1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "llvm/ADT/Hashing.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/MatrixBuilder.h" 39 #include "llvm/Support/ConvertUTF.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Path.h" 42 #include "llvm/Support/SaveAndRestore.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 #include <string> 46 47 using namespace clang; 48 using namespace CodeGen; 49 50 //===--------------------------------------------------------------------===// 51 // Miscellaneous Helper Methods 52 //===--------------------------------------------------------------------===// 53 54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 55 unsigned addressSpace = 56 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 57 58 llvm::PointerType *destType = Int8PtrTy; 59 if (addressSpace) 60 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 61 62 if (value->getType() == destType) return value; 63 return Builder.CreateBitCast(value, destType); 64 } 65 66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 67 /// block. 68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 69 CharUnits Align, 70 const Twine &Name, 71 llvm::Value *ArraySize) { 72 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 73 Alloca->setAlignment(Align.getAsAlign()); 74 return Address(Alloca, Align); 75 } 76 77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 78 /// block. The alloca is casted to default address space if necessary. 79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 80 const Twine &Name, 81 llvm::Value *ArraySize, 82 Address *AllocaAddr) { 83 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 84 if (AllocaAddr) 85 *AllocaAddr = Alloca; 86 llvm::Value *V = Alloca.getPointer(); 87 // Alloca always returns a pointer in alloca address space, which may 88 // be different from the type defined by the language. For example, 89 // in C++ the auto variables are in the default address space. Therefore 90 // cast alloca to the default address space when necessary. 91 if (getASTAllocaAddressSpace() != LangAS::Default) { 92 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 93 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 94 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 95 // otherwise alloca is inserted at the current insertion point of the 96 // builder. 97 if (!ArraySize) 98 Builder.SetInsertPoint(AllocaInsertPt); 99 V = getTargetHooks().performAddrSpaceCast( 100 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 101 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 102 } 103 104 return Address(V, Align); 105 } 106 107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 109 /// insertion point of the builder. 110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 111 const Twine &Name, 112 llvm::Value *ArraySize) { 113 if (ArraySize) 114 return Builder.CreateAlloca(Ty, ArraySize, Name); 115 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 116 ArraySize, Name, AllocaInsertPt); 117 } 118 119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 120 /// default alignment of the corresponding LLVM type, which is *not* 121 /// guaranteed to be related in any way to the expected alignment of 122 /// an AST type that might have been lowered to Ty. 123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 124 const Twine &Name) { 125 CharUnits Align = 126 CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty)); 127 return CreateTempAlloca(Ty, Align, Name); 128 } 129 130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 131 CharUnits Align = getContext().getTypeAlignInChars(Ty); 132 return CreateTempAlloca(ConvertType(Ty), Align, Name); 133 } 134 135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 136 Address *Alloca) { 137 // FIXME: Should we prefer the preferred type alignment here? 138 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 139 } 140 141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 142 const Twine &Name, Address *Alloca) { 143 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 144 /*ArraySize=*/nullptr, Alloca); 145 146 if (Ty->isConstantMatrixType()) { 147 auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType()); 148 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 149 ArrayTy->getNumElements()); 150 151 Result = Address( 152 Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()), 153 Result.getAlignment()); 154 } 155 return Result; 156 } 157 158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 159 const Twine &Name) { 160 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 161 } 162 163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 164 const Twine &Name) { 165 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 166 Name); 167 } 168 169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 170 /// expression and compare the result against zero, returning an Int1Ty value. 171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 172 PGO.setCurrentStmt(E); 173 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 174 llvm::Value *MemPtr = EmitScalarExpr(E); 175 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 176 } 177 178 QualType BoolTy = getContext().BoolTy; 179 SourceLocation Loc = E->getExprLoc(); 180 CGFPOptionsRAII FPOptsRAII(*this, E); 181 if (!E->getType()->isAnyComplexType()) 182 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 183 184 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 185 Loc); 186 } 187 188 /// EmitIgnoredExpr - Emit code to compute the specified expression, 189 /// ignoring the result. 190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 191 if (E->isPRValue()) 192 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 193 194 // Just emit it as an l-value and drop the result. 195 EmitLValue(E); 196 } 197 198 /// EmitAnyExpr - Emit code to compute the specified expression which 199 /// can have any type. The result is returned as an RValue struct. 200 /// If this is an aggregate expression, AggSlot indicates where the 201 /// result should be returned. 202 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 203 AggValueSlot aggSlot, 204 bool ignoreResult) { 205 switch (getEvaluationKind(E->getType())) { 206 case TEK_Scalar: 207 return RValue::get(EmitScalarExpr(E, ignoreResult)); 208 case TEK_Complex: 209 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 210 case TEK_Aggregate: 211 if (!ignoreResult && aggSlot.isIgnored()) 212 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 213 EmitAggExpr(E, aggSlot); 214 return aggSlot.asRValue(); 215 } 216 llvm_unreachable("bad evaluation kind"); 217 } 218 219 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 220 /// always be accessible even if no aggregate location is provided. 221 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 222 AggValueSlot AggSlot = AggValueSlot::ignored(); 223 224 if (hasAggregateEvaluationKind(E->getType())) 225 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 226 return EmitAnyExpr(E, AggSlot); 227 } 228 229 /// EmitAnyExprToMem - Evaluate an expression into a given memory 230 /// location. 231 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 232 Address Location, 233 Qualifiers Quals, 234 bool IsInit) { 235 // FIXME: This function should take an LValue as an argument. 236 switch (getEvaluationKind(E->getType())) { 237 case TEK_Complex: 238 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 239 /*isInit*/ false); 240 return; 241 242 case TEK_Aggregate: { 243 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 244 AggValueSlot::IsDestructed_t(IsInit), 245 AggValueSlot::DoesNotNeedGCBarriers, 246 AggValueSlot::IsAliased_t(!IsInit), 247 AggValueSlot::MayOverlap)); 248 return; 249 } 250 251 case TEK_Scalar: { 252 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 253 LValue LV = MakeAddrLValue(Location, E->getType()); 254 EmitStoreThroughLValue(RV, LV); 255 return; 256 } 257 } 258 llvm_unreachable("bad evaluation kind"); 259 } 260 261 static void 262 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 263 const Expr *E, Address ReferenceTemporary) { 264 // Objective-C++ ARC: 265 // If we are binding a reference to a temporary that has ownership, we 266 // need to perform retain/release operations on the temporary. 267 // 268 // FIXME: This should be looking at E, not M. 269 if (auto Lifetime = M->getType().getObjCLifetime()) { 270 switch (Lifetime) { 271 case Qualifiers::OCL_None: 272 case Qualifiers::OCL_ExplicitNone: 273 // Carry on to normal cleanup handling. 274 break; 275 276 case Qualifiers::OCL_Autoreleasing: 277 // Nothing to do; cleaned up by an autorelease pool. 278 return; 279 280 case Qualifiers::OCL_Strong: 281 case Qualifiers::OCL_Weak: 282 switch (StorageDuration Duration = M->getStorageDuration()) { 283 case SD_Static: 284 // Note: we intentionally do not register a cleanup to release 285 // the object on program termination. 286 return; 287 288 case SD_Thread: 289 // FIXME: We should probably register a cleanup in this case. 290 return; 291 292 case SD_Automatic: 293 case SD_FullExpression: 294 CodeGenFunction::Destroyer *Destroy; 295 CleanupKind CleanupKind; 296 if (Lifetime == Qualifiers::OCL_Strong) { 297 const ValueDecl *VD = M->getExtendingDecl(); 298 bool Precise = 299 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 300 CleanupKind = CGF.getARCCleanupKind(); 301 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 302 : &CodeGenFunction::destroyARCStrongImprecise; 303 } else { 304 // __weak objects always get EH cleanups; otherwise, exceptions 305 // could cause really nasty crashes instead of mere leaks. 306 CleanupKind = NormalAndEHCleanup; 307 Destroy = &CodeGenFunction::destroyARCWeak; 308 } 309 if (Duration == SD_FullExpression) 310 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 311 M->getType(), *Destroy, 312 CleanupKind & EHCleanup); 313 else 314 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 315 M->getType(), 316 *Destroy, CleanupKind & EHCleanup); 317 return; 318 319 case SD_Dynamic: 320 llvm_unreachable("temporary cannot have dynamic storage duration"); 321 } 322 llvm_unreachable("unknown storage duration"); 323 } 324 } 325 326 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 327 if (const RecordType *RT = 328 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 329 // Get the destructor for the reference temporary. 330 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 331 if (!ClassDecl->hasTrivialDestructor()) 332 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 333 } 334 335 if (!ReferenceTemporaryDtor) 336 return; 337 338 // Call the destructor for the temporary. 339 switch (M->getStorageDuration()) { 340 case SD_Static: 341 case SD_Thread: { 342 llvm::FunctionCallee CleanupFn; 343 llvm::Constant *CleanupArg; 344 if (E->getType()->isArrayType()) { 345 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 346 ReferenceTemporary, E->getType(), 347 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 348 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 349 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 350 } else { 351 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 352 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 353 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 354 } 355 CGF.CGM.getCXXABI().registerGlobalDtor( 356 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 357 break; 358 } 359 360 case SD_FullExpression: 361 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 362 CodeGenFunction::destroyCXXObject, 363 CGF.getLangOpts().Exceptions); 364 break; 365 366 case SD_Automatic: 367 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 368 ReferenceTemporary, E->getType(), 369 CodeGenFunction::destroyCXXObject, 370 CGF.getLangOpts().Exceptions); 371 break; 372 373 case SD_Dynamic: 374 llvm_unreachable("temporary cannot have dynamic storage duration"); 375 } 376 } 377 378 static Address createReferenceTemporary(CodeGenFunction &CGF, 379 const MaterializeTemporaryExpr *M, 380 const Expr *Inner, 381 Address *Alloca = nullptr) { 382 auto &TCG = CGF.getTargetHooks(); 383 switch (M->getStorageDuration()) { 384 case SD_FullExpression: 385 case SD_Automatic: { 386 // If we have a constant temporary array or record try to promote it into a 387 // constant global under the same rules a normal constant would've been 388 // promoted. This is easier on the optimizer and generally emits fewer 389 // instructions. 390 QualType Ty = Inner->getType(); 391 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 392 (Ty->isArrayType() || Ty->isRecordType()) && 393 CGF.CGM.isTypeConstant(Ty, true)) 394 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 395 auto AS = CGF.CGM.GetGlobalConstantAddressSpace(); 396 auto *GV = new llvm::GlobalVariable( 397 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 398 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 399 llvm::GlobalValue::NotThreadLocal, 400 CGF.getContext().getTargetAddressSpace(AS)); 401 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 402 GV->setAlignment(alignment.getAsAlign()); 403 llvm::Constant *C = GV; 404 if (AS != LangAS::Default) 405 C = TCG.performAddrSpaceCast( 406 CGF.CGM, GV, AS, LangAS::Default, 407 GV->getValueType()->getPointerTo( 408 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 409 // FIXME: Should we put the new global into a COMDAT? 410 return Address(C, alignment); 411 } 412 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 413 } 414 case SD_Thread: 415 case SD_Static: 416 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 417 418 case SD_Dynamic: 419 llvm_unreachable("temporary can't have dynamic storage duration"); 420 } 421 llvm_unreachable("unknown storage duration"); 422 } 423 424 /// Helper method to check if the underlying ABI is AAPCS 425 static bool isAAPCS(const TargetInfo &TargetInfo) { 426 return TargetInfo.getABI().startswith("aapcs"); 427 } 428 429 LValue CodeGenFunction:: 430 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 431 const Expr *E = M->getSubExpr(); 432 433 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 434 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 435 "Reference should never be pseudo-strong!"); 436 437 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 438 // as that will cause the lifetime adjustment to be lost for ARC 439 auto ownership = M->getType().getObjCLifetime(); 440 if (ownership != Qualifiers::OCL_None && 441 ownership != Qualifiers::OCL_ExplicitNone) { 442 Address Object = createReferenceTemporary(*this, M, E); 443 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 444 Object = Address(llvm::ConstantExpr::getBitCast(Var, 445 ConvertTypeForMem(E->getType()) 446 ->getPointerTo(Object.getAddressSpace())), 447 Object.getAlignment()); 448 449 // createReferenceTemporary will promote the temporary to a global with a 450 // constant initializer if it can. It can only do this to a value of 451 // ARC-manageable type if the value is global and therefore "immune" to 452 // ref-counting operations. Therefore we have no need to emit either a 453 // dynamic initialization or a cleanup and we can just return the address 454 // of the temporary. 455 if (Var->hasInitializer()) 456 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 457 458 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 459 } 460 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 461 AlignmentSource::Decl); 462 463 switch (getEvaluationKind(E->getType())) { 464 default: llvm_unreachable("expected scalar or aggregate expression"); 465 case TEK_Scalar: 466 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 467 break; 468 case TEK_Aggregate: { 469 EmitAggExpr(E, AggValueSlot::forAddr(Object, 470 E->getType().getQualifiers(), 471 AggValueSlot::IsDestructed, 472 AggValueSlot::DoesNotNeedGCBarriers, 473 AggValueSlot::IsNotAliased, 474 AggValueSlot::DoesNotOverlap)); 475 break; 476 } 477 } 478 479 pushTemporaryCleanup(*this, M, E, Object); 480 return RefTempDst; 481 } 482 483 SmallVector<const Expr *, 2> CommaLHSs; 484 SmallVector<SubobjectAdjustment, 2> Adjustments; 485 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 486 487 for (const auto &Ignored : CommaLHSs) 488 EmitIgnoredExpr(Ignored); 489 490 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 491 if (opaque->getType()->isRecordType()) { 492 assert(Adjustments.empty()); 493 return EmitOpaqueValueLValue(opaque); 494 } 495 } 496 497 // Create and initialize the reference temporary. 498 Address Alloca = Address::invalid(); 499 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 500 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 501 Object.getPointer()->stripPointerCasts())) { 502 Object = Address(llvm::ConstantExpr::getBitCast( 503 cast<llvm::Constant>(Object.getPointer()), 504 ConvertTypeForMem(E->getType())->getPointerTo()), 505 Object.getAlignment()); 506 // If the temporary is a global and has a constant initializer or is a 507 // constant temporary that we promoted to a global, we may have already 508 // initialized it. 509 if (!Var->hasInitializer()) { 510 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 511 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 512 } 513 } else { 514 switch (M->getStorageDuration()) { 515 case SD_Automatic: 516 if (auto *Size = EmitLifetimeStart( 517 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 518 Alloca.getPointer())) { 519 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 520 Alloca, Size); 521 } 522 break; 523 524 case SD_FullExpression: { 525 if (!ShouldEmitLifetimeMarkers) 526 break; 527 528 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 529 // marker. Instead, start the lifetime of a conditional temporary earlier 530 // so that it's unconditional. Don't do this with sanitizers which need 531 // more precise lifetime marks. 532 ConditionalEvaluation *OldConditional = nullptr; 533 CGBuilderTy::InsertPoint OldIP; 534 if (isInConditionalBranch() && !E->getType().isDestructedType() && 535 !SanOpts.has(SanitizerKind::HWAddress) && 536 !SanOpts.has(SanitizerKind::Memory) && 537 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 538 OldConditional = OutermostConditional; 539 OutermostConditional = nullptr; 540 541 OldIP = Builder.saveIP(); 542 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 543 Builder.restoreIP(CGBuilderTy::InsertPoint( 544 Block, llvm::BasicBlock::iterator(Block->back()))); 545 } 546 547 if (auto *Size = EmitLifetimeStart( 548 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 549 Alloca.getPointer())) { 550 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 551 Size); 552 } 553 554 if (OldConditional) { 555 OutermostConditional = OldConditional; 556 Builder.restoreIP(OldIP); 557 } 558 break; 559 } 560 561 default: 562 break; 563 } 564 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 565 } 566 pushTemporaryCleanup(*this, M, E, Object); 567 568 // Perform derived-to-base casts and/or field accesses, to get from the 569 // temporary object we created (and, potentially, for which we extended 570 // the lifetime) to the subobject we're binding the reference to. 571 for (unsigned I = Adjustments.size(); I != 0; --I) { 572 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 573 switch (Adjustment.Kind) { 574 case SubobjectAdjustment::DerivedToBaseAdjustment: 575 Object = 576 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 577 Adjustment.DerivedToBase.BasePath->path_begin(), 578 Adjustment.DerivedToBase.BasePath->path_end(), 579 /*NullCheckValue=*/ false, E->getExprLoc()); 580 break; 581 582 case SubobjectAdjustment::FieldAdjustment: { 583 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 584 LV = EmitLValueForField(LV, Adjustment.Field); 585 assert(LV.isSimple() && 586 "materialized temporary field is not a simple lvalue"); 587 Object = LV.getAddress(*this); 588 break; 589 } 590 591 case SubobjectAdjustment::MemberPointerAdjustment: { 592 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 593 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 594 Adjustment.Ptr.MPT); 595 break; 596 } 597 } 598 } 599 600 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 601 } 602 603 RValue 604 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 605 // Emit the expression as an lvalue. 606 LValue LV = EmitLValue(E); 607 assert(LV.isSimple()); 608 llvm::Value *Value = LV.getPointer(*this); 609 610 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 611 // C++11 [dcl.ref]p5 (as amended by core issue 453): 612 // If a glvalue to which a reference is directly bound designates neither 613 // an existing object or function of an appropriate type nor a region of 614 // storage of suitable size and alignment to contain an object of the 615 // reference's type, the behavior is undefined. 616 QualType Ty = E->getType(); 617 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 618 } 619 620 return RValue::get(Value); 621 } 622 623 624 /// getAccessedFieldNo - Given an encoded value and a result number, return the 625 /// input field number being accessed. 626 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 627 const llvm::Constant *Elts) { 628 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 629 ->getZExtValue(); 630 } 631 632 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 633 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 634 llvm::Value *High) { 635 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 636 llvm::Value *K47 = Builder.getInt64(47); 637 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 638 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 639 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 640 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 641 return Builder.CreateMul(B1, KMul); 642 } 643 644 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 645 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 646 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 647 } 648 649 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 650 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 651 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 652 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 653 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 654 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 655 } 656 657 bool CodeGenFunction::sanitizePerformTypeCheck() const { 658 return SanOpts.has(SanitizerKind::Null) || 659 SanOpts.has(SanitizerKind::Alignment) || 660 SanOpts.has(SanitizerKind::ObjectSize) || 661 SanOpts.has(SanitizerKind::Vptr); 662 } 663 664 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 665 llvm::Value *Ptr, QualType Ty, 666 CharUnits Alignment, 667 SanitizerSet SkippedChecks, 668 llvm::Value *ArraySize) { 669 if (!sanitizePerformTypeCheck()) 670 return; 671 672 // Don't check pointers outside the default address space. The null check 673 // isn't correct, the object-size check isn't supported by LLVM, and we can't 674 // communicate the addresses to the runtime handler for the vptr check. 675 if (Ptr->getType()->getPointerAddressSpace()) 676 return; 677 678 // Don't check pointers to volatile data. The behavior here is implementation- 679 // defined. 680 if (Ty.isVolatileQualified()) 681 return; 682 683 SanitizerScope SanScope(this); 684 685 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 686 llvm::BasicBlock *Done = nullptr; 687 688 // Quickly determine whether we have a pointer to an alloca. It's possible 689 // to skip null checks, and some alignment checks, for these pointers. This 690 // can reduce compile-time significantly. 691 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 692 693 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 694 llvm::Value *IsNonNull = nullptr; 695 bool IsGuaranteedNonNull = 696 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 697 bool AllowNullPointers = isNullPointerAllowed(TCK); 698 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 699 !IsGuaranteedNonNull) { 700 // The glvalue must not be an empty glvalue. 701 IsNonNull = Builder.CreateIsNotNull(Ptr); 702 703 // The IR builder can constant-fold the null check if the pointer points to 704 // a constant. 705 IsGuaranteedNonNull = IsNonNull == True; 706 707 // Skip the null check if the pointer is known to be non-null. 708 if (!IsGuaranteedNonNull) { 709 if (AllowNullPointers) { 710 // When performing pointer casts, it's OK if the value is null. 711 // Skip the remaining checks in that case. 712 Done = createBasicBlock("null"); 713 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 714 Builder.CreateCondBr(IsNonNull, Rest, Done); 715 EmitBlock(Rest); 716 } else { 717 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 718 } 719 } 720 } 721 722 if (SanOpts.has(SanitizerKind::ObjectSize) && 723 !SkippedChecks.has(SanitizerKind::ObjectSize) && 724 !Ty->isIncompleteType()) { 725 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 726 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 727 if (ArraySize) 728 Size = Builder.CreateMul(Size, ArraySize); 729 730 // Degenerate case: new X[0] does not need an objectsize check. 731 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 732 if (!ConstantSize || !ConstantSize->isNullValue()) { 733 // The glvalue must refer to a large enough storage region. 734 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 735 // to check this. 736 // FIXME: Get object address space 737 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 738 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 739 llvm::Value *Min = Builder.getFalse(); 740 llvm::Value *NullIsUnknown = Builder.getFalse(); 741 llvm::Value *Dynamic = Builder.getFalse(); 742 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 743 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 744 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 745 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 746 } 747 } 748 749 uint64_t AlignVal = 0; 750 llvm::Value *PtrAsInt = nullptr; 751 752 if (SanOpts.has(SanitizerKind::Alignment) && 753 !SkippedChecks.has(SanitizerKind::Alignment)) { 754 AlignVal = Alignment.getQuantity(); 755 if (!Ty->isIncompleteType() && !AlignVal) 756 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr, 757 /*ForPointeeType=*/true) 758 .getQuantity(); 759 760 // The glvalue must be suitably aligned. 761 if (AlignVal > 1 && 762 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 763 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 764 llvm::Value *Align = Builder.CreateAnd( 765 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 766 llvm::Value *Aligned = 767 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 768 if (Aligned != True) 769 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 770 } 771 } 772 773 if (Checks.size() > 0) { 774 // Make sure we're not losing information. Alignment needs to be a power of 775 // 2 776 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 777 llvm::Constant *StaticData[] = { 778 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 779 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 780 llvm::ConstantInt::get(Int8Ty, TCK)}; 781 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 782 PtrAsInt ? PtrAsInt : Ptr); 783 } 784 785 // If possible, check that the vptr indicates that there is a subobject of 786 // type Ty at offset zero within this object. 787 // 788 // C++11 [basic.life]p5,6: 789 // [For storage which does not refer to an object within its lifetime] 790 // The program has undefined behavior if: 791 // -- the [pointer or glvalue] is used to access a non-static data member 792 // or call a non-static member function 793 if (SanOpts.has(SanitizerKind::Vptr) && 794 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 795 // Ensure that the pointer is non-null before loading it. If there is no 796 // compile-time guarantee, reuse the run-time null check or emit a new one. 797 if (!IsGuaranteedNonNull) { 798 if (!IsNonNull) 799 IsNonNull = Builder.CreateIsNotNull(Ptr); 800 if (!Done) 801 Done = createBasicBlock("vptr.null"); 802 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 803 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 804 EmitBlock(VptrNotNull); 805 } 806 807 // Compute a hash of the mangled name of the type. 808 // 809 // FIXME: This is not guaranteed to be deterministic! Move to a 810 // fingerprinting mechanism once LLVM provides one. For the time 811 // being the implementation happens to be deterministic. 812 SmallString<64> MangledName; 813 llvm::raw_svector_ostream Out(MangledName); 814 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 815 Out); 816 817 // Contained in NoSanitizeList based on the mangled type. 818 if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr, 819 Out.str())) { 820 llvm::hash_code TypeHash = hash_value(Out.str()); 821 822 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 823 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 824 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 825 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 826 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 827 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 828 829 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 830 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 831 832 // Look the hash up in our cache. 833 const int CacheSize = 128; 834 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 835 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 836 "__ubsan_vptr_type_cache"); 837 llvm::Value *Slot = Builder.CreateAnd(Hash, 838 llvm::ConstantInt::get(IntPtrTy, 839 CacheSize-1)); 840 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 841 llvm::Value *CacheVal = Builder.CreateAlignedLoad( 842 IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices), 843 getPointerAlign()); 844 845 // If the hash isn't in the cache, call a runtime handler to perform the 846 // hard work of checking whether the vptr is for an object of the right 847 // type. This will either fill in the cache and return, or produce a 848 // diagnostic. 849 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 850 llvm::Constant *StaticData[] = { 851 EmitCheckSourceLocation(Loc), 852 EmitCheckTypeDescriptor(Ty), 853 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 854 llvm::ConstantInt::get(Int8Ty, TCK) 855 }; 856 llvm::Value *DynamicData[] = { Ptr, Hash }; 857 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 858 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 859 DynamicData); 860 } 861 } 862 863 if (Done) { 864 Builder.CreateBr(Done); 865 EmitBlock(Done); 866 } 867 } 868 869 /// Determine whether this expression refers to a flexible array member in a 870 /// struct. We disable array bounds checks for such members. 871 static bool isFlexibleArrayMemberExpr(const Expr *E) { 872 // For compatibility with existing code, we treat arrays of length 0 or 873 // 1 as flexible array members. 874 // FIXME: This is inconsistent with the warning code in SemaChecking. Unify 875 // the two mechanisms. 876 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 877 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 878 // FIXME: Sema doesn't treat [1] as a flexible array member if the bound 879 // was produced by macro expansion. 880 if (CAT->getSize().ugt(1)) 881 return false; 882 } else if (!isa<IncompleteArrayType>(AT)) 883 return false; 884 885 E = E->IgnoreParens(); 886 887 // A flexible array member must be the last member in the class. 888 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 889 // FIXME: If the base type of the member expr is not FD->getParent(), 890 // this should not be treated as a flexible array member access. 891 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 892 // FIXME: Sema doesn't treat a T[1] union member as a flexible array 893 // member, only a T[0] or T[] member gets that treatment. 894 if (FD->getParent()->isUnion()) 895 return true; 896 RecordDecl::field_iterator FI( 897 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 898 return ++FI == FD->getParent()->field_end(); 899 } 900 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 901 return IRE->getDecl()->getNextIvar() == nullptr; 902 } 903 904 return false; 905 } 906 907 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 908 QualType EltTy) { 909 ASTContext &C = getContext(); 910 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 911 if (!EltSize) 912 return nullptr; 913 914 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 915 if (!ArrayDeclRef) 916 return nullptr; 917 918 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 919 if (!ParamDecl) 920 return nullptr; 921 922 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 923 if (!POSAttr) 924 return nullptr; 925 926 // Don't load the size if it's a lower bound. 927 int POSType = POSAttr->getType(); 928 if (POSType != 0 && POSType != 1) 929 return nullptr; 930 931 // Find the implicit size parameter. 932 auto PassedSizeIt = SizeArguments.find(ParamDecl); 933 if (PassedSizeIt == SizeArguments.end()) 934 return nullptr; 935 936 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 937 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 938 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 939 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 940 C.getSizeType(), E->getExprLoc()); 941 llvm::Value *SizeOfElement = 942 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 943 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 944 } 945 946 /// If Base is known to point to the start of an array, return the length of 947 /// that array. Return 0 if the length cannot be determined. 948 static llvm::Value *getArrayIndexingBound( 949 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 950 // For the vector indexing extension, the bound is the number of elements. 951 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 952 IndexedType = Base->getType(); 953 return CGF.Builder.getInt32(VT->getNumElements()); 954 } 955 956 Base = Base->IgnoreParens(); 957 958 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 959 if (CE->getCastKind() == CK_ArrayToPointerDecay && 960 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 961 IndexedType = CE->getSubExpr()->getType(); 962 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 963 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 964 return CGF.Builder.getInt(CAT->getSize()); 965 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 966 return CGF.getVLASize(VAT).NumElts; 967 // Ignore pass_object_size here. It's not applicable on decayed pointers. 968 } 969 } 970 971 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 972 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 973 IndexedType = Base->getType(); 974 return POS; 975 } 976 977 return nullptr; 978 } 979 980 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 981 llvm::Value *Index, QualType IndexType, 982 bool Accessed) { 983 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 984 "should not be called unless adding bounds checks"); 985 SanitizerScope SanScope(this); 986 987 QualType IndexedType; 988 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 989 if (!Bound) 990 return; 991 992 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 993 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 994 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 995 996 llvm::Constant *StaticData[] = { 997 EmitCheckSourceLocation(E->getExprLoc()), 998 EmitCheckTypeDescriptor(IndexedType), 999 EmitCheckTypeDescriptor(IndexType) 1000 }; 1001 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 1002 : Builder.CreateICmpULE(IndexVal, BoundVal); 1003 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 1004 SanitizerHandler::OutOfBounds, StaticData, Index); 1005 } 1006 1007 1008 CodeGenFunction::ComplexPairTy CodeGenFunction:: 1009 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1010 bool isInc, bool isPre) { 1011 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 1012 1013 llvm::Value *NextVal; 1014 if (isa<llvm::IntegerType>(InVal.first->getType())) { 1015 uint64_t AmountVal = isInc ? 1 : -1; 1016 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 1017 1018 // Add the inc/dec to the real part. 1019 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1020 } else { 1021 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1022 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1023 if (!isInc) 1024 FVal.changeSign(); 1025 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1026 1027 // Add the inc/dec to the real part. 1028 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1029 } 1030 1031 ComplexPairTy IncVal(NextVal, InVal.second); 1032 1033 // Store the updated result through the lvalue. 1034 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1035 if (getLangOpts().OpenMP) 1036 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1037 E->getSubExpr()); 1038 1039 // If this is a postinc, return the value read from memory, otherwise use the 1040 // updated value. 1041 return isPre ? IncVal : InVal; 1042 } 1043 1044 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1045 CodeGenFunction *CGF) { 1046 // Bind VLAs in the cast type. 1047 if (CGF && E->getType()->isVariablyModifiedType()) 1048 CGF->EmitVariablyModifiedType(E->getType()); 1049 1050 if (CGDebugInfo *DI = getModuleDebugInfo()) 1051 DI->EmitExplicitCastType(E->getType()); 1052 } 1053 1054 //===----------------------------------------------------------------------===// 1055 // LValue Expression Emission 1056 //===----------------------------------------------------------------------===// 1057 1058 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1059 /// derive a more accurate bound on the alignment of the pointer. 1060 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1061 LValueBaseInfo *BaseInfo, 1062 TBAAAccessInfo *TBAAInfo) { 1063 // We allow this with ObjC object pointers because of fragile ABIs. 1064 assert(E->getType()->isPointerType() || 1065 E->getType()->isObjCObjectPointerType()); 1066 E = E->IgnoreParens(); 1067 1068 // Casts: 1069 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1070 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1071 CGM.EmitExplicitCastExprType(ECE, this); 1072 1073 switch (CE->getCastKind()) { 1074 // Non-converting casts (but not C's implicit conversion from void*). 1075 case CK_BitCast: 1076 case CK_NoOp: 1077 case CK_AddressSpaceConversion: 1078 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1079 if (PtrTy->getPointeeType()->isVoidType()) 1080 break; 1081 1082 LValueBaseInfo InnerBaseInfo; 1083 TBAAAccessInfo InnerTBAAInfo; 1084 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1085 &InnerBaseInfo, 1086 &InnerTBAAInfo); 1087 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1088 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1089 1090 if (isa<ExplicitCastExpr>(CE)) { 1091 LValueBaseInfo TargetTypeBaseInfo; 1092 TBAAAccessInfo TargetTypeTBAAInfo; 1093 CharUnits Align = CGM.getNaturalPointeeTypeAlignment( 1094 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo); 1095 if (TBAAInfo) 1096 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1097 TargetTypeTBAAInfo); 1098 // If the source l-value is opaque, honor the alignment of the 1099 // casted-to type. 1100 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1101 if (BaseInfo) 1102 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1103 Addr = Address(Addr.getPointer(), Align); 1104 } 1105 } 1106 1107 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1108 CE->getCastKind() == CK_BitCast) { 1109 if (auto PT = E->getType()->getAs<PointerType>()) 1110 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1111 /*MayBeNull=*/true, 1112 CodeGenFunction::CFITCK_UnrelatedCast, 1113 CE->getBeginLoc()); 1114 } 1115 return CE->getCastKind() != CK_AddressSpaceConversion 1116 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1117 : Builder.CreateAddrSpaceCast(Addr, 1118 ConvertType(E->getType())); 1119 } 1120 break; 1121 1122 // Array-to-pointer decay. 1123 case CK_ArrayToPointerDecay: 1124 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1125 1126 // Derived-to-base conversions. 1127 case CK_UncheckedDerivedToBase: 1128 case CK_DerivedToBase: { 1129 // TODO: Support accesses to members of base classes in TBAA. For now, we 1130 // conservatively pretend that the complete object is of the base class 1131 // type. 1132 if (TBAAInfo) 1133 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1134 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1135 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1136 return GetAddressOfBaseClass(Addr, Derived, 1137 CE->path_begin(), CE->path_end(), 1138 ShouldNullCheckClassCastValue(CE), 1139 CE->getExprLoc()); 1140 } 1141 1142 // TODO: Is there any reason to treat base-to-derived conversions 1143 // specially? 1144 default: 1145 break; 1146 } 1147 } 1148 1149 // Unary &. 1150 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1151 if (UO->getOpcode() == UO_AddrOf) { 1152 LValue LV = EmitLValue(UO->getSubExpr()); 1153 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1154 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1155 return LV.getAddress(*this); 1156 } 1157 } 1158 1159 // TODO: conditional operators, comma. 1160 1161 // Otherwise, use the alignment of the type. 1162 CharUnits Align = 1163 CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo); 1164 return Address(EmitScalarExpr(E), Align); 1165 } 1166 1167 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) { 1168 llvm::Value *V = RV.getScalarVal(); 1169 if (auto MPT = T->getAs<MemberPointerType>()) 1170 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT); 1171 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 1172 } 1173 1174 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1175 if (Ty->isVoidType()) 1176 return RValue::get(nullptr); 1177 1178 switch (getEvaluationKind(Ty)) { 1179 case TEK_Complex: { 1180 llvm::Type *EltTy = 1181 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1182 llvm::Value *U = llvm::UndefValue::get(EltTy); 1183 return RValue::getComplex(std::make_pair(U, U)); 1184 } 1185 1186 // If this is a use of an undefined aggregate type, the aggregate must have an 1187 // identifiable address. Just because the contents of the value are undefined 1188 // doesn't mean that the address can't be taken and compared. 1189 case TEK_Aggregate: { 1190 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1191 return RValue::getAggregate(DestPtr); 1192 } 1193 1194 case TEK_Scalar: 1195 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1196 } 1197 llvm_unreachable("bad evaluation kind"); 1198 } 1199 1200 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1201 const char *Name) { 1202 ErrorUnsupported(E, Name); 1203 return GetUndefRValue(E->getType()); 1204 } 1205 1206 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1207 const char *Name) { 1208 ErrorUnsupported(E, Name); 1209 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1210 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1211 E->getType()); 1212 } 1213 1214 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1215 const Expr *Base = Obj; 1216 while (!isa<CXXThisExpr>(Base)) { 1217 // The result of a dynamic_cast can be null. 1218 if (isa<CXXDynamicCastExpr>(Base)) 1219 return false; 1220 1221 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1222 Base = CE->getSubExpr(); 1223 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1224 Base = PE->getSubExpr(); 1225 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1226 if (UO->getOpcode() == UO_Extension) 1227 Base = UO->getSubExpr(); 1228 else 1229 return false; 1230 } else { 1231 return false; 1232 } 1233 } 1234 return true; 1235 } 1236 1237 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1238 LValue LV; 1239 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1240 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1241 else 1242 LV = EmitLValue(E); 1243 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1244 SanitizerSet SkippedChecks; 1245 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1246 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1247 if (IsBaseCXXThis) 1248 SkippedChecks.set(SanitizerKind::Alignment, true); 1249 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1250 SkippedChecks.set(SanitizerKind::Null, true); 1251 } 1252 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1253 LV.getAlignment(), SkippedChecks); 1254 } 1255 return LV; 1256 } 1257 1258 /// EmitLValue - Emit code to compute a designator that specifies the location 1259 /// of the expression. 1260 /// 1261 /// This can return one of two things: a simple address or a bitfield reference. 1262 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1263 /// an LLVM pointer type. 1264 /// 1265 /// If this returns a bitfield reference, nothing about the pointee type of the 1266 /// LLVM value is known: For example, it may not be a pointer to an integer. 1267 /// 1268 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1269 /// this method guarantees that the returned pointer type will point to an LLVM 1270 /// type of the same size of the lvalue's type. If the lvalue has a variable 1271 /// length type, this is not possible. 1272 /// 1273 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1274 ApplyDebugLocation DL(*this, E); 1275 switch (E->getStmtClass()) { 1276 default: return EmitUnsupportedLValue(E, "l-value expression"); 1277 1278 case Expr::ObjCPropertyRefExprClass: 1279 llvm_unreachable("cannot emit a property reference directly"); 1280 1281 case Expr::ObjCSelectorExprClass: 1282 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1283 case Expr::ObjCIsaExprClass: 1284 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1285 case Expr::BinaryOperatorClass: 1286 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1287 case Expr::CompoundAssignOperatorClass: { 1288 QualType Ty = E->getType(); 1289 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1290 Ty = AT->getValueType(); 1291 if (!Ty->isAnyComplexType()) 1292 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1293 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1294 } 1295 case Expr::CallExprClass: 1296 case Expr::CXXMemberCallExprClass: 1297 case Expr::CXXOperatorCallExprClass: 1298 case Expr::UserDefinedLiteralClass: 1299 return EmitCallExprLValue(cast<CallExpr>(E)); 1300 case Expr::CXXRewrittenBinaryOperatorClass: 1301 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1302 case Expr::VAArgExprClass: 1303 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1304 case Expr::DeclRefExprClass: 1305 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1306 case Expr::ConstantExprClass: { 1307 const ConstantExpr *CE = cast<ConstantExpr>(E); 1308 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) { 1309 QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit()) 1310 ->getCallReturnType(getContext()); 1311 return MakeNaturalAlignAddrLValue(Result, RetType); 1312 } 1313 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1314 } 1315 case Expr::ParenExprClass: 1316 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1317 case Expr::GenericSelectionExprClass: 1318 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1319 case Expr::PredefinedExprClass: 1320 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1321 case Expr::StringLiteralClass: 1322 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1323 case Expr::ObjCEncodeExprClass: 1324 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1325 case Expr::PseudoObjectExprClass: 1326 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1327 case Expr::InitListExprClass: 1328 return EmitInitListLValue(cast<InitListExpr>(E)); 1329 case Expr::CXXTemporaryObjectExprClass: 1330 case Expr::CXXConstructExprClass: 1331 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1332 case Expr::CXXBindTemporaryExprClass: 1333 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1334 case Expr::CXXUuidofExprClass: 1335 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1336 case Expr::LambdaExprClass: 1337 return EmitAggExprToLValue(E); 1338 1339 case Expr::ExprWithCleanupsClass: { 1340 const auto *cleanups = cast<ExprWithCleanups>(E); 1341 RunCleanupsScope Scope(*this); 1342 LValue LV = EmitLValue(cleanups->getSubExpr()); 1343 if (LV.isSimple()) { 1344 // Defend against branches out of gnu statement expressions surrounded by 1345 // cleanups. 1346 llvm::Value *V = LV.getPointer(*this); 1347 Scope.ForceCleanup({&V}); 1348 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1349 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1350 } 1351 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1352 // bitfield lvalue or some other non-simple lvalue? 1353 return LV; 1354 } 1355 1356 case Expr::CXXDefaultArgExprClass: { 1357 auto *DAE = cast<CXXDefaultArgExpr>(E); 1358 CXXDefaultArgExprScope Scope(*this, DAE); 1359 return EmitLValue(DAE->getExpr()); 1360 } 1361 case Expr::CXXDefaultInitExprClass: { 1362 auto *DIE = cast<CXXDefaultInitExpr>(E); 1363 CXXDefaultInitExprScope Scope(*this, DIE); 1364 return EmitLValue(DIE->getExpr()); 1365 } 1366 case Expr::CXXTypeidExprClass: 1367 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1368 1369 case Expr::ObjCMessageExprClass: 1370 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1371 case Expr::ObjCIvarRefExprClass: 1372 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1373 case Expr::StmtExprClass: 1374 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1375 case Expr::UnaryOperatorClass: 1376 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1377 case Expr::ArraySubscriptExprClass: 1378 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1379 case Expr::MatrixSubscriptExprClass: 1380 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E)); 1381 case Expr::OMPArraySectionExprClass: 1382 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1383 case Expr::ExtVectorElementExprClass: 1384 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1385 case Expr::MemberExprClass: 1386 return EmitMemberExpr(cast<MemberExpr>(E)); 1387 case Expr::CompoundLiteralExprClass: 1388 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1389 case Expr::ConditionalOperatorClass: 1390 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1391 case Expr::BinaryConditionalOperatorClass: 1392 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1393 case Expr::ChooseExprClass: 1394 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1395 case Expr::OpaqueValueExprClass: 1396 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1397 case Expr::SubstNonTypeTemplateParmExprClass: 1398 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1399 case Expr::ImplicitCastExprClass: 1400 case Expr::CStyleCastExprClass: 1401 case Expr::CXXFunctionalCastExprClass: 1402 case Expr::CXXStaticCastExprClass: 1403 case Expr::CXXDynamicCastExprClass: 1404 case Expr::CXXReinterpretCastExprClass: 1405 case Expr::CXXConstCastExprClass: 1406 case Expr::CXXAddrspaceCastExprClass: 1407 case Expr::ObjCBridgedCastExprClass: 1408 return EmitCastLValue(cast<CastExpr>(E)); 1409 1410 case Expr::MaterializeTemporaryExprClass: 1411 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1412 1413 case Expr::CoawaitExprClass: 1414 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1415 case Expr::CoyieldExprClass: 1416 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1417 } 1418 } 1419 1420 /// Given an object of the given canonical type, can we safely copy a 1421 /// value out of it based on its initializer? 1422 static bool isConstantEmittableObjectType(QualType type) { 1423 assert(type.isCanonical()); 1424 assert(!type->isReferenceType()); 1425 1426 // Must be const-qualified but non-volatile. 1427 Qualifiers qs = type.getLocalQualifiers(); 1428 if (!qs.hasConst() || qs.hasVolatile()) return false; 1429 1430 // Otherwise, all object types satisfy this except C++ classes with 1431 // mutable subobjects or non-trivial copy/destroy behavior. 1432 if (const auto *RT = dyn_cast<RecordType>(type)) 1433 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1434 if (RD->hasMutableFields() || !RD->isTrivial()) 1435 return false; 1436 1437 return true; 1438 } 1439 1440 /// Can we constant-emit a load of a reference to a variable of the 1441 /// given type? This is different from predicates like 1442 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1443 /// in situations that don't necessarily satisfy the language's rules 1444 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1445 /// to do this with const float variables even if those variables 1446 /// aren't marked 'constexpr'. 1447 enum ConstantEmissionKind { 1448 CEK_None, 1449 CEK_AsReferenceOnly, 1450 CEK_AsValueOrReference, 1451 CEK_AsValueOnly 1452 }; 1453 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1454 type = type.getCanonicalType(); 1455 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1456 if (isConstantEmittableObjectType(ref->getPointeeType())) 1457 return CEK_AsValueOrReference; 1458 return CEK_AsReferenceOnly; 1459 } 1460 if (isConstantEmittableObjectType(type)) 1461 return CEK_AsValueOnly; 1462 return CEK_None; 1463 } 1464 1465 /// Try to emit a reference to the given value without producing it as 1466 /// an l-value. This is just an optimization, but it avoids us needing 1467 /// to emit global copies of variables if they're named without triggering 1468 /// a formal use in a context where we can't emit a direct reference to them, 1469 /// for instance if a block or lambda or a member of a local class uses a 1470 /// const int variable or constexpr variable from an enclosing function. 1471 CodeGenFunction::ConstantEmission 1472 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1473 ValueDecl *value = refExpr->getDecl(); 1474 1475 // The value needs to be an enum constant or a constant variable. 1476 ConstantEmissionKind CEK; 1477 if (isa<ParmVarDecl>(value)) { 1478 CEK = CEK_None; 1479 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1480 CEK = checkVarTypeForConstantEmission(var->getType()); 1481 } else if (isa<EnumConstantDecl>(value)) { 1482 CEK = CEK_AsValueOnly; 1483 } else { 1484 CEK = CEK_None; 1485 } 1486 if (CEK == CEK_None) return ConstantEmission(); 1487 1488 Expr::EvalResult result; 1489 bool resultIsReference; 1490 QualType resultType; 1491 1492 // It's best to evaluate all the way as an r-value if that's permitted. 1493 if (CEK != CEK_AsReferenceOnly && 1494 refExpr->EvaluateAsRValue(result, getContext())) { 1495 resultIsReference = false; 1496 resultType = refExpr->getType(); 1497 1498 // Otherwise, try to evaluate as an l-value. 1499 } else if (CEK != CEK_AsValueOnly && 1500 refExpr->EvaluateAsLValue(result, getContext())) { 1501 resultIsReference = true; 1502 resultType = value->getType(); 1503 1504 // Failure. 1505 } else { 1506 return ConstantEmission(); 1507 } 1508 1509 // In any case, if the initializer has side-effects, abandon ship. 1510 if (result.HasSideEffects) 1511 return ConstantEmission(); 1512 1513 // In CUDA/HIP device compilation, a lambda may capture a reference variable 1514 // referencing a global host variable by copy. In this case the lambda should 1515 // make a copy of the value of the global host variable. The DRE of the 1516 // captured reference variable cannot be emitted as load from the host 1517 // global variable as compile time constant, since the host variable is not 1518 // accessible on device. The DRE of the captured reference variable has to be 1519 // loaded from captures. 1520 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() && 1521 refExpr->refersToEnclosingVariableOrCapture()) { 1522 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl); 1523 if (MD && MD->getParent()->isLambda() && 1524 MD->getOverloadedOperator() == OO_Call) { 1525 const APValue::LValueBase &base = result.Val.getLValueBase(); 1526 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) { 1527 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) { 1528 if (!VD->hasAttr<CUDADeviceAttr>()) { 1529 return ConstantEmission(); 1530 } 1531 } 1532 } 1533 } 1534 } 1535 1536 // Emit as a constant. 1537 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1538 result.Val, resultType); 1539 1540 // Make sure we emit a debug reference to the global variable. 1541 // This should probably fire even for 1542 if (isa<VarDecl>(value)) { 1543 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1544 EmitDeclRefExprDbgValue(refExpr, result.Val); 1545 } else { 1546 assert(isa<EnumConstantDecl>(value)); 1547 EmitDeclRefExprDbgValue(refExpr, result.Val); 1548 } 1549 1550 // If we emitted a reference constant, we need to dereference that. 1551 if (resultIsReference) 1552 return ConstantEmission::forReference(C); 1553 1554 return ConstantEmission::forValue(C); 1555 } 1556 1557 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1558 const MemberExpr *ME) { 1559 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1560 // Try to emit static variable member expressions as DREs. 1561 return DeclRefExpr::Create( 1562 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1563 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1564 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1565 } 1566 return nullptr; 1567 } 1568 1569 CodeGenFunction::ConstantEmission 1570 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1571 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1572 return tryEmitAsConstant(DRE); 1573 return ConstantEmission(); 1574 } 1575 1576 llvm::Value *CodeGenFunction::emitScalarConstant( 1577 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1578 assert(Constant && "not a constant"); 1579 if (Constant.isReference()) 1580 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1581 E->getExprLoc()) 1582 .getScalarVal(); 1583 return Constant.getValue(); 1584 } 1585 1586 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1587 SourceLocation Loc) { 1588 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1589 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1590 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1591 } 1592 1593 static bool hasBooleanRepresentation(QualType Ty) { 1594 if (Ty->isBooleanType()) 1595 return true; 1596 1597 if (const EnumType *ET = Ty->getAs<EnumType>()) 1598 return ET->getDecl()->getIntegerType()->isBooleanType(); 1599 1600 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1601 return hasBooleanRepresentation(AT->getValueType()); 1602 1603 return false; 1604 } 1605 1606 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1607 llvm::APInt &Min, llvm::APInt &End, 1608 bool StrictEnums, bool IsBool) { 1609 const EnumType *ET = Ty->getAs<EnumType>(); 1610 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1611 ET && !ET->getDecl()->isFixed(); 1612 if (!IsBool && !IsRegularCPlusPlusEnum) 1613 return false; 1614 1615 if (IsBool) { 1616 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1617 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1618 } else { 1619 const EnumDecl *ED = ET->getDecl(); 1620 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1621 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1622 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1623 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1624 1625 if (NumNegativeBits) { 1626 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1627 assert(NumBits <= Bitwidth); 1628 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1629 Min = -End; 1630 } else { 1631 assert(NumPositiveBits <= Bitwidth); 1632 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1633 Min = llvm::APInt::getZero(Bitwidth); 1634 } 1635 } 1636 return true; 1637 } 1638 1639 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1640 llvm::APInt Min, End; 1641 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1642 hasBooleanRepresentation(Ty))) 1643 return nullptr; 1644 1645 llvm::MDBuilder MDHelper(getLLVMContext()); 1646 return MDHelper.createRange(Min, End); 1647 } 1648 1649 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1650 SourceLocation Loc) { 1651 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1652 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1653 if (!HasBoolCheck && !HasEnumCheck) 1654 return false; 1655 1656 bool IsBool = hasBooleanRepresentation(Ty) || 1657 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1658 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1659 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1660 if (!NeedsBoolCheck && !NeedsEnumCheck) 1661 return false; 1662 1663 // Single-bit booleans don't need to be checked. Special-case this to avoid 1664 // a bit width mismatch when handling bitfield values. This is handled by 1665 // EmitFromMemory for the non-bitfield case. 1666 if (IsBool && 1667 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1668 return false; 1669 1670 llvm::APInt Min, End; 1671 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1672 return true; 1673 1674 auto &Ctx = getLLVMContext(); 1675 SanitizerScope SanScope(this); 1676 llvm::Value *Check; 1677 --End; 1678 if (!Min) { 1679 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1680 } else { 1681 llvm::Value *Upper = 1682 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1683 llvm::Value *Lower = 1684 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1685 Check = Builder.CreateAnd(Upper, Lower); 1686 } 1687 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1688 EmitCheckTypeDescriptor(Ty)}; 1689 SanitizerMask Kind = 1690 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1691 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1692 StaticArgs, EmitCheckValue(Value)); 1693 return true; 1694 } 1695 1696 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1697 QualType Ty, 1698 SourceLocation Loc, 1699 LValueBaseInfo BaseInfo, 1700 TBAAAccessInfo TBAAInfo, 1701 bool isNontemporal) { 1702 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1703 // For better performance, handle vector loads differently. 1704 if (Ty->isVectorType()) { 1705 const llvm::Type *EltTy = Addr.getElementType(); 1706 1707 const auto *VTy = cast<llvm::FixedVectorType>(EltTy); 1708 1709 // Handle vectors of size 3 like size 4 for better performance. 1710 if (VTy->getNumElements() == 3) { 1711 1712 // Bitcast to vec4 type. 1713 auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4); 1714 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1715 // Now load value. 1716 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1717 1718 // Shuffle vector to get vec3. 1719 V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, 1720 "extractVec"); 1721 return EmitFromMemory(V, Ty); 1722 } 1723 } 1724 } 1725 1726 // Atomic operations have to be done on integral types. 1727 LValue AtomicLValue = 1728 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1729 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1730 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1731 } 1732 1733 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1734 if (isNontemporal) { 1735 llvm::MDNode *Node = llvm::MDNode::get( 1736 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1737 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1738 } 1739 1740 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1741 1742 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1743 // In order to prevent the optimizer from throwing away the check, don't 1744 // attach range metadata to the load. 1745 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1746 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1747 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1748 1749 return EmitFromMemory(Load, Ty); 1750 } 1751 1752 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1753 // Bool has a different representation in memory than in registers. 1754 if (hasBooleanRepresentation(Ty)) { 1755 // This should really always be an i1, but sometimes it's already 1756 // an i8, and it's awkward to track those cases down. 1757 if (Value->getType()->isIntegerTy(1)) 1758 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1759 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1760 "wrong value rep of bool"); 1761 } 1762 1763 return Value; 1764 } 1765 1766 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1767 // Bool has a different representation in memory than in registers. 1768 if (hasBooleanRepresentation(Ty)) { 1769 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1770 "wrong value rep of bool"); 1771 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1772 } 1773 1774 return Value; 1775 } 1776 1777 // Convert the pointer of \p Addr to a pointer to a vector (the value type of 1778 // MatrixType), if it points to a array (the memory type of MatrixType). 1779 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF, 1780 bool IsVector = true) { 1781 auto *ArrayTy = dyn_cast<llvm::ArrayType>( 1782 cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType()); 1783 if (ArrayTy && IsVector) { 1784 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 1785 ArrayTy->getNumElements()); 1786 1787 return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy)); 1788 } 1789 auto *VectorTy = dyn_cast<llvm::VectorType>( 1790 cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType()); 1791 if (VectorTy && !IsVector) { 1792 auto *ArrayTy = llvm::ArrayType::get( 1793 VectorTy->getElementType(), 1794 cast<llvm::FixedVectorType>(VectorTy)->getNumElements()); 1795 1796 return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy)); 1797 } 1798 1799 return Addr; 1800 } 1801 1802 // Emit a store of a matrix LValue. This may require casting the original 1803 // pointer to memory address (ArrayType) to a pointer to the value type 1804 // (VectorType). 1805 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue, 1806 bool isInit, CodeGenFunction &CGF) { 1807 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF, 1808 value->getType()->isVectorTy()); 1809 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(), 1810 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit, 1811 lvalue.isNontemporal()); 1812 } 1813 1814 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1815 bool Volatile, QualType Ty, 1816 LValueBaseInfo BaseInfo, 1817 TBAAAccessInfo TBAAInfo, 1818 bool isInit, bool isNontemporal) { 1819 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1820 // Handle vectors differently to get better performance. 1821 if (Ty->isVectorType()) { 1822 llvm::Type *SrcTy = Value->getType(); 1823 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1824 // Handle vec3 special. 1825 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) { 1826 // Our source is a vec3, do a shuffle vector to make it a vec4. 1827 Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1}, 1828 "extractVec"); 1829 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4); 1830 } 1831 if (Addr.getElementType() != SrcTy) { 1832 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1833 } 1834 } 1835 } 1836 1837 Value = EmitToMemory(Value, Ty); 1838 1839 LValue AtomicLValue = 1840 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1841 if (Ty->isAtomicType() || 1842 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1843 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1844 return; 1845 } 1846 1847 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1848 if (isNontemporal) { 1849 llvm::MDNode *Node = 1850 llvm::MDNode::get(Store->getContext(), 1851 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1852 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1853 } 1854 1855 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1856 } 1857 1858 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1859 bool isInit) { 1860 if (lvalue.getType()->isConstantMatrixType()) { 1861 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this); 1862 return; 1863 } 1864 1865 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1866 lvalue.getType(), lvalue.getBaseInfo(), 1867 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1868 } 1869 1870 // Emit a load of a LValue of matrix type. This may require casting the pointer 1871 // to memory address (ArrayType) to a pointer to the value type (VectorType). 1872 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc, 1873 CodeGenFunction &CGF) { 1874 assert(LV.getType()->isConstantMatrixType()); 1875 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF); 1876 LV.setAddress(Addr); 1877 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc)); 1878 } 1879 1880 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1881 /// method emits the address of the lvalue, then loads the result as an rvalue, 1882 /// returning the rvalue. 1883 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1884 if (LV.isObjCWeak()) { 1885 // load of a __weak object. 1886 Address AddrWeakObj = LV.getAddress(*this); 1887 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1888 AddrWeakObj)); 1889 } 1890 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1891 // In MRC mode, we do a load+autorelease. 1892 if (!getLangOpts().ObjCAutoRefCount) { 1893 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1894 } 1895 1896 // In ARC mode, we load retained and then consume the value. 1897 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1898 Object = EmitObjCConsumeObject(LV.getType(), Object); 1899 return RValue::get(Object); 1900 } 1901 1902 if (LV.isSimple()) { 1903 assert(!LV.getType()->isFunctionType()); 1904 1905 if (LV.getType()->isConstantMatrixType()) 1906 return EmitLoadOfMatrixLValue(LV, Loc, *this); 1907 1908 // Everything needs a load. 1909 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1910 } 1911 1912 if (LV.isVectorElt()) { 1913 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1914 LV.isVolatileQualified()); 1915 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1916 "vecext")); 1917 } 1918 1919 // If this is a reference to a subset of the elements of a vector, either 1920 // shuffle the input or extract/insert them as appropriate. 1921 if (LV.isExtVectorElt()) { 1922 return EmitLoadOfExtVectorElementLValue(LV); 1923 } 1924 1925 // Global Register variables always invoke intrinsics 1926 if (LV.isGlobalReg()) 1927 return EmitLoadOfGlobalRegLValue(LV); 1928 1929 if (LV.isMatrixElt()) { 1930 llvm::Value *Idx = LV.getMatrixIdx(); 1931 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 1932 const auto *const MatTy = LV.getType()->getAs<ConstantMatrixType>(); 1933 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 1934 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 1935 } 1936 llvm::LoadInst *Load = 1937 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified()); 1938 return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext")); 1939 } 1940 1941 assert(LV.isBitField() && "Unknown LValue type!"); 1942 return EmitLoadOfBitfieldLValue(LV, Loc); 1943 } 1944 1945 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1946 SourceLocation Loc) { 1947 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1948 1949 // Get the output type. 1950 llvm::Type *ResLTy = ConvertType(LV.getType()); 1951 1952 Address Ptr = LV.getBitFieldAddress(); 1953 llvm::Value *Val = 1954 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1955 1956 bool UseVolatile = LV.isVolatileQualified() && 1957 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 1958 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 1959 const unsigned StorageSize = 1960 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 1961 if (Info.IsSigned) { 1962 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize); 1963 unsigned HighBits = StorageSize - Offset - Info.Size; 1964 if (HighBits) 1965 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1966 if (Offset + HighBits) 1967 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr"); 1968 } else { 1969 if (Offset) 1970 Val = Builder.CreateLShr(Val, Offset, "bf.lshr"); 1971 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize) 1972 Val = Builder.CreateAnd( 1973 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear"); 1974 } 1975 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1976 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1977 return RValue::get(Val); 1978 } 1979 1980 // If this is a reference to a subset of the elements of a vector, create an 1981 // appropriate shufflevector. 1982 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1983 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1984 LV.isVolatileQualified()); 1985 1986 const llvm::Constant *Elts = LV.getExtVectorElts(); 1987 1988 // If the result of the expression is a non-vector type, we must be extracting 1989 // a single element. Just codegen as an extractelement. 1990 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1991 if (!ExprVT) { 1992 unsigned InIdx = getAccessedFieldNo(0, Elts); 1993 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1994 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1995 } 1996 1997 // Always use shuffle vector to try to retain the original program structure 1998 unsigned NumResultElts = ExprVT->getNumElements(); 1999 2000 SmallVector<int, 4> Mask; 2001 for (unsigned i = 0; i != NumResultElts; ++i) 2002 Mask.push_back(getAccessedFieldNo(i, Elts)); 2003 2004 Vec = Builder.CreateShuffleVector(Vec, Mask); 2005 return RValue::get(Vec); 2006 } 2007 2008 /// Generates lvalue for partial ext_vector access. 2009 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 2010 Address VectorAddress = LV.getExtVectorAddress(); 2011 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 2012 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 2013 2014 Address CastToPointerElement = 2015 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 2016 "conv.ptr.element"); 2017 2018 const llvm::Constant *Elts = LV.getExtVectorElts(); 2019 unsigned ix = getAccessedFieldNo(0, Elts); 2020 2021 Address VectorBasePtrPlusIx = 2022 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 2023 "vector.elt"); 2024 2025 return VectorBasePtrPlusIx; 2026 } 2027 2028 /// Load of global gamed gegisters are always calls to intrinsics. 2029 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 2030 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 2031 "Bad type for register variable"); 2032 llvm::MDNode *RegName = cast<llvm::MDNode>( 2033 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 2034 2035 // We accept integer and pointer types only 2036 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 2037 llvm::Type *Ty = OrigTy; 2038 if (OrigTy->isPointerTy()) 2039 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2040 llvm::Type *Types[] = { Ty }; 2041 2042 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 2043 llvm::Value *Call = Builder.CreateCall( 2044 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 2045 if (OrigTy->isPointerTy()) 2046 Call = Builder.CreateIntToPtr(Call, OrigTy); 2047 return RValue::get(Call); 2048 } 2049 2050 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2051 /// lvalue, where both are guaranteed to the have the same type, and that type 2052 /// is 'Ty'. 2053 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 2054 bool isInit) { 2055 if (!Dst.isSimple()) { 2056 if (Dst.isVectorElt()) { 2057 // Read/modify/write the vector, inserting the new element. 2058 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 2059 Dst.isVolatileQualified()); 2060 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 2061 Dst.getVectorIdx(), "vecins"); 2062 Builder.CreateStore(Vec, Dst.getVectorAddress(), 2063 Dst.isVolatileQualified()); 2064 return; 2065 } 2066 2067 // If this is an update of extended vector elements, insert them as 2068 // appropriate. 2069 if (Dst.isExtVectorElt()) 2070 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 2071 2072 if (Dst.isGlobalReg()) 2073 return EmitStoreThroughGlobalRegLValue(Src, Dst); 2074 2075 if (Dst.isMatrixElt()) { 2076 llvm::Value *Idx = Dst.getMatrixIdx(); 2077 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 2078 const auto *const MatTy = Dst.getType()->getAs<ConstantMatrixType>(); 2079 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 2080 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 2081 } 2082 llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress()); 2083 llvm::Value *Vec = 2084 Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins"); 2085 Builder.CreateStore(Vec, Dst.getMatrixAddress(), 2086 Dst.isVolatileQualified()); 2087 return; 2088 } 2089 2090 assert(Dst.isBitField() && "Unknown LValue type"); 2091 return EmitStoreThroughBitfieldLValue(Src, Dst); 2092 } 2093 2094 // There's special magic for assigning into an ARC-qualified l-value. 2095 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 2096 switch (Lifetime) { 2097 case Qualifiers::OCL_None: 2098 llvm_unreachable("present but none"); 2099 2100 case Qualifiers::OCL_ExplicitNone: 2101 // nothing special 2102 break; 2103 2104 case Qualifiers::OCL_Strong: 2105 if (isInit) { 2106 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 2107 break; 2108 } 2109 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 2110 return; 2111 2112 case Qualifiers::OCL_Weak: 2113 if (isInit) 2114 // Initialize and then skip the primitive store. 2115 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 2116 else 2117 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 2118 /*ignore*/ true); 2119 return; 2120 2121 case Qualifiers::OCL_Autoreleasing: 2122 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 2123 Src.getScalarVal())); 2124 // fall into the normal path 2125 break; 2126 } 2127 } 2128 2129 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 2130 // load of a __weak object. 2131 Address LvalueDst = Dst.getAddress(*this); 2132 llvm::Value *src = Src.getScalarVal(); 2133 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2134 return; 2135 } 2136 2137 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2138 // load of a __strong object. 2139 Address LvalueDst = Dst.getAddress(*this); 2140 llvm::Value *src = Src.getScalarVal(); 2141 if (Dst.isObjCIvar()) { 2142 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2143 llvm::Type *ResultType = IntPtrTy; 2144 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2145 llvm::Value *RHS = dst.getPointer(); 2146 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2147 llvm::Value *LHS = 2148 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2149 "sub.ptr.lhs.cast"); 2150 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2151 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2152 BytesBetween); 2153 } else if (Dst.isGlobalObjCRef()) { 2154 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2155 Dst.isThreadLocalRef()); 2156 } 2157 else 2158 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2159 return; 2160 } 2161 2162 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2163 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2164 } 2165 2166 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2167 llvm::Value **Result) { 2168 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2169 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2170 Address Ptr = Dst.getBitFieldAddress(); 2171 2172 // Get the source value, truncated to the width of the bit-field. 2173 llvm::Value *SrcVal = Src.getScalarVal(); 2174 2175 // Cast the source to the storage type and shift it into place. 2176 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2177 /*isSigned=*/false); 2178 llvm::Value *MaskedVal = SrcVal; 2179 2180 const bool UseVolatile = 2181 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() && 2182 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2183 const unsigned StorageSize = 2184 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 2185 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 2186 // See if there are other bits in the bitfield's storage we'll need to load 2187 // and mask together with source before storing. 2188 if (StorageSize != Info.Size) { 2189 assert(StorageSize > Info.Size && "Invalid bitfield size."); 2190 llvm::Value *Val = 2191 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2192 2193 // Mask the source value as needed. 2194 if (!hasBooleanRepresentation(Dst.getType())) 2195 SrcVal = Builder.CreateAnd( 2196 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), 2197 "bf.value"); 2198 MaskedVal = SrcVal; 2199 if (Offset) 2200 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl"); 2201 2202 // Mask out the original value. 2203 Val = Builder.CreateAnd( 2204 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size), 2205 "bf.clear"); 2206 2207 // Or together the unchanged values and the source value. 2208 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2209 } else { 2210 assert(Offset == 0); 2211 // According to the AACPS: 2212 // When a volatile bit-field is written, and its container does not overlap 2213 // with any non-bit-field member, its container must be read exactly once 2214 // and written exactly once using the access width appropriate to the type 2215 // of the container. The two accesses are not atomic. 2216 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2217 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2218 Builder.CreateLoad(Ptr, true, "bf.load"); 2219 } 2220 2221 // Write the new value back out. 2222 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2223 2224 // Return the new value of the bit-field, if requested. 2225 if (Result) { 2226 llvm::Value *ResultVal = MaskedVal; 2227 2228 // Sign extend the value if needed. 2229 if (Info.IsSigned) { 2230 assert(Info.Size <= StorageSize); 2231 unsigned HighBits = StorageSize - Info.Size; 2232 if (HighBits) { 2233 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2234 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2235 } 2236 } 2237 2238 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2239 "bf.result.cast"); 2240 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2241 } 2242 } 2243 2244 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2245 LValue Dst) { 2246 // This access turns into a read/modify/write of the vector. Load the input 2247 // value now. 2248 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2249 Dst.isVolatileQualified()); 2250 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2251 2252 llvm::Value *SrcVal = Src.getScalarVal(); 2253 2254 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2255 unsigned NumSrcElts = VTy->getNumElements(); 2256 unsigned NumDstElts = 2257 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements(); 2258 if (NumDstElts == NumSrcElts) { 2259 // Use shuffle vector is the src and destination are the same number of 2260 // elements and restore the vector mask since it is on the side it will be 2261 // stored. 2262 SmallVector<int, 4> Mask(NumDstElts); 2263 for (unsigned i = 0; i != NumSrcElts; ++i) 2264 Mask[getAccessedFieldNo(i, Elts)] = i; 2265 2266 Vec = Builder.CreateShuffleVector(SrcVal, Mask); 2267 } else if (NumDstElts > NumSrcElts) { 2268 // Extended the source vector to the same length and then shuffle it 2269 // into the destination. 2270 // FIXME: since we're shuffling with undef, can we just use the indices 2271 // into that? This could be simpler. 2272 SmallVector<int, 4> ExtMask; 2273 for (unsigned i = 0; i != NumSrcElts; ++i) 2274 ExtMask.push_back(i); 2275 ExtMask.resize(NumDstElts, -1); 2276 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask); 2277 // build identity 2278 SmallVector<int, 4> Mask; 2279 for (unsigned i = 0; i != NumDstElts; ++i) 2280 Mask.push_back(i); 2281 2282 // When the vector size is odd and .odd or .hi is used, the last element 2283 // of the Elts constant array will be one past the size of the vector. 2284 // Ignore the last element here, if it is greater than the mask size. 2285 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2286 NumSrcElts--; 2287 2288 // modify when what gets shuffled in 2289 for (unsigned i = 0; i != NumSrcElts; ++i) 2290 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts; 2291 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask); 2292 } else { 2293 // We should never shorten the vector 2294 llvm_unreachable("unexpected shorten vector length"); 2295 } 2296 } else { 2297 // If the Src is a scalar (not a vector) it must be updating one element. 2298 unsigned InIdx = getAccessedFieldNo(0, Elts); 2299 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2300 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2301 } 2302 2303 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2304 Dst.isVolatileQualified()); 2305 } 2306 2307 /// Store of global named registers are always calls to intrinsics. 2308 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2309 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2310 "Bad type for register variable"); 2311 llvm::MDNode *RegName = cast<llvm::MDNode>( 2312 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2313 assert(RegName && "Register LValue is not metadata"); 2314 2315 // We accept integer and pointer types only 2316 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2317 llvm::Type *Ty = OrigTy; 2318 if (OrigTy->isPointerTy()) 2319 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2320 llvm::Type *Types[] = { Ty }; 2321 2322 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2323 llvm::Value *Value = Src.getScalarVal(); 2324 if (OrigTy->isPointerTy()) 2325 Value = Builder.CreatePtrToInt(Value, Ty); 2326 Builder.CreateCall( 2327 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2328 } 2329 2330 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2331 // generating write-barries API. It is currently a global, ivar, 2332 // or neither. 2333 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2334 LValue &LV, 2335 bool IsMemberAccess=false) { 2336 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2337 return; 2338 2339 if (isa<ObjCIvarRefExpr>(E)) { 2340 QualType ExpTy = E->getType(); 2341 if (IsMemberAccess && ExpTy->isPointerType()) { 2342 // If ivar is a structure pointer, assigning to field of 2343 // this struct follows gcc's behavior and makes it a non-ivar 2344 // writer-barrier conservatively. 2345 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2346 if (ExpTy->isRecordType()) { 2347 LV.setObjCIvar(false); 2348 return; 2349 } 2350 } 2351 LV.setObjCIvar(true); 2352 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2353 LV.setBaseIvarExp(Exp->getBase()); 2354 LV.setObjCArray(E->getType()->isArrayType()); 2355 return; 2356 } 2357 2358 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2359 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2360 if (VD->hasGlobalStorage()) { 2361 LV.setGlobalObjCRef(true); 2362 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2363 } 2364 } 2365 LV.setObjCArray(E->getType()->isArrayType()); 2366 return; 2367 } 2368 2369 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2370 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2371 return; 2372 } 2373 2374 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2375 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2376 if (LV.isObjCIvar()) { 2377 // If cast is to a structure pointer, follow gcc's behavior and make it 2378 // a non-ivar write-barrier. 2379 QualType ExpTy = E->getType(); 2380 if (ExpTy->isPointerType()) 2381 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2382 if (ExpTy->isRecordType()) 2383 LV.setObjCIvar(false); 2384 } 2385 return; 2386 } 2387 2388 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2389 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2390 return; 2391 } 2392 2393 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2394 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2395 return; 2396 } 2397 2398 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2399 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2400 return; 2401 } 2402 2403 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2404 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2405 return; 2406 } 2407 2408 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2409 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2410 if (LV.isObjCIvar() && !LV.isObjCArray()) 2411 // Using array syntax to assigning to what an ivar points to is not 2412 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2413 LV.setObjCIvar(false); 2414 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2415 // Using array syntax to assigning to what global points to is not 2416 // same as assigning to the global itself. {id *G;} G[i] = 0; 2417 LV.setGlobalObjCRef(false); 2418 return; 2419 } 2420 2421 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2422 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2423 // We don't know if member is an 'ivar', but this flag is looked at 2424 // only in the context of LV.isObjCIvar(). 2425 LV.setObjCArray(E->getType()->isArrayType()); 2426 return; 2427 } 2428 } 2429 2430 static llvm::Value * 2431 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2432 llvm::Value *V, llvm::Type *IRType, 2433 StringRef Name = StringRef()) { 2434 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2435 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2436 } 2437 2438 static LValue EmitThreadPrivateVarDeclLValue( 2439 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2440 llvm::Type *RealVarTy, SourceLocation Loc) { 2441 if (CGF.CGM.getLangOpts().OpenMPIRBuilder) 2442 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 2443 CGF, VD, Addr, Loc); 2444 else 2445 Addr = 2446 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2447 2448 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2449 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2450 } 2451 2452 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2453 const VarDecl *VD, QualType T) { 2454 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2455 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2456 // Return an invalid address if variable is MT_To and unified 2457 // memory is not enabled. For all other cases: MT_Link and 2458 // MT_To with unified memory, return a valid address. 2459 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2460 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2461 return Address::invalid(); 2462 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2463 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2464 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2465 "Expected link clause OR to clause with unified memory enabled."); 2466 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2467 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2468 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2469 } 2470 2471 Address 2472 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2473 LValueBaseInfo *PointeeBaseInfo, 2474 TBAAAccessInfo *PointeeTBAAInfo) { 2475 llvm::LoadInst *Load = 2476 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2477 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2478 2479 CharUnits Align = CGM.getNaturalTypeAlignment( 2480 RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo, 2481 /* forPointeeType= */ true); 2482 return Address(Load, Align); 2483 } 2484 2485 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2486 LValueBaseInfo PointeeBaseInfo; 2487 TBAAAccessInfo PointeeTBAAInfo; 2488 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2489 &PointeeTBAAInfo); 2490 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2491 PointeeBaseInfo, PointeeTBAAInfo); 2492 } 2493 2494 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2495 const PointerType *PtrTy, 2496 LValueBaseInfo *BaseInfo, 2497 TBAAAccessInfo *TBAAInfo) { 2498 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2499 return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), 2500 BaseInfo, TBAAInfo, 2501 /*forPointeeType=*/true)); 2502 } 2503 2504 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2505 const PointerType *PtrTy) { 2506 LValueBaseInfo BaseInfo; 2507 TBAAAccessInfo TBAAInfo; 2508 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2509 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2510 } 2511 2512 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2513 const Expr *E, const VarDecl *VD) { 2514 QualType T = E->getType(); 2515 2516 // If it's thread_local, emit a call to its wrapper function instead. 2517 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2518 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2519 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2520 // Check if the variable is marked as declare target with link clause in 2521 // device codegen. 2522 if (CGF.getLangOpts().OpenMPIsDevice) { 2523 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2524 if (Addr.isValid()) 2525 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2526 } 2527 2528 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2529 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2530 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2531 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2532 Address Addr(V, Alignment); 2533 // Emit reference to the private copy of the variable if it is an OpenMP 2534 // threadprivate variable. 2535 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2536 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2537 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2538 E->getExprLoc()); 2539 } 2540 LValue LV = VD->getType()->isReferenceType() ? 2541 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2542 AlignmentSource::Decl) : 2543 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2544 setObjCGCLValueClass(CGF.getContext(), E, LV); 2545 return LV; 2546 } 2547 2548 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2549 GlobalDecl GD) { 2550 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2551 if (FD->hasAttr<WeakRefAttr>()) { 2552 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2553 return aliasee.getPointer(); 2554 } 2555 2556 llvm::Constant *V = CGM.GetAddrOfFunction(GD); 2557 if (!FD->hasPrototype()) { 2558 if (const FunctionProtoType *Proto = 2559 FD->getType()->getAs<FunctionProtoType>()) { 2560 // Ugly case: for a K&R-style definition, the type of the definition 2561 // isn't the same as the type of a use. Correct for this with a 2562 // bitcast. 2563 QualType NoProtoType = 2564 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2565 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2566 V = llvm::ConstantExpr::getBitCast(V, 2567 CGM.getTypes().ConvertType(NoProtoType)); 2568 } 2569 } 2570 return V; 2571 } 2572 2573 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, 2574 GlobalDecl GD) { 2575 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2576 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD); 2577 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2578 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2579 AlignmentSource::Decl); 2580 } 2581 2582 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2583 llvm::Value *ThisValue) { 2584 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2585 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2586 return CGF.EmitLValueForField(LV, FD); 2587 } 2588 2589 /// Named Registers are named metadata pointing to the register name 2590 /// which will be read from/written to as an argument to the intrinsic 2591 /// @llvm.read/write_register. 2592 /// So far, only the name is being passed down, but other options such as 2593 /// register type, allocation type or even optimization options could be 2594 /// passed down via the metadata node. 2595 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2596 SmallString<64> Name("llvm.named.register."); 2597 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2598 assert(Asm->getLabel().size() < 64-Name.size() && 2599 "Register name too big"); 2600 Name.append(Asm->getLabel()); 2601 llvm::NamedMDNode *M = 2602 CGM.getModule().getOrInsertNamedMetadata(Name); 2603 if (M->getNumOperands() == 0) { 2604 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2605 Asm->getLabel()); 2606 llvm::Metadata *Ops[] = {Str}; 2607 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2608 } 2609 2610 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2611 2612 llvm::Value *Ptr = 2613 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2614 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2615 } 2616 2617 /// Determine whether we can emit a reference to \p VD from the current 2618 /// context, despite not necessarily having seen an odr-use of the variable in 2619 /// this context. 2620 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2621 const DeclRefExpr *E, 2622 const VarDecl *VD, 2623 bool IsConstant) { 2624 // For a variable declared in an enclosing scope, do not emit a spurious 2625 // reference even if we have a capture, as that will emit an unwarranted 2626 // reference to our capture state, and will likely generate worse code than 2627 // emitting a local copy. 2628 if (E->refersToEnclosingVariableOrCapture()) 2629 return false; 2630 2631 // For a local declaration declared in this function, we can always reference 2632 // it even if we don't have an odr-use. 2633 if (VD->hasLocalStorage()) { 2634 return VD->getDeclContext() == 2635 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2636 } 2637 2638 // For a global declaration, we can emit a reference to it if we know 2639 // for sure that we are able to emit a definition of it. 2640 VD = VD->getDefinition(CGF.getContext()); 2641 if (!VD) 2642 return false; 2643 2644 // Don't emit a spurious reference if it might be to a variable that only 2645 // exists on a different device / target. 2646 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2647 // cross-target reference. 2648 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2649 CGF.getLangOpts().OpenCL) { 2650 return false; 2651 } 2652 2653 // We can emit a spurious reference only if the linkage implies that we'll 2654 // be emitting a non-interposable symbol that will be retained until link 2655 // time. 2656 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2657 case llvm::GlobalValue::ExternalLinkage: 2658 case llvm::GlobalValue::LinkOnceODRLinkage: 2659 case llvm::GlobalValue::WeakODRLinkage: 2660 case llvm::GlobalValue::InternalLinkage: 2661 case llvm::GlobalValue::PrivateLinkage: 2662 return true; 2663 default: 2664 return false; 2665 } 2666 } 2667 2668 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2669 const NamedDecl *ND = E->getDecl(); 2670 QualType T = E->getType(); 2671 2672 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2673 "should not emit an unevaluated operand"); 2674 2675 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2676 // Global Named registers access via intrinsics only 2677 if (VD->getStorageClass() == SC_Register && 2678 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2679 return EmitGlobalNamedRegister(VD, CGM); 2680 2681 // If this DeclRefExpr does not constitute an odr-use of the variable, 2682 // we're not permitted to emit a reference to it in general, and it might 2683 // not be captured if capture would be necessary for a use. Emit the 2684 // constant value directly instead. 2685 if (E->isNonOdrUse() == NOUR_Constant && 2686 (VD->getType()->isReferenceType() || 2687 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2688 VD->getAnyInitializer(VD); 2689 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2690 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2691 assert(Val && "failed to emit constant expression"); 2692 2693 Address Addr = Address::invalid(); 2694 if (!VD->getType()->isReferenceType()) { 2695 // Spill the constant value to a global. 2696 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2697 getContext().getDeclAlign(VD)); 2698 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2699 auto *PTy = llvm::PointerType::get( 2700 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2701 if (PTy != Addr.getType()) 2702 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); 2703 } else { 2704 // Should we be using the alignment of the constant pointer we emitted? 2705 CharUnits Alignment = 2706 CGM.getNaturalTypeAlignment(E->getType(), 2707 /* BaseInfo= */ nullptr, 2708 /* TBAAInfo= */ nullptr, 2709 /* forPointeeType= */ true); 2710 Addr = Address(Val, Alignment); 2711 } 2712 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2713 } 2714 2715 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2716 2717 // Check for captured variables. 2718 if (E->refersToEnclosingVariableOrCapture()) { 2719 VD = VD->getCanonicalDecl(); 2720 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2721 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2722 if (CapturedStmtInfo) { 2723 auto I = LocalDeclMap.find(VD); 2724 if (I != LocalDeclMap.end()) { 2725 LValue CapLVal; 2726 if (VD->getType()->isReferenceType()) 2727 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2728 AlignmentSource::Decl); 2729 else 2730 CapLVal = MakeAddrLValue(I->second, T); 2731 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2732 // in simd context. 2733 if (getLangOpts().OpenMP && 2734 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2735 CapLVal.setNontemporal(/*Value=*/true); 2736 return CapLVal; 2737 } 2738 LValue CapLVal = 2739 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2740 CapturedStmtInfo->getContextValue()); 2741 CapLVal = MakeAddrLValue( 2742 Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)), 2743 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2744 CapLVal.getTBAAInfo()); 2745 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2746 // in simd context. 2747 if (getLangOpts().OpenMP && 2748 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2749 CapLVal.setNontemporal(/*Value=*/true); 2750 return CapLVal; 2751 } 2752 2753 assert(isa<BlockDecl>(CurCodeDecl)); 2754 Address addr = GetAddrOfBlockDecl(VD); 2755 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2756 } 2757 } 2758 2759 // FIXME: We should be able to assert this for FunctionDecls as well! 2760 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2761 // those with a valid source location. 2762 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2763 !E->getLocation().isValid()) && 2764 "Should not use decl without marking it used!"); 2765 2766 if (ND->hasAttr<WeakRefAttr>()) { 2767 const auto *VD = cast<ValueDecl>(ND); 2768 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2769 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2770 } 2771 2772 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2773 // Check if this is a global variable. 2774 if (VD->hasLinkage() || VD->isStaticDataMember()) 2775 return EmitGlobalVarDeclLValue(*this, E, VD); 2776 2777 Address addr = Address::invalid(); 2778 2779 // The variable should generally be present in the local decl map. 2780 auto iter = LocalDeclMap.find(VD); 2781 if (iter != LocalDeclMap.end()) { 2782 addr = iter->second; 2783 2784 // Otherwise, it might be static local we haven't emitted yet for 2785 // some reason; most likely, because it's in an outer function. 2786 } else if (VD->isStaticLocal()) { 2787 addr = Address(CGM.getOrCreateStaticVarDecl( 2788 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)), 2789 getContext().getDeclAlign(VD)); 2790 2791 // No other cases for now. 2792 } else { 2793 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2794 } 2795 2796 2797 // Check for OpenMP threadprivate variables. 2798 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2799 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2800 return EmitThreadPrivateVarDeclLValue( 2801 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2802 E->getExprLoc()); 2803 } 2804 2805 // Drill into block byref variables. 2806 bool isBlockByref = VD->isEscapingByref(); 2807 if (isBlockByref) { 2808 addr = emitBlockByrefAddress(addr, VD); 2809 } 2810 2811 // Drill into reference types. 2812 LValue LV = VD->getType()->isReferenceType() ? 2813 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2814 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2815 2816 bool isLocalStorage = VD->hasLocalStorage(); 2817 2818 bool NonGCable = isLocalStorage && 2819 !VD->getType()->isReferenceType() && 2820 !isBlockByref; 2821 if (NonGCable) { 2822 LV.getQuals().removeObjCGCAttr(); 2823 LV.setNonGC(true); 2824 } 2825 2826 bool isImpreciseLifetime = 2827 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2828 if (isImpreciseLifetime) 2829 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2830 setObjCGCLValueClass(getContext(), E, LV); 2831 return LV; 2832 } 2833 2834 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 2835 LValue LV = EmitFunctionDeclLValue(*this, E, FD); 2836 2837 // Emit debuginfo for the function declaration if the target wants to. 2838 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) { 2839 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) { 2840 auto *Fn = 2841 cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts()); 2842 if (!Fn->getSubprogram()) 2843 DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn); 2844 } 2845 } 2846 2847 return LV; 2848 } 2849 2850 // FIXME: While we're emitting a binding from an enclosing scope, all other 2851 // DeclRefExprs we see should be implicitly treated as if they also refer to 2852 // an enclosing scope. 2853 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2854 return EmitLValue(BD->getBinding()); 2855 2856 // We can form DeclRefExprs naming GUID declarations when reconstituting 2857 // non-type template parameters into expressions. 2858 if (const auto *GD = dyn_cast<MSGuidDecl>(ND)) 2859 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T, 2860 AlignmentSource::Decl); 2861 2862 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) 2863 return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T, 2864 AlignmentSource::Decl); 2865 2866 llvm_unreachable("Unhandled DeclRefExpr"); 2867 } 2868 2869 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2870 // __extension__ doesn't affect lvalue-ness. 2871 if (E->getOpcode() == UO_Extension) 2872 return EmitLValue(E->getSubExpr()); 2873 2874 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2875 switch (E->getOpcode()) { 2876 default: llvm_unreachable("Unknown unary operator lvalue!"); 2877 case UO_Deref: { 2878 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2879 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2880 2881 LValueBaseInfo BaseInfo; 2882 TBAAAccessInfo TBAAInfo; 2883 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2884 &TBAAInfo); 2885 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2886 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2887 2888 // We should not generate __weak write barrier on indirect reference 2889 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2890 // But, we continue to generate __strong write barrier on indirect write 2891 // into a pointer to object. 2892 if (getLangOpts().ObjC && 2893 getLangOpts().getGC() != LangOptions::NonGC && 2894 LV.isObjCWeak()) 2895 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2896 return LV; 2897 } 2898 case UO_Real: 2899 case UO_Imag: { 2900 LValue LV = EmitLValue(E->getSubExpr()); 2901 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2902 2903 // __real is valid on scalars. This is a faster way of testing that. 2904 // __imag can only produce an rvalue on scalars. 2905 if (E->getOpcode() == UO_Real && 2906 !LV.getAddress(*this).getElementType()->isStructTy()) { 2907 assert(E->getSubExpr()->getType()->isArithmeticType()); 2908 return LV; 2909 } 2910 2911 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2912 2913 Address Component = 2914 (E->getOpcode() == UO_Real 2915 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2916 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2917 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2918 CGM.getTBAAInfoForSubobject(LV, T)); 2919 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2920 return ElemLV; 2921 } 2922 case UO_PreInc: 2923 case UO_PreDec: { 2924 LValue LV = EmitLValue(E->getSubExpr()); 2925 bool isInc = E->getOpcode() == UO_PreInc; 2926 2927 if (E->getType()->isAnyComplexType()) 2928 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2929 else 2930 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2931 return LV; 2932 } 2933 } 2934 } 2935 2936 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2937 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2938 E->getType(), AlignmentSource::Decl); 2939 } 2940 2941 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2942 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2943 E->getType(), AlignmentSource::Decl); 2944 } 2945 2946 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2947 auto SL = E->getFunctionName(); 2948 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2949 StringRef FnName = CurFn->getName(); 2950 if (FnName.startswith("\01")) 2951 FnName = FnName.substr(1); 2952 StringRef NameItems[] = { 2953 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2954 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2955 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2956 std::string Name = std::string(SL->getString()); 2957 if (!Name.empty()) { 2958 unsigned Discriminator = 2959 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2960 if (Discriminator) 2961 Name += "_" + Twine(Discriminator + 1).str(); 2962 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2963 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2964 } else { 2965 auto C = 2966 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 2967 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2968 } 2969 } 2970 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2971 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2972 } 2973 2974 /// Emit a type description suitable for use by a runtime sanitizer library. The 2975 /// format of a type descriptor is 2976 /// 2977 /// \code 2978 /// { i16 TypeKind, i16 TypeInfo } 2979 /// \endcode 2980 /// 2981 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2982 /// integer, 1 for a floating point value, and -1 for anything else. 2983 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2984 // Only emit each type's descriptor once. 2985 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2986 return C; 2987 2988 uint16_t TypeKind = -1; 2989 uint16_t TypeInfo = 0; 2990 2991 if (T->isIntegerType()) { 2992 TypeKind = 0; 2993 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2994 (T->isSignedIntegerType() ? 1 : 0); 2995 } else if (T->isFloatingType()) { 2996 TypeKind = 1; 2997 TypeInfo = getContext().getTypeSize(T); 2998 } 2999 3000 // Format the type name as if for a diagnostic, including quotes and 3001 // optionally an 'aka'. 3002 SmallString<32> Buffer; 3003 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 3004 (intptr_t)T.getAsOpaquePtr(), 3005 StringRef(), StringRef(), None, Buffer, 3006 None); 3007 3008 llvm::Constant *Components[] = { 3009 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 3010 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 3011 }; 3012 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 3013 3014 auto *GV = new llvm::GlobalVariable( 3015 CGM.getModule(), Descriptor->getType(), 3016 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 3017 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3018 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 3019 3020 // Remember the descriptor for this type. 3021 CGM.setTypeDescriptorInMap(T, GV); 3022 3023 return GV; 3024 } 3025 3026 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 3027 llvm::Type *TargetTy = IntPtrTy; 3028 3029 if (V->getType() == TargetTy) 3030 return V; 3031 3032 // Floating-point types which fit into intptr_t are bitcast to integers 3033 // and then passed directly (after zero-extension, if necessary). 3034 if (V->getType()->isFloatingPointTy()) { 3035 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize(); 3036 if (Bits <= TargetTy->getIntegerBitWidth()) 3037 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 3038 Bits)); 3039 } 3040 3041 // Integers which fit in intptr_t are zero-extended and passed directly. 3042 if (V->getType()->isIntegerTy() && 3043 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 3044 return Builder.CreateZExt(V, TargetTy); 3045 3046 // Pointers are passed directly, everything else is passed by address. 3047 if (!V->getType()->isPointerTy()) { 3048 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 3049 Builder.CreateStore(V, Ptr); 3050 V = Ptr.getPointer(); 3051 } 3052 return Builder.CreatePtrToInt(V, TargetTy); 3053 } 3054 3055 /// Emit a representation of a SourceLocation for passing to a handler 3056 /// in a sanitizer runtime library. The format for this data is: 3057 /// \code 3058 /// struct SourceLocation { 3059 /// const char *Filename; 3060 /// int32_t Line, Column; 3061 /// }; 3062 /// \endcode 3063 /// For an invalid SourceLocation, the Filename pointer is null. 3064 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 3065 llvm::Constant *Filename; 3066 int Line, Column; 3067 3068 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 3069 if (PLoc.isValid()) { 3070 StringRef FilenameString = PLoc.getFilename(); 3071 3072 int PathComponentsToStrip = 3073 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 3074 if (PathComponentsToStrip < 0) { 3075 assert(PathComponentsToStrip != INT_MIN); 3076 int PathComponentsToKeep = -PathComponentsToStrip; 3077 auto I = llvm::sys::path::rbegin(FilenameString); 3078 auto E = llvm::sys::path::rend(FilenameString); 3079 while (I != E && --PathComponentsToKeep) 3080 ++I; 3081 3082 FilenameString = FilenameString.substr(I - E); 3083 } else if (PathComponentsToStrip > 0) { 3084 auto I = llvm::sys::path::begin(FilenameString); 3085 auto E = llvm::sys::path::end(FilenameString); 3086 while (I != E && PathComponentsToStrip--) 3087 ++I; 3088 3089 if (I != E) 3090 FilenameString = 3091 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 3092 else 3093 FilenameString = llvm::sys::path::filename(FilenameString); 3094 } 3095 3096 auto FilenameGV = 3097 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 3098 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 3099 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 3100 Filename = FilenameGV.getPointer(); 3101 Line = PLoc.getLine(); 3102 Column = PLoc.getColumn(); 3103 } else { 3104 Filename = llvm::Constant::getNullValue(Int8PtrTy); 3105 Line = Column = 0; 3106 } 3107 3108 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 3109 Builder.getInt32(Column)}; 3110 3111 return llvm::ConstantStruct::getAnon(Data); 3112 } 3113 3114 namespace { 3115 /// Specify under what conditions this check can be recovered 3116 enum class CheckRecoverableKind { 3117 /// Always terminate program execution if this check fails. 3118 Unrecoverable, 3119 /// Check supports recovering, runtime has both fatal (noreturn) and 3120 /// non-fatal handlers for this check. 3121 Recoverable, 3122 /// Runtime conditionally aborts, always need to support recovery. 3123 AlwaysRecoverable 3124 }; 3125 } 3126 3127 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 3128 assert(Kind.countPopulation() == 1); 3129 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 3130 return CheckRecoverableKind::AlwaysRecoverable; 3131 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 3132 return CheckRecoverableKind::Unrecoverable; 3133 else 3134 return CheckRecoverableKind::Recoverable; 3135 } 3136 3137 namespace { 3138 struct SanitizerHandlerInfo { 3139 char const *const Name; 3140 unsigned Version; 3141 }; 3142 } 3143 3144 const SanitizerHandlerInfo SanitizerHandlers[] = { 3145 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 3146 LIST_SANITIZER_CHECKS 3147 #undef SANITIZER_CHECK 3148 }; 3149 3150 static void emitCheckHandlerCall(CodeGenFunction &CGF, 3151 llvm::FunctionType *FnType, 3152 ArrayRef<llvm::Value *> FnArgs, 3153 SanitizerHandler CheckHandler, 3154 CheckRecoverableKind RecoverKind, bool IsFatal, 3155 llvm::BasicBlock *ContBB) { 3156 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 3157 Optional<ApplyDebugLocation> DL; 3158 if (!CGF.Builder.getCurrentDebugLocation()) { 3159 // Ensure that the call has at least an artificial debug location. 3160 DL.emplace(CGF, SourceLocation()); 3161 } 3162 bool NeedsAbortSuffix = 3163 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3164 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3165 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3166 const StringRef CheckName = CheckInfo.Name; 3167 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3168 if (CheckInfo.Version && !MinimalRuntime) 3169 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3170 if (MinimalRuntime) 3171 FnName += "_minimal"; 3172 if (NeedsAbortSuffix) 3173 FnName += "_abort"; 3174 bool MayReturn = 3175 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3176 3177 llvm::AttrBuilder B; 3178 if (!MayReturn) { 3179 B.addAttribute(llvm::Attribute::NoReturn) 3180 .addAttribute(llvm::Attribute::NoUnwind); 3181 } 3182 B.addAttribute(llvm::Attribute::UWTable); 3183 3184 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3185 FnType, FnName, 3186 llvm::AttributeList::get(CGF.getLLVMContext(), 3187 llvm::AttributeList::FunctionIndex, B), 3188 /*Local=*/true); 3189 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3190 if (!MayReturn) { 3191 HandlerCall->setDoesNotReturn(); 3192 CGF.Builder.CreateUnreachable(); 3193 } else { 3194 CGF.Builder.CreateBr(ContBB); 3195 } 3196 } 3197 3198 void CodeGenFunction::EmitCheck( 3199 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3200 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3201 ArrayRef<llvm::Value *> DynamicArgs) { 3202 assert(IsSanitizerScope); 3203 assert(Checked.size() > 0); 3204 assert(CheckHandler >= 0 && 3205 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3206 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3207 3208 llvm::Value *FatalCond = nullptr; 3209 llvm::Value *RecoverableCond = nullptr; 3210 llvm::Value *TrapCond = nullptr; 3211 for (int i = 0, n = Checked.size(); i < n; ++i) { 3212 llvm::Value *Check = Checked[i].first; 3213 // -fsanitize-trap= overrides -fsanitize-recover=. 3214 llvm::Value *&Cond = 3215 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3216 ? TrapCond 3217 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3218 ? RecoverableCond 3219 : FatalCond; 3220 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3221 } 3222 3223 if (TrapCond) 3224 EmitTrapCheck(TrapCond, CheckHandler); 3225 if (!FatalCond && !RecoverableCond) 3226 return; 3227 3228 llvm::Value *JointCond; 3229 if (FatalCond && RecoverableCond) 3230 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3231 else 3232 JointCond = FatalCond ? FatalCond : RecoverableCond; 3233 assert(JointCond); 3234 3235 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3236 assert(SanOpts.has(Checked[0].second)); 3237 #ifndef NDEBUG 3238 for (int i = 1, n = Checked.size(); i < n; ++i) { 3239 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3240 "All recoverable kinds in a single check must be same!"); 3241 assert(SanOpts.has(Checked[i].second)); 3242 } 3243 #endif 3244 3245 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3246 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3247 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3248 // Give hint that we very much don't expect to execute the handler 3249 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3250 llvm::MDBuilder MDHelper(getLLVMContext()); 3251 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3252 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3253 EmitBlock(Handlers); 3254 3255 // Handler functions take an i8* pointing to the (handler-specific) static 3256 // information block, followed by a sequence of intptr_t arguments 3257 // representing operand values. 3258 SmallVector<llvm::Value *, 4> Args; 3259 SmallVector<llvm::Type *, 4> ArgTypes; 3260 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3261 Args.reserve(DynamicArgs.size() + 1); 3262 ArgTypes.reserve(DynamicArgs.size() + 1); 3263 3264 // Emit handler arguments and create handler function type. 3265 if (!StaticArgs.empty()) { 3266 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3267 auto *InfoPtr = 3268 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3269 llvm::GlobalVariable::PrivateLinkage, Info); 3270 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3271 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3272 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3273 ArgTypes.push_back(Int8PtrTy); 3274 } 3275 3276 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3277 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3278 ArgTypes.push_back(IntPtrTy); 3279 } 3280 } 3281 3282 llvm::FunctionType *FnType = 3283 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3284 3285 if (!FatalCond || !RecoverableCond) { 3286 // Simple case: we need to generate a single handler call, either 3287 // fatal, or non-fatal. 3288 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3289 (FatalCond != nullptr), Cont); 3290 } else { 3291 // Emit two handler calls: first one for set of unrecoverable checks, 3292 // another one for recoverable. 3293 llvm::BasicBlock *NonFatalHandlerBB = 3294 createBasicBlock("non_fatal." + CheckName); 3295 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3296 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3297 EmitBlock(FatalHandlerBB); 3298 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3299 NonFatalHandlerBB); 3300 EmitBlock(NonFatalHandlerBB); 3301 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3302 Cont); 3303 } 3304 3305 EmitBlock(Cont); 3306 } 3307 3308 void CodeGenFunction::EmitCfiSlowPathCheck( 3309 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3310 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3311 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3312 3313 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3314 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3315 3316 llvm::MDBuilder MDHelper(getLLVMContext()); 3317 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3318 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3319 3320 EmitBlock(CheckBB); 3321 3322 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3323 3324 llvm::CallInst *CheckCall; 3325 llvm::FunctionCallee SlowPathFn; 3326 if (WithDiag) { 3327 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3328 auto *InfoPtr = 3329 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3330 llvm::GlobalVariable::PrivateLinkage, Info); 3331 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3332 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3333 3334 SlowPathFn = CGM.getModule().getOrInsertFunction( 3335 "__cfi_slowpath_diag", 3336 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3337 false)); 3338 CheckCall = Builder.CreateCall( 3339 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3340 } else { 3341 SlowPathFn = CGM.getModule().getOrInsertFunction( 3342 "__cfi_slowpath", 3343 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3344 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3345 } 3346 3347 CGM.setDSOLocal( 3348 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3349 CheckCall->setDoesNotThrow(); 3350 3351 EmitBlock(Cont); 3352 } 3353 3354 // Emit a stub for __cfi_check function so that the linker knows about this 3355 // symbol in LTO mode. 3356 void CodeGenFunction::EmitCfiCheckStub() { 3357 llvm::Module *M = &CGM.getModule(); 3358 auto &Ctx = M->getContext(); 3359 llvm::Function *F = llvm::Function::Create( 3360 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3361 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3362 CGM.setDSOLocal(F); 3363 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3364 // FIXME: consider emitting an intrinsic call like 3365 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3366 // which can be lowered in CrossDSOCFI pass to the actual contents of 3367 // __cfi_check. This would allow inlining of __cfi_check calls. 3368 llvm::CallInst::Create( 3369 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3370 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3371 } 3372 3373 // This function is basically a switch over the CFI failure kind, which is 3374 // extracted from CFICheckFailData (1st function argument). Each case is either 3375 // llvm.trap or a call to one of the two runtime handlers, based on 3376 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3377 // failure kind) traps, but this should really never happen. CFICheckFailData 3378 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3379 // check kind; in this case __cfi_check_fail traps as well. 3380 void CodeGenFunction::EmitCfiCheckFail() { 3381 SanitizerScope SanScope(this); 3382 FunctionArgList Args; 3383 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3384 ImplicitParamDecl::Other); 3385 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3386 ImplicitParamDecl::Other); 3387 Args.push_back(&ArgData); 3388 Args.push_back(&ArgAddr); 3389 3390 const CGFunctionInfo &FI = 3391 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3392 3393 llvm::Function *F = llvm::Function::Create( 3394 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3395 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3396 3397 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false); 3398 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3399 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3400 3401 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3402 SourceLocation()); 3403 3404 // This function is not affected by NoSanitizeList. This function does 3405 // not have a source location, but "src:*" would still apply. Revert any 3406 // changes to SanOpts made in StartFunction. 3407 SanOpts = CGM.getLangOpts().Sanitize; 3408 3409 llvm::Value *Data = 3410 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3411 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3412 llvm::Value *Addr = 3413 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3414 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3415 3416 // Data == nullptr means the calling module has trap behaviour for this check. 3417 llvm::Value *DataIsNotNullPtr = 3418 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3419 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail); 3420 3421 llvm::StructType *SourceLocationTy = 3422 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3423 llvm::StructType *CfiCheckFailDataTy = 3424 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3425 3426 llvm::Value *V = Builder.CreateConstGEP2_32( 3427 CfiCheckFailDataTy, 3428 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3429 0); 3430 Address CheckKindAddr(V, getIntAlign()); 3431 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3432 3433 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3434 CGM.getLLVMContext(), 3435 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3436 llvm::Value *ValidVtable = Builder.CreateZExt( 3437 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3438 {Addr, AllVtables}), 3439 IntPtrTy); 3440 3441 const std::pair<int, SanitizerMask> CheckKinds[] = { 3442 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3443 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3444 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3445 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3446 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3447 3448 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3449 for (auto CheckKindMaskPair : CheckKinds) { 3450 int Kind = CheckKindMaskPair.first; 3451 SanitizerMask Mask = CheckKindMaskPair.second; 3452 llvm::Value *Cond = 3453 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3454 if (CGM.getLangOpts().Sanitize.has(Mask)) 3455 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3456 {Data, Addr, ValidVtable}); 3457 else 3458 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail); 3459 } 3460 3461 FinishFunction(); 3462 // The only reference to this function will be created during LTO link. 3463 // Make sure it survives until then. 3464 CGM.addUsedGlobal(F); 3465 } 3466 3467 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3468 if (SanOpts.has(SanitizerKind::Unreachable)) { 3469 SanitizerScope SanScope(this); 3470 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3471 SanitizerKind::Unreachable), 3472 SanitizerHandler::BuiltinUnreachable, 3473 EmitCheckSourceLocation(Loc), None); 3474 } 3475 Builder.CreateUnreachable(); 3476 } 3477 3478 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked, 3479 SanitizerHandler CheckHandlerID) { 3480 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3481 3482 // If we're optimizing, collapse all calls to trap down to just one per 3483 // check-type per function to save on code size. 3484 if (TrapBBs.size() <= CheckHandlerID) 3485 TrapBBs.resize(CheckHandlerID + 1); 3486 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID]; 3487 3488 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3489 TrapBB = createBasicBlock("trap"); 3490 Builder.CreateCondBr(Checked, Cont, TrapBB); 3491 EmitBlock(TrapBB); 3492 3493 llvm::CallInst *TrapCall = 3494 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap), 3495 llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID)); 3496 3497 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3498 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3499 CGM.getCodeGenOpts().TrapFuncName); 3500 TrapCall->addFnAttr(A); 3501 } 3502 TrapCall->setDoesNotReturn(); 3503 TrapCall->setDoesNotThrow(); 3504 Builder.CreateUnreachable(); 3505 } else { 3506 auto Call = TrapBB->begin(); 3507 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB"); 3508 3509 Call->applyMergedLocation(Call->getDebugLoc(), 3510 Builder.getCurrentDebugLocation()); 3511 Builder.CreateCondBr(Checked, Cont, TrapBB); 3512 } 3513 3514 EmitBlock(Cont); 3515 } 3516 3517 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3518 llvm::CallInst *TrapCall = 3519 Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3520 3521 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3522 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3523 CGM.getCodeGenOpts().TrapFuncName); 3524 TrapCall->addFnAttr(A); 3525 } 3526 3527 return TrapCall; 3528 } 3529 3530 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3531 LValueBaseInfo *BaseInfo, 3532 TBAAAccessInfo *TBAAInfo) { 3533 assert(E->getType()->isArrayType() && 3534 "Array to pointer decay must have array source type!"); 3535 3536 // Expressions of array type can't be bitfields or vector elements. 3537 LValue LV = EmitLValue(E); 3538 Address Addr = LV.getAddress(*this); 3539 3540 // If the array type was an incomplete type, we need to make sure 3541 // the decay ends up being the right type. 3542 llvm::Type *NewTy = ConvertType(E->getType()); 3543 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3544 3545 // Note that VLA pointers are always decayed, so we don't need to do 3546 // anything here. 3547 if (!E->getType()->isVariableArrayType()) { 3548 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3549 "Expected pointer to array"); 3550 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3551 } 3552 3553 // The result of this decay conversion points to an array element within the 3554 // base lvalue. However, since TBAA currently does not support representing 3555 // accesses to elements of member arrays, we conservatively represent accesses 3556 // to the pointee object as if it had no any base lvalue specified. 3557 // TODO: Support TBAA for member arrays. 3558 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3559 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3560 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3561 3562 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3563 } 3564 3565 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3566 /// array to pointer, return the array subexpression. 3567 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3568 // If this isn't just an array->pointer decay, bail out. 3569 const auto *CE = dyn_cast<CastExpr>(E); 3570 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3571 return nullptr; 3572 3573 // If this is a decay from variable width array, bail out. 3574 const Expr *SubExpr = CE->getSubExpr(); 3575 if (SubExpr->getType()->isVariableArrayType()) 3576 return nullptr; 3577 3578 return SubExpr; 3579 } 3580 3581 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3582 llvm::Type *elemType, 3583 llvm::Value *ptr, 3584 ArrayRef<llvm::Value*> indices, 3585 bool inbounds, 3586 bool signedIndices, 3587 SourceLocation loc, 3588 const llvm::Twine &name = "arrayidx") { 3589 if (inbounds) { 3590 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3591 CodeGenFunction::NotSubtraction, loc, 3592 name); 3593 } else { 3594 return CGF.Builder.CreateGEP(elemType, ptr, indices, name); 3595 } 3596 } 3597 3598 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3599 llvm::Value *idx, 3600 CharUnits eltSize) { 3601 // If we have a constant index, we can use the exact offset of the 3602 // element we're accessing. 3603 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3604 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3605 return arrayAlign.alignmentAtOffset(offset); 3606 3607 // Otherwise, use the worst-case alignment for any element. 3608 } else { 3609 return arrayAlign.alignmentOfArrayElement(eltSize); 3610 } 3611 } 3612 3613 static QualType getFixedSizeElementType(const ASTContext &ctx, 3614 const VariableArrayType *vla) { 3615 QualType eltType; 3616 do { 3617 eltType = vla->getElementType(); 3618 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3619 return eltType; 3620 } 3621 3622 /// Given an array base, check whether its member access belongs to a record 3623 /// with preserve_access_index attribute or not. 3624 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3625 if (!ArrayBase || !CGF.getDebugInfo()) 3626 return false; 3627 3628 // Only support base as either a MemberExpr or DeclRefExpr. 3629 // DeclRefExpr to cover cases like: 3630 // struct s { int a; int b[10]; }; 3631 // struct s *p; 3632 // p[1].a 3633 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3634 // p->b[5] is a MemberExpr example. 3635 const Expr *E = ArrayBase->IgnoreImpCasts(); 3636 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3637 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3638 3639 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3640 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3641 if (!VarDef) 3642 return false; 3643 3644 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3645 if (!PtrT) 3646 return false; 3647 3648 const auto *PointeeT = PtrT->getPointeeType() 3649 ->getUnqualifiedDesugaredType(); 3650 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3651 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3652 return false; 3653 } 3654 3655 return false; 3656 } 3657 3658 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3659 ArrayRef<llvm::Value *> indices, 3660 QualType eltType, bool inbounds, 3661 bool signedIndices, SourceLocation loc, 3662 QualType *arrayType = nullptr, 3663 const Expr *Base = nullptr, 3664 const llvm::Twine &name = "arrayidx") { 3665 // All the indices except that last must be zero. 3666 #ifndef NDEBUG 3667 for (auto idx : indices.drop_back()) 3668 assert(isa<llvm::ConstantInt>(idx) && 3669 cast<llvm::ConstantInt>(idx)->isZero()); 3670 #endif 3671 3672 // Determine the element size of the statically-sized base. This is 3673 // the thing that the indices are expressed in terms of. 3674 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3675 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3676 } 3677 3678 // We can use that to compute the best alignment of the element. 3679 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3680 CharUnits eltAlign = 3681 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3682 3683 llvm::Value *eltPtr; 3684 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3685 if (!LastIndex || 3686 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3687 eltPtr = emitArraySubscriptGEP( 3688 CGF, addr.getElementType(), addr.getPointer(), indices, inbounds, 3689 signedIndices, loc, name); 3690 } else { 3691 // Remember the original array subscript for bpf target 3692 unsigned idx = LastIndex->getZExtValue(); 3693 llvm::DIType *DbgInfo = nullptr; 3694 if (arrayType) 3695 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3696 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3697 addr.getPointer(), 3698 indices.size() - 1, 3699 idx, DbgInfo); 3700 } 3701 3702 return Address(eltPtr, eltAlign); 3703 } 3704 3705 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3706 bool Accessed) { 3707 // The index must always be an integer, which is not an aggregate. Emit it 3708 // in lexical order (this complexity is, sadly, required by C++17). 3709 llvm::Value *IdxPre = 3710 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3711 bool SignedIndices = false; 3712 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3713 auto *Idx = IdxPre; 3714 if (E->getLHS() != E->getIdx()) { 3715 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3716 Idx = EmitScalarExpr(E->getIdx()); 3717 } 3718 3719 QualType IdxTy = E->getIdx()->getType(); 3720 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3721 SignedIndices |= IdxSigned; 3722 3723 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3724 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3725 3726 // Extend or truncate the index type to 32 or 64-bits. 3727 if (Promote && Idx->getType() != IntPtrTy) 3728 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3729 3730 return Idx; 3731 }; 3732 IdxPre = nullptr; 3733 3734 // If the base is a vector type, then we are forming a vector element lvalue 3735 // with this subscript. 3736 if (E->getBase()->getType()->isVectorType() && 3737 !isa<ExtVectorElementExpr>(E->getBase())) { 3738 // Emit the vector as an lvalue to get its address. 3739 LValue LHS = EmitLValue(E->getBase()); 3740 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3741 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3742 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3743 E->getBase()->getType(), LHS.getBaseInfo(), 3744 TBAAAccessInfo()); 3745 } 3746 3747 // All the other cases basically behave like simple offsetting. 3748 3749 // Handle the extvector case we ignored above. 3750 if (isa<ExtVectorElementExpr>(E->getBase())) { 3751 LValue LV = EmitLValue(E->getBase()); 3752 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3753 Address Addr = EmitExtVectorElementLValue(LV); 3754 3755 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3756 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3757 SignedIndices, E->getExprLoc()); 3758 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3759 CGM.getTBAAInfoForSubobject(LV, EltType)); 3760 } 3761 3762 LValueBaseInfo EltBaseInfo; 3763 TBAAAccessInfo EltTBAAInfo; 3764 Address Addr = Address::invalid(); 3765 if (const VariableArrayType *vla = 3766 getContext().getAsVariableArrayType(E->getType())) { 3767 // The base must be a pointer, which is not an aggregate. Emit 3768 // it. It needs to be emitted first in case it's what captures 3769 // the VLA bounds. 3770 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3771 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3772 3773 // The element count here is the total number of non-VLA elements. 3774 llvm::Value *numElements = getVLASize(vla).NumElts; 3775 3776 // Effectively, the multiply by the VLA size is part of the GEP. 3777 // GEP indexes are signed, and scaling an index isn't permitted to 3778 // signed-overflow, so we use the same semantics for our explicit 3779 // multiply. We suppress this if overflow is not undefined behavior. 3780 if (getLangOpts().isSignedOverflowDefined()) { 3781 Idx = Builder.CreateMul(Idx, numElements); 3782 } else { 3783 Idx = Builder.CreateNSWMul(Idx, numElements); 3784 } 3785 3786 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3787 !getLangOpts().isSignedOverflowDefined(), 3788 SignedIndices, E->getExprLoc()); 3789 3790 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3791 // Indexing over an interface, as in "NSString *P; P[4];" 3792 3793 // Emit the base pointer. 3794 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3795 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3796 3797 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3798 llvm::Value *InterfaceSizeVal = 3799 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3800 3801 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3802 3803 // We don't necessarily build correct LLVM struct types for ObjC 3804 // interfaces, so we can't rely on GEP to do this scaling 3805 // correctly, so we need to cast to i8*. FIXME: is this actually 3806 // true? A lot of other things in the fragile ABI would break... 3807 llvm::Type *OrigBaseTy = Addr.getType(); 3808 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3809 3810 // Do the GEP. 3811 CharUnits EltAlign = 3812 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3813 llvm::Value *EltPtr = 3814 emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(), 3815 ScaledIdx, false, SignedIndices, E->getExprLoc()); 3816 Addr = Address(EltPtr, EltAlign); 3817 3818 // Cast back. 3819 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3820 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3821 // If this is A[i] where A is an array, the frontend will have decayed the 3822 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3823 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3824 // "gep x, i" here. Emit one "gep A, 0, i". 3825 assert(Array->getType()->isArrayType() && 3826 "Array to pointer decay must have array source type!"); 3827 LValue ArrayLV; 3828 // For simple multidimensional array indexing, set the 'accessed' flag for 3829 // better bounds-checking of the base expression. 3830 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3831 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3832 else 3833 ArrayLV = EmitLValue(Array); 3834 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3835 3836 // Propagate the alignment from the array itself to the result. 3837 QualType arrayType = Array->getType(); 3838 Addr = emitArraySubscriptGEP( 3839 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3840 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3841 E->getExprLoc(), &arrayType, E->getBase()); 3842 EltBaseInfo = ArrayLV.getBaseInfo(); 3843 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3844 } else { 3845 // The base must be a pointer; emit it with an estimate of its alignment. 3846 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3847 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3848 QualType ptrType = E->getBase()->getType(); 3849 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3850 !getLangOpts().isSignedOverflowDefined(), 3851 SignedIndices, E->getExprLoc(), &ptrType, 3852 E->getBase()); 3853 } 3854 3855 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3856 3857 if (getLangOpts().ObjC && 3858 getLangOpts().getGC() != LangOptions::NonGC) { 3859 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3860 setObjCGCLValueClass(getContext(), E, LV); 3861 } 3862 return LV; 3863 } 3864 3865 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) { 3866 assert( 3867 !E->isIncomplete() && 3868 "incomplete matrix subscript expressions should be rejected during Sema"); 3869 LValue Base = EmitLValue(E->getBase()); 3870 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx()); 3871 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx()); 3872 llvm::Value *NumRows = Builder.getIntN( 3873 RowIdx->getType()->getScalarSizeInBits(), 3874 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows()); 3875 llvm::Value *FinalIdx = 3876 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx); 3877 return LValue::MakeMatrixElt( 3878 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx, 3879 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo()); 3880 } 3881 3882 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3883 LValueBaseInfo &BaseInfo, 3884 TBAAAccessInfo &TBAAInfo, 3885 QualType BaseTy, QualType ElTy, 3886 bool IsLowerBound) { 3887 LValue BaseLVal; 3888 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3889 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3890 if (BaseTy->isArrayType()) { 3891 Address Addr = BaseLVal.getAddress(CGF); 3892 BaseInfo = BaseLVal.getBaseInfo(); 3893 3894 // If the array type was an incomplete type, we need to make sure 3895 // the decay ends up being the right type. 3896 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3897 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3898 3899 // Note that VLA pointers are always decayed, so we don't need to do 3900 // anything here. 3901 if (!BaseTy->isVariableArrayType()) { 3902 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3903 "Expected pointer to array"); 3904 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3905 } 3906 3907 return CGF.Builder.CreateElementBitCast(Addr, 3908 CGF.ConvertTypeForMem(ElTy)); 3909 } 3910 LValueBaseInfo TypeBaseInfo; 3911 TBAAAccessInfo TypeTBAAInfo; 3912 CharUnits Align = 3913 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo); 3914 BaseInfo.mergeForCast(TypeBaseInfo); 3915 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3916 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align); 3917 } 3918 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3919 } 3920 3921 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3922 bool IsLowerBound) { 3923 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3924 QualType ResultExprTy; 3925 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3926 ResultExprTy = AT->getElementType(); 3927 else 3928 ResultExprTy = BaseTy->getPointeeType(); 3929 llvm::Value *Idx = nullptr; 3930 if (IsLowerBound || E->getColonLocFirst().isInvalid()) { 3931 // Requesting lower bound or upper bound, but without provided length and 3932 // without ':' symbol for the default length -> length = 1. 3933 // Idx = LowerBound ?: 0; 3934 if (auto *LowerBound = E->getLowerBound()) { 3935 Idx = Builder.CreateIntCast( 3936 EmitScalarExpr(LowerBound), IntPtrTy, 3937 LowerBound->getType()->hasSignedIntegerRepresentation()); 3938 } else 3939 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3940 } else { 3941 // Try to emit length or lower bound as constant. If this is possible, 1 3942 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3943 // IR (LB + Len) - 1. 3944 auto &C = CGM.getContext(); 3945 auto *Length = E->getLength(); 3946 llvm::APSInt ConstLength; 3947 if (Length) { 3948 // Idx = LowerBound + Length - 1; 3949 if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) { 3950 ConstLength = CL->zextOrTrunc(PointerWidthInBits); 3951 Length = nullptr; 3952 } 3953 auto *LowerBound = E->getLowerBound(); 3954 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3955 if (LowerBound) { 3956 if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) { 3957 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits); 3958 LowerBound = nullptr; 3959 } 3960 } 3961 if (!Length) 3962 --ConstLength; 3963 else if (!LowerBound) 3964 --ConstLowerBound; 3965 3966 if (Length || LowerBound) { 3967 auto *LowerBoundVal = 3968 LowerBound 3969 ? Builder.CreateIntCast( 3970 EmitScalarExpr(LowerBound), IntPtrTy, 3971 LowerBound->getType()->hasSignedIntegerRepresentation()) 3972 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3973 auto *LengthVal = 3974 Length 3975 ? Builder.CreateIntCast( 3976 EmitScalarExpr(Length), IntPtrTy, 3977 Length->getType()->hasSignedIntegerRepresentation()) 3978 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3979 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3980 /*HasNUW=*/false, 3981 !getLangOpts().isSignedOverflowDefined()); 3982 if (Length && LowerBound) { 3983 Idx = Builder.CreateSub( 3984 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3985 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3986 } 3987 } else 3988 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3989 } else { 3990 // Idx = ArraySize - 1; 3991 QualType ArrayTy = BaseTy->isPointerType() 3992 ? E->getBase()->IgnoreParenImpCasts()->getType() 3993 : BaseTy; 3994 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3995 Length = VAT->getSizeExpr(); 3996 if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) { 3997 ConstLength = *L; 3998 Length = nullptr; 3999 } 4000 } else { 4001 auto *CAT = C.getAsConstantArrayType(ArrayTy); 4002 ConstLength = CAT->getSize(); 4003 } 4004 if (Length) { 4005 auto *LengthVal = Builder.CreateIntCast( 4006 EmitScalarExpr(Length), IntPtrTy, 4007 Length->getType()->hasSignedIntegerRepresentation()); 4008 Idx = Builder.CreateSub( 4009 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 4010 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4011 } else { 4012 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 4013 --ConstLength; 4014 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 4015 } 4016 } 4017 } 4018 assert(Idx); 4019 4020 Address EltPtr = Address::invalid(); 4021 LValueBaseInfo BaseInfo; 4022 TBAAAccessInfo TBAAInfo; 4023 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 4024 // The base must be a pointer, which is not an aggregate. Emit 4025 // it. It needs to be emitted first in case it's what captures 4026 // the VLA bounds. 4027 Address Base = 4028 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 4029 BaseTy, VLA->getElementType(), IsLowerBound); 4030 // The element count here is the total number of non-VLA elements. 4031 llvm::Value *NumElements = getVLASize(VLA).NumElts; 4032 4033 // Effectively, the multiply by the VLA size is part of the GEP. 4034 // GEP indexes are signed, and scaling an index isn't permitted to 4035 // signed-overflow, so we use the same semantics for our explicit 4036 // multiply. We suppress this if overflow is not undefined behavior. 4037 if (getLangOpts().isSignedOverflowDefined()) 4038 Idx = Builder.CreateMul(Idx, NumElements); 4039 else 4040 Idx = Builder.CreateNSWMul(Idx, NumElements); 4041 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 4042 !getLangOpts().isSignedOverflowDefined(), 4043 /*signedIndices=*/false, E->getExprLoc()); 4044 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 4045 // If this is A[i] where A is an array, the frontend will have decayed the 4046 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 4047 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 4048 // "gep x, i" here. Emit one "gep A, 0, i". 4049 assert(Array->getType()->isArrayType() && 4050 "Array to pointer decay must have array source type!"); 4051 LValue ArrayLV; 4052 // For simple multidimensional array indexing, set the 'accessed' flag for 4053 // better bounds-checking of the base expression. 4054 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 4055 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 4056 else 4057 ArrayLV = EmitLValue(Array); 4058 4059 // Propagate the alignment from the array itself to the result. 4060 EltPtr = emitArraySubscriptGEP( 4061 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 4062 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 4063 /*signedIndices=*/false, E->getExprLoc()); 4064 BaseInfo = ArrayLV.getBaseInfo(); 4065 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 4066 } else { 4067 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 4068 TBAAInfo, BaseTy, ResultExprTy, 4069 IsLowerBound); 4070 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 4071 !getLangOpts().isSignedOverflowDefined(), 4072 /*signedIndices=*/false, E->getExprLoc()); 4073 } 4074 4075 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 4076 } 4077 4078 LValue CodeGenFunction:: 4079 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 4080 // Emit the base vector as an l-value. 4081 LValue Base; 4082 4083 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 4084 if (E->isArrow()) { 4085 // If it is a pointer to a vector, emit the address and form an lvalue with 4086 // it. 4087 LValueBaseInfo BaseInfo; 4088 TBAAAccessInfo TBAAInfo; 4089 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 4090 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 4091 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 4092 Base.getQuals().removeObjCGCAttr(); 4093 } else if (E->getBase()->isGLValue()) { 4094 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 4095 // emit the base as an lvalue. 4096 assert(E->getBase()->getType()->isVectorType()); 4097 Base = EmitLValue(E->getBase()); 4098 } else { 4099 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 4100 assert(E->getBase()->getType()->isVectorType() && 4101 "Result must be a vector"); 4102 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 4103 4104 // Store the vector to memory (because LValue wants an address). 4105 Address VecMem = CreateMemTemp(E->getBase()->getType()); 4106 Builder.CreateStore(Vec, VecMem); 4107 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 4108 AlignmentSource::Decl); 4109 } 4110 4111 QualType type = 4112 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 4113 4114 // Encode the element access list into a vector of unsigned indices. 4115 SmallVector<uint32_t, 4> Indices; 4116 E->getEncodedElementAccess(Indices); 4117 4118 if (Base.isSimple()) { 4119 llvm::Constant *CV = 4120 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 4121 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 4122 Base.getBaseInfo(), TBAAAccessInfo()); 4123 } 4124 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 4125 4126 llvm::Constant *BaseElts = Base.getExtVectorElts(); 4127 SmallVector<llvm::Constant *, 4> CElts; 4128 4129 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 4130 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 4131 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 4132 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 4133 Base.getBaseInfo(), TBAAAccessInfo()); 4134 } 4135 4136 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 4137 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 4138 EmitIgnoredExpr(E->getBase()); 4139 return EmitDeclRefLValue(DRE); 4140 } 4141 4142 Expr *BaseExpr = E->getBase(); 4143 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 4144 LValue BaseLV; 4145 if (E->isArrow()) { 4146 LValueBaseInfo BaseInfo; 4147 TBAAAccessInfo TBAAInfo; 4148 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 4149 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 4150 SanitizerSet SkippedChecks; 4151 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 4152 if (IsBaseCXXThis) 4153 SkippedChecks.set(SanitizerKind::Alignment, true); 4154 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 4155 SkippedChecks.set(SanitizerKind::Null, true); 4156 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 4157 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 4158 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 4159 } else 4160 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 4161 4162 NamedDecl *ND = E->getMemberDecl(); 4163 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 4164 LValue LV = EmitLValueForField(BaseLV, Field); 4165 setObjCGCLValueClass(getContext(), E, LV); 4166 if (getLangOpts().OpenMP) { 4167 // If the member was explicitly marked as nontemporal, mark it as 4168 // nontemporal. If the base lvalue is marked as nontemporal, mark access 4169 // to children as nontemporal too. 4170 if ((IsWrappedCXXThis(BaseExpr) && 4171 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 4172 BaseLV.isNontemporal()) 4173 LV.setNontemporal(/*Value=*/true); 4174 } 4175 return LV; 4176 } 4177 4178 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 4179 return EmitFunctionDeclLValue(*this, E, FD); 4180 4181 llvm_unreachable("Unhandled member declaration!"); 4182 } 4183 4184 /// Given that we are currently emitting a lambda, emit an l-value for 4185 /// one of its members. 4186 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 4187 if (CurCodeDecl) { 4188 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 4189 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 4190 } 4191 QualType LambdaTagType = 4192 getContext().getTagDeclType(Field->getParent()); 4193 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 4194 return EmitLValueForField(LambdaLV, Field); 4195 } 4196 4197 /// Get the field index in the debug info. The debug info structure/union 4198 /// will ignore the unnamed bitfields. 4199 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 4200 unsigned FieldIndex) { 4201 unsigned I = 0, Skipped = 0; 4202 4203 for (auto F : Rec->getDefinition()->fields()) { 4204 if (I == FieldIndex) 4205 break; 4206 if (F->isUnnamedBitfield()) 4207 Skipped++; 4208 I++; 4209 } 4210 4211 return FieldIndex - Skipped; 4212 } 4213 4214 /// Get the address of a zero-sized field within a record. The resulting 4215 /// address doesn't necessarily have the right type. 4216 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4217 const FieldDecl *Field) { 4218 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4219 CGF.getContext().getFieldOffset(Field)); 4220 if (Offset.isZero()) 4221 return Base; 4222 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4223 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4224 } 4225 4226 /// Drill down to the storage of a field without walking into 4227 /// reference types. 4228 /// 4229 /// The resulting address doesn't necessarily have the right type. 4230 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4231 const FieldDecl *field) { 4232 if (field->isZeroSize(CGF.getContext())) 4233 return emitAddrOfZeroSizeField(CGF, base, field); 4234 4235 const RecordDecl *rec = field->getParent(); 4236 4237 unsigned idx = 4238 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4239 4240 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4241 } 4242 4243 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4244 Address addr, const FieldDecl *field) { 4245 const RecordDecl *rec = field->getParent(); 4246 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4247 base.getType(), rec->getLocation()); 4248 4249 unsigned idx = 4250 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4251 4252 return CGF.Builder.CreatePreserveStructAccessIndex( 4253 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4254 } 4255 4256 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4257 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4258 if (!RD) 4259 return false; 4260 4261 if (RD->isDynamicClass()) 4262 return true; 4263 4264 for (const auto &Base : RD->bases()) 4265 if (hasAnyVptr(Base.getType(), Context)) 4266 return true; 4267 4268 for (const FieldDecl *Field : RD->fields()) 4269 if (hasAnyVptr(Field->getType(), Context)) 4270 return true; 4271 4272 return false; 4273 } 4274 4275 LValue CodeGenFunction::EmitLValueForField(LValue base, 4276 const FieldDecl *field) { 4277 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4278 4279 if (field->isBitField()) { 4280 const CGRecordLayout &RL = 4281 CGM.getTypes().getCGRecordLayout(field->getParent()); 4282 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4283 const bool UseVolatile = isAAPCS(CGM.getTarget()) && 4284 CGM.getCodeGenOpts().AAPCSBitfieldWidth && 4285 Info.VolatileStorageSize != 0 && 4286 field->getType() 4287 .withCVRQualifiers(base.getVRQualifiers()) 4288 .isVolatileQualified(); 4289 Address Addr = base.getAddress(*this); 4290 unsigned Idx = RL.getLLVMFieldNo(field); 4291 const RecordDecl *rec = field->getParent(); 4292 if (!UseVolatile) { 4293 if (!IsInPreservedAIRegion && 4294 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4295 if (Idx != 0) 4296 // For structs, we GEP to the field that the record layout suggests. 4297 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4298 } else { 4299 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4300 getContext().getRecordType(rec), rec->getLocation()); 4301 Addr = Builder.CreatePreserveStructAccessIndex( 4302 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()), 4303 DbgInfo); 4304 } 4305 } 4306 const unsigned SS = 4307 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 4308 // Get the access type. 4309 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS); 4310 if (Addr.getElementType() != FieldIntTy) 4311 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4312 if (UseVolatile) { 4313 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity(); 4314 if (VolatileOffset) 4315 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset); 4316 } 4317 4318 QualType fieldType = 4319 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4320 // TODO: Support TBAA for bit fields. 4321 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4322 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4323 TBAAAccessInfo()); 4324 } 4325 4326 // Fields of may-alias structures are may-alias themselves. 4327 // FIXME: this should get propagated down through anonymous structs 4328 // and unions. 4329 QualType FieldType = field->getType(); 4330 const RecordDecl *rec = field->getParent(); 4331 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4332 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4333 TBAAAccessInfo FieldTBAAInfo; 4334 if (base.getTBAAInfo().isMayAlias() || 4335 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4336 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4337 } else if (rec->isUnion()) { 4338 // TODO: Support TBAA for unions. 4339 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4340 } else { 4341 // If no base type been assigned for the base access, then try to generate 4342 // one for this base lvalue. 4343 FieldTBAAInfo = base.getTBAAInfo(); 4344 if (!FieldTBAAInfo.BaseType) { 4345 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4346 assert(!FieldTBAAInfo.Offset && 4347 "Nonzero offset for an access with no base type!"); 4348 } 4349 4350 // Adjust offset to be relative to the base type. 4351 const ASTRecordLayout &Layout = 4352 getContext().getASTRecordLayout(field->getParent()); 4353 unsigned CharWidth = getContext().getCharWidth(); 4354 if (FieldTBAAInfo.BaseType) 4355 FieldTBAAInfo.Offset += 4356 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4357 4358 // Update the final access type and size. 4359 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4360 FieldTBAAInfo.Size = 4361 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4362 } 4363 4364 Address addr = base.getAddress(*this); 4365 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4366 if (CGM.getCodeGenOpts().StrictVTablePointers && 4367 ClassDef->isDynamicClass()) { 4368 // Getting to any field of dynamic object requires stripping dynamic 4369 // information provided by invariant.group. This is because accessing 4370 // fields may leak the real address of dynamic object, which could result 4371 // in miscompilation when leaked pointer would be compared. 4372 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4373 addr = Address(stripped, addr.getAlignment()); 4374 } 4375 } 4376 4377 unsigned RecordCVR = base.getVRQualifiers(); 4378 if (rec->isUnion()) { 4379 // For unions, there is no pointer adjustment. 4380 if (CGM.getCodeGenOpts().StrictVTablePointers && 4381 hasAnyVptr(FieldType, getContext())) 4382 // Because unions can easily skip invariant.barriers, we need to add 4383 // a barrier every time CXXRecord field with vptr is referenced. 4384 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 4385 addr.getAlignment()); 4386 4387 if (IsInPreservedAIRegion || 4388 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4389 // Remember the original union field index 4390 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4391 rec->getLocation()); 4392 addr = Address( 4393 Builder.CreatePreserveUnionAccessIndex( 4394 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4395 addr.getAlignment()); 4396 } 4397 4398 if (FieldType->isReferenceType()) 4399 addr = Builder.CreateElementBitCast( 4400 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4401 } else { 4402 if (!IsInPreservedAIRegion && 4403 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4404 // For structs, we GEP to the field that the record layout suggests. 4405 addr = emitAddrOfFieldStorage(*this, addr, field); 4406 else 4407 // Remember the original struct field index 4408 addr = emitPreserveStructAccess(*this, base, addr, field); 4409 } 4410 4411 // If this is a reference field, load the reference right now. 4412 if (FieldType->isReferenceType()) { 4413 LValue RefLVal = 4414 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4415 if (RecordCVR & Qualifiers::Volatile) 4416 RefLVal.getQuals().addVolatile(); 4417 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4418 4419 // Qualifiers on the struct don't apply to the referencee. 4420 RecordCVR = 0; 4421 FieldType = FieldType->getPointeeType(); 4422 } 4423 4424 // Make sure that the address is pointing to the right type. This is critical 4425 // for both unions and structs. A union needs a bitcast, a struct element 4426 // will need a bitcast if the LLVM type laid out doesn't match the desired 4427 // type. 4428 addr = Builder.CreateElementBitCast( 4429 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4430 4431 if (field->hasAttr<AnnotateAttr>()) 4432 addr = EmitFieldAnnotations(field, addr); 4433 4434 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4435 LV.getQuals().addCVRQualifiers(RecordCVR); 4436 4437 // __weak attribute on a field is ignored. 4438 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4439 LV.getQuals().removeObjCGCAttr(); 4440 4441 return LV; 4442 } 4443 4444 LValue 4445 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4446 const FieldDecl *Field) { 4447 QualType FieldType = Field->getType(); 4448 4449 if (!FieldType->isReferenceType()) 4450 return EmitLValueForField(Base, Field); 4451 4452 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4453 4454 // Make sure that the address is pointing to the right type. 4455 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4456 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4457 4458 // TODO: Generate TBAA information that describes this access as a structure 4459 // member access and not just an access to an object of the field's type. This 4460 // should be similar to what we do in EmitLValueForField(). 4461 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4462 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4463 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4464 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4465 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4466 } 4467 4468 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4469 if (E->isFileScope()) { 4470 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4471 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4472 } 4473 if (E->getType()->isVariablyModifiedType()) 4474 // make sure to emit the VLA size. 4475 EmitVariablyModifiedType(E->getType()); 4476 4477 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4478 const Expr *InitExpr = E->getInitializer(); 4479 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4480 4481 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4482 /*Init*/ true); 4483 4484 // Block-scope compound literals are destroyed at the end of the enclosing 4485 // scope in C. 4486 if (!getLangOpts().CPlusPlus) 4487 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 4488 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr, 4489 E->getType(), getDestroyer(DtorKind), 4490 DtorKind & EHCleanup); 4491 4492 return Result; 4493 } 4494 4495 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4496 if (!E->isGLValue()) 4497 // Initializing an aggregate temporary in C++11: T{...}. 4498 return EmitAggExprToLValue(E); 4499 4500 // An lvalue initializer list must be initializing a reference. 4501 assert(E->isTransparent() && "non-transparent glvalue init list"); 4502 return EmitLValue(E->getInit(0)); 4503 } 4504 4505 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4506 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4507 /// LValue is returned and the current block has been terminated. 4508 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4509 const Expr *Operand) { 4510 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4511 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4512 return None; 4513 } 4514 4515 return CGF.EmitLValue(Operand); 4516 } 4517 4518 LValue CodeGenFunction:: 4519 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4520 if (!expr->isGLValue()) { 4521 // ?: here should be an aggregate. 4522 assert(hasAggregateEvaluationKind(expr->getType()) && 4523 "Unexpected conditional operator!"); 4524 return EmitAggExprToLValue(expr); 4525 } 4526 4527 OpaqueValueMapping binding(*this, expr); 4528 4529 const Expr *condExpr = expr->getCond(); 4530 bool CondExprBool; 4531 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4532 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4533 if (!CondExprBool) std::swap(live, dead); 4534 4535 if (!ContainsLabel(dead)) { 4536 // If the true case is live, we need to track its region. 4537 if (CondExprBool) 4538 incrementProfileCounter(expr); 4539 // If a throw expression we emit it and return an undefined lvalue 4540 // because it can't be used. 4541 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) { 4542 EmitCXXThrowExpr(ThrowExpr); 4543 llvm::Type *Ty = 4544 llvm::PointerType::getUnqual(ConvertType(dead->getType())); 4545 return MakeAddrLValue( 4546 Address(llvm::UndefValue::get(Ty), CharUnits::One()), 4547 dead->getType()); 4548 } 4549 return EmitLValue(live); 4550 } 4551 } 4552 4553 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4554 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4555 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4556 4557 ConditionalEvaluation eval(*this); 4558 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4559 4560 // Any temporaries created here are conditional. 4561 EmitBlock(lhsBlock); 4562 incrementProfileCounter(expr); 4563 eval.begin(*this); 4564 Optional<LValue> lhs = 4565 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4566 eval.end(*this); 4567 4568 if (lhs && !lhs->isSimple()) 4569 return EmitUnsupportedLValue(expr, "conditional operator"); 4570 4571 lhsBlock = Builder.GetInsertBlock(); 4572 if (lhs) 4573 Builder.CreateBr(contBlock); 4574 4575 // Any temporaries created here are conditional. 4576 EmitBlock(rhsBlock); 4577 eval.begin(*this); 4578 Optional<LValue> rhs = 4579 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4580 eval.end(*this); 4581 if (rhs && !rhs->isSimple()) 4582 return EmitUnsupportedLValue(expr, "conditional operator"); 4583 rhsBlock = Builder.GetInsertBlock(); 4584 4585 EmitBlock(contBlock); 4586 4587 if (lhs && rhs) { 4588 llvm::PHINode *phi = 4589 Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue"); 4590 phi->addIncoming(lhs->getPointer(*this), lhsBlock); 4591 phi->addIncoming(rhs->getPointer(*this), rhsBlock); 4592 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4593 AlignmentSource alignSource = 4594 std::max(lhs->getBaseInfo().getAlignmentSource(), 4595 rhs->getBaseInfo().getAlignmentSource()); 4596 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4597 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4598 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4599 TBAAInfo); 4600 } else { 4601 assert((lhs || rhs) && 4602 "both operands of glvalue conditional are throw-expressions?"); 4603 return lhs ? *lhs : *rhs; 4604 } 4605 } 4606 4607 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4608 /// type. If the cast is to a reference, we can have the usual lvalue result, 4609 /// otherwise if a cast is needed by the code generator in an lvalue context, 4610 /// then it must mean that we need the address of an aggregate in order to 4611 /// access one of its members. This can happen for all the reasons that casts 4612 /// are permitted with aggregate result, including noop aggregate casts, and 4613 /// cast from scalar to union. 4614 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4615 switch (E->getCastKind()) { 4616 case CK_ToVoid: 4617 case CK_BitCast: 4618 case CK_LValueToRValueBitCast: 4619 case CK_ArrayToPointerDecay: 4620 case CK_FunctionToPointerDecay: 4621 case CK_NullToMemberPointer: 4622 case CK_NullToPointer: 4623 case CK_IntegralToPointer: 4624 case CK_PointerToIntegral: 4625 case CK_PointerToBoolean: 4626 case CK_VectorSplat: 4627 case CK_IntegralCast: 4628 case CK_BooleanToSignedIntegral: 4629 case CK_IntegralToBoolean: 4630 case CK_IntegralToFloating: 4631 case CK_FloatingToIntegral: 4632 case CK_FloatingToBoolean: 4633 case CK_FloatingCast: 4634 case CK_FloatingRealToComplex: 4635 case CK_FloatingComplexToReal: 4636 case CK_FloatingComplexToBoolean: 4637 case CK_FloatingComplexCast: 4638 case CK_FloatingComplexToIntegralComplex: 4639 case CK_IntegralRealToComplex: 4640 case CK_IntegralComplexToReal: 4641 case CK_IntegralComplexToBoolean: 4642 case CK_IntegralComplexCast: 4643 case CK_IntegralComplexToFloatingComplex: 4644 case CK_DerivedToBaseMemberPointer: 4645 case CK_BaseToDerivedMemberPointer: 4646 case CK_MemberPointerToBoolean: 4647 case CK_ReinterpretMemberPointer: 4648 case CK_AnyPointerToBlockPointerCast: 4649 case CK_ARCProduceObject: 4650 case CK_ARCConsumeObject: 4651 case CK_ARCReclaimReturnedObject: 4652 case CK_ARCExtendBlockObject: 4653 case CK_CopyAndAutoreleaseBlockObject: 4654 case CK_IntToOCLSampler: 4655 case CK_FloatingToFixedPoint: 4656 case CK_FixedPointToFloating: 4657 case CK_FixedPointCast: 4658 case CK_FixedPointToBoolean: 4659 case CK_FixedPointToIntegral: 4660 case CK_IntegralToFixedPoint: 4661 case CK_MatrixCast: 4662 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4663 4664 case CK_Dependent: 4665 llvm_unreachable("dependent cast kind in IR gen!"); 4666 4667 case CK_BuiltinFnToFnPtr: 4668 llvm_unreachable("builtin functions are handled elsewhere"); 4669 4670 // These are never l-values; just use the aggregate emission code. 4671 case CK_NonAtomicToAtomic: 4672 case CK_AtomicToNonAtomic: 4673 return EmitAggExprToLValue(E); 4674 4675 case CK_Dynamic: { 4676 LValue LV = EmitLValue(E->getSubExpr()); 4677 Address V = LV.getAddress(*this); 4678 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4679 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4680 } 4681 4682 case CK_ConstructorConversion: 4683 case CK_UserDefinedConversion: 4684 case CK_CPointerToObjCPointerCast: 4685 case CK_BlockPointerToObjCPointerCast: 4686 case CK_NoOp: 4687 case CK_LValueToRValue: 4688 return EmitLValue(E->getSubExpr()); 4689 4690 case CK_UncheckedDerivedToBase: 4691 case CK_DerivedToBase: { 4692 const auto *DerivedClassTy = 4693 E->getSubExpr()->getType()->castAs<RecordType>(); 4694 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4695 4696 LValue LV = EmitLValue(E->getSubExpr()); 4697 Address This = LV.getAddress(*this); 4698 4699 // Perform the derived-to-base conversion 4700 Address Base = GetAddressOfBaseClass( 4701 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4702 /*NullCheckValue=*/false, E->getExprLoc()); 4703 4704 // TODO: Support accesses to members of base classes in TBAA. For now, we 4705 // conservatively pretend that the complete object is of the base class 4706 // type. 4707 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4708 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4709 } 4710 case CK_ToUnion: 4711 return EmitAggExprToLValue(E); 4712 case CK_BaseToDerived: { 4713 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4714 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4715 4716 LValue LV = EmitLValue(E->getSubExpr()); 4717 4718 // Perform the base-to-derived conversion 4719 Address Derived = GetAddressOfDerivedClass( 4720 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4721 /*NullCheckValue=*/false); 4722 4723 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4724 // performed and the object is not of the derived type. 4725 if (sanitizePerformTypeCheck()) 4726 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4727 Derived.getPointer(), E->getType()); 4728 4729 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4730 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4731 /*MayBeNull=*/false, CFITCK_DerivedCast, 4732 E->getBeginLoc()); 4733 4734 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4735 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4736 } 4737 case CK_LValueBitCast: { 4738 // This must be a reinterpret_cast (or c-style equivalent). 4739 const auto *CE = cast<ExplicitCastExpr>(E); 4740 4741 CGM.EmitExplicitCastExprType(CE, this); 4742 LValue LV = EmitLValue(E->getSubExpr()); 4743 Address V = Builder.CreateBitCast(LV.getAddress(*this), 4744 ConvertType(CE->getTypeAsWritten())); 4745 4746 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4747 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4748 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4749 E->getBeginLoc()); 4750 4751 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4752 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4753 } 4754 case CK_AddressSpaceConversion: { 4755 LValue LV = EmitLValue(E->getSubExpr()); 4756 QualType DestTy = getContext().getPointerType(E->getType()); 4757 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4758 *this, LV.getPointer(*this), 4759 E->getSubExpr()->getType().getAddressSpace(), 4760 E->getType().getAddressSpace(), ConvertType(DestTy)); 4761 return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()), 4762 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4763 } 4764 case CK_ObjCObjectLValueCast: { 4765 LValue LV = EmitLValue(E->getSubExpr()); 4766 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4767 ConvertType(E->getType())); 4768 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4769 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4770 } 4771 case CK_ZeroToOCLOpaqueType: 4772 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4773 } 4774 4775 llvm_unreachable("Unhandled lvalue cast kind?"); 4776 } 4777 4778 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4779 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4780 return getOrCreateOpaqueLValueMapping(e); 4781 } 4782 4783 LValue 4784 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4785 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4786 4787 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4788 it = OpaqueLValues.find(e); 4789 4790 if (it != OpaqueLValues.end()) 4791 return it->second; 4792 4793 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4794 return EmitLValue(e->getSourceExpr()); 4795 } 4796 4797 RValue 4798 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4799 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4800 4801 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4802 it = OpaqueRValues.find(e); 4803 4804 if (it != OpaqueRValues.end()) 4805 return it->second; 4806 4807 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4808 return EmitAnyExpr(e->getSourceExpr()); 4809 } 4810 4811 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4812 const FieldDecl *FD, 4813 SourceLocation Loc) { 4814 QualType FT = FD->getType(); 4815 LValue FieldLV = EmitLValueForField(LV, FD); 4816 switch (getEvaluationKind(FT)) { 4817 case TEK_Complex: 4818 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4819 case TEK_Aggregate: 4820 return FieldLV.asAggregateRValue(*this); 4821 case TEK_Scalar: 4822 // This routine is used to load fields one-by-one to perform a copy, so 4823 // don't load reference fields. 4824 if (FD->getType()->isReferenceType()) 4825 return RValue::get(FieldLV.getPointer(*this)); 4826 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4827 // primitive load. 4828 if (FieldLV.isBitField()) 4829 return EmitLoadOfLValue(FieldLV, Loc); 4830 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4831 } 4832 llvm_unreachable("bad evaluation kind"); 4833 } 4834 4835 //===--------------------------------------------------------------------===// 4836 // Expression Emission 4837 //===--------------------------------------------------------------------===// 4838 4839 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4840 ReturnValueSlot ReturnValue) { 4841 // Builtins never have block type. 4842 if (E->getCallee()->getType()->isBlockPointerType()) 4843 return EmitBlockCallExpr(E, ReturnValue); 4844 4845 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4846 return EmitCXXMemberCallExpr(CE, ReturnValue); 4847 4848 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4849 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4850 4851 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4852 if (const CXXMethodDecl *MD = 4853 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4854 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4855 4856 CGCallee callee = EmitCallee(E->getCallee()); 4857 4858 if (callee.isBuiltin()) { 4859 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4860 E, ReturnValue); 4861 } 4862 4863 if (callee.isPseudoDestructor()) { 4864 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4865 } 4866 4867 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4868 } 4869 4870 /// Emit a CallExpr without considering whether it might be a subclass. 4871 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4872 ReturnValueSlot ReturnValue) { 4873 CGCallee Callee = EmitCallee(E->getCallee()); 4874 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4875 } 4876 4877 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) { 4878 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4879 4880 if (auto builtinID = FD->getBuiltinID()) { 4881 std::string FDInlineName = (FD->getName() + ".inline").str(); 4882 // When directing calling an inline builtin, call it through it's mangled 4883 // name to make it clear it's not the actual builtin. 4884 if (FD->isInlineBuiltinDeclaration() && 4885 CGF.CurFn->getName() != FDInlineName) { 4886 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 4887 llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr); 4888 llvm::Module *M = Fn->getParent(); 4889 llvm::Function *Clone = M->getFunction(FDInlineName); 4890 if (!Clone) { 4891 Clone = llvm::Function::Create(Fn->getFunctionType(), 4892 llvm::GlobalValue::InternalLinkage, 4893 Fn->getAddressSpace(), FDInlineName, M); 4894 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 4895 } 4896 return CGCallee::forDirect(Clone, GD); 4897 } 4898 4899 // Replaceable builtins provide their own implementation of a builtin. If we 4900 // are in an inline builtin implementation, avoid trivial infinite 4901 // recursion. 4902 else 4903 return CGCallee::forBuiltin(builtinID, FD); 4904 } 4905 4906 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 4907 if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice && 4908 FD->hasAttr<CUDAGlobalAttr>()) 4909 CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub( 4910 cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts())); 4911 4912 return CGCallee::forDirect(CalleePtr, GD); 4913 } 4914 4915 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4916 E = E->IgnoreParens(); 4917 4918 // Look through function-to-pointer decay. 4919 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4920 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4921 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4922 return EmitCallee(ICE->getSubExpr()); 4923 } 4924 4925 // Resolve direct calls. 4926 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4927 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4928 return EmitDirectCallee(*this, FD); 4929 } 4930 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4931 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4932 EmitIgnoredExpr(ME->getBase()); 4933 return EmitDirectCallee(*this, FD); 4934 } 4935 4936 // Look through template substitutions. 4937 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4938 return EmitCallee(NTTP->getReplacement()); 4939 4940 // Treat pseudo-destructor calls differently. 4941 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4942 return CGCallee::forPseudoDestructor(PDE); 4943 } 4944 4945 // Otherwise, we have an indirect reference. 4946 llvm::Value *calleePtr; 4947 QualType functionType; 4948 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4949 calleePtr = EmitScalarExpr(E); 4950 functionType = ptrType->getPointeeType(); 4951 } else { 4952 functionType = E->getType(); 4953 calleePtr = EmitLValue(E).getPointer(*this); 4954 } 4955 assert(functionType->isFunctionType()); 4956 4957 GlobalDecl GD; 4958 if (const auto *VD = 4959 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4960 GD = GlobalDecl(VD); 4961 4962 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4963 CGCallee callee(calleeInfo, calleePtr); 4964 return callee; 4965 } 4966 4967 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4968 // Comma expressions just emit their LHS then their RHS as an l-value. 4969 if (E->getOpcode() == BO_Comma) { 4970 EmitIgnoredExpr(E->getLHS()); 4971 EnsureInsertPoint(); 4972 return EmitLValue(E->getRHS()); 4973 } 4974 4975 if (E->getOpcode() == BO_PtrMemD || 4976 E->getOpcode() == BO_PtrMemI) 4977 return EmitPointerToDataMemberBinaryExpr(E); 4978 4979 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4980 4981 // Note that in all of these cases, __block variables need the RHS 4982 // evaluated first just in case the variable gets moved by the RHS. 4983 4984 switch (getEvaluationKind(E->getType())) { 4985 case TEK_Scalar: { 4986 switch (E->getLHS()->getType().getObjCLifetime()) { 4987 case Qualifiers::OCL_Strong: 4988 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4989 4990 case Qualifiers::OCL_Autoreleasing: 4991 return EmitARCStoreAutoreleasing(E).first; 4992 4993 // No reason to do any of these differently. 4994 case Qualifiers::OCL_None: 4995 case Qualifiers::OCL_ExplicitNone: 4996 case Qualifiers::OCL_Weak: 4997 break; 4998 } 4999 5000 RValue RV = EmitAnyExpr(E->getRHS()); 5001 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 5002 if (RV.isScalar()) 5003 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 5004 EmitStoreThroughLValue(RV, LV); 5005 if (getLangOpts().OpenMP) 5006 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 5007 E->getLHS()); 5008 return LV; 5009 } 5010 5011 case TEK_Complex: 5012 return EmitComplexAssignmentLValue(E); 5013 5014 case TEK_Aggregate: 5015 return EmitAggExprToLValue(E); 5016 } 5017 llvm_unreachable("bad evaluation kind"); 5018 } 5019 5020 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 5021 RValue RV = EmitCallExpr(E); 5022 5023 if (!RV.isScalar()) 5024 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5025 AlignmentSource::Decl); 5026 5027 assert(E->getCallReturnType(getContext())->isReferenceType() && 5028 "Can't have a scalar return unless the return type is a " 5029 "reference type!"); 5030 5031 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5032 } 5033 5034 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 5035 // FIXME: This shouldn't require another copy. 5036 return EmitAggExprToLValue(E); 5037 } 5038 5039 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 5040 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 5041 && "binding l-value to type which needs a temporary"); 5042 AggValueSlot Slot = CreateAggTemp(E->getType()); 5043 EmitCXXConstructExpr(E, Slot); 5044 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5045 } 5046 5047 LValue 5048 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 5049 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 5050 } 5051 5052 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 5053 return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()), 5054 ConvertType(E->getType())); 5055 } 5056 5057 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 5058 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 5059 AlignmentSource::Decl); 5060 } 5061 5062 LValue 5063 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 5064 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 5065 Slot.setExternallyDestructed(); 5066 EmitAggExpr(E->getSubExpr(), Slot); 5067 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 5068 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5069 } 5070 5071 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 5072 RValue RV = EmitObjCMessageExpr(E); 5073 5074 if (!RV.isScalar()) 5075 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5076 AlignmentSource::Decl); 5077 5078 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 5079 "Can't have a scalar return unless the return type is a " 5080 "reference type!"); 5081 5082 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5083 } 5084 5085 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 5086 Address V = 5087 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 5088 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 5089 } 5090 5091 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 5092 const ObjCIvarDecl *Ivar) { 5093 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 5094 } 5095 5096 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 5097 llvm::Value *BaseValue, 5098 const ObjCIvarDecl *Ivar, 5099 unsigned CVRQualifiers) { 5100 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 5101 Ivar, CVRQualifiers); 5102 } 5103 5104 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 5105 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 5106 llvm::Value *BaseValue = nullptr; 5107 const Expr *BaseExpr = E->getBase(); 5108 Qualifiers BaseQuals; 5109 QualType ObjectTy; 5110 if (E->isArrow()) { 5111 BaseValue = EmitScalarExpr(BaseExpr); 5112 ObjectTy = BaseExpr->getType()->getPointeeType(); 5113 BaseQuals = ObjectTy.getQualifiers(); 5114 } else { 5115 LValue BaseLV = EmitLValue(BaseExpr); 5116 BaseValue = BaseLV.getPointer(*this); 5117 ObjectTy = BaseExpr->getType(); 5118 BaseQuals = ObjectTy.getQualifiers(); 5119 } 5120 5121 LValue LV = 5122 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 5123 BaseQuals.getCVRQualifiers()); 5124 setObjCGCLValueClass(getContext(), E, LV); 5125 return LV; 5126 } 5127 5128 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 5129 // Can only get l-value for message expression returning aggregate type 5130 RValue RV = EmitAnyExprToTemp(E); 5131 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5132 AlignmentSource::Decl); 5133 } 5134 5135 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 5136 const CallExpr *E, ReturnValueSlot ReturnValue, 5137 llvm::Value *Chain) { 5138 // Get the actual function type. The callee type will always be a pointer to 5139 // function type or a block pointer type. 5140 assert(CalleeType->isFunctionPointerType() && 5141 "Call must have function pointer type!"); 5142 5143 const Decl *TargetDecl = 5144 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 5145 5146 CalleeType = getContext().getCanonicalType(CalleeType); 5147 5148 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 5149 5150 CGCallee Callee = OrigCallee; 5151 5152 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 5153 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5154 if (llvm::Constant *PrefixSig = 5155 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 5156 SanitizerScope SanScope(this); 5157 // Remove any (C++17) exception specifications, to allow calling e.g. a 5158 // noexcept function through a non-noexcept pointer. 5159 auto ProtoTy = 5160 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 5161 llvm::Constant *FTRTTIConst = 5162 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 5163 llvm::Type *PrefixSigType = PrefixSig->getType(); 5164 llvm::StructType *PrefixStructTy = llvm::StructType::get( 5165 CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true); 5166 5167 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5168 5169 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 5170 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 5171 llvm::Value *CalleeSigPtr = 5172 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 5173 llvm::Value *CalleeSig = 5174 Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign()); 5175 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 5176 5177 llvm::BasicBlock *Cont = createBasicBlock("cont"); 5178 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 5179 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 5180 5181 EmitBlock(TypeCheck); 5182 llvm::Value *CalleeRTTIPtr = 5183 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 5184 llvm::Value *CalleeRTTIEncoded = 5185 Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign()); 5186 llvm::Value *CalleeRTTI = 5187 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 5188 llvm::Value *CalleeRTTIMatch = 5189 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 5190 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 5191 EmitCheckTypeDescriptor(CalleeType)}; 5192 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 5193 SanitizerHandler::FunctionTypeMismatch, StaticData, 5194 {CalleePtr, CalleeRTTI, FTRTTIConst}); 5195 5196 Builder.CreateBr(Cont); 5197 EmitBlock(Cont); 5198 } 5199 } 5200 5201 const auto *FnType = cast<FunctionType>(PointeeType); 5202 5203 // If we are checking indirect calls and this call is indirect, check that the 5204 // function pointer is a member of the bit set for the function type. 5205 if (SanOpts.has(SanitizerKind::CFIICall) && 5206 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5207 SanitizerScope SanScope(this); 5208 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 5209 5210 llvm::Metadata *MD; 5211 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 5212 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 5213 else 5214 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 5215 5216 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 5217 5218 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5219 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 5220 llvm::Value *TypeTest = Builder.CreateCall( 5221 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 5222 5223 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 5224 llvm::Constant *StaticData[] = { 5225 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 5226 EmitCheckSourceLocation(E->getBeginLoc()), 5227 EmitCheckTypeDescriptor(QualType(FnType, 0)), 5228 }; 5229 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 5230 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 5231 CastedCallee, StaticData); 5232 } else { 5233 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 5234 SanitizerHandler::CFICheckFail, StaticData, 5235 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 5236 } 5237 } 5238 5239 CallArgList Args; 5240 if (Chain) 5241 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 5242 CGM.getContext().VoidPtrTy); 5243 5244 // C++17 requires that we evaluate arguments to a call using assignment syntax 5245 // right-to-left, and that we evaluate arguments to certain other operators 5246 // left-to-right. Note that we allow this to override the order dictated by 5247 // the calling convention on the MS ABI, which means that parameter 5248 // destruction order is not necessarily reverse construction order. 5249 // FIXME: Revisit this based on C++ committee response to unimplementability. 5250 EvaluationOrder Order = EvaluationOrder::Default; 5251 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 5252 if (OCE->isAssignmentOp()) 5253 Order = EvaluationOrder::ForceRightToLeft; 5254 else { 5255 switch (OCE->getOperator()) { 5256 case OO_LessLess: 5257 case OO_GreaterGreater: 5258 case OO_AmpAmp: 5259 case OO_PipePipe: 5260 case OO_Comma: 5261 case OO_ArrowStar: 5262 Order = EvaluationOrder::ForceLeftToRight; 5263 break; 5264 default: 5265 break; 5266 } 5267 } 5268 } 5269 5270 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5271 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5272 5273 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5274 Args, FnType, /*ChainCall=*/Chain); 5275 5276 // C99 6.5.2.2p6: 5277 // If the expression that denotes the called function has a type 5278 // that does not include a prototype, [the default argument 5279 // promotions are performed]. If the number of arguments does not 5280 // equal the number of parameters, the behavior is undefined. If 5281 // the function is defined with a type that includes a prototype, 5282 // and either the prototype ends with an ellipsis (, ...) or the 5283 // types of the arguments after promotion are not compatible with 5284 // the types of the parameters, the behavior is undefined. If the 5285 // function is defined with a type that does not include a 5286 // prototype, and the types of the arguments after promotion are 5287 // not compatible with those of the parameters after promotion, 5288 // the behavior is undefined [except in some trivial cases]. 5289 // That is, in the general case, we should assume that a call 5290 // through an unprototyped function type works like a *non-variadic* 5291 // call. The way we make this work is to cast to the exact type 5292 // of the promoted arguments. 5293 // 5294 // Chain calls use this same code path to add the invisible chain parameter 5295 // to the function type. 5296 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5297 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5298 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace(); 5299 CalleeTy = CalleeTy->getPointerTo(AS); 5300 5301 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5302 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5303 Callee.setFunctionPointer(CalleePtr); 5304 } 5305 5306 // HIP function pointer contains kernel handle when it is used in triple 5307 // chevron. The kernel stub needs to be loaded from kernel handle and used 5308 // as callee. 5309 if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice && 5310 isa<CUDAKernelCallExpr>(E) && 5311 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5312 llvm::Value *Handle = Callee.getFunctionPointer(); 5313 auto *Cast = 5314 Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo()); 5315 auto *Stub = Builder.CreateLoad(Address(Cast, CGM.getPointerAlign())); 5316 Callee.setFunctionPointer(Stub); 5317 } 5318 llvm::CallBase *CallOrInvoke = nullptr; 5319 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5320 E == MustTailCall, E->getExprLoc()); 5321 5322 // Generate function declaration DISuprogram in order to be used 5323 // in debug info about call sites. 5324 if (CGDebugInfo *DI = getDebugInfo()) { 5325 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 5326 FunctionArgList Args; 5327 QualType ResTy = BuildFunctionArgList(CalleeDecl, Args); 5328 DI->EmitFuncDeclForCallSite(CallOrInvoke, 5329 DI->getFunctionType(CalleeDecl, ResTy, Args), 5330 CalleeDecl); 5331 } 5332 } 5333 5334 return Call; 5335 } 5336 5337 LValue CodeGenFunction:: 5338 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5339 Address BaseAddr = Address::invalid(); 5340 if (E->getOpcode() == BO_PtrMemI) { 5341 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5342 } else { 5343 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5344 } 5345 5346 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5347 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5348 5349 LValueBaseInfo BaseInfo; 5350 TBAAAccessInfo TBAAInfo; 5351 Address MemberAddr = 5352 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5353 &TBAAInfo); 5354 5355 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5356 } 5357 5358 /// Given the address of a temporary variable, produce an r-value of 5359 /// its type. 5360 RValue CodeGenFunction::convertTempToRValue(Address addr, 5361 QualType type, 5362 SourceLocation loc) { 5363 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5364 switch (getEvaluationKind(type)) { 5365 case TEK_Complex: 5366 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5367 case TEK_Aggregate: 5368 return lvalue.asAggregateRValue(*this); 5369 case TEK_Scalar: 5370 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5371 } 5372 llvm_unreachable("bad evaluation kind"); 5373 } 5374 5375 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5376 assert(Val->getType()->isFPOrFPVectorTy()); 5377 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5378 return; 5379 5380 llvm::MDBuilder MDHelper(getLLVMContext()); 5381 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5382 5383 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5384 } 5385 5386 namespace { 5387 struct LValueOrRValue { 5388 LValue LV; 5389 RValue RV; 5390 }; 5391 } 5392 5393 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5394 const PseudoObjectExpr *E, 5395 bool forLValue, 5396 AggValueSlot slot) { 5397 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5398 5399 // Find the result expression, if any. 5400 const Expr *resultExpr = E->getResultExpr(); 5401 LValueOrRValue result; 5402 5403 for (PseudoObjectExpr::const_semantics_iterator 5404 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5405 const Expr *semantic = *i; 5406 5407 // If this semantic expression is an opaque value, bind it 5408 // to the result of its source expression. 5409 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5410 // Skip unique OVEs. 5411 if (ov->isUnique()) { 5412 assert(ov != resultExpr && 5413 "A unique OVE cannot be used as the result expression"); 5414 continue; 5415 } 5416 5417 // If this is the result expression, we may need to evaluate 5418 // directly into the slot. 5419 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5420 OVMA opaqueData; 5421 if (ov == resultExpr && ov->isPRValue() && !forLValue && 5422 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5423 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5424 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5425 AlignmentSource::Decl); 5426 opaqueData = OVMA::bind(CGF, ov, LV); 5427 result.RV = slot.asRValue(); 5428 5429 // Otherwise, emit as normal. 5430 } else { 5431 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5432 5433 // If this is the result, also evaluate the result now. 5434 if (ov == resultExpr) { 5435 if (forLValue) 5436 result.LV = CGF.EmitLValue(ov); 5437 else 5438 result.RV = CGF.EmitAnyExpr(ov, slot); 5439 } 5440 } 5441 5442 opaques.push_back(opaqueData); 5443 5444 // Otherwise, if the expression is the result, evaluate it 5445 // and remember the result. 5446 } else if (semantic == resultExpr) { 5447 if (forLValue) 5448 result.LV = CGF.EmitLValue(semantic); 5449 else 5450 result.RV = CGF.EmitAnyExpr(semantic, slot); 5451 5452 // Otherwise, evaluate the expression in an ignored context. 5453 } else { 5454 CGF.EmitIgnoredExpr(semantic); 5455 } 5456 } 5457 5458 // Unbind all the opaques now. 5459 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5460 opaques[i].unbind(CGF); 5461 5462 return result; 5463 } 5464 5465 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5466 AggValueSlot slot) { 5467 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5468 } 5469 5470 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5471 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5472 } 5473