1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCall.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGRecordLayout.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Intrinsics.h" 26 #include "llvm/LLVMContext.h" 27 #include "llvm/Target/TargetData.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===--------------------------------------------------------------------===// 32 // Miscellaneous Helper Methods 33 //===--------------------------------------------------------------------===// 34 35 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 36 unsigned addressSpace = 37 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 38 39 llvm::PointerType *destType = Int8PtrTy; 40 if (addressSpace) 41 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 42 43 if (value->getType() == destType) return value; 44 return Builder.CreateBitCast(value, destType); 45 } 46 47 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 48 /// block. 49 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 50 const Twine &Name) { 51 if (!Builder.isNamePreserving()) 52 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 53 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 54 } 55 56 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 57 llvm::Value *Init) { 58 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 59 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 60 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 61 } 62 63 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 64 const Twine &Name) { 65 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 66 // FIXME: Should we prefer the preferred type alignment here? 67 CharUnits Align = getContext().getTypeAlignInChars(Ty); 68 Alloc->setAlignment(Align.getQuantity()); 69 return Alloc; 70 } 71 72 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 73 const Twine &Name) { 74 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 75 // FIXME: Should we prefer the preferred type alignment here? 76 CharUnits Align = getContext().getTypeAlignInChars(Ty); 77 Alloc->setAlignment(Align.getQuantity()); 78 return Alloc; 79 } 80 81 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 82 /// expression and compare the result against zero, returning an Int1Ty value. 83 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 84 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 85 llvm::Value *MemPtr = EmitScalarExpr(E); 86 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 87 } 88 89 QualType BoolTy = getContext().BoolTy; 90 if (!E->getType()->isAnyComplexType()) 91 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 92 93 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 94 } 95 96 /// EmitIgnoredExpr - Emit code to compute the specified expression, 97 /// ignoring the result. 98 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 99 if (E->isRValue()) 100 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 101 102 // Just emit it as an l-value and drop the result. 103 EmitLValue(E); 104 } 105 106 /// EmitAnyExpr - Emit code to compute the specified expression which 107 /// can have any type. The result is returned as an RValue struct. 108 /// If this is an aggregate expression, AggSlot indicates where the 109 /// result should be returned. 110 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot, 111 bool IgnoreResult) { 112 if (!hasAggregateLLVMType(E->getType())) 113 return RValue::get(EmitScalarExpr(E, IgnoreResult)); 114 else if (E->getType()->isAnyComplexType()) 115 return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult)); 116 117 EmitAggExpr(E, AggSlot, IgnoreResult); 118 return AggSlot.asRValue(); 119 } 120 121 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 122 /// always be accessible even if no aggregate location is provided. 123 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 124 AggValueSlot AggSlot = AggValueSlot::ignored(); 125 126 if (hasAggregateLLVMType(E->getType()) && 127 !E->getType()->isAnyComplexType()) 128 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 129 return EmitAnyExpr(E, AggSlot); 130 } 131 132 /// EmitAnyExprToMem - Evaluate an expression into a given memory 133 /// location. 134 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 135 llvm::Value *Location, 136 Qualifiers Quals, 137 bool IsInit) { 138 // FIXME: This function should take an LValue as an argument. 139 if (E->getType()->isAnyComplexType()) { 140 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 141 } else if (hasAggregateLLVMType(E->getType())) { 142 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 143 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 144 AggValueSlot::IsDestructed_t(IsInit), 145 AggValueSlot::DoesNotNeedGCBarriers, 146 AggValueSlot::IsAliased_t(!IsInit))); 147 } else { 148 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 149 LValue LV = MakeAddrLValue(Location, E->getType()); 150 EmitStoreThroughLValue(RV, LV); 151 } 152 } 153 154 namespace { 155 /// \brief An adjustment to be made to the temporary created when emitting a 156 /// reference binding, which accesses a particular subobject of that temporary. 157 struct SubobjectAdjustment { 158 enum { DerivedToBaseAdjustment, FieldAdjustment } Kind; 159 160 union { 161 struct { 162 const CastExpr *BasePath; 163 const CXXRecordDecl *DerivedClass; 164 } DerivedToBase; 165 166 FieldDecl *Field; 167 }; 168 169 SubobjectAdjustment(const CastExpr *BasePath, 170 const CXXRecordDecl *DerivedClass) 171 : Kind(DerivedToBaseAdjustment) { 172 DerivedToBase.BasePath = BasePath; 173 DerivedToBase.DerivedClass = DerivedClass; 174 } 175 176 SubobjectAdjustment(FieldDecl *Field) 177 : Kind(FieldAdjustment) { 178 this->Field = Field; 179 } 180 }; 181 } 182 183 static llvm::Value * 184 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 185 const NamedDecl *InitializedDecl) { 186 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 187 if (VD->hasGlobalStorage()) { 188 SmallString<256> Name; 189 llvm::raw_svector_ostream Out(Name); 190 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 191 Out.flush(); 192 193 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 194 195 // Create the reference temporary. 196 llvm::GlobalValue *RefTemp = 197 new llvm::GlobalVariable(CGF.CGM.getModule(), 198 RefTempTy, /*isConstant=*/false, 199 llvm::GlobalValue::InternalLinkage, 200 llvm::Constant::getNullValue(RefTempTy), 201 Name.str()); 202 return RefTemp; 203 } 204 } 205 206 return CGF.CreateMemTemp(Type, "ref.tmp"); 207 } 208 209 static llvm::Value * 210 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 211 llvm::Value *&ReferenceTemporary, 212 const CXXDestructorDecl *&ReferenceTemporaryDtor, 213 QualType &ObjCARCReferenceLifetimeType, 214 const NamedDecl *InitializedDecl) { 215 // Look through single-element init lists that claim to be lvalues. They're 216 // just syntactic wrappers in this case. 217 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) { 218 if (ILE->getNumInits() == 1 && ILE->isGLValue()) 219 E = ILE->getInit(0); 220 } 221 222 // Look through expressions for materialized temporaries (for now). 223 if (const MaterializeTemporaryExpr *M 224 = dyn_cast<MaterializeTemporaryExpr>(E)) { 225 // Objective-C++ ARC: 226 // If we are binding a reference to a temporary that has ownership, we 227 // need to perform retain/release operations on the temporary. 228 if (CGF.getContext().getLangOpts().ObjCAutoRefCount && 229 E->getType()->isObjCLifetimeType() && 230 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 231 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 232 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 233 ObjCARCReferenceLifetimeType = E->getType(); 234 235 E = M->GetTemporaryExpr(); 236 } 237 238 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 239 E = DAE->getExpr(); 240 241 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 242 CGF.enterFullExpression(EWC); 243 CodeGenFunction::RunCleanupsScope Scope(CGF); 244 245 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 246 ReferenceTemporary, 247 ReferenceTemporaryDtor, 248 ObjCARCReferenceLifetimeType, 249 InitializedDecl); 250 } 251 252 RValue RV; 253 if (E->isGLValue()) { 254 // Emit the expression as an lvalue. 255 LValue LV = CGF.EmitLValue(E); 256 257 if (LV.isSimple()) 258 return LV.getAddress(); 259 260 // We have to load the lvalue. 261 RV = CGF.EmitLoadOfLValue(LV); 262 } else { 263 if (!ObjCARCReferenceLifetimeType.isNull()) { 264 ReferenceTemporary = CreateReferenceTemporary(CGF, 265 ObjCARCReferenceLifetimeType, 266 InitializedDecl); 267 268 269 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 270 ObjCARCReferenceLifetimeType); 271 272 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 273 RefTempDst, false); 274 275 bool ExtendsLifeOfTemporary = false; 276 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 277 if (Var->extendsLifetimeOfTemporary()) 278 ExtendsLifeOfTemporary = true; 279 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 280 ExtendsLifeOfTemporary = true; 281 } 282 283 if (!ExtendsLifeOfTemporary) { 284 // Since the lifetime of this temporary isn't going to be extended, 285 // we need to clean it up ourselves at the end of the full expression. 286 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 287 case Qualifiers::OCL_None: 288 case Qualifiers::OCL_ExplicitNone: 289 case Qualifiers::OCL_Autoreleasing: 290 break; 291 292 case Qualifiers::OCL_Strong: { 293 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 294 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 295 CGF.pushDestroy(cleanupKind, 296 ReferenceTemporary, 297 ObjCARCReferenceLifetimeType, 298 CodeGenFunction::destroyARCStrongImprecise, 299 cleanupKind & EHCleanup); 300 break; 301 } 302 303 case Qualifiers::OCL_Weak: 304 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 305 CGF.pushDestroy(NormalAndEHCleanup, 306 ReferenceTemporary, 307 ObjCARCReferenceLifetimeType, 308 CodeGenFunction::destroyARCWeak, 309 /*useEHCleanupForArray*/ true); 310 break; 311 } 312 313 ObjCARCReferenceLifetimeType = QualType(); 314 } 315 316 return ReferenceTemporary; 317 } 318 319 SmallVector<SubobjectAdjustment, 2> Adjustments; 320 while (true) { 321 E = E->IgnoreParens(); 322 323 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 324 if ((CE->getCastKind() == CK_DerivedToBase || 325 CE->getCastKind() == CK_UncheckedDerivedToBase) && 326 E->getType()->isRecordType()) { 327 E = CE->getSubExpr(); 328 CXXRecordDecl *Derived 329 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 330 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 331 continue; 332 } 333 334 if (CE->getCastKind() == CK_NoOp) { 335 E = CE->getSubExpr(); 336 continue; 337 } 338 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 339 if (!ME->isArrow() && ME->getBase()->isRValue()) { 340 assert(ME->getBase()->getType()->isRecordType()); 341 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 342 E = ME->getBase(); 343 Adjustments.push_back(SubobjectAdjustment(Field)); 344 continue; 345 } 346 } 347 } 348 349 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 350 if (opaque->getType()->isRecordType()) 351 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 352 353 // Nothing changed. 354 break; 355 } 356 357 // Create a reference temporary if necessary. 358 AggValueSlot AggSlot = AggValueSlot::ignored(); 359 if (CGF.hasAggregateLLVMType(E->getType()) && 360 !E->getType()->isAnyComplexType()) { 361 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 362 InitializedDecl); 363 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 364 AggValueSlot::IsDestructed_t isDestructed 365 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 366 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 367 Qualifiers(), isDestructed, 368 AggValueSlot::DoesNotNeedGCBarriers, 369 AggValueSlot::IsNotAliased); 370 } 371 372 if (InitializedDecl) { 373 // Get the destructor for the reference temporary. 374 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 375 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 376 if (!ClassDecl->hasTrivialDestructor()) 377 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 378 } 379 } 380 381 RV = CGF.EmitAnyExpr(E, AggSlot); 382 383 // Check if need to perform derived-to-base casts and/or field accesses, to 384 // get from the temporary object we created (and, potentially, for which we 385 // extended the lifetime) to the subobject we're binding the reference to. 386 if (!Adjustments.empty()) { 387 llvm::Value *Object = RV.getAggregateAddr(); 388 for (unsigned I = Adjustments.size(); I != 0; --I) { 389 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 390 switch (Adjustment.Kind) { 391 case SubobjectAdjustment::DerivedToBaseAdjustment: 392 Object = 393 CGF.GetAddressOfBaseClass(Object, 394 Adjustment.DerivedToBase.DerivedClass, 395 Adjustment.DerivedToBase.BasePath->path_begin(), 396 Adjustment.DerivedToBase.BasePath->path_end(), 397 /*NullCheckValue=*/false); 398 break; 399 400 case SubobjectAdjustment::FieldAdjustment: { 401 LValue LV = 402 CGF.EmitLValueForField(Object, Adjustment.Field, 0); 403 if (LV.isSimple()) { 404 Object = LV.getAddress(); 405 break; 406 } 407 408 // For non-simple lvalues, we actually have to create a copy of 409 // the object we're binding to. 410 QualType T = Adjustment.Field->getType().getNonReferenceType() 411 .getUnqualifiedType(); 412 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 413 LValue TempLV = CGF.MakeAddrLValue(Object, 414 Adjustment.Field->getType()); 415 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 416 break; 417 } 418 419 } 420 } 421 422 return Object; 423 } 424 } 425 426 if (RV.isAggregate()) 427 return RV.getAggregateAddr(); 428 429 // Create a temporary variable that we can bind the reference to. 430 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 431 InitializedDecl); 432 433 434 unsigned Alignment = 435 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 436 if (RV.isScalar()) 437 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 438 /*Volatile=*/false, Alignment, E->getType()); 439 else 440 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 441 /*Volatile=*/false); 442 return ReferenceTemporary; 443 } 444 445 RValue 446 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 447 const NamedDecl *InitializedDecl) { 448 llvm::Value *ReferenceTemporary = 0; 449 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 450 QualType ObjCARCReferenceLifetimeType; 451 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 452 ReferenceTemporaryDtor, 453 ObjCARCReferenceLifetimeType, 454 InitializedDecl); 455 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 456 return RValue::get(Value); 457 458 // Make sure to call the destructor for the reference temporary. 459 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 460 if (VD && VD->hasGlobalStorage()) { 461 if (ReferenceTemporaryDtor) { 462 llvm::Constant *DtorFn = 463 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 464 EmitCXXGlobalDtorRegistration(DtorFn, 465 cast<llvm::Constant>(ReferenceTemporary)); 466 } else { 467 assert(!ObjCARCReferenceLifetimeType.isNull()); 468 // Note: We intentionally do not register a global "destructor" to 469 // release the object. 470 } 471 472 return RValue::get(Value); 473 } 474 475 if (ReferenceTemporaryDtor) 476 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 477 else { 478 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 479 case Qualifiers::OCL_None: 480 llvm_unreachable( 481 "Not a reference temporary that needs to be deallocated"); 482 case Qualifiers::OCL_ExplicitNone: 483 case Qualifiers::OCL_Autoreleasing: 484 // Nothing to do. 485 break; 486 487 case Qualifiers::OCL_Strong: { 488 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 489 CleanupKind cleanupKind = getARCCleanupKind(); 490 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 491 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, 492 cleanupKind & EHCleanup); 493 break; 494 } 495 496 case Qualifiers::OCL_Weak: { 497 // __weak objects always get EH cleanups; otherwise, exceptions 498 // could cause really nasty crashes instead of mere leaks. 499 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 500 ObjCARCReferenceLifetimeType, destroyARCWeak, true); 501 break; 502 } 503 } 504 } 505 506 return RValue::get(Value); 507 } 508 509 510 /// getAccessedFieldNo - Given an encoded value and a result number, return the 511 /// input field number being accessed. 512 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 513 const llvm::Constant *Elts) { 514 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 515 ->getZExtValue(); 516 } 517 518 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 519 if (!CatchUndefined) 520 return; 521 522 // This needs to be to the standard address space. 523 Address = Builder.CreateBitCast(Address, Int8PtrTy); 524 525 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 526 527 // In time, people may want to control this and use a 1 here. 528 llvm::Value *Arg = Builder.getFalse(); 529 llvm::Value *C = Builder.CreateCall2(F, Address, Arg); 530 llvm::BasicBlock *Cont = createBasicBlock(); 531 llvm::BasicBlock *Check = createBasicBlock(); 532 llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL); 533 Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check); 534 535 EmitBlock(Check); 536 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 537 llvm::ConstantInt::get(IntPtrTy, Size)), 538 Cont, getTrapBB()); 539 EmitBlock(Cont); 540 } 541 542 543 CodeGenFunction::ComplexPairTy CodeGenFunction:: 544 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 545 bool isInc, bool isPre) { 546 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 547 LV.isVolatileQualified()); 548 549 llvm::Value *NextVal; 550 if (isa<llvm::IntegerType>(InVal.first->getType())) { 551 uint64_t AmountVal = isInc ? 1 : -1; 552 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 553 554 // Add the inc/dec to the real part. 555 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 556 } else { 557 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 558 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 559 if (!isInc) 560 FVal.changeSign(); 561 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 562 563 // Add the inc/dec to the real part. 564 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 565 } 566 567 ComplexPairTy IncVal(NextVal, InVal.second); 568 569 // Store the updated result through the lvalue. 570 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 571 572 // If this is a postinc, return the value read from memory, otherwise use the 573 // updated value. 574 return isPre ? IncVal : InVal; 575 } 576 577 578 //===----------------------------------------------------------------------===// 579 // LValue Expression Emission 580 //===----------------------------------------------------------------------===// 581 582 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 583 if (Ty->isVoidType()) 584 return RValue::get(0); 585 586 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 587 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 588 llvm::Value *U = llvm::UndefValue::get(EltTy); 589 return RValue::getComplex(std::make_pair(U, U)); 590 } 591 592 // If this is a use of an undefined aggregate type, the aggregate must have an 593 // identifiable address. Just because the contents of the value are undefined 594 // doesn't mean that the address can't be taken and compared. 595 if (hasAggregateLLVMType(Ty)) { 596 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 597 return RValue::getAggregate(DestPtr); 598 } 599 600 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 601 } 602 603 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 604 const char *Name) { 605 ErrorUnsupported(E, Name); 606 return GetUndefRValue(E->getType()); 607 } 608 609 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 610 const char *Name) { 611 ErrorUnsupported(E, Name); 612 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 613 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 614 } 615 616 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 617 LValue LV = EmitLValue(E); 618 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 619 EmitCheck(LV.getAddress(), 620 getContext().getTypeSizeInChars(E->getType()).getQuantity()); 621 return LV; 622 } 623 624 /// EmitLValue - Emit code to compute a designator that specifies the location 625 /// of the expression. 626 /// 627 /// This can return one of two things: a simple address or a bitfield reference. 628 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 629 /// an LLVM pointer type. 630 /// 631 /// If this returns a bitfield reference, nothing about the pointee type of the 632 /// LLVM value is known: For example, it may not be a pointer to an integer. 633 /// 634 /// If this returns a normal address, and if the lvalue's C type is fixed size, 635 /// this method guarantees that the returned pointer type will point to an LLVM 636 /// type of the same size of the lvalue's type. If the lvalue has a variable 637 /// length type, this is not possible. 638 /// 639 LValue CodeGenFunction::EmitLValue(const Expr *E) { 640 switch (E->getStmtClass()) { 641 default: return EmitUnsupportedLValue(E, "l-value expression"); 642 643 case Expr::ObjCPropertyRefExprClass: 644 llvm_unreachable("cannot emit a property reference directly"); 645 646 case Expr::ObjCSelectorExprClass: 647 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 648 case Expr::ObjCIsaExprClass: 649 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 650 case Expr::BinaryOperatorClass: 651 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 652 case Expr::CompoundAssignOperatorClass: 653 if (!E->getType()->isAnyComplexType()) 654 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 655 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 656 case Expr::CallExprClass: 657 case Expr::CXXMemberCallExprClass: 658 case Expr::CXXOperatorCallExprClass: 659 case Expr::UserDefinedLiteralClass: 660 return EmitCallExprLValue(cast<CallExpr>(E)); 661 case Expr::VAArgExprClass: 662 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 663 case Expr::DeclRefExprClass: 664 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 665 case Expr::ParenExprClass: 666 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 667 case Expr::GenericSelectionExprClass: 668 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 669 case Expr::PredefinedExprClass: 670 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 671 case Expr::StringLiteralClass: 672 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 673 case Expr::ObjCEncodeExprClass: 674 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 675 case Expr::PseudoObjectExprClass: 676 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 677 case Expr::InitListExprClass: 678 assert(cast<InitListExpr>(E)->getNumInits() == 1 && 679 "Only single-element init list can be lvalue."); 680 return EmitLValue(cast<InitListExpr>(E)->getInit(0)); 681 682 case Expr::CXXTemporaryObjectExprClass: 683 case Expr::CXXConstructExprClass: 684 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 685 case Expr::CXXBindTemporaryExprClass: 686 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 687 case Expr::LambdaExprClass: 688 return EmitLambdaLValue(cast<LambdaExpr>(E)); 689 690 case Expr::ExprWithCleanupsClass: { 691 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 692 enterFullExpression(cleanups); 693 RunCleanupsScope Scope(*this); 694 return EmitLValue(cleanups->getSubExpr()); 695 } 696 697 case Expr::CXXScalarValueInitExprClass: 698 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 699 case Expr::CXXDefaultArgExprClass: 700 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 701 case Expr::CXXTypeidExprClass: 702 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 703 704 case Expr::ObjCMessageExprClass: 705 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 706 case Expr::ObjCIvarRefExprClass: 707 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 708 case Expr::StmtExprClass: 709 return EmitStmtExprLValue(cast<StmtExpr>(E)); 710 case Expr::UnaryOperatorClass: 711 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 712 case Expr::ArraySubscriptExprClass: 713 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 714 case Expr::ExtVectorElementExprClass: 715 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 716 case Expr::MemberExprClass: 717 return EmitMemberExpr(cast<MemberExpr>(E)); 718 case Expr::CompoundLiteralExprClass: 719 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 720 case Expr::ConditionalOperatorClass: 721 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 722 case Expr::BinaryConditionalOperatorClass: 723 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 724 case Expr::ChooseExprClass: 725 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 726 case Expr::OpaqueValueExprClass: 727 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 728 case Expr::SubstNonTypeTemplateParmExprClass: 729 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 730 case Expr::ImplicitCastExprClass: 731 case Expr::CStyleCastExprClass: 732 case Expr::CXXFunctionalCastExprClass: 733 case Expr::CXXStaticCastExprClass: 734 case Expr::CXXDynamicCastExprClass: 735 case Expr::CXXReinterpretCastExprClass: 736 case Expr::CXXConstCastExprClass: 737 case Expr::ObjCBridgedCastExprClass: 738 return EmitCastLValue(cast<CastExpr>(E)); 739 740 case Expr::MaterializeTemporaryExprClass: 741 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 742 } 743 } 744 745 /// Given an object of the given canonical type, can we safely copy a 746 /// value out of it based on its initializer? 747 static bool isConstantEmittableObjectType(QualType type) { 748 assert(type.isCanonical()); 749 assert(!type->isReferenceType()); 750 751 // Must be const-qualified but non-volatile. 752 Qualifiers qs = type.getLocalQualifiers(); 753 if (!qs.hasConst() || qs.hasVolatile()) return false; 754 755 // Otherwise, all object types satisfy this except C++ classes with 756 // mutable subobjects or non-trivial copy/destroy behavior. 757 if (const RecordType *RT = dyn_cast<RecordType>(type)) 758 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 759 if (RD->hasMutableFields() || !RD->isTrivial()) 760 return false; 761 762 return true; 763 } 764 765 /// Can we constant-emit a load of a reference to a variable of the 766 /// given type? This is different from predicates like 767 /// Decl::isUsableInConstantExpressions because we do want it to apply 768 /// in situations that don't necessarily satisfy the language's rules 769 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 770 /// to do this with const float variables even if those variables 771 /// aren't marked 'constexpr'. 772 enum ConstantEmissionKind { 773 CEK_None, 774 CEK_AsReferenceOnly, 775 CEK_AsValueOrReference, 776 CEK_AsValueOnly 777 }; 778 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 779 type = type.getCanonicalType(); 780 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 781 if (isConstantEmittableObjectType(ref->getPointeeType())) 782 return CEK_AsValueOrReference; 783 return CEK_AsReferenceOnly; 784 } 785 if (isConstantEmittableObjectType(type)) 786 return CEK_AsValueOnly; 787 return CEK_None; 788 } 789 790 /// Try to emit a reference to the given value without producing it as 791 /// an l-value. This is actually more than an optimization: we can't 792 /// produce an l-value for variables that we never actually captured 793 /// in a block or lambda, which means const int variables or constexpr 794 /// literals or similar. 795 CodeGenFunction::ConstantEmission 796 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 797 ValueDecl *value = refExpr->getDecl(); 798 799 // The value needs to be an enum constant or a constant variable. 800 ConstantEmissionKind CEK; 801 if (isa<ParmVarDecl>(value)) { 802 CEK = CEK_None; 803 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 804 CEK = checkVarTypeForConstantEmission(var->getType()); 805 } else if (isa<EnumConstantDecl>(value)) { 806 CEK = CEK_AsValueOnly; 807 } else { 808 CEK = CEK_None; 809 } 810 if (CEK == CEK_None) return ConstantEmission(); 811 812 Expr::EvalResult result; 813 bool resultIsReference; 814 QualType resultType; 815 816 // It's best to evaluate all the way as an r-value if that's permitted. 817 if (CEK != CEK_AsReferenceOnly && 818 refExpr->EvaluateAsRValue(result, getContext())) { 819 resultIsReference = false; 820 resultType = refExpr->getType(); 821 822 // Otherwise, try to evaluate as an l-value. 823 } else if (CEK != CEK_AsValueOnly && 824 refExpr->EvaluateAsLValue(result, getContext())) { 825 resultIsReference = true; 826 resultType = value->getType(); 827 828 // Failure. 829 } else { 830 return ConstantEmission(); 831 } 832 833 // In any case, if the initializer has side-effects, abandon ship. 834 if (result.HasSideEffects) 835 return ConstantEmission(); 836 837 // Emit as a constant. 838 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 839 840 // Make sure we emit a debug reference to the global variable. 841 // This should probably fire even for 842 if (isa<VarDecl>(value)) { 843 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 844 EmitDeclRefExprDbgValue(refExpr, C); 845 } else { 846 assert(isa<EnumConstantDecl>(value)); 847 EmitDeclRefExprDbgValue(refExpr, C); 848 } 849 850 // If we emitted a reference constant, we need to dereference that. 851 if (resultIsReference) 852 return ConstantEmission::forReference(C); 853 854 return ConstantEmission::forValue(C); 855 } 856 857 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 858 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 859 lvalue.getAlignment().getQuantity(), 860 lvalue.getType(), lvalue.getTBAAInfo()); 861 } 862 863 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 864 unsigned Alignment, QualType Ty, 865 llvm::MDNode *TBAAInfo) { 866 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 867 if (Volatile) 868 Load->setVolatile(true); 869 if (Alignment) 870 Load->setAlignment(Alignment); 871 if (TBAAInfo) 872 CGM.DecorateInstruction(Load, TBAAInfo); 873 // If this is an atomic type, all normal reads must be atomic 874 if (Ty->isAtomicType()) 875 Load->setAtomic(llvm::SequentiallyConsistent); 876 877 return EmitFromMemory(Load, Ty); 878 } 879 880 static bool isBooleanUnderlyingType(QualType Ty) { 881 if (const EnumType *ET = dyn_cast<EnumType>(Ty)) 882 return ET->getDecl()->getIntegerType()->isBooleanType(); 883 return false; 884 } 885 886 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 887 // Bool has a different representation in memory than in registers. 888 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 889 // This should really always be an i1, but sometimes it's already 890 // an i8, and it's awkward to track those cases down. 891 if (Value->getType()->isIntegerTy(1)) 892 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 893 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 894 } 895 896 return Value; 897 } 898 899 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 900 // Bool has a different representation in memory than in registers. 901 if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) { 902 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 903 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 904 } 905 906 return Value; 907 } 908 909 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 910 bool Volatile, unsigned Alignment, 911 QualType Ty, 912 llvm::MDNode *TBAAInfo, 913 bool isInit) { 914 Value = EmitToMemory(Value, Ty); 915 916 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 917 if (Alignment) 918 Store->setAlignment(Alignment); 919 if (TBAAInfo) 920 CGM.DecorateInstruction(Store, TBAAInfo); 921 if (!isInit && Ty->isAtomicType()) 922 Store->setAtomic(llvm::SequentiallyConsistent); 923 } 924 925 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 926 bool isInit) { 927 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 928 lvalue.getAlignment().getQuantity(), lvalue.getType(), 929 lvalue.getTBAAInfo(), isInit); 930 } 931 932 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 933 /// method emits the address of the lvalue, then loads the result as an rvalue, 934 /// returning the rvalue. 935 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 936 if (LV.isObjCWeak()) { 937 // load of a __weak object. 938 llvm::Value *AddrWeakObj = LV.getAddress(); 939 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 940 AddrWeakObj)); 941 } 942 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 943 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 944 945 if (LV.isSimple()) { 946 assert(!LV.getType()->isFunctionType()); 947 948 // Everything needs a load. 949 return RValue::get(EmitLoadOfScalar(LV)); 950 } 951 952 if (LV.isVectorElt()) { 953 llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), 954 LV.isVolatileQualified()); 955 return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), 956 "vecext")); 957 } 958 959 // If this is a reference to a subset of the elements of a vector, either 960 // shuffle the input or extract/insert them as appropriate. 961 if (LV.isExtVectorElt()) 962 return EmitLoadOfExtVectorElementLValue(LV); 963 964 assert(LV.isBitField() && "Unknown LValue type!"); 965 return EmitLoadOfBitfieldLValue(LV); 966 } 967 968 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 969 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 970 971 // Get the output type. 972 llvm::Type *ResLTy = ConvertType(LV.getType()); 973 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 974 975 // Compute the result as an OR of all of the individual component accesses. 976 llvm::Value *Res = 0; 977 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 978 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 979 980 // Get the field pointer. 981 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 982 983 // Only offset by the field index if used, so that incoming values are not 984 // required to be structures. 985 if (AI.FieldIndex) 986 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 987 988 // Offset by the byte offset, if used. 989 if (!AI.FieldByteOffset.isZero()) { 990 Ptr = EmitCastToVoidPtr(Ptr); 991 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 992 "bf.field.offs"); 993 } 994 995 // Cast to the access type. 996 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth, 997 CGM.getContext().getTargetAddressSpace(LV.getType())); 998 Ptr = Builder.CreateBitCast(Ptr, PTy); 999 1000 // Perform the load. 1001 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 1002 if (!AI.AccessAlignment.isZero()) 1003 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1004 1005 // Shift out unused low bits and mask out unused high bits. 1006 llvm::Value *Val = Load; 1007 if (AI.FieldBitStart) 1008 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 1009 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 1010 AI.TargetBitWidth), 1011 "bf.clear"); 1012 1013 // Extend or truncate to the target size. 1014 if (AI.AccessWidth < ResSizeInBits) 1015 Val = Builder.CreateZExt(Val, ResLTy); 1016 else if (AI.AccessWidth > ResSizeInBits) 1017 Val = Builder.CreateTrunc(Val, ResLTy); 1018 1019 // Shift into place, and OR into the result. 1020 if (AI.TargetBitOffset) 1021 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 1022 Res = Res ? Builder.CreateOr(Res, Val) : Val; 1023 } 1024 1025 // If the bit-field is signed, perform the sign-extension. 1026 // 1027 // FIXME: This can easily be folded into the load of the high bits, which 1028 // could also eliminate the mask of high bits in some situations. 1029 if (Info.isSigned()) { 1030 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1031 if (ExtraBits) 1032 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 1033 ExtraBits, "bf.val.sext"); 1034 } 1035 1036 return RValue::get(Res); 1037 } 1038 1039 // If this is a reference to a subset of the elements of a vector, create an 1040 // appropriate shufflevector. 1041 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1042 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(), 1043 LV.isVolatileQualified()); 1044 1045 const llvm::Constant *Elts = LV.getExtVectorElts(); 1046 1047 // If the result of the expression is a non-vector type, we must be extracting 1048 // a single element. Just codegen as an extractelement. 1049 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1050 if (!ExprVT) { 1051 unsigned InIdx = getAccessedFieldNo(0, Elts); 1052 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1053 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1054 } 1055 1056 // Always use shuffle vector to try to retain the original program structure 1057 unsigned NumResultElts = ExprVT->getNumElements(); 1058 1059 SmallVector<llvm::Constant*, 4> Mask; 1060 for (unsigned i = 0; i != NumResultElts; ++i) 1061 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1062 1063 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1064 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1065 MaskV); 1066 return RValue::get(Vec); 1067 } 1068 1069 1070 1071 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1072 /// lvalue, where both are guaranteed to the have the same type, and that type 1073 /// is 'Ty'. 1074 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1075 if (!Dst.isSimple()) { 1076 if (Dst.isVectorElt()) { 1077 // Read/modify/write the vector, inserting the new element. 1078 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), 1079 Dst.isVolatileQualified()); 1080 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1081 Dst.getVectorIdx(), "vecins"); 1082 Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified()); 1083 return; 1084 } 1085 1086 // If this is an update of extended vector elements, insert them as 1087 // appropriate. 1088 if (Dst.isExtVectorElt()) 1089 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1090 1091 assert(Dst.isBitField() && "Unknown LValue type"); 1092 return EmitStoreThroughBitfieldLValue(Src, Dst); 1093 } 1094 1095 // There's special magic for assigning into an ARC-qualified l-value. 1096 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1097 switch (Lifetime) { 1098 case Qualifiers::OCL_None: 1099 llvm_unreachable("present but none"); 1100 1101 case Qualifiers::OCL_ExplicitNone: 1102 // nothing special 1103 break; 1104 1105 case Qualifiers::OCL_Strong: 1106 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1107 return; 1108 1109 case Qualifiers::OCL_Weak: 1110 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1111 return; 1112 1113 case Qualifiers::OCL_Autoreleasing: 1114 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1115 Src.getScalarVal())); 1116 // fall into the normal path 1117 break; 1118 } 1119 } 1120 1121 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1122 // load of a __weak object. 1123 llvm::Value *LvalueDst = Dst.getAddress(); 1124 llvm::Value *src = Src.getScalarVal(); 1125 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1126 return; 1127 } 1128 1129 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1130 // load of a __strong object. 1131 llvm::Value *LvalueDst = Dst.getAddress(); 1132 llvm::Value *src = Src.getScalarVal(); 1133 if (Dst.isObjCIvar()) { 1134 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1135 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1136 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1137 llvm::Value *dst = RHS; 1138 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1139 llvm::Value *LHS = 1140 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1141 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1142 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1143 BytesBetween); 1144 } else if (Dst.isGlobalObjCRef()) { 1145 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1146 Dst.isThreadLocalRef()); 1147 } 1148 else 1149 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1150 return; 1151 } 1152 1153 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1154 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1155 } 1156 1157 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1158 llvm::Value **Result) { 1159 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1160 1161 // Get the output type. 1162 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1163 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1164 1165 // Get the source value, truncated to the width of the bit-field. 1166 llvm::Value *SrcVal = Src.getScalarVal(); 1167 1168 if (Dst.getType()->isBooleanType()) 1169 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1170 1171 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1172 Info.getSize()), 1173 "bf.value"); 1174 1175 // Return the new value of the bit-field, if requested. 1176 if (Result) { 1177 // Cast back to the proper type for result. 1178 llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1179 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1180 "bf.reload.val"); 1181 1182 // Sign extend if necessary. 1183 if (Info.isSigned()) { 1184 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1185 if (ExtraBits) 1186 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1187 ExtraBits, "bf.reload.sext"); 1188 } 1189 1190 *Result = ReloadVal; 1191 } 1192 1193 // Iterate over the components, writing each piece to memory. 1194 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1195 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1196 1197 // Get the field pointer. 1198 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1199 unsigned addressSpace = 1200 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1201 1202 // Only offset by the field index if used, so that incoming values are not 1203 // required to be structures. 1204 if (AI.FieldIndex) 1205 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1206 1207 // Offset by the byte offset, if used. 1208 if (!AI.FieldByteOffset.isZero()) { 1209 Ptr = EmitCastToVoidPtr(Ptr); 1210 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1211 "bf.field.offs"); 1212 } 1213 1214 // Cast to the access type. 1215 llvm::Type *AccessLTy = 1216 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1217 1218 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1219 Ptr = Builder.CreateBitCast(Ptr, PTy); 1220 1221 // Extract the piece of the bit-field value to write in this access, limited 1222 // to the values that are part of this access. 1223 llvm::Value *Val = SrcVal; 1224 if (AI.TargetBitOffset) 1225 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1226 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1227 AI.TargetBitWidth)); 1228 1229 // Extend or truncate to the access size. 1230 if (ResSizeInBits < AI.AccessWidth) 1231 Val = Builder.CreateZExt(Val, AccessLTy); 1232 else if (ResSizeInBits > AI.AccessWidth) 1233 Val = Builder.CreateTrunc(Val, AccessLTy); 1234 1235 // Shift into the position in memory. 1236 if (AI.FieldBitStart) 1237 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1238 1239 // If necessary, load and OR in bits that are outside of the bit-field. 1240 if (AI.TargetBitWidth != AI.AccessWidth) { 1241 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1242 if (!AI.AccessAlignment.isZero()) 1243 Load->setAlignment(AI.AccessAlignment.getQuantity()); 1244 1245 // Compute the mask for zeroing the bits that are part of the bit-field. 1246 llvm::APInt InvMask = 1247 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1248 AI.FieldBitStart + AI.TargetBitWidth); 1249 1250 // Apply the mask and OR in to the value to write. 1251 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1252 } 1253 1254 // Write the value. 1255 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1256 Dst.isVolatileQualified()); 1257 if (!AI.AccessAlignment.isZero()) 1258 Store->setAlignment(AI.AccessAlignment.getQuantity()); 1259 } 1260 } 1261 1262 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1263 LValue Dst) { 1264 // This access turns into a read/modify/write of the vector. Load the input 1265 // value now. 1266 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(), 1267 Dst.isVolatileQualified()); 1268 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1269 1270 llvm::Value *SrcVal = Src.getScalarVal(); 1271 1272 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1273 unsigned NumSrcElts = VTy->getNumElements(); 1274 unsigned NumDstElts = 1275 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1276 if (NumDstElts == NumSrcElts) { 1277 // Use shuffle vector is the src and destination are the same number of 1278 // elements and restore the vector mask since it is on the side it will be 1279 // stored. 1280 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1281 for (unsigned i = 0; i != NumSrcElts; ++i) 1282 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1283 1284 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1285 Vec = Builder.CreateShuffleVector(SrcVal, 1286 llvm::UndefValue::get(Vec->getType()), 1287 MaskV); 1288 } else if (NumDstElts > NumSrcElts) { 1289 // Extended the source vector to the same length and then shuffle it 1290 // into the destination. 1291 // FIXME: since we're shuffling with undef, can we just use the indices 1292 // into that? This could be simpler. 1293 SmallVector<llvm::Constant*, 4> ExtMask; 1294 for (unsigned i = 0; i != NumSrcElts; ++i) 1295 ExtMask.push_back(Builder.getInt32(i)); 1296 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1297 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1298 llvm::Value *ExtSrcVal = 1299 Builder.CreateShuffleVector(SrcVal, 1300 llvm::UndefValue::get(SrcVal->getType()), 1301 ExtMaskV); 1302 // build identity 1303 SmallVector<llvm::Constant*, 4> Mask; 1304 for (unsigned i = 0; i != NumDstElts; ++i) 1305 Mask.push_back(Builder.getInt32(i)); 1306 1307 // modify when what gets shuffled in 1308 for (unsigned i = 0; i != NumSrcElts; ++i) 1309 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1310 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1311 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1312 } else { 1313 // We should never shorten the vector 1314 llvm_unreachable("unexpected shorten vector length"); 1315 } 1316 } else { 1317 // If the Src is a scalar (not a vector) it must be updating one element. 1318 unsigned InIdx = getAccessedFieldNo(0, Elts); 1319 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1320 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1321 } 1322 1323 Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified()); 1324 } 1325 1326 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1327 // generating write-barries API. It is currently a global, ivar, 1328 // or neither. 1329 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1330 LValue &LV, 1331 bool IsMemberAccess=false) { 1332 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1333 return; 1334 1335 if (isa<ObjCIvarRefExpr>(E)) { 1336 QualType ExpTy = E->getType(); 1337 if (IsMemberAccess && ExpTy->isPointerType()) { 1338 // If ivar is a structure pointer, assigning to field of 1339 // this struct follows gcc's behavior and makes it a non-ivar 1340 // writer-barrier conservatively. 1341 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1342 if (ExpTy->isRecordType()) { 1343 LV.setObjCIvar(false); 1344 return; 1345 } 1346 } 1347 LV.setObjCIvar(true); 1348 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1349 LV.setBaseIvarExp(Exp->getBase()); 1350 LV.setObjCArray(E->getType()->isArrayType()); 1351 return; 1352 } 1353 1354 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1355 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1356 if (VD->hasGlobalStorage()) { 1357 LV.setGlobalObjCRef(true); 1358 LV.setThreadLocalRef(VD->isThreadSpecified()); 1359 } 1360 } 1361 LV.setObjCArray(E->getType()->isArrayType()); 1362 return; 1363 } 1364 1365 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1366 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1367 return; 1368 } 1369 1370 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1371 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1372 if (LV.isObjCIvar()) { 1373 // If cast is to a structure pointer, follow gcc's behavior and make it 1374 // a non-ivar write-barrier. 1375 QualType ExpTy = E->getType(); 1376 if (ExpTy->isPointerType()) 1377 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1378 if (ExpTy->isRecordType()) 1379 LV.setObjCIvar(false); 1380 } 1381 return; 1382 } 1383 1384 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1385 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1386 return; 1387 } 1388 1389 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1390 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1391 return; 1392 } 1393 1394 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1395 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1396 return; 1397 } 1398 1399 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1400 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1401 return; 1402 } 1403 1404 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1405 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1406 if (LV.isObjCIvar() && !LV.isObjCArray()) 1407 // Using array syntax to assigning to what an ivar points to is not 1408 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1409 LV.setObjCIvar(false); 1410 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1411 // Using array syntax to assigning to what global points to is not 1412 // same as assigning to the global itself. {id *G;} G[i] = 0; 1413 LV.setGlobalObjCRef(false); 1414 return; 1415 } 1416 1417 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1418 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1419 // We don't know if member is an 'ivar', but this flag is looked at 1420 // only in the context of LV.isObjCIvar(). 1421 LV.setObjCArray(E->getType()->isArrayType()); 1422 return; 1423 } 1424 } 1425 1426 static llvm::Value * 1427 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1428 llvm::Value *V, llvm::Type *IRType, 1429 StringRef Name = StringRef()) { 1430 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1431 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1432 } 1433 1434 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1435 const Expr *E, const VarDecl *VD) { 1436 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1437 "Var decl must have external storage or be a file var decl!"); 1438 1439 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1440 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1441 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1442 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1443 QualType T = E->getType(); 1444 LValue LV; 1445 if (VD->getType()->isReferenceType()) { 1446 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1447 LI->setAlignment(Alignment.getQuantity()); 1448 V = LI; 1449 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1450 } else { 1451 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1452 } 1453 setObjCGCLValueClass(CGF.getContext(), E, LV); 1454 return LV; 1455 } 1456 1457 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1458 const Expr *E, const FunctionDecl *FD) { 1459 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1460 if (!FD->hasPrototype()) { 1461 if (const FunctionProtoType *Proto = 1462 FD->getType()->getAs<FunctionProtoType>()) { 1463 // Ugly case: for a K&R-style definition, the type of the definition 1464 // isn't the same as the type of a use. Correct for this with a 1465 // bitcast. 1466 QualType NoProtoType = 1467 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1468 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1469 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1470 } 1471 } 1472 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1473 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1474 } 1475 1476 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1477 const NamedDecl *ND = E->getDecl(); 1478 CharUnits Alignment = getContext().getDeclAlign(ND); 1479 QualType T = E->getType(); 1480 1481 // FIXME: We should be able to assert this for FunctionDecls as well! 1482 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1483 // those with a valid source location. 1484 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1485 !E->getLocation().isValid()) && 1486 "Should not use decl without marking it used!"); 1487 1488 if (ND->hasAttr<WeakRefAttr>()) { 1489 const ValueDecl *VD = cast<ValueDecl>(ND); 1490 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1491 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1492 } 1493 1494 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1495 // Check if this is a global variable. 1496 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1497 return EmitGlobalVarDeclLValue(*this, E, VD); 1498 1499 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1500 1501 bool NonGCable = VD->hasLocalStorage() && 1502 !VD->getType()->isReferenceType() && 1503 !isBlockVariable; 1504 1505 llvm::Value *V = LocalDeclMap[VD]; 1506 if (!V && VD->isStaticLocal()) 1507 V = CGM.getStaticLocalDeclAddress(VD); 1508 1509 // Use special handling for lambdas. 1510 if (!V) { 1511 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) 1512 return EmitLValueForField(CXXABIThisValue, FD, 0); 1513 1514 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1515 CharUnits alignment = getContext().getDeclAlign(VD); 1516 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1517 E->getType(), alignment); 1518 } 1519 1520 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1521 1522 if (isBlockVariable) 1523 V = BuildBlockByrefAddress(V, VD); 1524 1525 LValue LV; 1526 if (VD->getType()->isReferenceType()) { 1527 llvm::LoadInst *LI = Builder.CreateLoad(V); 1528 LI->setAlignment(Alignment.getQuantity()); 1529 V = LI; 1530 LV = MakeNaturalAlignAddrLValue(V, T); 1531 } else { 1532 LV = MakeAddrLValue(V, T, Alignment); 1533 } 1534 1535 if (NonGCable) { 1536 LV.getQuals().removeObjCGCAttr(); 1537 LV.setNonGC(true); 1538 } 1539 setObjCGCLValueClass(getContext(), E, LV); 1540 return LV; 1541 } 1542 1543 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1544 return EmitFunctionDeclLValue(*this, E, fn); 1545 1546 llvm_unreachable("Unhandled DeclRefExpr"); 1547 } 1548 1549 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1550 // __extension__ doesn't affect lvalue-ness. 1551 if (E->getOpcode() == UO_Extension) 1552 return EmitLValue(E->getSubExpr()); 1553 1554 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1555 switch (E->getOpcode()) { 1556 default: llvm_unreachable("Unknown unary operator lvalue!"); 1557 case UO_Deref: { 1558 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1559 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1560 1561 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1562 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1563 1564 // We should not generate __weak write barrier on indirect reference 1565 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1566 // But, we continue to generate __strong write barrier on indirect write 1567 // into a pointer to object. 1568 if (getContext().getLangOpts().ObjC1 && 1569 getContext().getLangOpts().getGC() != LangOptions::NonGC && 1570 LV.isObjCWeak()) 1571 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1572 return LV; 1573 } 1574 case UO_Real: 1575 case UO_Imag: { 1576 LValue LV = EmitLValue(E->getSubExpr()); 1577 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1578 llvm::Value *Addr = LV.getAddress(); 1579 1580 // __real is valid on scalars. This is a faster way of testing that. 1581 // __imag can only produce an rvalue on scalars. 1582 if (E->getOpcode() == UO_Real && 1583 !cast<llvm::PointerType>(Addr->getType()) 1584 ->getElementType()->isStructTy()) { 1585 assert(E->getSubExpr()->getType()->isArithmeticType()); 1586 return LV; 1587 } 1588 1589 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1590 1591 unsigned Idx = E->getOpcode() == UO_Imag; 1592 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1593 Idx, "idx"), 1594 ExprTy); 1595 } 1596 case UO_PreInc: 1597 case UO_PreDec: { 1598 LValue LV = EmitLValue(E->getSubExpr()); 1599 bool isInc = E->getOpcode() == UO_PreInc; 1600 1601 if (E->getType()->isAnyComplexType()) 1602 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1603 else 1604 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1605 return LV; 1606 } 1607 } 1608 } 1609 1610 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1611 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1612 E->getType()); 1613 } 1614 1615 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1616 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1617 E->getType()); 1618 } 1619 1620 1621 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1622 switch (E->getIdentType()) { 1623 default: 1624 return EmitUnsupportedLValue(E, "predefined expression"); 1625 1626 case PredefinedExpr::Func: 1627 case PredefinedExpr::Function: 1628 case PredefinedExpr::PrettyFunction: { 1629 unsigned Type = E->getIdentType(); 1630 std::string GlobalVarName; 1631 1632 switch (Type) { 1633 default: llvm_unreachable("Invalid type"); 1634 case PredefinedExpr::Func: 1635 GlobalVarName = "__func__."; 1636 break; 1637 case PredefinedExpr::Function: 1638 GlobalVarName = "__FUNCTION__."; 1639 break; 1640 case PredefinedExpr::PrettyFunction: 1641 GlobalVarName = "__PRETTY_FUNCTION__."; 1642 break; 1643 } 1644 1645 StringRef FnName = CurFn->getName(); 1646 if (FnName.startswith("\01")) 1647 FnName = FnName.substr(1); 1648 GlobalVarName += FnName; 1649 1650 const Decl *CurDecl = CurCodeDecl; 1651 if (CurDecl == 0) 1652 CurDecl = getContext().getTranslationUnitDecl(); 1653 1654 std::string FunctionName = 1655 (isa<BlockDecl>(CurDecl) 1656 ? FnName.str() 1657 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl)); 1658 1659 llvm::Constant *C = 1660 CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); 1661 return MakeAddrLValue(C, E->getType()); 1662 } 1663 } 1664 } 1665 1666 llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1667 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1668 1669 // If we are not optimzing, don't collapse all calls to trap in the function 1670 // to the same call, that way, in the debugger they can see which operation 1671 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1672 // to just one per function to save on codesize. 1673 if (GCO.OptimizationLevel && TrapBB) 1674 return TrapBB; 1675 1676 llvm::BasicBlock *Cont = 0; 1677 if (HaveInsertPoint()) { 1678 Cont = createBasicBlock("cont"); 1679 EmitBranch(Cont); 1680 } 1681 TrapBB = createBasicBlock("trap"); 1682 EmitBlock(TrapBB); 1683 1684 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 1685 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1686 TrapCall->setDoesNotReturn(); 1687 TrapCall->setDoesNotThrow(); 1688 Builder.CreateUnreachable(); 1689 1690 if (Cont) 1691 EmitBlock(Cont); 1692 return TrapBB; 1693 } 1694 1695 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1696 /// array to pointer, return the array subexpression. 1697 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1698 // If this isn't just an array->pointer decay, bail out. 1699 const CastExpr *CE = dyn_cast<CastExpr>(E); 1700 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1701 return 0; 1702 1703 // If this is a decay from variable width array, bail out. 1704 const Expr *SubExpr = CE->getSubExpr(); 1705 if (SubExpr->getType()->isVariableArrayType()) 1706 return 0; 1707 1708 return SubExpr; 1709 } 1710 1711 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1712 // The index must always be an integer, which is not an aggregate. Emit it. 1713 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1714 QualType IdxTy = E->getIdx()->getType(); 1715 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1716 1717 // If the base is a vector type, then we are forming a vector element lvalue 1718 // with this subscript. 1719 if (E->getBase()->getType()->isVectorType()) { 1720 // Emit the vector as an lvalue to get its address. 1721 LValue LHS = EmitLValue(E->getBase()); 1722 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1723 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 1724 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1725 E->getBase()->getType()); 1726 } 1727 1728 // Extend or truncate the index type to 32 or 64-bits. 1729 if (Idx->getType() != IntPtrTy) 1730 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 1731 1732 // FIXME: As llvm implements the object size checking, this can come out. 1733 if (CatchUndefined) { 1734 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){ 1735 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) { 1736 if (ICE->getCastKind() == CK_ArrayToPointerDecay) { 1737 if (const ConstantArrayType *CAT 1738 = getContext().getAsConstantArrayType(DRE->getType())) { 1739 llvm::APInt Size = CAT->getSize(); 1740 llvm::BasicBlock *Cont = createBasicBlock("cont"); 1741 Builder.CreateCondBr(Builder.CreateICmpULE(Idx, 1742 llvm::ConstantInt::get(Idx->getType(), Size)), 1743 Cont, getTrapBB()); 1744 EmitBlock(Cont); 1745 } 1746 } 1747 } 1748 } 1749 } 1750 1751 // We know that the pointer points to a type of the correct size, unless the 1752 // size is a VLA or Objective-C interface. 1753 llvm::Value *Address = 0; 1754 CharUnits ArrayAlignment; 1755 if (const VariableArrayType *vla = 1756 getContext().getAsVariableArrayType(E->getType())) { 1757 // The base must be a pointer, which is not an aggregate. Emit 1758 // it. It needs to be emitted first in case it's what captures 1759 // the VLA bounds. 1760 Address = EmitScalarExpr(E->getBase()); 1761 1762 // The element count here is the total number of non-VLA elements. 1763 llvm::Value *numElements = getVLASize(vla).first; 1764 1765 // Effectively, the multiply by the VLA size is part of the GEP. 1766 // GEP indexes are signed, and scaling an index isn't permitted to 1767 // signed-overflow, so we use the same semantics for our explicit 1768 // multiply. We suppress this if overflow is not undefined behavior. 1769 if (getLangOpts().isSignedOverflowDefined()) { 1770 Idx = Builder.CreateMul(Idx, numElements); 1771 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1772 } else { 1773 Idx = Builder.CreateNSWMul(Idx, numElements); 1774 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 1775 } 1776 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1777 // Indexing over an interface, as in "NSString *P; P[4];" 1778 llvm::Value *InterfaceSize = 1779 llvm::ConstantInt::get(Idx->getType(), 1780 getContext().getTypeSizeInChars(OIT).getQuantity()); 1781 1782 Idx = Builder.CreateMul(Idx, InterfaceSize); 1783 1784 // The base must be a pointer, which is not an aggregate. Emit it. 1785 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1786 Address = EmitCastToVoidPtr(Base); 1787 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1788 Address = Builder.CreateBitCast(Address, Base->getType()); 1789 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1790 // If this is A[i] where A is an array, the frontend will have decayed the 1791 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1792 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1793 // "gep x, i" here. Emit one "gep A, 0, i". 1794 assert(Array->getType()->isArrayType() && 1795 "Array to pointer decay must have array source type!"); 1796 LValue ArrayLV = EmitLValue(Array); 1797 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 1798 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 1799 llvm::Value *Args[] = { Zero, Idx }; 1800 1801 // Propagate the alignment from the array itself to the result. 1802 ArrayAlignment = ArrayLV.getAlignment(); 1803 1804 if (getContext().getLangOpts().isSignedOverflowDefined()) 1805 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 1806 else 1807 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 1808 } else { 1809 // The base must be a pointer, which is not an aggregate. Emit it. 1810 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1811 if (getContext().getLangOpts().isSignedOverflowDefined()) 1812 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 1813 else 1814 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 1815 } 1816 1817 QualType T = E->getBase()->getType()->getPointeeType(); 1818 assert(!T.isNull() && 1819 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 1820 1821 1822 // Limit the alignment to that of the result type. 1823 LValue LV; 1824 if (!ArrayAlignment.isZero()) { 1825 CharUnits Align = getContext().getTypeAlignInChars(T); 1826 ArrayAlignment = std::min(Align, ArrayAlignment); 1827 LV = MakeAddrLValue(Address, T, ArrayAlignment); 1828 } else { 1829 LV = MakeNaturalAlignAddrLValue(Address, T); 1830 } 1831 1832 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 1833 1834 if (getContext().getLangOpts().ObjC1 && 1835 getContext().getLangOpts().getGC() != LangOptions::NonGC) { 1836 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1837 setObjCGCLValueClass(getContext(), E, LV); 1838 } 1839 return LV; 1840 } 1841 1842 static 1843 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 1844 SmallVector<unsigned, 4> &Elts) { 1845 SmallVector<llvm::Constant*, 4> CElts; 1846 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 1847 CElts.push_back(Builder.getInt32(Elts[i])); 1848 1849 return llvm::ConstantVector::get(CElts); 1850 } 1851 1852 LValue CodeGenFunction:: 1853 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 1854 // Emit the base vector as an l-value. 1855 LValue Base; 1856 1857 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 1858 if (E->isArrow()) { 1859 // If it is a pointer to a vector, emit the address and form an lvalue with 1860 // it. 1861 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 1862 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 1863 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 1864 Base.getQuals().removeObjCGCAttr(); 1865 } else if (E->getBase()->isGLValue()) { 1866 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 1867 // emit the base as an lvalue. 1868 assert(E->getBase()->getType()->isVectorType()); 1869 Base = EmitLValue(E->getBase()); 1870 } else { 1871 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 1872 assert(E->getBase()->getType()->isVectorType() && 1873 "Result must be a vector"); 1874 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 1875 1876 // Store the vector to memory (because LValue wants an address). 1877 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 1878 Builder.CreateStore(Vec, VecMem); 1879 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 1880 } 1881 1882 QualType type = 1883 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 1884 1885 // Encode the element access list into a vector of unsigned indices. 1886 SmallVector<unsigned, 4> Indices; 1887 E->getEncodedElementAccess(Indices); 1888 1889 if (Base.isSimple()) { 1890 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 1891 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type); 1892 } 1893 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 1894 1895 llvm::Constant *BaseElts = Base.getExtVectorElts(); 1896 SmallVector<llvm::Constant *, 4> CElts; 1897 1898 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 1899 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 1900 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 1901 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type); 1902 } 1903 1904 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 1905 bool isNonGC = false; 1906 Expr *BaseExpr = E->getBase(); 1907 llvm::Value *BaseValue = NULL; 1908 Qualifiers BaseQuals; 1909 1910 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 1911 if (E->isArrow()) { 1912 BaseValue = EmitScalarExpr(BaseExpr); 1913 const PointerType *PTy = 1914 BaseExpr->getType()->getAs<PointerType>(); 1915 BaseQuals = PTy->getPointeeType().getQualifiers(); 1916 } else { 1917 LValue BaseLV = EmitLValue(BaseExpr); 1918 if (BaseLV.isNonGC()) 1919 isNonGC = true; 1920 // FIXME: this isn't right for bitfields. 1921 BaseValue = BaseLV.getAddress(); 1922 QualType BaseTy = BaseExpr->getType(); 1923 BaseQuals = BaseTy.getQualifiers(); 1924 } 1925 1926 NamedDecl *ND = E->getMemberDecl(); 1927 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 1928 LValue LV = EmitLValueForField(BaseValue, Field, 1929 BaseQuals.getCVRQualifiers()); 1930 LV.setNonGC(isNonGC); 1931 setObjCGCLValueClass(getContext(), E, LV); 1932 return LV; 1933 } 1934 1935 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 1936 return EmitGlobalVarDeclLValue(*this, E, VD); 1937 1938 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 1939 return EmitFunctionDeclLValue(*this, E, FD); 1940 1941 llvm_unreachable("Unhandled member declaration!"); 1942 } 1943 1944 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue, 1945 const FieldDecl *Field, 1946 unsigned CVRQualifiers) { 1947 const CGRecordLayout &RL = 1948 CGM.getTypes().getCGRecordLayout(Field->getParent()); 1949 const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field); 1950 return LValue::MakeBitfield(BaseValue, Info, 1951 Field->getType().withCVRQualifiers(CVRQualifiers)); 1952 } 1953 1954 /// EmitLValueForAnonRecordField - Given that the field is a member of 1955 /// an anonymous struct or union buried inside a record, and given 1956 /// that the base value is a pointer to the enclosing record, derive 1957 /// an lvalue for the ultimate field. 1958 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue, 1959 const IndirectFieldDecl *Field, 1960 unsigned CVRQualifiers) { 1961 IndirectFieldDecl::chain_iterator I = Field->chain_begin(), 1962 IEnd = Field->chain_end(); 1963 while (true) { 1964 LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I), 1965 CVRQualifiers); 1966 if (++I == IEnd) return LV; 1967 1968 assert(LV.isSimple()); 1969 BaseValue = LV.getAddress(); 1970 CVRQualifiers |= LV.getVRQualifiers(); 1971 } 1972 } 1973 1974 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr, 1975 const FieldDecl *field, 1976 unsigned cvr) { 1977 if (field->isBitField()) 1978 return EmitLValueForBitfield(baseAddr, field, cvr); 1979 1980 const RecordDecl *rec = field->getParent(); 1981 QualType type = field->getType(); 1982 CharUnits alignment = getContext().getDeclAlign(field); 1983 1984 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 1985 1986 llvm::Value *addr = baseAddr; 1987 if (rec->isUnion()) { 1988 // For unions, there is no pointer adjustment. 1989 assert(!type->isReferenceType() && "union has reference member"); 1990 } else { 1991 // For structs, we GEP to the field that the record layout suggests. 1992 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 1993 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 1994 1995 // If this is a reference field, load the reference right now. 1996 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 1997 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 1998 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 1999 load->setAlignment(alignment.getQuantity()); 2000 2001 if (CGM.shouldUseTBAA()) { 2002 llvm::MDNode *tbaa; 2003 if (mayAlias) 2004 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2005 else 2006 tbaa = CGM.getTBAAInfo(type); 2007 CGM.DecorateInstruction(load, tbaa); 2008 } 2009 2010 addr = load; 2011 mayAlias = false; 2012 type = refType->getPointeeType(); 2013 if (type->isIncompleteType()) 2014 alignment = CharUnits(); 2015 else 2016 alignment = getContext().getTypeAlignInChars(type); 2017 cvr = 0; // qualifiers don't recursively apply to referencee 2018 } 2019 } 2020 2021 // Make sure that the address is pointing to the right type. This is critical 2022 // for both unions and structs. A union needs a bitcast, a struct element 2023 // will need a bitcast if the LLVM type laid out doesn't match the desired 2024 // type. 2025 addr = EmitBitCastOfLValueToProperType(*this, addr, 2026 CGM.getTypes().ConvertTypeForMem(type), 2027 field->getName()); 2028 2029 if (field->hasAttr<AnnotateAttr>()) 2030 addr = EmitFieldAnnotations(field, addr); 2031 2032 LValue LV = MakeAddrLValue(addr, type, alignment); 2033 LV.getQuals().addCVRQualifiers(cvr); 2034 2035 // __weak attribute on a field is ignored. 2036 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2037 LV.getQuals().removeObjCGCAttr(); 2038 2039 // Fields of may_alias structs act like 'char' for TBAA purposes. 2040 // FIXME: this should get propagated down through anonymous structs 2041 // and unions. 2042 if (mayAlias && LV.getTBAAInfo()) 2043 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2044 2045 return LV; 2046 } 2047 2048 LValue 2049 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue, 2050 const FieldDecl *Field, 2051 unsigned CVRQualifiers) { 2052 QualType FieldType = Field->getType(); 2053 2054 if (!FieldType->isReferenceType()) 2055 return EmitLValueForField(BaseValue, Field, CVRQualifiers); 2056 2057 const CGRecordLayout &RL = 2058 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2059 unsigned idx = RL.getLLVMFieldNo(Field); 2060 llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx); 2061 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2062 2063 2064 // Make sure that the address is pointing to the right type. This is critical 2065 // for both unions and structs. A union needs a bitcast, a struct element 2066 // will need a bitcast if the LLVM type laid out doesn't match the desired 2067 // type. 2068 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2069 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2070 V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS)); 2071 2072 CharUnits Alignment = getContext().getDeclAlign(Field); 2073 return MakeAddrLValue(V, FieldType, Alignment); 2074 } 2075 2076 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2077 if (E->isFileScope()) { 2078 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2079 return MakeAddrLValue(GlobalPtr, E->getType()); 2080 } 2081 2082 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2083 const Expr *InitExpr = E->getInitializer(); 2084 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2085 2086 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2087 /*Init*/ true); 2088 2089 return Result; 2090 } 2091 2092 LValue CodeGenFunction:: 2093 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2094 if (!expr->isGLValue()) { 2095 // ?: here should be an aggregate. 2096 assert((hasAggregateLLVMType(expr->getType()) && 2097 !expr->getType()->isAnyComplexType()) && 2098 "Unexpected conditional operator!"); 2099 return EmitAggExprToLValue(expr); 2100 } 2101 2102 OpaqueValueMapping binding(*this, expr); 2103 2104 const Expr *condExpr = expr->getCond(); 2105 bool CondExprBool; 2106 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2107 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2108 if (!CondExprBool) std::swap(live, dead); 2109 2110 if (!ContainsLabel(dead)) 2111 return EmitLValue(live); 2112 } 2113 2114 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2115 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2116 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2117 2118 ConditionalEvaluation eval(*this); 2119 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2120 2121 // Any temporaries created here are conditional. 2122 EmitBlock(lhsBlock); 2123 eval.begin(*this); 2124 LValue lhs = EmitLValue(expr->getTrueExpr()); 2125 eval.end(*this); 2126 2127 if (!lhs.isSimple()) 2128 return EmitUnsupportedLValue(expr, "conditional operator"); 2129 2130 lhsBlock = Builder.GetInsertBlock(); 2131 Builder.CreateBr(contBlock); 2132 2133 // Any temporaries created here are conditional. 2134 EmitBlock(rhsBlock); 2135 eval.begin(*this); 2136 LValue rhs = EmitLValue(expr->getFalseExpr()); 2137 eval.end(*this); 2138 if (!rhs.isSimple()) 2139 return EmitUnsupportedLValue(expr, "conditional operator"); 2140 rhsBlock = Builder.GetInsertBlock(); 2141 2142 EmitBlock(contBlock); 2143 2144 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2145 "cond-lvalue"); 2146 phi->addIncoming(lhs.getAddress(), lhsBlock); 2147 phi->addIncoming(rhs.getAddress(), rhsBlock); 2148 return MakeAddrLValue(phi, expr->getType()); 2149 } 2150 2151 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast. 2152 /// If the cast is a dynamic_cast, we can have the usual lvalue result, 2153 /// otherwise if a cast is needed by the code generator in an lvalue context, 2154 /// then it must mean that we need the address of an aggregate in order to 2155 /// access one of its fields. This can happen for all the reasons that casts 2156 /// are permitted with aggregate result, including noop aggregate casts, and 2157 /// cast from scalar to union. 2158 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2159 switch (E->getCastKind()) { 2160 case CK_ToVoid: 2161 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2162 2163 case CK_Dependent: 2164 llvm_unreachable("dependent cast kind in IR gen!"); 2165 2166 // These two casts are currently treated as no-ops, although they could 2167 // potentially be real operations depending on the target's ABI. 2168 case CK_NonAtomicToAtomic: 2169 case CK_AtomicToNonAtomic: 2170 2171 case CK_NoOp: 2172 case CK_LValueToRValue: 2173 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2174 || E->getType()->isRecordType()) 2175 return EmitLValue(E->getSubExpr()); 2176 // Fall through to synthesize a temporary. 2177 2178 case CK_BitCast: 2179 case CK_ArrayToPointerDecay: 2180 case CK_FunctionToPointerDecay: 2181 case CK_NullToMemberPointer: 2182 case CK_NullToPointer: 2183 case CK_IntegralToPointer: 2184 case CK_PointerToIntegral: 2185 case CK_PointerToBoolean: 2186 case CK_VectorSplat: 2187 case CK_IntegralCast: 2188 case CK_IntegralToBoolean: 2189 case CK_IntegralToFloating: 2190 case CK_FloatingToIntegral: 2191 case CK_FloatingToBoolean: 2192 case CK_FloatingCast: 2193 case CK_FloatingRealToComplex: 2194 case CK_FloatingComplexToReal: 2195 case CK_FloatingComplexToBoolean: 2196 case CK_FloatingComplexCast: 2197 case CK_FloatingComplexToIntegralComplex: 2198 case CK_IntegralRealToComplex: 2199 case CK_IntegralComplexToReal: 2200 case CK_IntegralComplexToBoolean: 2201 case CK_IntegralComplexCast: 2202 case CK_IntegralComplexToFloatingComplex: 2203 case CK_DerivedToBaseMemberPointer: 2204 case CK_BaseToDerivedMemberPointer: 2205 case CK_MemberPointerToBoolean: 2206 case CK_ReinterpretMemberPointer: 2207 case CK_AnyPointerToBlockPointerCast: 2208 case CK_ARCProduceObject: 2209 case CK_ARCConsumeObject: 2210 case CK_ARCReclaimReturnedObject: 2211 case CK_ARCExtendBlockObject: 2212 case CK_CopyAndAutoreleaseBlockObject: { 2213 // These casts only produce lvalues when we're binding a reference to a 2214 // temporary realized from a (converted) pure rvalue. Emit the expression 2215 // as a value, copy it into a temporary, and return an lvalue referring to 2216 // that temporary. 2217 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2218 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2219 return MakeAddrLValue(V, E->getType()); 2220 } 2221 2222 case CK_Dynamic: { 2223 LValue LV = EmitLValue(E->getSubExpr()); 2224 llvm::Value *V = LV.getAddress(); 2225 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2226 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2227 } 2228 2229 case CK_ConstructorConversion: 2230 case CK_UserDefinedConversion: 2231 case CK_CPointerToObjCPointerCast: 2232 case CK_BlockPointerToObjCPointerCast: 2233 return EmitLValue(E->getSubExpr()); 2234 2235 case CK_UncheckedDerivedToBase: 2236 case CK_DerivedToBase: { 2237 const RecordType *DerivedClassTy = 2238 E->getSubExpr()->getType()->getAs<RecordType>(); 2239 CXXRecordDecl *DerivedClassDecl = 2240 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2241 2242 LValue LV = EmitLValue(E->getSubExpr()); 2243 llvm::Value *This = LV.getAddress(); 2244 2245 // Perform the derived-to-base conversion 2246 llvm::Value *Base = 2247 GetAddressOfBaseClass(This, DerivedClassDecl, 2248 E->path_begin(), E->path_end(), 2249 /*NullCheckValue=*/false); 2250 2251 return MakeAddrLValue(Base, E->getType()); 2252 } 2253 case CK_ToUnion: 2254 return EmitAggExprToLValue(E); 2255 case CK_BaseToDerived: { 2256 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2257 CXXRecordDecl *DerivedClassDecl = 2258 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2259 2260 LValue LV = EmitLValue(E->getSubExpr()); 2261 2262 // Perform the base-to-derived conversion 2263 llvm::Value *Derived = 2264 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2265 E->path_begin(), E->path_end(), 2266 /*NullCheckValue=*/false); 2267 2268 return MakeAddrLValue(Derived, E->getType()); 2269 } 2270 case CK_LValueBitCast: { 2271 // This must be a reinterpret_cast (or c-style equivalent). 2272 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2273 2274 LValue LV = EmitLValue(E->getSubExpr()); 2275 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2276 ConvertType(CE->getTypeAsWritten())); 2277 return MakeAddrLValue(V, E->getType()); 2278 } 2279 case CK_ObjCObjectLValueCast: { 2280 LValue LV = EmitLValue(E->getSubExpr()); 2281 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2282 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2283 ConvertType(ToType)); 2284 return MakeAddrLValue(V, E->getType()); 2285 } 2286 } 2287 2288 llvm_unreachable("Unhandled lvalue cast kind?"); 2289 } 2290 2291 LValue CodeGenFunction::EmitNullInitializationLValue( 2292 const CXXScalarValueInitExpr *E) { 2293 QualType Ty = E->getType(); 2294 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2295 EmitNullInitialization(LV.getAddress(), Ty); 2296 return LV; 2297 } 2298 2299 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2300 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2301 return getOpaqueLValueMapping(e); 2302 } 2303 2304 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2305 const MaterializeTemporaryExpr *E) { 2306 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2307 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2308 } 2309 2310 2311 //===--------------------------------------------------------------------===// 2312 // Expression Emission 2313 //===--------------------------------------------------------------------===// 2314 2315 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2316 ReturnValueSlot ReturnValue) { 2317 if (CGDebugInfo *DI = getDebugInfo()) 2318 DI->EmitLocation(Builder, E->getLocStart()); 2319 2320 // Builtins never have block type. 2321 if (E->getCallee()->getType()->isBlockPointerType()) 2322 return EmitBlockCallExpr(E, ReturnValue); 2323 2324 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2325 return EmitCXXMemberCallExpr(CE, ReturnValue); 2326 2327 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2328 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2329 2330 const Decl *TargetDecl = E->getCalleeDecl(); 2331 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2332 if (unsigned builtinID = FD->getBuiltinID()) 2333 return EmitBuiltinExpr(FD, builtinID, E); 2334 } 2335 2336 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2337 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2338 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2339 2340 if (const CXXPseudoDestructorExpr *PseudoDtor 2341 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2342 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2343 if (getContext().getLangOpts().ObjCAutoRefCount && 2344 DestroyedType->isObjCLifetimeType() && 2345 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2346 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2347 // Automatic Reference Counting: 2348 // If the pseudo-expression names a retainable object with weak or 2349 // strong lifetime, the object shall be released. 2350 Expr *BaseExpr = PseudoDtor->getBase(); 2351 llvm::Value *BaseValue = NULL; 2352 Qualifiers BaseQuals; 2353 2354 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2355 if (PseudoDtor->isArrow()) { 2356 BaseValue = EmitScalarExpr(BaseExpr); 2357 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2358 BaseQuals = PTy->getPointeeType().getQualifiers(); 2359 } else { 2360 LValue BaseLV = EmitLValue(BaseExpr); 2361 BaseValue = BaseLV.getAddress(); 2362 QualType BaseTy = BaseExpr->getType(); 2363 BaseQuals = BaseTy.getQualifiers(); 2364 } 2365 2366 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2367 case Qualifiers::OCL_None: 2368 case Qualifiers::OCL_ExplicitNone: 2369 case Qualifiers::OCL_Autoreleasing: 2370 break; 2371 2372 case Qualifiers::OCL_Strong: 2373 EmitARCRelease(Builder.CreateLoad(BaseValue, 2374 PseudoDtor->getDestroyedType().isVolatileQualified()), 2375 /*precise*/ true); 2376 break; 2377 2378 case Qualifiers::OCL_Weak: 2379 EmitARCDestroyWeak(BaseValue); 2380 break; 2381 } 2382 } else { 2383 // C++ [expr.pseudo]p1: 2384 // The result shall only be used as the operand for the function call 2385 // operator (), and the result of such a call has type void. The only 2386 // effect is the evaluation of the postfix-expression before the dot or 2387 // arrow. 2388 EmitScalarExpr(E->getCallee()); 2389 } 2390 2391 return RValue::get(0); 2392 } 2393 2394 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2395 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2396 E->arg_begin(), E->arg_end(), TargetDecl); 2397 } 2398 2399 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2400 // Comma expressions just emit their LHS then their RHS as an l-value. 2401 if (E->getOpcode() == BO_Comma) { 2402 EmitIgnoredExpr(E->getLHS()); 2403 EnsureInsertPoint(); 2404 return EmitLValue(E->getRHS()); 2405 } 2406 2407 if (E->getOpcode() == BO_PtrMemD || 2408 E->getOpcode() == BO_PtrMemI) 2409 return EmitPointerToDataMemberBinaryExpr(E); 2410 2411 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2412 2413 // Note that in all of these cases, __block variables need the RHS 2414 // evaluated first just in case the variable gets moved by the RHS. 2415 2416 if (!hasAggregateLLVMType(E->getType())) { 2417 switch (E->getLHS()->getType().getObjCLifetime()) { 2418 case Qualifiers::OCL_Strong: 2419 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2420 2421 case Qualifiers::OCL_Autoreleasing: 2422 return EmitARCStoreAutoreleasing(E).first; 2423 2424 // No reason to do any of these differently. 2425 case Qualifiers::OCL_None: 2426 case Qualifiers::OCL_ExplicitNone: 2427 case Qualifiers::OCL_Weak: 2428 break; 2429 } 2430 2431 RValue RV = EmitAnyExpr(E->getRHS()); 2432 LValue LV = EmitLValue(E->getLHS()); 2433 EmitStoreThroughLValue(RV, LV); 2434 return LV; 2435 } 2436 2437 if (E->getType()->isAnyComplexType()) 2438 return EmitComplexAssignmentLValue(E); 2439 2440 return EmitAggExprToLValue(E); 2441 } 2442 2443 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2444 RValue RV = EmitCallExpr(E); 2445 2446 if (!RV.isScalar()) 2447 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2448 2449 assert(E->getCallReturnType()->isReferenceType() && 2450 "Can't have a scalar return unless the return type is a " 2451 "reference type!"); 2452 2453 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2454 } 2455 2456 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2457 // FIXME: This shouldn't require another copy. 2458 return EmitAggExprToLValue(E); 2459 } 2460 2461 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2462 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2463 && "binding l-value to type which needs a temporary"); 2464 AggValueSlot Slot = CreateAggTemp(E->getType()); 2465 EmitCXXConstructExpr(E, Slot); 2466 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2467 } 2468 2469 LValue 2470 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2471 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2472 } 2473 2474 LValue 2475 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2476 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2477 Slot.setExternallyDestructed(); 2478 EmitAggExpr(E->getSubExpr(), Slot); 2479 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 2480 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2481 } 2482 2483 LValue 2484 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 2485 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2486 EmitLambdaExpr(E, Slot); 2487 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2488 } 2489 2490 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2491 RValue RV = EmitObjCMessageExpr(E); 2492 2493 if (!RV.isScalar()) 2494 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2495 2496 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2497 "Can't have a scalar return unless the return type is a " 2498 "reference type!"); 2499 2500 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2501 } 2502 2503 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2504 llvm::Value *V = 2505 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2506 return MakeAddrLValue(V, E->getType()); 2507 } 2508 2509 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2510 const ObjCIvarDecl *Ivar) { 2511 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2512 } 2513 2514 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2515 llvm::Value *BaseValue, 2516 const ObjCIvarDecl *Ivar, 2517 unsigned CVRQualifiers) { 2518 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2519 Ivar, CVRQualifiers); 2520 } 2521 2522 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2523 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2524 llvm::Value *BaseValue = 0; 2525 const Expr *BaseExpr = E->getBase(); 2526 Qualifiers BaseQuals; 2527 QualType ObjectTy; 2528 if (E->isArrow()) { 2529 BaseValue = EmitScalarExpr(BaseExpr); 2530 ObjectTy = BaseExpr->getType()->getPointeeType(); 2531 BaseQuals = ObjectTy.getQualifiers(); 2532 } else { 2533 LValue BaseLV = EmitLValue(BaseExpr); 2534 // FIXME: this isn't right for bitfields. 2535 BaseValue = BaseLV.getAddress(); 2536 ObjectTy = BaseExpr->getType(); 2537 BaseQuals = ObjectTy.getQualifiers(); 2538 } 2539 2540 LValue LV = 2541 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2542 BaseQuals.getCVRQualifiers()); 2543 setObjCGCLValueClass(getContext(), E, LV); 2544 return LV; 2545 } 2546 2547 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2548 // Can only get l-value for message expression returning aggregate type 2549 RValue RV = EmitAnyExprToTemp(E); 2550 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2551 } 2552 2553 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2554 ReturnValueSlot ReturnValue, 2555 CallExpr::const_arg_iterator ArgBeg, 2556 CallExpr::const_arg_iterator ArgEnd, 2557 const Decl *TargetDecl) { 2558 // Get the actual function type. The callee type will always be a pointer to 2559 // function type or a block pointer type. 2560 assert(CalleeType->isFunctionPointerType() && 2561 "Call must have function pointer type!"); 2562 2563 CalleeType = getContext().getCanonicalType(CalleeType); 2564 2565 const FunctionType *FnType 2566 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2567 2568 CallArgList Args; 2569 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2570 2571 const CGFunctionInfo &FnInfo = 2572 CGM.getTypes().arrangeFunctionCall(Args, FnType); 2573 2574 // C99 6.5.2.2p6: 2575 // If the expression that denotes the called function has a type 2576 // that does not include a prototype, [the default argument 2577 // promotions are performed]. If the number of arguments does not 2578 // equal the number of parameters, the behavior is undefined. If 2579 // the function is defined with a type that includes a prototype, 2580 // and either the prototype ends with an ellipsis (, ...) or the 2581 // types of the arguments after promotion are not compatible with 2582 // the types of the parameters, the behavior is undefined. If the 2583 // function is defined with a type that does not include a 2584 // prototype, and the types of the arguments after promotion are 2585 // not compatible with those of the parameters after promotion, 2586 // the behavior is undefined [except in some trivial cases]. 2587 // That is, in the general case, we should assume that a call 2588 // through an unprototyped function type works like a *non-variadic* 2589 // call. The way we make this work is to cast to the exact type 2590 // of the promoted arguments. 2591 if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) { 2592 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 2593 CalleeTy = CalleeTy->getPointerTo(); 2594 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 2595 } 2596 2597 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 2598 } 2599 2600 LValue CodeGenFunction:: 2601 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2602 llvm::Value *BaseV; 2603 if (E->getOpcode() == BO_PtrMemI) 2604 BaseV = EmitScalarExpr(E->getLHS()); 2605 else 2606 BaseV = EmitLValue(E->getLHS()).getAddress(); 2607 2608 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2609 2610 const MemberPointerType *MPT 2611 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2612 2613 llvm::Value *AddV = 2614 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2615 2616 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2617 } 2618 2619 static void 2620 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 2621 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 2622 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 2623 if (E->isCmpXChg()) { 2624 // Note that cmpxchg only supports specifying one ordering and 2625 // doesn't support weak cmpxchg, at least at the moment. 2626 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2627 LoadVal1->setAlignment(Align); 2628 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 2629 LoadVal2->setAlignment(Align); 2630 llvm::AtomicCmpXchgInst *CXI = 2631 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 2632 CXI->setVolatile(E->isVolatile()); 2633 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 2634 StoreVal1->setAlignment(Align); 2635 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 2636 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 2637 return; 2638 } 2639 2640 if (E->getOp() == AtomicExpr::Load) { 2641 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 2642 Load->setAtomic(Order); 2643 Load->setAlignment(Size); 2644 Load->setVolatile(E->isVolatile()); 2645 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 2646 StoreDest->setAlignment(Align); 2647 return; 2648 } 2649 2650 if (E->getOp() == AtomicExpr::Store) { 2651 assert(!Dest && "Store does not return a value"); 2652 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2653 LoadVal1->setAlignment(Align); 2654 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 2655 Store->setAtomic(Order); 2656 Store->setAlignment(Size); 2657 Store->setVolatile(E->isVolatile()); 2658 return; 2659 } 2660 2661 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 2662 switch (E->getOp()) { 2663 case AtomicExpr::CmpXchgWeak: 2664 case AtomicExpr::CmpXchgStrong: 2665 case AtomicExpr::Store: 2666 case AtomicExpr::Init: 2667 case AtomicExpr::Load: assert(0 && "Already handled!"); 2668 case AtomicExpr::Add: Op = llvm::AtomicRMWInst::Add; break; 2669 case AtomicExpr::Sub: Op = llvm::AtomicRMWInst::Sub; break; 2670 case AtomicExpr::And: Op = llvm::AtomicRMWInst::And; break; 2671 case AtomicExpr::Or: Op = llvm::AtomicRMWInst::Or; break; 2672 case AtomicExpr::Xor: Op = llvm::AtomicRMWInst::Xor; break; 2673 case AtomicExpr::Xchg: Op = llvm::AtomicRMWInst::Xchg; break; 2674 } 2675 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2676 LoadVal1->setAlignment(Align); 2677 llvm::AtomicRMWInst *RMWI = 2678 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 2679 RMWI->setVolatile(E->isVolatile()); 2680 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(RMWI, Dest); 2681 StoreDest->setAlignment(Align); 2682 } 2683 2684 // This function emits any expression (scalar, complex, or aggregate) 2685 // into a temporary alloca. 2686 static llvm::Value * 2687 EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 2688 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 2689 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 2690 /*Init*/ true); 2691 return DeclPtr; 2692 } 2693 2694 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, 2695 llvm::Value *Dest) { 2696 if (Ty->isAnyComplexType()) 2697 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); 2698 if (CGF.hasAggregateLLVMType(Ty)) 2699 return RValue::getAggregate(Dest); 2700 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); 2701 } 2702 2703 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 2704 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 2705 QualType MemTy = AtomicTy->getAs<AtomicType>()->getValueType(); 2706 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 2707 uint64_t Size = sizeChars.getQuantity(); 2708 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 2709 unsigned Align = alignChars.getQuantity(); 2710 unsigned MaxInlineWidth = 2711 getContext().getTargetInfo().getMaxAtomicInlineWidth(); 2712 bool UseLibcall = (Size != Align || Size > MaxInlineWidth); 2713 2714 2715 2716 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 2717 Ptr = EmitScalarExpr(E->getPtr()); 2718 2719 if (E->getOp() == AtomicExpr::Init) { 2720 assert(!Dest && "Init does not return a value"); 2721 Val1 = EmitScalarExpr(E->getVal1()); 2722 llvm::StoreInst *Store = Builder.CreateStore(Val1, Ptr); 2723 Store->setAlignment(Size); 2724 Store->setVolatile(E->isVolatile()); 2725 return RValue::get(0); 2726 } 2727 2728 Order = EmitScalarExpr(E->getOrder()); 2729 if (E->isCmpXChg()) { 2730 Val1 = EmitScalarExpr(E->getVal1()); 2731 Val2 = EmitValToTemp(*this, E->getVal2()); 2732 OrderFail = EmitScalarExpr(E->getOrderFail()); 2733 (void)OrderFail; // OrderFail is unused at the moment 2734 } else if ((E->getOp() == AtomicExpr::Add || E->getOp() == AtomicExpr::Sub) && 2735 MemTy->isPointerType()) { 2736 // For pointers, we're required to do a bit of math: adding 1 to an int* 2737 // is not the same as adding 1 to a uintptr_t. 2738 QualType Val1Ty = E->getVal1()->getType(); 2739 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 2740 CharUnits PointeeIncAmt = 2741 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 2742 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 2743 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 2744 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 2745 } else if (E->getOp() != AtomicExpr::Load) { 2746 Val1 = EmitValToTemp(*this, E->getVal1()); 2747 } 2748 2749 if (E->getOp() != AtomicExpr::Store && !Dest) 2750 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 2751 2752 if (UseLibcall) { 2753 // FIXME: Finalize what the libcalls are actually supposed to look like. 2754 // See also http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 2755 return EmitUnsupportedRValue(E, "atomic library call"); 2756 } 2757 #if 0 2758 if (UseLibcall) { 2759 const char* LibCallName; 2760 switch (E->getOp()) { 2761 case AtomicExpr::CmpXchgWeak: 2762 LibCallName = "__atomic_compare_exchange_generic"; break; 2763 case AtomicExpr::CmpXchgStrong: 2764 LibCallName = "__atomic_compare_exchange_generic"; break; 2765 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; 2766 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; 2767 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; 2768 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; 2769 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; 2770 case AtomicExpr::Xchg: LibCallName = "__atomic_exchange_generic"; break; 2771 case AtomicExpr::Store: LibCallName = "__atomic_store_generic"; break; 2772 case AtomicExpr::Load: LibCallName = "__atomic_load_generic"; break; 2773 } 2774 llvm::SmallVector<QualType, 4> Params; 2775 CallArgList Args; 2776 QualType RetTy = getContext().VoidTy; 2777 if (E->getOp() != AtomicExpr::Store && !E->isCmpXChg()) 2778 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 2779 getContext().VoidPtrTy); 2780 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 2781 getContext().VoidPtrTy); 2782 if (E->getOp() != AtomicExpr::Load) 2783 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 2784 getContext().VoidPtrTy); 2785 if (E->isCmpXChg()) { 2786 Args.add(RValue::get(EmitCastToVoidPtr(Val2)), 2787 getContext().VoidPtrTy); 2788 RetTy = getContext().IntTy; 2789 } 2790 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 2791 getContext().getSizeType()); 2792 const CGFunctionInfo &FuncInfo = 2793 CGM.getTypes().arrangeFunctionCall(RetTy, Args, FunctionType::ExtInfo(), 2794 /*variadic*/ false); 2795 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo, false); 2796 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 2797 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 2798 if (E->isCmpXChg()) 2799 return Res; 2800 if (E->getOp() == AtomicExpr::Store) 2801 return RValue::get(0); 2802 return ConvertTempToRValue(*this, E->getType(), Dest); 2803 } 2804 #endif 2805 llvm::Type *IPtrTy = 2806 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 2807 llvm::Value *OrigDest = Dest; 2808 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 2809 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 2810 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 2811 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 2812 2813 if (isa<llvm::ConstantInt>(Order)) { 2814 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 2815 switch (ord) { 2816 case 0: // memory_order_relaxed 2817 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2818 llvm::Monotonic); 2819 break; 2820 case 1: // memory_order_consume 2821 case 2: // memory_order_acquire 2822 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2823 llvm::Acquire); 2824 break; 2825 case 3: // memory_order_release 2826 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2827 llvm::Release); 2828 break; 2829 case 4: // memory_order_acq_rel 2830 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2831 llvm::AcquireRelease); 2832 break; 2833 case 5: // memory_order_seq_cst 2834 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2835 llvm::SequentiallyConsistent); 2836 break; 2837 default: // invalid order 2838 // We should not ever get here normally, but it's hard to 2839 // enforce that in general. 2840 break; 2841 } 2842 if (E->getOp() == AtomicExpr::Store || E->getOp() == AtomicExpr::Init) 2843 return RValue::get(0); 2844 return ConvertTempToRValue(*this, E->getType(), OrigDest); 2845 } 2846 2847 // Long case, when Order isn't obviously constant. 2848 2849 // Create all the relevant BB's 2850 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 2851 *AcqRelBB = 0, *SeqCstBB = 0; 2852 MonotonicBB = createBasicBlock("monotonic", CurFn); 2853 if (E->getOp() != AtomicExpr::Store) 2854 AcquireBB = createBasicBlock("acquire", CurFn); 2855 if (E->getOp() != AtomicExpr::Load) 2856 ReleaseBB = createBasicBlock("release", CurFn); 2857 if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) 2858 AcqRelBB = createBasicBlock("acqrel", CurFn); 2859 SeqCstBB = createBasicBlock("seqcst", CurFn); 2860 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 2861 2862 // Create the switch for the split 2863 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 2864 // doesn't matter unless someone is crazy enough to use something that 2865 // doesn't fold to a constant for the ordering. 2866 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 2867 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 2868 2869 // Emit all the different atomics 2870 Builder.SetInsertPoint(MonotonicBB); 2871 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2872 llvm::Monotonic); 2873 Builder.CreateBr(ContBB); 2874 if (E->getOp() != AtomicExpr::Store) { 2875 Builder.SetInsertPoint(AcquireBB); 2876 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2877 llvm::Acquire); 2878 Builder.CreateBr(ContBB); 2879 SI->addCase(Builder.getInt32(1), AcquireBB); 2880 SI->addCase(Builder.getInt32(2), AcquireBB); 2881 } 2882 if (E->getOp() != AtomicExpr::Load) { 2883 Builder.SetInsertPoint(ReleaseBB); 2884 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2885 llvm::Release); 2886 Builder.CreateBr(ContBB); 2887 SI->addCase(Builder.getInt32(3), ReleaseBB); 2888 } 2889 if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) { 2890 Builder.SetInsertPoint(AcqRelBB); 2891 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2892 llvm::AcquireRelease); 2893 Builder.CreateBr(ContBB); 2894 SI->addCase(Builder.getInt32(4), AcqRelBB); 2895 } 2896 Builder.SetInsertPoint(SeqCstBB); 2897 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 2898 llvm::SequentiallyConsistent); 2899 Builder.CreateBr(ContBB); 2900 SI->addCase(Builder.getInt32(5), SeqCstBB); 2901 2902 // Cleanup and return 2903 Builder.SetInsertPoint(ContBB); 2904 if (E->getOp() == AtomicExpr::Store) 2905 return RValue::get(0); 2906 return ConvertTempToRValue(*this, E->getType(), OrigDest); 2907 } 2908 2909 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN, 2910 unsigned AccuracyD) { 2911 assert(Val->getType()->isFPOrFPVectorTy()); 2912 if (!AccuracyN || !isa<llvm::Instruction>(Val)) 2913 return; 2914 2915 llvm::Value *Vals[2]; 2916 Vals[0] = llvm::ConstantInt::get(Int32Ty, AccuracyN); 2917 Vals[1] = llvm::ConstantInt::get(Int32Ty, AccuracyD); 2918 llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), Vals); 2919 2920 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy, 2921 Node); 2922 } 2923 2924 namespace { 2925 struct LValueOrRValue { 2926 LValue LV; 2927 RValue RV; 2928 }; 2929 } 2930 2931 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 2932 const PseudoObjectExpr *E, 2933 bool forLValue, 2934 AggValueSlot slot) { 2935 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 2936 2937 // Find the result expression, if any. 2938 const Expr *resultExpr = E->getResultExpr(); 2939 LValueOrRValue result; 2940 2941 for (PseudoObjectExpr::const_semantics_iterator 2942 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 2943 const Expr *semantic = *i; 2944 2945 // If this semantic expression is an opaque value, bind it 2946 // to the result of its source expression. 2947 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 2948 2949 // If this is the result expression, we may need to evaluate 2950 // directly into the slot. 2951 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 2952 OVMA opaqueData; 2953 if (ov == resultExpr && ov->isRValue() && !forLValue && 2954 CodeGenFunction::hasAggregateLLVMType(ov->getType()) && 2955 !ov->getType()->isAnyComplexType()) { 2956 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 2957 2958 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 2959 opaqueData = OVMA::bind(CGF, ov, LV); 2960 result.RV = slot.asRValue(); 2961 2962 // Otherwise, emit as normal. 2963 } else { 2964 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 2965 2966 // If this is the result, also evaluate the result now. 2967 if (ov == resultExpr) { 2968 if (forLValue) 2969 result.LV = CGF.EmitLValue(ov); 2970 else 2971 result.RV = CGF.EmitAnyExpr(ov, slot); 2972 } 2973 } 2974 2975 opaques.push_back(opaqueData); 2976 2977 // Otherwise, if the expression is the result, evaluate it 2978 // and remember the result. 2979 } else if (semantic == resultExpr) { 2980 if (forLValue) 2981 result.LV = CGF.EmitLValue(semantic); 2982 else 2983 result.RV = CGF.EmitAnyExpr(semantic, slot); 2984 2985 // Otherwise, evaluate the expression in an ignored context. 2986 } else { 2987 CGF.EmitIgnoredExpr(semantic); 2988 } 2989 } 2990 2991 // Unbind all the opaques now. 2992 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 2993 opaques[i].unbind(CGF); 2994 2995 return result; 2996 } 2997 2998 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 2999 AggValueSlot slot) { 3000 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3001 } 3002 3003 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3004 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3005 } 3006