1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGRecordLayout.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/Target/TargetData.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===--------------------------------------------------------------------===//
32 //                        Miscellaneous Helper Methods
33 //===--------------------------------------------------------------------===//
34 
35 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
36   unsigned addressSpace =
37     cast<llvm::PointerType>(value->getType())->getAddressSpace();
38 
39   llvm::PointerType *destType = Int8PtrTy;
40   if (addressSpace)
41     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
42 
43   if (value->getType() == destType) return value;
44   return Builder.CreateBitCast(value, destType);
45 }
46 
47 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
48 /// block.
49 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
50                                                     const Twine &Name) {
51   if (!Builder.isNamePreserving())
52     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
53   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
54 }
55 
56 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
57                                      llvm::Value *Init) {
58   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
59   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
60   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
61 }
62 
63 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
64                                                 const Twine &Name) {
65   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
66   // FIXME: Should we prefer the preferred type alignment here?
67   CharUnits Align = getContext().getTypeAlignInChars(Ty);
68   Alloc->setAlignment(Align.getQuantity());
69   return Alloc;
70 }
71 
72 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
73                                                  const Twine &Name) {
74   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
75   // FIXME: Should we prefer the preferred type alignment here?
76   CharUnits Align = getContext().getTypeAlignInChars(Ty);
77   Alloc->setAlignment(Align.getQuantity());
78   return Alloc;
79 }
80 
81 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
82 /// expression and compare the result against zero, returning an Int1Ty value.
83 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
84   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
85     llvm::Value *MemPtr = EmitScalarExpr(E);
86     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
87   }
88 
89   QualType BoolTy = getContext().BoolTy;
90   if (!E->getType()->isAnyComplexType())
91     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
92 
93   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
94 }
95 
96 /// EmitIgnoredExpr - Emit code to compute the specified expression,
97 /// ignoring the result.
98 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
99   if (E->isRValue())
100     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
101 
102   // Just emit it as an l-value and drop the result.
103   EmitLValue(E);
104 }
105 
106 /// EmitAnyExpr - Emit code to compute the specified expression which
107 /// can have any type.  The result is returned as an RValue struct.
108 /// If this is an aggregate expression, AggSlot indicates where the
109 /// result should be returned.
110 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
111                                     bool IgnoreResult) {
112   if (!hasAggregateLLVMType(E->getType()))
113     return RValue::get(EmitScalarExpr(E, IgnoreResult));
114   else if (E->getType()->isAnyComplexType())
115     return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
116 
117   EmitAggExpr(E, AggSlot, IgnoreResult);
118   return AggSlot.asRValue();
119 }
120 
121 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
122 /// always be accessible even if no aggregate location is provided.
123 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
124   AggValueSlot AggSlot = AggValueSlot::ignored();
125 
126   if (hasAggregateLLVMType(E->getType()) &&
127       !E->getType()->isAnyComplexType())
128     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
129   return EmitAnyExpr(E, AggSlot);
130 }
131 
132 /// EmitAnyExprToMem - Evaluate an expression into a given memory
133 /// location.
134 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
135                                        llvm::Value *Location,
136                                        Qualifiers Quals,
137                                        bool IsInit) {
138   // FIXME: This function should take an LValue as an argument.
139   if (E->getType()->isAnyComplexType()) {
140     EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
141   } else if (hasAggregateLLVMType(E->getType())) {
142     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
143     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
144                                          AggValueSlot::IsDestructed_t(IsInit),
145                                          AggValueSlot::DoesNotNeedGCBarriers,
146                                          AggValueSlot::IsAliased_t(!IsInit)));
147   } else {
148     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
149     LValue LV = MakeAddrLValue(Location, E->getType());
150     EmitStoreThroughLValue(RV, LV);
151   }
152 }
153 
154 namespace {
155 /// \brief An adjustment to be made to the temporary created when emitting a
156 /// reference binding, which accesses a particular subobject of that temporary.
157   struct SubobjectAdjustment {
158     enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
159 
160     union {
161       struct {
162         const CastExpr *BasePath;
163         const CXXRecordDecl *DerivedClass;
164       } DerivedToBase;
165 
166       FieldDecl *Field;
167     };
168 
169     SubobjectAdjustment(const CastExpr *BasePath,
170                         const CXXRecordDecl *DerivedClass)
171       : Kind(DerivedToBaseAdjustment) {
172       DerivedToBase.BasePath = BasePath;
173       DerivedToBase.DerivedClass = DerivedClass;
174     }
175 
176     SubobjectAdjustment(FieldDecl *Field)
177       : Kind(FieldAdjustment) {
178       this->Field = Field;
179     }
180   };
181 }
182 
183 static llvm::Value *
184 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
185                          const NamedDecl *InitializedDecl) {
186   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
187     if (VD->hasGlobalStorage()) {
188       SmallString<256> Name;
189       llvm::raw_svector_ostream Out(Name);
190       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
191       Out.flush();
192 
193       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
194 
195       // Create the reference temporary.
196       llvm::GlobalValue *RefTemp =
197         new llvm::GlobalVariable(CGF.CGM.getModule(),
198                                  RefTempTy, /*isConstant=*/false,
199                                  llvm::GlobalValue::InternalLinkage,
200                                  llvm::Constant::getNullValue(RefTempTy),
201                                  Name.str());
202       return RefTemp;
203     }
204   }
205 
206   return CGF.CreateMemTemp(Type, "ref.tmp");
207 }
208 
209 static llvm::Value *
210 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
211                             llvm::Value *&ReferenceTemporary,
212                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
213                             QualType &ObjCARCReferenceLifetimeType,
214                             const NamedDecl *InitializedDecl) {
215   // Look through single-element init lists that claim to be lvalues. They're
216   // just syntactic wrappers in this case.
217   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
218     if (ILE->getNumInits() == 1 && ILE->isGLValue())
219       E = ILE->getInit(0);
220   }
221 
222   // Look through expressions for materialized temporaries (for now).
223   if (const MaterializeTemporaryExpr *M
224                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
225     // Objective-C++ ARC:
226     //   If we are binding a reference to a temporary that has ownership, we
227     //   need to perform retain/release operations on the temporary.
228     if (CGF.getContext().getLangOpts().ObjCAutoRefCount &&
229         E->getType()->isObjCLifetimeType() &&
230         (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
231          E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
232          E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
233       ObjCARCReferenceLifetimeType = E->getType();
234 
235     E = M->GetTemporaryExpr();
236   }
237 
238   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
239     E = DAE->getExpr();
240 
241   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
242     CGF.enterFullExpression(EWC);
243     CodeGenFunction::RunCleanupsScope Scope(CGF);
244 
245     return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
246                                        ReferenceTemporary,
247                                        ReferenceTemporaryDtor,
248                                        ObjCARCReferenceLifetimeType,
249                                        InitializedDecl);
250   }
251 
252   RValue RV;
253   if (E->isGLValue()) {
254     // Emit the expression as an lvalue.
255     LValue LV = CGF.EmitLValue(E);
256 
257     if (LV.isSimple())
258       return LV.getAddress();
259 
260     // We have to load the lvalue.
261     RV = CGF.EmitLoadOfLValue(LV);
262   } else {
263     if (!ObjCARCReferenceLifetimeType.isNull()) {
264       ReferenceTemporary = CreateReferenceTemporary(CGF,
265                                                   ObjCARCReferenceLifetimeType,
266                                                     InitializedDecl);
267 
268 
269       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
270                                              ObjCARCReferenceLifetimeType);
271 
272       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
273                          RefTempDst, false);
274 
275       bool ExtendsLifeOfTemporary = false;
276       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
277         if (Var->extendsLifetimeOfTemporary())
278           ExtendsLifeOfTemporary = true;
279       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
280         ExtendsLifeOfTemporary = true;
281       }
282 
283       if (!ExtendsLifeOfTemporary) {
284         // Since the lifetime of this temporary isn't going to be extended,
285         // we need to clean it up ourselves at the end of the full expression.
286         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
287         case Qualifiers::OCL_None:
288         case Qualifiers::OCL_ExplicitNone:
289         case Qualifiers::OCL_Autoreleasing:
290           break;
291 
292         case Qualifiers::OCL_Strong: {
293           assert(!ObjCARCReferenceLifetimeType->isArrayType());
294           CleanupKind cleanupKind = CGF.getARCCleanupKind();
295           CGF.pushDestroy(cleanupKind,
296                           ReferenceTemporary,
297                           ObjCARCReferenceLifetimeType,
298                           CodeGenFunction::destroyARCStrongImprecise,
299                           cleanupKind & EHCleanup);
300           break;
301         }
302 
303         case Qualifiers::OCL_Weak:
304           assert(!ObjCARCReferenceLifetimeType->isArrayType());
305           CGF.pushDestroy(NormalAndEHCleanup,
306                           ReferenceTemporary,
307                           ObjCARCReferenceLifetimeType,
308                           CodeGenFunction::destroyARCWeak,
309                           /*useEHCleanupForArray*/ true);
310           break;
311         }
312 
313         ObjCARCReferenceLifetimeType = QualType();
314       }
315 
316       return ReferenceTemporary;
317     }
318 
319     SmallVector<SubobjectAdjustment, 2> Adjustments;
320     while (true) {
321       E = E->IgnoreParens();
322 
323       if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
324         if ((CE->getCastKind() == CK_DerivedToBase ||
325              CE->getCastKind() == CK_UncheckedDerivedToBase) &&
326             E->getType()->isRecordType()) {
327           E = CE->getSubExpr();
328           CXXRecordDecl *Derived
329             = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
330           Adjustments.push_back(SubobjectAdjustment(CE, Derived));
331           continue;
332         }
333 
334         if (CE->getCastKind() == CK_NoOp) {
335           E = CE->getSubExpr();
336           continue;
337         }
338       } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
339         if (!ME->isArrow() && ME->getBase()->isRValue()) {
340           assert(ME->getBase()->getType()->isRecordType());
341           if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
342             E = ME->getBase();
343             Adjustments.push_back(SubobjectAdjustment(Field));
344             continue;
345           }
346         }
347       }
348 
349       if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
350         if (opaque->getType()->isRecordType())
351           return CGF.EmitOpaqueValueLValue(opaque).getAddress();
352 
353       // Nothing changed.
354       break;
355     }
356 
357     // Create a reference temporary if necessary.
358     AggValueSlot AggSlot = AggValueSlot::ignored();
359     if (CGF.hasAggregateLLVMType(E->getType()) &&
360         !E->getType()->isAnyComplexType()) {
361       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
362                                                     InitializedDecl);
363       CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
364       AggValueSlot::IsDestructed_t isDestructed
365         = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
366       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
367                                       Qualifiers(), isDestructed,
368                                       AggValueSlot::DoesNotNeedGCBarriers,
369                                       AggValueSlot::IsNotAliased);
370     }
371 
372     if (InitializedDecl) {
373       // Get the destructor for the reference temporary.
374       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
375         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
376         if (!ClassDecl->hasTrivialDestructor())
377           ReferenceTemporaryDtor = ClassDecl->getDestructor();
378       }
379     }
380 
381     RV = CGF.EmitAnyExpr(E, AggSlot);
382 
383     // Check if need to perform derived-to-base casts and/or field accesses, to
384     // get from the temporary object we created (and, potentially, for which we
385     // extended the lifetime) to the subobject we're binding the reference to.
386     if (!Adjustments.empty()) {
387       llvm::Value *Object = RV.getAggregateAddr();
388       for (unsigned I = Adjustments.size(); I != 0; --I) {
389         SubobjectAdjustment &Adjustment = Adjustments[I-1];
390         switch (Adjustment.Kind) {
391         case SubobjectAdjustment::DerivedToBaseAdjustment:
392           Object =
393               CGF.GetAddressOfBaseClass(Object,
394                                         Adjustment.DerivedToBase.DerivedClass,
395                               Adjustment.DerivedToBase.BasePath->path_begin(),
396                               Adjustment.DerivedToBase.BasePath->path_end(),
397                                         /*NullCheckValue=*/false);
398           break;
399 
400         case SubobjectAdjustment::FieldAdjustment: {
401           LValue LV =
402             CGF.EmitLValueForField(Object, Adjustment.Field, 0);
403           if (LV.isSimple()) {
404             Object = LV.getAddress();
405             break;
406           }
407 
408           // For non-simple lvalues, we actually have to create a copy of
409           // the object we're binding to.
410           QualType T = Adjustment.Field->getType().getNonReferenceType()
411                                                   .getUnqualifiedType();
412           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
413           LValue TempLV = CGF.MakeAddrLValue(Object,
414                                              Adjustment.Field->getType());
415           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
416           break;
417         }
418 
419         }
420       }
421 
422       return Object;
423     }
424   }
425 
426   if (RV.isAggregate())
427     return RV.getAggregateAddr();
428 
429   // Create a temporary variable that we can bind the reference to.
430   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
431                                                 InitializedDecl);
432 
433 
434   unsigned Alignment =
435     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
436   if (RV.isScalar())
437     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
438                           /*Volatile=*/false, Alignment, E->getType());
439   else
440     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
441                            /*Volatile=*/false);
442   return ReferenceTemporary;
443 }
444 
445 RValue
446 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
447                                             const NamedDecl *InitializedDecl) {
448   llvm::Value *ReferenceTemporary = 0;
449   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
450   QualType ObjCARCReferenceLifetimeType;
451   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
452                                                    ReferenceTemporaryDtor,
453                                                    ObjCARCReferenceLifetimeType,
454                                                    InitializedDecl);
455   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
456     return RValue::get(Value);
457 
458   // Make sure to call the destructor for the reference temporary.
459   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
460   if (VD && VD->hasGlobalStorage()) {
461     if (ReferenceTemporaryDtor) {
462       llvm::Constant *DtorFn =
463         CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
464       EmitCXXGlobalDtorRegistration(DtorFn,
465                                     cast<llvm::Constant>(ReferenceTemporary));
466     } else {
467       assert(!ObjCARCReferenceLifetimeType.isNull());
468       // Note: We intentionally do not register a global "destructor" to
469       // release the object.
470     }
471 
472     return RValue::get(Value);
473   }
474 
475   if (ReferenceTemporaryDtor)
476     PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
477   else {
478     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
479     case Qualifiers::OCL_None:
480       llvm_unreachable(
481                       "Not a reference temporary that needs to be deallocated");
482     case Qualifiers::OCL_ExplicitNone:
483     case Qualifiers::OCL_Autoreleasing:
484       // Nothing to do.
485       break;
486 
487     case Qualifiers::OCL_Strong: {
488       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
489       CleanupKind cleanupKind = getARCCleanupKind();
490       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
491                   precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
492                   cleanupKind & EHCleanup);
493       break;
494     }
495 
496     case Qualifiers::OCL_Weak: {
497       // __weak objects always get EH cleanups; otherwise, exceptions
498       // could cause really nasty crashes instead of mere leaks.
499       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
500                   ObjCARCReferenceLifetimeType, destroyARCWeak, true);
501       break;
502     }
503     }
504   }
505 
506   return RValue::get(Value);
507 }
508 
509 
510 /// getAccessedFieldNo - Given an encoded value and a result number, return the
511 /// input field number being accessed.
512 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
513                                              const llvm::Constant *Elts) {
514   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
515       ->getZExtValue();
516 }
517 
518 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
519   if (!CatchUndefined)
520     return;
521 
522   // This needs to be to the standard address space.
523   Address = Builder.CreateBitCast(Address, Int8PtrTy);
524 
525   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
526 
527   // In time, people may want to control this and use a 1 here.
528   llvm::Value *Arg = Builder.getFalse();
529   llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
530   llvm::BasicBlock *Cont = createBasicBlock();
531   llvm::BasicBlock *Check = createBasicBlock();
532   llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
533   Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
534 
535   EmitBlock(Check);
536   Builder.CreateCondBr(Builder.CreateICmpUGE(C,
537                                         llvm::ConstantInt::get(IntPtrTy, Size)),
538                        Cont, getTrapBB());
539   EmitBlock(Cont);
540 }
541 
542 
543 CodeGenFunction::ComplexPairTy CodeGenFunction::
544 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
545                          bool isInc, bool isPre) {
546   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
547                                             LV.isVolatileQualified());
548 
549   llvm::Value *NextVal;
550   if (isa<llvm::IntegerType>(InVal.first->getType())) {
551     uint64_t AmountVal = isInc ? 1 : -1;
552     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
553 
554     // Add the inc/dec to the real part.
555     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
556   } else {
557     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
558     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
559     if (!isInc)
560       FVal.changeSign();
561     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
562 
563     // Add the inc/dec to the real part.
564     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
565   }
566 
567   ComplexPairTy IncVal(NextVal, InVal.second);
568 
569   // Store the updated result through the lvalue.
570   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
571 
572   // If this is a postinc, return the value read from memory, otherwise use the
573   // updated value.
574   return isPre ? IncVal : InVal;
575 }
576 
577 
578 //===----------------------------------------------------------------------===//
579 //                         LValue Expression Emission
580 //===----------------------------------------------------------------------===//
581 
582 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
583   if (Ty->isVoidType())
584     return RValue::get(0);
585 
586   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
587     llvm::Type *EltTy = ConvertType(CTy->getElementType());
588     llvm::Value *U = llvm::UndefValue::get(EltTy);
589     return RValue::getComplex(std::make_pair(U, U));
590   }
591 
592   // If this is a use of an undefined aggregate type, the aggregate must have an
593   // identifiable address.  Just because the contents of the value are undefined
594   // doesn't mean that the address can't be taken and compared.
595   if (hasAggregateLLVMType(Ty)) {
596     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
597     return RValue::getAggregate(DestPtr);
598   }
599 
600   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
601 }
602 
603 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
604                                               const char *Name) {
605   ErrorUnsupported(E, Name);
606   return GetUndefRValue(E->getType());
607 }
608 
609 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
610                                               const char *Name) {
611   ErrorUnsupported(E, Name);
612   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
613   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
614 }
615 
616 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
617   LValue LV = EmitLValue(E);
618   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
619     EmitCheck(LV.getAddress(),
620               getContext().getTypeSizeInChars(E->getType()).getQuantity());
621   return LV;
622 }
623 
624 /// EmitLValue - Emit code to compute a designator that specifies the location
625 /// of the expression.
626 ///
627 /// This can return one of two things: a simple address or a bitfield reference.
628 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
629 /// an LLVM pointer type.
630 ///
631 /// If this returns a bitfield reference, nothing about the pointee type of the
632 /// LLVM value is known: For example, it may not be a pointer to an integer.
633 ///
634 /// If this returns a normal address, and if the lvalue's C type is fixed size,
635 /// this method guarantees that the returned pointer type will point to an LLVM
636 /// type of the same size of the lvalue's type.  If the lvalue has a variable
637 /// length type, this is not possible.
638 ///
639 LValue CodeGenFunction::EmitLValue(const Expr *E) {
640   switch (E->getStmtClass()) {
641   default: return EmitUnsupportedLValue(E, "l-value expression");
642 
643   case Expr::ObjCPropertyRefExprClass:
644     llvm_unreachable("cannot emit a property reference directly");
645 
646   case Expr::ObjCSelectorExprClass:
647   return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
648   case Expr::ObjCIsaExprClass:
649     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
650   case Expr::BinaryOperatorClass:
651     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
652   case Expr::CompoundAssignOperatorClass:
653     if (!E->getType()->isAnyComplexType())
654       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
655     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
656   case Expr::CallExprClass:
657   case Expr::CXXMemberCallExprClass:
658   case Expr::CXXOperatorCallExprClass:
659   case Expr::UserDefinedLiteralClass:
660     return EmitCallExprLValue(cast<CallExpr>(E));
661   case Expr::VAArgExprClass:
662     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
663   case Expr::DeclRefExprClass:
664     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
665   case Expr::ParenExprClass:
666     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
667   case Expr::GenericSelectionExprClass:
668     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
669   case Expr::PredefinedExprClass:
670     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
671   case Expr::StringLiteralClass:
672     return EmitStringLiteralLValue(cast<StringLiteral>(E));
673   case Expr::ObjCEncodeExprClass:
674     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
675   case Expr::PseudoObjectExprClass:
676     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
677   case Expr::InitListExprClass:
678     assert(cast<InitListExpr>(E)->getNumInits() == 1 &&
679            "Only single-element init list can be lvalue.");
680     return EmitLValue(cast<InitListExpr>(E)->getInit(0));
681 
682   case Expr::CXXTemporaryObjectExprClass:
683   case Expr::CXXConstructExprClass:
684     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
685   case Expr::CXXBindTemporaryExprClass:
686     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
687   case Expr::LambdaExprClass:
688     return EmitLambdaLValue(cast<LambdaExpr>(E));
689 
690   case Expr::ExprWithCleanupsClass: {
691     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
692     enterFullExpression(cleanups);
693     RunCleanupsScope Scope(*this);
694     return EmitLValue(cleanups->getSubExpr());
695   }
696 
697   case Expr::CXXScalarValueInitExprClass:
698     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
699   case Expr::CXXDefaultArgExprClass:
700     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
701   case Expr::CXXTypeidExprClass:
702     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
703 
704   case Expr::ObjCMessageExprClass:
705     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
706   case Expr::ObjCIvarRefExprClass:
707     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
708   case Expr::StmtExprClass:
709     return EmitStmtExprLValue(cast<StmtExpr>(E));
710   case Expr::UnaryOperatorClass:
711     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
712   case Expr::ArraySubscriptExprClass:
713     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
714   case Expr::ExtVectorElementExprClass:
715     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
716   case Expr::MemberExprClass:
717     return EmitMemberExpr(cast<MemberExpr>(E));
718   case Expr::CompoundLiteralExprClass:
719     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
720   case Expr::ConditionalOperatorClass:
721     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
722   case Expr::BinaryConditionalOperatorClass:
723     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
724   case Expr::ChooseExprClass:
725     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
726   case Expr::OpaqueValueExprClass:
727     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
728   case Expr::SubstNonTypeTemplateParmExprClass:
729     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
730   case Expr::ImplicitCastExprClass:
731   case Expr::CStyleCastExprClass:
732   case Expr::CXXFunctionalCastExprClass:
733   case Expr::CXXStaticCastExprClass:
734   case Expr::CXXDynamicCastExprClass:
735   case Expr::CXXReinterpretCastExprClass:
736   case Expr::CXXConstCastExprClass:
737   case Expr::ObjCBridgedCastExprClass:
738     return EmitCastLValue(cast<CastExpr>(E));
739 
740   case Expr::MaterializeTemporaryExprClass:
741     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
742   }
743 }
744 
745 /// Given an object of the given canonical type, can we safely copy a
746 /// value out of it based on its initializer?
747 static bool isConstantEmittableObjectType(QualType type) {
748   assert(type.isCanonical());
749   assert(!type->isReferenceType());
750 
751   // Must be const-qualified but non-volatile.
752   Qualifiers qs = type.getLocalQualifiers();
753   if (!qs.hasConst() || qs.hasVolatile()) return false;
754 
755   // Otherwise, all object types satisfy this except C++ classes with
756   // mutable subobjects or non-trivial copy/destroy behavior.
757   if (const RecordType *RT = dyn_cast<RecordType>(type))
758     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
759       if (RD->hasMutableFields() || !RD->isTrivial())
760         return false;
761 
762   return true;
763 }
764 
765 /// Can we constant-emit a load of a reference to a variable of the
766 /// given type?  This is different from predicates like
767 /// Decl::isUsableInConstantExpressions because we do want it to apply
768 /// in situations that don't necessarily satisfy the language's rules
769 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
770 /// to do this with const float variables even if those variables
771 /// aren't marked 'constexpr'.
772 enum ConstantEmissionKind {
773   CEK_None,
774   CEK_AsReferenceOnly,
775   CEK_AsValueOrReference,
776   CEK_AsValueOnly
777 };
778 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
779   type = type.getCanonicalType();
780   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
781     if (isConstantEmittableObjectType(ref->getPointeeType()))
782       return CEK_AsValueOrReference;
783     return CEK_AsReferenceOnly;
784   }
785   if (isConstantEmittableObjectType(type))
786     return CEK_AsValueOnly;
787   return CEK_None;
788 }
789 
790 /// Try to emit a reference to the given value without producing it as
791 /// an l-value.  This is actually more than an optimization: we can't
792 /// produce an l-value for variables that we never actually captured
793 /// in a block or lambda, which means const int variables or constexpr
794 /// literals or similar.
795 CodeGenFunction::ConstantEmission
796 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
797   ValueDecl *value = refExpr->getDecl();
798 
799   // The value needs to be an enum constant or a constant variable.
800   ConstantEmissionKind CEK;
801   if (isa<ParmVarDecl>(value)) {
802     CEK = CEK_None;
803   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
804     CEK = checkVarTypeForConstantEmission(var->getType());
805   } else if (isa<EnumConstantDecl>(value)) {
806     CEK = CEK_AsValueOnly;
807   } else {
808     CEK = CEK_None;
809   }
810   if (CEK == CEK_None) return ConstantEmission();
811 
812   Expr::EvalResult result;
813   bool resultIsReference;
814   QualType resultType;
815 
816   // It's best to evaluate all the way as an r-value if that's permitted.
817   if (CEK != CEK_AsReferenceOnly &&
818       refExpr->EvaluateAsRValue(result, getContext())) {
819     resultIsReference = false;
820     resultType = refExpr->getType();
821 
822   // Otherwise, try to evaluate as an l-value.
823   } else if (CEK != CEK_AsValueOnly &&
824              refExpr->EvaluateAsLValue(result, getContext())) {
825     resultIsReference = true;
826     resultType = value->getType();
827 
828   // Failure.
829   } else {
830     return ConstantEmission();
831   }
832 
833   // In any case, if the initializer has side-effects, abandon ship.
834   if (result.HasSideEffects)
835     return ConstantEmission();
836 
837   // Emit as a constant.
838   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
839 
840   // Make sure we emit a debug reference to the global variable.
841   // This should probably fire even for
842   if (isa<VarDecl>(value)) {
843     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
844       EmitDeclRefExprDbgValue(refExpr, C);
845   } else {
846     assert(isa<EnumConstantDecl>(value));
847     EmitDeclRefExprDbgValue(refExpr, C);
848   }
849 
850   // If we emitted a reference constant, we need to dereference that.
851   if (resultIsReference)
852     return ConstantEmission::forReference(C);
853 
854   return ConstantEmission::forValue(C);
855 }
856 
857 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
858   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
859                           lvalue.getAlignment().getQuantity(),
860                           lvalue.getType(), lvalue.getTBAAInfo());
861 }
862 
863 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
864                                               unsigned Alignment, QualType Ty,
865                                               llvm::MDNode *TBAAInfo) {
866   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
867   if (Volatile)
868     Load->setVolatile(true);
869   if (Alignment)
870     Load->setAlignment(Alignment);
871   if (TBAAInfo)
872     CGM.DecorateInstruction(Load, TBAAInfo);
873   // If this is an atomic type, all normal reads must be atomic
874   if (Ty->isAtomicType())
875     Load->setAtomic(llvm::SequentiallyConsistent);
876 
877   return EmitFromMemory(Load, Ty);
878 }
879 
880 static bool isBooleanUnderlyingType(QualType Ty) {
881   if (const EnumType *ET = dyn_cast<EnumType>(Ty))
882     return ET->getDecl()->getIntegerType()->isBooleanType();
883   return false;
884 }
885 
886 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
887   // Bool has a different representation in memory than in registers.
888   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
889     // This should really always be an i1, but sometimes it's already
890     // an i8, and it's awkward to track those cases down.
891     if (Value->getType()->isIntegerTy(1))
892       return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
893     assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
894   }
895 
896   return Value;
897 }
898 
899 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
900   // Bool has a different representation in memory than in registers.
901   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
902     assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
903     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
904   }
905 
906   return Value;
907 }
908 
909 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
910                                         bool Volatile, unsigned Alignment,
911                                         QualType Ty,
912                                         llvm::MDNode *TBAAInfo,
913                                         bool isInit) {
914   Value = EmitToMemory(Value, Ty);
915 
916   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
917   if (Alignment)
918     Store->setAlignment(Alignment);
919   if (TBAAInfo)
920     CGM.DecorateInstruction(Store, TBAAInfo);
921   if (!isInit && Ty->isAtomicType())
922     Store->setAtomic(llvm::SequentiallyConsistent);
923 }
924 
925 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
926     bool isInit) {
927   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
928                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
929                     lvalue.getTBAAInfo(), isInit);
930 }
931 
932 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
933 /// method emits the address of the lvalue, then loads the result as an rvalue,
934 /// returning the rvalue.
935 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
936   if (LV.isObjCWeak()) {
937     // load of a __weak object.
938     llvm::Value *AddrWeakObj = LV.getAddress();
939     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
940                                                              AddrWeakObj));
941   }
942   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
943     return RValue::get(EmitARCLoadWeak(LV.getAddress()));
944 
945   if (LV.isSimple()) {
946     assert(!LV.getType()->isFunctionType());
947 
948     // Everything needs a load.
949     return RValue::get(EmitLoadOfScalar(LV));
950   }
951 
952   if (LV.isVectorElt()) {
953     llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
954                                           LV.isVolatileQualified());
955     return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
956                                                     "vecext"));
957   }
958 
959   // If this is a reference to a subset of the elements of a vector, either
960   // shuffle the input or extract/insert them as appropriate.
961   if (LV.isExtVectorElt())
962     return EmitLoadOfExtVectorElementLValue(LV);
963 
964   assert(LV.isBitField() && "Unknown LValue type!");
965   return EmitLoadOfBitfieldLValue(LV);
966 }
967 
968 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
969   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
970 
971   // Get the output type.
972   llvm::Type *ResLTy = ConvertType(LV.getType());
973   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
974 
975   // Compute the result as an OR of all of the individual component accesses.
976   llvm::Value *Res = 0;
977   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
978     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
979 
980     // Get the field pointer.
981     llvm::Value *Ptr = LV.getBitFieldBaseAddr();
982 
983     // Only offset by the field index if used, so that incoming values are not
984     // required to be structures.
985     if (AI.FieldIndex)
986       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
987 
988     // Offset by the byte offset, if used.
989     if (!AI.FieldByteOffset.isZero()) {
990       Ptr = EmitCastToVoidPtr(Ptr);
991       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
992                                        "bf.field.offs");
993     }
994 
995     // Cast to the access type.
996     llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth,
997                        CGM.getContext().getTargetAddressSpace(LV.getType()));
998     Ptr = Builder.CreateBitCast(Ptr, PTy);
999 
1000     // Perform the load.
1001     llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
1002     if (!AI.AccessAlignment.isZero())
1003       Load->setAlignment(AI.AccessAlignment.getQuantity());
1004 
1005     // Shift out unused low bits and mask out unused high bits.
1006     llvm::Value *Val = Load;
1007     if (AI.FieldBitStart)
1008       Val = Builder.CreateLShr(Load, AI.FieldBitStart);
1009     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
1010                                                             AI.TargetBitWidth),
1011                             "bf.clear");
1012 
1013     // Extend or truncate to the target size.
1014     if (AI.AccessWidth < ResSizeInBits)
1015       Val = Builder.CreateZExt(Val, ResLTy);
1016     else if (AI.AccessWidth > ResSizeInBits)
1017       Val = Builder.CreateTrunc(Val, ResLTy);
1018 
1019     // Shift into place, and OR into the result.
1020     if (AI.TargetBitOffset)
1021       Val = Builder.CreateShl(Val, AI.TargetBitOffset);
1022     Res = Res ? Builder.CreateOr(Res, Val) : Val;
1023   }
1024 
1025   // If the bit-field is signed, perform the sign-extension.
1026   //
1027   // FIXME: This can easily be folded into the load of the high bits, which
1028   // could also eliminate the mask of high bits in some situations.
1029   if (Info.isSigned()) {
1030     unsigned ExtraBits = ResSizeInBits - Info.getSize();
1031     if (ExtraBits)
1032       Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
1033                                ExtraBits, "bf.val.sext");
1034   }
1035 
1036   return RValue::get(Res);
1037 }
1038 
1039 // If this is a reference to a subset of the elements of a vector, create an
1040 // appropriate shufflevector.
1041 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1042   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
1043                                         LV.isVolatileQualified());
1044 
1045   const llvm::Constant *Elts = LV.getExtVectorElts();
1046 
1047   // If the result of the expression is a non-vector type, we must be extracting
1048   // a single element.  Just codegen as an extractelement.
1049   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1050   if (!ExprVT) {
1051     unsigned InIdx = getAccessedFieldNo(0, Elts);
1052     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1053     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1054   }
1055 
1056   // Always use shuffle vector to try to retain the original program structure
1057   unsigned NumResultElts = ExprVT->getNumElements();
1058 
1059   SmallVector<llvm::Constant*, 4> Mask;
1060   for (unsigned i = 0; i != NumResultElts; ++i)
1061     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1062 
1063   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1064   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1065                                     MaskV);
1066   return RValue::get(Vec);
1067 }
1068 
1069 
1070 
1071 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1072 /// lvalue, where both are guaranteed to the have the same type, and that type
1073 /// is 'Ty'.
1074 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1075   if (!Dst.isSimple()) {
1076     if (Dst.isVectorElt()) {
1077       // Read/modify/write the vector, inserting the new element.
1078       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
1079                                             Dst.isVolatileQualified());
1080       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1081                                         Dst.getVectorIdx(), "vecins");
1082       Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
1083       return;
1084     }
1085 
1086     // If this is an update of extended vector elements, insert them as
1087     // appropriate.
1088     if (Dst.isExtVectorElt())
1089       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1090 
1091     assert(Dst.isBitField() && "Unknown LValue type");
1092     return EmitStoreThroughBitfieldLValue(Src, Dst);
1093   }
1094 
1095   // There's special magic for assigning into an ARC-qualified l-value.
1096   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1097     switch (Lifetime) {
1098     case Qualifiers::OCL_None:
1099       llvm_unreachable("present but none");
1100 
1101     case Qualifiers::OCL_ExplicitNone:
1102       // nothing special
1103       break;
1104 
1105     case Qualifiers::OCL_Strong:
1106       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1107       return;
1108 
1109     case Qualifiers::OCL_Weak:
1110       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1111       return;
1112 
1113     case Qualifiers::OCL_Autoreleasing:
1114       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1115                                                      Src.getScalarVal()));
1116       // fall into the normal path
1117       break;
1118     }
1119   }
1120 
1121   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1122     // load of a __weak object.
1123     llvm::Value *LvalueDst = Dst.getAddress();
1124     llvm::Value *src = Src.getScalarVal();
1125      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1126     return;
1127   }
1128 
1129   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1130     // load of a __strong object.
1131     llvm::Value *LvalueDst = Dst.getAddress();
1132     llvm::Value *src = Src.getScalarVal();
1133     if (Dst.isObjCIvar()) {
1134       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1135       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1136       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1137       llvm::Value *dst = RHS;
1138       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1139       llvm::Value *LHS =
1140         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1141       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1142       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1143                                               BytesBetween);
1144     } else if (Dst.isGlobalObjCRef()) {
1145       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1146                                                 Dst.isThreadLocalRef());
1147     }
1148     else
1149       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1150     return;
1151   }
1152 
1153   assert(Src.isScalar() && "Can't emit an agg store with this method");
1154   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1155 }
1156 
1157 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1158                                                      llvm::Value **Result) {
1159   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1160 
1161   // Get the output type.
1162   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1163   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1164 
1165   // Get the source value, truncated to the width of the bit-field.
1166   llvm::Value *SrcVal = Src.getScalarVal();
1167 
1168   if (Dst.getType()->isBooleanType())
1169     SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1170 
1171   SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1172                                                                 Info.getSize()),
1173                              "bf.value");
1174 
1175   // Return the new value of the bit-field, if requested.
1176   if (Result) {
1177     // Cast back to the proper type for result.
1178     llvm::Type *SrcTy = Src.getScalarVal()->getType();
1179     llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1180                                                    "bf.reload.val");
1181 
1182     // Sign extend if necessary.
1183     if (Info.isSigned()) {
1184       unsigned ExtraBits = ResSizeInBits - Info.getSize();
1185       if (ExtraBits)
1186         ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1187                                        ExtraBits, "bf.reload.sext");
1188     }
1189 
1190     *Result = ReloadVal;
1191   }
1192 
1193   // Iterate over the components, writing each piece to memory.
1194   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1195     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1196 
1197     // Get the field pointer.
1198     llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1199     unsigned addressSpace =
1200       cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1201 
1202     // Only offset by the field index if used, so that incoming values are not
1203     // required to be structures.
1204     if (AI.FieldIndex)
1205       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1206 
1207     // Offset by the byte offset, if used.
1208     if (!AI.FieldByteOffset.isZero()) {
1209       Ptr = EmitCastToVoidPtr(Ptr);
1210       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1211                                        "bf.field.offs");
1212     }
1213 
1214     // Cast to the access type.
1215     llvm::Type *AccessLTy =
1216       llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1217 
1218     llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1219     Ptr = Builder.CreateBitCast(Ptr, PTy);
1220 
1221     // Extract the piece of the bit-field value to write in this access, limited
1222     // to the values that are part of this access.
1223     llvm::Value *Val = SrcVal;
1224     if (AI.TargetBitOffset)
1225       Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1226     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1227                                                             AI.TargetBitWidth));
1228 
1229     // Extend or truncate to the access size.
1230     if (ResSizeInBits < AI.AccessWidth)
1231       Val = Builder.CreateZExt(Val, AccessLTy);
1232     else if (ResSizeInBits > AI.AccessWidth)
1233       Val = Builder.CreateTrunc(Val, AccessLTy);
1234 
1235     // Shift into the position in memory.
1236     if (AI.FieldBitStart)
1237       Val = Builder.CreateShl(Val, AI.FieldBitStart);
1238 
1239     // If necessary, load and OR in bits that are outside of the bit-field.
1240     if (AI.TargetBitWidth != AI.AccessWidth) {
1241       llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1242       if (!AI.AccessAlignment.isZero())
1243         Load->setAlignment(AI.AccessAlignment.getQuantity());
1244 
1245       // Compute the mask for zeroing the bits that are part of the bit-field.
1246       llvm::APInt InvMask =
1247         ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1248                                  AI.FieldBitStart + AI.TargetBitWidth);
1249 
1250       // Apply the mask and OR in to the value to write.
1251       Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1252     }
1253 
1254     // Write the value.
1255     llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1256                                                  Dst.isVolatileQualified());
1257     if (!AI.AccessAlignment.isZero())
1258       Store->setAlignment(AI.AccessAlignment.getQuantity());
1259   }
1260 }
1261 
1262 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1263                                                                LValue Dst) {
1264   // This access turns into a read/modify/write of the vector.  Load the input
1265   // value now.
1266   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
1267                                         Dst.isVolatileQualified());
1268   const llvm::Constant *Elts = Dst.getExtVectorElts();
1269 
1270   llvm::Value *SrcVal = Src.getScalarVal();
1271 
1272   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1273     unsigned NumSrcElts = VTy->getNumElements();
1274     unsigned NumDstElts =
1275        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1276     if (NumDstElts == NumSrcElts) {
1277       // Use shuffle vector is the src and destination are the same number of
1278       // elements and restore the vector mask since it is on the side it will be
1279       // stored.
1280       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1281       for (unsigned i = 0; i != NumSrcElts; ++i)
1282         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1283 
1284       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1285       Vec = Builder.CreateShuffleVector(SrcVal,
1286                                         llvm::UndefValue::get(Vec->getType()),
1287                                         MaskV);
1288     } else if (NumDstElts > NumSrcElts) {
1289       // Extended the source vector to the same length and then shuffle it
1290       // into the destination.
1291       // FIXME: since we're shuffling with undef, can we just use the indices
1292       //        into that?  This could be simpler.
1293       SmallVector<llvm::Constant*, 4> ExtMask;
1294       for (unsigned i = 0; i != NumSrcElts; ++i)
1295         ExtMask.push_back(Builder.getInt32(i));
1296       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1297       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1298       llvm::Value *ExtSrcVal =
1299         Builder.CreateShuffleVector(SrcVal,
1300                                     llvm::UndefValue::get(SrcVal->getType()),
1301                                     ExtMaskV);
1302       // build identity
1303       SmallVector<llvm::Constant*, 4> Mask;
1304       for (unsigned i = 0; i != NumDstElts; ++i)
1305         Mask.push_back(Builder.getInt32(i));
1306 
1307       // modify when what gets shuffled in
1308       for (unsigned i = 0; i != NumSrcElts; ++i)
1309         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1310       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1311       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1312     } else {
1313       // We should never shorten the vector
1314       llvm_unreachable("unexpected shorten vector length");
1315     }
1316   } else {
1317     // If the Src is a scalar (not a vector) it must be updating one element.
1318     unsigned InIdx = getAccessedFieldNo(0, Elts);
1319     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1320     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1321   }
1322 
1323   Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
1324 }
1325 
1326 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1327 // generating write-barries API. It is currently a global, ivar,
1328 // or neither.
1329 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1330                                  LValue &LV,
1331                                  bool IsMemberAccess=false) {
1332   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1333     return;
1334 
1335   if (isa<ObjCIvarRefExpr>(E)) {
1336     QualType ExpTy = E->getType();
1337     if (IsMemberAccess && ExpTy->isPointerType()) {
1338       // If ivar is a structure pointer, assigning to field of
1339       // this struct follows gcc's behavior and makes it a non-ivar
1340       // writer-barrier conservatively.
1341       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1342       if (ExpTy->isRecordType()) {
1343         LV.setObjCIvar(false);
1344         return;
1345       }
1346     }
1347     LV.setObjCIvar(true);
1348     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1349     LV.setBaseIvarExp(Exp->getBase());
1350     LV.setObjCArray(E->getType()->isArrayType());
1351     return;
1352   }
1353 
1354   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1355     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1356       if (VD->hasGlobalStorage()) {
1357         LV.setGlobalObjCRef(true);
1358         LV.setThreadLocalRef(VD->isThreadSpecified());
1359       }
1360     }
1361     LV.setObjCArray(E->getType()->isArrayType());
1362     return;
1363   }
1364 
1365   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1366     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1367     return;
1368   }
1369 
1370   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1371     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1372     if (LV.isObjCIvar()) {
1373       // If cast is to a structure pointer, follow gcc's behavior and make it
1374       // a non-ivar write-barrier.
1375       QualType ExpTy = E->getType();
1376       if (ExpTy->isPointerType())
1377         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1378       if (ExpTy->isRecordType())
1379         LV.setObjCIvar(false);
1380     }
1381     return;
1382   }
1383 
1384   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1385     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1386     return;
1387   }
1388 
1389   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1390     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1391     return;
1392   }
1393 
1394   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1395     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1396     return;
1397   }
1398 
1399   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1400     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1401     return;
1402   }
1403 
1404   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1405     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1406     if (LV.isObjCIvar() && !LV.isObjCArray())
1407       // Using array syntax to assigning to what an ivar points to is not
1408       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1409       LV.setObjCIvar(false);
1410     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1411       // Using array syntax to assigning to what global points to is not
1412       // same as assigning to the global itself. {id *G;} G[i] = 0;
1413       LV.setGlobalObjCRef(false);
1414     return;
1415   }
1416 
1417   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1418     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1419     // We don't know if member is an 'ivar', but this flag is looked at
1420     // only in the context of LV.isObjCIvar().
1421     LV.setObjCArray(E->getType()->isArrayType());
1422     return;
1423   }
1424 }
1425 
1426 static llvm::Value *
1427 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1428                                 llvm::Value *V, llvm::Type *IRType,
1429                                 StringRef Name = StringRef()) {
1430   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1431   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1432 }
1433 
1434 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1435                                       const Expr *E, const VarDecl *VD) {
1436   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1437          "Var decl must have external storage or be a file var decl!");
1438 
1439   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1440   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1441   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1442   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1443   QualType T = E->getType();
1444   LValue LV;
1445   if (VD->getType()->isReferenceType()) {
1446     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1447     LI->setAlignment(Alignment.getQuantity());
1448     V = LI;
1449     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1450   } else {
1451     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1452   }
1453   setObjCGCLValueClass(CGF.getContext(), E, LV);
1454   return LV;
1455 }
1456 
1457 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1458                                      const Expr *E, const FunctionDecl *FD) {
1459   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1460   if (!FD->hasPrototype()) {
1461     if (const FunctionProtoType *Proto =
1462             FD->getType()->getAs<FunctionProtoType>()) {
1463       // Ugly case: for a K&R-style definition, the type of the definition
1464       // isn't the same as the type of a use.  Correct for this with a
1465       // bitcast.
1466       QualType NoProtoType =
1467           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1468       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1469       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1470     }
1471   }
1472   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1473   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1474 }
1475 
1476 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1477   const NamedDecl *ND = E->getDecl();
1478   CharUnits Alignment = getContext().getDeclAlign(ND);
1479   QualType T = E->getType();
1480 
1481   // FIXME: We should be able to assert this for FunctionDecls as well!
1482   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1483   // those with a valid source location.
1484   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1485           !E->getLocation().isValid()) &&
1486          "Should not use decl without marking it used!");
1487 
1488   if (ND->hasAttr<WeakRefAttr>()) {
1489     const ValueDecl *VD = cast<ValueDecl>(ND);
1490     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1491     return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1492   }
1493 
1494   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1495     // Check if this is a global variable.
1496     if (VD->hasExternalStorage() || VD->isFileVarDecl())
1497       return EmitGlobalVarDeclLValue(*this, E, VD);
1498 
1499     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1500 
1501     bool NonGCable = VD->hasLocalStorage() &&
1502                      !VD->getType()->isReferenceType() &&
1503                      !isBlockVariable;
1504 
1505     llvm::Value *V = LocalDeclMap[VD];
1506     if (!V && VD->isStaticLocal())
1507       V = CGM.getStaticLocalDeclAddress(VD);
1508 
1509     // Use special handling for lambdas.
1510     if (!V) {
1511       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD))
1512         return EmitLValueForField(CXXABIThisValue, FD, 0);
1513 
1514       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1515       CharUnits alignment = getContext().getDeclAlign(VD);
1516       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1517                             E->getType(), alignment);
1518     }
1519 
1520     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1521 
1522     if (isBlockVariable)
1523       V = BuildBlockByrefAddress(V, VD);
1524 
1525     LValue LV;
1526     if (VD->getType()->isReferenceType()) {
1527       llvm::LoadInst *LI = Builder.CreateLoad(V);
1528       LI->setAlignment(Alignment.getQuantity());
1529       V = LI;
1530       LV = MakeNaturalAlignAddrLValue(V, T);
1531     } else {
1532       LV = MakeAddrLValue(V, T, Alignment);
1533     }
1534 
1535     if (NonGCable) {
1536       LV.getQuals().removeObjCGCAttr();
1537       LV.setNonGC(true);
1538     }
1539     setObjCGCLValueClass(getContext(), E, LV);
1540     return LV;
1541   }
1542 
1543   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1544     return EmitFunctionDeclLValue(*this, E, fn);
1545 
1546   llvm_unreachable("Unhandled DeclRefExpr");
1547 }
1548 
1549 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1550   // __extension__ doesn't affect lvalue-ness.
1551   if (E->getOpcode() == UO_Extension)
1552     return EmitLValue(E->getSubExpr());
1553 
1554   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1555   switch (E->getOpcode()) {
1556   default: llvm_unreachable("Unknown unary operator lvalue!");
1557   case UO_Deref: {
1558     QualType T = E->getSubExpr()->getType()->getPointeeType();
1559     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1560 
1561     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1562     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1563 
1564     // We should not generate __weak write barrier on indirect reference
1565     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1566     // But, we continue to generate __strong write barrier on indirect write
1567     // into a pointer to object.
1568     if (getContext().getLangOpts().ObjC1 &&
1569         getContext().getLangOpts().getGC() != LangOptions::NonGC &&
1570         LV.isObjCWeak())
1571       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1572     return LV;
1573   }
1574   case UO_Real:
1575   case UO_Imag: {
1576     LValue LV = EmitLValue(E->getSubExpr());
1577     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1578     llvm::Value *Addr = LV.getAddress();
1579 
1580     // __real is valid on scalars.  This is a faster way of testing that.
1581     // __imag can only produce an rvalue on scalars.
1582     if (E->getOpcode() == UO_Real &&
1583         !cast<llvm::PointerType>(Addr->getType())
1584            ->getElementType()->isStructTy()) {
1585       assert(E->getSubExpr()->getType()->isArithmeticType());
1586       return LV;
1587     }
1588 
1589     assert(E->getSubExpr()->getType()->isAnyComplexType());
1590 
1591     unsigned Idx = E->getOpcode() == UO_Imag;
1592     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1593                                                   Idx, "idx"),
1594                           ExprTy);
1595   }
1596   case UO_PreInc:
1597   case UO_PreDec: {
1598     LValue LV = EmitLValue(E->getSubExpr());
1599     bool isInc = E->getOpcode() == UO_PreInc;
1600 
1601     if (E->getType()->isAnyComplexType())
1602       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1603     else
1604       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1605     return LV;
1606   }
1607   }
1608 }
1609 
1610 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1611   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1612                         E->getType());
1613 }
1614 
1615 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1616   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1617                         E->getType());
1618 }
1619 
1620 
1621 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1622   switch (E->getIdentType()) {
1623   default:
1624     return EmitUnsupportedLValue(E, "predefined expression");
1625 
1626   case PredefinedExpr::Func:
1627   case PredefinedExpr::Function:
1628   case PredefinedExpr::PrettyFunction: {
1629     unsigned Type = E->getIdentType();
1630     std::string GlobalVarName;
1631 
1632     switch (Type) {
1633     default: llvm_unreachable("Invalid type");
1634     case PredefinedExpr::Func:
1635       GlobalVarName = "__func__.";
1636       break;
1637     case PredefinedExpr::Function:
1638       GlobalVarName = "__FUNCTION__.";
1639       break;
1640     case PredefinedExpr::PrettyFunction:
1641       GlobalVarName = "__PRETTY_FUNCTION__.";
1642       break;
1643     }
1644 
1645     StringRef FnName = CurFn->getName();
1646     if (FnName.startswith("\01"))
1647       FnName = FnName.substr(1);
1648     GlobalVarName += FnName;
1649 
1650     const Decl *CurDecl = CurCodeDecl;
1651     if (CurDecl == 0)
1652       CurDecl = getContext().getTranslationUnitDecl();
1653 
1654     std::string FunctionName =
1655         (isa<BlockDecl>(CurDecl)
1656          ? FnName.str()
1657          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
1658 
1659     llvm::Constant *C =
1660       CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1661     return MakeAddrLValue(C, E->getType());
1662   }
1663   }
1664 }
1665 
1666 llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1667   const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1668 
1669   // If we are not optimzing, don't collapse all calls to trap in the function
1670   // to the same call, that way, in the debugger they can see which operation
1671   // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1672   // to just one per function to save on codesize.
1673   if (GCO.OptimizationLevel && TrapBB)
1674     return TrapBB;
1675 
1676   llvm::BasicBlock *Cont = 0;
1677   if (HaveInsertPoint()) {
1678     Cont = createBasicBlock("cont");
1679     EmitBranch(Cont);
1680   }
1681   TrapBB = createBasicBlock("trap");
1682   EmitBlock(TrapBB);
1683 
1684   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
1685   llvm::CallInst *TrapCall = Builder.CreateCall(F);
1686   TrapCall->setDoesNotReturn();
1687   TrapCall->setDoesNotThrow();
1688   Builder.CreateUnreachable();
1689 
1690   if (Cont)
1691     EmitBlock(Cont);
1692   return TrapBB;
1693 }
1694 
1695 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1696 /// array to pointer, return the array subexpression.
1697 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1698   // If this isn't just an array->pointer decay, bail out.
1699   const CastExpr *CE = dyn_cast<CastExpr>(E);
1700   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1701     return 0;
1702 
1703   // If this is a decay from variable width array, bail out.
1704   const Expr *SubExpr = CE->getSubExpr();
1705   if (SubExpr->getType()->isVariableArrayType())
1706     return 0;
1707 
1708   return SubExpr;
1709 }
1710 
1711 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1712   // The index must always be an integer, which is not an aggregate.  Emit it.
1713   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1714   QualType IdxTy  = E->getIdx()->getType();
1715   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1716 
1717   // If the base is a vector type, then we are forming a vector element lvalue
1718   // with this subscript.
1719   if (E->getBase()->getType()->isVectorType()) {
1720     // Emit the vector as an lvalue to get its address.
1721     LValue LHS = EmitLValue(E->getBase());
1722     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1723     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1724     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1725                                  E->getBase()->getType());
1726   }
1727 
1728   // Extend or truncate the index type to 32 or 64-bits.
1729   if (Idx->getType() != IntPtrTy)
1730     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1731 
1732   // FIXME: As llvm implements the object size checking, this can come out.
1733   if (CatchUndefined) {
1734     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
1735       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1736         if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1737           if (const ConstantArrayType *CAT
1738               = getContext().getAsConstantArrayType(DRE->getType())) {
1739             llvm::APInt Size = CAT->getSize();
1740             llvm::BasicBlock *Cont = createBasicBlock("cont");
1741             Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1742                                   llvm::ConstantInt::get(Idx->getType(), Size)),
1743                                  Cont, getTrapBB());
1744             EmitBlock(Cont);
1745           }
1746         }
1747       }
1748     }
1749   }
1750 
1751   // We know that the pointer points to a type of the correct size, unless the
1752   // size is a VLA or Objective-C interface.
1753   llvm::Value *Address = 0;
1754   CharUnits ArrayAlignment;
1755   if (const VariableArrayType *vla =
1756         getContext().getAsVariableArrayType(E->getType())) {
1757     // The base must be a pointer, which is not an aggregate.  Emit
1758     // it.  It needs to be emitted first in case it's what captures
1759     // the VLA bounds.
1760     Address = EmitScalarExpr(E->getBase());
1761 
1762     // The element count here is the total number of non-VLA elements.
1763     llvm::Value *numElements = getVLASize(vla).first;
1764 
1765     // Effectively, the multiply by the VLA size is part of the GEP.
1766     // GEP indexes are signed, and scaling an index isn't permitted to
1767     // signed-overflow, so we use the same semantics for our explicit
1768     // multiply.  We suppress this if overflow is not undefined behavior.
1769     if (getLangOpts().isSignedOverflowDefined()) {
1770       Idx = Builder.CreateMul(Idx, numElements);
1771       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1772     } else {
1773       Idx = Builder.CreateNSWMul(Idx, numElements);
1774       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1775     }
1776   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1777     // Indexing over an interface, as in "NSString *P; P[4];"
1778     llvm::Value *InterfaceSize =
1779       llvm::ConstantInt::get(Idx->getType(),
1780           getContext().getTypeSizeInChars(OIT).getQuantity());
1781 
1782     Idx = Builder.CreateMul(Idx, InterfaceSize);
1783 
1784     // The base must be a pointer, which is not an aggregate.  Emit it.
1785     llvm::Value *Base = EmitScalarExpr(E->getBase());
1786     Address = EmitCastToVoidPtr(Base);
1787     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1788     Address = Builder.CreateBitCast(Address, Base->getType());
1789   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1790     // If this is A[i] where A is an array, the frontend will have decayed the
1791     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
1792     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1793     // "gep x, i" here.  Emit one "gep A, 0, i".
1794     assert(Array->getType()->isArrayType() &&
1795            "Array to pointer decay must have array source type!");
1796     LValue ArrayLV = EmitLValue(Array);
1797     llvm::Value *ArrayPtr = ArrayLV.getAddress();
1798     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1799     llvm::Value *Args[] = { Zero, Idx };
1800 
1801     // Propagate the alignment from the array itself to the result.
1802     ArrayAlignment = ArrayLV.getAlignment();
1803 
1804     if (getContext().getLangOpts().isSignedOverflowDefined())
1805       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
1806     else
1807       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
1808   } else {
1809     // The base must be a pointer, which is not an aggregate.  Emit it.
1810     llvm::Value *Base = EmitScalarExpr(E->getBase());
1811     if (getContext().getLangOpts().isSignedOverflowDefined())
1812       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
1813     else
1814       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1815   }
1816 
1817   QualType T = E->getBase()->getType()->getPointeeType();
1818   assert(!T.isNull() &&
1819          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1820 
1821 
1822   // Limit the alignment to that of the result type.
1823   LValue LV;
1824   if (!ArrayAlignment.isZero()) {
1825     CharUnits Align = getContext().getTypeAlignInChars(T);
1826     ArrayAlignment = std::min(Align, ArrayAlignment);
1827     LV = MakeAddrLValue(Address, T, ArrayAlignment);
1828   } else {
1829     LV = MakeNaturalAlignAddrLValue(Address, T);
1830   }
1831 
1832   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1833 
1834   if (getContext().getLangOpts().ObjC1 &&
1835       getContext().getLangOpts().getGC() != LangOptions::NonGC) {
1836     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1837     setObjCGCLValueClass(getContext(), E, LV);
1838   }
1839   return LV;
1840 }
1841 
1842 static
1843 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
1844                                        SmallVector<unsigned, 4> &Elts) {
1845   SmallVector<llvm::Constant*, 4> CElts;
1846   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1847     CElts.push_back(Builder.getInt32(Elts[i]));
1848 
1849   return llvm::ConstantVector::get(CElts);
1850 }
1851 
1852 LValue CodeGenFunction::
1853 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1854   // Emit the base vector as an l-value.
1855   LValue Base;
1856 
1857   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1858   if (E->isArrow()) {
1859     // If it is a pointer to a vector, emit the address and form an lvalue with
1860     // it.
1861     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1862     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1863     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1864     Base.getQuals().removeObjCGCAttr();
1865   } else if (E->getBase()->isGLValue()) {
1866     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1867     // emit the base as an lvalue.
1868     assert(E->getBase()->getType()->isVectorType());
1869     Base = EmitLValue(E->getBase());
1870   } else {
1871     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1872     assert(E->getBase()->getType()->isVectorType() &&
1873            "Result must be a vector");
1874     llvm::Value *Vec = EmitScalarExpr(E->getBase());
1875 
1876     // Store the vector to memory (because LValue wants an address).
1877     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1878     Builder.CreateStore(Vec, VecMem);
1879     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
1880   }
1881 
1882   QualType type =
1883     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
1884 
1885   // Encode the element access list into a vector of unsigned indices.
1886   SmallVector<unsigned, 4> Indices;
1887   E->getEncodedElementAccess(Indices);
1888 
1889   if (Base.isSimple()) {
1890     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
1891     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type);
1892   }
1893   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1894 
1895   llvm::Constant *BaseElts = Base.getExtVectorElts();
1896   SmallVector<llvm::Constant *, 4> CElts;
1897 
1898   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1899     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
1900   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
1901   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type);
1902 }
1903 
1904 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1905   bool isNonGC = false;
1906   Expr *BaseExpr = E->getBase();
1907   llvm::Value *BaseValue = NULL;
1908   Qualifiers BaseQuals;
1909 
1910   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1911   if (E->isArrow()) {
1912     BaseValue = EmitScalarExpr(BaseExpr);
1913     const PointerType *PTy =
1914       BaseExpr->getType()->getAs<PointerType>();
1915     BaseQuals = PTy->getPointeeType().getQualifiers();
1916   } else {
1917     LValue BaseLV = EmitLValue(BaseExpr);
1918     if (BaseLV.isNonGC())
1919       isNonGC = true;
1920     // FIXME: this isn't right for bitfields.
1921     BaseValue = BaseLV.getAddress();
1922     QualType BaseTy = BaseExpr->getType();
1923     BaseQuals = BaseTy.getQualifiers();
1924   }
1925 
1926   NamedDecl *ND = E->getMemberDecl();
1927   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1928     LValue LV = EmitLValueForField(BaseValue, Field,
1929                                    BaseQuals.getCVRQualifiers());
1930     LV.setNonGC(isNonGC);
1931     setObjCGCLValueClass(getContext(), E, LV);
1932     return LV;
1933   }
1934 
1935   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1936     return EmitGlobalVarDeclLValue(*this, E, VD);
1937 
1938   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1939     return EmitFunctionDeclLValue(*this, E, FD);
1940 
1941   llvm_unreachable("Unhandled member declaration!");
1942 }
1943 
1944 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
1945                                               const FieldDecl *Field,
1946                                               unsigned CVRQualifiers) {
1947   const CGRecordLayout &RL =
1948     CGM.getTypes().getCGRecordLayout(Field->getParent());
1949   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
1950   return LValue::MakeBitfield(BaseValue, Info,
1951                           Field->getType().withCVRQualifiers(CVRQualifiers));
1952 }
1953 
1954 /// EmitLValueForAnonRecordField - Given that the field is a member of
1955 /// an anonymous struct or union buried inside a record, and given
1956 /// that the base value is a pointer to the enclosing record, derive
1957 /// an lvalue for the ultimate field.
1958 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
1959                                              const IndirectFieldDecl *Field,
1960                                                      unsigned CVRQualifiers) {
1961   IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
1962     IEnd = Field->chain_end();
1963   while (true) {
1964     LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I),
1965                                    CVRQualifiers);
1966     if (++I == IEnd) return LV;
1967 
1968     assert(LV.isSimple());
1969     BaseValue = LV.getAddress();
1970     CVRQualifiers |= LV.getVRQualifiers();
1971   }
1972 }
1973 
1974 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr,
1975                                            const FieldDecl *field,
1976                                            unsigned cvr) {
1977   if (field->isBitField())
1978     return EmitLValueForBitfield(baseAddr, field, cvr);
1979 
1980   const RecordDecl *rec = field->getParent();
1981   QualType type = field->getType();
1982   CharUnits alignment = getContext().getDeclAlign(field);
1983 
1984   bool mayAlias = rec->hasAttr<MayAliasAttr>();
1985 
1986   llvm::Value *addr = baseAddr;
1987   if (rec->isUnion()) {
1988     // For unions, there is no pointer adjustment.
1989     assert(!type->isReferenceType() && "union has reference member");
1990   } else {
1991     // For structs, we GEP to the field that the record layout suggests.
1992     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
1993     addr = Builder.CreateStructGEP(addr, idx, field->getName());
1994 
1995     // If this is a reference field, load the reference right now.
1996     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
1997       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
1998       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
1999       load->setAlignment(alignment.getQuantity());
2000 
2001       if (CGM.shouldUseTBAA()) {
2002         llvm::MDNode *tbaa;
2003         if (mayAlias)
2004           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2005         else
2006           tbaa = CGM.getTBAAInfo(type);
2007         CGM.DecorateInstruction(load, tbaa);
2008       }
2009 
2010       addr = load;
2011       mayAlias = false;
2012       type = refType->getPointeeType();
2013       if (type->isIncompleteType())
2014         alignment = CharUnits();
2015       else
2016         alignment = getContext().getTypeAlignInChars(type);
2017       cvr = 0; // qualifiers don't recursively apply to referencee
2018     }
2019   }
2020 
2021   // Make sure that the address is pointing to the right type.  This is critical
2022   // for both unions and structs.  A union needs a bitcast, a struct element
2023   // will need a bitcast if the LLVM type laid out doesn't match the desired
2024   // type.
2025   addr = EmitBitCastOfLValueToProperType(*this, addr,
2026                                          CGM.getTypes().ConvertTypeForMem(type),
2027                                          field->getName());
2028 
2029   if (field->hasAttr<AnnotateAttr>())
2030     addr = EmitFieldAnnotations(field, addr);
2031 
2032   LValue LV = MakeAddrLValue(addr, type, alignment);
2033   LV.getQuals().addCVRQualifiers(cvr);
2034 
2035   // __weak attribute on a field is ignored.
2036   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2037     LV.getQuals().removeObjCGCAttr();
2038 
2039   // Fields of may_alias structs act like 'char' for TBAA purposes.
2040   // FIXME: this should get propagated down through anonymous structs
2041   // and unions.
2042   if (mayAlias && LV.getTBAAInfo())
2043     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2044 
2045   return LV;
2046 }
2047 
2048 LValue
2049 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue,
2050                                                   const FieldDecl *Field,
2051                                                   unsigned CVRQualifiers) {
2052   QualType FieldType = Field->getType();
2053 
2054   if (!FieldType->isReferenceType())
2055     return EmitLValueForField(BaseValue, Field, CVRQualifiers);
2056 
2057   const CGRecordLayout &RL =
2058     CGM.getTypes().getCGRecordLayout(Field->getParent());
2059   unsigned idx = RL.getLLVMFieldNo(Field);
2060   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx);
2061   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2062 
2063 
2064   // Make sure that the address is pointing to the right type.  This is critical
2065   // for both unions and structs.  A union needs a bitcast, a struct element
2066   // will need a bitcast if the LLVM type laid out doesn't match the desired
2067   // type.
2068   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2069   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2070   V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS));
2071 
2072   CharUnits Alignment = getContext().getDeclAlign(Field);
2073   return MakeAddrLValue(V, FieldType, Alignment);
2074 }
2075 
2076 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2077   if (E->isFileScope()) {
2078     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2079     return MakeAddrLValue(GlobalPtr, E->getType());
2080   }
2081 
2082   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2083   const Expr *InitExpr = E->getInitializer();
2084   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2085 
2086   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2087                    /*Init*/ true);
2088 
2089   return Result;
2090 }
2091 
2092 LValue CodeGenFunction::
2093 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2094   if (!expr->isGLValue()) {
2095     // ?: here should be an aggregate.
2096     assert((hasAggregateLLVMType(expr->getType()) &&
2097             !expr->getType()->isAnyComplexType()) &&
2098            "Unexpected conditional operator!");
2099     return EmitAggExprToLValue(expr);
2100   }
2101 
2102   OpaqueValueMapping binding(*this, expr);
2103 
2104   const Expr *condExpr = expr->getCond();
2105   bool CondExprBool;
2106   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2107     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2108     if (!CondExprBool) std::swap(live, dead);
2109 
2110     if (!ContainsLabel(dead))
2111       return EmitLValue(live);
2112   }
2113 
2114   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2115   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2116   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2117 
2118   ConditionalEvaluation eval(*this);
2119   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2120 
2121   // Any temporaries created here are conditional.
2122   EmitBlock(lhsBlock);
2123   eval.begin(*this);
2124   LValue lhs = EmitLValue(expr->getTrueExpr());
2125   eval.end(*this);
2126 
2127   if (!lhs.isSimple())
2128     return EmitUnsupportedLValue(expr, "conditional operator");
2129 
2130   lhsBlock = Builder.GetInsertBlock();
2131   Builder.CreateBr(contBlock);
2132 
2133   // Any temporaries created here are conditional.
2134   EmitBlock(rhsBlock);
2135   eval.begin(*this);
2136   LValue rhs = EmitLValue(expr->getFalseExpr());
2137   eval.end(*this);
2138   if (!rhs.isSimple())
2139     return EmitUnsupportedLValue(expr, "conditional operator");
2140   rhsBlock = Builder.GetInsertBlock();
2141 
2142   EmitBlock(contBlock);
2143 
2144   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2145                                          "cond-lvalue");
2146   phi->addIncoming(lhs.getAddress(), lhsBlock);
2147   phi->addIncoming(rhs.getAddress(), rhsBlock);
2148   return MakeAddrLValue(phi, expr->getType());
2149 }
2150 
2151 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
2152 /// If the cast is a dynamic_cast, we can have the usual lvalue result,
2153 /// otherwise if a cast is needed by the code generator in an lvalue context,
2154 /// then it must mean that we need the address of an aggregate in order to
2155 /// access one of its fields.  This can happen for all the reasons that casts
2156 /// are permitted with aggregate result, including noop aggregate casts, and
2157 /// cast from scalar to union.
2158 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2159   switch (E->getCastKind()) {
2160   case CK_ToVoid:
2161     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2162 
2163   case CK_Dependent:
2164     llvm_unreachable("dependent cast kind in IR gen!");
2165 
2166   // These two casts are currently treated as no-ops, although they could
2167   // potentially be real operations depending on the target's ABI.
2168   case CK_NonAtomicToAtomic:
2169   case CK_AtomicToNonAtomic:
2170 
2171   case CK_NoOp:
2172   case CK_LValueToRValue:
2173     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2174         || E->getType()->isRecordType())
2175       return EmitLValue(E->getSubExpr());
2176     // Fall through to synthesize a temporary.
2177 
2178   case CK_BitCast:
2179   case CK_ArrayToPointerDecay:
2180   case CK_FunctionToPointerDecay:
2181   case CK_NullToMemberPointer:
2182   case CK_NullToPointer:
2183   case CK_IntegralToPointer:
2184   case CK_PointerToIntegral:
2185   case CK_PointerToBoolean:
2186   case CK_VectorSplat:
2187   case CK_IntegralCast:
2188   case CK_IntegralToBoolean:
2189   case CK_IntegralToFloating:
2190   case CK_FloatingToIntegral:
2191   case CK_FloatingToBoolean:
2192   case CK_FloatingCast:
2193   case CK_FloatingRealToComplex:
2194   case CK_FloatingComplexToReal:
2195   case CK_FloatingComplexToBoolean:
2196   case CK_FloatingComplexCast:
2197   case CK_FloatingComplexToIntegralComplex:
2198   case CK_IntegralRealToComplex:
2199   case CK_IntegralComplexToReal:
2200   case CK_IntegralComplexToBoolean:
2201   case CK_IntegralComplexCast:
2202   case CK_IntegralComplexToFloatingComplex:
2203   case CK_DerivedToBaseMemberPointer:
2204   case CK_BaseToDerivedMemberPointer:
2205   case CK_MemberPointerToBoolean:
2206   case CK_ReinterpretMemberPointer:
2207   case CK_AnyPointerToBlockPointerCast:
2208   case CK_ARCProduceObject:
2209   case CK_ARCConsumeObject:
2210   case CK_ARCReclaimReturnedObject:
2211   case CK_ARCExtendBlockObject:
2212   case CK_CopyAndAutoreleaseBlockObject: {
2213     // These casts only produce lvalues when we're binding a reference to a
2214     // temporary realized from a (converted) pure rvalue. Emit the expression
2215     // as a value, copy it into a temporary, and return an lvalue referring to
2216     // that temporary.
2217     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2218     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2219     return MakeAddrLValue(V, E->getType());
2220   }
2221 
2222   case CK_Dynamic: {
2223     LValue LV = EmitLValue(E->getSubExpr());
2224     llvm::Value *V = LV.getAddress();
2225     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2226     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2227   }
2228 
2229   case CK_ConstructorConversion:
2230   case CK_UserDefinedConversion:
2231   case CK_CPointerToObjCPointerCast:
2232   case CK_BlockPointerToObjCPointerCast:
2233     return EmitLValue(E->getSubExpr());
2234 
2235   case CK_UncheckedDerivedToBase:
2236   case CK_DerivedToBase: {
2237     const RecordType *DerivedClassTy =
2238       E->getSubExpr()->getType()->getAs<RecordType>();
2239     CXXRecordDecl *DerivedClassDecl =
2240       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2241 
2242     LValue LV = EmitLValue(E->getSubExpr());
2243     llvm::Value *This = LV.getAddress();
2244 
2245     // Perform the derived-to-base conversion
2246     llvm::Value *Base =
2247       GetAddressOfBaseClass(This, DerivedClassDecl,
2248                             E->path_begin(), E->path_end(),
2249                             /*NullCheckValue=*/false);
2250 
2251     return MakeAddrLValue(Base, E->getType());
2252   }
2253   case CK_ToUnion:
2254     return EmitAggExprToLValue(E);
2255   case CK_BaseToDerived: {
2256     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2257     CXXRecordDecl *DerivedClassDecl =
2258       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2259 
2260     LValue LV = EmitLValue(E->getSubExpr());
2261 
2262     // Perform the base-to-derived conversion
2263     llvm::Value *Derived =
2264       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2265                                E->path_begin(), E->path_end(),
2266                                /*NullCheckValue=*/false);
2267 
2268     return MakeAddrLValue(Derived, E->getType());
2269   }
2270   case CK_LValueBitCast: {
2271     // This must be a reinterpret_cast (or c-style equivalent).
2272     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2273 
2274     LValue LV = EmitLValue(E->getSubExpr());
2275     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2276                                            ConvertType(CE->getTypeAsWritten()));
2277     return MakeAddrLValue(V, E->getType());
2278   }
2279   case CK_ObjCObjectLValueCast: {
2280     LValue LV = EmitLValue(E->getSubExpr());
2281     QualType ToType = getContext().getLValueReferenceType(E->getType());
2282     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2283                                            ConvertType(ToType));
2284     return MakeAddrLValue(V, E->getType());
2285   }
2286   }
2287 
2288   llvm_unreachable("Unhandled lvalue cast kind?");
2289 }
2290 
2291 LValue CodeGenFunction::EmitNullInitializationLValue(
2292                                               const CXXScalarValueInitExpr *E) {
2293   QualType Ty = E->getType();
2294   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2295   EmitNullInitialization(LV.getAddress(), Ty);
2296   return LV;
2297 }
2298 
2299 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2300   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2301   return getOpaqueLValueMapping(e);
2302 }
2303 
2304 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2305                                            const MaterializeTemporaryExpr *E) {
2306   RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2307   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2308 }
2309 
2310 
2311 //===--------------------------------------------------------------------===//
2312 //                             Expression Emission
2313 //===--------------------------------------------------------------------===//
2314 
2315 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2316                                      ReturnValueSlot ReturnValue) {
2317   if (CGDebugInfo *DI = getDebugInfo())
2318     DI->EmitLocation(Builder, E->getLocStart());
2319 
2320   // Builtins never have block type.
2321   if (E->getCallee()->getType()->isBlockPointerType())
2322     return EmitBlockCallExpr(E, ReturnValue);
2323 
2324   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2325     return EmitCXXMemberCallExpr(CE, ReturnValue);
2326 
2327   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2328     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2329 
2330   const Decl *TargetDecl = E->getCalleeDecl();
2331   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2332     if (unsigned builtinID = FD->getBuiltinID())
2333       return EmitBuiltinExpr(FD, builtinID, E);
2334   }
2335 
2336   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2337     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2338       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2339 
2340   if (const CXXPseudoDestructorExpr *PseudoDtor
2341           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2342     QualType DestroyedType = PseudoDtor->getDestroyedType();
2343     if (getContext().getLangOpts().ObjCAutoRefCount &&
2344         DestroyedType->isObjCLifetimeType() &&
2345         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2346          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2347       // Automatic Reference Counting:
2348       //   If the pseudo-expression names a retainable object with weak or
2349       //   strong lifetime, the object shall be released.
2350       Expr *BaseExpr = PseudoDtor->getBase();
2351       llvm::Value *BaseValue = NULL;
2352       Qualifiers BaseQuals;
2353 
2354       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2355       if (PseudoDtor->isArrow()) {
2356         BaseValue = EmitScalarExpr(BaseExpr);
2357         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2358         BaseQuals = PTy->getPointeeType().getQualifiers();
2359       } else {
2360         LValue BaseLV = EmitLValue(BaseExpr);
2361         BaseValue = BaseLV.getAddress();
2362         QualType BaseTy = BaseExpr->getType();
2363         BaseQuals = BaseTy.getQualifiers();
2364       }
2365 
2366       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2367       case Qualifiers::OCL_None:
2368       case Qualifiers::OCL_ExplicitNone:
2369       case Qualifiers::OCL_Autoreleasing:
2370         break;
2371 
2372       case Qualifiers::OCL_Strong:
2373         EmitARCRelease(Builder.CreateLoad(BaseValue,
2374                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2375                        /*precise*/ true);
2376         break;
2377 
2378       case Qualifiers::OCL_Weak:
2379         EmitARCDestroyWeak(BaseValue);
2380         break;
2381       }
2382     } else {
2383       // C++ [expr.pseudo]p1:
2384       //   The result shall only be used as the operand for the function call
2385       //   operator (), and the result of such a call has type void. The only
2386       //   effect is the evaluation of the postfix-expression before the dot or
2387       //   arrow.
2388       EmitScalarExpr(E->getCallee());
2389     }
2390 
2391     return RValue::get(0);
2392   }
2393 
2394   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2395   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2396                   E->arg_begin(), E->arg_end(), TargetDecl);
2397 }
2398 
2399 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2400   // Comma expressions just emit their LHS then their RHS as an l-value.
2401   if (E->getOpcode() == BO_Comma) {
2402     EmitIgnoredExpr(E->getLHS());
2403     EnsureInsertPoint();
2404     return EmitLValue(E->getRHS());
2405   }
2406 
2407   if (E->getOpcode() == BO_PtrMemD ||
2408       E->getOpcode() == BO_PtrMemI)
2409     return EmitPointerToDataMemberBinaryExpr(E);
2410 
2411   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2412 
2413   // Note that in all of these cases, __block variables need the RHS
2414   // evaluated first just in case the variable gets moved by the RHS.
2415 
2416   if (!hasAggregateLLVMType(E->getType())) {
2417     switch (E->getLHS()->getType().getObjCLifetime()) {
2418     case Qualifiers::OCL_Strong:
2419       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2420 
2421     case Qualifiers::OCL_Autoreleasing:
2422       return EmitARCStoreAutoreleasing(E).first;
2423 
2424     // No reason to do any of these differently.
2425     case Qualifiers::OCL_None:
2426     case Qualifiers::OCL_ExplicitNone:
2427     case Qualifiers::OCL_Weak:
2428       break;
2429     }
2430 
2431     RValue RV = EmitAnyExpr(E->getRHS());
2432     LValue LV = EmitLValue(E->getLHS());
2433     EmitStoreThroughLValue(RV, LV);
2434     return LV;
2435   }
2436 
2437   if (E->getType()->isAnyComplexType())
2438     return EmitComplexAssignmentLValue(E);
2439 
2440   return EmitAggExprToLValue(E);
2441 }
2442 
2443 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2444   RValue RV = EmitCallExpr(E);
2445 
2446   if (!RV.isScalar())
2447     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2448 
2449   assert(E->getCallReturnType()->isReferenceType() &&
2450          "Can't have a scalar return unless the return type is a "
2451          "reference type!");
2452 
2453   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2454 }
2455 
2456 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2457   // FIXME: This shouldn't require another copy.
2458   return EmitAggExprToLValue(E);
2459 }
2460 
2461 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2462   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2463          && "binding l-value to type which needs a temporary");
2464   AggValueSlot Slot = CreateAggTemp(E->getType());
2465   EmitCXXConstructExpr(E, Slot);
2466   return MakeAddrLValue(Slot.getAddr(), E->getType());
2467 }
2468 
2469 LValue
2470 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2471   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2472 }
2473 
2474 LValue
2475 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2476   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2477   Slot.setExternallyDestructed();
2478   EmitAggExpr(E->getSubExpr(), Slot);
2479   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2480   return MakeAddrLValue(Slot.getAddr(), E->getType());
2481 }
2482 
2483 LValue
2484 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
2485   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2486   EmitLambdaExpr(E, Slot);
2487   return MakeAddrLValue(Slot.getAddr(), E->getType());
2488 }
2489 
2490 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2491   RValue RV = EmitObjCMessageExpr(E);
2492 
2493   if (!RV.isScalar())
2494     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2495 
2496   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2497          "Can't have a scalar return unless the return type is a "
2498          "reference type!");
2499 
2500   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2501 }
2502 
2503 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2504   llvm::Value *V =
2505     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2506   return MakeAddrLValue(V, E->getType());
2507 }
2508 
2509 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2510                                              const ObjCIvarDecl *Ivar) {
2511   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2512 }
2513 
2514 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2515                                           llvm::Value *BaseValue,
2516                                           const ObjCIvarDecl *Ivar,
2517                                           unsigned CVRQualifiers) {
2518   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2519                                                    Ivar, CVRQualifiers);
2520 }
2521 
2522 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2523   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2524   llvm::Value *BaseValue = 0;
2525   const Expr *BaseExpr = E->getBase();
2526   Qualifiers BaseQuals;
2527   QualType ObjectTy;
2528   if (E->isArrow()) {
2529     BaseValue = EmitScalarExpr(BaseExpr);
2530     ObjectTy = BaseExpr->getType()->getPointeeType();
2531     BaseQuals = ObjectTy.getQualifiers();
2532   } else {
2533     LValue BaseLV = EmitLValue(BaseExpr);
2534     // FIXME: this isn't right for bitfields.
2535     BaseValue = BaseLV.getAddress();
2536     ObjectTy = BaseExpr->getType();
2537     BaseQuals = ObjectTy.getQualifiers();
2538   }
2539 
2540   LValue LV =
2541     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2542                       BaseQuals.getCVRQualifiers());
2543   setObjCGCLValueClass(getContext(), E, LV);
2544   return LV;
2545 }
2546 
2547 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2548   // Can only get l-value for message expression returning aggregate type
2549   RValue RV = EmitAnyExprToTemp(E);
2550   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2551 }
2552 
2553 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2554                                  ReturnValueSlot ReturnValue,
2555                                  CallExpr::const_arg_iterator ArgBeg,
2556                                  CallExpr::const_arg_iterator ArgEnd,
2557                                  const Decl *TargetDecl) {
2558   // Get the actual function type. The callee type will always be a pointer to
2559   // function type or a block pointer type.
2560   assert(CalleeType->isFunctionPointerType() &&
2561          "Call must have function pointer type!");
2562 
2563   CalleeType = getContext().getCanonicalType(CalleeType);
2564 
2565   const FunctionType *FnType
2566     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2567 
2568   CallArgList Args;
2569   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2570 
2571   const CGFunctionInfo &FnInfo =
2572     CGM.getTypes().arrangeFunctionCall(Args, FnType);
2573 
2574   // C99 6.5.2.2p6:
2575   //   If the expression that denotes the called function has a type
2576   //   that does not include a prototype, [the default argument
2577   //   promotions are performed]. If the number of arguments does not
2578   //   equal the number of parameters, the behavior is undefined. If
2579   //   the function is defined with a type that includes a prototype,
2580   //   and either the prototype ends with an ellipsis (, ...) or the
2581   //   types of the arguments after promotion are not compatible with
2582   //   the types of the parameters, the behavior is undefined. If the
2583   //   function is defined with a type that does not include a
2584   //   prototype, and the types of the arguments after promotion are
2585   //   not compatible with those of the parameters after promotion,
2586   //   the behavior is undefined [except in some trivial cases].
2587   // That is, in the general case, we should assume that a call
2588   // through an unprototyped function type works like a *non-variadic*
2589   // call.  The way we make this work is to cast to the exact type
2590   // of the promoted arguments.
2591   if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) {
2592     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
2593     CalleeTy = CalleeTy->getPointerTo();
2594     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2595   }
2596 
2597   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2598 }
2599 
2600 LValue CodeGenFunction::
2601 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2602   llvm::Value *BaseV;
2603   if (E->getOpcode() == BO_PtrMemI)
2604     BaseV = EmitScalarExpr(E->getLHS());
2605   else
2606     BaseV = EmitLValue(E->getLHS()).getAddress();
2607 
2608   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2609 
2610   const MemberPointerType *MPT
2611     = E->getRHS()->getType()->getAs<MemberPointerType>();
2612 
2613   llvm::Value *AddV =
2614     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2615 
2616   return MakeAddrLValue(AddV, MPT->getPointeeType());
2617 }
2618 
2619 static void
2620 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
2621              llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
2622              uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
2623   if (E->isCmpXChg()) {
2624     // Note that cmpxchg only supports specifying one ordering and
2625     // doesn't support weak cmpxchg, at least at the moment.
2626     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2627     LoadVal1->setAlignment(Align);
2628     llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
2629     LoadVal2->setAlignment(Align);
2630     llvm::AtomicCmpXchgInst *CXI =
2631         CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
2632     CXI->setVolatile(E->isVolatile());
2633     llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
2634     StoreVal1->setAlignment(Align);
2635     llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
2636     CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
2637     return;
2638   }
2639 
2640   if (E->getOp() == AtomicExpr::Load) {
2641     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
2642     Load->setAtomic(Order);
2643     Load->setAlignment(Size);
2644     Load->setVolatile(E->isVolatile());
2645     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
2646     StoreDest->setAlignment(Align);
2647     return;
2648   }
2649 
2650   if (E->getOp() == AtomicExpr::Store) {
2651     assert(!Dest && "Store does not return a value");
2652     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2653     LoadVal1->setAlignment(Align);
2654     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
2655     Store->setAtomic(Order);
2656     Store->setAlignment(Size);
2657     Store->setVolatile(E->isVolatile());
2658     return;
2659   }
2660 
2661   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
2662   switch (E->getOp()) {
2663     case AtomicExpr::CmpXchgWeak:
2664     case AtomicExpr::CmpXchgStrong:
2665     case AtomicExpr::Store:
2666     case AtomicExpr::Init:
2667     case AtomicExpr::Load:  assert(0 && "Already handled!");
2668     case AtomicExpr::Add:   Op = llvm::AtomicRMWInst::Add;  break;
2669     case AtomicExpr::Sub:   Op = llvm::AtomicRMWInst::Sub;  break;
2670     case AtomicExpr::And:   Op = llvm::AtomicRMWInst::And;  break;
2671     case AtomicExpr::Or:    Op = llvm::AtomicRMWInst::Or;   break;
2672     case AtomicExpr::Xor:   Op = llvm::AtomicRMWInst::Xor;  break;
2673     case AtomicExpr::Xchg:  Op = llvm::AtomicRMWInst::Xchg; break;
2674   }
2675   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2676   LoadVal1->setAlignment(Align);
2677   llvm::AtomicRMWInst *RMWI =
2678       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
2679   RMWI->setVolatile(E->isVolatile());
2680   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(RMWI, Dest);
2681   StoreDest->setAlignment(Align);
2682 }
2683 
2684 // This function emits any expression (scalar, complex, or aggregate)
2685 // into a temporary alloca.
2686 static llvm::Value *
2687 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
2688   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
2689   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
2690                        /*Init*/ true);
2691   return DeclPtr;
2692 }
2693 
2694 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
2695                                   llvm::Value *Dest) {
2696   if (Ty->isAnyComplexType())
2697     return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
2698   if (CGF.hasAggregateLLVMType(Ty))
2699     return RValue::getAggregate(Dest);
2700   return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
2701 }
2702 
2703 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
2704   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
2705   QualType MemTy = AtomicTy->getAs<AtomicType>()->getValueType();
2706   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
2707   uint64_t Size = sizeChars.getQuantity();
2708   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
2709   unsigned Align = alignChars.getQuantity();
2710   unsigned MaxInlineWidth =
2711       getContext().getTargetInfo().getMaxAtomicInlineWidth();
2712   bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
2713 
2714 
2715 
2716   llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
2717   Ptr = EmitScalarExpr(E->getPtr());
2718 
2719   if (E->getOp() == AtomicExpr::Init) {
2720     assert(!Dest && "Init does not return a value");
2721     Val1 = EmitScalarExpr(E->getVal1());
2722     llvm::StoreInst *Store = Builder.CreateStore(Val1, Ptr);
2723     Store->setAlignment(Size);
2724     Store->setVolatile(E->isVolatile());
2725     return RValue::get(0);
2726   }
2727 
2728   Order = EmitScalarExpr(E->getOrder());
2729   if (E->isCmpXChg()) {
2730     Val1 = EmitScalarExpr(E->getVal1());
2731     Val2 = EmitValToTemp(*this, E->getVal2());
2732     OrderFail = EmitScalarExpr(E->getOrderFail());
2733     (void)OrderFail; // OrderFail is unused at the moment
2734   } else if ((E->getOp() == AtomicExpr::Add || E->getOp() == AtomicExpr::Sub) &&
2735              MemTy->isPointerType()) {
2736     // For pointers, we're required to do a bit of math: adding 1 to an int*
2737     // is not the same as adding 1 to a uintptr_t.
2738     QualType Val1Ty = E->getVal1()->getType();
2739     llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
2740     CharUnits PointeeIncAmt =
2741         getContext().getTypeSizeInChars(MemTy->getPointeeType());
2742     Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
2743     Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
2744     EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
2745   } else if (E->getOp() != AtomicExpr::Load) {
2746     Val1 = EmitValToTemp(*this, E->getVal1());
2747   }
2748 
2749   if (E->getOp() != AtomicExpr::Store && !Dest)
2750     Dest = CreateMemTemp(E->getType(), ".atomicdst");
2751 
2752   if (UseLibcall) {
2753     // FIXME: Finalize what the libcalls are actually supposed to look like.
2754     // See also http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
2755     return EmitUnsupportedRValue(E, "atomic library call");
2756   }
2757 #if 0
2758   if (UseLibcall) {
2759     const char* LibCallName;
2760     switch (E->getOp()) {
2761     case AtomicExpr::CmpXchgWeak:
2762       LibCallName = "__atomic_compare_exchange_generic"; break;
2763     case AtomicExpr::CmpXchgStrong:
2764       LibCallName = "__atomic_compare_exchange_generic"; break;
2765     case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
2766     case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
2767     case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
2768     case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
2769     case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
2770     case AtomicExpr::Xchg:  LibCallName = "__atomic_exchange_generic"; break;
2771     case AtomicExpr::Store: LibCallName = "__atomic_store_generic"; break;
2772     case AtomicExpr::Load:  LibCallName = "__atomic_load_generic"; break;
2773     }
2774     llvm::SmallVector<QualType, 4> Params;
2775     CallArgList Args;
2776     QualType RetTy = getContext().VoidTy;
2777     if (E->getOp() != AtomicExpr::Store && !E->isCmpXChg())
2778       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
2779                getContext().VoidPtrTy);
2780     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
2781              getContext().VoidPtrTy);
2782     if (E->getOp() != AtomicExpr::Load)
2783       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2784                getContext().VoidPtrTy);
2785     if (E->isCmpXChg()) {
2786       Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
2787                getContext().VoidPtrTy);
2788       RetTy = getContext().IntTy;
2789     }
2790     Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
2791              getContext().getSizeType());
2792     const CGFunctionInfo &FuncInfo =
2793         CGM.getTypes().arrangeFunctionCall(RetTy, Args, FunctionType::ExtInfo(),
2794                                            /*variadic*/ false);
2795     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo, false);
2796     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2797     RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
2798     if (E->isCmpXChg())
2799       return Res;
2800     if (E->getOp() == AtomicExpr::Store)
2801       return RValue::get(0);
2802     return ConvertTempToRValue(*this, E->getType(), Dest);
2803   }
2804 #endif
2805   llvm::Type *IPtrTy =
2806       llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
2807   llvm::Value *OrigDest = Dest;
2808   Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
2809   if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
2810   if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
2811   if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
2812 
2813   if (isa<llvm::ConstantInt>(Order)) {
2814     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2815     switch (ord) {
2816     case 0:  // memory_order_relaxed
2817       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2818                    llvm::Monotonic);
2819       break;
2820     case 1:  // memory_order_consume
2821     case 2:  // memory_order_acquire
2822       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2823                    llvm::Acquire);
2824       break;
2825     case 3:  // memory_order_release
2826       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2827                    llvm::Release);
2828       break;
2829     case 4:  // memory_order_acq_rel
2830       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2831                    llvm::AcquireRelease);
2832       break;
2833     case 5:  // memory_order_seq_cst
2834       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2835                    llvm::SequentiallyConsistent);
2836       break;
2837     default: // invalid order
2838       // We should not ever get here normally, but it's hard to
2839       // enforce that in general.
2840       break;
2841     }
2842     if (E->getOp() == AtomicExpr::Store || E->getOp() == AtomicExpr::Init)
2843       return RValue::get(0);
2844     return ConvertTempToRValue(*this, E->getType(), OrigDest);
2845   }
2846 
2847   // Long case, when Order isn't obviously constant.
2848 
2849   // Create all the relevant BB's
2850   llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
2851                    *AcqRelBB = 0, *SeqCstBB = 0;
2852   MonotonicBB = createBasicBlock("monotonic", CurFn);
2853   if (E->getOp() != AtomicExpr::Store)
2854     AcquireBB = createBasicBlock("acquire", CurFn);
2855   if (E->getOp() != AtomicExpr::Load)
2856     ReleaseBB = createBasicBlock("release", CurFn);
2857   if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store)
2858     AcqRelBB = createBasicBlock("acqrel", CurFn);
2859   SeqCstBB = createBasicBlock("seqcst", CurFn);
2860   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2861 
2862   // Create the switch for the split
2863   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
2864   // doesn't matter unless someone is crazy enough to use something that
2865   // doesn't fold to a constant for the ordering.
2866   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2867   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
2868 
2869   // Emit all the different atomics
2870   Builder.SetInsertPoint(MonotonicBB);
2871   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2872                llvm::Monotonic);
2873   Builder.CreateBr(ContBB);
2874   if (E->getOp() != AtomicExpr::Store) {
2875     Builder.SetInsertPoint(AcquireBB);
2876     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2877                  llvm::Acquire);
2878     Builder.CreateBr(ContBB);
2879     SI->addCase(Builder.getInt32(1), AcquireBB);
2880     SI->addCase(Builder.getInt32(2), AcquireBB);
2881   }
2882   if (E->getOp() != AtomicExpr::Load) {
2883     Builder.SetInsertPoint(ReleaseBB);
2884     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2885                  llvm::Release);
2886     Builder.CreateBr(ContBB);
2887     SI->addCase(Builder.getInt32(3), ReleaseBB);
2888   }
2889   if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) {
2890     Builder.SetInsertPoint(AcqRelBB);
2891     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2892                  llvm::AcquireRelease);
2893     Builder.CreateBr(ContBB);
2894     SI->addCase(Builder.getInt32(4), AcqRelBB);
2895   }
2896   Builder.SetInsertPoint(SeqCstBB);
2897   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2898                llvm::SequentiallyConsistent);
2899   Builder.CreateBr(ContBB);
2900   SI->addCase(Builder.getInt32(5), SeqCstBB);
2901 
2902   // Cleanup and return
2903   Builder.SetInsertPoint(ContBB);
2904   if (E->getOp() == AtomicExpr::Store)
2905     return RValue::get(0);
2906   return ConvertTempToRValue(*this, E->getType(), OrigDest);
2907 }
2908 
2909 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN,
2910                                     unsigned AccuracyD) {
2911   assert(Val->getType()->isFPOrFPVectorTy());
2912   if (!AccuracyN || !isa<llvm::Instruction>(Val))
2913     return;
2914 
2915   llvm::Value *Vals[2];
2916   Vals[0] = llvm::ConstantInt::get(Int32Ty, AccuracyN);
2917   Vals[1] = llvm::ConstantInt::get(Int32Ty, AccuracyD);
2918   llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), Vals);
2919 
2920   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy,
2921                                             Node);
2922 }
2923 
2924 namespace {
2925   struct LValueOrRValue {
2926     LValue LV;
2927     RValue RV;
2928   };
2929 }
2930 
2931 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
2932                                            const PseudoObjectExpr *E,
2933                                            bool forLValue,
2934                                            AggValueSlot slot) {
2935   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2936 
2937   // Find the result expression, if any.
2938   const Expr *resultExpr = E->getResultExpr();
2939   LValueOrRValue result;
2940 
2941   for (PseudoObjectExpr::const_semantics_iterator
2942          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2943     const Expr *semantic = *i;
2944 
2945     // If this semantic expression is an opaque value, bind it
2946     // to the result of its source expression.
2947     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2948 
2949       // If this is the result expression, we may need to evaluate
2950       // directly into the slot.
2951       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2952       OVMA opaqueData;
2953       if (ov == resultExpr && ov->isRValue() && !forLValue &&
2954           CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
2955           !ov->getType()->isAnyComplexType()) {
2956         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
2957 
2958         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
2959         opaqueData = OVMA::bind(CGF, ov, LV);
2960         result.RV = slot.asRValue();
2961 
2962       // Otherwise, emit as normal.
2963       } else {
2964         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2965 
2966         // If this is the result, also evaluate the result now.
2967         if (ov == resultExpr) {
2968           if (forLValue)
2969             result.LV = CGF.EmitLValue(ov);
2970           else
2971             result.RV = CGF.EmitAnyExpr(ov, slot);
2972         }
2973       }
2974 
2975       opaques.push_back(opaqueData);
2976 
2977     // Otherwise, if the expression is the result, evaluate it
2978     // and remember the result.
2979     } else if (semantic == resultExpr) {
2980       if (forLValue)
2981         result.LV = CGF.EmitLValue(semantic);
2982       else
2983         result.RV = CGF.EmitAnyExpr(semantic, slot);
2984 
2985     // Otherwise, evaluate the expression in an ignored context.
2986     } else {
2987       CGF.EmitIgnoredExpr(semantic);
2988     }
2989   }
2990 
2991   // Unbind all the opaques now.
2992   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2993     opaques[i].unbind(CGF);
2994 
2995   return result;
2996 }
2997 
2998 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
2999                                                AggValueSlot slot) {
3000   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3001 }
3002 
3003 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3004   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3005 }
3006