1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCall.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/CodeGenOptions.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "llvm/ADT/Hashing.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/Support/ConvertUTF.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/Path.h" 40 #include "llvm/Transforms/Utils/SanitizerStats.h" 41 42 #include <string> 43 44 using namespace clang; 45 using namespace CodeGen; 46 47 //===--------------------------------------------------------------------===// 48 // Miscellaneous Helper Methods 49 //===--------------------------------------------------------------------===// 50 51 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 52 unsigned addressSpace = 53 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 54 55 llvm::PointerType *destType = Int8PtrTy; 56 if (addressSpace) 57 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 58 59 if (value->getType() == destType) return value; 60 return Builder.CreateBitCast(value, destType); 61 } 62 63 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 64 /// block. 65 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 66 CharUnits Align, 67 const Twine &Name, 68 llvm::Value *ArraySize) { 69 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 70 Alloca->setAlignment(Align.getAsAlign()); 71 return Address(Alloca, Align); 72 } 73 74 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 75 /// block. The alloca is casted to default address space if necessary. 76 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 77 const Twine &Name, 78 llvm::Value *ArraySize, 79 Address *AllocaAddr) { 80 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 81 if (AllocaAddr) 82 *AllocaAddr = Alloca; 83 llvm::Value *V = Alloca.getPointer(); 84 // Alloca always returns a pointer in alloca address space, which may 85 // be different from the type defined by the language. For example, 86 // in C++ the auto variables are in the default address space. Therefore 87 // cast alloca to the default address space when necessary. 88 if (getASTAllocaAddressSpace() != LangAS::Default) { 89 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 90 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 91 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 92 // otherwise alloca is inserted at the current insertion point of the 93 // builder. 94 if (!ArraySize) 95 Builder.SetInsertPoint(AllocaInsertPt); 96 V = getTargetHooks().performAddrSpaceCast( 97 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 98 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 99 } 100 101 return Address(V, Align); 102 } 103 104 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 105 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 106 /// insertion point of the builder. 107 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 108 const Twine &Name, 109 llvm::Value *ArraySize) { 110 if (ArraySize) 111 return Builder.CreateAlloca(Ty, ArraySize, Name); 112 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 113 ArraySize, Name, AllocaInsertPt); 114 } 115 116 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 117 /// default alignment of the corresponding LLVM type, which is *not* 118 /// guaranteed to be related in any way to the expected alignment of 119 /// an AST type that might have been lowered to Ty. 120 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 121 const Twine &Name) { 122 CharUnits Align = 123 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 124 return CreateTempAlloca(Ty, Align, Name); 125 } 126 127 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 128 assert(isa<llvm::AllocaInst>(Var.getPointer())); 129 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 130 Store->setAlignment(Var.getAlignment().getAsAlign()); 131 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 132 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 133 } 134 135 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 136 CharUnits Align = getContext().getTypeAlignInChars(Ty); 137 return CreateTempAlloca(ConvertType(Ty), Align, Name); 138 } 139 140 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 141 Address *Alloca) { 142 // FIXME: Should we prefer the preferred type alignment here? 143 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 144 } 145 146 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 147 const Twine &Name, Address *Alloca) { 148 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 149 /*ArraySize=*/nullptr, Alloca); 150 } 151 152 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 153 const Twine &Name) { 154 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 155 } 156 157 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 158 const Twine &Name) { 159 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 160 Name); 161 } 162 163 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 164 /// expression and compare the result against zero, returning an Int1Ty value. 165 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 166 PGO.setCurrentStmt(E); 167 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 168 llvm::Value *MemPtr = EmitScalarExpr(E); 169 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 170 } 171 172 QualType BoolTy = getContext().BoolTy; 173 SourceLocation Loc = E->getExprLoc(); 174 if (!E->getType()->isAnyComplexType()) 175 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 176 177 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 178 Loc); 179 } 180 181 /// EmitIgnoredExpr - Emit code to compute the specified expression, 182 /// ignoring the result. 183 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 184 if (E->isRValue()) 185 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 186 187 // Just emit it as an l-value and drop the result. 188 EmitLValue(E); 189 } 190 191 /// EmitAnyExpr - Emit code to compute the specified expression which 192 /// can have any type. The result is returned as an RValue struct. 193 /// If this is an aggregate expression, AggSlot indicates where the 194 /// result should be returned. 195 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 196 AggValueSlot aggSlot, 197 bool ignoreResult) { 198 switch (getEvaluationKind(E->getType())) { 199 case TEK_Scalar: 200 return RValue::get(EmitScalarExpr(E, ignoreResult)); 201 case TEK_Complex: 202 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 203 case TEK_Aggregate: 204 if (!ignoreResult && aggSlot.isIgnored()) 205 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 206 EmitAggExpr(E, aggSlot); 207 return aggSlot.asRValue(); 208 } 209 llvm_unreachable("bad evaluation kind"); 210 } 211 212 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 213 /// always be accessible even if no aggregate location is provided. 214 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 215 AggValueSlot AggSlot = AggValueSlot::ignored(); 216 217 if (hasAggregateEvaluationKind(E->getType())) 218 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 219 return EmitAnyExpr(E, AggSlot); 220 } 221 222 /// EmitAnyExprToMem - Evaluate an expression into a given memory 223 /// location. 224 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 225 Address Location, 226 Qualifiers Quals, 227 bool IsInit) { 228 // FIXME: This function should take an LValue as an argument. 229 switch (getEvaluationKind(E->getType())) { 230 case TEK_Complex: 231 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 232 /*isInit*/ false); 233 return; 234 235 case TEK_Aggregate: { 236 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 237 AggValueSlot::IsDestructed_t(IsInit), 238 AggValueSlot::DoesNotNeedGCBarriers, 239 AggValueSlot::IsAliased_t(!IsInit), 240 AggValueSlot::MayOverlap)); 241 return; 242 } 243 244 case TEK_Scalar: { 245 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 246 LValue LV = MakeAddrLValue(Location, E->getType()); 247 EmitStoreThroughLValue(RV, LV); 248 return; 249 } 250 } 251 llvm_unreachable("bad evaluation kind"); 252 } 253 254 static void 255 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 256 const Expr *E, Address ReferenceTemporary) { 257 // Objective-C++ ARC: 258 // If we are binding a reference to a temporary that has ownership, we 259 // need to perform retain/release operations on the temporary. 260 // 261 // FIXME: This should be looking at E, not M. 262 if (auto Lifetime = M->getType().getObjCLifetime()) { 263 switch (Lifetime) { 264 case Qualifiers::OCL_None: 265 case Qualifiers::OCL_ExplicitNone: 266 // Carry on to normal cleanup handling. 267 break; 268 269 case Qualifiers::OCL_Autoreleasing: 270 // Nothing to do; cleaned up by an autorelease pool. 271 return; 272 273 case Qualifiers::OCL_Strong: 274 case Qualifiers::OCL_Weak: 275 switch (StorageDuration Duration = M->getStorageDuration()) { 276 case SD_Static: 277 // Note: we intentionally do not register a cleanup to release 278 // the object on program termination. 279 return; 280 281 case SD_Thread: 282 // FIXME: We should probably register a cleanup in this case. 283 return; 284 285 case SD_Automatic: 286 case SD_FullExpression: 287 CodeGenFunction::Destroyer *Destroy; 288 CleanupKind CleanupKind; 289 if (Lifetime == Qualifiers::OCL_Strong) { 290 const ValueDecl *VD = M->getExtendingDecl(); 291 bool Precise = 292 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 293 CleanupKind = CGF.getARCCleanupKind(); 294 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 295 : &CodeGenFunction::destroyARCStrongImprecise; 296 } else { 297 // __weak objects always get EH cleanups; otherwise, exceptions 298 // could cause really nasty crashes instead of mere leaks. 299 CleanupKind = NormalAndEHCleanup; 300 Destroy = &CodeGenFunction::destroyARCWeak; 301 } 302 if (Duration == SD_FullExpression) 303 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 304 M->getType(), *Destroy, 305 CleanupKind & EHCleanup); 306 else 307 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 308 M->getType(), 309 *Destroy, CleanupKind & EHCleanup); 310 return; 311 312 case SD_Dynamic: 313 llvm_unreachable("temporary cannot have dynamic storage duration"); 314 } 315 llvm_unreachable("unknown storage duration"); 316 } 317 } 318 319 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 320 if (const RecordType *RT = 321 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 322 // Get the destructor for the reference temporary. 323 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 324 if (!ClassDecl->hasTrivialDestructor()) 325 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 326 } 327 328 if (!ReferenceTemporaryDtor) 329 return; 330 331 // Call the destructor for the temporary. 332 switch (M->getStorageDuration()) { 333 case SD_Static: 334 case SD_Thread: { 335 llvm::FunctionCallee CleanupFn; 336 llvm::Constant *CleanupArg; 337 if (E->getType()->isArrayType()) { 338 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 339 ReferenceTemporary, E->getType(), 340 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 341 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 342 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 343 } else { 344 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 345 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 346 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 347 } 348 CGF.CGM.getCXXABI().registerGlobalDtor( 349 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 350 break; 351 } 352 353 case SD_FullExpression: 354 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 355 CodeGenFunction::destroyCXXObject, 356 CGF.getLangOpts().Exceptions); 357 break; 358 359 case SD_Automatic: 360 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 361 ReferenceTemporary, E->getType(), 362 CodeGenFunction::destroyCXXObject, 363 CGF.getLangOpts().Exceptions); 364 break; 365 366 case SD_Dynamic: 367 llvm_unreachable("temporary cannot have dynamic storage duration"); 368 } 369 } 370 371 static Address createReferenceTemporary(CodeGenFunction &CGF, 372 const MaterializeTemporaryExpr *M, 373 const Expr *Inner, 374 Address *Alloca = nullptr) { 375 auto &TCG = CGF.getTargetHooks(); 376 switch (M->getStorageDuration()) { 377 case SD_FullExpression: 378 case SD_Automatic: { 379 // If we have a constant temporary array or record try to promote it into a 380 // constant global under the same rules a normal constant would've been 381 // promoted. This is easier on the optimizer and generally emits fewer 382 // instructions. 383 QualType Ty = Inner->getType(); 384 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 385 (Ty->isArrayType() || Ty->isRecordType()) && 386 CGF.CGM.isTypeConstant(Ty, true)) 387 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 388 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 389 auto AS = AddrSpace.getValue(); 390 auto *GV = new llvm::GlobalVariable( 391 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 392 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 393 llvm::GlobalValue::NotThreadLocal, 394 CGF.getContext().getTargetAddressSpace(AS)); 395 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 396 GV->setAlignment(alignment.getAsAlign()); 397 llvm::Constant *C = GV; 398 if (AS != LangAS::Default) 399 C = TCG.performAddrSpaceCast( 400 CGF.CGM, GV, AS, LangAS::Default, 401 GV->getValueType()->getPointerTo( 402 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 403 // FIXME: Should we put the new global into a COMDAT? 404 return Address(C, alignment); 405 } 406 } 407 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 408 } 409 case SD_Thread: 410 case SD_Static: 411 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 412 413 case SD_Dynamic: 414 llvm_unreachable("temporary can't have dynamic storage duration"); 415 } 416 llvm_unreachable("unknown storage duration"); 417 } 418 419 /// Helper method to check if the underlying ABI is AAPCS 420 static bool isAAPCS(const TargetInfo &TargetInfo) { 421 return TargetInfo.getABI().startswith("aapcs"); 422 } 423 424 LValue CodeGenFunction:: 425 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 426 const Expr *E = M->getSubExpr(); 427 428 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 429 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 430 "Reference should never be pseudo-strong!"); 431 432 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 433 // as that will cause the lifetime adjustment to be lost for ARC 434 auto ownership = M->getType().getObjCLifetime(); 435 if (ownership != Qualifiers::OCL_None && 436 ownership != Qualifiers::OCL_ExplicitNone) { 437 Address Object = createReferenceTemporary(*this, M, E); 438 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 439 Object = Address(llvm::ConstantExpr::getBitCast(Var, 440 ConvertTypeForMem(E->getType()) 441 ->getPointerTo(Object.getAddressSpace())), 442 Object.getAlignment()); 443 444 // createReferenceTemporary will promote the temporary to a global with a 445 // constant initializer if it can. It can only do this to a value of 446 // ARC-manageable type if the value is global and therefore "immune" to 447 // ref-counting operations. Therefore we have no need to emit either a 448 // dynamic initialization or a cleanup and we can just return the address 449 // of the temporary. 450 if (Var->hasInitializer()) 451 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 452 453 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 454 } 455 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 456 AlignmentSource::Decl); 457 458 switch (getEvaluationKind(E->getType())) { 459 default: llvm_unreachable("expected scalar or aggregate expression"); 460 case TEK_Scalar: 461 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 462 break; 463 case TEK_Aggregate: { 464 EmitAggExpr(E, AggValueSlot::forAddr(Object, 465 E->getType().getQualifiers(), 466 AggValueSlot::IsDestructed, 467 AggValueSlot::DoesNotNeedGCBarriers, 468 AggValueSlot::IsNotAliased, 469 AggValueSlot::DoesNotOverlap)); 470 break; 471 } 472 } 473 474 pushTemporaryCleanup(*this, M, E, Object); 475 return RefTempDst; 476 } 477 478 SmallVector<const Expr *, 2> CommaLHSs; 479 SmallVector<SubobjectAdjustment, 2> Adjustments; 480 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 481 482 for (const auto &Ignored : CommaLHSs) 483 EmitIgnoredExpr(Ignored); 484 485 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 486 if (opaque->getType()->isRecordType()) { 487 assert(Adjustments.empty()); 488 return EmitOpaqueValueLValue(opaque); 489 } 490 } 491 492 // Create and initialize the reference temporary. 493 Address Alloca = Address::invalid(); 494 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 495 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 496 Object.getPointer()->stripPointerCasts())) { 497 Object = Address(llvm::ConstantExpr::getBitCast( 498 cast<llvm::Constant>(Object.getPointer()), 499 ConvertTypeForMem(E->getType())->getPointerTo()), 500 Object.getAlignment()); 501 // If the temporary is a global and has a constant initializer or is a 502 // constant temporary that we promoted to a global, we may have already 503 // initialized it. 504 if (!Var->hasInitializer()) { 505 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 506 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 507 } 508 } else { 509 switch (M->getStorageDuration()) { 510 case SD_Automatic: 511 if (auto *Size = EmitLifetimeStart( 512 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 513 Alloca.getPointer())) { 514 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 515 Alloca, Size); 516 } 517 break; 518 519 case SD_FullExpression: { 520 if (!ShouldEmitLifetimeMarkers) 521 break; 522 523 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 524 // marker. Instead, start the lifetime of a conditional temporary earlier 525 // so that it's unconditional. Don't do this with sanitizers which need 526 // more precise lifetime marks. 527 ConditionalEvaluation *OldConditional = nullptr; 528 CGBuilderTy::InsertPoint OldIP; 529 if (isInConditionalBranch() && !E->getType().isDestructedType() && 530 !SanOpts.has(SanitizerKind::HWAddress) && 531 !SanOpts.has(SanitizerKind::Memory) && 532 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 533 OldConditional = OutermostConditional; 534 OutermostConditional = nullptr; 535 536 OldIP = Builder.saveIP(); 537 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 538 Builder.restoreIP(CGBuilderTy::InsertPoint( 539 Block, llvm::BasicBlock::iterator(Block->back()))); 540 } 541 542 if (auto *Size = EmitLifetimeStart( 543 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 544 Alloca.getPointer())) { 545 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 546 Size); 547 } 548 549 if (OldConditional) { 550 OutermostConditional = OldConditional; 551 Builder.restoreIP(OldIP); 552 } 553 break; 554 } 555 556 default: 557 break; 558 } 559 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 560 } 561 pushTemporaryCleanup(*this, M, E, Object); 562 563 // Perform derived-to-base casts and/or field accesses, to get from the 564 // temporary object we created (and, potentially, for which we extended 565 // the lifetime) to the subobject we're binding the reference to. 566 for (unsigned I = Adjustments.size(); I != 0; --I) { 567 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 568 switch (Adjustment.Kind) { 569 case SubobjectAdjustment::DerivedToBaseAdjustment: 570 Object = 571 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 572 Adjustment.DerivedToBase.BasePath->path_begin(), 573 Adjustment.DerivedToBase.BasePath->path_end(), 574 /*NullCheckValue=*/ false, E->getExprLoc()); 575 break; 576 577 case SubobjectAdjustment::FieldAdjustment: { 578 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 579 LV = EmitLValueForField(LV, Adjustment.Field); 580 assert(LV.isSimple() && 581 "materialized temporary field is not a simple lvalue"); 582 Object = LV.getAddress(*this); 583 break; 584 } 585 586 case SubobjectAdjustment::MemberPointerAdjustment: { 587 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 588 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 589 Adjustment.Ptr.MPT); 590 break; 591 } 592 } 593 } 594 595 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 596 } 597 598 RValue 599 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 600 // Emit the expression as an lvalue. 601 LValue LV = EmitLValue(E); 602 assert(LV.isSimple()); 603 llvm::Value *Value = LV.getPointer(*this); 604 605 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 606 // C++11 [dcl.ref]p5 (as amended by core issue 453): 607 // If a glvalue to which a reference is directly bound designates neither 608 // an existing object or function of an appropriate type nor a region of 609 // storage of suitable size and alignment to contain an object of the 610 // reference's type, the behavior is undefined. 611 QualType Ty = E->getType(); 612 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 613 } 614 615 return RValue::get(Value); 616 } 617 618 619 /// getAccessedFieldNo - Given an encoded value and a result number, return the 620 /// input field number being accessed. 621 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 622 const llvm::Constant *Elts) { 623 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 624 ->getZExtValue(); 625 } 626 627 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 628 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 629 llvm::Value *High) { 630 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 631 llvm::Value *K47 = Builder.getInt64(47); 632 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 633 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 634 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 635 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 636 return Builder.CreateMul(B1, KMul); 637 } 638 639 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 640 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 641 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 642 } 643 644 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 645 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 646 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 647 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 648 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 649 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 650 } 651 652 bool CodeGenFunction::sanitizePerformTypeCheck() const { 653 return SanOpts.has(SanitizerKind::Null) | 654 SanOpts.has(SanitizerKind::Alignment) | 655 SanOpts.has(SanitizerKind::ObjectSize) | 656 SanOpts.has(SanitizerKind::Vptr); 657 } 658 659 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 660 llvm::Value *Ptr, QualType Ty, 661 CharUnits Alignment, 662 SanitizerSet SkippedChecks, 663 llvm::Value *ArraySize) { 664 if (!sanitizePerformTypeCheck()) 665 return; 666 667 // Don't check pointers outside the default address space. The null check 668 // isn't correct, the object-size check isn't supported by LLVM, and we can't 669 // communicate the addresses to the runtime handler for the vptr check. 670 if (Ptr->getType()->getPointerAddressSpace()) 671 return; 672 673 // Don't check pointers to volatile data. The behavior here is implementation- 674 // defined. 675 if (Ty.isVolatileQualified()) 676 return; 677 678 SanitizerScope SanScope(this); 679 680 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 681 llvm::BasicBlock *Done = nullptr; 682 683 // Quickly determine whether we have a pointer to an alloca. It's possible 684 // to skip null checks, and some alignment checks, for these pointers. This 685 // can reduce compile-time significantly. 686 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 687 688 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 689 llvm::Value *IsNonNull = nullptr; 690 bool IsGuaranteedNonNull = 691 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 692 bool AllowNullPointers = isNullPointerAllowed(TCK); 693 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 694 !IsGuaranteedNonNull) { 695 // The glvalue must not be an empty glvalue. 696 IsNonNull = Builder.CreateIsNotNull(Ptr); 697 698 // The IR builder can constant-fold the null check if the pointer points to 699 // a constant. 700 IsGuaranteedNonNull = IsNonNull == True; 701 702 // Skip the null check if the pointer is known to be non-null. 703 if (!IsGuaranteedNonNull) { 704 if (AllowNullPointers) { 705 // When performing pointer casts, it's OK if the value is null. 706 // Skip the remaining checks in that case. 707 Done = createBasicBlock("null"); 708 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 709 Builder.CreateCondBr(IsNonNull, Rest, Done); 710 EmitBlock(Rest); 711 } else { 712 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 713 } 714 } 715 } 716 717 if (SanOpts.has(SanitizerKind::ObjectSize) && 718 !SkippedChecks.has(SanitizerKind::ObjectSize) && 719 !Ty->isIncompleteType()) { 720 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 721 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 722 if (ArraySize) 723 Size = Builder.CreateMul(Size, ArraySize); 724 725 // Degenerate case: new X[0] does not need an objectsize check. 726 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 727 if (!ConstantSize || !ConstantSize->isNullValue()) { 728 // The glvalue must refer to a large enough storage region. 729 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 730 // to check this. 731 // FIXME: Get object address space 732 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 733 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 734 llvm::Value *Min = Builder.getFalse(); 735 llvm::Value *NullIsUnknown = Builder.getFalse(); 736 llvm::Value *Dynamic = Builder.getFalse(); 737 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 738 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 739 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 740 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 741 } 742 } 743 744 uint64_t AlignVal = 0; 745 llvm::Value *PtrAsInt = nullptr; 746 747 if (SanOpts.has(SanitizerKind::Alignment) && 748 !SkippedChecks.has(SanitizerKind::Alignment)) { 749 AlignVal = Alignment.getQuantity(); 750 if (!Ty->isIncompleteType() && !AlignVal) 751 AlignVal = 752 getNaturalTypeAlignment(Ty, nullptr, nullptr, /*ForPointeeType=*/true) 753 .getQuantity(); 754 755 // The glvalue must be suitably aligned. 756 if (AlignVal > 1 && 757 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 758 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 759 llvm::Value *Align = Builder.CreateAnd( 760 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 761 llvm::Value *Aligned = 762 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 763 if (Aligned != True) 764 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 765 } 766 } 767 768 if (Checks.size() > 0) { 769 // Make sure we're not losing information. Alignment needs to be a power of 770 // 2 771 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 772 llvm::Constant *StaticData[] = { 773 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 774 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 775 llvm::ConstantInt::get(Int8Ty, TCK)}; 776 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 777 PtrAsInt ? PtrAsInt : Ptr); 778 } 779 780 // If possible, check that the vptr indicates that there is a subobject of 781 // type Ty at offset zero within this object. 782 // 783 // C++11 [basic.life]p5,6: 784 // [For storage which does not refer to an object within its lifetime] 785 // The program has undefined behavior if: 786 // -- the [pointer or glvalue] is used to access a non-static data member 787 // or call a non-static member function 788 if (SanOpts.has(SanitizerKind::Vptr) && 789 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 790 // Ensure that the pointer is non-null before loading it. If there is no 791 // compile-time guarantee, reuse the run-time null check or emit a new one. 792 if (!IsGuaranteedNonNull) { 793 if (!IsNonNull) 794 IsNonNull = Builder.CreateIsNotNull(Ptr); 795 if (!Done) 796 Done = createBasicBlock("vptr.null"); 797 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 798 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 799 EmitBlock(VptrNotNull); 800 } 801 802 // Compute a hash of the mangled name of the type. 803 // 804 // FIXME: This is not guaranteed to be deterministic! Move to a 805 // fingerprinting mechanism once LLVM provides one. For the time 806 // being the implementation happens to be deterministic. 807 SmallString<64> MangledName; 808 llvm::raw_svector_ostream Out(MangledName); 809 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 810 Out); 811 812 // Blacklist based on the mangled type. 813 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 814 SanitizerKind::Vptr, Out.str())) { 815 llvm::hash_code TypeHash = hash_value(Out.str()); 816 817 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 818 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 819 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 820 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 821 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 822 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 823 824 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 825 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 826 827 // Look the hash up in our cache. 828 const int CacheSize = 128; 829 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 830 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 831 "__ubsan_vptr_type_cache"); 832 llvm::Value *Slot = Builder.CreateAnd(Hash, 833 llvm::ConstantInt::get(IntPtrTy, 834 CacheSize-1)); 835 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 836 llvm::Value *CacheVal = 837 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 838 getPointerAlign()); 839 840 // If the hash isn't in the cache, call a runtime handler to perform the 841 // hard work of checking whether the vptr is for an object of the right 842 // type. This will either fill in the cache and return, or produce a 843 // diagnostic. 844 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 845 llvm::Constant *StaticData[] = { 846 EmitCheckSourceLocation(Loc), 847 EmitCheckTypeDescriptor(Ty), 848 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 849 llvm::ConstantInt::get(Int8Ty, TCK) 850 }; 851 llvm::Value *DynamicData[] = { Ptr, Hash }; 852 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 853 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 854 DynamicData); 855 } 856 } 857 858 if (Done) { 859 Builder.CreateBr(Done); 860 EmitBlock(Done); 861 } 862 } 863 864 /// Determine whether this expression refers to a flexible array member in a 865 /// struct. We disable array bounds checks for such members. 866 static bool isFlexibleArrayMemberExpr(const Expr *E) { 867 // For compatibility with existing code, we treat arrays of length 0 or 868 // 1 as flexible array members. 869 // FIXME: This is inconsistent with the warning code in SemaChecking. Unify 870 // the two mechanisms. 871 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 872 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 873 // FIXME: Sema doesn't treat [1] as a flexible array member if the bound 874 // was produced by macro expansion. 875 if (CAT->getSize().ugt(1)) 876 return false; 877 } else if (!isa<IncompleteArrayType>(AT)) 878 return false; 879 880 E = E->IgnoreParens(); 881 882 // A flexible array member must be the last member in the class. 883 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 884 // FIXME: If the base type of the member expr is not FD->getParent(), 885 // this should not be treated as a flexible array member access. 886 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 887 // FIXME: Sema doesn't treat a T[1] union member as a flexible array 888 // member, only a T[0] or T[] member gets that treatment. 889 if (FD->getParent()->isUnion()) 890 return true; 891 RecordDecl::field_iterator FI( 892 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 893 return ++FI == FD->getParent()->field_end(); 894 } 895 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 896 return IRE->getDecl()->getNextIvar() == nullptr; 897 } 898 899 return false; 900 } 901 902 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 903 QualType EltTy) { 904 ASTContext &C = getContext(); 905 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 906 if (!EltSize) 907 return nullptr; 908 909 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 910 if (!ArrayDeclRef) 911 return nullptr; 912 913 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 914 if (!ParamDecl) 915 return nullptr; 916 917 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 918 if (!POSAttr) 919 return nullptr; 920 921 // Don't load the size if it's a lower bound. 922 int POSType = POSAttr->getType(); 923 if (POSType != 0 && POSType != 1) 924 return nullptr; 925 926 // Find the implicit size parameter. 927 auto PassedSizeIt = SizeArguments.find(ParamDecl); 928 if (PassedSizeIt == SizeArguments.end()) 929 return nullptr; 930 931 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 932 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 933 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 934 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 935 C.getSizeType(), E->getExprLoc()); 936 llvm::Value *SizeOfElement = 937 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 938 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 939 } 940 941 /// If Base is known to point to the start of an array, return the length of 942 /// that array. Return 0 if the length cannot be determined. 943 static llvm::Value *getArrayIndexingBound( 944 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 945 // For the vector indexing extension, the bound is the number of elements. 946 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 947 IndexedType = Base->getType(); 948 return CGF.Builder.getInt32(VT->getNumElements()); 949 } 950 951 Base = Base->IgnoreParens(); 952 953 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 954 if (CE->getCastKind() == CK_ArrayToPointerDecay && 955 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 956 IndexedType = CE->getSubExpr()->getType(); 957 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 958 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 959 return CGF.Builder.getInt(CAT->getSize()); 960 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 961 return CGF.getVLASize(VAT).NumElts; 962 // Ignore pass_object_size here. It's not applicable on decayed pointers. 963 } 964 } 965 966 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 967 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 968 IndexedType = Base->getType(); 969 return POS; 970 } 971 972 return nullptr; 973 } 974 975 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 976 llvm::Value *Index, QualType IndexType, 977 bool Accessed) { 978 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 979 "should not be called unless adding bounds checks"); 980 SanitizerScope SanScope(this); 981 982 QualType IndexedType; 983 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 984 if (!Bound) 985 return; 986 987 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 988 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 989 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 990 991 llvm::Constant *StaticData[] = { 992 EmitCheckSourceLocation(E->getExprLoc()), 993 EmitCheckTypeDescriptor(IndexedType), 994 EmitCheckTypeDescriptor(IndexType) 995 }; 996 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 997 : Builder.CreateICmpULE(IndexVal, BoundVal); 998 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 999 SanitizerHandler::OutOfBounds, StaticData, Index); 1000 } 1001 1002 1003 CodeGenFunction::ComplexPairTy CodeGenFunction:: 1004 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1005 bool isInc, bool isPre) { 1006 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 1007 1008 llvm::Value *NextVal; 1009 if (isa<llvm::IntegerType>(InVal.first->getType())) { 1010 uint64_t AmountVal = isInc ? 1 : -1; 1011 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 1012 1013 // Add the inc/dec to the real part. 1014 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1015 } else { 1016 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1017 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1018 if (!isInc) 1019 FVal.changeSign(); 1020 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1021 1022 // Add the inc/dec to the real part. 1023 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1024 } 1025 1026 ComplexPairTy IncVal(NextVal, InVal.second); 1027 1028 // Store the updated result through the lvalue. 1029 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1030 if (getLangOpts().OpenMP) 1031 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1032 E->getSubExpr()); 1033 1034 // If this is a postinc, return the value read from memory, otherwise use the 1035 // updated value. 1036 return isPre ? IncVal : InVal; 1037 } 1038 1039 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1040 CodeGenFunction *CGF) { 1041 // Bind VLAs in the cast type. 1042 if (CGF && E->getType()->isVariablyModifiedType()) 1043 CGF->EmitVariablyModifiedType(E->getType()); 1044 1045 if (CGDebugInfo *DI = getModuleDebugInfo()) 1046 DI->EmitExplicitCastType(E->getType()); 1047 } 1048 1049 //===----------------------------------------------------------------------===// 1050 // LValue Expression Emission 1051 //===----------------------------------------------------------------------===// 1052 1053 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1054 /// derive a more accurate bound on the alignment of the pointer. 1055 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1056 LValueBaseInfo *BaseInfo, 1057 TBAAAccessInfo *TBAAInfo) { 1058 // We allow this with ObjC object pointers because of fragile ABIs. 1059 assert(E->getType()->isPointerType() || 1060 E->getType()->isObjCObjectPointerType()); 1061 E = E->IgnoreParens(); 1062 1063 // Casts: 1064 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1065 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1066 CGM.EmitExplicitCastExprType(ECE, this); 1067 1068 switch (CE->getCastKind()) { 1069 // Non-converting casts (but not C's implicit conversion from void*). 1070 case CK_BitCast: 1071 case CK_NoOp: 1072 case CK_AddressSpaceConversion: 1073 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1074 if (PtrTy->getPointeeType()->isVoidType()) 1075 break; 1076 1077 LValueBaseInfo InnerBaseInfo; 1078 TBAAAccessInfo InnerTBAAInfo; 1079 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1080 &InnerBaseInfo, 1081 &InnerTBAAInfo); 1082 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1083 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1084 1085 if (isa<ExplicitCastExpr>(CE)) { 1086 LValueBaseInfo TargetTypeBaseInfo; 1087 TBAAAccessInfo TargetTypeTBAAInfo; 1088 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1089 &TargetTypeBaseInfo, 1090 &TargetTypeTBAAInfo); 1091 if (TBAAInfo) 1092 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1093 TargetTypeTBAAInfo); 1094 // If the source l-value is opaque, honor the alignment of the 1095 // casted-to type. 1096 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1097 if (BaseInfo) 1098 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1099 Addr = Address(Addr.getPointer(), Align); 1100 } 1101 } 1102 1103 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1104 CE->getCastKind() == CK_BitCast) { 1105 if (auto PT = E->getType()->getAs<PointerType>()) 1106 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1107 /*MayBeNull=*/true, 1108 CodeGenFunction::CFITCK_UnrelatedCast, 1109 CE->getBeginLoc()); 1110 } 1111 return CE->getCastKind() != CK_AddressSpaceConversion 1112 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1113 : Builder.CreateAddrSpaceCast(Addr, 1114 ConvertType(E->getType())); 1115 } 1116 break; 1117 1118 // Array-to-pointer decay. 1119 case CK_ArrayToPointerDecay: 1120 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1121 1122 // Derived-to-base conversions. 1123 case CK_UncheckedDerivedToBase: 1124 case CK_DerivedToBase: { 1125 // TODO: Support accesses to members of base classes in TBAA. For now, we 1126 // conservatively pretend that the complete object is of the base class 1127 // type. 1128 if (TBAAInfo) 1129 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1130 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1131 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1132 return GetAddressOfBaseClass(Addr, Derived, 1133 CE->path_begin(), CE->path_end(), 1134 ShouldNullCheckClassCastValue(CE), 1135 CE->getExprLoc()); 1136 } 1137 1138 // TODO: Is there any reason to treat base-to-derived conversions 1139 // specially? 1140 default: 1141 break; 1142 } 1143 } 1144 1145 // Unary &. 1146 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1147 if (UO->getOpcode() == UO_AddrOf) { 1148 LValue LV = EmitLValue(UO->getSubExpr()); 1149 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1150 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1151 return LV.getAddress(*this); 1152 } 1153 } 1154 1155 // TODO: conditional operators, comma. 1156 1157 // Otherwise, use the alignment of the type. 1158 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1159 TBAAInfo); 1160 return Address(EmitScalarExpr(E), Align); 1161 } 1162 1163 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1164 if (Ty->isVoidType()) 1165 return RValue::get(nullptr); 1166 1167 switch (getEvaluationKind(Ty)) { 1168 case TEK_Complex: { 1169 llvm::Type *EltTy = 1170 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1171 llvm::Value *U = llvm::UndefValue::get(EltTy); 1172 return RValue::getComplex(std::make_pair(U, U)); 1173 } 1174 1175 // If this is a use of an undefined aggregate type, the aggregate must have an 1176 // identifiable address. Just because the contents of the value are undefined 1177 // doesn't mean that the address can't be taken and compared. 1178 case TEK_Aggregate: { 1179 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1180 return RValue::getAggregate(DestPtr); 1181 } 1182 1183 case TEK_Scalar: 1184 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1185 } 1186 llvm_unreachable("bad evaluation kind"); 1187 } 1188 1189 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1190 const char *Name) { 1191 ErrorUnsupported(E, Name); 1192 return GetUndefRValue(E->getType()); 1193 } 1194 1195 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1196 const char *Name) { 1197 ErrorUnsupported(E, Name); 1198 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1199 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1200 E->getType()); 1201 } 1202 1203 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1204 const Expr *Base = Obj; 1205 while (!isa<CXXThisExpr>(Base)) { 1206 // The result of a dynamic_cast can be null. 1207 if (isa<CXXDynamicCastExpr>(Base)) 1208 return false; 1209 1210 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1211 Base = CE->getSubExpr(); 1212 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1213 Base = PE->getSubExpr(); 1214 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1215 if (UO->getOpcode() == UO_Extension) 1216 Base = UO->getSubExpr(); 1217 else 1218 return false; 1219 } else { 1220 return false; 1221 } 1222 } 1223 return true; 1224 } 1225 1226 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1227 LValue LV; 1228 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1229 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1230 else 1231 LV = EmitLValue(E); 1232 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1233 SanitizerSet SkippedChecks; 1234 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1235 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1236 if (IsBaseCXXThis) 1237 SkippedChecks.set(SanitizerKind::Alignment, true); 1238 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1239 SkippedChecks.set(SanitizerKind::Null, true); 1240 } 1241 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1242 LV.getAlignment(), SkippedChecks); 1243 } 1244 return LV; 1245 } 1246 1247 /// EmitLValue - Emit code to compute a designator that specifies the location 1248 /// of the expression. 1249 /// 1250 /// This can return one of two things: a simple address or a bitfield reference. 1251 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1252 /// an LLVM pointer type. 1253 /// 1254 /// If this returns a bitfield reference, nothing about the pointee type of the 1255 /// LLVM value is known: For example, it may not be a pointer to an integer. 1256 /// 1257 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1258 /// this method guarantees that the returned pointer type will point to an LLVM 1259 /// type of the same size of the lvalue's type. If the lvalue has a variable 1260 /// length type, this is not possible. 1261 /// 1262 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1263 ApplyDebugLocation DL(*this, E); 1264 switch (E->getStmtClass()) { 1265 default: return EmitUnsupportedLValue(E, "l-value expression"); 1266 1267 case Expr::ObjCPropertyRefExprClass: 1268 llvm_unreachable("cannot emit a property reference directly"); 1269 1270 case Expr::ObjCSelectorExprClass: 1271 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1272 case Expr::ObjCIsaExprClass: 1273 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1274 case Expr::BinaryOperatorClass: 1275 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1276 case Expr::CompoundAssignOperatorClass: { 1277 QualType Ty = E->getType(); 1278 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1279 Ty = AT->getValueType(); 1280 if (!Ty->isAnyComplexType()) 1281 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1282 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1283 } 1284 case Expr::CallExprClass: 1285 case Expr::CXXMemberCallExprClass: 1286 case Expr::CXXOperatorCallExprClass: 1287 case Expr::UserDefinedLiteralClass: 1288 return EmitCallExprLValue(cast<CallExpr>(E)); 1289 case Expr::CXXRewrittenBinaryOperatorClass: 1290 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1291 case Expr::VAArgExprClass: 1292 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1293 case Expr::DeclRefExprClass: 1294 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1295 case Expr::ConstantExprClass: 1296 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1297 case Expr::ParenExprClass: 1298 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1299 case Expr::GenericSelectionExprClass: 1300 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1301 case Expr::PredefinedExprClass: 1302 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1303 case Expr::StringLiteralClass: 1304 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1305 case Expr::ObjCEncodeExprClass: 1306 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1307 case Expr::PseudoObjectExprClass: 1308 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1309 case Expr::InitListExprClass: 1310 return EmitInitListLValue(cast<InitListExpr>(E)); 1311 case Expr::CXXTemporaryObjectExprClass: 1312 case Expr::CXXConstructExprClass: 1313 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1314 case Expr::CXXBindTemporaryExprClass: 1315 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1316 case Expr::CXXUuidofExprClass: 1317 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1318 case Expr::LambdaExprClass: 1319 return EmitAggExprToLValue(E); 1320 1321 case Expr::ExprWithCleanupsClass: { 1322 const auto *cleanups = cast<ExprWithCleanups>(E); 1323 enterFullExpression(cleanups); 1324 RunCleanupsScope Scope(*this); 1325 LValue LV = EmitLValue(cleanups->getSubExpr()); 1326 if (LV.isSimple()) { 1327 // Defend against branches out of gnu statement expressions surrounded by 1328 // cleanups. 1329 llvm::Value *V = LV.getPointer(*this); 1330 Scope.ForceCleanup({&V}); 1331 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1332 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1333 } 1334 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1335 // bitfield lvalue or some other non-simple lvalue? 1336 return LV; 1337 } 1338 1339 case Expr::CXXDefaultArgExprClass: { 1340 auto *DAE = cast<CXXDefaultArgExpr>(E); 1341 CXXDefaultArgExprScope Scope(*this, DAE); 1342 return EmitLValue(DAE->getExpr()); 1343 } 1344 case Expr::CXXDefaultInitExprClass: { 1345 auto *DIE = cast<CXXDefaultInitExpr>(E); 1346 CXXDefaultInitExprScope Scope(*this, DIE); 1347 return EmitLValue(DIE->getExpr()); 1348 } 1349 case Expr::CXXTypeidExprClass: 1350 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1351 1352 case Expr::ObjCMessageExprClass: 1353 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1354 case Expr::ObjCIvarRefExprClass: 1355 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1356 case Expr::StmtExprClass: 1357 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1358 case Expr::UnaryOperatorClass: 1359 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1360 case Expr::ArraySubscriptExprClass: 1361 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1362 case Expr::OMPArraySectionExprClass: 1363 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1364 case Expr::ExtVectorElementExprClass: 1365 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1366 case Expr::MemberExprClass: 1367 return EmitMemberExpr(cast<MemberExpr>(E)); 1368 case Expr::CompoundLiteralExprClass: 1369 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1370 case Expr::ConditionalOperatorClass: 1371 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1372 case Expr::BinaryConditionalOperatorClass: 1373 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1374 case Expr::ChooseExprClass: 1375 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1376 case Expr::OpaqueValueExprClass: 1377 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1378 case Expr::SubstNonTypeTemplateParmExprClass: 1379 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1380 case Expr::ImplicitCastExprClass: 1381 case Expr::CStyleCastExprClass: 1382 case Expr::CXXFunctionalCastExprClass: 1383 case Expr::CXXStaticCastExprClass: 1384 case Expr::CXXDynamicCastExprClass: 1385 case Expr::CXXReinterpretCastExprClass: 1386 case Expr::CXXConstCastExprClass: 1387 case Expr::ObjCBridgedCastExprClass: 1388 return EmitCastLValue(cast<CastExpr>(E)); 1389 1390 case Expr::MaterializeTemporaryExprClass: 1391 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1392 1393 case Expr::CoawaitExprClass: 1394 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1395 case Expr::CoyieldExprClass: 1396 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1397 } 1398 } 1399 1400 /// Given an object of the given canonical type, can we safely copy a 1401 /// value out of it based on its initializer? 1402 static bool isConstantEmittableObjectType(QualType type) { 1403 assert(type.isCanonical()); 1404 assert(!type->isReferenceType()); 1405 1406 // Must be const-qualified but non-volatile. 1407 Qualifiers qs = type.getLocalQualifiers(); 1408 if (!qs.hasConst() || qs.hasVolatile()) return false; 1409 1410 // Otherwise, all object types satisfy this except C++ classes with 1411 // mutable subobjects or non-trivial copy/destroy behavior. 1412 if (const auto *RT = dyn_cast<RecordType>(type)) 1413 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1414 if (RD->hasMutableFields() || !RD->isTrivial()) 1415 return false; 1416 1417 return true; 1418 } 1419 1420 /// Can we constant-emit a load of a reference to a variable of the 1421 /// given type? This is different from predicates like 1422 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1423 /// in situations that don't necessarily satisfy the language's rules 1424 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1425 /// to do this with const float variables even if those variables 1426 /// aren't marked 'constexpr'. 1427 enum ConstantEmissionKind { 1428 CEK_None, 1429 CEK_AsReferenceOnly, 1430 CEK_AsValueOrReference, 1431 CEK_AsValueOnly 1432 }; 1433 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1434 type = type.getCanonicalType(); 1435 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1436 if (isConstantEmittableObjectType(ref->getPointeeType())) 1437 return CEK_AsValueOrReference; 1438 return CEK_AsReferenceOnly; 1439 } 1440 if (isConstantEmittableObjectType(type)) 1441 return CEK_AsValueOnly; 1442 return CEK_None; 1443 } 1444 1445 /// Try to emit a reference to the given value without producing it as 1446 /// an l-value. This is just an optimization, but it avoids us needing 1447 /// to emit global copies of variables if they're named without triggering 1448 /// a formal use in a context where we can't emit a direct reference to them, 1449 /// for instance if a block or lambda or a member of a local class uses a 1450 /// const int variable or constexpr variable from an enclosing function. 1451 CodeGenFunction::ConstantEmission 1452 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1453 ValueDecl *value = refExpr->getDecl(); 1454 1455 // The value needs to be an enum constant or a constant variable. 1456 ConstantEmissionKind CEK; 1457 if (isa<ParmVarDecl>(value)) { 1458 CEK = CEK_None; 1459 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1460 CEK = checkVarTypeForConstantEmission(var->getType()); 1461 } else if (isa<EnumConstantDecl>(value)) { 1462 CEK = CEK_AsValueOnly; 1463 } else { 1464 CEK = CEK_None; 1465 } 1466 if (CEK == CEK_None) return ConstantEmission(); 1467 1468 Expr::EvalResult result; 1469 bool resultIsReference; 1470 QualType resultType; 1471 1472 // It's best to evaluate all the way as an r-value if that's permitted. 1473 if (CEK != CEK_AsReferenceOnly && 1474 refExpr->EvaluateAsRValue(result, getContext())) { 1475 resultIsReference = false; 1476 resultType = refExpr->getType(); 1477 1478 // Otherwise, try to evaluate as an l-value. 1479 } else if (CEK != CEK_AsValueOnly && 1480 refExpr->EvaluateAsLValue(result, getContext())) { 1481 resultIsReference = true; 1482 resultType = value->getType(); 1483 1484 // Failure. 1485 } else { 1486 return ConstantEmission(); 1487 } 1488 1489 // In any case, if the initializer has side-effects, abandon ship. 1490 if (result.HasSideEffects) 1491 return ConstantEmission(); 1492 1493 // Emit as a constant. 1494 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1495 result.Val, resultType); 1496 1497 // Make sure we emit a debug reference to the global variable. 1498 // This should probably fire even for 1499 if (isa<VarDecl>(value)) { 1500 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1501 EmitDeclRefExprDbgValue(refExpr, result.Val); 1502 } else { 1503 assert(isa<EnumConstantDecl>(value)); 1504 EmitDeclRefExprDbgValue(refExpr, result.Val); 1505 } 1506 1507 // If we emitted a reference constant, we need to dereference that. 1508 if (resultIsReference) 1509 return ConstantEmission::forReference(C); 1510 1511 return ConstantEmission::forValue(C); 1512 } 1513 1514 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1515 const MemberExpr *ME) { 1516 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1517 // Try to emit static variable member expressions as DREs. 1518 return DeclRefExpr::Create( 1519 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1520 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1521 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1522 } 1523 return nullptr; 1524 } 1525 1526 CodeGenFunction::ConstantEmission 1527 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1528 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1529 return tryEmitAsConstant(DRE); 1530 return ConstantEmission(); 1531 } 1532 1533 llvm::Value *CodeGenFunction::emitScalarConstant( 1534 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1535 assert(Constant && "not a constant"); 1536 if (Constant.isReference()) 1537 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1538 E->getExprLoc()) 1539 .getScalarVal(); 1540 return Constant.getValue(); 1541 } 1542 1543 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1544 SourceLocation Loc) { 1545 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1546 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1547 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1548 } 1549 1550 static bool hasBooleanRepresentation(QualType Ty) { 1551 if (Ty->isBooleanType()) 1552 return true; 1553 1554 if (const EnumType *ET = Ty->getAs<EnumType>()) 1555 return ET->getDecl()->getIntegerType()->isBooleanType(); 1556 1557 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1558 return hasBooleanRepresentation(AT->getValueType()); 1559 1560 return false; 1561 } 1562 1563 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1564 llvm::APInt &Min, llvm::APInt &End, 1565 bool StrictEnums, bool IsBool) { 1566 const EnumType *ET = Ty->getAs<EnumType>(); 1567 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1568 ET && !ET->getDecl()->isFixed(); 1569 if (!IsBool && !IsRegularCPlusPlusEnum) 1570 return false; 1571 1572 if (IsBool) { 1573 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1574 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1575 } else { 1576 const EnumDecl *ED = ET->getDecl(); 1577 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1578 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1579 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1580 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1581 1582 if (NumNegativeBits) { 1583 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1584 assert(NumBits <= Bitwidth); 1585 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1586 Min = -End; 1587 } else { 1588 assert(NumPositiveBits <= Bitwidth); 1589 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1590 Min = llvm::APInt(Bitwidth, 0); 1591 } 1592 } 1593 return true; 1594 } 1595 1596 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1597 llvm::APInt Min, End; 1598 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1599 hasBooleanRepresentation(Ty))) 1600 return nullptr; 1601 1602 llvm::MDBuilder MDHelper(getLLVMContext()); 1603 return MDHelper.createRange(Min, End); 1604 } 1605 1606 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1607 SourceLocation Loc) { 1608 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1609 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1610 if (!HasBoolCheck && !HasEnumCheck) 1611 return false; 1612 1613 bool IsBool = hasBooleanRepresentation(Ty) || 1614 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1615 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1616 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1617 if (!NeedsBoolCheck && !NeedsEnumCheck) 1618 return false; 1619 1620 // Single-bit booleans don't need to be checked. Special-case this to avoid 1621 // a bit width mismatch when handling bitfield values. This is handled by 1622 // EmitFromMemory for the non-bitfield case. 1623 if (IsBool && 1624 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1625 return false; 1626 1627 llvm::APInt Min, End; 1628 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1629 return true; 1630 1631 auto &Ctx = getLLVMContext(); 1632 SanitizerScope SanScope(this); 1633 llvm::Value *Check; 1634 --End; 1635 if (!Min) { 1636 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1637 } else { 1638 llvm::Value *Upper = 1639 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1640 llvm::Value *Lower = 1641 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1642 Check = Builder.CreateAnd(Upper, Lower); 1643 } 1644 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1645 EmitCheckTypeDescriptor(Ty)}; 1646 SanitizerMask Kind = 1647 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1648 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1649 StaticArgs, EmitCheckValue(Value)); 1650 return true; 1651 } 1652 1653 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1654 QualType Ty, 1655 SourceLocation Loc, 1656 LValueBaseInfo BaseInfo, 1657 TBAAAccessInfo TBAAInfo, 1658 bool isNontemporal) { 1659 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1660 // For better performance, handle vector loads differently. 1661 if (Ty->isVectorType()) { 1662 const llvm::Type *EltTy = Addr.getElementType(); 1663 1664 const auto *VTy = cast<llvm::VectorType>(EltTy); 1665 1666 // Handle vectors of size 3 like size 4 for better performance. 1667 if (VTy->getNumElements() == 3) { 1668 1669 // Bitcast to vec4 type. 1670 llvm::VectorType *vec4Ty = 1671 llvm::VectorType::get(VTy->getElementType(), 4); 1672 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1673 // Now load value. 1674 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1675 1676 // Shuffle vector to get vec3. 1677 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1678 ArrayRef<int>{0, 1, 2}, "extractVec"); 1679 return EmitFromMemory(V, Ty); 1680 } 1681 } 1682 } 1683 1684 // Atomic operations have to be done on integral types. 1685 LValue AtomicLValue = 1686 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1687 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1688 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1689 } 1690 1691 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1692 if (isNontemporal) { 1693 llvm::MDNode *Node = llvm::MDNode::get( 1694 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1695 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1696 } 1697 1698 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1699 1700 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1701 // In order to prevent the optimizer from throwing away the check, don't 1702 // attach range metadata to the load. 1703 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1704 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1705 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1706 1707 return EmitFromMemory(Load, Ty); 1708 } 1709 1710 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1711 // Bool has a different representation in memory than in registers. 1712 if (hasBooleanRepresentation(Ty)) { 1713 // This should really always be an i1, but sometimes it's already 1714 // an i8, and it's awkward to track those cases down. 1715 if (Value->getType()->isIntegerTy(1)) 1716 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1717 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1718 "wrong value rep of bool"); 1719 } 1720 1721 return Value; 1722 } 1723 1724 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1725 // Bool has a different representation in memory than in registers. 1726 if (hasBooleanRepresentation(Ty)) { 1727 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1728 "wrong value rep of bool"); 1729 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1730 } 1731 1732 return Value; 1733 } 1734 1735 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1736 bool Volatile, QualType Ty, 1737 LValueBaseInfo BaseInfo, 1738 TBAAAccessInfo TBAAInfo, 1739 bool isInit, bool isNontemporal) { 1740 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1741 // Handle vectors differently to get better performance. 1742 if (Ty->isVectorType()) { 1743 llvm::Type *SrcTy = Value->getType(); 1744 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1745 // Handle vec3 special. 1746 if (VecTy && VecTy->getNumElements() == 3) { 1747 // Our source is a vec3, do a shuffle vector to make it a vec4. 1748 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1749 Builder.getInt32(2), 1750 llvm::UndefValue::get(Builder.getInt32Ty())}; 1751 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1752 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1753 MaskV, "extractVec"); 1754 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1755 } 1756 if (Addr.getElementType() != SrcTy) { 1757 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1758 } 1759 } 1760 } 1761 1762 Value = EmitToMemory(Value, Ty); 1763 1764 LValue AtomicLValue = 1765 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1766 if (Ty->isAtomicType() || 1767 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1768 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1769 return; 1770 } 1771 1772 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1773 if (isNontemporal) { 1774 llvm::MDNode *Node = 1775 llvm::MDNode::get(Store->getContext(), 1776 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1777 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1778 } 1779 1780 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1781 } 1782 1783 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1784 bool isInit) { 1785 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1786 lvalue.getType(), lvalue.getBaseInfo(), 1787 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1788 } 1789 1790 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1791 /// method emits the address of the lvalue, then loads the result as an rvalue, 1792 /// returning the rvalue. 1793 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1794 if (LV.isObjCWeak()) { 1795 // load of a __weak object. 1796 Address AddrWeakObj = LV.getAddress(*this); 1797 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1798 AddrWeakObj)); 1799 } 1800 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1801 // In MRC mode, we do a load+autorelease. 1802 if (!getLangOpts().ObjCAutoRefCount) { 1803 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1804 } 1805 1806 // In ARC mode, we load retained and then consume the value. 1807 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1808 Object = EmitObjCConsumeObject(LV.getType(), Object); 1809 return RValue::get(Object); 1810 } 1811 1812 if (LV.isSimple()) { 1813 assert(!LV.getType()->isFunctionType()); 1814 1815 // Everything needs a load. 1816 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1817 } 1818 1819 if (LV.isVectorElt()) { 1820 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1821 LV.isVolatileQualified()); 1822 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1823 "vecext")); 1824 } 1825 1826 // If this is a reference to a subset of the elements of a vector, either 1827 // shuffle the input or extract/insert them as appropriate. 1828 if (LV.isExtVectorElt()) 1829 return EmitLoadOfExtVectorElementLValue(LV); 1830 1831 // Global Register variables always invoke intrinsics 1832 if (LV.isGlobalReg()) 1833 return EmitLoadOfGlobalRegLValue(LV); 1834 1835 assert(LV.isBitField() && "Unknown LValue type!"); 1836 return EmitLoadOfBitfieldLValue(LV, Loc); 1837 } 1838 1839 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1840 SourceLocation Loc) { 1841 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1842 1843 // Get the output type. 1844 llvm::Type *ResLTy = ConvertType(LV.getType()); 1845 1846 Address Ptr = LV.getBitFieldAddress(); 1847 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1848 1849 if (Info.IsSigned) { 1850 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1851 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1852 if (HighBits) 1853 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1854 if (Info.Offset + HighBits) 1855 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1856 } else { 1857 if (Info.Offset) 1858 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1859 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1860 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1861 Info.Size), 1862 "bf.clear"); 1863 } 1864 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1865 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1866 return RValue::get(Val); 1867 } 1868 1869 // If this is a reference to a subset of the elements of a vector, create an 1870 // appropriate shufflevector. 1871 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1872 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1873 LV.isVolatileQualified()); 1874 1875 const llvm::Constant *Elts = LV.getExtVectorElts(); 1876 1877 // If the result of the expression is a non-vector type, we must be extracting 1878 // a single element. Just codegen as an extractelement. 1879 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1880 if (!ExprVT) { 1881 unsigned InIdx = getAccessedFieldNo(0, Elts); 1882 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1883 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1884 } 1885 1886 // Always use shuffle vector to try to retain the original program structure 1887 unsigned NumResultElts = ExprVT->getNumElements(); 1888 1889 SmallVector<llvm::Constant*, 4> Mask; 1890 for (unsigned i = 0; i != NumResultElts; ++i) 1891 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1892 1893 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1894 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1895 MaskV); 1896 return RValue::get(Vec); 1897 } 1898 1899 /// Generates lvalue for partial ext_vector access. 1900 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1901 Address VectorAddress = LV.getExtVectorAddress(); 1902 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 1903 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1904 1905 Address CastToPointerElement = 1906 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1907 "conv.ptr.element"); 1908 1909 const llvm::Constant *Elts = LV.getExtVectorElts(); 1910 unsigned ix = getAccessedFieldNo(0, Elts); 1911 1912 Address VectorBasePtrPlusIx = 1913 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1914 "vector.elt"); 1915 1916 return VectorBasePtrPlusIx; 1917 } 1918 1919 /// Load of global gamed gegisters are always calls to intrinsics. 1920 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1921 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1922 "Bad type for register variable"); 1923 llvm::MDNode *RegName = cast<llvm::MDNode>( 1924 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1925 1926 // We accept integer and pointer types only 1927 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1928 llvm::Type *Ty = OrigTy; 1929 if (OrigTy->isPointerTy()) 1930 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1931 llvm::Type *Types[] = { Ty }; 1932 1933 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1934 llvm::Value *Call = Builder.CreateCall( 1935 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1936 if (OrigTy->isPointerTy()) 1937 Call = Builder.CreateIntToPtr(Call, OrigTy); 1938 return RValue::get(Call); 1939 } 1940 1941 1942 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1943 /// lvalue, where both are guaranteed to the have the same type, and that type 1944 /// is 'Ty'. 1945 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1946 bool isInit) { 1947 if (!Dst.isSimple()) { 1948 if (Dst.isVectorElt()) { 1949 // Read/modify/write the vector, inserting the new element. 1950 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1951 Dst.isVolatileQualified()); 1952 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1953 Dst.getVectorIdx(), "vecins"); 1954 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1955 Dst.isVolatileQualified()); 1956 return; 1957 } 1958 1959 // If this is an update of extended vector elements, insert them as 1960 // appropriate. 1961 if (Dst.isExtVectorElt()) 1962 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1963 1964 if (Dst.isGlobalReg()) 1965 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1966 1967 assert(Dst.isBitField() && "Unknown LValue type"); 1968 return EmitStoreThroughBitfieldLValue(Src, Dst); 1969 } 1970 1971 // There's special magic for assigning into an ARC-qualified l-value. 1972 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1973 switch (Lifetime) { 1974 case Qualifiers::OCL_None: 1975 llvm_unreachable("present but none"); 1976 1977 case Qualifiers::OCL_ExplicitNone: 1978 // nothing special 1979 break; 1980 1981 case Qualifiers::OCL_Strong: 1982 if (isInit) { 1983 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1984 break; 1985 } 1986 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1987 return; 1988 1989 case Qualifiers::OCL_Weak: 1990 if (isInit) 1991 // Initialize and then skip the primitive store. 1992 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 1993 else 1994 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 1995 /*ignore*/ true); 1996 return; 1997 1998 case Qualifiers::OCL_Autoreleasing: 1999 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 2000 Src.getScalarVal())); 2001 // fall into the normal path 2002 break; 2003 } 2004 } 2005 2006 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 2007 // load of a __weak object. 2008 Address LvalueDst = Dst.getAddress(*this); 2009 llvm::Value *src = Src.getScalarVal(); 2010 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2011 return; 2012 } 2013 2014 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2015 // load of a __strong object. 2016 Address LvalueDst = Dst.getAddress(*this); 2017 llvm::Value *src = Src.getScalarVal(); 2018 if (Dst.isObjCIvar()) { 2019 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2020 llvm::Type *ResultType = IntPtrTy; 2021 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2022 llvm::Value *RHS = dst.getPointer(); 2023 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2024 llvm::Value *LHS = 2025 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2026 "sub.ptr.lhs.cast"); 2027 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2028 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2029 BytesBetween); 2030 } else if (Dst.isGlobalObjCRef()) { 2031 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2032 Dst.isThreadLocalRef()); 2033 } 2034 else 2035 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2036 return; 2037 } 2038 2039 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2040 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2041 } 2042 2043 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2044 llvm::Value **Result) { 2045 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2046 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2047 Address Ptr = Dst.getBitFieldAddress(); 2048 2049 // Get the source value, truncated to the width of the bit-field. 2050 llvm::Value *SrcVal = Src.getScalarVal(); 2051 2052 // Cast the source to the storage type and shift it into place. 2053 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2054 /*isSigned=*/false); 2055 llvm::Value *MaskedVal = SrcVal; 2056 2057 // See if there are other bits in the bitfield's storage we'll need to load 2058 // and mask together with source before storing. 2059 if (Info.StorageSize != Info.Size) { 2060 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2061 llvm::Value *Val = 2062 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2063 2064 // Mask the source value as needed. 2065 if (!hasBooleanRepresentation(Dst.getType())) 2066 SrcVal = Builder.CreateAnd(SrcVal, 2067 llvm::APInt::getLowBitsSet(Info.StorageSize, 2068 Info.Size), 2069 "bf.value"); 2070 MaskedVal = SrcVal; 2071 if (Info.Offset) 2072 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2073 2074 // Mask out the original value. 2075 Val = Builder.CreateAnd(Val, 2076 ~llvm::APInt::getBitsSet(Info.StorageSize, 2077 Info.Offset, 2078 Info.Offset + Info.Size), 2079 "bf.clear"); 2080 2081 // Or together the unchanged values and the source value. 2082 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2083 } else { 2084 assert(Info.Offset == 0); 2085 // According to the AACPS: 2086 // When a volatile bit-field is written, and its container does not overlap 2087 // with any non-bit-field member, its container must be read exactly once and 2088 // written exactly once using the access width appropriate to the type of the 2089 // container. The two accesses are not atomic. 2090 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2091 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2092 Builder.CreateLoad(Ptr, true, "bf.load"); 2093 } 2094 2095 // Write the new value back out. 2096 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2097 2098 // Return the new value of the bit-field, if requested. 2099 if (Result) { 2100 llvm::Value *ResultVal = MaskedVal; 2101 2102 // Sign extend the value if needed. 2103 if (Info.IsSigned) { 2104 assert(Info.Size <= Info.StorageSize); 2105 unsigned HighBits = Info.StorageSize - Info.Size; 2106 if (HighBits) { 2107 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2108 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2109 } 2110 } 2111 2112 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2113 "bf.result.cast"); 2114 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2115 } 2116 } 2117 2118 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2119 LValue Dst) { 2120 // This access turns into a read/modify/write of the vector. Load the input 2121 // value now. 2122 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2123 Dst.isVolatileQualified()); 2124 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2125 2126 llvm::Value *SrcVal = Src.getScalarVal(); 2127 2128 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2129 unsigned NumSrcElts = VTy->getNumElements(); 2130 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2131 if (NumDstElts == NumSrcElts) { 2132 // Use shuffle vector is the src and destination are the same number of 2133 // elements and restore the vector mask since it is on the side it will be 2134 // stored. 2135 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2136 for (unsigned i = 0; i != NumSrcElts; ++i) 2137 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2138 2139 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2140 Vec = Builder.CreateShuffleVector(SrcVal, 2141 llvm::UndefValue::get(Vec->getType()), 2142 MaskV); 2143 } else if (NumDstElts > NumSrcElts) { 2144 // Extended the source vector to the same length and then shuffle it 2145 // into the destination. 2146 // FIXME: since we're shuffling with undef, can we just use the indices 2147 // into that? This could be simpler. 2148 SmallVector<llvm::Constant*, 4> ExtMask; 2149 for (unsigned i = 0; i != NumSrcElts; ++i) 2150 ExtMask.push_back(Builder.getInt32(i)); 2151 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2152 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2153 llvm::Value *ExtSrcVal = 2154 Builder.CreateShuffleVector(SrcVal, 2155 llvm::UndefValue::get(SrcVal->getType()), 2156 ExtMaskV); 2157 // build identity 2158 SmallVector<llvm::Constant*, 4> Mask; 2159 for (unsigned i = 0; i != NumDstElts; ++i) 2160 Mask.push_back(Builder.getInt32(i)); 2161 2162 // When the vector size is odd and .odd or .hi is used, the last element 2163 // of the Elts constant array will be one past the size of the vector. 2164 // Ignore the last element here, if it is greater than the mask size. 2165 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2166 NumSrcElts--; 2167 2168 // modify when what gets shuffled in 2169 for (unsigned i = 0; i != NumSrcElts; ++i) 2170 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2171 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2172 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2173 } else { 2174 // We should never shorten the vector 2175 llvm_unreachable("unexpected shorten vector length"); 2176 } 2177 } else { 2178 // If the Src is a scalar (not a vector) it must be updating one element. 2179 unsigned InIdx = getAccessedFieldNo(0, Elts); 2180 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2181 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2182 } 2183 2184 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2185 Dst.isVolatileQualified()); 2186 } 2187 2188 /// Store of global named registers are always calls to intrinsics. 2189 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2190 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2191 "Bad type for register variable"); 2192 llvm::MDNode *RegName = cast<llvm::MDNode>( 2193 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2194 assert(RegName && "Register LValue is not metadata"); 2195 2196 // We accept integer and pointer types only 2197 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2198 llvm::Type *Ty = OrigTy; 2199 if (OrigTy->isPointerTy()) 2200 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2201 llvm::Type *Types[] = { Ty }; 2202 2203 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2204 llvm::Value *Value = Src.getScalarVal(); 2205 if (OrigTy->isPointerTy()) 2206 Value = Builder.CreatePtrToInt(Value, Ty); 2207 Builder.CreateCall( 2208 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2209 } 2210 2211 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2212 // generating write-barries API. It is currently a global, ivar, 2213 // or neither. 2214 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2215 LValue &LV, 2216 bool IsMemberAccess=false) { 2217 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2218 return; 2219 2220 if (isa<ObjCIvarRefExpr>(E)) { 2221 QualType ExpTy = E->getType(); 2222 if (IsMemberAccess && ExpTy->isPointerType()) { 2223 // If ivar is a structure pointer, assigning to field of 2224 // this struct follows gcc's behavior and makes it a non-ivar 2225 // writer-barrier conservatively. 2226 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2227 if (ExpTy->isRecordType()) { 2228 LV.setObjCIvar(false); 2229 return; 2230 } 2231 } 2232 LV.setObjCIvar(true); 2233 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2234 LV.setBaseIvarExp(Exp->getBase()); 2235 LV.setObjCArray(E->getType()->isArrayType()); 2236 return; 2237 } 2238 2239 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2240 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2241 if (VD->hasGlobalStorage()) { 2242 LV.setGlobalObjCRef(true); 2243 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2244 } 2245 } 2246 LV.setObjCArray(E->getType()->isArrayType()); 2247 return; 2248 } 2249 2250 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2251 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2252 return; 2253 } 2254 2255 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2256 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2257 if (LV.isObjCIvar()) { 2258 // If cast is to a structure pointer, follow gcc's behavior and make it 2259 // a non-ivar write-barrier. 2260 QualType ExpTy = E->getType(); 2261 if (ExpTy->isPointerType()) 2262 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2263 if (ExpTy->isRecordType()) 2264 LV.setObjCIvar(false); 2265 } 2266 return; 2267 } 2268 2269 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2270 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2271 return; 2272 } 2273 2274 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2275 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2276 return; 2277 } 2278 2279 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2280 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2281 return; 2282 } 2283 2284 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2285 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2286 return; 2287 } 2288 2289 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2290 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2291 if (LV.isObjCIvar() && !LV.isObjCArray()) 2292 // Using array syntax to assigning to what an ivar points to is not 2293 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2294 LV.setObjCIvar(false); 2295 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2296 // Using array syntax to assigning to what global points to is not 2297 // same as assigning to the global itself. {id *G;} G[i] = 0; 2298 LV.setGlobalObjCRef(false); 2299 return; 2300 } 2301 2302 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2303 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2304 // We don't know if member is an 'ivar', but this flag is looked at 2305 // only in the context of LV.isObjCIvar(). 2306 LV.setObjCArray(E->getType()->isArrayType()); 2307 return; 2308 } 2309 } 2310 2311 static llvm::Value * 2312 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2313 llvm::Value *V, llvm::Type *IRType, 2314 StringRef Name = StringRef()) { 2315 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2316 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2317 } 2318 2319 static LValue EmitThreadPrivateVarDeclLValue( 2320 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2321 llvm::Type *RealVarTy, SourceLocation Loc) { 2322 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2323 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2324 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2325 } 2326 2327 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2328 const VarDecl *VD, QualType T) { 2329 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2330 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2331 // Return an invalid address if variable is MT_To and unified 2332 // memory is not enabled. For all other cases: MT_Link and 2333 // MT_To with unified memory, return a valid address. 2334 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2335 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2336 return Address::invalid(); 2337 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2338 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2339 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2340 "Expected link clause OR to clause with unified memory enabled."); 2341 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2342 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2343 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2344 } 2345 2346 Address 2347 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2348 LValueBaseInfo *PointeeBaseInfo, 2349 TBAAAccessInfo *PointeeTBAAInfo) { 2350 llvm::LoadInst *Load = 2351 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2352 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2353 2354 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2355 PointeeBaseInfo, PointeeTBAAInfo, 2356 /* forPointeeType= */ true); 2357 return Address(Load, Align); 2358 } 2359 2360 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2361 LValueBaseInfo PointeeBaseInfo; 2362 TBAAAccessInfo PointeeTBAAInfo; 2363 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2364 &PointeeTBAAInfo); 2365 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2366 PointeeBaseInfo, PointeeTBAAInfo); 2367 } 2368 2369 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2370 const PointerType *PtrTy, 2371 LValueBaseInfo *BaseInfo, 2372 TBAAAccessInfo *TBAAInfo) { 2373 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2374 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2375 BaseInfo, TBAAInfo, 2376 /*forPointeeType=*/true)); 2377 } 2378 2379 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2380 const PointerType *PtrTy) { 2381 LValueBaseInfo BaseInfo; 2382 TBAAAccessInfo TBAAInfo; 2383 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2384 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2385 } 2386 2387 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2388 const Expr *E, const VarDecl *VD) { 2389 QualType T = E->getType(); 2390 2391 // If it's thread_local, emit a call to its wrapper function instead. 2392 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2393 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2394 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2395 // Check if the variable is marked as declare target with link clause in 2396 // device codegen. 2397 if (CGF.getLangOpts().OpenMPIsDevice) { 2398 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2399 if (Addr.isValid()) 2400 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2401 } 2402 2403 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2404 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2405 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2406 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2407 Address Addr(V, Alignment); 2408 // Emit reference to the private copy of the variable if it is an OpenMP 2409 // threadprivate variable. 2410 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2411 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2412 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2413 E->getExprLoc()); 2414 } 2415 LValue LV = VD->getType()->isReferenceType() ? 2416 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2417 AlignmentSource::Decl) : 2418 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2419 setObjCGCLValueClass(CGF.getContext(), E, LV); 2420 return LV; 2421 } 2422 2423 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2424 GlobalDecl GD) { 2425 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2426 if (FD->hasAttr<WeakRefAttr>()) { 2427 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2428 return aliasee.getPointer(); 2429 } 2430 2431 llvm::Constant *V = CGM.GetAddrOfFunction(GD); 2432 if (!FD->hasPrototype()) { 2433 if (const FunctionProtoType *Proto = 2434 FD->getType()->getAs<FunctionProtoType>()) { 2435 // Ugly case: for a K&R-style definition, the type of the definition 2436 // isn't the same as the type of a use. Correct for this with a 2437 // bitcast. 2438 QualType NoProtoType = 2439 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2440 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2441 V = llvm::ConstantExpr::getBitCast(V, 2442 CGM.getTypes().ConvertType(NoProtoType)); 2443 } 2444 } 2445 return V; 2446 } 2447 2448 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, 2449 GlobalDecl GD) { 2450 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2451 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD); 2452 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2453 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2454 AlignmentSource::Decl); 2455 } 2456 2457 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2458 llvm::Value *ThisValue) { 2459 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2460 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2461 return CGF.EmitLValueForField(LV, FD); 2462 } 2463 2464 /// Named Registers are named metadata pointing to the register name 2465 /// which will be read from/written to as an argument to the intrinsic 2466 /// @llvm.read/write_register. 2467 /// So far, only the name is being passed down, but other options such as 2468 /// register type, allocation type or even optimization options could be 2469 /// passed down via the metadata node. 2470 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2471 SmallString<64> Name("llvm.named.register."); 2472 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2473 assert(Asm->getLabel().size() < 64-Name.size() && 2474 "Register name too big"); 2475 Name.append(Asm->getLabel()); 2476 llvm::NamedMDNode *M = 2477 CGM.getModule().getOrInsertNamedMetadata(Name); 2478 if (M->getNumOperands() == 0) { 2479 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2480 Asm->getLabel()); 2481 llvm::Metadata *Ops[] = {Str}; 2482 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2483 } 2484 2485 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2486 2487 llvm::Value *Ptr = 2488 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2489 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2490 } 2491 2492 /// Determine whether we can emit a reference to \p VD from the current 2493 /// context, despite not necessarily having seen an odr-use of the variable in 2494 /// this context. 2495 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2496 const DeclRefExpr *E, 2497 const VarDecl *VD, 2498 bool IsConstant) { 2499 // For a variable declared in an enclosing scope, do not emit a spurious 2500 // reference even if we have a capture, as that will emit an unwarranted 2501 // reference to our capture state, and will likely generate worse code than 2502 // emitting a local copy. 2503 if (E->refersToEnclosingVariableOrCapture()) 2504 return false; 2505 2506 // For a local declaration declared in this function, we can always reference 2507 // it even if we don't have an odr-use. 2508 if (VD->hasLocalStorage()) { 2509 return VD->getDeclContext() == 2510 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2511 } 2512 2513 // For a global declaration, we can emit a reference to it if we know 2514 // for sure that we are able to emit a definition of it. 2515 VD = VD->getDefinition(CGF.getContext()); 2516 if (!VD) 2517 return false; 2518 2519 // Don't emit a spurious reference if it might be to a variable that only 2520 // exists on a different device / target. 2521 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2522 // cross-target reference. 2523 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2524 CGF.getLangOpts().OpenCL) { 2525 return false; 2526 } 2527 2528 // We can emit a spurious reference only if the linkage implies that we'll 2529 // be emitting a non-interposable symbol that will be retained until link 2530 // time. 2531 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2532 case llvm::GlobalValue::ExternalLinkage: 2533 case llvm::GlobalValue::LinkOnceODRLinkage: 2534 case llvm::GlobalValue::WeakODRLinkage: 2535 case llvm::GlobalValue::InternalLinkage: 2536 case llvm::GlobalValue::PrivateLinkage: 2537 return true; 2538 default: 2539 return false; 2540 } 2541 } 2542 2543 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2544 const NamedDecl *ND = E->getDecl(); 2545 QualType T = E->getType(); 2546 2547 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2548 "should not emit an unevaluated operand"); 2549 2550 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2551 // Global Named registers access via intrinsics only 2552 if (VD->getStorageClass() == SC_Register && 2553 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2554 return EmitGlobalNamedRegister(VD, CGM); 2555 2556 // If this DeclRefExpr does not constitute an odr-use of the variable, 2557 // we're not permitted to emit a reference to it in general, and it might 2558 // not be captured if capture would be necessary for a use. Emit the 2559 // constant value directly instead. 2560 if (E->isNonOdrUse() == NOUR_Constant && 2561 (VD->getType()->isReferenceType() || 2562 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2563 VD->getAnyInitializer(VD); 2564 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2565 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2566 assert(Val && "failed to emit constant expression"); 2567 2568 Address Addr = Address::invalid(); 2569 if (!VD->getType()->isReferenceType()) { 2570 // Spill the constant value to a global. 2571 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2572 getContext().getDeclAlign(VD)); 2573 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2574 auto *PTy = llvm::PointerType::get( 2575 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2576 if (PTy != Addr.getType()) 2577 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); 2578 } else { 2579 // Should we be using the alignment of the constant pointer we emitted? 2580 CharUnits Alignment = 2581 getNaturalTypeAlignment(E->getType(), 2582 /* BaseInfo= */ nullptr, 2583 /* TBAAInfo= */ nullptr, 2584 /* forPointeeType= */ true); 2585 Addr = Address(Val, Alignment); 2586 } 2587 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2588 } 2589 2590 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2591 2592 // Check for captured variables. 2593 if (E->refersToEnclosingVariableOrCapture()) { 2594 VD = VD->getCanonicalDecl(); 2595 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2596 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2597 if (CapturedStmtInfo) { 2598 auto I = LocalDeclMap.find(VD); 2599 if (I != LocalDeclMap.end()) { 2600 LValue CapLVal; 2601 if (VD->getType()->isReferenceType()) 2602 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2603 AlignmentSource::Decl); 2604 else 2605 CapLVal = MakeAddrLValue(I->second, T); 2606 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2607 // in simd context. 2608 if (getLangOpts().OpenMP && 2609 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2610 CapLVal.setNontemporal(/*Value=*/true); 2611 return CapLVal; 2612 } 2613 LValue CapLVal = 2614 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2615 CapturedStmtInfo->getContextValue()); 2616 CapLVal = MakeAddrLValue( 2617 Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)), 2618 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2619 CapLVal.getTBAAInfo()); 2620 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2621 // in simd context. 2622 if (getLangOpts().OpenMP && 2623 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2624 CapLVal.setNontemporal(/*Value=*/true); 2625 return CapLVal; 2626 } 2627 2628 assert(isa<BlockDecl>(CurCodeDecl)); 2629 Address addr = GetAddrOfBlockDecl(VD); 2630 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2631 } 2632 } 2633 2634 // FIXME: We should be able to assert this for FunctionDecls as well! 2635 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2636 // those with a valid source location. 2637 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2638 !E->getLocation().isValid()) && 2639 "Should not use decl without marking it used!"); 2640 2641 if (ND->hasAttr<WeakRefAttr>()) { 2642 const auto *VD = cast<ValueDecl>(ND); 2643 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2644 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2645 } 2646 2647 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2648 // Check if this is a global variable. 2649 if (VD->hasLinkage() || VD->isStaticDataMember()) 2650 return EmitGlobalVarDeclLValue(*this, E, VD); 2651 2652 Address addr = Address::invalid(); 2653 2654 // The variable should generally be present in the local decl map. 2655 auto iter = LocalDeclMap.find(VD); 2656 if (iter != LocalDeclMap.end()) { 2657 addr = iter->second; 2658 2659 // Otherwise, it might be static local we haven't emitted yet for 2660 // some reason; most likely, because it's in an outer function. 2661 } else if (VD->isStaticLocal()) { 2662 addr = Address(CGM.getOrCreateStaticVarDecl( 2663 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)), 2664 getContext().getDeclAlign(VD)); 2665 2666 // No other cases for now. 2667 } else { 2668 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2669 } 2670 2671 2672 // Check for OpenMP threadprivate variables. 2673 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2674 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2675 return EmitThreadPrivateVarDeclLValue( 2676 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2677 E->getExprLoc()); 2678 } 2679 2680 // Drill into block byref variables. 2681 bool isBlockByref = VD->isEscapingByref(); 2682 if (isBlockByref) { 2683 addr = emitBlockByrefAddress(addr, VD); 2684 } 2685 2686 // Drill into reference types. 2687 LValue LV = VD->getType()->isReferenceType() ? 2688 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2689 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2690 2691 bool isLocalStorage = VD->hasLocalStorage(); 2692 2693 bool NonGCable = isLocalStorage && 2694 !VD->getType()->isReferenceType() && 2695 !isBlockByref; 2696 if (NonGCable) { 2697 LV.getQuals().removeObjCGCAttr(); 2698 LV.setNonGC(true); 2699 } 2700 2701 bool isImpreciseLifetime = 2702 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2703 if (isImpreciseLifetime) 2704 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2705 setObjCGCLValueClass(getContext(), E, LV); 2706 return LV; 2707 } 2708 2709 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2710 return EmitFunctionDeclLValue(*this, E, FD); 2711 2712 // FIXME: While we're emitting a binding from an enclosing scope, all other 2713 // DeclRefExprs we see should be implicitly treated as if they also refer to 2714 // an enclosing scope. 2715 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2716 return EmitLValue(BD->getBinding()); 2717 2718 llvm_unreachable("Unhandled DeclRefExpr"); 2719 } 2720 2721 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2722 // __extension__ doesn't affect lvalue-ness. 2723 if (E->getOpcode() == UO_Extension) 2724 return EmitLValue(E->getSubExpr()); 2725 2726 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2727 switch (E->getOpcode()) { 2728 default: llvm_unreachable("Unknown unary operator lvalue!"); 2729 case UO_Deref: { 2730 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2731 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2732 2733 LValueBaseInfo BaseInfo; 2734 TBAAAccessInfo TBAAInfo; 2735 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2736 &TBAAInfo); 2737 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2738 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2739 2740 // We should not generate __weak write barrier on indirect reference 2741 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2742 // But, we continue to generate __strong write barrier on indirect write 2743 // into a pointer to object. 2744 if (getLangOpts().ObjC && 2745 getLangOpts().getGC() != LangOptions::NonGC && 2746 LV.isObjCWeak()) 2747 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2748 return LV; 2749 } 2750 case UO_Real: 2751 case UO_Imag: { 2752 LValue LV = EmitLValue(E->getSubExpr()); 2753 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2754 2755 // __real is valid on scalars. This is a faster way of testing that. 2756 // __imag can only produce an rvalue on scalars. 2757 if (E->getOpcode() == UO_Real && 2758 !LV.getAddress(*this).getElementType()->isStructTy()) { 2759 assert(E->getSubExpr()->getType()->isArithmeticType()); 2760 return LV; 2761 } 2762 2763 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2764 2765 Address Component = 2766 (E->getOpcode() == UO_Real 2767 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2768 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2769 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2770 CGM.getTBAAInfoForSubobject(LV, T)); 2771 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2772 return ElemLV; 2773 } 2774 case UO_PreInc: 2775 case UO_PreDec: { 2776 LValue LV = EmitLValue(E->getSubExpr()); 2777 bool isInc = E->getOpcode() == UO_PreInc; 2778 2779 if (E->getType()->isAnyComplexType()) 2780 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2781 else 2782 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2783 return LV; 2784 } 2785 } 2786 } 2787 2788 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2789 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2790 E->getType(), AlignmentSource::Decl); 2791 } 2792 2793 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2794 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2795 E->getType(), AlignmentSource::Decl); 2796 } 2797 2798 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2799 auto SL = E->getFunctionName(); 2800 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2801 StringRef FnName = CurFn->getName(); 2802 if (FnName.startswith("\01")) 2803 FnName = FnName.substr(1); 2804 StringRef NameItems[] = { 2805 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2806 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2807 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2808 std::string Name = std::string(SL->getString()); 2809 if (!Name.empty()) { 2810 unsigned Discriminator = 2811 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2812 if (Discriminator) 2813 Name += "_" + Twine(Discriminator + 1).str(); 2814 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2815 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2816 } else { 2817 auto C = 2818 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 2819 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2820 } 2821 } 2822 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2823 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2824 } 2825 2826 /// Emit a type description suitable for use by a runtime sanitizer library. The 2827 /// format of a type descriptor is 2828 /// 2829 /// \code 2830 /// { i16 TypeKind, i16 TypeInfo } 2831 /// \endcode 2832 /// 2833 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2834 /// integer, 1 for a floating point value, and -1 for anything else. 2835 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2836 // Only emit each type's descriptor once. 2837 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2838 return C; 2839 2840 uint16_t TypeKind = -1; 2841 uint16_t TypeInfo = 0; 2842 2843 if (T->isIntegerType()) { 2844 TypeKind = 0; 2845 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2846 (T->isSignedIntegerType() ? 1 : 0); 2847 } else if (T->isFloatingType()) { 2848 TypeKind = 1; 2849 TypeInfo = getContext().getTypeSize(T); 2850 } 2851 2852 // Format the type name as if for a diagnostic, including quotes and 2853 // optionally an 'aka'. 2854 SmallString<32> Buffer; 2855 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2856 (intptr_t)T.getAsOpaquePtr(), 2857 StringRef(), StringRef(), None, Buffer, 2858 None); 2859 2860 llvm::Constant *Components[] = { 2861 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2862 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2863 }; 2864 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2865 2866 auto *GV = new llvm::GlobalVariable( 2867 CGM.getModule(), Descriptor->getType(), 2868 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2869 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2870 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2871 2872 // Remember the descriptor for this type. 2873 CGM.setTypeDescriptorInMap(T, GV); 2874 2875 return GV; 2876 } 2877 2878 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2879 llvm::Type *TargetTy = IntPtrTy; 2880 2881 if (V->getType() == TargetTy) 2882 return V; 2883 2884 // Floating-point types which fit into intptr_t are bitcast to integers 2885 // and then passed directly (after zero-extension, if necessary). 2886 if (V->getType()->isFloatingPointTy()) { 2887 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2888 if (Bits <= TargetTy->getIntegerBitWidth()) 2889 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2890 Bits)); 2891 } 2892 2893 // Integers which fit in intptr_t are zero-extended and passed directly. 2894 if (V->getType()->isIntegerTy() && 2895 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2896 return Builder.CreateZExt(V, TargetTy); 2897 2898 // Pointers are passed directly, everything else is passed by address. 2899 if (!V->getType()->isPointerTy()) { 2900 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2901 Builder.CreateStore(V, Ptr); 2902 V = Ptr.getPointer(); 2903 } 2904 return Builder.CreatePtrToInt(V, TargetTy); 2905 } 2906 2907 /// Emit a representation of a SourceLocation for passing to a handler 2908 /// in a sanitizer runtime library. The format for this data is: 2909 /// \code 2910 /// struct SourceLocation { 2911 /// const char *Filename; 2912 /// int32_t Line, Column; 2913 /// }; 2914 /// \endcode 2915 /// For an invalid SourceLocation, the Filename pointer is null. 2916 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2917 llvm::Constant *Filename; 2918 int Line, Column; 2919 2920 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2921 if (PLoc.isValid()) { 2922 StringRef FilenameString = PLoc.getFilename(); 2923 2924 int PathComponentsToStrip = 2925 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2926 if (PathComponentsToStrip < 0) { 2927 assert(PathComponentsToStrip != INT_MIN); 2928 int PathComponentsToKeep = -PathComponentsToStrip; 2929 auto I = llvm::sys::path::rbegin(FilenameString); 2930 auto E = llvm::sys::path::rend(FilenameString); 2931 while (I != E && --PathComponentsToKeep) 2932 ++I; 2933 2934 FilenameString = FilenameString.substr(I - E); 2935 } else if (PathComponentsToStrip > 0) { 2936 auto I = llvm::sys::path::begin(FilenameString); 2937 auto E = llvm::sys::path::end(FilenameString); 2938 while (I != E && PathComponentsToStrip--) 2939 ++I; 2940 2941 if (I != E) 2942 FilenameString = 2943 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2944 else 2945 FilenameString = llvm::sys::path::filename(FilenameString); 2946 } 2947 2948 auto FilenameGV = 2949 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 2950 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2951 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2952 Filename = FilenameGV.getPointer(); 2953 Line = PLoc.getLine(); 2954 Column = PLoc.getColumn(); 2955 } else { 2956 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2957 Line = Column = 0; 2958 } 2959 2960 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2961 Builder.getInt32(Column)}; 2962 2963 return llvm::ConstantStruct::getAnon(Data); 2964 } 2965 2966 namespace { 2967 /// Specify under what conditions this check can be recovered 2968 enum class CheckRecoverableKind { 2969 /// Always terminate program execution if this check fails. 2970 Unrecoverable, 2971 /// Check supports recovering, runtime has both fatal (noreturn) and 2972 /// non-fatal handlers for this check. 2973 Recoverable, 2974 /// Runtime conditionally aborts, always need to support recovery. 2975 AlwaysRecoverable 2976 }; 2977 } 2978 2979 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2980 assert(Kind.countPopulation() == 1); 2981 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 2982 return CheckRecoverableKind::AlwaysRecoverable; 2983 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 2984 return CheckRecoverableKind::Unrecoverable; 2985 else 2986 return CheckRecoverableKind::Recoverable; 2987 } 2988 2989 namespace { 2990 struct SanitizerHandlerInfo { 2991 char const *const Name; 2992 unsigned Version; 2993 }; 2994 } 2995 2996 const SanitizerHandlerInfo SanitizerHandlers[] = { 2997 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2998 LIST_SANITIZER_CHECKS 2999 #undef SANITIZER_CHECK 3000 }; 3001 3002 static void emitCheckHandlerCall(CodeGenFunction &CGF, 3003 llvm::FunctionType *FnType, 3004 ArrayRef<llvm::Value *> FnArgs, 3005 SanitizerHandler CheckHandler, 3006 CheckRecoverableKind RecoverKind, bool IsFatal, 3007 llvm::BasicBlock *ContBB) { 3008 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 3009 Optional<ApplyDebugLocation> DL; 3010 if (!CGF.Builder.getCurrentDebugLocation()) { 3011 // Ensure that the call has at least an artificial debug location. 3012 DL.emplace(CGF, SourceLocation()); 3013 } 3014 bool NeedsAbortSuffix = 3015 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3016 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3017 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3018 const StringRef CheckName = CheckInfo.Name; 3019 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3020 if (CheckInfo.Version && !MinimalRuntime) 3021 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3022 if (MinimalRuntime) 3023 FnName += "_minimal"; 3024 if (NeedsAbortSuffix) 3025 FnName += "_abort"; 3026 bool MayReturn = 3027 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3028 3029 llvm::AttrBuilder B; 3030 if (!MayReturn) { 3031 B.addAttribute(llvm::Attribute::NoReturn) 3032 .addAttribute(llvm::Attribute::NoUnwind); 3033 } 3034 B.addAttribute(llvm::Attribute::UWTable); 3035 3036 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3037 FnType, FnName, 3038 llvm::AttributeList::get(CGF.getLLVMContext(), 3039 llvm::AttributeList::FunctionIndex, B), 3040 /*Local=*/true); 3041 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3042 if (!MayReturn) { 3043 HandlerCall->setDoesNotReturn(); 3044 CGF.Builder.CreateUnreachable(); 3045 } else { 3046 CGF.Builder.CreateBr(ContBB); 3047 } 3048 } 3049 3050 void CodeGenFunction::EmitCheck( 3051 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3052 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3053 ArrayRef<llvm::Value *> DynamicArgs) { 3054 assert(IsSanitizerScope); 3055 assert(Checked.size() > 0); 3056 assert(CheckHandler >= 0 && 3057 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3058 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3059 3060 llvm::Value *FatalCond = nullptr; 3061 llvm::Value *RecoverableCond = nullptr; 3062 llvm::Value *TrapCond = nullptr; 3063 for (int i = 0, n = Checked.size(); i < n; ++i) { 3064 llvm::Value *Check = Checked[i].first; 3065 // -fsanitize-trap= overrides -fsanitize-recover=. 3066 llvm::Value *&Cond = 3067 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3068 ? TrapCond 3069 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3070 ? RecoverableCond 3071 : FatalCond; 3072 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3073 } 3074 3075 if (TrapCond) 3076 EmitTrapCheck(TrapCond); 3077 if (!FatalCond && !RecoverableCond) 3078 return; 3079 3080 llvm::Value *JointCond; 3081 if (FatalCond && RecoverableCond) 3082 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3083 else 3084 JointCond = FatalCond ? FatalCond : RecoverableCond; 3085 assert(JointCond); 3086 3087 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3088 assert(SanOpts.has(Checked[0].second)); 3089 #ifndef NDEBUG 3090 for (int i = 1, n = Checked.size(); i < n; ++i) { 3091 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3092 "All recoverable kinds in a single check must be same!"); 3093 assert(SanOpts.has(Checked[i].second)); 3094 } 3095 #endif 3096 3097 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3098 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3099 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3100 // Give hint that we very much don't expect to execute the handler 3101 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3102 llvm::MDBuilder MDHelper(getLLVMContext()); 3103 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3104 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3105 EmitBlock(Handlers); 3106 3107 // Handler functions take an i8* pointing to the (handler-specific) static 3108 // information block, followed by a sequence of intptr_t arguments 3109 // representing operand values. 3110 SmallVector<llvm::Value *, 4> Args; 3111 SmallVector<llvm::Type *, 4> ArgTypes; 3112 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3113 Args.reserve(DynamicArgs.size() + 1); 3114 ArgTypes.reserve(DynamicArgs.size() + 1); 3115 3116 // Emit handler arguments and create handler function type. 3117 if (!StaticArgs.empty()) { 3118 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3119 auto *InfoPtr = 3120 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3121 llvm::GlobalVariable::PrivateLinkage, Info); 3122 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3123 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3124 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3125 ArgTypes.push_back(Int8PtrTy); 3126 } 3127 3128 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3129 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3130 ArgTypes.push_back(IntPtrTy); 3131 } 3132 } 3133 3134 llvm::FunctionType *FnType = 3135 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3136 3137 if (!FatalCond || !RecoverableCond) { 3138 // Simple case: we need to generate a single handler call, either 3139 // fatal, or non-fatal. 3140 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3141 (FatalCond != nullptr), Cont); 3142 } else { 3143 // Emit two handler calls: first one for set of unrecoverable checks, 3144 // another one for recoverable. 3145 llvm::BasicBlock *NonFatalHandlerBB = 3146 createBasicBlock("non_fatal." + CheckName); 3147 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3148 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3149 EmitBlock(FatalHandlerBB); 3150 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3151 NonFatalHandlerBB); 3152 EmitBlock(NonFatalHandlerBB); 3153 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3154 Cont); 3155 } 3156 3157 EmitBlock(Cont); 3158 } 3159 3160 void CodeGenFunction::EmitCfiSlowPathCheck( 3161 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3162 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3163 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3164 3165 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3166 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3167 3168 llvm::MDBuilder MDHelper(getLLVMContext()); 3169 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3170 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3171 3172 EmitBlock(CheckBB); 3173 3174 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3175 3176 llvm::CallInst *CheckCall; 3177 llvm::FunctionCallee SlowPathFn; 3178 if (WithDiag) { 3179 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3180 auto *InfoPtr = 3181 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3182 llvm::GlobalVariable::PrivateLinkage, Info); 3183 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3184 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3185 3186 SlowPathFn = CGM.getModule().getOrInsertFunction( 3187 "__cfi_slowpath_diag", 3188 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3189 false)); 3190 CheckCall = Builder.CreateCall( 3191 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3192 } else { 3193 SlowPathFn = CGM.getModule().getOrInsertFunction( 3194 "__cfi_slowpath", 3195 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3196 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3197 } 3198 3199 CGM.setDSOLocal( 3200 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3201 CheckCall->setDoesNotThrow(); 3202 3203 EmitBlock(Cont); 3204 } 3205 3206 // Emit a stub for __cfi_check function so that the linker knows about this 3207 // symbol in LTO mode. 3208 void CodeGenFunction::EmitCfiCheckStub() { 3209 llvm::Module *M = &CGM.getModule(); 3210 auto &Ctx = M->getContext(); 3211 llvm::Function *F = llvm::Function::Create( 3212 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3213 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3214 CGM.setDSOLocal(F); 3215 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3216 // FIXME: consider emitting an intrinsic call like 3217 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3218 // which can be lowered in CrossDSOCFI pass to the actual contents of 3219 // __cfi_check. This would allow inlining of __cfi_check calls. 3220 llvm::CallInst::Create( 3221 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3222 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3223 } 3224 3225 // This function is basically a switch over the CFI failure kind, which is 3226 // extracted from CFICheckFailData (1st function argument). Each case is either 3227 // llvm.trap or a call to one of the two runtime handlers, based on 3228 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3229 // failure kind) traps, but this should really never happen. CFICheckFailData 3230 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3231 // check kind; in this case __cfi_check_fail traps as well. 3232 void CodeGenFunction::EmitCfiCheckFail() { 3233 SanitizerScope SanScope(this); 3234 FunctionArgList Args; 3235 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3236 ImplicitParamDecl::Other); 3237 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3238 ImplicitParamDecl::Other); 3239 Args.push_back(&ArgData); 3240 Args.push_back(&ArgAddr); 3241 3242 const CGFunctionInfo &FI = 3243 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3244 3245 llvm::Function *F = llvm::Function::Create( 3246 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3247 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3248 3249 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F); 3250 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3251 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3252 3253 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3254 SourceLocation()); 3255 3256 // This function should not be affected by blacklist. This function does 3257 // not have a source location, but "src:*" would still apply. Revert any 3258 // changes to SanOpts made in StartFunction. 3259 SanOpts = CGM.getLangOpts().Sanitize; 3260 3261 llvm::Value *Data = 3262 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3263 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3264 llvm::Value *Addr = 3265 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3266 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3267 3268 // Data == nullptr means the calling module has trap behaviour for this check. 3269 llvm::Value *DataIsNotNullPtr = 3270 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3271 EmitTrapCheck(DataIsNotNullPtr); 3272 3273 llvm::StructType *SourceLocationTy = 3274 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3275 llvm::StructType *CfiCheckFailDataTy = 3276 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3277 3278 llvm::Value *V = Builder.CreateConstGEP2_32( 3279 CfiCheckFailDataTy, 3280 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3281 0); 3282 Address CheckKindAddr(V, getIntAlign()); 3283 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3284 3285 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3286 CGM.getLLVMContext(), 3287 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3288 llvm::Value *ValidVtable = Builder.CreateZExt( 3289 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3290 {Addr, AllVtables}), 3291 IntPtrTy); 3292 3293 const std::pair<int, SanitizerMask> CheckKinds[] = { 3294 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3295 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3296 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3297 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3298 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3299 3300 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3301 for (auto CheckKindMaskPair : CheckKinds) { 3302 int Kind = CheckKindMaskPair.first; 3303 SanitizerMask Mask = CheckKindMaskPair.second; 3304 llvm::Value *Cond = 3305 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3306 if (CGM.getLangOpts().Sanitize.has(Mask)) 3307 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3308 {Data, Addr, ValidVtable}); 3309 else 3310 EmitTrapCheck(Cond); 3311 } 3312 3313 FinishFunction(); 3314 // The only reference to this function will be created during LTO link. 3315 // Make sure it survives until then. 3316 CGM.addUsedGlobal(F); 3317 } 3318 3319 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3320 if (SanOpts.has(SanitizerKind::Unreachable)) { 3321 SanitizerScope SanScope(this); 3322 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3323 SanitizerKind::Unreachable), 3324 SanitizerHandler::BuiltinUnreachable, 3325 EmitCheckSourceLocation(Loc), None); 3326 } 3327 Builder.CreateUnreachable(); 3328 } 3329 3330 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3331 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3332 3333 // If we're optimizing, collapse all calls to trap down to just one per 3334 // function to save on code size. 3335 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3336 TrapBB = createBasicBlock("trap"); 3337 Builder.CreateCondBr(Checked, Cont, TrapBB); 3338 EmitBlock(TrapBB); 3339 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3340 TrapCall->setDoesNotReturn(); 3341 TrapCall->setDoesNotThrow(); 3342 Builder.CreateUnreachable(); 3343 } else { 3344 Builder.CreateCondBr(Checked, Cont, TrapBB); 3345 } 3346 3347 EmitBlock(Cont); 3348 } 3349 3350 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3351 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3352 3353 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3354 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3355 CGM.getCodeGenOpts().TrapFuncName); 3356 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3357 } 3358 3359 return TrapCall; 3360 } 3361 3362 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3363 LValueBaseInfo *BaseInfo, 3364 TBAAAccessInfo *TBAAInfo) { 3365 assert(E->getType()->isArrayType() && 3366 "Array to pointer decay must have array source type!"); 3367 3368 // Expressions of array type can't be bitfields or vector elements. 3369 LValue LV = EmitLValue(E); 3370 Address Addr = LV.getAddress(*this); 3371 3372 // If the array type was an incomplete type, we need to make sure 3373 // the decay ends up being the right type. 3374 llvm::Type *NewTy = ConvertType(E->getType()); 3375 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3376 3377 // Note that VLA pointers are always decayed, so we don't need to do 3378 // anything here. 3379 if (!E->getType()->isVariableArrayType()) { 3380 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3381 "Expected pointer to array"); 3382 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3383 } 3384 3385 // The result of this decay conversion points to an array element within the 3386 // base lvalue. However, since TBAA currently does not support representing 3387 // accesses to elements of member arrays, we conservatively represent accesses 3388 // to the pointee object as if it had no any base lvalue specified. 3389 // TODO: Support TBAA for member arrays. 3390 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3391 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3392 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3393 3394 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3395 } 3396 3397 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3398 /// array to pointer, return the array subexpression. 3399 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3400 // If this isn't just an array->pointer decay, bail out. 3401 const auto *CE = dyn_cast<CastExpr>(E); 3402 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3403 return nullptr; 3404 3405 // If this is a decay from variable width array, bail out. 3406 const Expr *SubExpr = CE->getSubExpr(); 3407 if (SubExpr->getType()->isVariableArrayType()) 3408 return nullptr; 3409 3410 return SubExpr; 3411 } 3412 3413 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3414 llvm::Value *ptr, 3415 ArrayRef<llvm::Value*> indices, 3416 bool inbounds, 3417 bool signedIndices, 3418 SourceLocation loc, 3419 const llvm::Twine &name = "arrayidx") { 3420 if (inbounds) { 3421 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3422 CodeGenFunction::NotSubtraction, loc, 3423 name); 3424 } else { 3425 return CGF.Builder.CreateGEP(ptr, indices, name); 3426 } 3427 } 3428 3429 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3430 llvm::Value *idx, 3431 CharUnits eltSize) { 3432 // If we have a constant index, we can use the exact offset of the 3433 // element we're accessing. 3434 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3435 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3436 return arrayAlign.alignmentAtOffset(offset); 3437 3438 // Otherwise, use the worst-case alignment for any element. 3439 } else { 3440 return arrayAlign.alignmentOfArrayElement(eltSize); 3441 } 3442 } 3443 3444 static QualType getFixedSizeElementType(const ASTContext &ctx, 3445 const VariableArrayType *vla) { 3446 QualType eltType; 3447 do { 3448 eltType = vla->getElementType(); 3449 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3450 return eltType; 3451 } 3452 3453 /// Given an array base, check whether its member access belongs to a record 3454 /// with preserve_access_index attribute or not. 3455 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3456 if (!ArrayBase || !CGF.getDebugInfo()) 3457 return false; 3458 3459 // Only support base as either a MemberExpr or DeclRefExpr. 3460 // DeclRefExpr to cover cases like: 3461 // struct s { int a; int b[10]; }; 3462 // struct s *p; 3463 // p[1].a 3464 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3465 // p->b[5] is a MemberExpr example. 3466 const Expr *E = ArrayBase->IgnoreImpCasts(); 3467 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3468 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3469 3470 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3471 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3472 if (!VarDef) 3473 return false; 3474 3475 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3476 if (!PtrT) 3477 return false; 3478 3479 const auto *PointeeT = PtrT->getPointeeType() 3480 ->getUnqualifiedDesugaredType(); 3481 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3482 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3483 return false; 3484 } 3485 3486 return false; 3487 } 3488 3489 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3490 ArrayRef<llvm::Value *> indices, 3491 QualType eltType, bool inbounds, 3492 bool signedIndices, SourceLocation loc, 3493 QualType *arrayType = nullptr, 3494 const Expr *Base = nullptr, 3495 const llvm::Twine &name = "arrayidx") { 3496 // All the indices except that last must be zero. 3497 #ifndef NDEBUG 3498 for (auto idx : indices.drop_back()) 3499 assert(isa<llvm::ConstantInt>(idx) && 3500 cast<llvm::ConstantInt>(idx)->isZero()); 3501 #endif 3502 3503 // Determine the element size of the statically-sized base. This is 3504 // the thing that the indices are expressed in terms of. 3505 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3506 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3507 } 3508 3509 // We can use that to compute the best alignment of the element. 3510 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3511 CharUnits eltAlign = 3512 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3513 3514 llvm::Value *eltPtr; 3515 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3516 if (!LastIndex || 3517 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3518 eltPtr = emitArraySubscriptGEP( 3519 CGF, addr.getPointer(), indices, inbounds, signedIndices, 3520 loc, name); 3521 } else { 3522 // Remember the original array subscript for bpf target 3523 unsigned idx = LastIndex->getZExtValue(); 3524 llvm::DIType *DbgInfo = nullptr; 3525 if (arrayType) 3526 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3527 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3528 addr.getPointer(), 3529 indices.size() - 1, 3530 idx, DbgInfo); 3531 } 3532 3533 return Address(eltPtr, eltAlign); 3534 } 3535 3536 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3537 bool Accessed) { 3538 // The index must always be an integer, which is not an aggregate. Emit it 3539 // in lexical order (this complexity is, sadly, required by C++17). 3540 llvm::Value *IdxPre = 3541 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3542 bool SignedIndices = false; 3543 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3544 auto *Idx = IdxPre; 3545 if (E->getLHS() != E->getIdx()) { 3546 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3547 Idx = EmitScalarExpr(E->getIdx()); 3548 } 3549 3550 QualType IdxTy = E->getIdx()->getType(); 3551 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3552 SignedIndices |= IdxSigned; 3553 3554 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3555 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3556 3557 // Extend or truncate the index type to 32 or 64-bits. 3558 if (Promote && Idx->getType() != IntPtrTy) 3559 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3560 3561 return Idx; 3562 }; 3563 IdxPre = nullptr; 3564 3565 // If the base is a vector type, then we are forming a vector element lvalue 3566 // with this subscript. 3567 if (E->getBase()->getType()->isVectorType() && 3568 !isa<ExtVectorElementExpr>(E->getBase())) { 3569 // Emit the vector as an lvalue to get its address. 3570 LValue LHS = EmitLValue(E->getBase()); 3571 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3572 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3573 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3574 E->getBase()->getType(), LHS.getBaseInfo(), 3575 TBAAAccessInfo()); 3576 } 3577 3578 // All the other cases basically behave like simple offsetting. 3579 3580 // Handle the extvector case we ignored above. 3581 if (isa<ExtVectorElementExpr>(E->getBase())) { 3582 LValue LV = EmitLValue(E->getBase()); 3583 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3584 Address Addr = EmitExtVectorElementLValue(LV); 3585 3586 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3587 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3588 SignedIndices, E->getExprLoc()); 3589 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3590 CGM.getTBAAInfoForSubobject(LV, EltType)); 3591 } 3592 3593 LValueBaseInfo EltBaseInfo; 3594 TBAAAccessInfo EltTBAAInfo; 3595 Address Addr = Address::invalid(); 3596 if (const VariableArrayType *vla = 3597 getContext().getAsVariableArrayType(E->getType())) { 3598 // The base must be a pointer, which is not an aggregate. Emit 3599 // it. It needs to be emitted first in case it's what captures 3600 // the VLA bounds. 3601 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3602 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3603 3604 // The element count here is the total number of non-VLA elements. 3605 llvm::Value *numElements = getVLASize(vla).NumElts; 3606 3607 // Effectively, the multiply by the VLA size is part of the GEP. 3608 // GEP indexes are signed, and scaling an index isn't permitted to 3609 // signed-overflow, so we use the same semantics for our explicit 3610 // multiply. We suppress this if overflow is not undefined behavior. 3611 if (getLangOpts().isSignedOverflowDefined()) { 3612 Idx = Builder.CreateMul(Idx, numElements); 3613 } else { 3614 Idx = Builder.CreateNSWMul(Idx, numElements); 3615 } 3616 3617 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3618 !getLangOpts().isSignedOverflowDefined(), 3619 SignedIndices, E->getExprLoc()); 3620 3621 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3622 // Indexing over an interface, as in "NSString *P; P[4];" 3623 3624 // Emit the base pointer. 3625 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3626 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3627 3628 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3629 llvm::Value *InterfaceSizeVal = 3630 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3631 3632 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3633 3634 // We don't necessarily build correct LLVM struct types for ObjC 3635 // interfaces, so we can't rely on GEP to do this scaling 3636 // correctly, so we need to cast to i8*. FIXME: is this actually 3637 // true? A lot of other things in the fragile ABI would break... 3638 llvm::Type *OrigBaseTy = Addr.getType(); 3639 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3640 3641 // Do the GEP. 3642 CharUnits EltAlign = 3643 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3644 llvm::Value *EltPtr = 3645 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3646 SignedIndices, E->getExprLoc()); 3647 Addr = Address(EltPtr, EltAlign); 3648 3649 // Cast back. 3650 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3651 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3652 // If this is A[i] where A is an array, the frontend will have decayed the 3653 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3654 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3655 // "gep x, i" here. Emit one "gep A, 0, i". 3656 assert(Array->getType()->isArrayType() && 3657 "Array to pointer decay must have array source type!"); 3658 LValue ArrayLV; 3659 // For simple multidimensional array indexing, set the 'accessed' flag for 3660 // better bounds-checking of the base expression. 3661 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3662 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3663 else 3664 ArrayLV = EmitLValue(Array); 3665 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3666 3667 // Propagate the alignment from the array itself to the result. 3668 QualType arrayType = Array->getType(); 3669 Addr = emitArraySubscriptGEP( 3670 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3671 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3672 E->getExprLoc(), &arrayType, E->getBase()); 3673 EltBaseInfo = ArrayLV.getBaseInfo(); 3674 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3675 } else { 3676 // The base must be a pointer; emit it with an estimate of its alignment. 3677 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3678 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3679 QualType ptrType = E->getBase()->getType(); 3680 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3681 !getLangOpts().isSignedOverflowDefined(), 3682 SignedIndices, E->getExprLoc(), &ptrType, 3683 E->getBase()); 3684 } 3685 3686 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3687 3688 if (getLangOpts().ObjC && 3689 getLangOpts().getGC() != LangOptions::NonGC) { 3690 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3691 setObjCGCLValueClass(getContext(), E, LV); 3692 } 3693 return LV; 3694 } 3695 3696 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3697 LValueBaseInfo &BaseInfo, 3698 TBAAAccessInfo &TBAAInfo, 3699 QualType BaseTy, QualType ElTy, 3700 bool IsLowerBound) { 3701 LValue BaseLVal; 3702 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3703 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3704 if (BaseTy->isArrayType()) { 3705 Address Addr = BaseLVal.getAddress(CGF); 3706 BaseInfo = BaseLVal.getBaseInfo(); 3707 3708 // If the array type was an incomplete type, we need to make sure 3709 // the decay ends up being the right type. 3710 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3711 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3712 3713 // Note that VLA pointers are always decayed, so we don't need to do 3714 // anything here. 3715 if (!BaseTy->isVariableArrayType()) { 3716 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3717 "Expected pointer to array"); 3718 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3719 } 3720 3721 return CGF.Builder.CreateElementBitCast(Addr, 3722 CGF.ConvertTypeForMem(ElTy)); 3723 } 3724 LValueBaseInfo TypeBaseInfo; 3725 TBAAAccessInfo TypeTBAAInfo; 3726 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3727 &TypeTBAAInfo); 3728 BaseInfo.mergeForCast(TypeBaseInfo); 3729 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3730 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align); 3731 } 3732 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3733 } 3734 3735 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3736 bool IsLowerBound) { 3737 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3738 QualType ResultExprTy; 3739 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3740 ResultExprTy = AT->getElementType(); 3741 else 3742 ResultExprTy = BaseTy->getPointeeType(); 3743 llvm::Value *Idx = nullptr; 3744 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3745 // Requesting lower bound or upper bound, but without provided length and 3746 // without ':' symbol for the default length -> length = 1. 3747 // Idx = LowerBound ?: 0; 3748 if (auto *LowerBound = E->getLowerBound()) { 3749 Idx = Builder.CreateIntCast( 3750 EmitScalarExpr(LowerBound), IntPtrTy, 3751 LowerBound->getType()->hasSignedIntegerRepresentation()); 3752 } else 3753 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3754 } else { 3755 // Try to emit length or lower bound as constant. If this is possible, 1 3756 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3757 // IR (LB + Len) - 1. 3758 auto &C = CGM.getContext(); 3759 auto *Length = E->getLength(); 3760 llvm::APSInt ConstLength; 3761 if (Length) { 3762 // Idx = LowerBound + Length - 1; 3763 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3764 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3765 Length = nullptr; 3766 } 3767 auto *LowerBound = E->getLowerBound(); 3768 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3769 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3770 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3771 LowerBound = nullptr; 3772 } 3773 if (!Length) 3774 --ConstLength; 3775 else if (!LowerBound) 3776 --ConstLowerBound; 3777 3778 if (Length || LowerBound) { 3779 auto *LowerBoundVal = 3780 LowerBound 3781 ? Builder.CreateIntCast( 3782 EmitScalarExpr(LowerBound), IntPtrTy, 3783 LowerBound->getType()->hasSignedIntegerRepresentation()) 3784 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3785 auto *LengthVal = 3786 Length 3787 ? Builder.CreateIntCast( 3788 EmitScalarExpr(Length), IntPtrTy, 3789 Length->getType()->hasSignedIntegerRepresentation()) 3790 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3791 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3792 /*HasNUW=*/false, 3793 !getLangOpts().isSignedOverflowDefined()); 3794 if (Length && LowerBound) { 3795 Idx = Builder.CreateSub( 3796 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3797 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3798 } 3799 } else 3800 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3801 } else { 3802 // Idx = ArraySize - 1; 3803 QualType ArrayTy = BaseTy->isPointerType() 3804 ? E->getBase()->IgnoreParenImpCasts()->getType() 3805 : BaseTy; 3806 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3807 Length = VAT->getSizeExpr(); 3808 if (Length->isIntegerConstantExpr(ConstLength, C)) 3809 Length = nullptr; 3810 } else { 3811 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3812 ConstLength = CAT->getSize(); 3813 } 3814 if (Length) { 3815 auto *LengthVal = Builder.CreateIntCast( 3816 EmitScalarExpr(Length), IntPtrTy, 3817 Length->getType()->hasSignedIntegerRepresentation()); 3818 Idx = Builder.CreateSub( 3819 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3820 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3821 } else { 3822 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3823 --ConstLength; 3824 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3825 } 3826 } 3827 } 3828 assert(Idx); 3829 3830 Address EltPtr = Address::invalid(); 3831 LValueBaseInfo BaseInfo; 3832 TBAAAccessInfo TBAAInfo; 3833 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3834 // The base must be a pointer, which is not an aggregate. Emit 3835 // it. It needs to be emitted first in case it's what captures 3836 // the VLA bounds. 3837 Address Base = 3838 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3839 BaseTy, VLA->getElementType(), IsLowerBound); 3840 // The element count here is the total number of non-VLA elements. 3841 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3842 3843 // Effectively, the multiply by the VLA size is part of the GEP. 3844 // GEP indexes are signed, and scaling an index isn't permitted to 3845 // signed-overflow, so we use the same semantics for our explicit 3846 // multiply. We suppress this if overflow is not undefined behavior. 3847 if (getLangOpts().isSignedOverflowDefined()) 3848 Idx = Builder.CreateMul(Idx, NumElements); 3849 else 3850 Idx = Builder.CreateNSWMul(Idx, NumElements); 3851 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3852 !getLangOpts().isSignedOverflowDefined(), 3853 /*signedIndices=*/false, E->getExprLoc()); 3854 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3855 // If this is A[i] where A is an array, the frontend will have decayed the 3856 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3857 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3858 // "gep x, i" here. Emit one "gep A, 0, i". 3859 assert(Array->getType()->isArrayType() && 3860 "Array to pointer decay must have array source type!"); 3861 LValue ArrayLV; 3862 // For simple multidimensional array indexing, set the 'accessed' flag for 3863 // better bounds-checking of the base expression. 3864 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3865 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3866 else 3867 ArrayLV = EmitLValue(Array); 3868 3869 // Propagate the alignment from the array itself to the result. 3870 EltPtr = emitArraySubscriptGEP( 3871 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3872 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3873 /*signedIndices=*/false, E->getExprLoc()); 3874 BaseInfo = ArrayLV.getBaseInfo(); 3875 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3876 } else { 3877 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3878 TBAAInfo, BaseTy, ResultExprTy, 3879 IsLowerBound); 3880 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3881 !getLangOpts().isSignedOverflowDefined(), 3882 /*signedIndices=*/false, E->getExprLoc()); 3883 } 3884 3885 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3886 } 3887 3888 LValue CodeGenFunction:: 3889 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3890 // Emit the base vector as an l-value. 3891 LValue Base; 3892 3893 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3894 if (E->isArrow()) { 3895 // If it is a pointer to a vector, emit the address and form an lvalue with 3896 // it. 3897 LValueBaseInfo BaseInfo; 3898 TBAAAccessInfo TBAAInfo; 3899 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3900 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 3901 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3902 Base.getQuals().removeObjCGCAttr(); 3903 } else if (E->getBase()->isGLValue()) { 3904 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3905 // emit the base as an lvalue. 3906 assert(E->getBase()->getType()->isVectorType()); 3907 Base = EmitLValue(E->getBase()); 3908 } else { 3909 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3910 assert(E->getBase()->getType()->isVectorType() && 3911 "Result must be a vector"); 3912 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3913 3914 // Store the vector to memory (because LValue wants an address). 3915 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3916 Builder.CreateStore(Vec, VecMem); 3917 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3918 AlignmentSource::Decl); 3919 } 3920 3921 QualType type = 3922 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3923 3924 // Encode the element access list into a vector of unsigned indices. 3925 SmallVector<uint32_t, 4> Indices; 3926 E->getEncodedElementAccess(Indices); 3927 3928 if (Base.isSimple()) { 3929 llvm::Constant *CV = 3930 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3931 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 3932 Base.getBaseInfo(), TBAAAccessInfo()); 3933 } 3934 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3935 3936 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3937 SmallVector<llvm::Constant *, 4> CElts; 3938 3939 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3940 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3941 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3942 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3943 Base.getBaseInfo(), TBAAAccessInfo()); 3944 } 3945 3946 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3947 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3948 EmitIgnoredExpr(E->getBase()); 3949 return EmitDeclRefLValue(DRE); 3950 } 3951 3952 Expr *BaseExpr = E->getBase(); 3953 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3954 LValue BaseLV; 3955 if (E->isArrow()) { 3956 LValueBaseInfo BaseInfo; 3957 TBAAAccessInfo TBAAInfo; 3958 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3959 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3960 SanitizerSet SkippedChecks; 3961 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3962 if (IsBaseCXXThis) 3963 SkippedChecks.set(SanitizerKind::Alignment, true); 3964 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3965 SkippedChecks.set(SanitizerKind::Null, true); 3966 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3967 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3968 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3969 } else 3970 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3971 3972 NamedDecl *ND = E->getMemberDecl(); 3973 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3974 LValue LV = EmitLValueForField(BaseLV, Field); 3975 setObjCGCLValueClass(getContext(), E, LV); 3976 if (getLangOpts().OpenMP) { 3977 // If the member was explicitly marked as nontemporal, mark it as 3978 // nontemporal. If the base lvalue is marked as nontemporal, mark access 3979 // to children as nontemporal too. 3980 if ((IsWrappedCXXThis(BaseExpr) && 3981 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 3982 BaseLV.isNontemporal()) 3983 LV.setNontemporal(/*Value=*/true); 3984 } 3985 return LV; 3986 } 3987 3988 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3989 return EmitFunctionDeclLValue(*this, E, FD); 3990 3991 llvm_unreachable("Unhandled member declaration!"); 3992 } 3993 3994 /// Given that we are currently emitting a lambda, emit an l-value for 3995 /// one of its members. 3996 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3997 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3998 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3999 QualType LambdaTagType = 4000 getContext().getTagDeclType(Field->getParent()); 4001 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 4002 return EmitLValueForField(LambdaLV, Field); 4003 } 4004 4005 /// Get the field index in the debug info. The debug info structure/union 4006 /// will ignore the unnamed bitfields. 4007 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 4008 unsigned FieldIndex) { 4009 unsigned I = 0, Skipped = 0; 4010 4011 for (auto F : Rec->getDefinition()->fields()) { 4012 if (I == FieldIndex) 4013 break; 4014 if (F->isUnnamedBitfield()) 4015 Skipped++; 4016 I++; 4017 } 4018 4019 return FieldIndex - Skipped; 4020 } 4021 4022 /// Get the address of a zero-sized field within a record. The resulting 4023 /// address doesn't necessarily have the right type. 4024 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4025 const FieldDecl *Field) { 4026 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4027 CGF.getContext().getFieldOffset(Field)); 4028 if (Offset.isZero()) 4029 return Base; 4030 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4031 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4032 } 4033 4034 /// Drill down to the storage of a field without walking into 4035 /// reference types. 4036 /// 4037 /// The resulting address doesn't necessarily have the right type. 4038 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4039 const FieldDecl *field) { 4040 if (field->isZeroSize(CGF.getContext())) 4041 return emitAddrOfZeroSizeField(CGF, base, field); 4042 4043 const RecordDecl *rec = field->getParent(); 4044 4045 unsigned idx = 4046 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4047 4048 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4049 } 4050 4051 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4052 Address addr, const FieldDecl *field) { 4053 const RecordDecl *rec = field->getParent(); 4054 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4055 base.getType(), rec->getLocation()); 4056 4057 unsigned idx = 4058 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4059 4060 return CGF.Builder.CreatePreserveStructAccessIndex( 4061 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4062 } 4063 4064 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4065 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4066 if (!RD) 4067 return false; 4068 4069 if (RD->isDynamicClass()) 4070 return true; 4071 4072 for (const auto &Base : RD->bases()) 4073 if (hasAnyVptr(Base.getType(), Context)) 4074 return true; 4075 4076 for (const FieldDecl *Field : RD->fields()) 4077 if (hasAnyVptr(Field->getType(), Context)) 4078 return true; 4079 4080 return false; 4081 } 4082 4083 LValue CodeGenFunction::EmitLValueForField(LValue base, 4084 const FieldDecl *field) { 4085 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4086 4087 if (field->isBitField()) { 4088 const CGRecordLayout &RL = 4089 CGM.getTypes().getCGRecordLayout(field->getParent()); 4090 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4091 Address Addr = base.getAddress(*this); 4092 unsigned Idx = RL.getLLVMFieldNo(field); 4093 const RecordDecl *rec = field->getParent(); 4094 if (!IsInPreservedAIRegion && 4095 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4096 if (Idx != 0) 4097 // For structs, we GEP to the field that the record layout suggests. 4098 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4099 } else { 4100 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4101 getContext().getRecordType(rec), rec->getLocation()); 4102 Addr = Builder.CreatePreserveStructAccessIndex(Addr, Idx, 4103 getDebugInfoFIndex(rec, field->getFieldIndex()), 4104 DbgInfo); 4105 } 4106 4107 // Get the access type. 4108 llvm::Type *FieldIntTy = 4109 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 4110 if (Addr.getElementType() != FieldIntTy) 4111 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4112 4113 QualType fieldType = 4114 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4115 // TODO: Support TBAA for bit fields. 4116 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4117 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4118 TBAAAccessInfo()); 4119 } 4120 4121 // Fields of may-alias structures are may-alias themselves. 4122 // FIXME: this should get propagated down through anonymous structs 4123 // and unions. 4124 QualType FieldType = field->getType(); 4125 const RecordDecl *rec = field->getParent(); 4126 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4127 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4128 TBAAAccessInfo FieldTBAAInfo; 4129 if (base.getTBAAInfo().isMayAlias() || 4130 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4131 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4132 } else if (rec->isUnion()) { 4133 // TODO: Support TBAA for unions. 4134 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4135 } else { 4136 // If no base type been assigned for the base access, then try to generate 4137 // one for this base lvalue. 4138 FieldTBAAInfo = base.getTBAAInfo(); 4139 if (!FieldTBAAInfo.BaseType) { 4140 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4141 assert(!FieldTBAAInfo.Offset && 4142 "Nonzero offset for an access with no base type!"); 4143 } 4144 4145 // Adjust offset to be relative to the base type. 4146 const ASTRecordLayout &Layout = 4147 getContext().getASTRecordLayout(field->getParent()); 4148 unsigned CharWidth = getContext().getCharWidth(); 4149 if (FieldTBAAInfo.BaseType) 4150 FieldTBAAInfo.Offset += 4151 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4152 4153 // Update the final access type and size. 4154 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4155 FieldTBAAInfo.Size = 4156 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4157 } 4158 4159 Address addr = base.getAddress(*this); 4160 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4161 if (CGM.getCodeGenOpts().StrictVTablePointers && 4162 ClassDef->isDynamicClass()) { 4163 // Getting to any field of dynamic object requires stripping dynamic 4164 // information provided by invariant.group. This is because accessing 4165 // fields may leak the real address of dynamic object, which could result 4166 // in miscompilation when leaked pointer would be compared. 4167 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4168 addr = Address(stripped, addr.getAlignment()); 4169 } 4170 } 4171 4172 unsigned RecordCVR = base.getVRQualifiers(); 4173 if (rec->isUnion()) { 4174 // For unions, there is no pointer adjustment. 4175 if (CGM.getCodeGenOpts().StrictVTablePointers && 4176 hasAnyVptr(FieldType, getContext())) 4177 // Because unions can easily skip invariant.barriers, we need to add 4178 // a barrier every time CXXRecord field with vptr is referenced. 4179 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 4180 addr.getAlignment()); 4181 4182 if (IsInPreservedAIRegion || 4183 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4184 // Remember the original union field index 4185 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4186 rec->getLocation()); 4187 addr = Address( 4188 Builder.CreatePreserveUnionAccessIndex( 4189 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4190 addr.getAlignment()); 4191 } 4192 4193 if (FieldType->isReferenceType()) 4194 addr = Builder.CreateElementBitCast( 4195 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4196 } else { 4197 if (!IsInPreservedAIRegion && 4198 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4199 // For structs, we GEP to the field that the record layout suggests. 4200 addr = emitAddrOfFieldStorage(*this, addr, field); 4201 else 4202 // Remember the original struct field index 4203 addr = emitPreserveStructAccess(*this, base, addr, field); 4204 } 4205 4206 // If this is a reference field, load the reference right now. 4207 if (FieldType->isReferenceType()) { 4208 LValue RefLVal = 4209 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4210 if (RecordCVR & Qualifiers::Volatile) 4211 RefLVal.getQuals().addVolatile(); 4212 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4213 4214 // Qualifiers on the struct don't apply to the referencee. 4215 RecordCVR = 0; 4216 FieldType = FieldType->getPointeeType(); 4217 } 4218 4219 // Make sure that the address is pointing to the right type. This is critical 4220 // for both unions and structs. A union needs a bitcast, a struct element 4221 // will need a bitcast if the LLVM type laid out doesn't match the desired 4222 // type. 4223 addr = Builder.CreateElementBitCast( 4224 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4225 4226 if (field->hasAttr<AnnotateAttr>()) 4227 addr = EmitFieldAnnotations(field, addr); 4228 4229 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4230 LV.getQuals().addCVRQualifiers(RecordCVR); 4231 4232 // __weak attribute on a field is ignored. 4233 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4234 LV.getQuals().removeObjCGCAttr(); 4235 4236 return LV; 4237 } 4238 4239 LValue 4240 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4241 const FieldDecl *Field) { 4242 QualType FieldType = Field->getType(); 4243 4244 if (!FieldType->isReferenceType()) 4245 return EmitLValueForField(Base, Field); 4246 4247 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4248 4249 // Make sure that the address is pointing to the right type. 4250 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4251 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4252 4253 // TODO: Generate TBAA information that describes this access as a structure 4254 // member access and not just an access to an object of the field's type. This 4255 // should be similar to what we do in EmitLValueForField(). 4256 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4257 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4258 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4259 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4260 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4261 } 4262 4263 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4264 if (E->isFileScope()) { 4265 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4266 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4267 } 4268 if (E->getType()->isVariablyModifiedType()) 4269 // make sure to emit the VLA size. 4270 EmitVariablyModifiedType(E->getType()); 4271 4272 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4273 const Expr *InitExpr = E->getInitializer(); 4274 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4275 4276 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4277 /*Init*/ true); 4278 4279 // Block-scope compound literals are destroyed at the end of the enclosing 4280 // scope in C. 4281 if (!getLangOpts().CPlusPlus) 4282 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 4283 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr, 4284 E->getType(), getDestroyer(DtorKind), 4285 DtorKind & EHCleanup); 4286 4287 return Result; 4288 } 4289 4290 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4291 if (!E->isGLValue()) 4292 // Initializing an aggregate temporary in C++11: T{...}. 4293 return EmitAggExprToLValue(E); 4294 4295 // An lvalue initializer list must be initializing a reference. 4296 assert(E->isTransparent() && "non-transparent glvalue init list"); 4297 return EmitLValue(E->getInit(0)); 4298 } 4299 4300 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4301 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4302 /// LValue is returned and the current block has been terminated. 4303 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4304 const Expr *Operand) { 4305 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4306 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4307 return None; 4308 } 4309 4310 return CGF.EmitLValue(Operand); 4311 } 4312 4313 LValue CodeGenFunction:: 4314 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4315 if (!expr->isGLValue()) { 4316 // ?: here should be an aggregate. 4317 assert(hasAggregateEvaluationKind(expr->getType()) && 4318 "Unexpected conditional operator!"); 4319 return EmitAggExprToLValue(expr); 4320 } 4321 4322 OpaqueValueMapping binding(*this, expr); 4323 4324 const Expr *condExpr = expr->getCond(); 4325 bool CondExprBool; 4326 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4327 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4328 if (!CondExprBool) std::swap(live, dead); 4329 4330 if (!ContainsLabel(dead)) { 4331 // If the true case is live, we need to track its region. 4332 if (CondExprBool) 4333 incrementProfileCounter(expr); 4334 return EmitLValue(live); 4335 } 4336 } 4337 4338 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4339 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4340 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4341 4342 ConditionalEvaluation eval(*this); 4343 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4344 4345 // Any temporaries created here are conditional. 4346 EmitBlock(lhsBlock); 4347 incrementProfileCounter(expr); 4348 eval.begin(*this); 4349 Optional<LValue> lhs = 4350 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4351 eval.end(*this); 4352 4353 if (lhs && !lhs->isSimple()) 4354 return EmitUnsupportedLValue(expr, "conditional operator"); 4355 4356 lhsBlock = Builder.GetInsertBlock(); 4357 if (lhs) 4358 Builder.CreateBr(contBlock); 4359 4360 // Any temporaries created here are conditional. 4361 EmitBlock(rhsBlock); 4362 eval.begin(*this); 4363 Optional<LValue> rhs = 4364 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4365 eval.end(*this); 4366 if (rhs && !rhs->isSimple()) 4367 return EmitUnsupportedLValue(expr, "conditional operator"); 4368 rhsBlock = Builder.GetInsertBlock(); 4369 4370 EmitBlock(contBlock); 4371 4372 if (lhs && rhs) { 4373 llvm::PHINode *phi = 4374 Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue"); 4375 phi->addIncoming(lhs->getPointer(*this), lhsBlock); 4376 phi->addIncoming(rhs->getPointer(*this), rhsBlock); 4377 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4378 AlignmentSource alignSource = 4379 std::max(lhs->getBaseInfo().getAlignmentSource(), 4380 rhs->getBaseInfo().getAlignmentSource()); 4381 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4382 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4383 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4384 TBAAInfo); 4385 } else { 4386 assert((lhs || rhs) && 4387 "both operands of glvalue conditional are throw-expressions?"); 4388 return lhs ? *lhs : *rhs; 4389 } 4390 } 4391 4392 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4393 /// type. If the cast is to a reference, we can have the usual lvalue result, 4394 /// otherwise if a cast is needed by the code generator in an lvalue context, 4395 /// then it must mean that we need the address of an aggregate in order to 4396 /// access one of its members. This can happen for all the reasons that casts 4397 /// are permitted with aggregate result, including noop aggregate casts, and 4398 /// cast from scalar to union. 4399 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4400 switch (E->getCastKind()) { 4401 case CK_ToVoid: 4402 case CK_BitCast: 4403 case CK_LValueToRValueBitCast: 4404 case CK_ArrayToPointerDecay: 4405 case CK_FunctionToPointerDecay: 4406 case CK_NullToMemberPointer: 4407 case CK_NullToPointer: 4408 case CK_IntegralToPointer: 4409 case CK_PointerToIntegral: 4410 case CK_PointerToBoolean: 4411 case CK_VectorSplat: 4412 case CK_IntegralCast: 4413 case CK_BooleanToSignedIntegral: 4414 case CK_IntegralToBoolean: 4415 case CK_IntegralToFloating: 4416 case CK_FloatingToIntegral: 4417 case CK_FloatingToBoolean: 4418 case CK_FloatingCast: 4419 case CK_FloatingRealToComplex: 4420 case CK_FloatingComplexToReal: 4421 case CK_FloatingComplexToBoolean: 4422 case CK_FloatingComplexCast: 4423 case CK_FloatingComplexToIntegralComplex: 4424 case CK_IntegralRealToComplex: 4425 case CK_IntegralComplexToReal: 4426 case CK_IntegralComplexToBoolean: 4427 case CK_IntegralComplexCast: 4428 case CK_IntegralComplexToFloatingComplex: 4429 case CK_DerivedToBaseMemberPointer: 4430 case CK_BaseToDerivedMemberPointer: 4431 case CK_MemberPointerToBoolean: 4432 case CK_ReinterpretMemberPointer: 4433 case CK_AnyPointerToBlockPointerCast: 4434 case CK_ARCProduceObject: 4435 case CK_ARCConsumeObject: 4436 case CK_ARCReclaimReturnedObject: 4437 case CK_ARCExtendBlockObject: 4438 case CK_CopyAndAutoreleaseBlockObject: 4439 case CK_IntToOCLSampler: 4440 case CK_FixedPointCast: 4441 case CK_FixedPointToBoolean: 4442 case CK_FixedPointToIntegral: 4443 case CK_IntegralToFixedPoint: 4444 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4445 4446 case CK_Dependent: 4447 llvm_unreachable("dependent cast kind in IR gen!"); 4448 4449 case CK_BuiltinFnToFnPtr: 4450 llvm_unreachable("builtin functions are handled elsewhere"); 4451 4452 // These are never l-values; just use the aggregate emission code. 4453 case CK_NonAtomicToAtomic: 4454 case CK_AtomicToNonAtomic: 4455 return EmitAggExprToLValue(E); 4456 4457 case CK_Dynamic: { 4458 LValue LV = EmitLValue(E->getSubExpr()); 4459 Address V = LV.getAddress(*this); 4460 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4461 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4462 } 4463 4464 case CK_ConstructorConversion: 4465 case CK_UserDefinedConversion: 4466 case CK_CPointerToObjCPointerCast: 4467 case CK_BlockPointerToObjCPointerCast: 4468 case CK_NoOp: 4469 case CK_LValueToRValue: 4470 return EmitLValue(E->getSubExpr()); 4471 4472 case CK_UncheckedDerivedToBase: 4473 case CK_DerivedToBase: { 4474 const auto *DerivedClassTy = 4475 E->getSubExpr()->getType()->castAs<RecordType>(); 4476 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4477 4478 LValue LV = EmitLValue(E->getSubExpr()); 4479 Address This = LV.getAddress(*this); 4480 4481 // Perform the derived-to-base conversion 4482 Address Base = GetAddressOfBaseClass( 4483 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4484 /*NullCheckValue=*/false, E->getExprLoc()); 4485 4486 // TODO: Support accesses to members of base classes in TBAA. For now, we 4487 // conservatively pretend that the complete object is of the base class 4488 // type. 4489 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4490 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4491 } 4492 case CK_ToUnion: 4493 return EmitAggExprToLValue(E); 4494 case CK_BaseToDerived: { 4495 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4496 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4497 4498 LValue LV = EmitLValue(E->getSubExpr()); 4499 4500 // Perform the base-to-derived conversion 4501 Address Derived = GetAddressOfDerivedClass( 4502 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4503 /*NullCheckValue=*/false); 4504 4505 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4506 // performed and the object is not of the derived type. 4507 if (sanitizePerformTypeCheck()) 4508 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4509 Derived.getPointer(), E->getType()); 4510 4511 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4512 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4513 /*MayBeNull=*/false, CFITCK_DerivedCast, 4514 E->getBeginLoc()); 4515 4516 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4517 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4518 } 4519 case CK_LValueBitCast: { 4520 // This must be a reinterpret_cast (or c-style equivalent). 4521 const auto *CE = cast<ExplicitCastExpr>(E); 4522 4523 CGM.EmitExplicitCastExprType(CE, this); 4524 LValue LV = EmitLValue(E->getSubExpr()); 4525 Address V = Builder.CreateBitCast(LV.getAddress(*this), 4526 ConvertType(CE->getTypeAsWritten())); 4527 4528 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4529 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4530 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4531 E->getBeginLoc()); 4532 4533 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4534 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4535 } 4536 case CK_AddressSpaceConversion: { 4537 LValue LV = EmitLValue(E->getSubExpr()); 4538 QualType DestTy = getContext().getPointerType(E->getType()); 4539 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4540 *this, LV.getPointer(*this), 4541 E->getSubExpr()->getType().getAddressSpace(), 4542 E->getType().getAddressSpace(), ConvertType(DestTy)); 4543 return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()), 4544 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4545 } 4546 case CK_ObjCObjectLValueCast: { 4547 LValue LV = EmitLValue(E->getSubExpr()); 4548 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4549 ConvertType(E->getType())); 4550 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4551 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4552 } 4553 case CK_ZeroToOCLOpaqueType: 4554 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4555 } 4556 4557 llvm_unreachable("Unhandled lvalue cast kind?"); 4558 } 4559 4560 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4561 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4562 return getOrCreateOpaqueLValueMapping(e); 4563 } 4564 4565 LValue 4566 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4567 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4568 4569 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4570 it = OpaqueLValues.find(e); 4571 4572 if (it != OpaqueLValues.end()) 4573 return it->second; 4574 4575 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4576 return EmitLValue(e->getSourceExpr()); 4577 } 4578 4579 RValue 4580 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4581 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4582 4583 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4584 it = OpaqueRValues.find(e); 4585 4586 if (it != OpaqueRValues.end()) 4587 return it->second; 4588 4589 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4590 return EmitAnyExpr(e->getSourceExpr()); 4591 } 4592 4593 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4594 const FieldDecl *FD, 4595 SourceLocation Loc) { 4596 QualType FT = FD->getType(); 4597 LValue FieldLV = EmitLValueForField(LV, FD); 4598 switch (getEvaluationKind(FT)) { 4599 case TEK_Complex: 4600 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4601 case TEK_Aggregate: 4602 return FieldLV.asAggregateRValue(*this); 4603 case TEK_Scalar: 4604 // This routine is used to load fields one-by-one to perform a copy, so 4605 // don't load reference fields. 4606 if (FD->getType()->isReferenceType()) 4607 return RValue::get(FieldLV.getPointer(*this)); 4608 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4609 // primitive load. 4610 if (FieldLV.isBitField()) 4611 return EmitLoadOfLValue(FieldLV, Loc); 4612 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4613 } 4614 llvm_unreachable("bad evaluation kind"); 4615 } 4616 4617 //===--------------------------------------------------------------------===// 4618 // Expression Emission 4619 //===--------------------------------------------------------------------===// 4620 4621 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4622 ReturnValueSlot ReturnValue) { 4623 // Builtins never have block type. 4624 if (E->getCallee()->getType()->isBlockPointerType()) 4625 return EmitBlockCallExpr(E, ReturnValue); 4626 4627 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4628 return EmitCXXMemberCallExpr(CE, ReturnValue); 4629 4630 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4631 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4632 4633 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4634 if (const CXXMethodDecl *MD = 4635 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4636 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4637 4638 CGCallee callee = EmitCallee(E->getCallee()); 4639 4640 if (callee.isBuiltin()) { 4641 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4642 E, ReturnValue); 4643 } 4644 4645 if (callee.isPseudoDestructor()) { 4646 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4647 } 4648 4649 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4650 } 4651 4652 /// Emit a CallExpr without considering whether it might be a subclass. 4653 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4654 ReturnValueSlot ReturnValue) { 4655 CGCallee Callee = EmitCallee(E->getCallee()); 4656 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4657 } 4658 4659 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) { 4660 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4661 4662 if (auto builtinID = FD->getBuiltinID()) { 4663 // Replaceable builtin provide their own implementation of a builtin. Unless 4664 // we are in the builtin implementation itself, don't call the actual 4665 // builtin. If we are in the builtin implementation, avoid trivial infinite 4666 // recursion. 4667 if (!FD->isInlineBuiltinDeclaration() || 4668 CGF.CurFn->getName() == FD->getName()) 4669 return CGCallee::forBuiltin(builtinID, FD); 4670 } 4671 4672 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 4673 return CGCallee::forDirect(calleePtr, GD); 4674 } 4675 4676 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4677 E = E->IgnoreParens(); 4678 4679 // Look through function-to-pointer decay. 4680 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4681 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4682 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4683 return EmitCallee(ICE->getSubExpr()); 4684 } 4685 4686 // Resolve direct calls. 4687 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4688 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4689 return EmitDirectCallee(*this, FD); 4690 } 4691 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4692 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4693 EmitIgnoredExpr(ME->getBase()); 4694 return EmitDirectCallee(*this, FD); 4695 } 4696 4697 // Look through template substitutions. 4698 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4699 return EmitCallee(NTTP->getReplacement()); 4700 4701 // Treat pseudo-destructor calls differently. 4702 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4703 return CGCallee::forPseudoDestructor(PDE); 4704 } 4705 4706 // Otherwise, we have an indirect reference. 4707 llvm::Value *calleePtr; 4708 QualType functionType; 4709 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4710 calleePtr = EmitScalarExpr(E); 4711 functionType = ptrType->getPointeeType(); 4712 } else { 4713 functionType = E->getType(); 4714 calleePtr = EmitLValue(E).getPointer(*this); 4715 } 4716 assert(functionType->isFunctionType()); 4717 4718 GlobalDecl GD; 4719 if (const auto *VD = 4720 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4721 GD = GlobalDecl(VD); 4722 4723 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4724 CGCallee callee(calleeInfo, calleePtr); 4725 return callee; 4726 } 4727 4728 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4729 // Comma expressions just emit their LHS then their RHS as an l-value. 4730 if (E->getOpcode() == BO_Comma) { 4731 EmitIgnoredExpr(E->getLHS()); 4732 EnsureInsertPoint(); 4733 return EmitLValue(E->getRHS()); 4734 } 4735 4736 if (E->getOpcode() == BO_PtrMemD || 4737 E->getOpcode() == BO_PtrMemI) 4738 return EmitPointerToDataMemberBinaryExpr(E); 4739 4740 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4741 4742 // Note that in all of these cases, __block variables need the RHS 4743 // evaluated first just in case the variable gets moved by the RHS. 4744 4745 switch (getEvaluationKind(E->getType())) { 4746 case TEK_Scalar: { 4747 switch (E->getLHS()->getType().getObjCLifetime()) { 4748 case Qualifiers::OCL_Strong: 4749 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4750 4751 case Qualifiers::OCL_Autoreleasing: 4752 return EmitARCStoreAutoreleasing(E).first; 4753 4754 // No reason to do any of these differently. 4755 case Qualifiers::OCL_None: 4756 case Qualifiers::OCL_ExplicitNone: 4757 case Qualifiers::OCL_Weak: 4758 break; 4759 } 4760 4761 RValue RV = EmitAnyExpr(E->getRHS()); 4762 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4763 if (RV.isScalar()) 4764 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4765 EmitStoreThroughLValue(RV, LV); 4766 if (getLangOpts().OpenMP) 4767 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 4768 E->getLHS()); 4769 return LV; 4770 } 4771 4772 case TEK_Complex: 4773 return EmitComplexAssignmentLValue(E); 4774 4775 case TEK_Aggregate: 4776 return EmitAggExprToLValue(E); 4777 } 4778 llvm_unreachable("bad evaluation kind"); 4779 } 4780 4781 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4782 RValue RV = EmitCallExpr(E); 4783 4784 if (!RV.isScalar()) 4785 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4786 AlignmentSource::Decl); 4787 4788 assert(E->getCallReturnType(getContext())->isReferenceType() && 4789 "Can't have a scalar return unless the return type is a " 4790 "reference type!"); 4791 4792 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4793 } 4794 4795 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4796 // FIXME: This shouldn't require another copy. 4797 return EmitAggExprToLValue(E); 4798 } 4799 4800 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4801 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4802 && "binding l-value to type which needs a temporary"); 4803 AggValueSlot Slot = CreateAggTemp(E->getType()); 4804 EmitCXXConstructExpr(E, Slot); 4805 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4806 } 4807 4808 LValue 4809 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4810 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4811 } 4812 4813 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4814 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4815 ConvertType(E->getType())); 4816 } 4817 4818 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4819 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4820 AlignmentSource::Decl); 4821 } 4822 4823 LValue 4824 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4825 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4826 Slot.setExternallyDestructed(); 4827 EmitAggExpr(E->getSubExpr(), Slot); 4828 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4829 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4830 } 4831 4832 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4833 RValue RV = EmitObjCMessageExpr(E); 4834 4835 if (!RV.isScalar()) 4836 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4837 AlignmentSource::Decl); 4838 4839 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4840 "Can't have a scalar return unless the return type is a " 4841 "reference type!"); 4842 4843 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4844 } 4845 4846 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4847 Address V = 4848 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4849 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4850 } 4851 4852 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4853 const ObjCIvarDecl *Ivar) { 4854 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4855 } 4856 4857 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4858 llvm::Value *BaseValue, 4859 const ObjCIvarDecl *Ivar, 4860 unsigned CVRQualifiers) { 4861 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4862 Ivar, CVRQualifiers); 4863 } 4864 4865 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4866 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4867 llvm::Value *BaseValue = nullptr; 4868 const Expr *BaseExpr = E->getBase(); 4869 Qualifiers BaseQuals; 4870 QualType ObjectTy; 4871 if (E->isArrow()) { 4872 BaseValue = EmitScalarExpr(BaseExpr); 4873 ObjectTy = BaseExpr->getType()->getPointeeType(); 4874 BaseQuals = ObjectTy.getQualifiers(); 4875 } else { 4876 LValue BaseLV = EmitLValue(BaseExpr); 4877 BaseValue = BaseLV.getPointer(*this); 4878 ObjectTy = BaseExpr->getType(); 4879 BaseQuals = ObjectTy.getQualifiers(); 4880 } 4881 4882 LValue LV = 4883 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4884 BaseQuals.getCVRQualifiers()); 4885 setObjCGCLValueClass(getContext(), E, LV); 4886 return LV; 4887 } 4888 4889 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4890 // Can only get l-value for message expression returning aggregate type 4891 RValue RV = EmitAnyExprToTemp(E); 4892 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4893 AlignmentSource::Decl); 4894 } 4895 4896 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4897 const CallExpr *E, ReturnValueSlot ReturnValue, 4898 llvm::Value *Chain) { 4899 // Get the actual function type. The callee type will always be a pointer to 4900 // function type or a block pointer type. 4901 assert(CalleeType->isFunctionPointerType() && 4902 "Call must have function pointer type!"); 4903 4904 const Decl *TargetDecl = 4905 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4906 4907 CalleeType = getContext().getCanonicalType(CalleeType); 4908 4909 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4910 4911 CGCallee Callee = OrigCallee; 4912 4913 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4914 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4915 if (llvm::Constant *PrefixSig = 4916 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4917 SanitizerScope SanScope(this); 4918 // Remove any (C++17) exception specifications, to allow calling e.g. a 4919 // noexcept function through a non-noexcept pointer. 4920 auto ProtoTy = 4921 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4922 llvm::Constant *FTRTTIConst = 4923 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4924 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4925 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4926 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4927 4928 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4929 4930 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4931 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4932 llvm::Value *CalleeSigPtr = 4933 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4934 llvm::Value *CalleeSig = 4935 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4936 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4937 4938 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4939 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4940 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4941 4942 EmitBlock(TypeCheck); 4943 llvm::Value *CalleeRTTIPtr = 4944 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4945 llvm::Value *CalleeRTTIEncoded = 4946 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4947 llvm::Value *CalleeRTTI = 4948 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4949 llvm::Value *CalleeRTTIMatch = 4950 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4951 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4952 EmitCheckTypeDescriptor(CalleeType)}; 4953 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4954 SanitizerHandler::FunctionTypeMismatch, StaticData, 4955 {CalleePtr, CalleeRTTI, FTRTTIConst}); 4956 4957 Builder.CreateBr(Cont); 4958 EmitBlock(Cont); 4959 } 4960 } 4961 4962 const auto *FnType = cast<FunctionType>(PointeeType); 4963 4964 // If we are checking indirect calls and this call is indirect, check that the 4965 // function pointer is a member of the bit set for the function type. 4966 if (SanOpts.has(SanitizerKind::CFIICall) && 4967 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4968 SanitizerScope SanScope(this); 4969 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4970 4971 llvm::Metadata *MD; 4972 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4973 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4974 else 4975 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4976 4977 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4978 4979 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4980 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4981 llvm::Value *TypeTest = Builder.CreateCall( 4982 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4983 4984 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4985 llvm::Constant *StaticData[] = { 4986 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4987 EmitCheckSourceLocation(E->getBeginLoc()), 4988 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4989 }; 4990 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4991 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4992 CastedCallee, StaticData); 4993 } else { 4994 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4995 SanitizerHandler::CFICheckFail, StaticData, 4996 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4997 } 4998 } 4999 5000 CallArgList Args; 5001 if (Chain) 5002 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 5003 CGM.getContext().VoidPtrTy); 5004 5005 // C++17 requires that we evaluate arguments to a call using assignment syntax 5006 // right-to-left, and that we evaluate arguments to certain other operators 5007 // left-to-right. Note that we allow this to override the order dictated by 5008 // the calling convention on the MS ABI, which means that parameter 5009 // destruction order is not necessarily reverse construction order. 5010 // FIXME: Revisit this based on C++ committee response to unimplementability. 5011 EvaluationOrder Order = EvaluationOrder::Default; 5012 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 5013 if (OCE->isAssignmentOp()) 5014 Order = EvaluationOrder::ForceRightToLeft; 5015 else { 5016 switch (OCE->getOperator()) { 5017 case OO_LessLess: 5018 case OO_GreaterGreater: 5019 case OO_AmpAmp: 5020 case OO_PipePipe: 5021 case OO_Comma: 5022 case OO_ArrowStar: 5023 Order = EvaluationOrder::ForceLeftToRight; 5024 break; 5025 default: 5026 break; 5027 } 5028 } 5029 } 5030 5031 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5032 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5033 5034 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5035 Args, FnType, /*ChainCall=*/Chain); 5036 5037 // C99 6.5.2.2p6: 5038 // If the expression that denotes the called function has a type 5039 // that does not include a prototype, [the default argument 5040 // promotions are performed]. If the number of arguments does not 5041 // equal the number of parameters, the behavior is undefined. If 5042 // the function is defined with a type that includes a prototype, 5043 // and either the prototype ends with an ellipsis (, ...) or the 5044 // types of the arguments after promotion are not compatible with 5045 // the types of the parameters, the behavior is undefined. If the 5046 // function is defined with a type that does not include a 5047 // prototype, and the types of the arguments after promotion are 5048 // not compatible with those of the parameters after promotion, 5049 // the behavior is undefined [except in some trivial cases]. 5050 // That is, in the general case, we should assume that a call 5051 // through an unprototyped function type works like a *non-variadic* 5052 // call. The way we make this work is to cast to the exact type 5053 // of the promoted arguments. 5054 // 5055 // Chain calls use this same code path to add the invisible chain parameter 5056 // to the function type. 5057 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5058 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5059 CalleeTy = CalleeTy->getPointerTo(); 5060 5061 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5062 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5063 Callee.setFunctionPointer(CalleePtr); 5064 } 5065 5066 llvm::CallBase *CallOrInvoke = nullptr; 5067 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5068 E->getExprLoc()); 5069 5070 // Generate function declaration DISuprogram in order to be used 5071 // in debug info about call sites. 5072 if (CGDebugInfo *DI = getDebugInfo()) { 5073 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 5074 DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0), 5075 CalleeDecl); 5076 } 5077 5078 return Call; 5079 } 5080 5081 LValue CodeGenFunction:: 5082 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5083 Address BaseAddr = Address::invalid(); 5084 if (E->getOpcode() == BO_PtrMemI) { 5085 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5086 } else { 5087 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5088 } 5089 5090 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5091 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5092 5093 LValueBaseInfo BaseInfo; 5094 TBAAAccessInfo TBAAInfo; 5095 Address MemberAddr = 5096 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5097 &TBAAInfo); 5098 5099 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5100 } 5101 5102 /// Given the address of a temporary variable, produce an r-value of 5103 /// its type. 5104 RValue CodeGenFunction::convertTempToRValue(Address addr, 5105 QualType type, 5106 SourceLocation loc) { 5107 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5108 switch (getEvaluationKind(type)) { 5109 case TEK_Complex: 5110 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5111 case TEK_Aggregate: 5112 return lvalue.asAggregateRValue(*this); 5113 case TEK_Scalar: 5114 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5115 } 5116 llvm_unreachable("bad evaluation kind"); 5117 } 5118 5119 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5120 assert(Val->getType()->isFPOrFPVectorTy()); 5121 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5122 return; 5123 5124 llvm::MDBuilder MDHelper(getLLVMContext()); 5125 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5126 5127 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5128 } 5129 5130 namespace { 5131 struct LValueOrRValue { 5132 LValue LV; 5133 RValue RV; 5134 }; 5135 } 5136 5137 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5138 const PseudoObjectExpr *E, 5139 bool forLValue, 5140 AggValueSlot slot) { 5141 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5142 5143 // Find the result expression, if any. 5144 const Expr *resultExpr = E->getResultExpr(); 5145 LValueOrRValue result; 5146 5147 for (PseudoObjectExpr::const_semantics_iterator 5148 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5149 const Expr *semantic = *i; 5150 5151 // If this semantic expression is an opaque value, bind it 5152 // to the result of its source expression. 5153 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5154 // Skip unique OVEs. 5155 if (ov->isUnique()) { 5156 assert(ov != resultExpr && 5157 "A unique OVE cannot be used as the result expression"); 5158 continue; 5159 } 5160 5161 // If this is the result expression, we may need to evaluate 5162 // directly into the slot. 5163 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5164 OVMA opaqueData; 5165 if (ov == resultExpr && ov->isRValue() && !forLValue && 5166 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5167 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5168 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5169 AlignmentSource::Decl); 5170 opaqueData = OVMA::bind(CGF, ov, LV); 5171 result.RV = slot.asRValue(); 5172 5173 // Otherwise, emit as normal. 5174 } else { 5175 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5176 5177 // If this is the result, also evaluate the result now. 5178 if (ov == resultExpr) { 5179 if (forLValue) 5180 result.LV = CGF.EmitLValue(ov); 5181 else 5182 result.RV = CGF.EmitAnyExpr(ov, slot); 5183 } 5184 } 5185 5186 opaques.push_back(opaqueData); 5187 5188 // Otherwise, if the expression is the result, evaluate it 5189 // and remember the result. 5190 } else if (semantic == resultExpr) { 5191 if (forLValue) 5192 result.LV = CGF.EmitLValue(semantic); 5193 else 5194 result.RV = CGF.EmitAnyExpr(semantic, slot); 5195 5196 // Otherwise, evaluate the expression in an ignored context. 5197 } else { 5198 CGF.EmitIgnoredExpr(semantic); 5199 } 5200 } 5201 5202 // Unbind all the opaques now. 5203 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5204 opaques[i].unbind(CGF); 5205 5206 return result; 5207 } 5208 5209 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5210 AggValueSlot slot) { 5211 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5212 } 5213 5214 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5215 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5216 } 5217