if (IsBool) {
1584     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1585     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1586   } else {
1587     const EnumDecl *ED = ET->getDecl();
1588     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1589     unsigned Bitwidth = LTy->getScalarSizeInBits();
1590     unsigned NumNegativeBits = ED->getNumNegativeBits();
1591     unsigned NumPositiveBits = ED->getNumPositiveBits();
1592 
1593     if (NumNegativeBits) {
1594       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1595       assert(NumBits <= Bitwidth);
1596       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1597       Min = -End;
1598     } else {
1599       assert(NumPositiveBits <= Bitwidth);
1600       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1601       Min = llvm::APInt(Bitwidth, 0);
1602     }
1603   }
1604   return true;
1605 }
1606 
1607 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1608   llvm::APInt Min, End;
1609   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1610                        hasBooleanRepresentation(Ty)))
1611     return nullptr;
1612 
1613   llvm::MDBuilder MDHelper(getLLVMContext());
1614   return MDHelper.createRange(Min, End);
1615 }
1616 
1617 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1618                                            SourceLocation Loc) {
1619   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1620   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1621   if (!HasBoolCheck && !HasEnumCheck)
1622     return false;
1623 
1624   bool IsBool = hasBooleanRepresentation(Ty) ||
1625                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1626   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1627   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1628   if (!NeedsBoolCheck && !NeedsEnumCheck)
1629     return false;
1630 
1631   // Single-bit booleans don't need to be checked. Special-case this to avoid
1632   // a bit width mismatch when handling bitfield values. This is handled by
1633   // EmitFromMemory for the non-bitfield case.
1634   if (IsBool &&
1635       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1636     return false;
1637 
1638   llvm::APInt Min, End;
1639   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1640     return true;
1641 
1642   auto &Ctx = getLLVMContext();
1643   SanitizerScope SanScope(this);
1644   llvm::Value *Check;
1645   --End;
1646   if (!Min) {
1647     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1648   } else {
1649     llvm::Value *Upper =
1650         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1651     llvm::Value *Lower =
1652         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1653     Check = Builder.CreateAnd(Upper, Lower);
1654   }
1655   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1656                                   EmitCheckTypeDescriptor(Ty)};
1657   SanitizerMask Kind =
1658       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1659   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1660             StaticArgs, EmitCheckValue(Value));
1661   return true;
1662 }
1663 
1664 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1665                                                QualType Ty,
1666                                                SourceLocation Loc,
1667                                                LValueBaseInfo BaseInfo,
1668                                                TBAAAccessInfo TBAAInfo,
1669                                                bool isNontemporal) {
1670   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1671     // For better performance, handle vector loads differently.
1672     if (Ty->isVectorType()) {
1673       const llvm::Type *EltTy = Addr.getElementType();
1674 
1675       const auto *VTy = cast<llvm::VectorType>(EltTy);
1676 
1677       // Handle vectors of size 3 like size 4 for better performance.
1678       if (VTy->getNumElements() == 3) {
1679 
1680         // Bitcast to vec4 type.
1681         llvm::VectorType *vec4Ty =
1682             llvm::VectorType::get(VTy->getElementType(), 4);
1683         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1684         // Now load value.
1685         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1686 
1687         // Shuffle vector to get vec3.
1688         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1689                                         ArrayRef<int>{0, 1, 2}, "extractVec");
1690         return EmitFromMemory(V, Ty);
1691       }
1692     }
1693   }
1694 
1695   // Atomic operations have to be done on integral types.
1696   LValue AtomicLValue =
1697       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1698   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1699     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1700   }
1701 
1702   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1703   if (isNontemporal) {
1704     llvm::MDNode *Node = llvm::MDNode::get(
1705         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1706     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1707   }
1708 
1709   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1710 
1711   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1712     // In order to prevent the optimizer from throwing away the check, don't
1713     // attach range metadata to the load.
1714   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1715     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1716       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1717 
1718   return EmitFromMemory(Load, Ty);
1719 }
1720 
1721 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1722   // Bool has a different representation in memory than in registers.
1723   if (hasBooleanRepresentation(Ty)) {
1724     // This should really always be an i1, but sometimes it's already
1725     // an i8, and it's awkward to track those cases down.
1726     if (Value->getType()->isIntegerTy(1))
1727       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1728     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1729            "wrong value rep of bool");
1730   }
1731 
1732   return Value;
1733 }
1734 
1735 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1736   // Bool has a different representation in memory than in registers.
1737   if (hasBooleanRepresentation(Ty)) {
1738     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1739            "wrong value rep of bool");
1740     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1741   }
1742 
1743   return Value;
1744 }
1745 
1746 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1747 // MatrixType), if it points to a array (the memory type of MatrixType).
1748 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1749                                          bool IsVector = true) {
1750   auto *ArrayTy = dyn_cast<llvm::ArrayType>(
1751       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1752   if (ArrayTy && IsVector) {
1753     auto *VectorTy = llvm::VectorType::get(ArrayTy->getElementType(),
1754                                            ArrayTy->getNumElements());
1755 
1756     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1757   }
1758   auto *VectorTy = dyn_cast<llvm::VectorType>(
1759       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1760   if (VectorTy && !IsVector) {
1761     auto *ArrayTy = llvm::ArrayType::get(VectorTy->getElementType(),
1762                                          VectorTy->getNumElements());
1763 
1764     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1765   }
1766 
1767   return Addr;
1768 }
1769 
1770 // Emit a store of a matrix LValue. This may require casting the original
1771 // pointer to memory address (ArrayType) to a pointer to the value type
1772 // (VectorType).
1773 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1774                                     bool isInit, CodeGenFunction &CGF) {
1775   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1776                                            value->getType()->isVectorTy());
1777   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1778                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1779                         lvalue.isNontemporal());
1780 }
1781 
1782 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1783                                         bool Volatile, QualType Ty,
1784                                         LValueBaseInfo BaseInfo,
1785                                         TBAAAccessInfo TBAAInfo,
1786                                         bool isInit, bool isNontemporal) {
1787   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1788     // Handle vectors differently to get better performance.
1789     if (Ty->isVectorType()) {
1790       llvm::Type *SrcTy = Value->getType();
1791       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1792       // Handle vec3 special.
1793       if (VecTy && VecTy->getNumElements() == 3) {
1794         // Our source is a vec3, do a shuffle vector to make it a vec4.
1795         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1796                                             ArrayRef<int>{0, 1, 2, -1},
1797                                             "extractVec");
1798         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1799       }
1800       if (Addr.getElementType() != SrcTy) {
1801         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1802       }
1803     }
1804   }
1805 
1806   Value = EmitToMemory(Value, Ty);
1807 
1808   LValue AtomicLValue =
1809       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1810   if (Ty->isAtomicType() ||
1811       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1812     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1813     return;
1814   }
1815 
1816   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1817   if (isNontemporal) {
1818     llvm::MDNode *Node =
1819         llvm::MDNode::get(Store->getContext(),
1820                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1821     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1822   }
1823 
1824   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1825 }
1826 
1827 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1828                                         bool isInit) {
1829   if (lvalue.getType()->isConstantMatrixType()) {
1830     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1831     return;
1832   }
1833 
1834   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1835                     lvalue.getType(), lvalue.getBaseInfo(),
1836                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1837 }
1838 
1839 // Emit a load of a LValue of matrix type. This may require casting the pointer
1840 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1841 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1842                                      CodeGenFunction &CGF) {
1843   assert(LV.getType()->isConstantMatrixType());
1844   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1845   LV.setAddress(Addr);
1846   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1847 }
1848 
1849 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1850 /// method emits the address of the lvalue, then loads the result as an rvalue,
1851 /// returning the rvalue.
1852 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1853   if (LV.isObjCWeak()) {
1854     // load of a __weak object.
1855     Address AddrWeakObj = LV.getAddress(*this);
1856     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1857                                                              AddrWeakObj));
1858   }
1859   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1860     // In MRC mode, we do a load+autorelease.
1861     if (!getLangOpts().ObjCAutoRefCount) {
1862       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1863     }
1864 
1865     // In ARC mode, we load retained and then consume the value.
1866     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1867     Object = EmitObjCConsumeObject(LV.getType(), Object);
1868     return RValue::get(Object);
1869   }
1870 
1871   if (LV.isSimple()) {
1872     assert(!LV.getType()->isFunctionType());
1873 
1874     if (LV.getType()->isConstantMatrixType())
1875       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1876 
1877     // Everything needs a load.
1878     return RValue::get(EmitLoadOfScalar(LV, Loc));
1879   }
1880 
1881   if (LV.isVectorElt()) {
1882     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1883                                               LV.isVolatileQualified());
1884     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1885                                                     "vecext"));
1886   }
1887 
1888   // If this is a reference to a subset of the elements of a vector, either
1889   // shuffle the input or extract/insert them as appropriate.
1890   if (LV.isExtVectorElt())
1891     return EmitLoadOfExtVectorElementLValue(LV);
1892 
1893   // Global Register variables always invoke intrinsics
1894   if (LV.isGlobalReg())
1895     return EmitLoadOfGlobalRegLValue(LV);
1896 
1897   assert(LV.isBitField() && "Unknown LValue type!");
1898   return EmitLoadOfBitfieldLValue(LV, Loc);
1899 }
1900 
1901 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1902                                                  SourceLocation Loc) {
1903   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1904 
1905   // Get the output type.
1906   llvm::Type *ResLTy = ConvertType(LV.getType());
1907 
1908   Address Ptr = LV.getBitFieldAddress();
1909   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1910 
1911   if (Info.IsSigned) {
1912     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1913     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1914     if (HighBits)
1915       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1916     if (Info.Offset + HighBits)
1917       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1918   } else {
1919     if (Info.Offset)
1920       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1921     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1922       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1923                                                               Info.Size),
1924                               "bf.clear");
1925   }
1926   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1927   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1928   return RValue::get(Val);
1929 }
1930 
1931 // If this is a reference to a subset of the elements of a vector, create an
1932 // appropriate shufflevector.
1933 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1934   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1935                                         LV.isVolatileQualified());
1936 
1937   const llvm::Constant *Elts = LV.getExtVectorElts();
1938 
1939   // If the result of the expression is a non-vector type, we must be extracting
1940   // a single element.  Just codegen as an extractelement.
1941   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1942   if (!ExprVT) {
1943     unsigned InIdx = getAccessedFieldNo(0, Elts);
1944     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1945     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1946   }
1947 
1948   // Always use shuffle vector to try to retain the original program structure
1949   unsigned NumResultElts = ExprVT->getNumElements();
1950 
1951   SmallVector<int, 4> Mask;
1952   for (unsigned i = 0; i != NumResultElts; ++i)
1953     Mask.push_back(getAccessedFieldNo(i, Elts));
1954 
1955   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1956                                     Mask);
1957   return RValue::get(Vec);
1958 }
1959 
1960 /// Generates lvalue for partial ext_vector access.
1961 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1962   Address VectorAddress = LV.getExtVectorAddress();
1963   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
1964   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1965 
1966   Address CastToPointerElement =
1967     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1968                                  "conv.ptr.element");
1969 
1970   const llvm::Constant *Elts = LV.getExtVectorElts();
1971   unsigned ix = getAccessedFieldNo(0, Elts);
1972 
1973   Address VectorBasePtrPlusIx =
1974     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1975                                    "vector.elt");
1976 
1977   return VectorBasePtrPlusIx;
1978 }
1979 
1980 /// Load of global gamed gegisters are always calls to intrinsics.
1981 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1982   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1983          "Bad type for register variable");
1984   llvm::MDNode *RegName = cast<llvm::MDNode>(
1985       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1986 
1987   // We accept integer and pointer types only
1988   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1989   llvm::Type *Ty = OrigTy;
1990   if (OrigTy->isPointerTy())
1991     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1992   llvm::Type *Types[] = { Ty };
1993 
1994   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1995   llvm::Value *Call = Builder.CreateCall(
1996       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1997   if (OrigTy->isPointerTy())
1998     Call = Builder.CreateIntToPtr(Call, OrigTy);
1999   return RValue::get(Call);
2000 }
2001 
2002 
2003 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2004 /// lvalue, where both are guaranteed to the have the same type, and that type
2005 /// is 'Ty'.
2006 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2007                                              bool isInit) {
2008   if (!Dst.isSimple()) {
2009     if (Dst.isVectorElt()) {
2010       // Read/modify/write the vector, inserting the new element.
2011       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2012                                             Dst.isVolatileQualified());
2013       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2014                                         Dst.getVectorIdx(), "vecins");
2015       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2016                           Dst.isVolatileQualified());
2017       return;
2018     }
2019 
2020     // If this is an update of extended vector elements, insert them as
2021     // appropriate.
2022     if (Dst.isExtVectorElt())
2023       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2024 
2025     if (Dst.isGlobalReg())
2026       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2027 
2028     assert(Dst.isBitField() && "Unknown LValue type");
2029     return EmitStoreThroughBitfieldLValue(Src, Dst);
2030   }
2031 
2032   // There's special magic for assigning into an ARC-qualified l-value.
2033   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2034     switch (Lifetime) {
2035     case Qualifiers::OCL_None:
2036       llvm_unreachable("present but none");
2037 
2038     case Qualifiers::OCL_ExplicitNone:
2039       // nothing special
2040       break;
2041 
2042     case Qualifiers::OCL_Strong:
2043       if (isInit) {
2044         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2045         break;
2046       }
2047       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2048       return;
2049 
2050     case Qualifiers::OCL_Weak:
2051       if (isInit)
2052         // Initialize and then skip the primitive store.
2053         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2054       else
2055         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2056                          /*ignore*/ true);
2057       return;
2058 
2059     case Qualifiers::OCL_Autoreleasing:
2060       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2061                                                      Src.getScalarVal()));
2062       // fall into the normal path
2063       break;
2064     }
2065   }
2066 
2067   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2068     // load of a __weak object.
2069     Address LvalueDst = Dst.getAddress(*this);
2070     llvm::Value *src = Src.getScalarVal();
2071      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2072     return;
2073   }
2074 
2075   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2076     // load of a __strong object.
2077     Address LvalueDst = Dst.getAddress(*this);
2078     llvm::Value *src = Src.getScalarVal();
2079     if (Dst.isObjCIvar()) {
2080       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2081       llvm::Type *ResultType = IntPtrTy;
2082       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2083       llvm::Value *RHS = dst.getPointer();
2084       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2085       llvm::Value *LHS =
2086         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2087                                "sub.ptr.lhs.cast");
2088       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2089       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2090                                               BytesBetween);
2091     } else if (Dst.isGlobalObjCRef()) {
2092       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2093                                                 Dst.isThreadLocalRef());
2094     }
2095     else
2096       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2097     return;
2098   }
2099 
2100   assert(Src.isScalar() && "Can't emit an agg store with this method");
2101   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2102 }
2103 
2104 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2105                                                      llvm::Value **Result) {
2106   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2107   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2108   Address Ptr = Dst.getBitFieldAddress();
2109 
2110   // Get the source value, truncated to the width of the bit-field.
2111   llvm::Value *SrcVal = Src.getScalarVal();
2112 
2113   // Cast the source to the storage type and shift it into place.
2114   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2115                                  /*isSigned=*/false);
2116   llvm::Value *MaskedVal = SrcVal;
2117 
2118   // See if there are other bits in the bitfield's storage we'll need to load
2119   // and mask together with source before storing.
2120   if (Info.StorageSize != Info.Size) {
2121     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2122     llvm::Value *Val =
2123       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2124 
2125     // Mask the source value as needed.
2126     if (!hasBooleanRepresentation(Dst.getType()))
2127       SrcVal = Builder.CreateAnd(SrcVal,
2128                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2129                                                             Info.Size),
2130                                  "bf.value");
2131     MaskedVal = SrcVal;
2132     if (Info.Offset)
2133       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2134 
2135     // Mask out the original value.
2136     Val = Builder.CreateAnd(Val,
2137                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2138                                                      Info.Offset,
2139                                                      Info.Offset + Info.Size),
2140                             "bf.clear");
2141 
2142     // Or together the unchanged values and the source value.
2143     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2144   } else {
2145     assert(Info.Offset == 0);
2146     // According to the AACPS:
2147     // When a volatile bit-field is written, and its container does not overlap
2148     // with any non-bit-field member, its container must be read exactly once and
2149     // written exactly once using the access width appropriate to the type of the
2150     // container. The two accesses are not atomic.
2151     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2152         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2153       Builder.CreateLoad(Ptr, true, "bf.load");
2154   }
2155 
2156   // Write the new value back out.
2157   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2158 
2159   // Return the new value of the bit-field, if requested.
2160   if (Result) {
2161     llvm::Value *ResultVal = MaskedVal;
2162 
2163     // Sign extend the value if needed.
2164     if (Info.IsSigned) {
2165       assert(Info.Size <= Info.StorageSize);
2166       unsigned HighBits = Info.StorageSize - Info.Size;
2167       if (HighBits) {
2168         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2169         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2170       }
2171     }
2172 
2173     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2174                                       "bf.result.cast");
2175     *Result = EmitFromMemory(ResultVal, Dst.getType());
2176   }
2177 }
2178 
2179 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2180                                                                LValue Dst) {
2181   // This access turns into a read/modify/write of the vector.  Load the input
2182   // value now.
2183   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2184                                         Dst.isVolatileQualified());
2185   const llvm::Constant *Elts = Dst.getExtVectorElts();
2186 
2187   llvm::Value *SrcVal = Src.getScalarVal();
2188 
2189   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2190     unsigned NumSrcElts = VTy->getNumElements();
2191     unsigned NumDstElts =
2192         cast<llvm::VectorType>(Vec->getType())->getNumElements();
2193     if (NumDstElts == NumSrcElts) {
2194       // Use shuffle vector is the src and destination are the same number of
2195       // elements and restore the vector mask since it is on the side it will be
2196       // stored.
2197       SmallVector<int, 4> Mask(NumDstElts);
2198       for (unsigned i = 0; i != NumSrcElts; ++i)
2199         Mask[getAccessedFieldNo(i, Elts)] = i;
2200 
2201       Vec = Builder.CreateShuffleVector(
2202           SrcVal, llvm::UndefValue::get(Vec->getType()), Mask);
2203     } else if (NumDstElts > NumSrcElts) {
2204       // Extended the source vector to the same length and then shuffle it
2205       // into the destination.
2206       // FIXME: since we're shuffling with undef, can we just use the indices
2207       //        into that?  This could be simpler.
2208       SmallVector<int, 4> ExtMask;
2209       for (unsigned i = 0; i != NumSrcElts; ++i)
2210         ExtMask.push_back(i);
2211       ExtMask.resize(NumDstElts, -1);
2212       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(
2213           SrcVal, llvm::UndefValue::get(SrcVal->getType()), ExtMask);
2214       // build identity
2215       SmallVector<int, 4> Mask;
2216       for (unsigned i = 0; i != NumDstElts; ++i)
2217         Mask.push_back(i);
2218 
2219       // When the vector size is odd and .odd or .hi is used, the last element
2220       // of the Elts constant array will be one past the size of the vector.
2221       // Ignore the last element here, if it is greater than the mask size.
2222       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2223         NumSrcElts--;
2224 
2225       // modify when what gets shuffled in
2226       for (unsigned i = 0; i != NumSrcElts; ++i)
2227         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2228       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2229     } else {
2230       // We should never shorten the vector
2231       llvm_unreachable("unexpected shorten vector length");
2232     }
2233   } else {
2234     // If the Src is a scalar (not a vector) it must be updating one element.
2235     unsigned InIdx = getAccessedFieldNo(0, Elts);
2236     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2237     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2238   }
2239 
2240   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2241                       Dst.isVolatileQualified());
2242 }
2243 
2244 /// Store of global named registers are always calls to intrinsics.
2245 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2246   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2247          "Bad type for register variable");
2248   llvm::MDNode *RegName = cast<llvm::MDNode>(
2249       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2250   assert(RegName && "Register LValue is not metadata");
2251 
2252   // We accept integer and pointer types only
2253   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2254   llvm::Type *Ty = OrigTy;
2255   if (OrigTy->isPointerTy())
2256     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2257   llvm::Type *Types[] = { Ty };
2258 
2259   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2260   llvm::Value *Value = Src.getScalarVal();
2261   if (OrigTy->isPointerTy())
2262     Value = Builder.CreatePtrToInt(Value, Ty);
2263   Builder.CreateCall(
2264       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2265 }
2266 
2267 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2268 // generating write-barries API. It is currently a global, ivar,
2269 // or neither.
2270 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2271                                  LValue &LV,
2272                                  bool IsMemberAccess=false) {
2273   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2274     return;
2275 
2276   if (isa<ObjCIvarRefExpr>(E)) {
2277     QualType ExpTy = E->getType();
2278     if (IsMemberAccess && ExpTy->isPointerType()) {
2279       // If ivar is a structure pointer, assigning to field of
2280       // this struct follows gcc's behavior and makes it a non-ivar
2281       // writer-barrier conservatively.
2282       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2283       if (ExpTy->isRecordType()) {
2284         LV.setObjCIvar(false);
2285         return;
2286       }
2287     }
2288     LV.setObjCIvar(true);
2289     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2290     LV.setBaseIvarExp(Exp->getBase());
2291     LV.setObjCArray(E->getType()->isArrayType());
2292     return;
2293   }
2294 
2295   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2296     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2297       if (VD->hasGlobalStorage()) {
2298         LV.setGlobalObjCRef(true);
2299         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2300       }
2301     }
2302     LV.setObjCArray(E->getType()->isArrayType());
2303     return;
2304   }
2305 
2306   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2307     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2308     return;
2309   }
2310 
2311   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2312     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2313     if (LV.isObjCIvar()) {
2314       // If cast is to a structure pointer, follow gcc's behavior and make it
2315       // a non-ivar write-barrier.
2316       QualType ExpTy = E->getType();
2317       if (ExpTy->isPointerType())
2318         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2319       if (ExpTy->isRecordType())
2320         LV.setObjCIvar(false);
2321     }
2322     return;
2323   }
2324 
2325   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2326     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2327     return;
2328   }
2329 
2330   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2331     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2332     return;
2333   }
2334 
2335   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2336     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2337     return;
2338   }
2339 
2340   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2341     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2342     return;
2343   }
2344 
2345   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2346     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2347     if (LV.isObjCIvar() && !LV.isObjCArray())
2348       // Using array syntax to assigning to what an ivar points to is not
2349       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2350       LV.setObjCIvar(false);
2351     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2352       // Using array syntax to assigning to what global points to is not
2353       // same as assigning to the global itself. {id *G;} G[i] = 0;
2354       LV.setGlobalObjCRef(false);
2355     return;
2356   }
2357 
2358   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2359     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2360     // We don't know if member is an 'ivar', but this flag is looked at
2361     // only in the context of LV.isObjCIvar().
2362     LV.setObjCArray(E->getType()->isArrayType());
2363     return;
2364   }
2365 }
2366 
2367 static llvm::Value *
2368 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2369                                 llvm::Value *V, llvm::Type *IRType,
2370                                 StringRef Name = StringRef()) {
2371   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2372   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2373 }
2374 
2375 static LValue EmitThreadPrivateVarDeclLValue(
2376     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2377     llvm::Type *RealVarTy, SourceLocation Loc) {
2378   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2379   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2380   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2381 }
2382 
2383 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2384                                            const VarDecl *VD, QualType T) {
2385   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2386       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2387   // Return an invalid address if variable is MT_To and unified
2388   // memory is not enabled. For all other cases: MT_Link and
2389   // MT_To with unified memory, return a valid address.
2390   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2391                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2392     return Address::invalid();
2393   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2394           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2395            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2396          "Expected link clause OR to clause with unified memory enabled.");
2397   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2398   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2399   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2400 }
2401 
2402 Address
2403 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2404                                      LValueBaseInfo *PointeeBaseInfo,
2405                                      TBAAAccessInfo *PointeeTBAAInfo) {
2406   llvm::LoadInst *Load =
2407       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2408   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2409 
2410   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2411                                             PointeeBaseInfo, PointeeTBAAInfo,
2412                                             /* forPointeeType= */ true);
2413   return Address(Load, Align);
2414 }
2415 
2416 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2417   LValueBaseInfo PointeeBaseInfo;
2418   TBAAAccessInfo PointeeTBAAInfo;
2419   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2420                                             &PointeeTBAAInfo);
2421   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2422                         PointeeBaseInfo, PointeeTBAAInfo);
2423 }
2424 
2425 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2426                                            const PointerType *PtrTy,
2427                                            LValueBaseInfo *BaseInfo,
2428                                            TBAAAccessInfo *TBAAInfo) {
2429   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2430   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2431                                                BaseInfo, TBAAInfo,
2432                                                /*forPointeeType=*/true));
2433 }
2434 
2435 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2436                                                 const PointerType *PtrTy) {
2437   LValueBaseInfo BaseInfo;
2438   TBAAAccessInfo TBAAInfo;
2439   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2440   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2441 }
2442 
2443 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2444                                       const Expr *E, const VarDecl *VD) {
2445   QualType T = E->getType();
2446 
2447   // If it's thread_local, emit a call to its wrapper function instead.
2448   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2449       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2450     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2451   // Check if the variable is marked as declare target with link clause in
2452   // device codegen.
2453   if (CGF.getLangOpts().OpenMPIsDevice) {
2454     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2455     if (Addr.isValid())
2456       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2457   }
2458 
2459   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2460   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2461   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2462   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2463   Address Addr(V, Alignment);
2464   // Emit reference to the private copy of the variable if it is an OpenMP
2465   // threadprivate variable.
2466   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2467       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2468     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2469                                           E->getExprLoc());
2470   }
2471   LValue LV = VD->getType()->isReferenceType() ?
2472       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2473                                     AlignmentSource::Decl) :
2474       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2475   setObjCGCLValueClass(CGF.getContext(), E, LV);
2476   return LV;
2477 }
2478 
2479 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2480                                                GlobalDecl GD) {
2481   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2482   if (FD->hasAttr<WeakRefAttr>()) {
2483     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2484     return aliasee.getPointer();
2485   }
2486 
2487   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2488   if (!FD->hasPrototype()) {
2489     if (const FunctionProtoType *Proto =
2490             FD->getType()->getAs<FunctionProtoType>()) {
2491       // Ugly case: for a K&R-style definition, the type of the definition
2492       // isn't the same as the type of a use.  Correct for this with a
2493       // bitcast.
2494       QualType NoProtoType =
2495           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2496       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2497       V = llvm::ConstantExpr::getBitCast(V,
2498                                       CGM.getTypes().ConvertType(NoProtoType));
2499     }
2500   }
2501   return V;
2502 }
2503 
2504 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2505                                      GlobalDecl GD) {
2506   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2507   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2508   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2509   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2510                             AlignmentSource::Decl);
2511 }
2512 
2513 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2514                                       llvm::Value *ThisValue) {
2515   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2516   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2517   return CGF.EmitLValueForField(LV, FD);
2518 }
2519 
2520 /// Named Registers are named metadata pointing to the register name
2521 /// which will be read from/written to as an argument to the intrinsic
2522 /// @llvm.read/write_register.
2523 /// So far, only the name is being passed down, but other options such as
2524 /// register type, allocation type or even optimization options could be
2525 /// passed down via the metadata node.
2526 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2527   SmallString<64> Name("llvm.named.register.");
2528   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2529   assert(Asm->getLabel().size() < 64-Name.size() &&
2530       "Register name too big");
2531   Name.append(Asm->getLabel());
2532   llvm::NamedMDNode *M =
2533     CGM.getModule().getOrInsertNamedMetadata(Name);
2534   if (M->getNumOperands() == 0) {
2535     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2536                                               Asm->getLabel());
2537     llvm::Metadata *Ops[] = {Str};
2538     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2539   }
2540 
2541   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2542 
2543   llvm::Value *Ptr =
2544     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2545   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2546 }
2547 
2548 /// Determine whether we can emit a reference to \p VD from the current
2549 /// context, despite not necessarily having seen an odr-use of the variable in
2550 /// this context.
2551 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2552                                                const DeclRefExpr *E,
2553                                                const VarDecl *VD,
2554                                                bool IsConstant) {
2555   // For a variable declared in an enclosing scope, do not emit a spurious
2556   // reference even if we have a capture, as that will emit an unwarranted
2557   // reference to our capture state, and will likely generate worse code than
2558   // emitting a local copy.
2559   if (E->refersToEnclosingVariableOrCapture())
2560     return false;
2561 
2562   // For a local declaration declared in this function, we can always reference
2563   // it even if we don't have an odr-use.
2564   if (VD->hasLocalStorage()) {
2565     return VD->getDeclContext() ==
2566            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2567   }
2568 
2569   // For a global declaration, we can emit a reference to it if we know
2570   // for sure that we are able to emit a definition of it.
2571   VD = VD->getDefinition(CGF.getContext());
2572   if (!VD)
2573     return false;
2574 
2575   // Don't emit a spurious reference if it might be to a variable that only
2576   // exists on a different device / target.
2577   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2578   // cross-target reference.
2579   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2580       CGF.getLangOpts().OpenCL) {
2581     return false;
2582   }
2583 
2584   // We can emit a spurious reference only if the linkage implies that we'll
2585   // be emitting a non-interposable symbol that will be retained until link
2586   // time.
2587   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2588   case llvm::GlobalValue::ExternalLinkage:
2589   case llvm::GlobalValue::LinkOnceODRLinkage:
2590   case llvm::GlobalValue::WeakODRLinkage:
2591   case llvm::GlobalValue::InternalLinkage:
2592   case llvm::GlobalValue::PrivateLinkage:
2593     return true;
2594   default:
2595     return false;
2596   }
2597 }
2598 
2599 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2600   const NamedDecl *ND = E->getDecl();
2601   QualType T = E->getType();
2602 
2603   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2604          "should not emit an unevaluated operand");
2605 
2606   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2607     // Global Named registers access via intrinsics only
2608     if (VD->getStorageClass() == SC_Register &&
2609         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2610       return EmitGlobalNamedRegister(VD, CGM);
2611 
2612     // If this DeclRefExpr does not constitute an odr-use of the variable,
2613     // we're not permitted to emit a reference to it in general, and it might
2614     // not be captured if capture would be necessary for a use. Emit the
2615     // constant value directly instead.
2616     if (E->isNonOdrUse() == NOUR_Constant &&
2617         (VD->getType()->isReferenceType() ||
2618          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2619       VD->getAnyInitializer(VD);
2620       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2621           E->getLocation(), *VD->evaluateValue(), VD->getType());
2622       assert(Val && "failed to emit constant expression");
2623 
2624       Address Addr = Address::invalid();
2625       if (!VD->getType()->isReferenceType()) {
2626         // Spill the constant value to a global.
2627         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2628                                            getContext().getDeclAlign(VD));
2629         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2630         auto *PTy = llvm::PointerType::get(
2631             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2632         if (PTy != Addr.getType())
2633           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2634       } else {
2635         // Should we be using the alignment of the constant pointer we emitted?
2636         CharUnits Alignment =
2637             getNaturalTypeAlignment(E->getType(),
2638                                     /* BaseInfo= */ nullptr,
2639                                     /* TBAAInfo= */ nullptr,
2640                                     /* forPointeeType= */ true);
2641         Addr = Address(Val, Alignment);
2642       }
2643       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2644     }
2645 
2646     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2647 
2648     // Check for captured variables.
2649     if (E->refersToEnclosingVariableOrCapture()) {
2650       VD = VD->getCanonicalDecl();
2651       if (auto *FD = LambdaCaptureFields.lookup(VD))
2652         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2653       if (CapturedStmtInfo) {
2654         auto I = LocalDeclMap.find(VD);
2655         if (I != LocalDeclMap.end()) {
2656           LValue CapLVal;
2657           if (VD->getType()->isReferenceType())
2658             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2659                                                 AlignmentSource::Decl);
2660           else
2661             CapLVal = MakeAddrLValue(I->second, T);
2662           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2663           // in simd context.
2664           if (getLangOpts().OpenMP &&
2665               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2666             CapLVal.setNontemporal(/*Value=*/true);
2667           return CapLVal;
2668         }
2669         LValue CapLVal =
2670             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2671                                     CapturedStmtInfo->getContextValue());
2672         CapLVal = MakeAddrLValue(
2673             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2674             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2675             CapLVal.getTBAAInfo());
2676         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2677         // in simd context.
2678         if (getLangOpts().OpenMP &&
2679             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2680           CapLVal.setNontemporal(/*Value=*/true);
2681         return CapLVal;
2682       }
2683 
2684       assert(isa<BlockDecl>(CurCodeDecl));
2685       Address addr = GetAddrOfBlockDecl(VD);
2686       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2687     }
2688   }
2689 
2690   // FIXME: We should be able to assert this for FunctionDecls as well!
2691   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2692   // those with a valid source location.
2693   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2694           !E->getLocation().isValid()) &&
2695          "Should not use decl without marking it used!");
2696 
2697   if (ND->hasAttr<WeakRefAttr>()) {
2698     const auto *VD = cast<ValueDecl>(ND);
2699     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2700     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2701   }
2702 
2703   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2704     // Check if this is a global variable.
2705     if (VD->hasLinkage() || VD->isStaticDataMember())
2706       return EmitGlobalVarDeclLValue(*this, E, VD);
2707 
2708     Address addr = Address::invalid();
2709 
2710     // The variable should generally be present in the local decl map.
2711     auto iter = LocalDeclMap.find(VD);
2712     if (iter != LocalDeclMap.end()) {
2713       addr = iter->second;
2714 
2715     // Otherwise, it might be static local we haven't emitted yet for
2716     // some reason; most likely, because it's in an outer function.
2717     } else if (VD->isStaticLocal()) {
2718       addr = Address(CGM.getOrCreateStaticVarDecl(
2719           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2720                      getContext().getDeclAlign(VD));
2721 
2722     // No other cases for now.
2723     } else {
2724       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2725     }
2726 
2727 
2728     // Check for OpenMP threadprivate variables.
2729     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2730         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2731       return EmitThreadPrivateVarDeclLValue(
2732           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2733           E->getExprLoc());
2734     }
2735 
2736     // Drill into block byref variables.
2737     bool isBlockByref = VD->isEscapingByref();
2738     if (isBlockByref) {
2739       addr = emitBlockByrefAddress(addr, VD);
2740     }
2741 
2742     // Drill into reference types.
2743     LValue LV = VD->getType()->isReferenceType() ?
2744         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2745         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2746 
2747     bool isLocalStorage = VD->hasLocalStorage();
2748 
2749     bool NonGCable = isLocalStorage &&
2750                      !VD->getType()->isReferenceType() &&
2751                      !isBlockByref;
2752     if (NonGCable) {
2753       LV.getQuals().removeObjCGCAttr();
2754       LV.setNonGC(true);
2755     }
2756 
2757     bool isImpreciseLifetime =
2758       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2759     if (isImpreciseLifetime)
2760       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2761     setObjCGCLValueClass(getContext(), E, LV);
2762     return LV;
2763   }
2764 
2765   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2766     return EmitFunctionDeclLValue(*this, E, FD);
2767 
2768   // FIXME: While we're emitting a binding from an enclosing scope, all other
2769   // DeclRefExprs we see should be implicitly treated as if they also refer to
2770   // an enclosing scope.
2771   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2772     return EmitLValue(BD->getBinding());
2773 
2774   // We can form DeclRefExprs naming GUID declarations when reconstituting
2775   // non-type template parameters into expressions.
2776   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2777     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2778                           AlignmentSource::Decl);
2779 
2780   llvm_unreachable("Unhandled DeclRefExpr");
2781 }
2782 
2783 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2784   // __extension__ doesn't affect lvalue-ness.
2785   if (E->getOpcode() == UO_Extension)
2786     return EmitLValue(E->getSubExpr());
2787 
2788   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2789   switch (E->getOpcode()) {
2790   default: llvm_unreachable("Unknown unary operator lvalue!");
2791   case UO_Deref: {
2792     QualType T = E->getSubExpr()->getType()->getPointeeType();
2793     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2794 
2795     LValueBaseInfo BaseInfo;
2796     TBAAAccessInfo TBAAInfo;
2797     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2798                                             &TBAAInfo);
2799     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2800     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2801 
2802     // We should not generate __weak write barrier on indirect reference
2803     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2804     // But, we continue to generate __strong write barrier on indirect write
2805     // into a pointer to object.
2806     if (getLangOpts().ObjC &&
2807         getLangOpts().getGC() != LangOptions::NonGC &&
2808         LV.isObjCWeak())
2809       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2810     return LV;
2811   }
2812   case UO_Real:
2813   case UO_Imag: {
2814     LValue LV = EmitLValue(E->getSubExpr());
2815     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2816 
2817     // __real is valid on scalars.  This is a faster way of testing that.
2818     // __imag can only produce an rvalue on scalars.
2819     if (E->getOpcode() == UO_Real &&
2820         !LV.getAddress(*this).getElementType()->isStructTy()) {
2821       assert(E->getSubExpr()->getType()->isArithmeticType());
2822       return LV;
2823     }
2824 
2825     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2826 
2827     Address Component =
2828         (E->getOpcode() == UO_Real
2829              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2830              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2831     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2832                                    CGM.getTBAAInfoForSubobject(LV, T));
2833     ElemLV.getQuals().addQualifiers(LV.getQuals());
2834     return ElemLV;
2835   }
2836   case UO_PreInc:
2837   case UO_PreDec: {
2838     LValue LV = EmitLValue(E->getSubExpr());
2839     bool isInc = E->getOpcode() == UO_PreInc;
2840 
2841     if (E->getType()->isAnyComplexType())
2842       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2843     else
2844       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2845     return LV;
2846   }
2847   }
2848 }
2849 
2850 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2851   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2852                         E->getType(), AlignmentSource::Decl);
2853 }
2854 
2855 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2856   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2857                         E->getType(), AlignmentSource::Decl);
2858 }
2859 
2860 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2861   auto SL = E->getFunctionName();
2862   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2863   StringRef FnName = CurFn->getName();
2864   if (FnName.startswith("\01"))
2865     FnName = FnName.substr(1);
2866   StringRef NameItems[] = {
2867       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2868   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2869   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2870     std::string Name = std::string(SL->getString());
2871     if (!Name.empty()) {
2872       unsigned Discriminator =
2873           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2874       if (Discriminator)
2875         Name += "_" + Twine(Discriminator + 1).str();
2876       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2877       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2878     } else {
2879       auto C =
2880           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2881       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2882     }
2883   }
2884   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2885   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2886 }
2887 
2888 /// Emit a type description suitable for use by a runtime sanitizer library. The
2889 /// format of a type descriptor is
2890 ///
2891 /// \code
2892 ///   { i16 TypeKind, i16 TypeInfo }
2893 /// \endcode
2894 ///
2895 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2896 /// integer, 1 for a floating point value, and -1 for anything else.
2897 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2898   // Only emit each type's descriptor once.
2899   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2900     return C;
2901 
2902   uint16_t TypeKind = -1;
2903   uint16_t TypeInfo = 0;
2904 
2905   if (T->isIntegerType()) {
2906     TypeKind = 0;
2907     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2908                (T->isSignedIntegerType() ? 1 : 0);
2909   } else if (T->isFloatingType()) {
2910     TypeKind = 1;
2911     TypeInfo = getContext().getTypeSize(T);
2912   }
2913 
2914   // Format the type name as if for a diagnostic, including quotes and
2915   // optionally an 'aka'.
2916   SmallString<32> Buffer;
2917   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2918                                     (intptr_t)T.getAsOpaquePtr(),
2919                                     StringRef(), StringRef(), None, Buffer,
2920                                     None);
2921 
2922   llvm::Constant *Components[] = {
2923     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2924     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2925   };
2926   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2927 
2928   auto *GV = new llvm::GlobalVariable(
2929       CGM.getModule(), Descriptor->getType(),
2930       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2931   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2932   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2933 
2934   // Remember the descriptor for this type.
2935   CGM.setTypeDescriptorInMap(T, GV);
2936 
2937   return GV;
2938 }
2939 
2940 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2941   llvm::Type *TargetTy = IntPtrTy;
2942 
2943   if (V->getType() == TargetTy)
2944     return V;
2945 
2946   // Floating-point types which fit into intptr_t are bitcast to integers
2947   // and then passed directly (after zero-extension, if necessary).
2948   if (V->getType()->isFloatingPointTy()) {
2949     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2950     if (Bits <= TargetTy->getIntegerBitWidth())
2951       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2952                                                          Bits));
2953   }
2954 
2955   // Integers which fit in intptr_t are zero-extended and passed directly.
2956   if (V->getType()->isIntegerTy() &&
2957       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2958     return Builder.CreateZExt(V, TargetTy);
2959 
2960   // Pointers are passed directly, everything else is passed by address.
2961   if (!V->getType()->isPointerTy()) {
2962     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2963     Builder.CreateStore(V, Ptr);
2964     V = Ptr.getPointer();
2965   }
2966   return Builder.CreatePtrToInt(V, TargetTy);
2967 }
2968 
2969 /// Emit a representation of a SourceLocation for passing to a handler
2970 /// in a sanitizer runtime library. The format for this data is:
2971 /// \code
2972 ///   struct SourceLocation {
2973 ///     const char *Filename;
2974 ///     int32_t Line, Column;
2975 ///   };
2976 /// \endcode
2977 /// For an invalid SourceLocation, the Filename pointer is null.
2978 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2979   llvm::Constant *Filename;
2980   int Line, Column;
2981 
2982   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2983   if (PLoc.isValid()) {
2984     StringRef FilenameString = PLoc.getFilename();
2985 
2986     int PathComponentsToStrip =
2987         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2988     if (PathComponentsToStrip < 0) {
2989       assert(PathComponentsToStrip != INT_MIN);
2990       int PathComponentsToKeep = -PathComponentsToStrip;
2991       auto I = llvm::sys::path::rbegin(FilenameString);
2992       auto E = llvm::sys::path::rend(FilenameString);
2993       while (I != E && --PathComponentsToKeep)
2994         ++I;
2995 
2996       FilenameString = FilenameString.substr(I - E);
2997     } else if (PathComponentsToStrip > 0) {
2998       auto I = llvm::sys::path::begin(FilenameString);
2999       auto E = llvm::sys::path::end(FilenameString);
3000       while (I != E && PathComponentsToStrip--)
3001         ++I;
3002 
3003       if (I != E)
3004         FilenameString =
3005             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3006       else
3007         FilenameString = llvm::sys::path::filename(FilenameString);
3008     }
3009 
3010     auto FilenameGV =
3011         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3012     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3013                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3014     Filename = FilenameGV.getPointer();
3015     Line = PLoc.getLine();
3016     Column = PLoc.getColumn();
3017   } else {
3018     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3019     Line = Column = 0;
3020   }
3021 
3022   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3023                             Builder.getInt32(Column)};
3024 
3025   return llvm::ConstantStruct::getAnon(Data);
3026 }
3027 
3028 namespace {
3029 /// Specify under what conditions this check can be recovered
3030 enum class CheckRecoverableKind {
3031   /// Always terminate program execution if this check fails.
3032   Unrecoverable,
3033   /// Check supports recovering, runtime has both fatal (noreturn) and
3034   /// non-fatal handlers for this check.
3035   Recoverable,
3036   /// Runtime conditionally aborts, always need to support recovery.
3037   AlwaysRecoverable
3038 };
3039 }
3040 
3041 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3042   assert(Kind.countPopulation() == 1);
3043   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3044     return CheckRecoverableKind::AlwaysRecoverable;
3045   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3046     return CheckRecoverableKind::Unrecoverable;
3047   else
3048     return CheckRecoverableKind::Recoverable;
3049 }
3050 
3051 namespace {
3052 struct SanitizerHandlerInfo {
3053   char const *const Name;
3054   unsigned Version;
3055 };
3056 }
3057 
3058 const SanitizerHandlerInfo SanitizerHandlers[] = {
3059 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3060     LIST_SANITIZER_CHECKS
3061 #undef SANITIZER_CHECK
3062 };
3063 
3064 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3065                                  llvm::FunctionType *FnType,
3066                                  ArrayRef<llvm::Value *> FnArgs,
3067                                  SanitizerHandler CheckHandler,
3068                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3069                                  llvm::BasicBlock *ContBB) {
3070   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3071   Optional<ApplyDebugLocation> DL;
3072   if (!CGF.Builder.getCurrentDebugLocation()) {
3073     // Ensure that the call has at least an artificial debug location.
3074     DL.emplace(CGF, SourceLocation());
3075   }
3076   bool NeedsAbortSuffix =
3077       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3078   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3079   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3080   const StringRef CheckName = CheckInfo.Name;
3081   std::string FnName = "__ubsan_handle_" + CheckName.str();
3082   if (CheckInfo.Version && !MinimalRuntime)
3083     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3084   if (MinimalRuntime)
3085     FnName += "_minimal";
3086   if (NeedsAbortSuffix)
3087     FnName += "_abort";
3088   bool MayReturn =
3089       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3090 
3091   llvm::AttrBuilder B;
3092   if (!MayReturn) {
3093     B.addAttribute(llvm::Attribute::NoReturn)
3094         .addAttribute(llvm::Attribute::NoUnwind);
3095   }
3096   B.addAttribute(llvm::Attribute::UWTable);
3097 
3098   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3099       FnType, FnName,
3100       llvm::AttributeList::get(CGF.getLLVMContext(),
3101                                llvm::AttributeList::FunctionIndex, B),
3102       /*Local=*/true);
3103   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3104   if (!MayReturn) {
3105     HandlerCall->setDoesNotReturn();
3106     CGF.Builder.CreateUnreachable();
3107   } else {
3108     CGF.Builder.CreateBr(ContBB);
3109   }
3110 }
3111 
3112 void CodeGenFunction::EmitCheck(
3113     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3114     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3115     ArrayRef<llvm::Value *> DynamicArgs) {
3116   assert(IsSanitizerScope);
3117   assert(Checked.size() > 0);
3118   assert(CheckHandler >= 0 &&
3119          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3120   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3121 
3122   llvm::Value *FatalCond = nullptr;
3123   llvm::Value *RecoverableCond = nullptr;
3124   llvm::Value *TrapCond = nullptr;
3125   for (int i = 0, n = Checked.size(); i < n; ++i) {
3126     llvm::Value *Check = Checked[i].first;
3127     // -fsanitize-trap= overrides -fsanitize-recover=.
3128     llvm::Value *&Cond =
3129         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3130             ? TrapCond
3131             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3132                   ? RecoverableCond
3133                   : FatalCond;
3134     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3135   }
3136 
3137   if (TrapCond)
3138     EmitTrapCheck(TrapCond);
3139   if (!FatalCond && !RecoverableCond)
3140     return;
3141 
3142   llvm::Value *JointCond;
3143   if (FatalCond && RecoverableCond)
3144     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3145   else
3146     JointCond = FatalCond ? FatalCond : RecoverableCond;
3147   assert(JointCond);
3148 
3149   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3150   assert(SanOpts.has(Checked[0].second));
3151 #ifndef NDEBUG
3152   for (int i = 1, n = Checked.size(); i < n; ++i) {
3153     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3154            "All recoverable kinds in a single check must be same!");
3155     assert(SanOpts.has(Checked[i].second));
3156   }
3157 #endif
3158 
3159   llvm::BasicBlock *Cont = createBasicBlock("cont");
3160   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3161   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3162   // Give hint that we very much don't expect to execute the handler
3163   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3164   llvm::MDBuilder MDHelper(getLLVMContext());
3165   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3166   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3167   EmitBlock(Handlers);
3168 
3169   // Handler functions take an i8* pointing to the (handler-specific) static
3170   // information block, followed by a sequence of intptr_t arguments
3171   // representing operand values.
3172   SmallVector<llvm::Value *, 4> Args;
3173   SmallVector<llvm::Type *, 4> ArgTypes;
3174   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3175     Args.reserve(DynamicArgs.size() + 1);
3176     ArgTypes.reserve(DynamicArgs.size() + 1);
3177 
3178     // Emit handler arguments and create handler function type.
3179     if (!StaticArgs.empty()) {
3180       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3181       auto *InfoPtr =
3182           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3183                                    llvm::GlobalVariable::PrivateLinkage, Info);
3184       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3185       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3186       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3187       ArgTypes.push_back(Int8PtrTy);
3188     }
3189 
3190     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3191       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3192       ArgTypes.push_back(IntPtrTy);
3193     }
3194   }
3195 
3196   llvm::FunctionType *FnType =
3197     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3198 
3199   if (!FatalCond || !RecoverableCond) {
3200     // Simple case: we need to generate a single handler call, either
3201     // fatal, or non-fatal.
3202     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3203                          (FatalCond != nullptr), Cont);
3204   } else {
3205     // Emit two handler calls: first one for set of unrecoverable checks,
3206     // another one for recoverable.
3207     llvm::BasicBlock *NonFatalHandlerBB =
3208         createBasicBlock("non_fatal." + CheckName);
3209     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3210     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3211     EmitBlock(FatalHandlerBB);
3212     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3213                          NonFatalHandlerBB);
3214     EmitBlock(NonFatalHandlerBB);
3215     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3216                          Cont);
3217   }
3218 
3219   EmitBlock(Cont);
3220 }
3221 
3222 void CodeGenFunction::EmitCfiSlowPathCheck(
3223     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3224     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3225   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3226 
3227   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3228   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3229 
3230   llvm::MDBuilder MDHelper(getLLVMContext());
3231   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3232   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3233 
3234   EmitBlock(CheckBB);
3235 
3236   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3237 
3238   llvm::CallInst *CheckCall;
3239   llvm::FunctionCallee SlowPathFn;
3240   if (WithDiag) {
3241     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3242     auto *InfoPtr =
3243         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3244                                  llvm::GlobalVariable::PrivateLinkage, Info);
3245     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3246     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3247 
3248     SlowPathFn = CGM.getModule().getOrInsertFunction(
3249         "__cfi_slowpath_diag",
3250         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3251                                 false));
3252     CheckCall = Builder.CreateCall(
3253         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3254   } else {
3255     SlowPathFn = CGM.getModule().getOrInsertFunction(
3256         "__cfi_slowpath",
3257         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3258     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3259   }
3260 
3261   CGM.setDSOLocal(
3262       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3263   CheckCall->setDoesNotThrow();
3264 
3265   EmitBlock(Cont);
3266 }
3267 
3268 // Emit a stub for __cfi_check function so that the linker knows about this
3269 // symbol in LTO mode.
3270 void CodeGenFunction::EmitCfiCheckStub() {
3271   llvm::Module *M = &CGM.getModule();
3272   auto &Ctx = M->getContext();
3273   llvm::Function *F = llvm::Function::Create(
3274       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3275       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3276   CGM.setDSOLocal(F);
3277   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3278   // FIXME: consider emitting an intrinsic call like
3279   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3280   // which can be lowered in CrossDSOCFI pass to the actual contents of
3281   // __cfi_check. This would allow inlining of __cfi_check calls.
3282   llvm::CallInst::Create(
3283       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3284   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3285 }
3286 
3287 // This function is basically a switch over the CFI failure kind, which is
3288 // extracted from CFICheckFailData (1st function argument). Each case is either
3289 // llvm.trap or a call to one of the two runtime handlers, based on
3290 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3291 // failure kind) traps, but this should really never happen.  CFICheckFailData
3292 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3293 // check kind; in this case __cfi_check_fail traps as well.
3294 void CodeGenFunction::EmitCfiCheckFail() {
3295   SanitizerScope SanScope(this);
3296   FunctionArgList Args;
3297   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3298                             ImplicitParamDecl::Other);
3299   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3300                             ImplicitParamDecl::Other);
3301   Args.push_back(&ArgData);
3302   Args.push_back(&ArgAddr);
3303 
3304   const CGFunctionInfo &FI =
3305     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3306 
3307   llvm::Function *F = llvm::Function::Create(
3308       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3309       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3310 
3311   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
3312   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3313   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3314 
3315   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3316                 SourceLocation());
3317 
3318   // This function should not be affected by blacklist. This function does
3319   // not have a source location, but "src:*" would still apply. Revert any
3320   // changes to SanOpts made in StartFunction.
3321   SanOpts = CGM.getLangOpts().Sanitize;
3322 
3323   llvm::Value *Data =
3324       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3325                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3326   llvm::Value *Addr =
3327       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3328                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3329 
3330   // Data == nullptr means the calling module has trap behaviour for this check.
3331   llvm::Value *DataIsNotNullPtr =
3332       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3333   EmitTrapCheck(DataIsNotNullPtr);
3334 
3335   llvm::StructType *SourceLocationTy =
3336       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3337   llvm::StructType *CfiCheckFailDataTy =
3338       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3339 
3340   llvm::Value *V = Builder.CreateConstGEP2_32(
3341       CfiCheckFailDataTy,
3342       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3343       0);
3344   Address CheckKindAddr(V, getIntAlign());
3345   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3346 
3347   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3348       CGM.getLLVMContext(),
3349       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3350   llvm::Value *ValidVtable = Builder.CreateZExt(
3351       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3352                          {Addr, AllVtables}),
3353       IntPtrTy);
3354 
3355   const std::pair<int, SanitizerMask> CheckKinds[] = {
3356       {CFITCK_VCall, SanitizerKind::CFIVCall},
3357       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3358       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3359       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3360       {CFITCK_ICall, SanitizerKind::CFIICall}};
3361 
3362   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3363   for (auto CheckKindMaskPair : CheckKinds) {
3364     int Kind = CheckKindMaskPair.first;
3365     SanitizerMask Mask = CheckKindMaskPair.second;
3366     llvm::Value *Cond =
3367         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3368     if (CGM.getLangOpts().Sanitize.has(Mask))
3369       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3370                 {Data, Addr, ValidVtable});
3371     else
3372       EmitTrapCheck(Cond);
3373   }
3374 
3375   FinishFunction();
3376   // The only reference to this function will be created during LTO link.
3377   // Make sure it survives until then.
3378   CGM.addUsedGlobal(F);
3379 }
3380 
3381 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3382   if (SanOpts.has(SanitizerKind::Unreachable)) {
3383     SanitizerScope SanScope(this);
3384     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3385                              SanitizerKind::Unreachable),
3386               SanitizerHandler::BuiltinUnreachable,
3387               EmitCheckSourceLocation(Loc), None);
3388   }
3389   Builder.CreateUnreachable();
3390 }
3391 
3392 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3393   llvm::BasicBlock *Cont = createBasicBlock("cont");
3394 
3395   // If we're optimizing, collapse all calls to trap down to just one per
3396   // function to save on code size.
3397   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3398     TrapBB = createBasicBlock("trap");
3399     Builder.CreateCondBr(Checked, Cont, TrapBB);
3400     EmitBlock(TrapBB);
3401     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3402     TrapCall->setDoesNotReturn();
3403     TrapCall->setDoesNotThrow();
3404     Builder.CreateUnreachable();
3405   } else {
3406     Builder.CreateCondBr(Checked, Cont, TrapBB);
3407   }
3408 
3409   EmitBlock(Cont);
3410 }
3411 
3412 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3413   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3414 
3415   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3416     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3417                                   CGM.getCodeGenOpts().TrapFuncName);
3418     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3419   }
3420 
3421   return TrapCall;
3422 }
3423 
3424 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3425                                                  LValueBaseInfo *BaseInfo,
3426                                                  TBAAAccessInfo *TBAAInfo) {
3427   assert(E->getType()->isArrayType() &&
3428          "Array to pointer decay must have array source type!");
3429 
3430   // Expressions of array type can't be bitfields or vector elements.
3431   LValue LV = EmitLValue(E);
3432   Address Addr = LV.getAddress(*this);
3433 
3434   // If the array type was an incomplete type, we need to make sure
3435   // the decay ends up being the right type.
3436   llvm::Type *NewTy = ConvertType(E->getType());
3437   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3438 
3439   // Note that VLA pointers are always decayed, so we don't need to do
3440   // anything here.
3441   if (!E->getType()->isVariableArrayType()) {
3442     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3443            "Expected pointer to array");
3444     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3445   }
3446 
3447   // The result of this decay conversion points to an array element within the
3448   // base lvalue. However, since TBAA currently does not support representing
3449   // accesses to elements of member arrays, we conservatively represent accesses
3450   // to the pointee object as if it had no any base lvalue specified.
3451   // TODO: Support TBAA for member arrays.
3452   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3453   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3454   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3455 
3456   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3457 }
3458 
3459 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3460 /// array to pointer, return the array subexpression.
3461 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3462   // If this isn't just an array->pointer decay, bail out.
3463   const auto *CE = dyn_cast<CastExpr>(E);
3464   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3465     return nullptr;
3466 
3467   // If this is a decay from variable width array, bail out.
3468   const Expr *SubExpr = CE->getSubExpr();
3469   if (SubExpr->getType()->isVariableArrayType())
3470     return nullptr;
3471 
3472   return SubExpr;
3473 }
3474 
3475 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3476                                           llvm::Value *ptr,
3477                                           ArrayRef<llvm::Value*> indices,
3478                                           bool inbounds,
3479                                           bool signedIndices,
3480                                           SourceLocation loc,
3481                                     const llvm::Twine &name = "arrayidx") {
3482   if (inbounds) {
3483     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3484                                       CodeGenFunction::NotSubtraction, loc,
3485                                       name);
3486   } else {
3487     return CGF.Builder.CreateGEP(ptr, indices, name);
3488   }
3489 }
3490 
3491 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3492                                       llvm::Value *idx,
3493                                       CharUnits eltSize) {
3494   // If we have a constant index, we can use the exact offset of the
3495   // element we're accessing.
3496   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3497     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3498     return arrayAlign.alignmentAtOffset(offset);
3499 
3500   // Otherwise, use the worst-case alignment for any element.
3501   } else {
3502     return arrayAlign.alignmentOfArrayElement(eltSize);
3503   }
3504 }
3505 
3506 static QualType getFixedSizeElementType(const ASTContext &ctx,
3507                                         const VariableArrayType *vla) {
3508   QualType eltType;
3509   do {
3510     eltType = vla->getElementType();
3511   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3512   return eltType;
3513 }
3514 
3515 /// Given an array base, check whether its member access belongs to a record
3516 /// with preserve_access_index attribute or not.
3517 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3518   if (!ArrayBase || !CGF.getDebugInfo())
3519     return false;
3520 
3521   // Only support base as either a MemberExpr or DeclRefExpr.
3522   // DeclRefExpr to cover cases like:
3523   //    struct s { int a; int b[10]; };
3524   //    struct s *p;
3525   //    p[1].a
3526   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3527   // p->b[5] is a MemberExpr example.
3528   const Expr *E = ArrayBase->IgnoreImpCasts();
3529   if (const auto *ME = dyn_cast<MemberExpr>(E))
3530     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3531 
3532   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3533     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3534     if (!VarDef)
3535       return false;
3536 
3537     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3538     if (!PtrT)
3539       return false;
3540 
3541     const auto *PointeeT = PtrT->getPointeeType()
3542                              ->getUnqualifiedDesugaredType();
3543     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3544       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3545     return false;
3546   }
3547 
3548   return false;
3549 }
3550 
3551 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3552                                      ArrayRef<llvm::Value *> indices,
3553                                      QualType eltType, bool inbounds,
3554                                      bool signedIndices, SourceLocation loc,
3555                                      QualType *arrayType = nullptr,
3556                                      const Expr *Base = nullptr,
3557                                      const llvm::Twine &name = "arrayidx") {
3558   // All the indices except that last must be zero.
3559 #ifndef NDEBUG
3560   for (auto idx : indices.drop_back())
3561     assert(isa<llvm::ConstantInt>(idx) &&
3562            cast<llvm::ConstantInt>(idx)->isZero());
3563 #endif
3564 
3565   // Determine the element size of the statically-sized base.  This is
3566   // the thing that the indices are expressed in terms of.
3567   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3568     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3569   }
3570 
3571   // We can use that to compute the best alignment of the element.
3572   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3573   CharUnits eltAlign =
3574     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3575 
3576   llvm::Value *eltPtr;
3577   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3578   if (!LastIndex ||
3579       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3580     eltPtr = emitArraySubscriptGEP(
3581         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3582         loc, name);
3583   } else {
3584     // Remember the original array subscript for bpf target
3585     unsigned idx = LastIndex->getZExtValue();
3586     llvm::DIType *DbgInfo = nullptr;
3587     if (arrayType)
3588       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3589     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3590                                                         addr.getPointer(),
3591                                                         indices.size() - 1,
3592                                                         idx, DbgInfo);
3593   }
3594 
3595   return Address(eltPtr, eltAlign);
3596 }
3597 
3598 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3599                                                bool Accessed) {
3600   // The index must always be an integer, which is not an aggregate.  Emit it
3601   // in lexical order (this complexity is, sadly, required by C++17).
3602   llvm::Value *IdxPre =
3603       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3604   bool SignedIndices = false;
3605   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3606     auto *Idx = IdxPre;
3607     if (E->getLHS() != E->getIdx()) {
3608       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3609       Idx = EmitScalarExpr(E->getIdx());
3610     }
3611 
3612     QualType IdxTy = E->getIdx()->getType();
3613     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3614     SignedIndices |= IdxSigned;
3615 
3616     if (SanOpts.has(SanitizerKind::ArrayBounds))
3617       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3618 
3619     // Extend or truncate the index type to 32 or 64-bits.
3620     if (Promote && Idx->getType() != IntPtrTy)
3621       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3622 
3623     return Idx;
3624   };
3625   IdxPre = nullptr;
3626 
3627   // If the base is a vector type, then we are forming a vector element lvalue
3628   // with this subscript.
3629   if (E->getBase()->getType()->isVectorType() &&
3630       !isa<ExtVectorElementExpr>(E->getBase())) {
3631     // Emit the vector as an lvalue to get its address.
3632     LValue LHS = EmitLValue(E->getBase());
3633     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3634     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3635     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3636                                  E->getBase()->getType(), LHS.getBaseInfo(),
3637                                  TBAAAccessInfo());
3638   }
3639 
3640   // All the other cases basically behave like simple offsetting.
3641 
3642   // Handle the extvector case we ignored above.
3643   if (isa<ExtVectorElementExpr>(E->getBase())) {
3644     LValue LV = EmitLValue(E->getBase());
3645     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3646     Address Addr = EmitExtVectorElementLValue(LV);
3647 
3648     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3649     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3650                                  SignedIndices, E->getExprLoc());
3651     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3652                           CGM.getTBAAInfoForSubobject(LV, EltType));
3653   }
3654 
3655   LValueBaseInfo EltBaseInfo;
3656   TBAAAccessInfo EltTBAAInfo;
3657   Address Addr = Address::invalid();
3658   if (const VariableArrayType *vla =
3659            getContext().getAsVariableArrayType(E->getType())) {
3660     // The base must be a pointer, which is not an aggregate.  Emit
3661     // it.  It needs to be emitted first in case it's what captures
3662     // the VLA bounds.
3663     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3664     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3665 
3666     // The element count here is the total number of non-VLA elements.
3667     llvm::Value *numElements = getVLASize(vla).NumElts;
3668 
3669     // Effectively, the multiply by the VLA size is part of the GEP.
3670     // GEP indexes are signed, and scaling an index isn't permitted to
3671     // signed-overflow, so we use the same semantics for our explicit
3672     // multiply.  We suppress this if overflow is not undefined behavior.
3673     if (getLangOpts().isSignedOverflowDefined()) {
3674       Idx = Builder.CreateMul(Idx, numElements);
3675     } else {
3676       Idx = Builder.CreateNSWMul(Idx, numElements);
3677     }
3678 
3679     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3680                                  !getLangOpts().isSignedOverflowDefined(),
3681                                  SignedIndices, E->getExprLoc());
3682 
3683   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3684     // Indexing over an interface, as in "NSString *P; P[4];"
3685 
3686     // Emit the base pointer.
3687     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3688     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3689 
3690     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3691     llvm::Value *InterfaceSizeVal =
3692         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3693 
3694     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3695 
3696     // We don't necessarily build correct LLVM struct types for ObjC
3697     // interfaces, so we can't rely on GEP to do this scaling
3698     // correctly, so we need to cast to i8*.  FIXME: is this actually
3699     // true?  A lot of other things in the fragile ABI would break...
3700     llvm::Type *OrigBaseTy = Addr.getType();
3701     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3702 
3703     // Do the GEP.
3704     CharUnits EltAlign =
3705       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3706     llvm::Value *EltPtr =
3707         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3708                               SignedIndices, E->getExprLoc());
3709     Addr = Address(EltPtr, EltAlign);
3710 
3711     // Cast back.
3712     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3713   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3714     // If this is A[i] where A is an array, the frontend will have decayed the
3715     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3716     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3717     // "gep x, i" here.  Emit one "gep A, 0, i".
3718     assert(Array->getType()->isArrayType() &&
3719            "Array to pointer decay must have array source type!");
3720     LValue ArrayLV;
3721     // For simple multidimensional array indexing, set the 'accessed' flag for
3722     // better bounds-checking of the base expression.
3723     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3724       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3725     else
3726       ArrayLV = EmitLValue(Array);
3727     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3728 
3729     // Propagate the alignment from the array itself to the result.
3730     QualType arrayType = Array->getType();
3731     Addr = emitArraySubscriptGEP(
3732         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3733         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3734         E->getExprLoc(), &arrayType, E->getBase());
3735     EltBaseInfo = ArrayLV.getBaseInfo();
3736     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3737   } else {
3738     // The base must be a pointer; emit it with an estimate of its alignment.
3739     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3740     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3741     QualType ptrType = E->getBase()->getType();
3742     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3743                                  !getLangOpts().isSignedOverflowDefined(),
3744                                  SignedIndices, E->getExprLoc(), &ptrType,
3745                                  E->getBase());
3746   }
3747 
3748   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3749 
3750   if (getLangOpts().ObjC &&
3751       getLangOpts().getGC() != LangOptions::NonGC) {
3752     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3753     setObjCGCLValueClass(getContext(), E, LV);
3754   }
3755   return LV;
3756 }
3757 
3758 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3759                                        LValueBaseInfo &BaseInfo,
3760                                        TBAAAccessInfo &TBAAInfo,
3761                                        QualType BaseTy, QualType ElTy,
3762                                        bool IsLowerBound) {
3763   LValue BaseLVal;
3764   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3765     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3766     if (BaseTy->isArrayType()) {
3767       Address Addr = BaseLVal.getAddress(CGF);
3768       BaseInfo = BaseLVal.getBaseInfo();
3769 
3770       // If the array type was an incomplete type, we need to make sure
3771       // the decay ends up being the right type.
3772       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3773       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3774 
3775       // Note that VLA pointers are always decayed, so we don't need to do
3776       // anything here.
3777       if (!BaseTy->isVariableArrayType()) {
3778         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3779                "Expected pointer to array");
3780         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3781       }
3782 
3783       return CGF.Builder.CreateElementBitCast(Addr,
3784                                               CGF.ConvertTypeForMem(ElTy));
3785     }
3786     LValueBaseInfo TypeBaseInfo;
3787     TBAAAccessInfo TypeTBAAInfo;
3788     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3789                                                   &TypeTBAAInfo);
3790     BaseInfo.mergeForCast(TypeBaseInfo);
3791     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3792     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3793   }
3794   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3795 }
3796 
3797 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3798                                                 bool IsLowerBound) {
3799   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3800   QualType ResultExprTy;
3801   if (auto *AT = getContext().getAsArrayType(BaseTy))
3802     ResultExprTy = AT->getElementType();
3803   else
3804     ResultExprTy = BaseTy->getPointeeType();
3805   llvm::Value *Idx = nullptr;
3806   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3807     // Requesting lower bound or upper bound, but without provided length and
3808     // without ':' symbol for the default length -> length = 1.
3809     // Idx = LowerBound ?: 0;
3810     if (auto *LowerBound = E->getLowerBound()) {
3811       Idx = Builder.CreateIntCast(
3812           EmitScalarExpr(LowerBound), IntPtrTy,
3813           LowerBound->getType()->hasSignedIntegerRepresentation());
3814     } else
3815       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3816   } else {
3817     // Try to emit length or lower bound as constant. If this is possible, 1
3818     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3819     // IR (LB + Len) - 1.
3820     auto &C = CGM.getContext();
3821     auto *Length = E->getLength();
3822     llvm::APSInt ConstLength;
3823     if (Length) {
3824       // Idx = LowerBound + Length - 1;
3825       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3826         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3827         Length = nullptr;
3828       }
3829       auto *LowerBound = E->getLowerBound();
3830       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3831       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3832         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3833         LowerBound = nullptr;
3834       }
3835       if (!Length)
3836         --ConstLength;
3837       else if (!LowerBound)
3838         --ConstLowerBound;
3839 
3840       if (Length || LowerBound) {
3841         auto *LowerBoundVal =
3842             LowerBound
3843                 ? Builder.CreateIntCast(
3844                       EmitScalarExpr(LowerBound), IntPtrTy,
3845                       LowerBound->getType()->hasSignedIntegerRepresentation())
3846                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3847         auto *LengthVal =
3848             Length
3849                 ? Builder.CreateIntCast(
3850                       EmitScalarExpr(Length), IntPtrTy,
3851                       Length->getType()->hasSignedIntegerRepresentation())
3852                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3853         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3854                                 /*HasNUW=*/false,
3855                                 !getLangOpts().isSignedOverflowDefined());
3856         if (Length && LowerBound) {
3857           Idx = Builder.CreateSub(
3858               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3859               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3860         }
3861       } else
3862         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3863     } else {
3864       // Idx = ArraySize - 1;
3865       QualType ArrayTy = BaseTy->isPointerType()
3866                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3867                              : BaseTy;
3868       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3869         Length = VAT->getSizeExpr();
3870         if (Length->isIntegerConstantExpr(ConstLength, C))
3871           Length = nullptr;
3872       } else {
3873         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3874         ConstLength = CAT->getSize();
3875       }
3876       if (Length) {
3877         auto *LengthVal = Builder.CreateIntCast(
3878             EmitScalarExpr(Length), IntPtrTy,
3879             Length->getType()->hasSignedIntegerRepresentation());
3880         Idx = Builder.CreateSub(
3881             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3882             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3883       } else {
3884         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3885         --ConstLength;
3886         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3887       }
3888     }
3889   }
3890   assert(Idx);
3891 
3892   Address EltPtr = Address::invalid();
3893   LValueBaseInfo BaseInfo;
3894   TBAAAccessInfo TBAAInfo;
3895   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3896     // The base must be a pointer, which is not an aggregate.  Emit
3897     // it.  It needs to be emitted first in case it's what captures
3898     // the VLA bounds.
3899     Address Base =
3900         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3901                                 BaseTy, VLA->getElementType(), IsLowerBound);
3902     // The element count here is the total number of non-VLA elements.
3903     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3904 
3905     // Effectively, the multiply by the VLA size is part of the GEP.
3906     // GEP indexes are signed, and scaling an index isn't permitted to
3907     // signed-overflow, so we use the same semantics for our explicit
3908     // multiply.  We suppress this if overflow is not undefined behavior.
3909     if (getLangOpts().isSignedOverflowDefined())
3910       Idx = Builder.CreateMul(Idx, NumElements);
3911     else
3912       Idx = Builder.CreateNSWMul(Idx, NumElements);
3913     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3914                                    !getLangOpts().isSignedOverflowDefined(),
3915                                    /*signedIndices=*/false, E->getExprLoc());
3916   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3917     // If this is A[i] where A is an array, the frontend will have decayed the
3918     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3919     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3920     // "gep x, i" here.  Emit one "gep A, 0, i".
3921     assert(Array->getType()->isArrayType() &&
3922            "Array to pointer decay must have array source type!");
3923     LValue ArrayLV;
3924     // For simple multidimensional array indexing, set the 'accessed' flag for
3925     // better bounds-checking of the base expression.
3926     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3927       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3928     else
3929       ArrayLV = EmitLValue(Array);
3930 
3931     // Propagate the alignment from the array itself to the result.
3932     EltPtr = emitArraySubscriptGEP(
3933         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3934         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3935         /*signedIndices=*/false, E->getExprLoc());
3936     BaseInfo = ArrayLV.getBaseInfo();
3937     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3938   } else {
3939     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3940                                            TBAAInfo, BaseTy, ResultExprTy,
3941                                            IsLowerBound);
3942     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3943                                    !getLangOpts().isSignedOverflowDefined(),
3944                                    /*signedIndices=*/false, E->getExprLoc());
3945   }
3946 
3947   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3948 }
3949 
3950 LValue CodeGenFunction::
3951 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3952   // Emit the base vector as an l-value.
3953   LValue Base;
3954 
3955   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3956   if (E->isArrow()) {
3957     // If it is a pointer to a vector, emit the address and form an lvalue with
3958     // it.
3959     LValueBaseInfo BaseInfo;
3960     TBAAAccessInfo TBAAInfo;
3961     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3962     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
3963     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3964     Base.getQuals().removeObjCGCAttr();
3965   } else if (E->getBase()->isGLValue()) {
3966     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3967     // emit the base as an lvalue.
3968     assert(E->getBase()->getType()->isVectorType());
3969     Base = EmitLValue(E->getBase());
3970   } else {
3971     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3972     assert(E->getBase()->getType()->isVectorType() &&
3973            "Result must be a vector");
3974     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3975 
3976     // Store the vector to memory (because LValue wants an address).
3977     Address VecMem = CreateMemTemp(E->getBase()->getType());
3978     Builder.CreateStore(Vec, VecMem);
3979     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3980                           AlignmentSource::Decl);
3981   }
3982 
3983   QualType type =
3984     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3985 
3986   // Encode the element access list into a vector of unsigned indices.
3987   SmallVector<uint32_t, 4> Indices;
3988   E->getEncodedElementAccess(Indices);
3989 
3990   if (Base.isSimple()) {
3991     llvm::Constant *CV =
3992         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3993     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
3994                                     Base.getBaseInfo(), TBAAAccessInfo());
3995   }
3996   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3997 
3998   llvm::Constant *BaseElts = Base.getExtVectorElts();
3999   SmallVector<llvm::Constant *, 4> CElts;
4000 
4001   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4002     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4003   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4004   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4005                                   Base.getBaseInfo(), TBAAAccessInfo());
4006 }
4007 
4008 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4009   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4010     EmitIgnoredExpr(E->getBase());
4011     return EmitDeclRefLValue(DRE);
4012   }
4013 
4014   Expr *BaseExpr = E->getBase();
4015   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4016   LValue BaseLV;
4017   if (E->isArrow()) {
4018     LValueBaseInfo BaseInfo;
4019     TBAAAccessInfo TBAAInfo;
4020     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4021     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4022     SanitizerSet SkippedChecks;
4023     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4024     if (IsBaseCXXThis)
4025       SkippedChecks.set(SanitizerKind::Alignment, true);
4026     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4027       SkippedChecks.set(SanitizerKind::Null, true);
4028     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4029                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4030     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4031   } else
4032     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4033 
4034   NamedDecl *ND = E->getMemberDecl();
4035   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4036     LValue LV = EmitLValueForField(BaseLV, Field);
4037     setObjCGCLValueClass(getContext(), E, LV);
4038     if (getLangOpts().OpenMP) {
4039       // If the member was explicitly marked as nontemporal, mark it as
4040       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4041       // to children as nontemporal too.
4042       if ((IsWrappedCXXThis(BaseExpr) &&
4043            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4044           BaseLV.isNontemporal())
4045         LV.setNontemporal(/*Value=*/true);
4046     }
4047     return LV;
4048   }
4049 
4050   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4051     return EmitFunctionDeclLValue(*this, E, FD);
4052 
4053   llvm_unreachable("Unhandled member declaration!");
4054 }
4055 
4056 /// Given that we are currently emitting a lambda, emit an l-value for
4057 /// one of its members.
4058 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4059   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4060   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4061   QualType LambdaTagType =
4062     getContext().getTagDeclType(Field->getParent());
4063   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4064   return EmitLValueForField(LambdaLV, Field);
4065 }
4066 
4067 /// Get the field index in the debug info. The debug info structure/union
4068 /// will ignore the unnamed bitfields.
4069 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4070                                              unsigned FieldIndex) {
4071   unsigned I = 0, Skipped = 0;
4072 
4073   for (auto F : Rec->getDefinition()->fields()) {
4074     if (I == FieldIndex)
4075       break;
4076     if (F->isUnnamedBitfield())
4077       Skipped++;
4078     I++;
4079   }
4080 
4081   return FieldIndex - Skipped;
4082 }
4083 
4084 /// Get the address of a zero-sized field within a record. The resulting
4085 /// address doesn't necessarily have the right type.
4086 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4087                                        const FieldDecl *Field) {
4088   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4089       CGF.getContext().getFieldOffset(Field));
4090   if (Offset.isZero())
4091     return Base;
4092   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4093   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4094 }
4095 
4096 /// Drill down to the storage of a field without walking into
4097 /// reference types.
4098 ///
4099 /// The resulting address doesn't necessarily have the right type.
4100 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4101                                       const FieldDecl *field) {
4102   if (field->isZeroSize(CGF.getContext()))
4103     return emitAddrOfZeroSizeField(CGF, base, field);
4104 
4105   const RecordDecl *rec = field->getParent();
4106 
4107   unsigned idx =
4108     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4109 
4110   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4111 }
4112 
4113 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4114                                         Address addr, const FieldDecl *field) {
4115   const RecordDecl *rec = field->getParent();
4116   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4117       base.getType(), rec->getLocation());
4118 
4119   unsigned idx =
4120       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4121 
4122   return CGF.Builder.CreatePreserveStructAccessIndex(
4123       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4124 }
4125 
4126 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4127   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4128   if (!RD)
4129     return false;
4130 
4131   if (RD->isDynamicClass())
4132     return true;
4133 
4134   for (const auto &Base : RD->bases())
4135     if (hasAnyVptr(Base.getType(), Context))
4136       return true;
4137 
4138   for (const FieldDecl *Field : RD->fields())
4139     if (hasAnyVptr(Field->getType(), Context))
4140       return true;
4141 
4142   return false;
4143 }
4144 
4145 LValue CodeGenFunction::EmitLValueForField(LValue base,
4146                                            const FieldDecl *field) {
4147   LValueBaseInfo BaseInfo = base.getBaseInfo();
4148 
4149   if (field->isBitField()) {
4150     const CGRecordLayout &RL =
4151       CGM.getTypes().getCGRecordLayout(field->getParent());
4152     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4153     Address Addr = base.getAddress(*this);
4154     unsigned Idx = RL.getLLVMFieldNo(field);
4155     const RecordDecl *rec = field->getParent();
4156     if (!IsInPreservedAIRegion &&
4157         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4158       if (Idx != 0)
4159         // For structs, we GEP to the field that the record layout suggests.
4160         Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4161     } else {
4162       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4163           getContext().getRecordType(rec), rec->getLocation());
4164       Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx,
4165           getDebugInfoFIndex(rec, field->getFieldIndex()),
4166           DbgInfo);
4167     }
4168 
4169     // Get the access type.
4170     llvm::Type *FieldIntTy =
4171       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
4172     if (Addr.getElementType() != FieldIntTy)
4173       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4174 
4175     QualType fieldType =
4176       field->getType().withCVRQualifiers(base.getVRQualifiers());
4177     // TODO: Support TBAA for bit fields.
4178     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4179     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4180                                 TBAAAccessInfo());
4181   }
4182 
4183   // Fields of may-alias structures are may-alias themselves.
4184   // FIXME: this should get propagated down through anonymous structs
4185   // and unions.
4186   QualType FieldType = field->getType();
4187   const RecordDecl *rec = field->getParent();
4188   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4189   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4190   TBAAAccessInfo FieldTBAAInfo;
4191   if (base.getTBAAInfo().isMayAlias() ||
4192           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4193     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4194   } else if (rec->isUnion()) {
4195     // TODO: Support TBAA for unions.
4196     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4197   } else {
4198     // If no base type been assigned for the base access, then try to generate
4199     // one for this base lvalue.
4200     FieldTBAAInfo = base.getTBAAInfo();
4201     if (!FieldTBAAInfo.BaseType) {
4202         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4203         assert(!FieldTBAAInfo.Offset &&
4204                "Nonzero offset for an access with no base type!");
4205     }
4206 
4207     // Adjust offset to be relative to the base type.
4208     const ASTRecordLayout &Layout =
4209         getContext().getASTRecordLayout(field->getParent());
4210     unsigned CharWidth = getContext().getCharWidth();
4211     if (FieldTBAAInfo.BaseType)
4212       FieldTBAAInfo.Offset +=
4213           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4214 
4215     // Update the final access type and size.
4216     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4217     FieldTBAAInfo.Size =
4218         getContext().getTypeSizeInChars(FieldType).getQuantity();
4219   }
4220 
4221   Address addr = base.getAddress(*this);
4222   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4223     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4224         ClassDef->isDynamicClass()) {
4225       // Getting to any field of dynamic object requires stripping dynamic
4226       // information provided by invariant.group.  This is because accessing
4227       // fields may leak the real address of dynamic object, which could result
4228       // in miscompilation when leaked pointer would be compared.
4229       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4230       addr = Address(stripped, addr.getAlignment());
4231     }
4232   }
4233 
4234   unsigned RecordCVR = base.getVRQualifiers();
4235   if (rec->isUnion()) {
4236     // For unions, there is no pointer adjustment.
4237     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4238         hasAnyVptr(FieldType, getContext()))
4239       // Because unions can easily skip invariant.barriers, we need to add
4240       // a barrier every time CXXRecord field with vptr is referenced.
4241       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4242                      addr.getAlignment());
4243 
4244     if (IsInPreservedAIRegion ||
4245         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4246       // Remember the original union field index
4247       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4248           rec->getLocation());
4249       addr = Address(
4250           Builder.CreatePreserveUnionAccessIndex(
4251               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4252           addr.getAlignment());
4253     }
4254 
4255     if (FieldType->isReferenceType())
4256       addr = Builder.CreateElementBitCast(
4257           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4258   } else {
4259     if (!IsInPreservedAIRegion &&
4260         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4261       // For structs, we GEP to the field that the record layout suggests.
4262       addr = emitAddrOfFieldStorage(*this, addr, field);
4263     else
4264       // Remember the original struct field index
4265       addr = emitPreserveStructAccess(*this, base, addr, field);
4266   }
4267 
4268   // If this is a reference field, load the reference right now.
4269   if (FieldType->isReferenceType()) {
4270     LValue RefLVal =
4271         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4272     if (RecordCVR & Qualifiers::Volatile)
4273       RefLVal.getQuals().addVolatile();
4274     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4275 
4276     // Qualifiers on the struct don't apply to the referencee.
4277     RecordCVR = 0;
4278     FieldType = FieldType->getPointeeType();
4279   }
4280 
4281   // Make sure that the address is pointing to the right type.  This is critical
4282   // for both unions and structs.  A union needs a bitcast, a struct element
4283   // will need a bitcast if the LLVM type laid out doesn't match the desired
4284   // type.
4285   addr = Builder.CreateElementBitCast(
4286       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4287 
4288   if (field->hasAttr<AnnotateAttr>())
4289     addr = EmitFieldAnnotations(field, addr);
4290 
4291   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4292   LV.getQuals().addCVRQualifiers(RecordCVR);
4293 
4294   // __weak attribute on a field is ignored.
4295   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4296     LV.getQuals().removeObjCGCAttr();
4297 
4298   return LV;
4299 }
4300 
4301 LValue
4302 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4303                                                   const FieldDecl *Field) {
4304   QualType FieldType = Field->getType();
4305 
4306   if (!FieldType->isReferenceType())
4307     return EmitLValueForField(Base, Field);
4308 
4309   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4310 
4311   // Make sure that the address is pointing to the right type.
4312   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4313   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4314 
4315   // TODO: Generate TBAA information that describes this access as a structure
4316   // member access and not just an access to an object of the field's type. This
4317   // should be similar to what we do in EmitLValueForField().
4318   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4319   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4320   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4321   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4322                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4323 }
4324 
4325 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4326   if (E->isFileScope()) {
4327     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4328     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4329   }
4330   if (E->getType()->isVariablyModifiedType())
4331     // make sure to emit the VLA size.
4332     EmitVariablyModifiedType(E->getType());
4333 
4334   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4335   const Expr *InitExpr = E->getInitializer();
4336   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4337 
4338   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4339                    /*Init*/ true);
4340 
4341   // Block-scope compound literals are destroyed at the end of the enclosing
4342   // scope in C.
4343   if (!getLangOpts().CPlusPlus)
4344     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4345       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4346                                   E->getType(), getDestroyer(DtorKind),
4347                                   DtorKind & EHCleanup);
4348 
4349   return Result;
4350 }
4351 
4352 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4353   if (!E->isGLValue())
4354     // Initializing an aggregate temporary in C++11: T{...}.
4355     return EmitAggExprToLValue(E);
4356 
4357   // An lvalue initializer list must be initializing a reference.
4358   assert(E->isTransparent() && "non-transparent glvalue init list");
4359   return EmitLValue(E->getInit(0));
4360 }
4361 
4362 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4363 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4364 /// LValue is returned and the current block has been terminated.
4365 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4366                                                     const Expr *Operand) {
4367   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4368     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4369     return None;
4370   }
4371 
4372   return CGF.EmitLValue(Operand);
4373 }
4374 
4375 LValue CodeGenFunction::
4376 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4377   if (!expr->isGLValue()) {
4378     // ?: here should be an aggregate.
4379     assert(hasAggregateEvaluationKind(expr->getType()) &&
4380            "Unexpected conditional operator!");
4381     return EmitAggExprToLValue(expr);
4382   }
4383 
4384   OpaqueValueMapping binding(*this, expr);
4385 
4386   const Expr *condExpr = expr->getCond();
4387   bool CondExprBool;
4388   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4389     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4390     if (!CondExprBool) std::swap(live, dead);
4391 
4392     if (!ContainsLabel(dead)) {
4393       // If the true case is live, we need to track its region.
4394       if (CondExprBool)
4395         incrementProfileCounter(expr);
4396       // If a throw expression we emit it and return an undefined lvalue
4397       // because it can't be used.
4398       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4399         EmitCXXThrowExpr(ThrowExpr);
4400         llvm::Type *Ty =
4401             llvm::PointerType::getUnqual(ConvertType(dead->getType()));
4402         return MakeAddrLValue(
4403             Address(llvm::UndefValue::get(Ty), CharUnits::One()),
4404             dead->getType());
4405       }
4406       return EmitLValue(live);
4407     }
4408   }
4409 
4410   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4411   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4412   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4413 
4414   ConditionalEvaluation eval(*this);
4415   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4416 
4417   // Any temporaries created here are conditional.
4418   EmitBlock(lhsBlock);
4419   incrementProfileCounter(expr);
4420   eval.begin(*this);
4421   Optional<LValue> lhs =
4422       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4423   eval.end(*this);
4424 
4425   if (lhs && !lhs->isSimple())
4426     return EmitUnsupportedLValue(expr, "conditional operator");
4427 
4428   lhsBlock = Builder.GetInsertBlock();
4429   if (lhs)
4430     Builder.CreateBr(contBlock);
4431 
4432   // Any temporaries created here are conditional.
4433   EmitBlock(rhsBlock);
4434   eval.begin(*this);
4435   Optional<LValue> rhs =
4436       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4437   eval.end(*this);
4438   if (rhs && !rhs->isSimple())
4439     return EmitUnsupportedLValue(expr, "conditional operator");
4440   rhsBlock = Builder.GetInsertBlock();
4441 
4442   EmitBlock(contBlock);
4443 
4444   if (lhs && rhs) {
4445     llvm::PHINode *phi =
4446         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4447     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4448     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4449     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4450     AlignmentSource alignSource =
4451       std::max(lhs->getBaseInfo().getAlignmentSource(),
4452                rhs->getBaseInfo().getAlignmentSource());
4453     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4454         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4455     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4456                           TBAAInfo);
4457   } else {
4458     assert((lhs || rhs) &&
4459            "both operands of glvalue conditional are throw-expressions?");
4460     return lhs ? *lhs : *rhs;
4461   }
4462 }
4463 
4464 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4465 /// type. If the cast is to a reference, we can have the usual lvalue result,
4466 /// otherwise if a cast is needed by the code generator in an lvalue context,
4467 /// then it must mean that we need the address of an aggregate in order to
4468 /// access one of its members.  This can happen for all the reasons that casts
4469 /// are permitted with aggregate result, including noop aggregate casts, and
4470 /// cast from scalar to union.
4471 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4472   switch (E->getCastKind()) {
4473   case CK_ToVoid:
4474   case CK_BitCast:
4475   case CK_LValueToRValueBitCast:
4476   case CK_ArrayToPointerDecay:
4477   case CK_FunctionToPointerDecay:
4478   case CK_NullToMemberPointer:
4479   case CK_NullToPointer:
4480   case CK_IntegralToPointer:
4481   case CK_PointerToIntegral:
4482   case CK_PointerToBoolean:
4483   case CK_VectorSplat:
4484   case CK_IntegralCast:
4485   case CK_BooleanToSignedIntegral:
4486   case CK_IntegralToBoolean:
4487   case CK_IntegralToFloating:
4488   case CK_FloatingToIntegral:
4489   case CK_FloatingToBoolean:
4490   case CK_FloatingCast:
4491   case CK_FloatingRealToComplex:
4492   case CK_FloatingComplexToReal:
4493   case CK_FloatingComplexToBoolean:
4494   case CK_FloatingComplexCast:
4495   case CK_FloatingComplexToIntegralComplex:
4496   case CK_IntegralRealToComplex:
4497   case CK_IntegralComplexToReal:
4498   case CK_IntegralComplexToBoolean:
4499   case CK_IntegralComplexCast:
4500   case CK_IntegralComplexToFloatingComplex:
4501   case CK_DerivedToBaseMemberPointer:
4502   case CK_BaseToDerivedMemberPointer:
4503   case CK_MemberPointerToBoolean:
4504   case CK_ReinterpretMemberPointer:
4505   case CK_AnyPointerToBlockPointerCast:
4506   case CK_ARCProduceObject:
4507   case CK_ARCConsumeObject:
4508   case CK_ARCReclaimReturnedObject:
4509   case CK_ARCExtendBlockObject:
4510   case CK_CopyAndAutoreleaseBlockObject:
4511   case CK_IntToOCLSampler:
4512   case CK_FixedPointCast:
4513   case CK_FixedPointToBoolean:
4514   case CK_FixedPointToIntegral:
4515   case CK_IntegralToFixedPoint:
4516     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4517 
4518   case CK_Dependent:
4519     llvm_unreachable("dependent cast kind in IR gen!");
4520 
4521   case CK_BuiltinFnToFnPtr:
4522     llvm_unreachable("builtin functions are handled elsewhere");
4523 
4524   // These are never l-values; just use the aggregate emission code.
4525   case CK_NonAtomicToAtomic:
4526   case CK_AtomicToNonAtomic:
4527     return EmitAggExprToLValue(E);
4528 
4529   case CK_Dynamic: {
4530     LValue LV = EmitLValue(E->getSubExpr());
4531     Address V = LV.getAddress(*this);
4532     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4533     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4534   }
4535 
4536   case CK_ConstructorConversion:
4537   case CK_UserDefinedConversion:
4538   case CK_CPointerToObjCPointerCast:
4539   case CK_BlockPointerToObjCPointerCast:
4540   case CK_NoOp:
4541   case CK_LValueToRValue:
4542     return EmitLValue(E->getSubExpr());
4543 
4544   case CK_UncheckedDerivedToBase:
4545   case CK_DerivedToBase: {
4546     const auto *DerivedClassTy =
4547         E->getSubExpr()->getType()->castAs<RecordType>();
4548     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4549 
4550     LValue LV = EmitLValue(E->getSubExpr());
4551     Address This = LV.getAddress(*this);
4552 
4553     // Perform the derived-to-base conversion
4554     Address Base = GetAddressOfBaseClass(
4555         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4556         /*NullCheckValue=*/false, E->getExprLoc());
4557 
4558     // TODO: Support accesses to members of base classes in TBAA. For now, we
4559     // conservatively pretend that the complete object is of the base class
4560     // type.
4561     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4562                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4563   }
4564   case CK_ToUnion:
4565     return EmitAggExprToLValue(E);
4566   case CK_BaseToDerived: {
4567     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4568     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4569 
4570     LValue LV = EmitLValue(E->getSubExpr());
4571 
4572     // Perform the base-to-derived conversion
4573     Address Derived = GetAddressOfDerivedClass(
4574         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4575         /*NullCheckValue=*/false);
4576 
4577     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4578     // performed and the object is not of the derived type.
4579     if (sanitizePerformTypeCheck())
4580       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4581                     Derived.getPointer(), E->getType());
4582 
4583     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4584       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4585                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4586                                 E->getBeginLoc());
4587 
4588     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4589                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4590   }
4591   case CK_LValueBitCast: {
4592     // This must be a reinterpret_cast (or c-style equivalent).
4593     const auto *CE = cast<ExplicitCastExpr>(E);
4594 
4595     CGM.EmitExplicitCastExprType(CE, this);
4596     LValue LV = EmitLValue(E->getSubExpr());
4597     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4598                                       ConvertType(CE->getTypeAsWritten()));
4599 
4600     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4601       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4602                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4603                                 E->getBeginLoc());
4604 
4605     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4606                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4607   }
4608   case CK_AddressSpaceConversion: {
4609     LValue LV = EmitLValue(E->getSubExpr());
4610     QualType DestTy = getContext().getPointerType(E->getType());
4611     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4612         *this, LV.getPointer(*this),
4613         E->getSubExpr()->getType().getAddressSpace(),
4614         E->getType().getAddressSpace(), ConvertType(DestTy));
4615     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4616                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4617   }
4618   case CK_ObjCObjectLValueCast: {
4619     LValue LV = EmitLValue(E->getSubExpr());
4620     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4621                                              ConvertType(E->getType()));
4622     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4623                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4624   }
4625   case CK_ZeroToOCLOpaqueType:
4626     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4627   }
4628 
4629   llvm_unreachable("Unhandled lvalue cast kind?");
4630 }
4631 
4632 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4633   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4634   return getOrCreateOpaqueLValueMapping(e);
4635 }
4636 
4637 LValue
4638 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4639   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4640 
4641   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4642       it = OpaqueLValues.find(e);
4643 
4644   if (it != OpaqueLValues.end())
4645     return it->second;
4646 
4647   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4648   return EmitLValue(e->getSourceExpr());
4649 }
4650 
4651 RValue
4652 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4653   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4654 
4655   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4656       it = OpaqueRValues.find(e);
4657 
4658   if (it != OpaqueRValues.end())
4659     return it->second;
4660 
4661   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4662   return EmitAnyExpr(e->getSourceExpr());
4663 }
4664 
4665 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4666                                            const FieldDecl *FD,
4667                                            SourceLocation Loc) {
4668   QualType FT = FD->getType();
4669   LValue FieldLV = EmitLValueForField(LV, FD);
4670   switch (getEvaluationKind(FT)) {
4671   case TEK_Complex:
4672     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4673   case TEK_Aggregate:
4674     return FieldLV.asAggregateRValue(*this);
4675   case TEK_Scalar:
4676     // This routine is used to load fields one-by-one to perform a copy, so
4677     // don't load reference fields.
4678     if (FD->getType()->isReferenceType())
4679       return RValue::get(FieldLV.getPointer(*this));
4680     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4681     // primitive load.
4682     if (FieldLV.isBitField())
4683       return EmitLoadOfLValue(FieldLV, Loc);
4684     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4685   }
4686   llvm_unreachable("bad evaluation kind");
4687 }
4688 
4689 //===--------------------------------------------------------------------===//
4690 //                             Expression Emission
4691 //===--------------------------------------------------------------------===//
4692 
4693 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4694                                      ReturnValueSlot ReturnValue) {
4695   // Builtins never have block type.
4696   if (E->getCallee()->getType()->isBlockPointerType())
4697     return EmitBlockCallExpr(E, ReturnValue);
4698 
4699   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4700     return EmitCXXMemberCallExpr(CE, ReturnValue);
4701 
4702   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4703     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4704 
4705   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4706     if (const CXXMethodDecl *MD =
4707           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4708       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4709 
4710   CGCallee callee = EmitCallee(E->getCallee());
4711 
4712   if (callee.isBuiltin()) {
4713     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4714                            E, ReturnValue);
4715   }
4716 
4717   if (callee.isPseudoDestructor()) {
4718     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4719   }
4720 
4721   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4722 }
4723 
4724 /// Emit a CallExpr without considering whether it might be a subclass.
4725 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4726                                            ReturnValueSlot ReturnValue) {
4727   CGCallee Callee = EmitCallee(E->getCallee());
4728   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4729 }
4730 
4731 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4732   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4733 
4734   if (auto builtinID = FD->getBuiltinID()) {
4735     // Replaceable builtin provide their own implementation of a builtin. Unless
4736     // we are in the builtin implementation itself, don't call the actual
4737     // builtin. If we are in the builtin implementation, avoid trivial infinite
4738     // recursion.
4739     if (!FD->isInlineBuiltinDeclaration() ||
4740         CGF.CurFn->getName() == FD->getName())
4741       return CGCallee::forBuiltin(builtinID, FD);
4742   }
4743 
4744   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4745   return CGCallee::forDirect(calleePtr, GD);
4746 }
4747 
4748 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4749   E = E->IgnoreParens();
4750 
4751   // Look through function-to-pointer decay.
4752   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4753     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4754         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4755       return EmitCallee(ICE->getSubExpr());
4756     }
4757 
4758   // Resolve direct calls.
4759   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4760     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4761       return EmitDirectCallee(*this, FD);
4762     }
4763   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4764     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4765       EmitIgnoredExpr(ME->getBase());
4766       return EmitDirectCallee(*this, FD);
4767     }
4768 
4769   // Look through template substitutions.
4770   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4771     return EmitCallee(NTTP->getReplacement());
4772 
4773   // Treat pseudo-destructor calls differently.
4774   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4775     return CGCallee::forPseudoDestructor(PDE);
4776   }
4777 
4778   // Otherwise, we have an indirect reference.
4779   llvm::Value *calleePtr;
4780   QualType functionType;
4781   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4782     calleePtr = EmitScalarExpr(E);
4783     functionType = ptrType->getPointeeType();
4784   } else {
4785     functionType = E->getType();
4786     calleePtr = EmitLValue(E).getPointer(*this);
4787   }
4788   assert(functionType->isFunctionType());
4789 
4790   GlobalDecl GD;
4791   if (const auto *VD =
4792           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4793     GD = GlobalDecl(VD);
4794 
4795   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4796   CGCallee callee(calleeInfo, calleePtr);
4797   return callee;
4798 }
4799 
4800 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4801   // Comma expressions just emit their LHS then their RHS as an l-value.
4802   if (E->getOpcode() == BO_Comma) {
4803     EmitIgnoredExpr(E->getLHS());
4804     EnsureInsertPoint();
4805     return EmitLValue(E->getRHS());
4806   }
4807 
4808   if (E->getOpcode() == BO_PtrMemD ||
4809       E->getOpcode() == BO_PtrMemI)
4810     return EmitPointerToDataMemberBinaryExpr(E);
4811 
4812   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4813 
4814   // Note that in all of these cases, __block variables need the RHS
4815   // evaluated first just in case the variable gets moved by the RHS.
4816 
4817   switch (getEvaluationKind(E->getType())) {
4818   case TEK_Scalar: {
4819     switch (E->getLHS()->getType().getObjCLifetime()) {
4820     case Qualifiers::OCL_Strong:
4821       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4822 
4823     case Qualifiers::OCL_Autoreleasing:
4824       return EmitARCStoreAutoreleasing(E).first;
4825 
4826     // No reason to do any of these differently.
4827     case Qualifiers::OCL_None:
4828     case Qualifiers::OCL_ExplicitNone:
4829     case Qualifiers::OCL_Weak:
4830       break;
4831     }
4832 
4833     RValue RV = EmitAnyExpr(E->getRHS());
4834     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4835     if (RV.isScalar())
4836       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4837     EmitStoreThroughLValue(RV, LV);
4838     if (getLangOpts().OpenMP)
4839       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4840                                                                 E->getLHS());
4841     return LV;
4842   }
4843 
4844   case TEK_Complex:
4845     return EmitComplexAssignmentLValue(E);
4846 
4847   case TEK_Aggregate:
4848     return EmitAggExprToLValue(E);
4849   }
4850   llvm_unreachable("bad evaluation kind");
4851 }
4852 
4853 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4854   RValue RV = EmitCallExpr(E);
4855 
4856   if (!RV.isScalar())
4857     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4858                           AlignmentSource::Decl);
4859 
4860   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4861          "Can't have a scalar return unless the return type is a "
4862          "reference type!");
4863 
4864   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4865 }
4866 
4867 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4868   // FIXME: This shouldn't require another copy.
4869   return EmitAggExprToLValue(E);
4870 }
4871 
4872 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4873   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4874          && "binding l-value to type which needs a temporary");
4875   AggValueSlot Slot = CreateAggTemp(E->getType());
4876   EmitCXXConstructExpr(E, Slot);
4877   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4878 }
4879 
4880 LValue
4881 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4882   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4883 }
4884 
4885 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4886   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
4887                                       ConvertType(E->getType()));
4888 }
4889 
4890 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4891   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4892                         AlignmentSource::Decl);
4893 }
4894 
4895 LValue
4896 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4897   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4898   Slot.setExternallyDestructed();
4899   EmitAggExpr(E->getSubExpr(), Slot);
4900   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4901   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4902 }
4903 
4904 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4905   RValue RV = EmitObjCMessageExpr(E);
4906 
4907   if (!RV.isScalar())
4908     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4909                           AlignmentSource::Decl);
4910 
4911   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4912          "Can't have a scalar return unless the return type is a "
4913          "reference type!");
4914 
4915   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4916 }
4917 
4918 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4919   Address V =
4920     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4921   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4922 }
4923 
4924 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4925                                              const ObjCIvarDecl *Ivar) {
4926   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4927 }
4928 
4929 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4930                                           llvm::Value *BaseValue,
4931                                           const ObjCIvarDecl *Ivar,
4932                                           unsigned CVRQualifiers) {
4933   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4934                                                    Ivar, CVRQualifiers);
4935 }
4936 
4937 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4938   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4939   llvm::Value *BaseValue = nullptr;
4940   const Expr *BaseExpr = E->getBase();
4941   Qualifiers BaseQuals;
4942   QualType ObjectTy;
4943   if (E->isArrow()) {
4944     BaseValue = EmitScalarExpr(BaseExpr);
4945     ObjectTy = BaseExpr->getType()->getPointeeType();
4946     BaseQuals = ObjectTy.getQualifiers();
4947   } else {
4948     LValue BaseLV = EmitLValue(BaseExpr);
4949     BaseValue = BaseLV.getPointer(*this);
4950     ObjectTy = BaseExpr->getType();
4951     BaseQuals = ObjectTy.getQualifiers();
4952   }
4953 
4954   LValue LV =
4955     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4956                       BaseQuals.getCVRQualifiers());
4957   setObjCGCLValueClass(getContext(), E, LV);
4958   return LV;
4959 }
4960 
4961 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4962   // Can only get l-value for message expression returning aggregate type
4963   RValue RV = EmitAnyExprToTemp(E);
4964   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4965                         AlignmentSource::Decl);
4966 }
4967 
4968 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4969                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4970                                  llvm::Value *Chain) {
4971   // Get the actual function type. The callee type will always be a pointer to
4972   // function type or a block pointer type.
4973   assert(CalleeType->isFunctionPointerType() &&
4974          "Call must have function pointer type!");
4975 
4976   const Decl *TargetDecl =
4977       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4978 
4979   CalleeType = getContext().getCanonicalType(CalleeType);
4980 
4981   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4982 
4983   CGCallee Callee = OrigCallee;
4984 
4985   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4986       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4987     if (llvm::Constant *PrefixSig =
4988             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4989       SanitizerScope SanScope(this);
4990       // Remove any (C++17) exception specifications, to allow calling e.g. a
4991       // noexcept function through a non-noexcept pointer.
4992       auto ProtoTy =
4993         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4994       llvm::Constant *FTRTTIConst =
4995           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4996       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4997       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4998           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4999 
5000       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5001 
5002       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5003           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5004       llvm::Value *CalleeSigPtr =
5005           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5006       llvm::Value *CalleeSig =
5007           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
5008       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5009 
5010       llvm::BasicBlock *Cont = createBasicBlock("cont");
5011       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5012       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5013 
5014       EmitBlock(TypeCheck);
5015       llvm::Value *CalleeRTTIPtr =
5016           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5017       llvm::Value *CalleeRTTIEncoded =
5018           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
5019       llvm::Value *CalleeRTTI =
5020           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5021       llvm::Value *CalleeRTTIMatch =
5022           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5023       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5024                                       EmitCheckTypeDescriptor(CalleeType)};
5025       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5026                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5027                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5028 
5029       Builder.CreateBr(Cont);
5030       EmitBlock(Cont);
5031     }
5032   }
5033 
5034   const auto *FnType = cast<FunctionType>(PointeeType);
5035 
5036   // If we are checking indirect calls and this call is indirect, check that the
5037   // function pointer is a member of the bit set for the function type.
5038   if (SanOpts.has(SanitizerKind::CFIICall) &&
5039       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5040     SanitizerScope SanScope(this);
5041     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5042 
5043     llvm::Metadata *MD;
5044     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5045       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5046     else
5047       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5048 
5049     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5050 
5051     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5052     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5053     llvm::Value *TypeTest = Builder.CreateCall(
5054         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5055 
5056     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5057     llvm::Constant *StaticData[] = {
5058         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5059         EmitCheckSourceLocation(E->getBeginLoc()),
5060         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5061     };
5062     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5063       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5064                            CastedCallee, StaticData);
5065     } else {
5066       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5067                 SanitizerHandler::CFICheckFail, StaticData,
5068                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5069     }
5070   }
5071 
5072   CallArgList Args;
5073   if (Chain)
5074     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5075              CGM.getContext().VoidPtrTy);
5076 
5077   // C++17 requires that we evaluate arguments to a call using assignment syntax
5078   // right-to-left, and that we evaluate arguments to certain other operators
5079   // left-to-right. Note that we allow this to override the order dictated by
5080   // the calling convention on the MS ABI, which means that parameter
5081   // destruction order is not necessarily reverse construction order.
5082   // FIXME: Revisit this based on C++ committee response to unimplementability.
5083   EvaluationOrder Order = EvaluationOrder::Default;
5084   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5085     if (OCE->isAssignmentOp())
5086       Order = EvaluationOrder::ForceRightToLeft;
5087     else {
5088       switch (OCE->getOperator()) {
5089       case OO_LessLess:
5090       case OO_GreaterGreater:
5091       case OO_AmpAmp:
5092       case OO_PipePipe:
5093       case OO_Comma:
5094       case OO_ArrowStar:
5095         Order = EvaluationOrder::ForceLeftToRight;
5096         break;
5097       default:
5098         break;
5099       }
5100     }
5101   }
5102 
5103   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5104                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5105 
5106   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5107       Args, FnType, /*ChainCall=*/Chain);
5108 
5109   // C99 6.5.2.2p6:
5110   //   If the expression that denotes the called function has a type
5111   //   that does not include a prototype, [the default argument
5112   //   promotions are performed]. If the number of arguments does not
5113   //   equal the number of parameters, the behavior is undefined. If
5114   //   the function is defined with a type that includes a prototype,
5115   //   and either the prototype ends with an ellipsis (, ...) or the
5116   //   types of the arguments after promotion are not compatible with
5117   //   the types of the parameters, the behavior is undefined. If the
5118   //   function is defined with a type that does not include a
5119   //   prototype, and the types of the arguments after promotion are
5120   //   not compatible with those of the parameters after promotion,
5121   //   the behavior is undefined [except in some trivial cases].
5122   // That is, in the general case, we should assume that a call
5123   // through an unprototyped function type works like a *non-variadic*
5124   // call.  The way we make this work is to cast to the exact type
5125   // of the promoted arguments.
5126   //
5127   // Chain calls use this same code path to add the invisible chain parameter
5128   // to the function type.
5129   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5130     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5131     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5132     CalleeTy = CalleeTy->getPointerTo(AS);
5133 
5134     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5135     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5136     Callee.setFunctionPointer(CalleePtr);
5137   }
5138 
5139   llvm::CallBase *CallOrInvoke = nullptr;
5140   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5141                          E->getExprLoc());
5142 
5143   // Generate function declaration DISuprogram in order to be used
5144   // in debug info about call sites.
5145   if (CGDebugInfo *DI = getDebugInfo()) {
5146     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5147       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5148                                   CalleeDecl);
5149   }
5150 
5151   return Call;
5152 }
5153 
5154 LValue CodeGenFunction::
5155 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5156   Address BaseAddr = Address::invalid();
5157   if (E->getOpcode() == BO_PtrMemI) {
5158     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5159   } else {
5160     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5161   }
5162 
5163   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5164   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5165 
5166   LValueBaseInfo BaseInfo;
5167   TBAAAccessInfo TBAAInfo;
5168   Address MemberAddr =
5169     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5170                                     &TBAAInfo);
5171 
5172   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5173 }
5174 
5175 /// Given the address of a temporary variable, produce an r-value of
5176 /// its type.
5177 RValue CodeGenFunction::convertTempToRValue(Address addr,
5178                                             QualType type,
5179                                             SourceLocation loc) {
5180   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5181   switch (getEvaluationKind(type)) {
5182   case TEK_Complex:
5183     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5184   case TEK_Aggregate:
5185     return lvalue.asAggregateRValue(*this);
5186   case TEK_Scalar:
5187     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5188   }
5189   llvm_unreachable("bad evaluation kind");
5190 }
5191 
5192 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5193   assert(Val->getType()->isFPOrFPVectorTy());
5194   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5195     return;
5196 
5197   llvm::MDBuilder MDHelper(getLLVMContext());
5198   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5199 
5200   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5201 }
5202 
5203 namespace {
5204   struct LValueOrRValue {
5205     LValue LV;
5206     RValue RV;
5207   };
5208 }
5209 
5210 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5211                                            const PseudoObjectExpr *E,
5212                                            bool forLValue,
5213                                            AggValueSlot slot) {
5214   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5215 
5216   // Find the result expression, if any.
5217   const Expr *resultExpr = E->getResultExpr();
5218   LValueOrRValue result;
5219 
5220   for (PseudoObjectExpr::const_semantics_iterator
5221          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5222     const Expr *semantic = *i;
5223 
5224     // If this semantic expression is an opaque value, bind it
5225     // to the result of its source expression.
5226     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5227       // Skip unique OVEs.
5228       if (ov->isUnique()) {
5229         assert(ov != resultExpr &&
5230                "A unique OVE cannot be used as the result expression");
5231         continue;
5232       }
5233 
5234       // If this is the result expression, we may need to evaluate
5235       // directly into the slot.
5236       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5237       OVMA opaqueData;
5238       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5239           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5240         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5241         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5242                                        AlignmentSource::Decl);
5243         opaqueData = OVMA::bind(CGF, ov, LV);
5244         result.RV = slot.asRValue();
5245 
5246       // Otherwise, emit as normal.
5247       } else {
5248         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5249 
5250         // If this is the result, also evaluate the result now.
5251         if (ov == resultExpr) {
5252           if (forLValue)
5253             result.LV = CGF.EmitLValue(ov);
5254           else
5255             result.RV = CGF.EmitAnyExpr(ov, slot);
5256         }
5257       }
5258 
5259       opaques.push_back(opaqueData);
5260 
5261     // Otherwise, if the expression is the result, evaluate it
5262     // and remember the result.
5263     } else if (semantic == resultExpr) {
5264       if (forLValue)
5265         result.LV = CGF.EmitLValue(semantic);
5266       else
5267         result.RV = CGF.EmitAnyExpr(semantic, slot);
5268 
5269     // Otherwise, evaluate the expression in an ignored context.
5270     } else {
5271       CGF.EmitIgnoredExpr(semantic);
5272     }
5273   }
5274 
5275   // Unbind all the opaques now.
5276   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5277     opaques[i].unbind(CGF);
5278 
5279   return result;
5280 }
5281 
5282 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5283                                                AggValueSlot slot) {
5284   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5285 }
5286 
5287 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5288   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5289 }
5290