1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "llvm/ADT/Hashing.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/MatrixBuilder.h"
39 #include "llvm/Support/ConvertUTF.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/Path.h"
42 #include "llvm/Support/SaveAndRestore.h"
43 #include "llvm/Transforms/Utils/SanitizerStats.h"
44 
45 #include <string>
46 
47 using namespace clang;
48 using namespace CodeGen;
49 
50 //===--------------------------------------------------------------------===//
51 //                        Miscellaneous Helper Methods
52 //===--------------------------------------------------------------------===//
53 
54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
55   unsigned addressSpace =
56       cast<llvm::PointerType>(value->getType())->getAddressSpace();
57 
58   llvm::PointerType *destType = Int8PtrTy;
59   if (addressSpace)
60     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
61 
62   if (value->getType() == destType) return value;
63   return Builder.CreateBitCast(value, destType);
64 }
65 
66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
67 /// block.
68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
69                                                      CharUnits Align,
70                                                      const Twine &Name,
71                                                      llvm::Value *ArraySize) {
72   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
73   Alloca->setAlignment(Align.getAsAlign());
74   return Address(Alloca, Align);
75 }
76 
77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
78 /// block. The alloca is casted to default address space if necessary.
79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
80                                           const Twine &Name,
81                                           llvm::Value *ArraySize,
82                                           Address *AllocaAddr) {
83   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
84   if (AllocaAddr)
85     *AllocaAddr = Alloca;
86   llvm::Value *V = Alloca.getPointer();
87   // Alloca always returns a pointer in alloca address space, which may
88   // be different from the type defined by the language. For example,
89   // in C++ the auto variables are in the default address space. Therefore
90   // cast alloca to the default address space when necessary.
91   if (getASTAllocaAddressSpace() != LangAS::Default) {
92     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
93     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
94     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
95     // otherwise alloca is inserted at the current insertion point of the
96     // builder.
97     if (!ArraySize)
98       Builder.SetInsertPoint(AllocaInsertPt);
99     V = getTargetHooks().performAddrSpaceCast(
100         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
101         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
102   }
103 
104   return Address(V, Align);
105 }
106 
107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
109 /// insertion point of the builder.
110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
111                                                     const Twine &Name,
112                                                     llvm::Value *ArraySize) {
113   if (ArraySize)
114     return Builder.CreateAlloca(Ty, ArraySize, Name);
115   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
116                               ArraySize, Name, AllocaInsertPt);
117 }
118 
119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
120 /// default alignment of the corresponding LLVM type, which is *not*
121 /// guaranteed to be related in any way to the expected alignment of
122 /// an AST type that might have been lowered to Ty.
123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
124                                                       const Twine &Name) {
125   CharUnits Align =
126       CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty));
127   return CreateTempAlloca(Ty, Align, Name);
128 }
129 
130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
131   CharUnits Align = getContext().getTypeAlignInChars(Ty);
132   return CreateTempAlloca(ConvertType(Ty), Align, Name);
133 }
134 
135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
136                                        Address *Alloca) {
137   // FIXME: Should we prefer the preferred type alignment here?
138   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
139 }
140 
141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
142                                        const Twine &Name, Address *Alloca) {
143   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
144                                     /*ArraySize=*/nullptr, Alloca);
145 
146   if (Ty->isConstantMatrixType()) {
147     auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
148     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
149                                                 ArrayTy->getNumElements());
150 
151     Result = Address(
152         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
153         Result.getAlignment());
154   }
155   return Result;
156 }
157 
158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
159                                                   const Twine &Name) {
160   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
161 }
162 
163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
164                                                   const Twine &Name) {
165   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
166                                   Name);
167 }
168 
169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
170 /// expression and compare the result against zero, returning an Int1Ty value.
171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
172   PGO.setCurrentStmt(E);
173   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
174     llvm::Value *MemPtr = EmitScalarExpr(E);
175     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
176   }
177 
178   QualType BoolTy = getContext().BoolTy;
179   SourceLocation Loc = E->getExprLoc();
180   CGFPOptionsRAII FPOptsRAII(*this, E);
181   if (!E->getType()->isAnyComplexType())
182     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
183 
184   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
185                                        Loc);
186 }
187 
188 /// EmitIgnoredExpr - Emit code to compute the specified expression,
189 /// ignoring the result.
190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
191   if (E->isPRValue())
192     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
193 
194   // Just emit it as an l-value and drop the result.
195   EmitLValue(E);
196 }
197 
198 /// EmitAnyExpr - Emit code to compute the specified expression which
199 /// can have any type.  The result is returned as an RValue struct.
200 /// If this is an aggregate expression, AggSlot indicates where the
201 /// result should be returned.
202 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
203                                     AggValueSlot aggSlot,
204                                     bool ignoreResult) {
205   switch (getEvaluationKind(E->getType())) {
206   case TEK_Scalar:
207     return RValue::get(EmitScalarExpr(E, ignoreResult));
208   case TEK_Complex:
209     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
210   case TEK_Aggregate:
211     if (!ignoreResult && aggSlot.isIgnored())
212       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
213     EmitAggExpr(E, aggSlot);
214     return aggSlot.asRValue();
215   }
216   llvm_unreachable("bad evaluation kind");
217 }
218 
219 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
220 /// always be accessible even if no aggregate location is provided.
221 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
222   AggValueSlot AggSlot = AggValueSlot::ignored();
223 
224   if (hasAggregateEvaluationKind(E->getType()))
225     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
226   return EmitAnyExpr(E, AggSlot);
227 }
228 
229 /// EmitAnyExprToMem - Evaluate an expression into a given memory
230 /// location.
231 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
232                                        Address Location,
233                                        Qualifiers Quals,
234                                        bool IsInit) {
235   // FIXME: This function should take an LValue as an argument.
236   switch (getEvaluationKind(E->getType())) {
237   case TEK_Complex:
238     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
239                               /*isInit*/ false);
240     return;
241 
242   case TEK_Aggregate: {
243     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
244                                          AggValueSlot::IsDestructed_t(IsInit),
245                                          AggValueSlot::DoesNotNeedGCBarriers,
246                                          AggValueSlot::IsAliased_t(!IsInit),
247                                          AggValueSlot::MayOverlap));
248     return;
249   }
250 
251   case TEK_Scalar: {
252     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
253     LValue LV = MakeAddrLValue(Location, E->getType());
254     EmitStoreThroughLValue(RV, LV);
255     return;
256   }
257   }
258   llvm_unreachable("bad evaluation kind");
259 }
260 
261 static void
262 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
263                      const Expr *E, Address ReferenceTemporary) {
264   // Objective-C++ ARC:
265   //   If we are binding a reference to a temporary that has ownership, we
266   //   need to perform retain/release operations on the temporary.
267   //
268   // FIXME: This should be looking at E, not M.
269   if (auto Lifetime = M->getType().getObjCLifetime()) {
270     switch (Lifetime) {
271     case Qualifiers::OCL_None:
272     case Qualifiers::OCL_ExplicitNone:
273       // Carry on to normal cleanup handling.
274       break;
275 
276     case Qualifiers::OCL_Autoreleasing:
277       // Nothing to do; cleaned up by an autorelease pool.
278       return;
279 
280     case Qualifiers::OCL_Strong:
281     case Qualifiers::OCL_Weak:
282       switch (StorageDuration Duration = M->getStorageDuration()) {
283       case SD_Static:
284         // Note: we intentionally do not register a cleanup to release
285         // the object on program termination.
286         return;
287 
288       case SD_Thread:
289         // FIXME: We should probably register a cleanup in this case.
290         return;
291 
292       case SD_Automatic:
293       case SD_FullExpression:
294         CodeGenFunction::Destroyer *Destroy;
295         CleanupKind CleanupKind;
296         if (Lifetime == Qualifiers::OCL_Strong) {
297           const ValueDecl *VD = M->getExtendingDecl();
298           bool Precise =
299               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
300           CleanupKind = CGF.getARCCleanupKind();
301           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
302                             : &CodeGenFunction::destroyARCStrongImprecise;
303         } else {
304           // __weak objects always get EH cleanups; otherwise, exceptions
305           // could cause really nasty crashes instead of mere leaks.
306           CleanupKind = NormalAndEHCleanup;
307           Destroy = &CodeGenFunction::destroyARCWeak;
308         }
309         if (Duration == SD_FullExpression)
310           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
311                           M->getType(), *Destroy,
312                           CleanupKind & EHCleanup);
313         else
314           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
315                                           M->getType(),
316                                           *Destroy, CleanupKind & EHCleanup);
317         return;
318 
319       case SD_Dynamic:
320         llvm_unreachable("temporary cannot have dynamic storage duration");
321       }
322       llvm_unreachable("unknown storage duration");
323     }
324   }
325 
326   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
327   if (const RecordType *RT =
328           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
329     // Get the destructor for the reference temporary.
330     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
331     if (!ClassDecl->hasTrivialDestructor())
332       ReferenceTemporaryDtor = ClassDecl->getDestructor();
333   }
334 
335   if (!ReferenceTemporaryDtor)
336     return;
337 
338   // Call the destructor for the temporary.
339   switch (M->getStorageDuration()) {
340   case SD_Static:
341   case SD_Thread: {
342     llvm::FunctionCallee CleanupFn;
343     llvm::Constant *CleanupArg;
344     if (E->getType()->isArrayType()) {
345       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
346           ReferenceTemporary, E->getType(),
347           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
348           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
349       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
350     } else {
351       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
352           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
353       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
354     }
355     CGF.CGM.getCXXABI().registerGlobalDtor(
356         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
357     break;
358   }
359 
360   case SD_FullExpression:
361     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
362                     CodeGenFunction::destroyCXXObject,
363                     CGF.getLangOpts().Exceptions);
364     break;
365 
366   case SD_Automatic:
367     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
368                                     ReferenceTemporary, E->getType(),
369                                     CodeGenFunction::destroyCXXObject,
370                                     CGF.getLangOpts().Exceptions);
371     break;
372 
373   case SD_Dynamic:
374     llvm_unreachable("temporary cannot have dynamic storage duration");
375   }
376 }
377 
378 static Address createReferenceTemporary(CodeGenFunction &CGF,
379                                         const MaterializeTemporaryExpr *M,
380                                         const Expr *Inner,
381                                         Address *Alloca = nullptr) {
382   auto &TCG = CGF.getTargetHooks();
383   switch (M->getStorageDuration()) {
384   case SD_FullExpression:
385   case SD_Automatic: {
386     // If we have a constant temporary array or record try to promote it into a
387     // constant global under the same rules a normal constant would've been
388     // promoted. This is easier on the optimizer and generally emits fewer
389     // instructions.
390     QualType Ty = Inner->getType();
391     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
392         (Ty->isArrayType() || Ty->isRecordType()) &&
393         CGF.CGM.isTypeConstant(Ty, true))
394       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
395         auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
396         auto *GV = new llvm::GlobalVariable(
397             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
398             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
399             llvm::GlobalValue::NotThreadLocal,
400             CGF.getContext().getTargetAddressSpace(AS));
401         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
402         GV->setAlignment(alignment.getAsAlign());
403         llvm::Constant *C = GV;
404         if (AS != LangAS::Default)
405           C = TCG.performAddrSpaceCast(
406               CGF.CGM, GV, AS, LangAS::Default,
407               GV->getValueType()->getPointerTo(
408                   CGF.getContext().getTargetAddressSpace(LangAS::Default)));
409         // FIXME: Should we put the new global into a COMDAT?
410         return Address(C, alignment);
411       }
412     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
413   }
414   case SD_Thread:
415   case SD_Static:
416     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
417 
418   case SD_Dynamic:
419     llvm_unreachable("temporary can't have dynamic storage duration");
420   }
421   llvm_unreachable("unknown storage duration");
422 }
423 
424 /// Helper method to check if the underlying ABI is AAPCS
425 static bool isAAPCS(const TargetInfo &TargetInfo) {
426   return TargetInfo.getABI().startswith("aapcs");
427 }
428 
429 LValue CodeGenFunction::
430 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
431   const Expr *E = M->getSubExpr();
432 
433   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
434           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
435          "Reference should never be pseudo-strong!");
436 
437   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
438   // as that will cause the lifetime adjustment to be lost for ARC
439   auto ownership = M->getType().getObjCLifetime();
440   if (ownership != Qualifiers::OCL_None &&
441       ownership != Qualifiers::OCL_ExplicitNone) {
442     Address Object = createReferenceTemporary(*this, M, E);
443     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
444       Object = Address(llvm::ConstantExpr::getBitCast(Var,
445                            ConvertTypeForMem(E->getType())
446                              ->getPointerTo(Object.getAddressSpace())),
447                        Object.getAlignment());
448 
449       // createReferenceTemporary will promote the temporary to a global with a
450       // constant initializer if it can.  It can only do this to a value of
451       // ARC-manageable type if the value is global and therefore "immune" to
452       // ref-counting operations.  Therefore we have no need to emit either a
453       // dynamic initialization or a cleanup and we can just return the address
454       // of the temporary.
455       if (Var->hasInitializer())
456         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
457 
458       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
459     }
460     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
461                                        AlignmentSource::Decl);
462 
463     switch (getEvaluationKind(E->getType())) {
464     default: llvm_unreachable("expected scalar or aggregate expression");
465     case TEK_Scalar:
466       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
467       break;
468     case TEK_Aggregate: {
469       EmitAggExpr(E, AggValueSlot::forAddr(Object,
470                                            E->getType().getQualifiers(),
471                                            AggValueSlot::IsDestructed,
472                                            AggValueSlot::DoesNotNeedGCBarriers,
473                                            AggValueSlot::IsNotAliased,
474                                            AggValueSlot::DoesNotOverlap));
475       break;
476     }
477     }
478 
479     pushTemporaryCleanup(*this, M, E, Object);
480     return RefTempDst;
481   }
482 
483   SmallVector<const Expr *, 2> CommaLHSs;
484   SmallVector<SubobjectAdjustment, 2> Adjustments;
485   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
486 
487   for (const auto &Ignored : CommaLHSs)
488     EmitIgnoredExpr(Ignored);
489 
490   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
491     if (opaque->getType()->isRecordType()) {
492       assert(Adjustments.empty());
493       return EmitOpaqueValueLValue(opaque);
494     }
495   }
496 
497   // Create and initialize the reference temporary.
498   Address Alloca = Address::invalid();
499   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
500   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
501           Object.getPointer()->stripPointerCasts())) {
502     Object = Address(llvm::ConstantExpr::getBitCast(
503                          cast<llvm::Constant>(Object.getPointer()),
504                          ConvertTypeForMem(E->getType())->getPointerTo()),
505                      Object.getAlignment());
506     // If the temporary is a global and has a constant initializer or is a
507     // constant temporary that we promoted to a global, we may have already
508     // initialized it.
509     if (!Var->hasInitializer()) {
510       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
511       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
512     }
513   } else {
514     switch (M->getStorageDuration()) {
515     case SD_Automatic:
516       if (auto *Size = EmitLifetimeStart(
517               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
518               Alloca.getPointer())) {
519         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
520                                                   Alloca, Size);
521       }
522       break;
523 
524     case SD_FullExpression: {
525       if (!ShouldEmitLifetimeMarkers)
526         break;
527 
528       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
529       // marker. Instead, start the lifetime of a conditional temporary earlier
530       // so that it's unconditional. Don't do this with sanitizers which need
531       // more precise lifetime marks.
532       ConditionalEvaluation *OldConditional = nullptr;
533       CGBuilderTy::InsertPoint OldIP;
534       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
535           !SanOpts.has(SanitizerKind::HWAddress) &&
536           !SanOpts.has(SanitizerKind::Memory) &&
537           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
538         OldConditional = OutermostConditional;
539         OutermostConditional = nullptr;
540 
541         OldIP = Builder.saveIP();
542         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
543         Builder.restoreIP(CGBuilderTy::InsertPoint(
544             Block, llvm::BasicBlock::iterator(Block->back())));
545       }
546 
547       if (auto *Size = EmitLifetimeStart(
548               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
549               Alloca.getPointer())) {
550         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
551                                              Size);
552       }
553 
554       if (OldConditional) {
555         OutermostConditional = OldConditional;
556         Builder.restoreIP(OldIP);
557       }
558       break;
559     }
560 
561     default:
562       break;
563     }
564     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
565   }
566   pushTemporaryCleanup(*this, M, E, Object);
567 
568   // Perform derived-to-base casts and/or field accesses, to get from the
569   // temporary object we created (and, potentially, for which we extended
570   // the lifetime) to the subobject we're binding the reference to.
571   for (unsigned I = Adjustments.size(); I != 0; --I) {
572     SubobjectAdjustment &Adjustment = Adjustments[I-1];
573     switch (Adjustment.Kind) {
574     case SubobjectAdjustment::DerivedToBaseAdjustment:
575       Object =
576           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
577                                 Adjustment.DerivedToBase.BasePath->path_begin(),
578                                 Adjustment.DerivedToBase.BasePath->path_end(),
579                                 /*NullCheckValue=*/ false, E->getExprLoc());
580       break;
581 
582     case SubobjectAdjustment::FieldAdjustment: {
583       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
584       LV = EmitLValueForField(LV, Adjustment.Field);
585       assert(LV.isSimple() &&
586              "materialized temporary field is not a simple lvalue");
587       Object = LV.getAddress(*this);
588       break;
589     }
590 
591     case SubobjectAdjustment::MemberPointerAdjustment: {
592       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
593       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
594                                                Adjustment.Ptr.MPT);
595       break;
596     }
597     }
598   }
599 
600   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
601 }
602 
603 RValue
604 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
605   // Emit the expression as an lvalue.
606   LValue LV = EmitLValue(E);
607   assert(LV.isSimple());
608   llvm::Value *Value = LV.getPointer(*this);
609 
610   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
611     // C++11 [dcl.ref]p5 (as amended by core issue 453):
612     //   If a glvalue to which a reference is directly bound designates neither
613     //   an existing object or function of an appropriate type nor a region of
614     //   storage of suitable size and alignment to contain an object of the
615     //   reference's type, the behavior is undefined.
616     QualType Ty = E->getType();
617     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
618   }
619 
620   return RValue::get(Value);
621 }
622 
623 
624 /// getAccessedFieldNo - Given an encoded value and a result number, return the
625 /// input field number being accessed.
626 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
627                                              const llvm::Constant *Elts) {
628   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
629       ->getZExtValue();
630 }
631 
632 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
633 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
634                                     llvm::Value *High) {
635   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
636   llvm::Value *K47 = Builder.getInt64(47);
637   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
638   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
639   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
640   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
641   return Builder.CreateMul(B1, KMul);
642 }
643 
644 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
645   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
646          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
647 }
648 
649 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
650   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
651   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
652          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
653           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
654           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
655 }
656 
657 bool CodeGenFunction::sanitizePerformTypeCheck() const {
658   return SanOpts.has(SanitizerKind::Null) ||
659          SanOpts.has(SanitizerKind::Alignment) ||
660          SanOpts.has(SanitizerKind::ObjectSize) ||
661          SanOpts.has(SanitizerKind::Vptr);
662 }
663 
664 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
665                                     llvm::Value *Ptr, QualType Ty,
666                                     CharUnits Alignment,
667                                     SanitizerSet SkippedChecks,
668                                     llvm::Value *ArraySize) {
669   if (!sanitizePerformTypeCheck())
670     return;
671 
672   // Don't check pointers outside the default address space. The null check
673   // isn't correct, the object-size check isn't supported by LLVM, and we can't
674   // communicate the addresses to the runtime handler for the vptr check.
675   if (Ptr->getType()->getPointerAddressSpace())
676     return;
677 
678   // Don't check pointers to volatile data. The behavior here is implementation-
679   // defined.
680   if (Ty.isVolatileQualified())
681     return;
682 
683   SanitizerScope SanScope(this);
684 
685   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
686   llvm::BasicBlock *Done = nullptr;
687 
688   // Quickly determine whether we have a pointer to an alloca. It's possible
689   // to skip null checks, and some alignment checks, for these pointers. This
690   // can reduce compile-time significantly.
691   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
692 
693   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
694   llvm::Value *IsNonNull = nullptr;
695   bool IsGuaranteedNonNull =
696       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
697   bool AllowNullPointers = isNullPointerAllowed(TCK);
698   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
699       !IsGuaranteedNonNull) {
700     // The glvalue must not be an empty glvalue.
701     IsNonNull = Builder.CreateIsNotNull(Ptr);
702 
703     // The IR builder can constant-fold the null check if the pointer points to
704     // a constant.
705     IsGuaranteedNonNull = IsNonNull == True;
706 
707     // Skip the null check if the pointer is known to be non-null.
708     if (!IsGuaranteedNonNull) {
709       if (AllowNullPointers) {
710         // When performing pointer casts, it's OK if the value is null.
711         // Skip the remaining checks in that case.
712         Done = createBasicBlock("null");
713         llvm::BasicBlock *Rest = createBasicBlock("not.null");
714         Builder.CreateCondBr(IsNonNull, Rest, Done);
715         EmitBlock(Rest);
716       } else {
717         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
718       }
719     }
720   }
721 
722   if (SanOpts.has(SanitizerKind::ObjectSize) &&
723       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
724       !Ty->isIncompleteType()) {
725     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
726     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
727     if (ArraySize)
728       Size = Builder.CreateMul(Size, ArraySize);
729 
730     // Degenerate case: new X[0] does not need an objectsize check.
731     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
732     if (!ConstantSize || !ConstantSize->isNullValue()) {
733       // The glvalue must refer to a large enough storage region.
734       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
735       //        to check this.
736       // FIXME: Get object address space
737       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
738       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
739       llvm::Value *Min = Builder.getFalse();
740       llvm::Value *NullIsUnknown = Builder.getFalse();
741       llvm::Value *Dynamic = Builder.getFalse();
742       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
743       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
744           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
745       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
746     }
747   }
748 
749   uint64_t AlignVal = 0;
750   llvm::Value *PtrAsInt = nullptr;
751 
752   if (SanOpts.has(SanitizerKind::Alignment) &&
753       !SkippedChecks.has(SanitizerKind::Alignment)) {
754     AlignVal = Alignment.getQuantity();
755     if (!Ty->isIncompleteType() && !AlignVal)
756       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
757                                              /*ForPointeeType=*/true)
758                      .getQuantity();
759 
760     // The glvalue must be suitably aligned.
761     if (AlignVal > 1 &&
762         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
763       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
764       llvm::Value *Align = Builder.CreateAnd(
765           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
766       llvm::Value *Aligned =
767           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
768       if (Aligned != True)
769         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
770     }
771   }
772 
773   if (Checks.size() > 0) {
774     // Make sure we're not losing information. Alignment needs to be a power of
775     // 2
776     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
777     llvm::Constant *StaticData[] = {
778         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
779         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
780         llvm::ConstantInt::get(Int8Ty, TCK)};
781     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
782               PtrAsInt ? PtrAsInt : Ptr);
783   }
784 
785   // If possible, check that the vptr indicates that there is a subobject of
786   // type Ty at offset zero within this object.
787   //
788   // C++11 [basic.life]p5,6:
789   //   [For storage which does not refer to an object within its lifetime]
790   //   The program has undefined behavior if:
791   //    -- the [pointer or glvalue] is used to access a non-static data member
792   //       or call a non-static member function
793   if (SanOpts.has(SanitizerKind::Vptr) &&
794       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
795     // Ensure that the pointer is non-null before loading it. If there is no
796     // compile-time guarantee, reuse the run-time null check or emit a new one.
797     if (!IsGuaranteedNonNull) {
798       if (!IsNonNull)
799         IsNonNull = Builder.CreateIsNotNull(Ptr);
800       if (!Done)
801         Done = createBasicBlock("vptr.null");
802       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
803       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
804       EmitBlock(VptrNotNull);
805     }
806 
807     // Compute a hash of the mangled name of the type.
808     //
809     // FIXME: This is not guaranteed to be deterministic! Move to a
810     //        fingerprinting mechanism once LLVM provides one. For the time
811     //        being the implementation happens to be deterministic.
812     SmallString<64> MangledName;
813     llvm::raw_svector_ostream Out(MangledName);
814     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
815                                                      Out);
816 
817     // Contained in NoSanitizeList based on the mangled type.
818     if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
819                                                            Out.str())) {
820       llvm::hash_code TypeHash = hash_value(Out.str());
821 
822       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
823       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
824       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
825       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
826       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
827       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
828 
829       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
830       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
831 
832       // Look the hash up in our cache.
833       const int CacheSize = 128;
834       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
835       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
836                                                      "__ubsan_vptr_type_cache");
837       llvm::Value *Slot = Builder.CreateAnd(Hash,
838                                             llvm::ConstantInt::get(IntPtrTy,
839                                                                    CacheSize-1));
840       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
841       llvm::Value *CacheVal = Builder.CreateAlignedLoad(
842           IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
843           getPointerAlign());
844 
845       // If the hash isn't in the cache, call a runtime handler to perform the
846       // hard work of checking whether the vptr is for an object of the right
847       // type. This will either fill in the cache and return, or produce a
848       // diagnostic.
849       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
850       llvm::Constant *StaticData[] = {
851         EmitCheckSourceLocation(Loc),
852         EmitCheckTypeDescriptor(Ty),
853         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
854         llvm::ConstantInt::get(Int8Ty, TCK)
855       };
856       llvm::Value *DynamicData[] = { Ptr, Hash };
857       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
858                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
859                 DynamicData);
860     }
861   }
862 
863   if (Done) {
864     Builder.CreateBr(Done);
865     EmitBlock(Done);
866   }
867 }
868 
869 /// Determine whether this expression refers to a flexible array member in a
870 /// struct. We disable array bounds checks for such members.
871 static bool isFlexibleArrayMemberExpr(const Expr *E) {
872   // For compatibility with existing code, we treat arrays of length 0 or
873   // 1 as flexible array members.
874   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
875   // the two mechanisms.
876   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
877   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
878     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
879     // was produced by macro expansion.
880     if (CAT->getSize().ugt(1))
881       return false;
882   } else if (!isa<IncompleteArrayType>(AT))
883     return false;
884 
885   E = E->IgnoreParens();
886 
887   // A flexible array member must be the last member in the class.
888   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
889     // FIXME: If the base type of the member expr is not FD->getParent(),
890     // this should not be treated as a flexible array member access.
891     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
892       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
893       // member, only a T[0] or T[] member gets that treatment.
894       if (FD->getParent()->isUnion())
895         return true;
896       RecordDecl::field_iterator FI(
897           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
898       return ++FI == FD->getParent()->field_end();
899     }
900   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
901     return IRE->getDecl()->getNextIvar() == nullptr;
902   }
903 
904   return false;
905 }
906 
907 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
908                                                    QualType EltTy) {
909   ASTContext &C = getContext();
910   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
911   if (!EltSize)
912     return nullptr;
913 
914   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
915   if (!ArrayDeclRef)
916     return nullptr;
917 
918   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
919   if (!ParamDecl)
920     return nullptr;
921 
922   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
923   if (!POSAttr)
924     return nullptr;
925 
926   // Don't load the size if it's a lower bound.
927   int POSType = POSAttr->getType();
928   if (POSType != 0 && POSType != 1)
929     return nullptr;
930 
931   // Find the implicit size parameter.
932   auto PassedSizeIt = SizeArguments.find(ParamDecl);
933   if (PassedSizeIt == SizeArguments.end())
934     return nullptr;
935 
936   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
937   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
938   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
939   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
940                                               C.getSizeType(), E->getExprLoc());
941   llvm::Value *SizeOfElement =
942       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
943   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
944 }
945 
946 /// If Base is known to point to the start of an array, return the length of
947 /// that array. Return 0 if the length cannot be determined.
948 static llvm::Value *getArrayIndexingBound(
949     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
950   // For the vector indexing extension, the bound is the number of elements.
951   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
952     IndexedType = Base->getType();
953     return CGF.Builder.getInt32(VT->getNumElements());
954   }
955 
956   Base = Base->IgnoreParens();
957 
958   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
959     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
960         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
961       IndexedType = CE->getSubExpr()->getType();
962       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
963       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
964         return CGF.Builder.getInt(CAT->getSize());
965       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
966         return CGF.getVLASize(VAT).NumElts;
967       // Ignore pass_object_size here. It's not applicable on decayed pointers.
968     }
969   }
970 
971   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
972   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
973     IndexedType = Base->getType();
974     return POS;
975   }
976 
977   return nullptr;
978 }
979 
980 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
981                                       llvm::Value *Index, QualType IndexType,
982                                       bool Accessed) {
983   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
984          "should not be called unless adding bounds checks");
985   SanitizerScope SanScope(this);
986 
987   QualType IndexedType;
988   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
989   if (!Bound)
990     return;
991 
992   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
993   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
994   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
995 
996   llvm::Constant *StaticData[] = {
997     EmitCheckSourceLocation(E->getExprLoc()),
998     EmitCheckTypeDescriptor(IndexedType),
999     EmitCheckTypeDescriptor(IndexType)
1000   };
1001   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1002                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1003   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1004             SanitizerHandler::OutOfBounds, StaticData, Index);
1005 }
1006 
1007 
1008 CodeGenFunction::ComplexPairTy CodeGenFunction::
1009 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1010                          bool isInc, bool isPre) {
1011   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1012 
1013   llvm::Value *NextVal;
1014   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1015     uint64_t AmountVal = isInc ? 1 : -1;
1016     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1017 
1018     // Add the inc/dec to the real part.
1019     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1020   } else {
1021     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1022     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1023     if (!isInc)
1024       FVal.changeSign();
1025     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1026 
1027     // Add the inc/dec to the real part.
1028     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1029   }
1030 
1031   ComplexPairTy IncVal(NextVal, InVal.second);
1032 
1033   // Store the updated result through the lvalue.
1034   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1035   if (getLangOpts().OpenMP)
1036     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1037                                                               E->getSubExpr());
1038 
1039   // If this is a postinc, return the value read from memory, otherwise use the
1040   // updated value.
1041   return isPre ? IncVal : InVal;
1042 }
1043 
1044 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1045                                              CodeGenFunction *CGF) {
1046   // Bind VLAs in the cast type.
1047   if (CGF && E->getType()->isVariablyModifiedType())
1048     CGF->EmitVariablyModifiedType(E->getType());
1049 
1050   if (CGDebugInfo *DI = getModuleDebugInfo())
1051     DI->EmitExplicitCastType(E->getType());
1052 }
1053 
1054 //===----------------------------------------------------------------------===//
1055 //                         LValue Expression Emission
1056 //===----------------------------------------------------------------------===//
1057 
1058 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1059 /// derive a more accurate bound on the alignment of the pointer.
1060 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1061                                                   LValueBaseInfo *BaseInfo,
1062                                                   TBAAAccessInfo *TBAAInfo) {
1063   // We allow this with ObjC object pointers because of fragile ABIs.
1064   assert(E->getType()->isPointerType() ||
1065          E->getType()->isObjCObjectPointerType());
1066   E = E->IgnoreParens();
1067 
1068   // Casts:
1069   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1070     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1071       CGM.EmitExplicitCastExprType(ECE, this);
1072 
1073     switch (CE->getCastKind()) {
1074     // Non-converting casts (but not C's implicit conversion from void*).
1075     case CK_BitCast:
1076     case CK_NoOp:
1077     case CK_AddressSpaceConversion:
1078       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1079         if (PtrTy->getPointeeType()->isVoidType())
1080           break;
1081 
1082         LValueBaseInfo InnerBaseInfo;
1083         TBAAAccessInfo InnerTBAAInfo;
1084         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1085                                                 &InnerBaseInfo,
1086                                                 &InnerTBAAInfo);
1087         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1088         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1089 
1090         if (isa<ExplicitCastExpr>(CE)) {
1091           LValueBaseInfo TargetTypeBaseInfo;
1092           TBAAAccessInfo TargetTypeTBAAInfo;
1093           CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1094               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1095           if (TBAAInfo)
1096             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1097                                                  TargetTypeTBAAInfo);
1098           // If the source l-value is opaque, honor the alignment of the
1099           // casted-to type.
1100           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1101             if (BaseInfo)
1102               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1103             Addr = Address(Addr.getPointer(), Align);
1104           }
1105         }
1106 
1107         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1108             CE->getCastKind() == CK_BitCast) {
1109           if (auto PT = E->getType()->getAs<PointerType>())
1110             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1111                                       /*MayBeNull=*/true,
1112                                       CodeGenFunction::CFITCK_UnrelatedCast,
1113                                       CE->getBeginLoc());
1114         }
1115         return CE->getCastKind() != CK_AddressSpaceConversion
1116                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1117                    : Builder.CreateAddrSpaceCast(Addr,
1118                                                  ConvertType(E->getType()));
1119       }
1120       break;
1121 
1122     // Array-to-pointer decay.
1123     case CK_ArrayToPointerDecay:
1124       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1125 
1126     // Derived-to-base conversions.
1127     case CK_UncheckedDerivedToBase:
1128     case CK_DerivedToBase: {
1129       // TODO: Support accesses to members of base classes in TBAA. For now, we
1130       // conservatively pretend that the complete object is of the base class
1131       // type.
1132       if (TBAAInfo)
1133         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1134       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1135       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1136       return GetAddressOfBaseClass(Addr, Derived,
1137                                    CE->path_begin(), CE->path_end(),
1138                                    ShouldNullCheckClassCastValue(CE),
1139                                    CE->getExprLoc());
1140     }
1141 
1142     // TODO: Is there any reason to treat base-to-derived conversions
1143     // specially?
1144     default:
1145       break;
1146     }
1147   }
1148 
1149   // Unary &.
1150   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1151     if (UO->getOpcode() == UO_AddrOf) {
1152       LValue LV = EmitLValue(UO->getSubExpr());
1153       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1154       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1155       return LV.getAddress(*this);
1156     }
1157   }
1158 
1159   // TODO: conditional operators, comma.
1160 
1161   // Otherwise, use the alignment of the type.
1162   CharUnits Align =
1163       CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1164   return Address(EmitScalarExpr(E), Align);
1165 }
1166 
1167 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1168   llvm::Value *V = RV.getScalarVal();
1169   if (auto MPT = T->getAs<MemberPointerType>())
1170     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1171   return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1172 }
1173 
1174 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1175   if (Ty->isVoidType())
1176     return RValue::get(nullptr);
1177 
1178   switch (getEvaluationKind(Ty)) {
1179   case TEK_Complex: {
1180     llvm::Type *EltTy =
1181       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1182     llvm::Value *U = llvm::UndefValue::get(EltTy);
1183     return RValue::getComplex(std::make_pair(U, U));
1184   }
1185 
1186   // If this is a use of an undefined aggregate type, the aggregate must have an
1187   // identifiable address.  Just because the contents of the value are undefined
1188   // doesn't mean that the address can't be taken and compared.
1189   case TEK_Aggregate: {
1190     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1191     return RValue::getAggregate(DestPtr);
1192   }
1193 
1194   case TEK_Scalar:
1195     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1196   }
1197   llvm_unreachable("bad evaluation kind");
1198 }
1199 
1200 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1201                                               const char *Name) {
1202   ErrorUnsupported(E, Name);
1203   return GetUndefRValue(E->getType());
1204 }
1205 
1206 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1207                                               const char *Name) {
1208   ErrorUnsupported(E, Name);
1209   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1210   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1211                         E->getType());
1212 }
1213 
1214 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1215   const Expr *Base = Obj;
1216   while (!isa<CXXThisExpr>(Base)) {
1217     // The result of a dynamic_cast can be null.
1218     if (isa<CXXDynamicCastExpr>(Base))
1219       return false;
1220 
1221     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1222       Base = CE->getSubExpr();
1223     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1224       Base = PE->getSubExpr();
1225     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1226       if (UO->getOpcode() == UO_Extension)
1227         Base = UO->getSubExpr();
1228       else
1229         return false;
1230     } else {
1231       return false;
1232     }
1233   }
1234   return true;
1235 }
1236 
1237 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1238   LValue LV;
1239   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1240     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1241   else
1242     LV = EmitLValue(E);
1243   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1244     SanitizerSet SkippedChecks;
1245     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1246       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1247       if (IsBaseCXXThis)
1248         SkippedChecks.set(SanitizerKind::Alignment, true);
1249       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1250         SkippedChecks.set(SanitizerKind::Null, true);
1251     }
1252     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1253                   LV.getAlignment(), SkippedChecks);
1254   }
1255   return LV;
1256 }
1257 
1258 /// EmitLValue - Emit code to compute a designator that specifies the location
1259 /// of the expression.
1260 ///
1261 /// This can return one of two things: a simple address or a bitfield reference.
1262 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1263 /// an LLVM pointer type.
1264 ///
1265 /// If this returns a bitfield reference, nothing about the pointee type of the
1266 /// LLVM value is known: For example, it may not be a pointer to an integer.
1267 ///
1268 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1269 /// this method guarantees that the returned pointer type will point to an LLVM
1270 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1271 /// length type, this is not possible.
1272 ///
1273 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1274   ApplyDebugLocation DL(*this, E);
1275   switch (E->getStmtClass()) {
1276   default: return EmitUnsupportedLValue(E, "l-value expression");
1277 
1278   case Expr::ObjCPropertyRefExprClass:
1279     llvm_unreachable("cannot emit a property reference directly");
1280 
1281   case Expr::ObjCSelectorExprClass:
1282     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1283   case Expr::ObjCIsaExprClass:
1284     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1285   case Expr::BinaryOperatorClass:
1286     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1287   case Expr::CompoundAssignOperatorClass: {
1288     QualType Ty = E->getType();
1289     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1290       Ty = AT->getValueType();
1291     if (!Ty->isAnyComplexType())
1292       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1293     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1294   }
1295   case Expr::CallExprClass:
1296   case Expr::CXXMemberCallExprClass:
1297   case Expr::CXXOperatorCallExprClass:
1298   case Expr::UserDefinedLiteralClass:
1299     return EmitCallExprLValue(cast<CallExpr>(E));
1300   case Expr::CXXRewrittenBinaryOperatorClass:
1301     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1302   case Expr::VAArgExprClass:
1303     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1304   case Expr::DeclRefExprClass:
1305     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1306   case Expr::ConstantExprClass: {
1307     const ConstantExpr *CE = cast<ConstantExpr>(E);
1308     if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1309       QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1310                              ->getCallReturnType(getContext());
1311       return MakeNaturalAlignAddrLValue(Result, RetType);
1312     }
1313     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1314   }
1315   case Expr::ParenExprClass:
1316     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1317   case Expr::GenericSelectionExprClass:
1318     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1319   case Expr::PredefinedExprClass:
1320     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1321   case Expr::StringLiteralClass:
1322     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1323   case Expr::ObjCEncodeExprClass:
1324     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1325   case Expr::PseudoObjectExprClass:
1326     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1327   case Expr::InitListExprClass:
1328     return EmitInitListLValue(cast<InitListExpr>(E));
1329   case Expr::CXXTemporaryObjectExprClass:
1330   case Expr::CXXConstructExprClass:
1331     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1332   case Expr::CXXBindTemporaryExprClass:
1333     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1334   case Expr::CXXUuidofExprClass:
1335     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1336   case Expr::LambdaExprClass:
1337     return EmitAggExprToLValue(E);
1338 
1339   case Expr::ExprWithCleanupsClass: {
1340     const auto *cleanups = cast<ExprWithCleanups>(E);
1341     RunCleanupsScope Scope(*this);
1342     LValue LV = EmitLValue(cleanups->getSubExpr());
1343     if (LV.isSimple()) {
1344       // Defend against branches out of gnu statement expressions surrounded by
1345       // cleanups.
1346       llvm::Value *V = LV.getPointer(*this);
1347       Scope.ForceCleanup({&V});
1348       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1349                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1350     }
1351     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1352     // bitfield lvalue or some other non-simple lvalue?
1353     return LV;
1354   }
1355 
1356   case Expr::CXXDefaultArgExprClass: {
1357     auto *DAE = cast<CXXDefaultArgExpr>(E);
1358     CXXDefaultArgExprScope Scope(*this, DAE);
1359     return EmitLValue(DAE->getExpr());
1360   }
1361   case Expr::CXXDefaultInitExprClass: {
1362     auto *DIE = cast<CXXDefaultInitExpr>(E);
1363     CXXDefaultInitExprScope Scope(*this, DIE);
1364     return EmitLValue(DIE->getExpr());
1365   }
1366   case Expr::CXXTypeidExprClass:
1367     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1368 
1369   case Expr::ObjCMessageExprClass:
1370     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1371   case Expr::ObjCIvarRefExprClass:
1372     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1373   case Expr::StmtExprClass:
1374     return EmitStmtExprLValue(cast<StmtExpr>(E));
1375   case Expr::UnaryOperatorClass:
1376     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1377   case Expr::ArraySubscriptExprClass:
1378     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1379   case Expr::MatrixSubscriptExprClass:
1380     return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1381   case Expr::OMPArraySectionExprClass:
1382     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1383   case Expr::ExtVectorElementExprClass:
1384     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1385   case Expr::MemberExprClass:
1386     return EmitMemberExpr(cast<MemberExpr>(E));
1387   case Expr::CompoundLiteralExprClass:
1388     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1389   case Expr::ConditionalOperatorClass:
1390     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1391   case Expr::BinaryConditionalOperatorClass:
1392     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1393   case Expr::ChooseExprClass:
1394     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1395   case Expr::OpaqueValueExprClass:
1396     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1397   case Expr::SubstNonTypeTemplateParmExprClass:
1398     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1399   case Expr::ImplicitCastExprClass:
1400   case Expr::CStyleCastExprClass:
1401   case Expr::CXXFunctionalCastExprClass:
1402   case Expr::CXXStaticCastExprClass:
1403   case Expr::CXXDynamicCastExprClass:
1404   case Expr::CXXReinterpretCastExprClass:
1405   case Expr::CXXConstCastExprClass:
1406   case Expr::CXXAddrspaceCastExprClass:
1407   case Expr::ObjCBridgedCastExprClass:
1408     return EmitCastLValue(cast<CastExpr>(E));
1409 
1410   case Expr::MaterializeTemporaryExprClass:
1411     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1412 
1413   case Expr::CoawaitExprClass:
1414     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1415   case Expr::CoyieldExprClass:
1416     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1417   }
1418 }
1419 
1420 /// Given an object of the given canonical type, can we safely copy a
1421 /// value out of it based on its initializer?
1422 static bool isConstantEmittableObjectType(QualType type) {
1423   assert(type.isCanonical());
1424   assert(!type->isReferenceType());
1425 
1426   // Must be const-qualified but non-volatile.
1427   Qualifiers qs = type.getLocalQualifiers();
1428   if (!qs.hasConst() || qs.hasVolatile()) return false;
1429 
1430   // Otherwise, all object types satisfy this except C++ classes with
1431   // mutable subobjects or non-trivial copy/destroy behavior.
1432   if (const auto *RT = dyn_cast<RecordType>(type))
1433     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1434       if (RD->hasMutableFields() || !RD->isTrivial())
1435         return false;
1436 
1437   return true;
1438 }
1439 
1440 /// Can we constant-emit a load of a reference to a variable of the
1441 /// given type?  This is different from predicates like
1442 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1443 /// in situations that don't necessarily satisfy the language's rules
1444 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1445 /// to do this with const float variables even if those variables
1446 /// aren't marked 'constexpr'.
1447 enum ConstantEmissionKind {
1448   CEK_None,
1449   CEK_AsReferenceOnly,
1450   CEK_AsValueOrReference,
1451   CEK_AsValueOnly
1452 };
1453 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1454   type = type.getCanonicalType();
1455   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1456     if (isConstantEmittableObjectType(ref->getPointeeType()))
1457       return CEK_AsValueOrReference;
1458     return CEK_AsReferenceOnly;
1459   }
1460   if (isConstantEmittableObjectType(type))
1461     return CEK_AsValueOnly;
1462   return CEK_None;
1463 }
1464 
1465 /// Try to emit a reference to the given value without producing it as
1466 /// an l-value.  This is just an optimization, but it avoids us needing
1467 /// to emit global copies of variables if they're named without triggering
1468 /// a formal use in a context where we can't emit a direct reference to them,
1469 /// for instance if a block or lambda or a member of a local class uses a
1470 /// const int variable or constexpr variable from an enclosing function.
1471 CodeGenFunction::ConstantEmission
1472 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1473   ValueDecl *value = refExpr->getDecl();
1474 
1475   // The value needs to be an enum constant or a constant variable.
1476   ConstantEmissionKind CEK;
1477   if (isa<ParmVarDecl>(value)) {
1478     CEK = CEK_None;
1479   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1480     CEK = checkVarTypeForConstantEmission(var->getType());
1481   } else if (isa<EnumConstantDecl>(value)) {
1482     CEK = CEK_AsValueOnly;
1483   } else {
1484     CEK = CEK_None;
1485   }
1486   if (CEK == CEK_None) return ConstantEmission();
1487 
1488   Expr::EvalResult result;
1489   bool resultIsReference;
1490   QualType resultType;
1491 
1492   // It's best to evaluate all the way as an r-value if that's permitted.
1493   if (CEK != CEK_AsReferenceOnly &&
1494       refExpr->EvaluateAsRValue(result, getContext())) {
1495     resultIsReference = false;
1496     resultType = refExpr->getType();
1497 
1498   // Otherwise, try to evaluate as an l-value.
1499   } else if (CEK != CEK_AsValueOnly &&
1500              refExpr->EvaluateAsLValue(result, getContext())) {
1501     resultIsReference = true;
1502     resultType = value->getType();
1503 
1504   // Failure.
1505   } else {
1506     return ConstantEmission();
1507   }
1508 
1509   // In any case, if the initializer has side-effects, abandon ship.
1510   if (result.HasSideEffects)
1511     return ConstantEmission();
1512 
1513   // In CUDA/HIP device compilation, a lambda may capture a reference variable
1514   // referencing a global host variable by copy. In this case the lambda should
1515   // make a copy of the value of the global host variable. The DRE of the
1516   // captured reference variable cannot be emitted as load from the host
1517   // global variable as compile time constant, since the host variable is not
1518   // accessible on device. The DRE of the captured reference variable has to be
1519   // loaded from captures.
1520   if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1521       refExpr->refersToEnclosingVariableOrCapture()) {
1522     auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1523     if (MD && MD->getParent()->isLambda() &&
1524         MD->getOverloadedOperator() == OO_Call) {
1525       const APValue::LValueBase &base = result.Val.getLValueBase();
1526       if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1527         if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1528           if (!VD->hasAttr<CUDADeviceAttr>()) {
1529             return ConstantEmission();
1530           }
1531         }
1532       }
1533     }
1534   }
1535 
1536   // Emit as a constant.
1537   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1538                                                result.Val, resultType);
1539 
1540   // Make sure we emit a debug reference to the global variable.
1541   // This should probably fire even for
1542   if (isa<VarDecl>(value)) {
1543     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1544       EmitDeclRefExprDbgValue(refExpr, result.Val);
1545   } else {
1546     assert(isa<EnumConstantDecl>(value));
1547     EmitDeclRefExprDbgValue(refExpr, result.Val);
1548   }
1549 
1550   // If we emitted a reference constant, we need to dereference that.
1551   if (resultIsReference)
1552     return ConstantEmission::forReference(C);
1553 
1554   return ConstantEmission::forValue(C);
1555 }
1556 
1557 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1558                                                         const MemberExpr *ME) {
1559   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1560     // Try to emit static variable member expressions as DREs.
1561     return DeclRefExpr::Create(
1562         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1563         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1564         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1565   }
1566   return nullptr;
1567 }
1568 
1569 CodeGenFunction::ConstantEmission
1570 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1571   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1572     return tryEmitAsConstant(DRE);
1573   return ConstantEmission();
1574 }
1575 
1576 llvm::Value *CodeGenFunction::emitScalarConstant(
1577     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1578   assert(Constant && "not a constant");
1579   if (Constant.isReference())
1580     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1581                             E->getExprLoc())
1582         .getScalarVal();
1583   return Constant.getValue();
1584 }
1585 
1586 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1587                                                SourceLocation Loc) {
1588   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1589                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1590                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1591 }
1592 
1593 static bool hasBooleanRepresentation(QualType Ty) {
1594   if (Ty->isBooleanType())
1595     return true;
1596 
1597   if (const EnumType *ET = Ty->getAs<EnumType>())
1598     return ET->getDecl()->getIntegerType()->isBooleanType();
1599 
1600   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1601     return hasBooleanRepresentation(AT->getValueType());
1602 
1603   return false;
1604 }
1605 
1606 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1607                             llvm::APInt &Min, llvm::APInt &End,
1608                             bool StrictEnums, bool IsBool) {
1609   const EnumType *ET = Ty->getAs<EnumType>();
1610   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1611                                 ET && !ET->getDecl()->isFixed();
1612   if (!IsBool && !IsRegularCPlusPlusEnum)
1613     return false;
1614 
1615   if (IsBool) {
1616     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1617     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1618   } else {
1619     const EnumDecl *ED = ET->getDecl();
1620     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1621     unsigned Bitwidth = LTy->getScalarSizeInBits();
1622     unsigned NumNegativeBits = ED->getNumNegativeBits();
1623     unsigned NumPositiveBits = ED->getNumPositiveBits();
1624 
1625     if (NumNegativeBits) {
1626       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1627       assert(NumBits <= Bitwidth);
1628       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1629       Min = -End;
1630     } else {
1631       assert(NumPositiveBits <= Bitwidth);
1632       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1633       Min = llvm::APInt::getZero(Bitwidth);
1634     }
1635   }
1636   return true;
1637 }
1638 
1639 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1640   llvm::APInt Min, End;
1641   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1642                        hasBooleanRepresentation(Ty)))
1643     return nullptr;
1644 
1645   llvm::MDBuilder MDHelper(getLLVMContext());
1646   return MDHelper.createRange(Min, End);
1647 }
1648 
1649 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1650                                            SourceLocation Loc) {
1651   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1652   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1653   if (!HasBoolCheck && !HasEnumCheck)
1654     return false;
1655 
1656   bool IsBool = hasBooleanRepresentation(Ty) ||
1657                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1658   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1659   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1660   if (!NeedsBoolCheck && !NeedsEnumCheck)
1661     return false;
1662 
1663   // Single-bit booleans don't need to be checked. Special-case this to avoid
1664   // a bit width mismatch when handling bitfield values. This is handled by
1665   // EmitFromMemory for the non-bitfield case.
1666   if (IsBool &&
1667       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1668     return false;
1669 
1670   llvm::APInt Min, End;
1671   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1672     return true;
1673 
1674   auto &Ctx = getLLVMContext();
1675   SanitizerScope SanScope(this);
1676   llvm::Value *Check;
1677   --End;
1678   if (!Min) {
1679     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1680   } else {
1681     llvm::Value *Upper =
1682         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1683     llvm::Value *Lower =
1684         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1685     Check = Builder.CreateAnd(Upper, Lower);
1686   }
1687   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1688                                   EmitCheckTypeDescriptor(Ty)};
1689   SanitizerMask Kind =
1690       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1691   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1692             StaticArgs, EmitCheckValue(Value));
1693   return true;
1694 }
1695 
1696 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1697                                                QualType Ty,
1698                                                SourceLocation Loc,
1699                                                LValueBaseInfo BaseInfo,
1700                                                TBAAAccessInfo TBAAInfo,
1701                                                bool isNontemporal) {
1702   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1703     // For better performance, handle vector loads differently.
1704     if (Ty->isVectorType()) {
1705       const llvm::Type *EltTy = Addr.getElementType();
1706 
1707       const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1708 
1709       // Handle vectors of size 3 like size 4 for better performance.
1710       if (VTy->getNumElements() == 3) {
1711 
1712         // Bitcast to vec4 type.
1713         auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
1714         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1715         // Now load value.
1716         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1717 
1718         // Shuffle vector to get vec3.
1719         V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2},
1720                                         "extractVec");
1721         return EmitFromMemory(V, Ty);
1722       }
1723     }
1724   }
1725 
1726   // Atomic operations have to be done on integral types.
1727   LValue AtomicLValue =
1728       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1729   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1730     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1731   }
1732 
1733   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1734   if (isNontemporal) {
1735     llvm::MDNode *Node = llvm::MDNode::get(
1736         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1737     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1738   }
1739 
1740   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1741 
1742   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1743     // In order to prevent the optimizer from throwing away the check, don't
1744     // attach range metadata to the load.
1745   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1746     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1747       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1748 
1749   return EmitFromMemory(Load, Ty);
1750 }
1751 
1752 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1753   // Bool has a different representation in memory than in registers.
1754   if (hasBooleanRepresentation(Ty)) {
1755     // This should really always be an i1, but sometimes it's already
1756     // an i8, and it's awkward to track those cases down.
1757     if (Value->getType()->isIntegerTy(1))
1758       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1759     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1760            "wrong value rep of bool");
1761   }
1762 
1763   return Value;
1764 }
1765 
1766 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1767   // Bool has a different representation in memory than in registers.
1768   if (hasBooleanRepresentation(Ty)) {
1769     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1770            "wrong value rep of bool");
1771     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1772   }
1773 
1774   return Value;
1775 }
1776 
1777 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1778 // MatrixType), if it points to a array (the memory type of MatrixType).
1779 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1780                                          bool IsVector = true) {
1781   auto *ArrayTy = dyn_cast<llvm::ArrayType>(
1782       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1783   if (ArrayTy && IsVector) {
1784     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1785                                                 ArrayTy->getNumElements());
1786 
1787     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1788   }
1789   auto *VectorTy = dyn_cast<llvm::VectorType>(
1790       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1791   if (VectorTy && !IsVector) {
1792     auto *ArrayTy = llvm::ArrayType::get(
1793         VectorTy->getElementType(),
1794         cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1795 
1796     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1797   }
1798 
1799   return Addr;
1800 }
1801 
1802 // Emit a store of a matrix LValue. This may require casting the original
1803 // pointer to memory address (ArrayType) to a pointer to the value type
1804 // (VectorType).
1805 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1806                                     bool isInit, CodeGenFunction &CGF) {
1807   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1808                                            value->getType()->isVectorTy());
1809   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1810                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1811                         lvalue.isNontemporal());
1812 }
1813 
1814 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1815                                         bool Volatile, QualType Ty,
1816                                         LValueBaseInfo BaseInfo,
1817                                         TBAAAccessInfo TBAAInfo,
1818                                         bool isInit, bool isNontemporal) {
1819   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1820     // Handle vectors differently to get better performance.
1821     if (Ty->isVectorType()) {
1822       llvm::Type *SrcTy = Value->getType();
1823       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1824       // Handle vec3 special.
1825       if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1826         // Our source is a vec3, do a shuffle vector to make it a vec4.
1827         Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
1828                                             "extractVec");
1829         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1830       }
1831       if (Addr.getElementType() != SrcTy) {
1832         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1833       }
1834     }
1835   }
1836 
1837   Value = EmitToMemory(Value, Ty);
1838 
1839   LValue AtomicLValue =
1840       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1841   if (Ty->isAtomicType() ||
1842       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1843     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1844     return;
1845   }
1846 
1847   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1848   if (isNontemporal) {
1849     llvm::MDNode *Node =
1850         llvm::MDNode::get(Store->getContext(),
1851                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1852     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1853   }
1854 
1855   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1856 }
1857 
1858 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1859                                         bool isInit) {
1860   if (lvalue.getType()->isConstantMatrixType()) {
1861     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1862     return;
1863   }
1864 
1865   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1866                     lvalue.getType(), lvalue.getBaseInfo(),
1867                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1868 }
1869 
1870 // Emit a load of a LValue of matrix type. This may require casting the pointer
1871 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1872 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1873                                      CodeGenFunction &CGF) {
1874   assert(LV.getType()->isConstantMatrixType());
1875   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1876   LV.setAddress(Addr);
1877   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1878 }
1879 
1880 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1881 /// method emits the address of the lvalue, then loads the result as an rvalue,
1882 /// returning the rvalue.
1883 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1884   if (LV.isObjCWeak()) {
1885     // load of a __weak object.
1886     Address AddrWeakObj = LV.getAddress(*this);
1887     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1888                                                              AddrWeakObj));
1889   }
1890   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1891     // In MRC mode, we do a load+autorelease.
1892     if (!getLangOpts().ObjCAutoRefCount) {
1893       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1894     }
1895 
1896     // In ARC mode, we load retained and then consume the value.
1897     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1898     Object = EmitObjCConsumeObject(LV.getType(), Object);
1899     return RValue::get(Object);
1900   }
1901 
1902   if (LV.isSimple()) {
1903     assert(!LV.getType()->isFunctionType());
1904 
1905     if (LV.getType()->isConstantMatrixType())
1906       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1907 
1908     // Everything needs a load.
1909     return RValue::get(EmitLoadOfScalar(LV, Loc));
1910   }
1911 
1912   if (LV.isVectorElt()) {
1913     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1914                                               LV.isVolatileQualified());
1915     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1916                                                     "vecext"));
1917   }
1918 
1919   // If this is a reference to a subset of the elements of a vector, either
1920   // shuffle the input or extract/insert them as appropriate.
1921   if (LV.isExtVectorElt()) {
1922     return EmitLoadOfExtVectorElementLValue(LV);
1923   }
1924 
1925   // Global Register variables always invoke intrinsics
1926   if (LV.isGlobalReg())
1927     return EmitLoadOfGlobalRegLValue(LV);
1928 
1929   if (LV.isMatrixElt()) {
1930     llvm::Value *Idx = LV.getMatrixIdx();
1931     if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
1932       const auto *const MatTy = LV.getType()->getAs<ConstantMatrixType>();
1933       llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
1934       MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
1935     }
1936     llvm::LoadInst *Load =
1937         Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
1938     return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext"));
1939   }
1940 
1941   assert(LV.isBitField() && "Unknown LValue type!");
1942   return EmitLoadOfBitfieldLValue(LV, Loc);
1943 }
1944 
1945 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1946                                                  SourceLocation Loc) {
1947   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1948 
1949   // Get the output type.
1950   llvm::Type *ResLTy = ConvertType(LV.getType());
1951 
1952   Address Ptr = LV.getBitFieldAddress();
1953   llvm::Value *Val =
1954       Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1955 
1956   bool UseVolatile = LV.isVolatileQualified() &&
1957                      Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
1958   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
1959   const unsigned StorageSize =
1960       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
1961   if (Info.IsSigned) {
1962     assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
1963     unsigned HighBits = StorageSize - Offset - Info.Size;
1964     if (HighBits)
1965       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1966     if (Offset + HighBits)
1967       Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
1968   } else {
1969     if (Offset)
1970       Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
1971     if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
1972       Val = Builder.CreateAnd(
1973           Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
1974   }
1975   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1976   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1977   return RValue::get(Val);
1978 }
1979 
1980 // If this is a reference to a subset of the elements of a vector, create an
1981 // appropriate shufflevector.
1982 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1983   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1984                                         LV.isVolatileQualified());
1985 
1986   const llvm::Constant *Elts = LV.getExtVectorElts();
1987 
1988   // If the result of the expression is a non-vector type, we must be extracting
1989   // a single element.  Just codegen as an extractelement.
1990   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1991   if (!ExprVT) {
1992     unsigned InIdx = getAccessedFieldNo(0, Elts);
1993     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1994     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1995   }
1996 
1997   // Always use shuffle vector to try to retain the original program structure
1998   unsigned NumResultElts = ExprVT->getNumElements();
1999 
2000   SmallVector<int, 4> Mask;
2001   for (unsigned i = 0; i != NumResultElts; ++i)
2002     Mask.push_back(getAccessedFieldNo(i, Elts));
2003 
2004   Vec = Builder.CreateShuffleVector(Vec, Mask);
2005   return RValue::get(Vec);
2006 }
2007 
2008 /// Generates lvalue for partial ext_vector access.
2009 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2010   Address VectorAddress = LV.getExtVectorAddress();
2011   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2012   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2013 
2014   Address CastToPointerElement =
2015     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
2016                                  "conv.ptr.element");
2017 
2018   const llvm::Constant *Elts = LV.getExtVectorElts();
2019   unsigned ix = getAccessedFieldNo(0, Elts);
2020 
2021   Address VectorBasePtrPlusIx =
2022     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2023                                    "vector.elt");
2024 
2025   return VectorBasePtrPlusIx;
2026 }
2027 
2028 /// Load of global gamed gegisters are always calls to intrinsics.
2029 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2030   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2031          "Bad type for register variable");
2032   llvm::MDNode *RegName = cast<llvm::MDNode>(
2033       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2034 
2035   // We accept integer and pointer types only
2036   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2037   llvm::Type *Ty = OrigTy;
2038   if (OrigTy->isPointerTy())
2039     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2040   llvm::Type *Types[] = { Ty };
2041 
2042   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2043   llvm::Value *Call = Builder.CreateCall(
2044       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2045   if (OrigTy->isPointerTy())
2046     Call = Builder.CreateIntToPtr(Call, OrigTy);
2047   return RValue::get(Call);
2048 }
2049 
2050 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2051 /// lvalue, where both are guaranteed to the have the same type, and that type
2052 /// is 'Ty'.
2053 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2054                                              bool isInit) {
2055   if (!Dst.isSimple()) {
2056     if (Dst.isVectorElt()) {
2057       // Read/modify/write the vector, inserting the new element.
2058       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2059                                             Dst.isVolatileQualified());
2060       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2061                                         Dst.getVectorIdx(), "vecins");
2062       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2063                           Dst.isVolatileQualified());
2064       return;
2065     }
2066 
2067     // If this is an update of extended vector elements, insert them as
2068     // appropriate.
2069     if (Dst.isExtVectorElt())
2070       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2071 
2072     if (Dst.isGlobalReg())
2073       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2074 
2075     if (Dst.isMatrixElt()) {
2076       llvm::Value *Idx = Dst.getMatrixIdx();
2077       if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2078         const auto *const MatTy = Dst.getType()->getAs<ConstantMatrixType>();
2079         llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
2080         MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2081       }
2082       llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress());
2083       llvm::Value *Vec =
2084           Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins");
2085       Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2086                           Dst.isVolatileQualified());
2087       return;
2088     }
2089 
2090     assert(Dst.isBitField() && "Unknown LValue type");
2091     return EmitStoreThroughBitfieldLValue(Src, Dst);
2092   }
2093 
2094   // There's special magic for assigning into an ARC-qualified l-value.
2095   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2096     switch (Lifetime) {
2097     case Qualifiers::OCL_None:
2098       llvm_unreachable("present but none");
2099 
2100     case Qualifiers::OCL_ExplicitNone:
2101       // nothing special
2102       break;
2103 
2104     case Qualifiers::OCL_Strong:
2105       if (isInit) {
2106         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2107         break;
2108       }
2109       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2110       return;
2111 
2112     case Qualifiers::OCL_Weak:
2113       if (isInit)
2114         // Initialize and then skip the primitive store.
2115         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2116       else
2117         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2118                          /*ignore*/ true);
2119       return;
2120 
2121     case Qualifiers::OCL_Autoreleasing:
2122       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2123                                                      Src.getScalarVal()));
2124       // fall into the normal path
2125       break;
2126     }
2127   }
2128 
2129   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2130     // load of a __weak object.
2131     Address LvalueDst = Dst.getAddress(*this);
2132     llvm::Value *src = Src.getScalarVal();
2133      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2134     return;
2135   }
2136 
2137   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2138     // load of a __strong object.
2139     Address LvalueDst = Dst.getAddress(*this);
2140     llvm::Value *src = Src.getScalarVal();
2141     if (Dst.isObjCIvar()) {
2142       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2143       llvm::Type *ResultType = IntPtrTy;
2144       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2145       llvm::Value *RHS = dst.getPointer();
2146       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2147       llvm::Value *LHS =
2148         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2149                                "sub.ptr.lhs.cast");
2150       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2151       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2152                                               BytesBetween);
2153     } else if (Dst.isGlobalObjCRef()) {
2154       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2155                                                 Dst.isThreadLocalRef());
2156     }
2157     else
2158       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2159     return;
2160   }
2161 
2162   assert(Src.isScalar() && "Can't emit an agg store with this method");
2163   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2164 }
2165 
2166 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2167                                                      llvm::Value **Result) {
2168   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2169   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2170   Address Ptr = Dst.getBitFieldAddress();
2171 
2172   // Get the source value, truncated to the width of the bit-field.
2173   llvm::Value *SrcVal = Src.getScalarVal();
2174 
2175   // Cast the source to the storage type and shift it into place.
2176   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2177                                  /*isSigned=*/false);
2178   llvm::Value *MaskedVal = SrcVal;
2179 
2180   const bool UseVolatile =
2181       CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2182       Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2183   const unsigned StorageSize =
2184       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2185   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2186   // See if there are other bits in the bitfield's storage we'll need to load
2187   // and mask together with source before storing.
2188   if (StorageSize != Info.Size) {
2189     assert(StorageSize > Info.Size && "Invalid bitfield size.");
2190     llvm::Value *Val =
2191         Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2192 
2193     // Mask the source value as needed.
2194     if (!hasBooleanRepresentation(Dst.getType()))
2195       SrcVal = Builder.CreateAnd(
2196           SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2197           "bf.value");
2198     MaskedVal = SrcVal;
2199     if (Offset)
2200       SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2201 
2202     // Mask out the original value.
2203     Val = Builder.CreateAnd(
2204         Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2205         "bf.clear");
2206 
2207     // Or together the unchanged values and the source value.
2208     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2209   } else {
2210     assert(Offset == 0);
2211     // According to the AACPS:
2212     // When a volatile bit-field is written, and its container does not overlap
2213     // with any non-bit-field member, its container must be read exactly once
2214     // and written exactly once using the access width appropriate to the type
2215     // of the container. The two accesses are not atomic.
2216     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2217         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2218       Builder.CreateLoad(Ptr, true, "bf.load");
2219   }
2220 
2221   // Write the new value back out.
2222   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2223 
2224   // Return the new value of the bit-field, if requested.
2225   if (Result) {
2226     llvm::Value *ResultVal = MaskedVal;
2227 
2228     // Sign extend the value if needed.
2229     if (Info.IsSigned) {
2230       assert(Info.Size <= StorageSize);
2231       unsigned HighBits = StorageSize - Info.Size;
2232       if (HighBits) {
2233         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2234         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2235       }
2236     }
2237 
2238     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2239                                       "bf.result.cast");
2240     *Result = EmitFromMemory(ResultVal, Dst.getType());
2241   }
2242 }
2243 
2244 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2245                                                                LValue Dst) {
2246   // This access turns into a read/modify/write of the vector.  Load the input
2247   // value now.
2248   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2249                                         Dst.isVolatileQualified());
2250   const llvm::Constant *Elts = Dst.getExtVectorElts();
2251 
2252   llvm::Value *SrcVal = Src.getScalarVal();
2253 
2254   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2255     unsigned NumSrcElts = VTy->getNumElements();
2256     unsigned NumDstElts =
2257         cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2258     if (NumDstElts == NumSrcElts) {
2259       // Use shuffle vector is the src and destination are the same number of
2260       // elements and restore the vector mask since it is on the side it will be
2261       // stored.
2262       SmallVector<int, 4> Mask(NumDstElts);
2263       for (unsigned i = 0; i != NumSrcElts; ++i)
2264         Mask[getAccessedFieldNo(i, Elts)] = i;
2265 
2266       Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2267     } else if (NumDstElts > NumSrcElts) {
2268       // Extended the source vector to the same length and then shuffle it
2269       // into the destination.
2270       // FIXME: since we're shuffling with undef, can we just use the indices
2271       //        into that?  This could be simpler.
2272       SmallVector<int, 4> ExtMask;
2273       for (unsigned i = 0; i != NumSrcElts; ++i)
2274         ExtMask.push_back(i);
2275       ExtMask.resize(NumDstElts, -1);
2276       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2277       // build identity
2278       SmallVector<int, 4> Mask;
2279       for (unsigned i = 0; i != NumDstElts; ++i)
2280         Mask.push_back(i);
2281 
2282       // When the vector size is odd and .odd or .hi is used, the last element
2283       // of the Elts constant array will be one past the size of the vector.
2284       // Ignore the last element here, if it is greater than the mask size.
2285       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2286         NumSrcElts--;
2287 
2288       // modify when what gets shuffled in
2289       for (unsigned i = 0; i != NumSrcElts; ++i)
2290         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2291       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2292     } else {
2293       // We should never shorten the vector
2294       llvm_unreachable("unexpected shorten vector length");
2295     }
2296   } else {
2297     // If the Src is a scalar (not a vector) it must be updating one element.
2298     unsigned InIdx = getAccessedFieldNo(0, Elts);
2299     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2300     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2301   }
2302 
2303   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2304                       Dst.isVolatileQualified());
2305 }
2306 
2307 /// Store of global named registers are always calls to intrinsics.
2308 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2309   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2310          "Bad type for register variable");
2311   llvm::MDNode *RegName = cast<llvm::MDNode>(
2312       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2313   assert(RegName && "Register LValue is not metadata");
2314 
2315   // We accept integer and pointer types only
2316   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2317   llvm::Type *Ty = OrigTy;
2318   if (OrigTy->isPointerTy())
2319     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2320   llvm::Type *Types[] = { Ty };
2321 
2322   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2323   llvm::Value *Value = Src.getScalarVal();
2324   if (OrigTy->isPointerTy())
2325     Value = Builder.CreatePtrToInt(Value, Ty);
2326   Builder.CreateCall(
2327       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2328 }
2329 
2330 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2331 // generating write-barries API. It is currently a global, ivar,
2332 // or neither.
2333 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2334                                  LValue &LV,
2335                                  bool IsMemberAccess=false) {
2336   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2337     return;
2338 
2339   if (isa<ObjCIvarRefExpr>(E)) {
2340     QualType ExpTy = E->getType();
2341     if (IsMemberAccess && ExpTy->isPointerType()) {
2342       // If ivar is a structure pointer, assigning to field of
2343       // this struct follows gcc's behavior and makes it a non-ivar
2344       // writer-barrier conservatively.
2345       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2346       if (ExpTy->isRecordType()) {
2347         LV.setObjCIvar(false);
2348         return;
2349       }
2350     }
2351     LV.setObjCIvar(true);
2352     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2353     LV.setBaseIvarExp(Exp->getBase());
2354     LV.setObjCArray(E->getType()->isArrayType());
2355     return;
2356   }
2357 
2358   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2359     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2360       if (VD->hasGlobalStorage()) {
2361         LV.setGlobalObjCRef(true);
2362         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2363       }
2364     }
2365     LV.setObjCArray(E->getType()->isArrayType());
2366     return;
2367   }
2368 
2369   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2370     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2371     return;
2372   }
2373 
2374   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2375     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2376     if (LV.isObjCIvar()) {
2377       // If cast is to a structure pointer, follow gcc's behavior and make it
2378       // a non-ivar write-barrier.
2379       QualType ExpTy = E->getType();
2380       if (ExpTy->isPointerType())
2381         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2382       if (ExpTy->isRecordType())
2383         LV.setObjCIvar(false);
2384     }
2385     return;
2386   }
2387 
2388   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2389     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2390     return;
2391   }
2392 
2393   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2394     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2395     return;
2396   }
2397 
2398   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2399     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2400     return;
2401   }
2402 
2403   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2404     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2405     return;
2406   }
2407 
2408   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2409     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2410     if (LV.isObjCIvar() && !LV.isObjCArray())
2411       // Using array syntax to assigning to what an ivar points to is not
2412       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2413       LV.setObjCIvar(false);
2414     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2415       // Using array syntax to assigning to what global points to is not
2416       // same as assigning to the global itself. {id *G;} G[i] = 0;
2417       LV.setGlobalObjCRef(false);
2418     return;
2419   }
2420 
2421   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2422     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2423     // We don't know if member is an 'ivar', but this flag is looked at
2424     // only in the context of LV.isObjCIvar().
2425     LV.setObjCArray(E->getType()->isArrayType());
2426     return;
2427   }
2428 }
2429 
2430 static llvm::Value *
2431 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2432                                 llvm::Value *V, llvm::Type *IRType,
2433                                 StringRef Name = StringRef()) {
2434   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2435   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2436 }
2437 
2438 static LValue EmitThreadPrivateVarDeclLValue(
2439     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2440     llvm::Type *RealVarTy, SourceLocation Loc) {
2441   if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2442     Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2443         CGF, VD, Addr, Loc);
2444   else
2445     Addr =
2446         CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2447 
2448   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2449   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2450 }
2451 
2452 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2453                                            const VarDecl *VD, QualType T) {
2454   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2455       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2456   // Return an invalid address if variable is MT_To and unified
2457   // memory is not enabled. For all other cases: MT_Link and
2458   // MT_To with unified memory, return a valid address.
2459   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2460                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2461     return Address::invalid();
2462   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2463           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2464            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2465          "Expected link clause OR to clause with unified memory enabled.");
2466   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2467   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2468   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2469 }
2470 
2471 Address
2472 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2473                                      LValueBaseInfo *PointeeBaseInfo,
2474                                      TBAAAccessInfo *PointeeTBAAInfo) {
2475   llvm::LoadInst *Load =
2476       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2477   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2478 
2479   CharUnits Align = CGM.getNaturalTypeAlignment(
2480       RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo,
2481       /* forPointeeType= */ true);
2482   return Address(Load, Align);
2483 }
2484 
2485 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2486   LValueBaseInfo PointeeBaseInfo;
2487   TBAAAccessInfo PointeeTBAAInfo;
2488   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2489                                             &PointeeTBAAInfo);
2490   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2491                         PointeeBaseInfo, PointeeTBAAInfo);
2492 }
2493 
2494 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2495                                            const PointerType *PtrTy,
2496                                            LValueBaseInfo *BaseInfo,
2497                                            TBAAAccessInfo *TBAAInfo) {
2498   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2499   return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
2500                                                    BaseInfo, TBAAInfo,
2501                                                    /*forPointeeType=*/true));
2502 }
2503 
2504 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2505                                                 const PointerType *PtrTy) {
2506   LValueBaseInfo BaseInfo;
2507   TBAAAccessInfo TBAAInfo;
2508   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2509   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2510 }
2511 
2512 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2513                                       const Expr *E, const VarDecl *VD) {
2514   QualType T = E->getType();
2515 
2516   // If it's thread_local, emit a call to its wrapper function instead.
2517   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2518       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2519     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2520   // Check if the variable is marked as declare target with link clause in
2521   // device codegen.
2522   if (CGF.getLangOpts().OpenMPIsDevice) {
2523     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2524     if (Addr.isValid())
2525       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2526   }
2527 
2528   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2529   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2530   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2531   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2532   Address Addr(V, Alignment);
2533   // Emit reference to the private copy of the variable if it is an OpenMP
2534   // threadprivate variable.
2535   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2536       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2537     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2538                                           E->getExprLoc());
2539   }
2540   LValue LV = VD->getType()->isReferenceType() ?
2541       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2542                                     AlignmentSource::Decl) :
2543       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2544   setObjCGCLValueClass(CGF.getContext(), E, LV);
2545   return LV;
2546 }
2547 
2548 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2549                                                GlobalDecl GD) {
2550   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2551   if (FD->hasAttr<WeakRefAttr>()) {
2552     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2553     return aliasee.getPointer();
2554   }
2555 
2556   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2557   if (!FD->hasPrototype()) {
2558     if (const FunctionProtoType *Proto =
2559             FD->getType()->getAs<FunctionProtoType>()) {
2560       // Ugly case: for a K&R-style definition, the type of the definition
2561       // isn't the same as the type of a use.  Correct for this with a
2562       // bitcast.
2563       QualType NoProtoType =
2564           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2565       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2566       V = llvm::ConstantExpr::getBitCast(V,
2567                                       CGM.getTypes().ConvertType(NoProtoType));
2568     }
2569   }
2570   return V;
2571 }
2572 
2573 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2574                                      GlobalDecl GD) {
2575   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2576   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2577   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2578   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2579                             AlignmentSource::Decl);
2580 }
2581 
2582 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2583                                       llvm::Value *ThisValue) {
2584   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2585   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2586   return CGF.EmitLValueForField(LV, FD);
2587 }
2588 
2589 /// Named Registers are named metadata pointing to the register name
2590 /// which will be read from/written to as an argument to the intrinsic
2591 /// @llvm.read/write_register.
2592 /// So far, only the name is being passed down, but other options such as
2593 /// register type, allocation type or even optimization options could be
2594 /// passed down via the metadata node.
2595 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2596   SmallString<64> Name("llvm.named.register.");
2597   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2598   assert(Asm->getLabel().size() < 64-Name.size() &&
2599       "Register name too big");
2600   Name.append(Asm->getLabel());
2601   llvm::NamedMDNode *M =
2602     CGM.getModule().getOrInsertNamedMetadata(Name);
2603   if (M->getNumOperands() == 0) {
2604     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2605                                               Asm->getLabel());
2606     llvm::Metadata *Ops[] = {Str};
2607     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2608   }
2609 
2610   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2611 
2612   llvm::Value *Ptr =
2613     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2614   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2615 }
2616 
2617 /// Determine whether we can emit a reference to \p VD from the current
2618 /// context, despite not necessarily having seen an odr-use of the variable in
2619 /// this context.
2620 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2621                                                const DeclRefExpr *E,
2622                                                const VarDecl *VD,
2623                                                bool IsConstant) {
2624   // For a variable declared in an enclosing scope, do not emit a spurious
2625   // reference even if we have a capture, as that will emit an unwarranted
2626   // reference to our capture state, and will likely generate worse code than
2627   // emitting a local copy.
2628   if (E->refersToEnclosingVariableOrCapture())
2629     return false;
2630 
2631   // For a local declaration declared in this function, we can always reference
2632   // it even if we don't have an odr-use.
2633   if (VD->hasLocalStorage()) {
2634     return VD->getDeclContext() ==
2635            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2636   }
2637 
2638   // For a global declaration, we can emit a reference to it if we know
2639   // for sure that we are able to emit a definition of it.
2640   VD = VD->getDefinition(CGF.getContext());
2641   if (!VD)
2642     return false;
2643 
2644   // Don't emit a spurious reference if it might be to a variable that only
2645   // exists on a different device / target.
2646   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2647   // cross-target reference.
2648   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2649       CGF.getLangOpts().OpenCL) {
2650     return false;
2651   }
2652 
2653   // We can emit a spurious reference only if the linkage implies that we'll
2654   // be emitting a non-interposable symbol that will be retained until link
2655   // time.
2656   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2657   case llvm::GlobalValue::ExternalLinkage:
2658   case llvm::GlobalValue::LinkOnceODRLinkage:
2659   case llvm::GlobalValue::WeakODRLinkage:
2660   case llvm::GlobalValue::InternalLinkage:
2661   case llvm::GlobalValue::PrivateLinkage:
2662     return true;
2663   default:
2664     return false;
2665   }
2666 }
2667 
2668 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2669   const NamedDecl *ND = E->getDecl();
2670   QualType T = E->getType();
2671 
2672   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2673          "should not emit an unevaluated operand");
2674 
2675   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2676     // Global Named registers access via intrinsics only
2677     if (VD->getStorageClass() == SC_Register &&
2678         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2679       return EmitGlobalNamedRegister(VD, CGM);
2680 
2681     // If this DeclRefExpr does not constitute an odr-use of the variable,
2682     // we're not permitted to emit a reference to it in general, and it might
2683     // not be captured if capture would be necessary for a use. Emit the
2684     // constant value directly instead.
2685     if (E->isNonOdrUse() == NOUR_Constant &&
2686         (VD->getType()->isReferenceType() ||
2687          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2688       VD->getAnyInitializer(VD);
2689       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2690           E->getLocation(), *VD->evaluateValue(), VD->getType());
2691       assert(Val && "failed to emit constant expression");
2692 
2693       Address Addr = Address::invalid();
2694       if (!VD->getType()->isReferenceType()) {
2695         // Spill the constant value to a global.
2696         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2697                                            getContext().getDeclAlign(VD));
2698         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2699         auto *PTy = llvm::PointerType::get(
2700             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2701         if (PTy != Addr.getType())
2702           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2703       } else {
2704         // Should we be using the alignment of the constant pointer we emitted?
2705         CharUnits Alignment =
2706             CGM.getNaturalTypeAlignment(E->getType(),
2707                                         /* BaseInfo= */ nullptr,
2708                                         /* TBAAInfo= */ nullptr,
2709                                         /* forPointeeType= */ true);
2710         Addr = Address(Val, Alignment);
2711       }
2712       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2713     }
2714 
2715     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2716 
2717     // Check for captured variables.
2718     if (E->refersToEnclosingVariableOrCapture()) {
2719       VD = VD->getCanonicalDecl();
2720       if (auto *FD = LambdaCaptureFields.lookup(VD))
2721         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2722       if (CapturedStmtInfo) {
2723         auto I = LocalDeclMap.find(VD);
2724         if (I != LocalDeclMap.end()) {
2725           LValue CapLVal;
2726           if (VD->getType()->isReferenceType())
2727             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2728                                                 AlignmentSource::Decl);
2729           else
2730             CapLVal = MakeAddrLValue(I->second, T);
2731           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2732           // in simd context.
2733           if (getLangOpts().OpenMP &&
2734               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2735             CapLVal.setNontemporal(/*Value=*/true);
2736           return CapLVal;
2737         }
2738         LValue CapLVal =
2739             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2740                                     CapturedStmtInfo->getContextValue());
2741         CapLVal = MakeAddrLValue(
2742             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2743             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2744             CapLVal.getTBAAInfo());
2745         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2746         // in simd context.
2747         if (getLangOpts().OpenMP &&
2748             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2749           CapLVal.setNontemporal(/*Value=*/true);
2750         return CapLVal;
2751       }
2752 
2753       assert(isa<BlockDecl>(CurCodeDecl));
2754       Address addr = GetAddrOfBlockDecl(VD);
2755       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2756     }
2757   }
2758 
2759   // FIXME: We should be able to assert this for FunctionDecls as well!
2760   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2761   // those with a valid source location.
2762   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2763           !E->getLocation().isValid()) &&
2764          "Should not use decl without marking it used!");
2765 
2766   if (ND->hasAttr<WeakRefAttr>()) {
2767     const auto *VD = cast<ValueDecl>(ND);
2768     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2769     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2770   }
2771 
2772   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2773     // Check if this is a global variable.
2774     if (VD->hasLinkage() || VD->isStaticDataMember())
2775       return EmitGlobalVarDeclLValue(*this, E, VD);
2776 
2777     Address addr = Address::invalid();
2778 
2779     // The variable should generally be present in the local decl map.
2780     auto iter = LocalDeclMap.find(VD);
2781     if (iter != LocalDeclMap.end()) {
2782       addr = iter->second;
2783 
2784     // Otherwise, it might be static local we haven't emitted yet for
2785     // some reason; most likely, because it's in an outer function.
2786     } else if (VD->isStaticLocal()) {
2787       addr = Address(CGM.getOrCreateStaticVarDecl(
2788           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2789                      getContext().getDeclAlign(VD));
2790 
2791     // No other cases for now.
2792     } else {
2793       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2794     }
2795 
2796 
2797     // Check for OpenMP threadprivate variables.
2798     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2799         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2800       return EmitThreadPrivateVarDeclLValue(
2801           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2802           E->getExprLoc());
2803     }
2804 
2805     // Drill into block byref variables.
2806     bool isBlockByref = VD->isEscapingByref();
2807     if (isBlockByref) {
2808       addr = emitBlockByrefAddress(addr, VD);
2809     }
2810 
2811     // Drill into reference types.
2812     LValue LV = VD->getType()->isReferenceType() ?
2813         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2814         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2815 
2816     bool isLocalStorage = VD->hasLocalStorage();
2817 
2818     bool NonGCable = isLocalStorage &&
2819                      !VD->getType()->isReferenceType() &&
2820                      !isBlockByref;
2821     if (NonGCable) {
2822       LV.getQuals().removeObjCGCAttr();
2823       LV.setNonGC(true);
2824     }
2825 
2826     bool isImpreciseLifetime =
2827       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2828     if (isImpreciseLifetime)
2829       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2830     setObjCGCLValueClass(getContext(), E, LV);
2831     return LV;
2832   }
2833 
2834   if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
2835     LValue LV = EmitFunctionDeclLValue(*this, E, FD);
2836 
2837     // Emit debuginfo for the function declaration if the target wants to.
2838     if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
2839       if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) {
2840         auto *Fn =
2841             cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts());
2842         if (!Fn->getSubprogram())
2843           DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn);
2844       }
2845     }
2846 
2847     return LV;
2848   }
2849 
2850   // FIXME: While we're emitting a binding from an enclosing scope, all other
2851   // DeclRefExprs we see should be implicitly treated as if they also refer to
2852   // an enclosing scope.
2853   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2854     return EmitLValue(BD->getBinding());
2855 
2856   // We can form DeclRefExprs naming GUID declarations when reconstituting
2857   // non-type template parameters into expressions.
2858   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2859     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2860                           AlignmentSource::Decl);
2861 
2862   if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND))
2863     return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T,
2864                           AlignmentSource::Decl);
2865 
2866   llvm_unreachable("Unhandled DeclRefExpr");
2867 }
2868 
2869 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2870   // __extension__ doesn't affect lvalue-ness.
2871   if (E->getOpcode() == UO_Extension)
2872     return EmitLValue(E->getSubExpr());
2873 
2874   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2875   switch (E->getOpcode()) {
2876   default: llvm_unreachable("Unknown unary operator lvalue!");
2877   case UO_Deref: {
2878     QualType T = E->getSubExpr()->getType()->getPointeeType();
2879     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2880 
2881     LValueBaseInfo BaseInfo;
2882     TBAAAccessInfo TBAAInfo;
2883     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2884                                             &TBAAInfo);
2885     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2886     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2887 
2888     // We should not generate __weak write barrier on indirect reference
2889     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2890     // But, we continue to generate __strong write barrier on indirect write
2891     // into a pointer to object.
2892     if (getLangOpts().ObjC &&
2893         getLangOpts().getGC() != LangOptions::NonGC &&
2894         LV.isObjCWeak())
2895       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2896     return LV;
2897   }
2898   case UO_Real:
2899   case UO_Imag: {
2900     LValue LV = EmitLValue(E->getSubExpr());
2901     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2902 
2903     // __real is valid on scalars.  This is a faster way of testing that.
2904     // __imag can only produce an rvalue on scalars.
2905     if (E->getOpcode() == UO_Real &&
2906         !LV.getAddress(*this).getElementType()->isStructTy()) {
2907       assert(E->getSubExpr()->getType()->isArithmeticType());
2908       return LV;
2909     }
2910 
2911     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2912 
2913     Address Component =
2914         (E->getOpcode() == UO_Real
2915              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2916              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2917     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2918                                    CGM.getTBAAInfoForSubobject(LV, T));
2919     ElemLV.getQuals().addQualifiers(LV.getQuals());
2920     return ElemLV;
2921   }
2922   case UO_PreInc:
2923   case UO_PreDec: {
2924     LValue LV = EmitLValue(E->getSubExpr());
2925     bool isInc = E->getOpcode() == UO_PreInc;
2926 
2927     if (E->getType()->isAnyComplexType())
2928       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2929     else
2930       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2931     return LV;
2932   }
2933   }
2934 }
2935 
2936 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2937   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2938                         E->getType(), AlignmentSource::Decl);
2939 }
2940 
2941 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2942   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2943                         E->getType(), AlignmentSource::Decl);
2944 }
2945 
2946 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2947   auto SL = E->getFunctionName();
2948   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2949   StringRef FnName = CurFn->getName();
2950   if (FnName.startswith("\01"))
2951     FnName = FnName.substr(1);
2952   StringRef NameItems[] = {
2953       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2954   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2955   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2956     std::string Name = std::string(SL->getString());
2957     if (!Name.empty()) {
2958       unsigned Discriminator =
2959           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2960       if (Discriminator)
2961         Name += "_" + Twine(Discriminator + 1).str();
2962       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2963       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2964     } else {
2965       auto C =
2966           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2967       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2968     }
2969   }
2970   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2971   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2972 }
2973 
2974 /// Emit a type description suitable for use by a runtime sanitizer library. The
2975 /// format of a type descriptor is
2976 ///
2977 /// \code
2978 ///   { i16 TypeKind, i16 TypeInfo }
2979 /// \endcode
2980 ///
2981 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2982 /// integer, 1 for a floating point value, and -1 for anything else.
2983 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2984   // Only emit each type's descriptor once.
2985   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2986     return C;
2987 
2988   uint16_t TypeKind = -1;
2989   uint16_t TypeInfo = 0;
2990 
2991   if (T->isIntegerType()) {
2992     TypeKind = 0;
2993     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2994                (T->isSignedIntegerType() ? 1 : 0);
2995   } else if (T->isFloatingType()) {
2996     TypeKind = 1;
2997     TypeInfo = getContext().getTypeSize(T);
2998   }
2999 
3000   // Format the type name as if for a diagnostic, including quotes and
3001   // optionally an 'aka'.
3002   SmallString<32> Buffer;
3003   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
3004                                     (intptr_t)T.getAsOpaquePtr(),
3005                                     StringRef(), StringRef(), None, Buffer,
3006                                     None);
3007 
3008   llvm::Constant *Components[] = {
3009     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3010     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3011   };
3012   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3013 
3014   auto *GV = new llvm::GlobalVariable(
3015       CGM.getModule(), Descriptor->getType(),
3016       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3017   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3018   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3019 
3020   // Remember the descriptor for this type.
3021   CGM.setTypeDescriptorInMap(T, GV);
3022 
3023   return GV;
3024 }
3025 
3026 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3027   llvm::Type *TargetTy = IntPtrTy;
3028 
3029   if (V->getType() == TargetTy)
3030     return V;
3031 
3032   // Floating-point types which fit into intptr_t are bitcast to integers
3033   // and then passed directly (after zero-extension, if necessary).
3034   if (V->getType()->isFloatingPointTy()) {
3035     unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize();
3036     if (Bits <= TargetTy->getIntegerBitWidth())
3037       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3038                                                          Bits));
3039   }
3040 
3041   // Integers which fit in intptr_t are zero-extended and passed directly.
3042   if (V->getType()->isIntegerTy() &&
3043       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3044     return Builder.CreateZExt(V, TargetTy);
3045 
3046   // Pointers are passed directly, everything else is passed by address.
3047   if (!V->getType()->isPointerTy()) {
3048     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3049     Builder.CreateStore(V, Ptr);
3050     V = Ptr.getPointer();
3051   }
3052   return Builder.CreatePtrToInt(V, TargetTy);
3053 }
3054 
3055 /// Emit a representation of a SourceLocation for passing to a handler
3056 /// in a sanitizer runtime library. The format for this data is:
3057 /// \code
3058 ///   struct SourceLocation {
3059 ///     const char *Filename;
3060 ///     int32_t Line, Column;
3061 ///   };
3062 /// \endcode
3063 /// For an invalid SourceLocation, the Filename pointer is null.
3064 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3065   llvm::Constant *Filename;
3066   int Line, Column;
3067 
3068   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3069   if (PLoc.isValid()) {
3070     StringRef FilenameString = PLoc.getFilename();
3071 
3072     int PathComponentsToStrip =
3073         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3074     if (PathComponentsToStrip < 0) {
3075       assert(PathComponentsToStrip != INT_MIN);
3076       int PathComponentsToKeep = -PathComponentsToStrip;
3077       auto I = llvm::sys::path::rbegin(FilenameString);
3078       auto E = llvm::sys::path::rend(FilenameString);
3079       while (I != E && --PathComponentsToKeep)
3080         ++I;
3081 
3082       FilenameString = FilenameString.substr(I - E);
3083     } else if (PathComponentsToStrip > 0) {
3084       auto I = llvm::sys::path::begin(FilenameString);
3085       auto E = llvm::sys::path::end(FilenameString);
3086       while (I != E && PathComponentsToStrip--)
3087         ++I;
3088 
3089       if (I != E)
3090         FilenameString =
3091             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3092       else
3093         FilenameString = llvm::sys::path::filename(FilenameString);
3094     }
3095 
3096     auto FilenameGV =
3097         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3098     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3099                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3100     Filename = FilenameGV.getPointer();
3101     Line = PLoc.getLine();
3102     Column = PLoc.getColumn();
3103   } else {
3104     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3105     Line = Column = 0;
3106   }
3107 
3108   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3109                             Builder.getInt32(Column)};
3110 
3111   return llvm::ConstantStruct::getAnon(Data);
3112 }
3113 
3114 namespace {
3115 /// Specify under what conditions this check can be recovered
3116 enum class CheckRecoverableKind {
3117   /// Always terminate program execution if this check fails.
3118   Unrecoverable,
3119   /// Check supports recovering, runtime has both fatal (noreturn) and
3120   /// non-fatal handlers for this check.
3121   Recoverable,
3122   /// Runtime conditionally aborts, always need to support recovery.
3123   AlwaysRecoverable
3124 };
3125 }
3126 
3127 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3128   assert(Kind.countPopulation() == 1);
3129   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3130     return CheckRecoverableKind::AlwaysRecoverable;
3131   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3132     return CheckRecoverableKind::Unrecoverable;
3133   else
3134     return CheckRecoverableKind::Recoverable;
3135 }
3136 
3137 namespace {
3138 struct SanitizerHandlerInfo {
3139   char const *const Name;
3140   unsigned Version;
3141 };
3142 }
3143 
3144 const SanitizerHandlerInfo SanitizerHandlers[] = {
3145 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3146     LIST_SANITIZER_CHECKS
3147 #undef SANITIZER_CHECK
3148 };
3149 
3150 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3151                                  llvm::FunctionType *FnType,
3152                                  ArrayRef<llvm::Value *> FnArgs,
3153                                  SanitizerHandler CheckHandler,
3154                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3155                                  llvm::BasicBlock *ContBB) {
3156   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3157   Optional<ApplyDebugLocation> DL;
3158   if (!CGF.Builder.getCurrentDebugLocation()) {
3159     // Ensure that the call has at least an artificial debug location.
3160     DL.emplace(CGF, SourceLocation());
3161   }
3162   bool NeedsAbortSuffix =
3163       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3164   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3165   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3166   const StringRef CheckName = CheckInfo.Name;
3167   std::string FnName = "__ubsan_handle_" + CheckName.str();
3168   if (CheckInfo.Version && !MinimalRuntime)
3169     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3170   if (MinimalRuntime)
3171     FnName += "_minimal";
3172   if (NeedsAbortSuffix)
3173     FnName += "_abort";
3174   bool MayReturn =
3175       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3176 
3177   llvm::AttrBuilder B;
3178   if (!MayReturn) {
3179     B.addAttribute(llvm::Attribute::NoReturn)
3180         .addAttribute(llvm::Attribute::NoUnwind);
3181   }
3182   B.addAttribute(llvm::Attribute::UWTable);
3183 
3184   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3185       FnType, FnName,
3186       llvm::AttributeList::get(CGF.getLLVMContext(),
3187                                llvm::AttributeList::FunctionIndex, B),
3188       /*Local=*/true);
3189   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3190   if (!MayReturn) {
3191     HandlerCall->setDoesNotReturn();
3192     CGF.Builder.CreateUnreachable();
3193   } else {
3194     CGF.Builder.CreateBr(ContBB);
3195   }
3196 }
3197 
3198 void CodeGenFunction::EmitCheck(
3199     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3200     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3201     ArrayRef<llvm::Value *> DynamicArgs) {
3202   assert(IsSanitizerScope);
3203   assert(Checked.size() > 0);
3204   assert(CheckHandler >= 0 &&
3205          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3206   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3207 
3208   llvm::Value *FatalCond = nullptr;
3209   llvm::Value *RecoverableCond = nullptr;
3210   llvm::Value *TrapCond = nullptr;
3211   for (int i = 0, n = Checked.size(); i < n; ++i) {
3212     llvm::Value *Check = Checked[i].first;
3213     // -fsanitize-trap= overrides -fsanitize-recover=.
3214     llvm::Value *&Cond =
3215         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3216             ? TrapCond
3217             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3218                   ? RecoverableCond
3219                   : FatalCond;
3220     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3221   }
3222 
3223   if (TrapCond)
3224     EmitTrapCheck(TrapCond, CheckHandler);
3225   if (!FatalCond && !RecoverableCond)
3226     return;
3227 
3228   llvm::Value *JointCond;
3229   if (FatalCond && RecoverableCond)
3230     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3231   else
3232     JointCond = FatalCond ? FatalCond : RecoverableCond;
3233   assert(JointCond);
3234 
3235   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3236   assert(SanOpts.has(Checked[0].second));
3237 #ifndef NDEBUG
3238   for (int i = 1, n = Checked.size(); i < n; ++i) {
3239     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3240            "All recoverable kinds in a single check must be same!");
3241     assert(SanOpts.has(Checked[i].second));
3242   }
3243 #endif
3244 
3245   llvm::BasicBlock *Cont = createBasicBlock("cont");
3246   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3247   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3248   // Give hint that we very much don't expect to execute the handler
3249   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3250   llvm::MDBuilder MDHelper(getLLVMContext());
3251   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3252   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3253   EmitBlock(Handlers);
3254 
3255   // Handler functions take an i8* pointing to the (handler-specific) static
3256   // information block, followed by a sequence of intptr_t arguments
3257   // representing operand values.
3258   SmallVector<llvm::Value *, 4> Args;
3259   SmallVector<llvm::Type *, 4> ArgTypes;
3260   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3261     Args.reserve(DynamicArgs.size() + 1);
3262     ArgTypes.reserve(DynamicArgs.size() + 1);
3263 
3264     // Emit handler arguments and create handler function type.
3265     if (!StaticArgs.empty()) {
3266       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3267       auto *InfoPtr =
3268           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3269                                    llvm::GlobalVariable::PrivateLinkage, Info);
3270       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3271       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3272       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3273       ArgTypes.push_back(Int8PtrTy);
3274     }
3275 
3276     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3277       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3278       ArgTypes.push_back(IntPtrTy);
3279     }
3280   }
3281 
3282   llvm::FunctionType *FnType =
3283     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3284 
3285   if (!FatalCond || !RecoverableCond) {
3286     // Simple case: we need to generate a single handler call, either
3287     // fatal, or non-fatal.
3288     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3289                          (FatalCond != nullptr), Cont);
3290   } else {
3291     // Emit two handler calls: first one for set of unrecoverable checks,
3292     // another one for recoverable.
3293     llvm::BasicBlock *NonFatalHandlerBB =
3294         createBasicBlock("non_fatal." + CheckName);
3295     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3296     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3297     EmitBlock(FatalHandlerBB);
3298     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3299                          NonFatalHandlerBB);
3300     EmitBlock(NonFatalHandlerBB);
3301     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3302                          Cont);
3303   }
3304 
3305   EmitBlock(Cont);
3306 }
3307 
3308 void CodeGenFunction::EmitCfiSlowPathCheck(
3309     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3310     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3311   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3312 
3313   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3314   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3315 
3316   llvm::MDBuilder MDHelper(getLLVMContext());
3317   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3318   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3319 
3320   EmitBlock(CheckBB);
3321 
3322   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3323 
3324   llvm::CallInst *CheckCall;
3325   llvm::FunctionCallee SlowPathFn;
3326   if (WithDiag) {
3327     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3328     auto *InfoPtr =
3329         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3330                                  llvm::GlobalVariable::PrivateLinkage, Info);
3331     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3332     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3333 
3334     SlowPathFn = CGM.getModule().getOrInsertFunction(
3335         "__cfi_slowpath_diag",
3336         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3337                                 false));
3338     CheckCall = Builder.CreateCall(
3339         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3340   } else {
3341     SlowPathFn = CGM.getModule().getOrInsertFunction(
3342         "__cfi_slowpath",
3343         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3344     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3345   }
3346 
3347   CGM.setDSOLocal(
3348       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3349   CheckCall->setDoesNotThrow();
3350 
3351   EmitBlock(Cont);
3352 }
3353 
3354 // Emit a stub for __cfi_check function so that the linker knows about this
3355 // symbol in LTO mode.
3356 void CodeGenFunction::EmitCfiCheckStub() {
3357   llvm::Module *M = &CGM.getModule();
3358   auto &Ctx = M->getContext();
3359   llvm::Function *F = llvm::Function::Create(
3360       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3361       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3362   CGM.setDSOLocal(F);
3363   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3364   // FIXME: consider emitting an intrinsic call like
3365   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3366   // which can be lowered in CrossDSOCFI pass to the actual contents of
3367   // __cfi_check. This would allow inlining of __cfi_check calls.
3368   llvm::CallInst::Create(
3369       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3370   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3371 }
3372 
3373 // This function is basically a switch over the CFI failure kind, which is
3374 // extracted from CFICheckFailData (1st function argument). Each case is either
3375 // llvm.trap or a call to one of the two runtime handlers, based on
3376 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3377 // failure kind) traps, but this should really never happen.  CFICheckFailData
3378 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3379 // check kind; in this case __cfi_check_fail traps as well.
3380 void CodeGenFunction::EmitCfiCheckFail() {
3381   SanitizerScope SanScope(this);
3382   FunctionArgList Args;
3383   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3384                             ImplicitParamDecl::Other);
3385   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3386                             ImplicitParamDecl::Other);
3387   Args.push_back(&ArgData);
3388   Args.push_back(&ArgAddr);
3389 
3390   const CGFunctionInfo &FI =
3391     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3392 
3393   llvm::Function *F = llvm::Function::Create(
3394       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3395       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3396 
3397   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3398   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3399   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3400 
3401   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3402                 SourceLocation());
3403 
3404   // This function is not affected by NoSanitizeList. This function does
3405   // not have a source location, but "src:*" would still apply. Revert any
3406   // changes to SanOpts made in StartFunction.
3407   SanOpts = CGM.getLangOpts().Sanitize;
3408 
3409   llvm::Value *Data =
3410       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3411                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3412   llvm::Value *Addr =
3413       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3414                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3415 
3416   // Data == nullptr means the calling module has trap behaviour for this check.
3417   llvm::Value *DataIsNotNullPtr =
3418       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3419   EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3420 
3421   llvm::StructType *SourceLocationTy =
3422       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3423   llvm::StructType *CfiCheckFailDataTy =
3424       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3425 
3426   llvm::Value *V = Builder.CreateConstGEP2_32(
3427       CfiCheckFailDataTy,
3428       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3429       0);
3430   Address CheckKindAddr(V, getIntAlign());
3431   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3432 
3433   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3434       CGM.getLLVMContext(),
3435       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3436   llvm::Value *ValidVtable = Builder.CreateZExt(
3437       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3438                          {Addr, AllVtables}),
3439       IntPtrTy);
3440 
3441   const std::pair<int, SanitizerMask> CheckKinds[] = {
3442       {CFITCK_VCall, SanitizerKind::CFIVCall},
3443       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3444       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3445       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3446       {CFITCK_ICall, SanitizerKind::CFIICall}};
3447 
3448   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3449   for (auto CheckKindMaskPair : CheckKinds) {
3450     int Kind = CheckKindMaskPair.first;
3451     SanitizerMask Mask = CheckKindMaskPair.second;
3452     llvm::Value *Cond =
3453         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3454     if (CGM.getLangOpts().Sanitize.has(Mask))
3455       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3456                 {Data, Addr, ValidVtable});
3457     else
3458       EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3459   }
3460 
3461   FinishFunction();
3462   // The only reference to this function will be created during LTO link.
3463   // Make sure it survives until then.
3464   CGM.addUsedGlobal(F);
3465 }
3466 
3467 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3468   if (SanOpts.has(SanitizerKind::Unreachable)) {
3469     SanitizerScope SanScope(this);
3470     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3471                              SanitizerKind::Unreachable),
3472               SanitizerHandler::BuiltinUnreachable,
3473               EmitCheckSourceLocation(Loc), None);
3474   }
3475   Builder.CreateUnreachable();
3476 }
3477 
3478 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3479                                     SanitizerHandler CheckHandlerID) {
3480   llvm::BasicBlock *Cont = createBasicBlock("cont");
3481 
3482   // If we're optimizing, collapse all calls to trap down to just one per
3483   // check-type per function to save on code size.
3484   if (TrapBBs.size() <= CheckHandlerID)
3485     TrapBBs.resize(CheckHandlerID + 1);
3486   llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3487 
3488   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3489     TrapBB = createBasicBlock("trap");
3490     Builder.CreateCondBr(Checked, Cont, TrapBB);
3491     EmitBlock(TrapBB);
3492 
3493     llvm::CallInst *TrapCall =
3494         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3495                            llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID));
3496 
3497     if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3498       auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3499                                     CGM.getCodeGenOpts().TrapFuncName);
3500       TrapCall->addFnAttr(A);
3501     }
3502     TrapCall->setDoesNotReturn();
3503     TrapCall->setDoesNotThrow();
3504     Builder.CreateUnreachable();
3505   } else {
3506     auto Call = TrapBB->begin();
3507     assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3508 
3509     Call->applyMergedLocation(Call->getDebugLoc(),
3510                               Builder.getCurrentDebugLocation());
3511     Builder.CreateCondBr(Checked, Cont, TrapBB);
3512   }
3513 
3514   EmitBlock(Cont);
3515 }
3516 
3517 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3518   llvm::CallInst *TrapCall =
3519       Builder.CreateCall(CGM.getIntrinsic(IntrID));
3520 
3521   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3522     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3523                                   CGM.getCodeGenOpts().TrapFuncName);
3524     TrapCall->addFnAttr(A);
3525   }
3526 
3527   return TrapCall;
3528 }
3529 
3530 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3531                                                  LValueBaseInfo *BaseInfo,
3532                                                  TBAAAccessInfo *TBAAInfo) {
3533   assert(E->getType()->isArrayType() &&
3534          "Array to pointer decay must have array source type!");
3535 
3536   // Expressions of array type can't be bitfields or vector elements.
3537   LValue LV = EmitLValue(E);
3538   Address Addr = LV.getAddress(*this);
3539 
3540   // If the array type was an incomplete type, we need to make sure
3541   // the decay ends up being the right type.
3542   llvm::Type *NewTy = ConvertType(E->getType());
3543   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3544 
3545   // Note that VLA pointers are always decayed, so we don't need to do
3546   // anything here.
3547   if (!E->getType()->isVariableArrayType()) {
3548     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3549            "Expected pointer to array");
3550     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3551   }
3552 
3553   // The result of this decay conversion points to an array element within the
3554   // base lvalue. However, since TBAA currently does not support representing
3555   // accesses to elements of member arrays, we conservatively represent accesses
3556   // to the pointee object as if it had no any base lvalue specified.
3557   // TODO: Support TBAA for member arrays.
3558   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3559   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3560   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3561 
3562   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3563 }
3564 
3565 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3566 /// array to pointer, return the array subexpression.
3567 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3568   // If this isn't just an array->pointer decay, bail out.
3569   const auto *CE = dyn_cast<CastExpr>(E);
3570   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3571     return nullptr;
3572 
3573   // If this is a decay from variable width array, bail out.
3574   const Expr *SubExpr = CE->getSubExpr();
3575   if (SubExpr->getType()->isVariableArrayType())
3576     return nullptr;
3577 
3578   return SubExpr;
3579 }
3580 
3581 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3582                                           llvm::Type *elemType,
3583                                           llvm::Value *ptr,
3584                                           ArrayRef<llvm::Value*> indices,
3585                                           bool inbounds,
3586                                           bool signedIndices,
3587                                           SourceLocation loc,
3588                                     const llvm::Twine &name = "arrayidx") {
3589   if (inbounds) {
3590     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3591                                       CodeGenFunction::NotSubtraction, loc,
3592                                       name);
3593   } else {
3594     return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3595   }
3596 }
3597 
3598 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3599                                       llvm::Value *idx,
3600                                       CharUnits eltSize) {
3601   // If we have a constant index, we can use the exact offset of the
3602   // element we're accessing.
3603   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3604     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3605     return arrayAlign.alignmentAtOffset(offset);
3606 
3607   // Otherwise, use the worst-case alignment for any element.
3608   } else {
3609     return arrayAlign.alignmentOfArrayElement(eltSize);
3610   }
3611 }
3612 
3613 static QualType getFixedSizeElementType(const ASTContext &ctx,
3614                                         const VariableArrayType *vla) {
3615   QualType eltType;
3616   do {
3617     eltType = vla->getElementType();
3618   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3619   return eltType;
3620 }
3621 
3622 /// Given an array base, check whether its member access belongs to a record
3623 /// with preserve_access_index attribute or not.
3624 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3625   if (!ArrayBase || !CGF.getDebugInfo())
3626     return false;
3627 
3628   // Only support base as either a MemberExpr or DeclRefExpr.
3629   // DeclRefExpr to cover cases like:
3630   //    struct s { int a; int b[10]; };
3631   //    struct s *p;
3632   //    p[1].a
3633   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3634   // p->b[5] is a MemberExpr example.
3635   const Expr *E = ArrayBase->IgnoreImpCasts();
3636   if (const auto *ME = dyn_cast<MemberExpr>(E))
3637     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3638 
3639   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3640     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3641     if (!VarDef)
3642       return false;
3643 
3644     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3645     if (!PtrT)
3646       return false;
3647 
3648     const auto *PointeeT = PtrT->getPointeeType()
3649                              ->getUnqualifiedDesugaredType();
3650     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3651       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3652     return false;
3653   }
3654 
3655   return false;
3656 }
3657 
3658 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3659                                      ArrayRef<llvm::Value *> indices,
3660                                      QualType eltType, bool inbounds,
3661                                      bool signedIndices, SourceLocation loc,
3662                                      QualType *arrayType = nullptr,
3663                                      const Expr *Base = nullptr,
3664                                      const llvm::Twine &name = "arrayidx") {
3665   // All the indices except that last must be zero.
3666 #ifndef NDEBUG
3667   for (auto idx : indices.drop_back())
3668     assert(isa<llvm::ConstantInt>(idx) &&
3669            cast<llvm::ConstantInt>(idx)->isZero());
3670 #endif
3671 
3672   // Determine the element size of the statically-sized base.  This is
3673   // the thing that the indices are expressed in terms of.
3674   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3675     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3676   }
3677 
3678   // We can use that to compute the best alignment of the element.
3679   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3680   CharUnits eltAlign =
3681     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3682 
3683   llvm::Value *eltPtr;
3684   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3685   if (!LastIndex ||
3686       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3687     eltPtr = emitArraySubscriptGEP(
3688         CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
3689         signedIndices, loc, name);
3690   } else {
3691     // Remember the original array subscript for bpf target
3692     unsigned idx = LastIndex->getZExtValue();
3693     llvm::DIType *DbgInfo = nullptr;
3694     if (arrayType)
3695       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3696     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3697                                                         addr.getPointer(),
3698                                                         indices.size() - 1,
3699                                                         idx, DbgInfo);
3700   }
3701 
3702   return Address(eltPtr, eltAlign);
3703 }
3704 
3705 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3706                                                bool Accessed) {
3707   // The index must always be an integer, which is not an aggregate.  Emit it
3708   // in lexical order (this complexity is, sadly, required by C++17).
3709   llvm::Value *IdxPre =
3710       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3711   bool SignedIndices = false;
3712   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3713     auto *Idx = IdxPre;
3714     if (E->getLHS() != E->getIdx()) {
3715       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3716       Idx = EmitScalarExpr(E->getIdx());
3717     }
3718 
3719     QualType IdxTy = E->getIdx()->getType();
3720     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3721     SignedIndices |= IdxSigned;
3722 
3723     if (SanOpts.has(SanitizerKind::ArrayBounds))
3724       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3725 
3726     // Extend or truncate the index type to 32 or 64-bits.
3727     if (Promote && Idx->getType() != IntPtrTy)
3728       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3729 
3730     return Idx;
3731   };
3732   IdxPre = nullptr;
3733 
3734   // If the base is a vector type, then we are forming a vector element lvalue
3735   // with this subscript.
3736   if (E->getBase()->getType()->isVectorType() &&
3737       !isa<ExtVectorElementExpr>(E->getBase())) {
3738     // Emit the vector as an lvalue to get its address.
3739     LValue LHS = EmitLValue(E->getBase());
3740     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3741     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3742     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3743                                  E->getBase()->getType(), LHS.getBaseInfo(),
3744                                  TBAAAccessInfo());
3745   }
3746 
3747   // All the other cases basically behave like simple offsetting.
3748 
3749   // Handle the extvector case we ignored above.
3750   if (isa<ExtVectorElementExpr>(E->getBase())) {
3751     LValue LV = EmitLValue(E->getBase());
3752     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3753     Address Addr = EmitExtVectorElementLValue(LV);
3754 
3755     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3756     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3757                                  SignedIndices, E->getExprLoc());
3758     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3759                           CGM.getTBAAInfoForSubobject(LV, EltType));
3760   }
3761 
3762   LValueBaseInfo EltBaseInfo;
3763   TBAAAccessInfo EltTBAAInfo;
3764   Address Addr = Address::invalid();
3765   if (const VariableArrayType *vla =
3766            getContext().getAsVariableArrayType(E->getType())) {
3767     // The base must be a pointer, which is not an aggregate.  Emit
3768     // it.  It needs to be emitted first in case it's what captures
3769     // the VLA bounds.
3770     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3771     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3772 
3773     // The element count here is the total number of non-VLA elements.
3774     llvm::Value *numElements = getVLASize(vla).NumElts;
3775 
3776     // Effectively, the multiply by the VLA size is part of the GEP.
3777     // GEP indexes are signed, and scaling an index isn't permitted to
3778     // signed-overflow, so we use the same semantics for our explicit
3779     // multiply.  We suppress this if overflow is not undefined behavior.
3780     if (getLangOpts().isSignedOverflowDefined()) {
3781       Idx = Builder.CreateMul(Idx, numElements);
3782     } else {
3783       Idx = Builder.CreateNSWMul(Idx, numElements);
3784     }
3785 
3786     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3787                                  !getLangOpts().isSignedOverflowDefined(),
3788                                  SignedIndices, E->getExprLoc());
3789 
3790   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3791     // Indexing over an interface, as in "NSString *P; P[4];"
3792 
3793     // Emit the base pointer.
3794     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3795     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3796 
3797     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3798     llvm::Value *InterfaceSizeVal =
3799         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3800 
3801     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3802 
3803     // We don't necessarily build correct LLVM struct types for ObjC
3804     // interfaces, so we can't rely on GEP to do this scaling
3805     // correctly, so we need to cast to i8*.  FIXME: is this actually
3806     // true?  A lot of other things in the fragile ABI would break...
3807     llvm::Type *OrigBaseTy = Addr.getType();
3808     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3809 
3810     // Do the GEP.
3811     CharUnits EltAlign =
3812       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3813     llvm::Value *EltPtr =
3814         emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(),
3815                               ScaledIdx, false, SignedIndices, E->getExprLoc());
3816     Addr = Address(EltPtr, EltAlign);
3817 
3818     // Cast back.
3819     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3820   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3821     // If this is A[i] where A is an array, the frontend will have decayed the
3822     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3823     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3824     // "gep x, i" here.  Emit one "gep A, 0, i".
3825     assert(Array->getType()->isArrayType() &&
3826            "Array to pointer decay must have array source type!");
3827     LValue ArrayLV;
3828     // For simple multidimensional array indexing, set the 'accessed' flag for
3829     // better bounds-checking of the base expression.
3830     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3831       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3832     else
3833       ArrayLV = EmitLValue(Array);
3834     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3835 
3836     // Propagate the alignment from the array itself to the result.
3837     QualType arrayType = Array->getType();
3838     Addr = emitArraySubscriptGEP(
3839         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3840         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3841         E->getExprLoc(), &arrayType, E->getBase());
3842     EltBaseInfo = ArrayLV.getBaseInfo();
3843     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3844   } else {
3845     // The base must be a pointer; emit it with an estimate of its alignment.
3846     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3847     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3848     QualType ptrType = E->getBase()->getType();
3849     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3850                                  !getLangOpts().isSignedOverflowDefined(),
3851                                  SignedIndices, E->getExprLoc(), &ptrType,
3852                                  E->getBase());
3853   }
3854 
3855   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3856 
3857   if (getLangOpts().ObjC &&
3858       getLangOpts().getGC() != LangOptions::NonGC) {
3859     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3860     setObjCGCLValueClass(getContext(), E, LV);
3861   }
3862   return LV;
3863 }
3864 
3865 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3866   assert(
3867       !E->isIncomplete() &&
3868       "incomplete matrix subscript expressions should be rejected during Sema");
3869   LValue Base = EmitLValue(E->getBase());
3870   llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3871   llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3872   llvm::Value *NumRows = Builder.getIntN(
3873       RowIdx->getType()->getScalarSizeInBits(),
3874       E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
3875   llvm::Value *FinalIdx =
3876       Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3877   return LValue::MakeMatrixElt(
3878       MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3879       E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3880 }
3881 
3882 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3883                                        LValueBaseInfo &BaseInfo,
3884                                        TBAAAccessInfo &TBAAInfo,
3885                                        QualType BaseTy, QualType ElTy,
3886                                        bool IsLowerBound) {
3887   LValue BaseLVal;
3888   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3889     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3890     if (BaseTy->isArrayType()) {
3891       Address Addr = BaseLVal.getAddress(CGF);
3892       BaseInfo = BaseLVal.getBaseInfo();
3893 
3894       // If the array type was an incomplete type, we need to make sure
3895       // the decay ends up being the right type.
3896       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3897       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3898 
3899       // Note that VLA pointers are always decayed, so we don't need to do
3900       // anything here.
3901       if (!BaseTy->isVariableArrayType()) {
3902         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3903                "Expected pointer to array");
3904         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3905       }
3906 
3907       return CGF.Builder.CreateElementBitCast(Addr,
3908                                               CGF.ConvertTypeForMem(ElTy));
3909     }
3910     LValueBaseInfo TypeBaseInfo;
3911     TBAAAccessInfo TypeTBAAInfo;
3912     CharUnits Align =
3913         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3914     BaseInfo.mergeForCast(TypeBaseInfo);
3915     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3916     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3917   }
3918   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3919 }
3920 
3921 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3922                                                 bool IsLowerBound) {
3923   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3924   QualType ResultExprTy;
3925   if (auto *AT = getContext().getAsArrayType(BaseTy))
3926     ResultExprTy = AT->getElementType();
3927   else
3928     ResultExprTy = BaseTy->getPointeeType();
3929   llvm::Value *Idx = nullptr;
3930   if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
3931     // Requesting lower bound or upper bound, but without provided length and
3932     // without ':' symbol for the default length -> length = 1.
3933     // Idx = LowerBound ?: 0;
3934     if (auto *LowerBound = E->getLowerBound()) {
3935       Idx = Builder.CreateIntCast(
3936           EmitScalarExpr(LowerBound), IntPtrTy,
3937           LowerBound->getType()->hasSignedIntegerRepresentation());
3938     } else
3939       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3940   } else {
3941     // Try to emit length or lower bound as constant. If this is possible, 1
3942     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3943     // IR (LB + Len) - 1.
3944     auto &C = CGM.getContext();
3945     auto *Length = E->getLength();
3946     llvm::APSInt ConstLength;
3947     if (Length) {
3948       // Idx = LowerBound + Length - 1;
3949       if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
3950         ConstLength = CL->zextOrTrunc(PointerWidthInBits);
3951         Length = nullptr;
3952       }
3953       auto *LowerBound = E->getLowerBound();
3954       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3955       if (LowerBound) {
3956         if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
3957           ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
3958           LowerBound = nullptr;
3959         }
3960       }
3961       if (!Length)
3962         --ConstLength;
3963       else if (!LowerBound)
3964         --ConstLowerBound;
3965 
3966       if (Length || LowerBound) {
3967         auto *LowerBoundVal =
3968             LowerBound
3969                 ? Builder.CreateIntCast(
3970                       EmitScalarExpr(LowerBound), IntPtrTy,
3971                       LowerBound->getType()->hasSignedIntegerRepresentation())
3972                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3973         auto *LengthVal =
3974             Length
3975                 ? Builder.CreateIntCast(
3976                       EmitScalarExpr(Length), IntPtrTy,
3977                       Length->getType()->hasSignedIntegerRepresentation())
3978                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3979         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3980                                 /*HasNUW=*/false,
3981                                 !getLangOpts().isSignedOverflowDefined());
3982         if (Length && LowerBound) {
3983           Idx = Builder.CreateSub(
3984               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3985               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3986         }
3987       } else
3988         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3989     } else {
3990       // Idx = ArraySize - 1;
3991       QualType ArrayTy = BaseTy->isPointerType()
3992                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3993                              : BaseTy;
3994       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3995         Length = VAT->getSizeExpr();
3996         if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
3997           ConstLength = *L;
3998           Length = nullptr;
3999         }
4000       } else {
4001         auto *CAT = C.getAsConstantArrayType(ArrayTy);
4002         ConstLength = CAT->getSize();
4003       }
4004       if (Length) {
4005         auto *LengthVal = Builder.CreateIntCast(
4006             EmitScalarExpr(Length), IntPtrTy,
4007             Length->getType()->hasSignedIntegerRepresentation());
4008         Idx = Builder.CreateSub(
4009             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4010             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4011       } else {
4012         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4013         --ConstLength;
4014         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4015       }
4016     }
4017   }
4018   assert(Idx);
4019 
4020   Address EltPtr = Address::invalid();
4021   LValueBaseInfo BaseInfo;
4022   TBAAAccessInfo TBAAInfo;
4023   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4024     // The base must be a pointer, which is not an aggregate.  Emit
4025     // it.  It needs to be emitted first in case it's what captures
4026     // the VLA bounds.
4027     Address Base =
4028         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4029                                 BaseTy, VLA->getElementType(), IsLowerBound);
4030     // The element count here is the total number of non-VLA elements.
4031     llvm::Value *NumElements = getVLASize(VLA).NumElts;
4032 
4033     // Effectively, the multiply by the VLA size is part of the GEP.
4034     // GEP indexes are signed, and scaling an index isn't permitted to
4035     // signed-overflow, so we use the same semantics for our explicit
4036     // multiply.  We suppress this if overflow is not undefined behavior.
4037     if (getLangOpts().isSignedOverflowDefined())
4038       Idx = Builder.CreateMul(Idx, NumElements);
4039     else
4040       Idx = Builder.CreateNSWMul(Idx, NumElements);
4041     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4042                                    !getLangOpts().isSignedOverflowDefined(),
4043                                    /*signedIndices=*/false, E->getExprLoc());
4044   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4045     // If this is A[i] where A is an array, the frontend will have decayed the
4046     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
4047     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4048     // "gep x, i" here.  Emit one "gep A, 0, i".
4049     assert(Array->getType()->isArrayType() &&
4050            "Array to pointer decay must have array source type!");
4051     LValue ArrayLV;
4052     // For simple multidimensional array indexing, set the 'accessed' flag for
4053     // better bounds-checking of the base expression.
4054     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4055       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4056     else
4057       ArrayLV = EmitLValue(Array);
4058 
4059     // Propagate the alignment from the array itself to the result.
4060     EltPtr = emitArraySubscriptGEP(
4061         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4062         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4063         /*signedIndices=*/false, E->getExprLoc());
4064     BaseInfo = ArrayLV.getBaseInfo();
4065     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4066   } else {
4067     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4068                                            TBAAInfo, BaseTy, ResultExprTy,
4069                                            IsLowerBound);
4070     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4071                                    !getLangOpts().isSignedOverflowDefined(),
4072                                    /*signedIndices=*/false, E->getExprLoc());
4073   }
4074 
4075   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4076 }
4077 
4078 LValue CodeGenFunction::
4079 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4080   // Emit the base vector as an l-value.
4081   LValue Base;
4082 
4083   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4084   if (E->isArrow()) {
4085     // If it is a pointer to a vector, emit the address and form an lvalue with
4086     // it.
4087     LValueBaseInfo BaseInfo;
4088     TBAAAccessInfo TBAAInfo;
4089     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4090     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4091     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4092     Base.getQuals().removeObjCGCAttr();
4093   } else if (E->getBase()->isGLValue()) {
4094     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4095     // emit the base as an lvalue.
4096     assert(E->getBase()->getType()->isVectorType());
4097     Base = EmitLValue(E->getBase());
4098   } else {
4099     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4100     assert(E->getBase()->getType()->isVectorType() &&
4101            "Result must be a vector");
4102     llvm::Value *Vec = EmitScalarExpr(E->getBase());
4103 
4104     // Store the vector to memory (because LValue wants an address).
4105     Address VecMem = CreateMemTemp(E->getBase()->getType());
4106     Builder.CreateStore(Vec, VecMem);
4107     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4108                           AlignmentSource::Decl);
4109   }
4110 
4111   QualType type =
4112     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4113 
4114   // Encode the element access list into a vector of unsigned indices.
4115   SmallVector<uint32_t, 4> Indices;
4116   E->getEncodedElementAccess(Indices);
4117 
4118   if (Base.isSimple()) {
4119     llvm::Constant *CV =
4120         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4121     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4122                                     Base.getBaseInfo(), TBAAAccessInfo());
4123   }
4124   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4125 
4126   llvm::Constant *BaseElts = Base.getExtVectorElts();
4127   SmallVector<llvm::Constant *, 4> CElts;
4128 
4129   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4130     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4131   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4132   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4133                                   Base.getBaseInfo(), TBAAAccessInfo());
4134 }
4135 
4136 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4137   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4138     EmitIgnoredExpr(E->getBase());
4139     return EmitDeclRefLValue(DRE);
4140   }
4141 
4142   Expr *BaseExpr = E->getBase();
4143   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4144   LValue BaseLV;
4145   if (E->isArrow()) {
4146     LValueBaseInfo BaseInfo;
4147     TBAAAccessInfo TBAAInfo;
4148     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4149     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4150     SanitizerSet SkippedChecks;
4151     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4152     if (IsBaseCXXThis)
4153       SkippedChecks.set(SanitizerKind::Alignment, true);
4154     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4155       SkippedChecks.set(SanitizerKind::Null, true);
4156     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4157                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4158     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4159   } else
4160     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4161 
4162   NamedDecl *ND = E->getMemberDecl();
4163   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4164     LValue LV = EmitLValueForField(BaseLV, Field);
4165     setObjCGCLValueClass(getContext(), E, LV);
4166     if (getLangOpts().OpenMP) {
4167       // If the member was explicitly marked as nontemporal, mark it as
4168       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4169       // to children as nontemporal too.
4170       if ((IsWrappedCXXThis(BaseExpr) &&
4171            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4172           BaseLV.isNontemporal())
4173         LV.setNontemporal(/*Value=*/true);
4174     }
4175     return LV;
4176   }
4177 
4178   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4179     return EmitFunctionDeclLValue(*this, E, FD);
4180 
4181   llvm_unreachable("Unhandled member declaration!");
4182 }
4183 
4184 /// Given that we are currently emitting a lambda, emit an l-value for
4185 /// one of its members.
4186 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4187   if (CurCodeDecl) {
4188     assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4189     assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4190   }
4191   QualType LambdaTagType =
4192     getContext().getTagDeclType(Field->getParent());
4193   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4194   return EmitLValueForField(LambdaLV, Field);
4195 }
4196 
4197 /// Get the field index in the debug info. The debug info structure/union
4198 /// will ignore the unnamed bitfields.
4199 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4200                                              unsigned FieldIndex) {
4201   unsigned I = 0, Skipped = 0;
4202 
4203   for (auto F : Rec->getDefinition()->fields()) {
4204     if (I == FieldIndex)
4205       break;
4206     if (F->isUnnamedBitfield())
4207       Skipped++;
4208     I++;
4209   }
4210 
4211   return FieldIndex - Skipped;
4212 }
4213 
4214 /// Get the address of a zero-sized field within a record. The resulting
4215 /// address doesn't necessarily have the right type.
4216 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4217                                        const FieldDecl *Field) {
4218   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4219       CGF.getContext().getFieldOffset(Field));
4220   if (Offset.isZero())
4221     return Base;
4222   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4223   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4224 }
4225 
4226 /// Drill down to the storage of a field without walking into
4227 /// reference types.
4228 ///
4229 /// The resulting address doesn't necessarily have the right type.
4230 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4231                                       const FieldDecl *field) {
4232   if (field->isZeroSize(CGF.getContext()))
4233     return emitAddrOfZeroSizeField(CGF, base, field);
4234 
4235   const RecordDecl *rec = field->getParent();
4236 
4237   unsigned idx =
4238     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4239 
4240   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4241 }
4242 
4243 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4244                                         Address addr, const FieldDecl *field) {
4245   const RecordDecl *rec = field->getParent();
4246   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4247       base.getType(), rec->getLocation());
4248 
4249   unsigned idx =
4250       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4251 
4252   return CGF.Builder.CreatePreserveStructAccessIndex(
4253       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4254 }
4255 
4256 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4257   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4258   if (!RD)
4259     return false;
4260 
4261   if (RD->isDynamicClass())
4262     return true;
4263 
4264   for (const auto &Base : RD->bases())
4265     if (hasAnyVptr(Base.getType(), Context))
4266       return true;
4267 
4268   for (const FieldDecl *Field : RD->fields())
4269     if (hasAnyVptr(Field->getType(), Context))
4270       return true;
4271 
4272   return false;
4273 }
4274 
4275 LValue CodeGenFunction::EmitLValueForField(LValue base,
4276                                            const FieldDecl *field) {
4277   LValueBaseInfo BaseInfo = base.getBaseInfo();
4278 
4279   if (field->isBitField()) {
4280     const CGRecordLayout &RL =
4281         CGM.getTypes().getCGRecordLayout(field->getParent());
4282     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4283     const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4284                              CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4285                              Info.VolatileStorageSize != 0 &&
4286                              field->getType()
4287                                  .withCVRQualifiers(base.getVRQualifiers())
4288                                  .isVolatileQualified();
4289     Address Addr = base.getAddress(*this);
4290     unsigned Idx = RL.getLLVMFieldNo(field);
4291     const RecordDecl *rec = field->getParent();
4292     if (!UseVolatile) {
4293       if (!IsInPreservedAIRegion &&
4294           (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4295         if (Idx != 0)
4296           // For structs, we GEP to the field that the record layout suggests.
4297           Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4298       } else {
4299         llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4300             getContext().getRecordType(rec), rec->getLocation());
4301         Addr = Builder.CreatePreserveStructAccessIndex(
4302             Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4303             DbgInfo);
4304       }
4305     }
4306     const unsigned SS =
4307         UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4308     // Get the access type.
4309     llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4310     if (Addr.getElementType() != FieldIntTy)
4311       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4312     if (UseVolatile) {
4313       const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4314       if (VolatileOffset)
4315         Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4316     }
4317 
4318     QualType fieldType =
4319         field->getType().withCVRQualifiers(base.getVRQualifiers());
4320     // TODO: Support TBAA for bit fields.
4321     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4322     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4323                                 TBAAAccessInfo());
4324   }
4325 
4326   // Fields of may-alias structures are may-alias themselves.
4327   // FIXME: this should get propagated down through anonymous structs
4328   // and unions.
4329   QualType FieldType = field->getType();
4330   const RecordDecl *rec = field->getParent();
4331   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4332   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4333   TBAAAccessInfo FieldTBAAInfo;
4334   if (base.getTBAAInfo().isMayAlias() ||
4335           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4336     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4337   } else if (rec->isUnion()) {
4338     // TODO: Support TBAA for unions.
4339     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4340   } else {
4341     // If no base type been assigned for the base access, then try to generate
4342     // one for this base lvalue.
4343     FieldTBAAInfo = base.getTBAAInfo();
4344     if (!FieldTBAAInfo.BaseType) {
4345         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4346         assert(!FieldTBAAInfo.Offset &&
4347                "Nonzero offset for an access with no base type!");
4348     }
4349 
4350     // Adjust offset to be relative to the base type.
4351     const ASTRecordLayout &Layout =
4352         getContext().getASTRecordLayout(field->getParent());
4353     unsigned CharWidth = getContext().getCharWidth();
4354     if (FieldTBAAInfo.BaseType)
4355       FieldTBAAInfo.Offset +=
4356           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4357 
4358     // Update the final access type and size.
4359     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4360     FieldTBAAInfo.Size =
4361         getContext().getTypeSizeInChars(FieldType).getQuantity();
4362   }
4363 
4364   Address addr = base.getAddress(*this);
4365   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4366     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4367         ClassDef->isDynamicClass()) {
4368       // Getting to any field of dynamic object requires stripping dynamic
4369       // information provided by invariant.group.  This is because accessing
4370       // fields may leak the real address of dynamic object, which could result
4371       // in miscompilation when leaked pointer would be compared.
4372       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4373       addr = Address(stripped, addr.getAlignment());
4374     }
4375   }
4376 
4377   unsigned RecordCVR = base.getVRQualifiers();
4378   if (rec->isUnion()) {
4379     // For unions, there is no pointer adjustment.
4380     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4381         hasAnyVptr(FieldType, getContext()))
4382       // Because unions can easily skip invariant.barriers, we need to add
4383       // a barrier every time CXXRecord field with vptr is referenced.
4384       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4385                      addr.getAlignment());
4386 
4387     if (IsInPreservedAIRegion ||
4388         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4389       // Remember the original union field index
4390       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4391           rec->getLocation());
4392       addr = Address(
4393           Builder.CreatePreserveUnionAccessIndex(
4394               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4395           addr.getAlignment());
4396     }
4397 
4398     if (FieldType->isReferenceType())
4399       addr = Builder.CreateElementBitCast(
4400           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4401   } else {
4402     if (!IsInPreservedAIRegion &&
4403         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4404       // For structs, we GEP to the field that the record layout suggests.
4405       addr = emitAddrOfFieldStorage(*this, addr, field);
4406     else
4407       // Remember the original struct field index
4408       addr = emitPreserveStructAccess(*this, base, addr, field);
4409   }
4410 
4411   // If this is a reference field, load the reference right now.
4412   if (FieldType->isReferenceType()) {
4413     LValue RefLVal =
4414         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4415     if (RecordCVR & Qualifiers::Volatile)
4416       RefLVal.getQuals().addVolatile();
4417     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4418 
4419     // Qualifiers on the struct don't apply to the referencee.
4420     RecordCVR = 0;
4421     FieldType = FieldType->getPointeeType();
4422   }
4423 
4424   // Make sure that the address is pointing to the right type.  This is critical
4425   // for both unions and structs.  A union needs a bitcast, a struct element
4426   // will need a bitcast if the LLVM type laid out doesn't match the desired
4427   // type.
4428   addr = Builder.CreateElementBitCast(
4429       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4430 
4431   if (field->hasAttr<AnnotateAttr>())
4432     addr = EmitFieldAnnotations(field, addr);
4433 
4434   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4435   LV.getQuals().addCVRQualifiers(RecordCVR);
4436 
4437   // __weak attribute on a field is ignored.
4438   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4439     LV.getQuals().removeObjCGCAttr();
4440 
4441   return LV;
4442 }
4443 
4444 LValue
4445 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4446                                                   const FieldDecl *Field) {
4447   QualType FieldType = Field->getType();
4448 
4449   if (!FieldType->isReferenceType())
4450     return EmitLValueForField(Base, Field);
4451 
4452   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4453 
4454   // Make sure that the address is pointing to the right type.
4455   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4456   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4457 
4458   // TODO: Generate TBAA information that describes this access as a structure
4459   // member access and not just an access to an object of the field's type. This
4460   // should be similar to what we do in EmitLValueForField().
4461   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4462   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4463   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4464   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4465                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4466 }
4467 
4468 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4469   if (E->isFileScope()) {
4470     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4471     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4472   }
4473   if (E->getType()->isVariablyModifiedType())
4474     // make sure to emit the VLA size.
4475     EmitVariablyModifiedType(E->getType());
4476 
4477   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4478   const Expr *InitExpr = E->getInitializer();
4479   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4480 
4481   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4482                    /*Init*/ true);
4483 
4484   // Block-scope compound literals are destroyed at the end of the enclosing
4485   // scope in C.
4486   if (!getLangOpts().CPlusPlus)
4487     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4488       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4489                                   E->getType(), getDestroyer(DtorKind),
4490                                   DtorKind & EHCleanup);
4491 
4492   return Result;
4493 }
4494 
4495 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4496   if (!E->isGLValue())
4497     // Initializing an aggregate temporary in C++11: T{...}.
4498     return EmitAggExprToLValue(E);
4499 
4500   // An lvalue initializer list must be initializing a reference.
4501   assert(E->isTransparent() && "non-transparent glvalue init list");
4502   return EmitLValue(E->getInit(0));
4503 }
4504 
4505 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4506 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4507 /// LValue is returned and the current block has been terminated.
4508 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4509                                                     const Expr *Operand) {
4510   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4511     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4512     return None;
4513   }
4514 
4515   return CGF.EmitLValue(Operand);
4516 }
4517 
4518 LValue CodeGenFunction::
4519 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4520   if (!expr->isGLValue()) {
4521     // ?: here should be an aggregate.
4522     assert(hasAggregateEvaluationKind(expr->getType()) &&
4523            "Unexpected conditional operator!");
4524     return EmitAggExprToLValue(expr);
4525   }
4526 
4527   OpaqueValueMapping binding(*this, expr);
4528 
4529   const Expr *condExpr = expr->getCond();
4530   bool CondExprBool;
4531   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4532     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4533     if (!CondExprBool) std::swap(live, dead);
4534 
4535     if (!ContainsLabel(dead)) {
4536       // If the true case is live, we need to track its region.
4537       if (CondExprBool)
4538         incrementProfileCounter(expr);
4539       // If a throw expression we emit it and return an undefined lvalue
4540       // because it can't be used.
4541       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4542         EmitCXXThrowExpr(ThrowExpr);
4543         llvm::Type *Ty =
4544             llvm::PointerType::getUnqual(ConvertType(dead->getType()));
4545         return MakeAddrLValue(
4546             Address(llvm::UndefValue::get(Ty), CharUnits::One()),
4547             dead->getType());
4548       }
4549       return EmitLValue(live);
4550     }
4551   }
4552 
4553   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4554   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4555   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4556 
4557   ConditionalEvaluation eval(*this);
4558   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4559 
4560   // Any temporaries created here are conditional.
4561   EmitBlock(lhsBlock);
4562   incrementProfileCounter(expr);
4563   eval.begin(*this);
4564   Optional<LValue> lhs =
4565       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4566   eval.end(*this);
4567 
4568   if (lhs && !lhs->isSimple())
4569     return EmitUnsupportedLValue(expr, "conditional operator");
4570 
4571   lhsBlock = Builder.GetInsertBlock();
4572   if (lhs)
4573     Builder.CreateBr(contBlock);
4574 
4575   // Any temporaries created here are conditional.
4576   EmitBlock(rhsBlock);
4577   eval.begin(*this);
4578   Optional<LValue> rhs =
4579       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4580   eval.end(*this);
4581   if (rhs && !rhs->isSimple())
4582     return EmitUnsupportedLValue(expr, "conditional operator");
4583   rhsBlock = Builder.GetInsertBlock();
4584 
4585   EmitBlock(contBlock);
4586 
4587   if (lhs && rhs) {
4588     llvm::PHINode *phi =
4589         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4590     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4591     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4592     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4593     AlignmentSource alignSource =
4594       std::max(lhs->getBaseInfo().getAlignmentSource(),
4595                rhs->getBaseInfo().getAlignmentSource());
4596     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4597         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4598     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4599                           TBAAInfo);
4600   } else {
4601     assert((lhs || rhs) &&
4602            "both operands of glvalue conditional are throw-expressions?");
4603     return lhs ? *lhs : *rhs;
4604   }
4605 }
4606 
4607 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4608 /// type. If the cast is to a reference, we can have the usual lvalue result,
4609 /// otherwise if a cast is needed by the code generator in an lvalue context,
4610 /// then it must mean that we need the address of an aggregate in order to
4611 /// access one of its members.  This can happen for all the reasons that casts
4612 /// are permitted with aggregate result, including noop aggregate casts, and
4613 /// cast from scalar to union.
4614 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4615   switch (E->getCastKind()) {
4616   case CK_ToVoid:
4617   case CK_BitCast:
4618   case CK_LValueToRValueBitCast:
4619   case CK_ArrayToPointerDecay:
4620   case CK_FunctionToPointerDecay:
4621   case CK_NullToMemberPointer:
4622   case CK_NullToPointer:
4623   case CK_IntegralToPointer:
4624   case CK_PointerToIntegral:
4625   case CK_PointerToBoolean:
4626   case CK_VectorSplat:
4627   case CK_IntegralCast:
4628   case CK_BooleanToSignedIntegral:
4629   case CK_IntegralToBoolean:
4630   case CK_IntegralToFloating:
4631   case CK_FloatingToIntegral:
4632   case CK_FloatingToBoolean:
4633   case CK_FloatingCast:
4634   case CK_FloatingRealToComplex:
4635   case CK_FloatingComplexToReal:
4636   case CK_FloatingComplexToBoolean:
4637   case CK_FloatingComplexCast:
4638   case CK_FloatingComplexToIntegralComplex:
4639   case CK_IntegralRealToComplex:
4640   case CK_IntegralComplexToReal:
4641   case CK_IntegralComplexToBoolean:
4642   case CK_IntegralComplexCast:
4643   case CK_IntegralComplexToFloatingComplex:
4644   case CK_DerivedToBaseMemberPointer:
4645   case CK_BaseToDerivedMemberPointer:
4646   case CK_MemberPointerToBoolean:
4647   case CK_ReinterpretMemberPointer:
4648   case CK_AnyPointerToBlockPointerCast:
4649   case CK_ARCProduceObject:
4650   case CK_ARCConsumeObject:
4651   case CK_ARCReclaimReturnedObject:
4652   case CK_ARCExtendBlockObject:
4653   case CK_CopyAndAutoreleaseBlockObject:
4654   case CK_IntToOCLSampler:
4655   case CK_FloatingToFixedPoint:
4656   case CK_FixedPointToFloating:
4657   case CK_FixedPointCast:
4658   case CK_FixedPointToBoolean:
4659   case CK_FixedPointToIntegral:
4660   case CK_IntegralToFixedPoint:
4661   case CK_MatrixCast:
4662     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4663 
4664   case CK_Dependent:
4665     llvm_unreachable("dependent cast kind in IR gen!");
4666 
4667   case CK_BuiltinFnToFnPtr:
4668     llvm_unreachable("builtin functions are handled elsewhere");
4669 
4670   // These are never l-values; just use the aggregate emission code.
4671   case CK_NonAtomicToAtomic:
4672   case CK_AtomicToNonAtomic:
4673     return EmitAggExprToLValue(E);
4674 
4675   case CK_Dynamic: {
4676     LValue LV = EmitLValue(E->getSubExpr());
4677     Address V = LV.getAddress(*this);
4678     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4679     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4680   }
4681 
4682   case CK_ConstructorConversion:
4683   case CK_UserDefinedConversion:
4684   case CK_CPointerToObjCPointerCast:
4685   case CK_BlockPointerToObjCPointerCast:
4686   case CK_NoOp:
4687   case CK_LValueToRValue:
4688     return EmitLValue(E->getSubExpr());
4689 
4690   case CK_UncheckedDerivedToBase:
4691   case CK_DerivedToBase: {
4692     const auto *DerivedClassTy =
4693         E->getSubExpr()->getType()->castAs<RecordType>();
4694     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4695 
4696     LValue LV = EmitLValue(E->getSubExpr());
4697     Address This = LV.getAddress(*this);
4698 
4699     // Perform the derived-to-base conversion
4700     Address Base = GetAddressOfBaseClass(
4701         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4702         /*NullCheckValue=*/false, E->getExprLoc());
4703 
4704     // TODO: Support accesses to members of base classes in TBAA. For now, we
4705     // conservatively pretend that the complete object is of the base class
4706     // type.
4707     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4708                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4709   }
4710   case CK_ToUnion:
4711     return EmitAggExprToLValue(E);
4712   case CK_BaseToDerived: {
4713     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4714     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4715 
4716     LValue LV = EmitLValue(E->getSubExpr());
4717 
4718     // Perform the base-to-derived conversion
4719     Address Derived = GetAddressOfDerivedClass(
4720         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4721         /*NullCheckValue=*/false);
4722 
4723     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4724     // performed and the object is not of the derived type.
4725     if (sanitizePerformTypeCheck())
4726       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4727                     Derived.getPointer(), E->getType());
4728 
4729     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4730       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4731                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4732                                 E->getBeginLoc());
4733 
4734     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4735                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4736   }
4737   case CK_LValueBitCast: {
4738     // This must be a reinterpret_cast (or c-style equivalent).
4739     const auto *CE = cast<ExplicitCastExpr>(E);
4740 
4741     CGM.EmitExplicitCastExprType(CE, this);
4742     LValue LV = EmitLValue(E->getSubExpr());
4743     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4744                                       ConvertType(CE->getTypeAsWritten()));
4745 
4746     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4747       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4748                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4749                                 E->getBeginLoc());
4750 
4751     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4752                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4753   }
4754   case CK_AddressSpaceConversion: {
4755     LValue LV = EmitLValue(E->getSubExpr());
4756     QualType DestTy = getContext().getPointerType(E->getType());
4757     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4758         *this, LV.getPointer(*this),
4759         E->getSubExpr()->getType().getAddressSpace(),
4760         E->getType().getAddressSpace(), ConvertType(DestTy));
4761     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4762                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4763   }
4764   case CK_ObjCObjectLValueCast: {
4765     LValue LV = EmitLValue(E->getSubExpr());
4766     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4767                                              ConvertType(E->getType()));
4768     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4769                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4770   }
4771   case CK_ZeroToOCLOpaqueType:
4772     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4773   }
4774 
4775   llvm_unreachable("Unhandled lvalue cast kind?");
4776 }
4777 
4778 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4779   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4780   return getOrCreateOpaqueLValueMapping(e);
4781 }
4782 
4783 LValue
4784 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4785   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4786 
4787   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4788       it = OpaqueLValues.find(e);
4789 
4790   if (it != OpaqueLValues.end())
4791     return it->second;
4792 
4793   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4794   return EmitLValue(e->getSourceExpr());
4795 }
4796 
4797 RValue
4798 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4799   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4800 
4801   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4802       it = OpaqueRValues.find(e);
4803 
4804   if (it != OpaqueRValues.end())
4805     return it->second;
4806 
4807   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4808   return EmitAnyExpr(e->getSourceExpr());
4809 }
4810 
4811 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4812                                            const FieldDecl *FD,
4813                                            SourceLocation Loc) {
4814   QualType FT = FD->getType();
4815   LValue FieldLV = EmitLValueForField(LV, FD);
4816   switch (getEvaluationKind(FT)) {
4817   case TEK_Complex:
4818     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4819   case TEK_Aggregate:
4820     return FieldLV.asAggregateRValue(*this);
4821   case TEK_Scalar:
4822     // This routine is used to load fields one-by-one to perform a copy, so
4823     // don't load reference fields.
4824     if (FD->getType()->isReferenceType())
4825       return RValue::get(FieldLV.getPointer(*this));
4826     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4827     // primitive load.
4828     if (FieldLV.isBitField())
4829       return EmitLoadOfLValue(FieldLV, Loc);
4830     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4831   }
4832   llvm_unreachable("bad evaluation kind");
4833 }
4834 
4835 //===--------------------------------------------------------------------===//
4836 //                             Expression Emission
4837 //===--------------------------------------------------------------------===//
4838 
4839 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4840                                      ReturnValueSlot ReturnValue) {
4841   // Builtins never have block type.
4842   if (E->getCallee()->getType()->isBlockPointerType())
4843     return EmitBlockCallExpr(E, ReturnValue);
4844 
4845   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4846     return EmitCXXMemberCallExpr(CE, ReturnValue);
4847 
4848   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4849     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4850 
4851   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4852     if (const CXXMethodDecl *MD =
4853           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4854       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4855 
4856   CGCallee callee = EmitCallee(E->getCallee());
4857 
4858   if (callee.isBuiltin()) {
4859     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4860                            E, ReturnValue);
4861   }
4862 
4863   if (callee.isPseudoDestructor()) {
4864     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4865   }
4866 
4867   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4868 }
4869 
4870 /// Emit a CallExpr without considering whether it might be a subclass.
4871 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4872                                            ReturnValueSlot ReturnValue) {
4873   CGCallee Callee = EmitCallee(E->getCallee());
4874   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4875 }
4876 
4877 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4878   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4879 
4880   if (auto builtinID = FD->getBuiltinID()) {
4881     std::string FDInlineName = (FD->getName() + ".inline").str();
4882     // When directing calling an inline builtin, call it through it's mangled
4883     // name to make it clear it's not the actual builtin.
4884     if (FD->isInlineBuiltinDeclaration() &&
4885         CGF.CurFn->getName() != FDInlineName) {
4886       llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4887       llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr);
4888       llvm::Module *M = Fn->getParent();
4889       llvm::Function *Clone = M->getFunction(FDInlineName);
4890       if (!Clone) {
4891         Clone = llvm::Function::Create(Fn->getFunctionType(),
4892                                        llvm::GlobalValue::InternalLinkage,
4893                                        Fn->getAddressSpace(), FDInlineName, M);
4894         Clone->addFnAttr(llvm::Attribute::AlwaysInline);
4895       }
4896       return CGCallee::forDirect(Clone, GD);
4897     }
4898 
4899     // Replaceable builtins provide their own implementation of a builtin. If we
4900     // are in an inline builtin implementation, avoid trivial infinite
4901     // recursion.
4902     else
4903       return CGCallee::forBuiltin(builtinID, FD);
4904   }
4905 
4906   llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4907   if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
4908       FD->hasAttr<CUDAGlobalAttr>())
4909     CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
4910         cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
4911 
4912   return CGCallee::forDirect(CalleePtr, GD);
4913 }
4914 
4915 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4916   E = E->IgnoreParens();
4917 
4918   // Look through function-to-pointer decay.
4919   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4920     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4921         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4922       return EmitCallee(ICE->getSubExpr());
4923     }
4924 
4925   // Resolve direct calls.
4926   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4927     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4928       return EmitDirectCallee(*this, FD);
4929     }
4930   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4931     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4932       EmitIgnoredExpr(ME->getBase());
4933       return EmitDirectCallee(*this, FD);
4934     }
4935 
4936   // Look through template substitutions.
4937   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4938     return EmitCallee(NTTP->getReplacement());
4939 
4940   // Treat pseudo-destructor calls differently.
4941   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4942     return CGCallee::forPseudoDestructor(PDE);
4943   }
4944 
4945   // Otherwise, we have an indirect reference.
4946   llvm::Value *calleePtr;
4947   QualType functionType;
4948   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4949     calleePtr = EmitScalarExpr(E);
4950     functionType = ptrType->getPointeeType();
4951   } else {
4952     functionType = E->getType();
4953     calleePtr = EmitLValue(E).getPointer(*this);
4954   }
4955   assert(functionType->isFunctionType());
4956 
4957   GlobalDecl GD;
4958   if (const auto *VD =
4959           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4960     GD = GlobalDecl(VD);
4961 
4962   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4963   CGCallee callee(calleeInfo, calleePtr);
4964   return callee;
4965 }
4966 
4967 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4968   // Comma expressions just emit their LHS then their RHS as an l-value.
4969   if (E->getOpcode() == BO_Comma) {
4970     EmitIgnoredExpr(E->getLHS());
4971     EnsureInsertPoint();
4972     return EmitLValue(E->getRHS());
4973   }
4974 
4975   if (E->getOpcode() == BO_PtrMemD ||
4976       E->getOpcode() == BO_PtrMemI)
4977     return EmitPointerToDataMemberBinaryExpr(E);
4978 
4979   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4980 
4981   // Note that in all of these cases, __block variables need the RHS
4982   // evaluated first just in case the variable gets moved by the RHS.
4983 
4984   switch (getEvaluationKind(E->getType())) {
4985   case TEK_Scalar: {
4986     switch (E->getLHS()->getType().getObjCLifetime()) {
4987     case Qualifiers::OCL_Strong:
4988       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4989 
4990     case Qualifiers::OCL_Autoreleasing:
4991       return EmitARCStoreAutoreleasing(E).first;
4992 
4993     // No reason to do any of these differently.
4994     case Qualifiers::OCL_None:
4995     case Qualifiers::OCL_ExplicitNone:
4996     case Qualifiers::OCL_Weak:
4997       break;
4998     }
4999 
5000     RValue RV = EmitAnyExpr(E->getRHS());
5001     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
5002     if (RV.isScalar())
5003       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
5004     EmitStoreThroughLValue(RV, LV);
5005     if (getLangOpts().OpenMP)
5006       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5007                                                                 E->getLHS());
5008     return LV;
5009   }
5010 
5011   case TEK_Complex:
5012     return EmitComplexAssignmentLValue(E);
5013 
5014   case TEK_Aggregate:
5015     return EmitAggExprToLValue(E);
5016   }
5017   llvm_unreachable("bad evaluation kind");
5018 }
5019 
5020 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5021   RValue RV = EmitCallExpr(E);
5022 
5023   if (!RV.isScalar())
5024     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5025                           AlignmentSource::Decl);
5026 
5027   assert(E->getCallReturnType(getContext())->isReferenceType() &&
5028          "Can't have a scalar return unless the return type is a "
5029          "reference type!");
5030 
5031   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5032 }
5033 
5034 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5035   // FIXME: This shouldn't require another copy.
5036   return EmitAggExprToLValue(E);
5037 }
5038 
5039 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5040   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5041          && "binding l-value to type which needs a temporary");
5042   AggValueSlot Slot = CreateAggTemp(E->getType());
5043   EmitCXXConstructExpr(E, Slot);
5044   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5045 }
5046 
5047 LValue
5048 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5049   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5050 }
5051 
5052 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5053   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
5054                                       ConvertType(E->getType()));
5055 }
5056 
5057 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5058   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5059                         AlignmentSource::Decl);
5060 }
5061 
5062 LValue
5063 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5064   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5065   Slot.setExternallyDestructed();
5066   EmitAggExpr(E->getSubExpr(), Slot);
5067   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5068   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5069 }
5070 
5071 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5072   RValue RV = EmitObjCMessageExpr(E);
5073 
5074   if (!RV.isScalar())
5075     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5076                           AlignmentSource::Decl);
5077 
5078   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5079          "Can't have a scalar return unless the return type is a "
5080          "reference type!");
5081 
5082   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5083 }
5084 
5085 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5086   Address V =
5087     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5088   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5089 }
5090 
5091 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5092                                              const ObjCIvarDecl *Ivar) {
5093   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5094 }
5095 
5096 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5097                                           llvm::Value *BaseValue,
5098                                           const ObjCIvarDecl *Ivar,
5099                                           unsigned CVRQualifiers) {
5100   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5101                                                    Ivar, CVRQualifiers);
5102 }
5103 
5104 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5105   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5106   llvm::Value *BaseValue = nullptr;
5107   const Expr *BaseExpr = E->getBase();
5108   Qualifiers BaseQuals;
5109   QualType ObjectTy;
5110   if (E->isArrow()) {
5111     BaseValue = EmitScalarExpr(BaseExpr);
5112     ObjectTy = BaseExpr->getType()->getPointeeType();
5113     BaseQuals = ObjectTy.getQualifiers();
5114   } else {
5115     LValue BaseLV = EmitLValue(BaseExpr);
5116     BaseValue = BaseLV.getPointer(*this);
5117     ObjectTy = BaseExpr->getType();
5118     BaseQuals = ObjectTy.getQualifiers();
5119   }
5120 
5121   LValue LV =
5122     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5123                       BaseQuals.getCVRQualifiers());
5124   setObjCGCLValueClass(getContext(), E, LV);
5125   return LV;
5126 }
5127 
5128 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5129   // Can only get l-value for message expression returning aggregate type
5130   RValue RV = EmitAnyExprToTemp(E);
5131   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5132                         AlignmentSource::Decl);
5133 }
5134 
5135 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5136                                  const CallExpr *E, ReturnValueSlot ReturnValue,
5137                                  llvm::Value *Chain) {
5138   // Get the actual function type. The callee type will always be a pointer to
5139   // function type or a block pointer type.
5140   assert(CalleeType->isFunctionPointerType() &&
5141          "Call must have function pointer type!");
5142 
5143   const Decl *TargetDecl =
5144       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5145 
5146   CalleeType = getContext().getCanonicalType(CalleeType);
5147 
5148   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5149 
5150   CGCallee Callee = OrigCallee;
5151 
5152   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5153       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5154     if (llvm::Constant *PrefixSig =
5155             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5156       SanitizerScope SanScope(this);
5157       // Remove any (C++17) exception specifications, to allow calling e.g. a
5158       // noexcept function through a non-noexcept pointer.
5159       auto ProtoTy =
5160         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5161       llvm::Constant *FTRTTIConst =
5162           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5163       llvm::Type *PrefixSigType = PrefixSig->getType();
5164       llvm::StructType *PrefixStructTy = llvm::StructType::get(
5165           CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5166 
5167       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5168 
5169       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5170           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5171       llvm::Value *CalleeSigPtr =
5172           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5173       llvm::Value *CalleeSig =
5174           Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5175       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5176 
5177       llvm::BasicBlock *Cont = createBasicBlock("cont");
5178       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5179       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5180 
5181       EmitBlock(TypeCheck);
5182       llvm::Value *CalleeRTTIPtr =
5183           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5184       llvm::Value *CalleeRTTIEncoded =
5185           Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign());
5186       llvm::Value *CalleeRTTI =
5187           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5188       llvm::Value *CalleeRTTIMatch =
5189           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5190       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5191                                       EmitCheckTypeDescriptor(CalleeType)};
5192       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5193                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5194                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5195 
5196       Builder.CreateBr(Cont);
5197       EmitBlock(Cont);
5198     }
5199   }
5200 
5201   const auto *FnType = cast<FunctionType>(PointeeType);
5202 
5203   // If we are checking indirect calls and this call is indirect, check that the
5204   // function pointer is a member of the bit set for the function type.
5205   if (SanOpts.has(SanitizerKind::CFIICall) &&
5206       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5207     SanitizerScope SanScope(this);
5208     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5209 
5210     llvm::Metadata *MD;
5211     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5212       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5213     else
5214       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5215 
5216     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5217 
5218     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5219     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5220     llvm::Value *TypeTest = Builder.CreateCall(
5221         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5222 
5223     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5224     llvm::Constant *StaticData[] = {
5225         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5226         EmitCheckSourceLocation(E->getBeginLoc()),
5227         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5228     };
5229     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5230       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5231                            CastedCallee, StaticData);
5232     } else {
5233       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5234                 SanitizerHandler::CFICheckFail, StaticData,
5235                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5236     }
5237   }
5238 
5239   CallArgList Args;
5240   if (Chain)
5241     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5242              CGM.getContext().VoidPtrTy);
5243 
5244   // C++17 requires that we evaluate arguments to a call using assignment syntax
5245   // right-to-left, and that we evaluate arguments to certain other operators
5246   // left-to-right. Note that we allow this to override the order dictated by
5247   // the calling convention on the MS ABI, which means that parameter
5248   // destruction order is not necessarily reverse construction order.
5249   // FIXME: Revisit this based on C++ committee response to unimplementability.
5250   EvaluationOrder Order = EvaluationOrder::Default;
5251   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5252     if (OCE->isAssignmentOp())
5253       Order = EvaluationOrder::ForceRightToLeft;
5254     else {
5255       switch (OCE->getOperator()) {
5256       case OO_LessLess:
5257       case OO_GreaterGreater:
5258       case OO_AmpAmp:
5259       case OO_PipePipe:
5260       case OO_Comma:
5261       case OO_ArrowStar:
5262         Order = EvaluationOrder::ForceLeftToRight;
5263         break;
5264       default:
5265         break;
5266       }
5267     }
5268   }
5269 
5270   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5271                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5272 
5273   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5274       Args, FnType, /*ChainCall=*/Chain);
5275 
5276   // C99 6.5.2.2p6:
5277   //   If the expression that denotes the called function has a type
5278   //   that does not include a prototype, [the default argument
5279   //   promotions are performed]. If the number of arguments does not
5280   //   equal the number of parameters, the behavior is undefined. If
5281   //   the function is defined with a type that includes a prototype,
5282   //   and either the prototype ends with an ellipsis (, ...) or the
5283   //   types of the arguments after promotion are not compatible with
5284   //   the types of the parameters, the behavior is undefined. If the
5285   //   function is defined with a type that does not include a
5286   //   prototype, and the types of the arguments after promotion are
5287   //   not compatible with those of the parameters after promotion,
5288   //   the behavior is undefined [except in some trivial cases].
5289   // That is, in the general case, we should assume that a call
5290   // through an unprototyped function type works like a *non-variadic*
5291   // call.  The way we make this work is to cast to the exact type
5292   // of the promoted arguments.
5293   //
5294   // Chain calls use this same code path to add the invisible chain parameter
5295   // to the function type.
5296   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5297     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5298     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5299     CalleeTy = CalleeTy->getPointerTo(AS);
5300 
5301     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5302     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5303     Callee.setFunctionPointer(CalleePtr);
5304   }
5305 
5306   // HIP function pointer contains kernel handle when it is used in triple
5307   // chevron. The kernel stub needs to be loaded from kernel handle and used
5308   // as callee.
5309   if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
5310       isa<CUDAKernelCallExpr>(E) &&
5311       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5312     llvm::Value *Handle = Callee.getFunctionPointer();
5313     auto *Cast =
5314         Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo());
5315     auto *Stub = Builder.CreateLoad(Address(Cast, CGM.getPointerAlign()));
5316     Callee.setFunctionPointer(Stub);
5317   }
5318   llvm::CallBase *CallOrInvoke = nullptr;
5319   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5320                          E == MustTailCall, E->getExprLoc());
5321 
5322   // Generate function declaration DISuprogram in order to be used
5323   // in debug info about call sites.
5324   if (CGDebugInfo *DI = getDebugInfo()) {
5325     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
5326       FunctionArgList Args;
5327       QualType ResTy = BuildFunctionArgList(CalleeDecl, Args);
5328       DI->EmitFuncDeclForCallSite(CallOrInvoke,
5329                                   DI->getFunctionType(CalleeDecl, ResTy, Args),
5330                                   CalleeDecl);
5331     }
5332   }
5333 
5334   return Call;
5335 }
5336 
5337 LValue CodeGenFunction::
5338 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5339   Address BaseAddr = Address::invalid();
5340   if (E->getOpcode() == BO_PtrMemI) {
5341     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5342   } else {
5343     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5344   }
5345 
5346   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5347   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5348 
5349   LValueBaseInfo BaseInfo;
5350   TBAAAccessInfo TBAAInfo;
5351   Address MemberAddr =
5352     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5353                                     &TBAAInfo);
5354 
5355   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5356 }
5357 
5358 /// Given the address of a temporary variable, produce an r-value of
5359 /// its type.
5360 RValue CodeGenFunction::convertTempToRValue(Address addr,
5361                                             QualType type,
5362                                             SourceLocation loc) {
5363   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5364   switch (getEvaluationKind(type)) {
5365   case TEK_Complex:
5366     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5367   case TEK_Aggregate:
5368     return lvalue.asAggregateRValue(*this);
5369   case TEK_Scalar:
5370     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5371   }
5372   llvm_unreachable("bad evaluation kind");
5373 }
5374 
5375 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5376   assert(Val->getType()->isFPOrFPVectorTy());
5377   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5378     return;
5379 
5380   llvm::MDBuilder MDHelper(getLLVMContext());
5381   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5382 
5383   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5384 }
5385 
5386 namespace {
5387   struct LValueOrRValue {
5388     LValue LV;
5389     RValue RV;
5390   };
5391 }
5392 
5393 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5394                                            const PseudoObjectExpr *E,
5395                                            bool forLValue,
5396                                            AggValueSlot slot) {
5397   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5398 
5399   // Find the result expression, if any.
5400   const Expr *resultExpr = E->getResultExpr();
5401   LValueOrRValue result;
5402 
5403   for (PseudoObjectExpr::const_semantics_iterator
5404          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5405     const Expr *semantic = *i;
5406 
5407     // If this semantic expression is an opaque value, bind it
5408     // to the result of its source expression.
5409     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5410       // Skip unique OVEs.
5411       if (ov->isUnique()) {
5412         assert(ov != resultExpr &&
5413                "A unique OVE cannot be used as the result expression");
5414         continue;
5415       }
5416 
5417       // If this is the result expression, we may need to evaluate
5418       // directly into the slot.
5419       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5420       OVMA opaqueData;
5421       if (ov == resultExpr && ov->isPRValue() && !forLValue &&
5422           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5423         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5424         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5425                                        AlignmentSource::Decl);
5426         opaqueData = OVMA::bind(CGF, ov, LV);
5427         result.RV = slot.asRValue();
5428 
5429       // Otherwise, emit as normal.
5430       } else {
5431         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5432 
5433         // If this is the result, also evaluate the result now.
5434         if (ov == resultExpr) {
5435           if (forLValue)
5436             result.LV = CGF.EmitLValue(ov);
5437           else
5438             result.RV = CGF.EmitAnyExpr(ov, slot);
5439         }
5440       }
5441 
5442       opaques.push_back(opaqueData);
5443 
5444     // Otherwise, if the expression is the result, evaluate it
5445     // and remember the result.
5446     } else if (semantic == resultExpr) {
5447       if (forLValue)
5448         result.LV = CGF.EmitLValue(semantic);
5449       else
5450         result.RV = CGF.EmitAnyExpr(semantic, slot);
5451 
5452     // Otherwise, evaluate the expression in an ignored context.
5453     } else {
5454       CGF.EmitIgnoredExpr(semantic);
5455     }
5456   }
5457 
5458   // Unbind all the opaques now.
5459   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5460     opaques[i].unbind(CGF);
5461 
5462   return result;
5463 }
5464 
5465 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5466                                                AggValueSlot slot) {
5467   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5468 }
5469 
5470 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5471   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5472 }
5473