1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
65                                           const Twine &Name,
66                                           llvm::Value *ArraySize,
67                                           bool CastToDefaultAddrSpace) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getQuantity());
70   llvm::Value *V = Alloca;
71   // Alloca always returns a pointer in alloca address space, which may
72   // be different from the type defined by the language. For example,
73   // in C++ the auto variables are in the default address space. Therefore
74   // cast alloca to the default address space when necessary.
75   if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) {
76     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
77     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
78     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
79     // otherwise alloca is inserted at the current insertion point of the
80     // builder.
81     if (!ArraySize)
82       Builder.SetInsertPoint(AllocaInsertPt);
83     V = getTargetHooks().performAddrSpaceCast(
84         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
85         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
86   }
87 
88   return Address(V, Align);
89 }
90 
91 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
92 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
93 /// insertion point of the builder.
94 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
95                                                     const Twine &Name,
96                                                     llvm::Value *ArraySize) {
97   if (ArraySize)
98     return Builder.CreateAlloca(Ty, ArraySize, Name);
99   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
100                               ArraySize, Name, AllocaInsertPt);
101 }
102 
103 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
104 /// default alignment of the corresponding LLVM type, which is *not*
105 /// guaranteed to be related in any way to the expected alignment of
106 /// an AST type that might have been lowered to Ty.
107 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
108                                                       const Twine &Name) {
109   CharUnits Align =
110     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
111   return CreateTempAlloca(Ty, Align, Name);
112 }
113 
114 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
115   assert(isa<llvm::AllocaInst>(Var.getPointer()));
116   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
117   Store->setAlignment(Var.getAlignment().getQuantity());
118   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
119   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
120 }
121 
122 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
123   CharUnits Align = getContext().getTypeAlignInChars(Ty);
124   return CreateTempAlloca(ConvertType(Ty), Align, Name);
125 }
126 
127 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
128                                        bool CastToDefaultAddrSpace) {
129   // FIXME: Should we prefer the preferred type alignment here?
130   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name,
131                        CastToDefaultAddrSpace);
132 }
133 
134 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
135                                        const Twine &Name,
136                                        bool CastToDefaultAddrSpace) {
137   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr,
138                           CastToDefaultAddrSpace);
139 }
140 
141 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
142 /// expression and compare the result against zero, returning an Int1Ty value.
143 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
144   PGO.setCurrentStmt(E);
145   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
146     llvm::Value *MemPtr = EmitScalarExpr(E);
147     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
148   }
149 
150   QualType BoolTy = getContext().BoolTy;
151   SourceLocation Loc = E->getExprLoc();
152   if (!E->getType()->isAnyComplexType())
153     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
154 
155   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
156                                        Loc);
157 }
158 
159 /// EmitIgnoredExpr - Emit code to compute the specified expression,
160 /// ignoring the result.
161 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
162   if (E->isRValue())
163     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
164 
165   // Just emit it as an l-value and drop the result.
166   EmitLValue(E);
167 }
168 
169 /// EmitAnyExpr - Emit code to compute the specified expression which
170 /// can have any type.  The result is returned as an RValue struct.
171 /// If this is an aggregate expression, AggSlot indicates where the
172 /// result should be returned.
173 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
174                                     AggValueSlot aggSlot,
175                                     bool ignoreResult) {
176   switch (getEvaluationKind(E->getType())) {
177   case TEK_Scalar:
178     return RValue::get(EmitScalarExpr(E, ignoreResult));
179   case TEK_Complex:
180     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
181   case TEK_Aggregate:
182     if (!ignoreResult && aggSlot.isIgnored())
183       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
184     EmitAggExpr(E, aggSlot);
185     return aggSlot.asRValue();
186   }
187   llvm_unreachable("bad evaluation kind");
188 }
189 
190 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
191 /// always be accessible even if no aggregate location is provided.
192 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
193   AggValueSlot AggSlot = AggValueSlot::ignored();
194 
195   if (hasAggregateEvaluationKind(E->getType()))
196     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
197   return EmitAnyExpr(E, AggSlot);
198 }
199 
200 /// EmitAnyExprToMem - Evaluate an expression into a given memory
201 /// location.
202 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
203                                        Address Location,
204                                        Qualifiers Quals,
205                                        bool IsInit) {
206   // FIXME: This function should take an LValue as an argument.
207   switch (getEvaluationKind(E->getType())) {
208   case TEK_Complex:
209     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
210                               /*isInit*/ false);
211     return;
212 
213   case TEK_Aggregate: {
214     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
215                                          AggValueSlot::IsDestructed_t(IsInit),
216                                          AggValueSlot::DoesNotNeedGCBarriers,
217                                          AggValueSlot::IsAliased_t(!IsInit),
218                                          AggValueSlot::MayOverlap));
219     return;
220   }
221 
222   case TEK_Scalar: {
223     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
224     LValue LV = MakeAddrLValue(Location, E->getType());
225     EmitStoreThroughLValue(RV, LV);
226     return;
227   }
228   }
229   llvm_unreachable("bad evaluation kind");
230 }
231 
232 static void
233 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
234                      const Expr *E, Address ReferenceTemporary) {
235   // Objective-C++ ARC:
236   //   If we are binding a reference to a temporary that has ownership, we
237   //   need to perform retain/release operations on the temporary.
238   //
239   // FIXME: This should be looking at E, not M.
240   if (auto Lifetime = M->getType().getObjCLifetime()) {
241     switch (Lifetime) {
242     case Qualifiers::OCL_None:
243     case Qualifiers::OCL_ExplicitNone:
244       // Carry on to normal cleanup handling.
245       break;
246 
247     case Qualifiers::OCL_Autoreleasing:
248       // Nothing to do; cleaned up by an autorelease pool.
249       return;
250 
251     case Qualifiers::OCL_Strong:
252     case Qualifiers::OCL_Weak:
253       switch (StorageDuration Duration = M->getStorageDuration()) {
254       case SD_Static:
255         // Note: we intentionally do not register a cleanup to release
256         // the object on program termination.
257         return;
258 
259       case SD_Thread:
260         // FIXME: We should probably register a cleanup in this case.
261         return;
262 
263       case SD_Automatic:
264       case SD_FullExpression:
265         CodeGenFunction::Destroyer *Destroy;
266         CleanupKind CleanupKind;
267         if (Lifetime == Qualifiers::OCL_Strong) {
268           const ValueDecl *VD = M->getExtendingDecl();
269           bool Precise =
270               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
271           CleanupKind = CGF.getARCCleanupKind();
272           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
273                             : &CodeGenFunction::destroyARCStrongImprecise;
274         } else {
275           // __weak objects always get EH cleanups; otherwise, exceptions
276           // could cause really nasty crashes instead of mere leaks.
277           CleanupKind = NormalAndEHCleanup;
278           Destroy = &CodeGenFunction::destroyARCWeak;
279         }
280         if (Duration == SD_FullExpression)
281           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
282                           M->getType(), *Destroy,
283                           CleanupKind & EHCleanup);
284         else
285           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
286                                           M->getType(),
287                                           *Destroy, CleanupKind & EHCleanup);
288         return;
289 
290       case SD_Dynamic:
291         llvm_unreachable("temporary cannot have dynamic storage duration");
292       }
293       llvm_unreachable("unknown storage duration");
294     }
295   }
296 
297   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
298   if (const RecordType *RT =
299           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
300     // Get the destructor for the reference temporary.
301     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
302     if (!ClassDecl->hasTrivialDestructor())
303       ReferenceTemporaryDtor = ClassDecl->getDestructor();
304   }
305 
306   if (!ReferenceTemporaryDtor)
307     return;
308 
309   // Call the destructor for the temporary.
310   switch (M->getStorageDuration()) {
311   case SD_Static:
312   case SD_Thread: {
313     llvm::Constant *CleanupFn;
314     llvm::Constant *CleanupArg;
315     if (E->getType()->isArrayType()) {
316       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
317           ReferenceTemporary, E->getType(),
318           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
319           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
320       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
321     } else {
322       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
323                                                StructorType::Complete);
324       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
325     }
326     CGF.CGM.getCXXABI().registerGlobalDtor(
327         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
328     break;
329   }
330 
331   case SD_FullExpression:
332     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
333                     CodeGenFunction::destroyCXXObject,
334                     CGF.getLangOpts().Exceptions);
335     break;
336 
337   case SD_Automatic:
338     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
339                                     ReferenceTemporary, E->getType(),
340                                     CodeGenFunction::destroyCXXObject,
341                                     CGF.getLangOpts().Exceptions);
342     break;
343 
344   case SD_Dynamic:
345     llvm_unreachable("temporary cannot have dynamic storage duration");
346   }
347 }
348 
349 static Address createReferenceTemporary(CodeGenFunction &CGF,
350                                         const MaterializeTemporaryExpr *M,
351                                         const Expr *Inner) {
352   auto &TCG = CGF.getTargetHooks();
353   switch (M->getStorageDuration()) {
354   case SD_FullExpression:
355   case SD_Automatic: {
356     // If we have a constant temporary array or record try to promote it into a
357     // constant global under the same rules a normal constant would've been
358     // promoted. This is easier on the optimizer and generally emits fewer
359     // instructions.
360     QualType Ty = Inner->getType();
361     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
362         (Ty->isArrayType() || Ty->isRecordType()) &&
363         CGF.CGM.isTypeConstant(Ty, true))
364       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
365         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
366           auto AS = AddrSpace.getValue();
367           auto *GV = new llvm::GlobalVariable(
368               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
369               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
370               llvm::GlobalValue::NotThreadLocal,
371               CGF.getContext().getTargetAddressSpace(AS));
372           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
373           GV->setAlignment(alignment.getQuantity());
374           llvm::Constant *C = GV;
375           if (AS != LangAS::Default)
376             C = TCG.performAddrSpaceCast(
377                 CGF.CGM, GV, AS, LangAS::Default,
378                 GV->getValueType()->getPointerTo(
379                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
380           // FIXME: Should we put the new global into a COMDAT?
381           return Address(C, alignment);
382         }
383       }
384     return CGF.CreateMemTemp(Ty, "ref.tmp");
385   }
386   case SD_Thread:
387   case SD_Static:
388     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
389 
390   case SD_Dynamic:
391     llvm_unreachable("temporary can't have dynamic storage duration");
392   }
393   llvm_unreachable("unknown storage duration");
394 }
395 
396 LValue CodeGenFunction::
397 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
398   const Expr *E = M->GetTemporaryExpr();
399 
400     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
401     // as that will cause the lifetime adjustment to be lost for ARC
402   auto ownership = M->getType().getObjCLifetime();
403   if (ownership != Qualifiers::OCL_None &&
404       ownership != Qualifiers::OCL_ExplicitNone) {
405     Address Object = createReferenceTemporary(*this, M, E);
406     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
407       Object = Address(llvm::ConstantExpr::getBitCast(Var,
408                            ConvertTypeForMem(E->getType())
409                              ->getPointerTo(Object.getAddressSpace())),
410                        Object.getAlignment());
411 
412       // createReferenceTemporary will promote the temporary to a global with a
413       // constant initializer if it can.  It can only do this to a value of
414       // ARC-manageable type if the value is global and therefore "immune" to
415       // ref-counting operations.  Therefore we have no need to emit either a
416       // dynamic initialization or a cleanup and we can just return the address
417       // of the temporary.
418       if (Var->hasInitializer())
419         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
420 
421       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
422     }
423     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
424                                        AlignmentSource::Decl);
425 
426     switch (getEvaluationKind(E->getType())) {
427     default: llvm_unreachable("expected scalar or aggregate expression");
428     case TEK_Scalar:
429       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
430       break;
431     case TEK_Aggregate: {
432       EmitAggExpr(E, AggValueSlot::forAddr(Object,
433                                            E->getType().getQualifiers(),
434                                            AggValueSlot::IsDestructed,
435                                            AggValueSlot::DoesNotNeedGCBarriers,
436                                            AggValueSlot::IsNotAliased,
437                                            AggValueSlot::DoesNotOverlap));
438       break;
439     }
440     }
441 
442     pushTemporaryCleanup(*this, M, E, Object);
443     return RefTempDst;
444   }
445 
446   SmallVector<const Expr *, 2> CommaLHSs;
447   SmallVector<SubobjectAdjustment, 2> Adjustments;
448   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
449 
450   for (const auto &Ignored : CommaLHSs)
451     EmitIgnoredExpr(Ignored);
452 
453   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
454     if (opaque->getType()->isRecordType()) {
455       assert(Adjustments.empty());
456       return EmitOpaqueValueLValue(opaque);
457     }
458   }
459 
460   // Create and initialize the reference temporary.
461   Address Object = createReferenceTemporary(*this, M, E);
462   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
463           Object.getPointer()->stripPointerCasts())) {
464     Object = Address(llvm::ConstantExpr::getBitCast(
465                          cast<llvm::Constant>(Object.getPointer()),
466                          ConvertTypeForMem(E->getType())->getPointerTo()),
467                      Object.getAlignment());
468     // If the temporary is a global and has a constant initializer or is a
469     // constant temporary that we promoted to a global, we may have already
470     // initialized it.
471     if (!Var->hasInitializer()) {
472       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
473       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
474     }
475   } else {
476     switch (M->getStorageDuration()) {
477     case SD_Automatic:
478     case SD_FullExpression:
479       if (auto *Size = EmitLifetimeStart(
480               CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
481               Object.getPointer())) {
482         if (M->getStorageDuration() == SD_Automatic)
483           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
484                                                     Object, Size);
485         else
486           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
487                                                Size);
488       }
489       break;
490     default:
491       break;
492     }
493     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
494   }
495   pushTemporaryCleanup(*this, M, E, Object);
496 
497   // Perform derived-to-base casts and/or field accesses, to get from the
498   // temporary object we created (and, potentially, for which we extended
499   // the lifetime) to the subobject we're binding the reference to.
500   for (unsigned I = Adjustments.size(); I != 0; --I) {
501     SubobjectAdjustment &Adjustment = Adjustments[I-1];
502     switch (Adjustment.Kind) {
503     case SubobjectAdjustment::DerivedToBaseAdjustment:
504       Object =
505           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
506                                 Adjustment.DerivedToBase.BasePath->path_begin(),
507                                 Adjustment.DerivedToBase.BasePath->path_end(),
508                                 /*NullCheckValue=*/ false, E->getExprLoc());
509       break;
510 
511     case SubobjectAdjustment::FieldAdjustment: {
512       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
513       LV = EmitLValueForField(LV, Adjustment.Field);
514       assert(LV.isSimple() &&
515              "materialized temporary field is not a simple lvalue");
516       Object = LV.getAddress();
517       break;
518     }
519 
520     case SubobjectAdjustment::MemberPointerAdjustment: {
521       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
522       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
523                                                Adjustment.Ptr.MPT);
524       break;
525     }
526     }
527   }
528 
529   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
530 }
531 
532 RValue
533 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
534   // Emit the expression as an lvalue.
535   LValue LV = EmitLValue(E);
536   assert(LV.isSimple());
537   llvm::Value *Value = LV.getPointer();
538 
539   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
540     // C++11 [dcl.ref]p5 (as amended by core issue 453):
541     //   If a glvalue to which a reference is directly bound designates neither
542     //   an existing object or function of an appropriate type nor a region of
543     //   storage of suitable size and alignment to contain an object of the
544     //   reference's type, the behavior is undefined.
545     QualType Ty = E->getType();
546     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
547   }
548 
549   return RValue::get(Value);
550 }
551 
552 
553 /// getAccessedFieldNo - Given an encoded value and a result number, return the
554 /// input field number being accessed.
555 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
556                                              const llvm::Constant *Elts) {
557   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
558       ->getZExtValue();
559 }
560 
561 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
562 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
563                                     llvm::Value *High) {
564   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
565   llvm::Value *K47 = Builder.getInt64(47);
566   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
567   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
568   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
569   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
570   return Builder.CreateMul(B1, KMul);
571 }
572 
573 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
574   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
575          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
576 }
577 
578 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
579   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
580   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
581          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
582           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
583           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
584 }
585 
586 bool CodeGenFunction::sanitizePerformTypeCheck() const {
587   return SanOpts.has(SanitizerKind::Null) |
588          SanOpts.has(SanitizerKind::Alignment) |
589          SanOpts.has(SanitizerKind::ObjectSize) |
590          SanOpts.has(SanitizerKind::Vptr);
591 }
592 
593 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
594                                     llvm::Value *Ptr, QualType Ty,
595                                     CharUnits Alignment,
596                                     SanitizerSet SkippedChecks) {
597   if (!sanitizePerformTypeCheck())
598     return;
599 
600   // Don't check pointers outside the default address space. The null check
601   // isn't correct, the object-size check isn't supported by LLVM, and we can't
602   // communicate the addresses to the runtime handler for the vptr check.
603   if (Ptr->getType()->getPointerAddressSpace())
604     return;
605 
606   // Don't check pointers to volatile data. The behavior here is implementation-
607   // defined.
608   if (Ty.isVolatileQualified())
609     return;
610 
611   SanitizerScope SanScope(this);
612 
613   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
614   llvm::BasicBlock *Done = nullptr;
615 
616   // Quickly determine whether we have a pointer to an alloca. It's possible
617   // to skip null checks, and some alignment checks, for these pointers. This
618   // can reduce compile-time significantly.
619   auto PtrToAlloca =
620       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
621 
622   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
623   llvm::Value *IsNonNull = nullptr;
624   bool IsGuaranteedNonNull =
625       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
626   bool AllowNullPointers = isNullPointerAllowed(TCK);
627   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
628       !IsGuaranteedNonNull) {
629     // The glvalue must not be an empty glvalue.
630     IsNonNull = Builder.CreateIsNotNull(Ptr);
631 
632     // The IR builder can constant-fold the null check if the pointer points to
633     // a constant.
634     IsGuaranteedNonNull = IsNonNull == True;
635 
636     // Skip the null check if the pointer is known to be non-null.
637     if (!IsGuaranteedNonNull) {
638       if (AllowNullPointers) {
639         // When performing pointer casts, it's OK if the value is null.
640         // Skip the remaining checks in that case.
641         Done = createBasicBlock("null");
642         llvm::BasicBlock *Rest = createBasicBlock("not.null");
643         Builder.CreateCondBr(IsNonNull, Rest, Done);
644         EmitBlock(Rest);
645       } else {
646         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
647       }
648     }
649   }
650 
651   if (SanOpts.has(SanitizerKind::ObjectSize) &&
652       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
653       !Ty->isIncompleteType()) {
654     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
655 
656     // The glvalue must refer to a large enough storage region.
657     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
658     //        to check this.
659     // FIXME: Get object address space
660     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
661     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
662     llvm::Value *Min = Builder.getFalse();
663     llvm::Value *NullIsUnknown = Builder.getFalse();
664     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
665     llvm::Value *LargeEnough = Builder.CreateICmpUGE(
666         Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}),
667         llvm::ConstantInt::get(IntPtrTy, Size));
668     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
669   }
670 
671   uint64_t AlignVal = 0;
672   llvm::Value *PtrAsInt = nullptr;
673 
674   if (SanOpts.has(SanitizerKind::Alignment) &&
675       !SkippedChecks.has(SanitizerKind::Alignment)) {
676     AlignVal = Alignment.getQuantity();
677     if (!Ty->isIncompleteType() && !AlignVal)
678       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
679 
680     // The glvalue must be suitably aligned.
681     if (AlignVal > 1 &&
682         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
683       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
684       llvm::Value *Align = Builder.CreateAnd(
685           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
686       llvm::Value *Aligned =
687           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
688       if (Aligned != True)
689         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
690     }
691   }
692 
693   if (Checks.size() > 0) {
694     // Make sure we're not losing information. Alignment needs to be a power of
695     // 2
696     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
697     llvm::Constant *StaticData[] = {
698         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
699         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
700         llvm::ConstantInt::get(Int8Ty, TCK)};
701     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
702               PtrAsInt ? PtrAsInt : Ptr);
703   }
704 
705   // If possible, check that the vptr indicates that there is a subobject of
706   // type Ty at offset zero within this object.
707   //
708   // C++11 [basic.life]p5,6:
709   //   [For storage which does not refer to an object within its lifetime]
710   //   The program has undefined behavior if:
711   //    -- the [pointer or glvalue] is used to access a non-static data member
712   //       or call a non-static member function
713   if (SanOpts.has(SanitizerKind::Vptr) &&
714       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
715     // Ensure that the pointer is non-null before loading it. If there is no
716     // compile-time guarantee, reuse the run-time null check or emit a new one.
717     if (!IsGuaranteedNonNull) {
718       if (!IsNonNull)
719         IsNonNull = Builder.CreateIsNotNull(Ptr);
720       if (!Done)
721         Done = createBasicBlock("vptr.null");
722       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
723       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
724       EmitBlock(VptrNotNull);
725     }
726 
727     // Compute a hash of the mangled name of the type.
728     //
729     // FIXME: This is not guaranteed to be deterministic! Move to a
730     //        fingerprinting mechanism once LLVM provides one. For the time
731     //        being the implementation happens to be deterministic.
732     SmallString<64> MangledName;
733     llvm::raw_svector_ostream Out(MangledName);
734     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
735                                                      Out);
736 
737     // Blacklist based on the mangled type.
738     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
739             SanitizerKind::Vptr, Out.str())) {
740       llvm::hash_code TypeHash = hash_value(Out.str());
741 
742       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
743       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
744       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
745       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
746       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
747       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
748 
749       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
750       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
751 
752       // Look the hash up in our cache.
753       const int CacheSize = 128;
754       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
755       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
756                                                      "__ubsan_vptr_type_cache");
757       llvm::Value *Slot = Builder.CreateAnd(Hash,
758                                             llvm::ConstantInt::get(IntPtrTy,
759                                                                    CacheSize-1));
760       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
761       llvm::Value *CacheVal =
762         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
763                                   getPointerAlign());
764 
765       // If the hash isn't in the cache, call a runtime handler to perform the
766       // hard work of checking whether the vptr is for an object of the right
767       // type. This will either fill in the cache and return, or produce a
768       // diagnostic.
769       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
770       llvm::Constant *StaticData[] = {
771         EmitCheckSourceLocation(Loc),
772         EmitCheckTypeDescriptor(Ty),
773         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
774         llvm::ConstantInt::get(Int8Ty, TCK)
775       };
776       llvm::Value *DynamicData[] = { Ptr, Hash };
777       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
778                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
779                 DynamicData);
780     }
781   }
782 
783   if (Done) {
784     Builder.CreateBr(Done);
785     EmitBlock(Done);
786   }
787 }
788 
789 /// Determine whether this expression refers to a flexible array member in a
790 /// struct. We disable array bounds checks for such members.
791 static bool isFlexibleArrayMemberExpr(const Expr *E) {
792   // For compatibility with existing code, we treat arrays of length 0 or
793   // 1 as flexible array members.
794   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
795   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
796     if (CAT->getSize().ugt(1))
797       return false;
798   } else if (!isa<IncompleteArrayType>(AT))
799     return false;
800 
801   E = E->IgnoreParens();
802 
803   // A flexible array member must be the last member in the class.
804   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
805     // FIXME: If the base type of the member expr is not FD->getParent(),
806     // this should not be treated as a flexible array member access.
807     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
808       RecordDecl::field_iterator FI(
809           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
810       return ++FI == FD->getParent()->field_end();
811     }
812   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
813     return IRE->getDecl()->getNextIvar() == nullptr;
814   }
815 
816   return false;
817 }
818 
819 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
820                                                    QualType EltTy) {
821   ASTContext &C = getContext();
822   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
823   if (!EltSize)
824     return nullptr;
825 
826   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
827   if (!ArrayDeclRef)
828     return nullptr;
829 
830   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
831   if (!ParamDecl)
832     return nullptr;
833 
834   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
835   if (!POSAttr)
836     return nullptr;
837 
838   // Don't load the size if it's a lower bound.
839   int POSType = POSAttr->getType();
840   if (POSType != 0 && POSType != 1)
841     return nullptr;
842 
843   // Find the implicit size parameter.
844   auto PassedSizeIt = SizeArguments.find(ParamDecl);
845   if (PassedSizeIt == SizeArguments.end())
846     return nullptr;
847 
848   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
849   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
850   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
851   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
852                                               C.getSizeType(), E->getExprLoc());
853   llvm::Value *SizeOfElement =
854       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
855   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
856 }
857 
858 /// If Base is known to point to the start of an array, return the length of
859 /// that array. Return 0 if the length cannot be determined.
860 static llvm::Value *getArrayIndexingBound(
861     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
862   // For the vector indexing extension, the bound is the number of elements.
863   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
864     IndexedType = Base->getType();
865     return CGF.Builder.getInt32(VT->getNumElements());
866   }
867 
868   Base = Base->IgnoreParens();
869 
870   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
871     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
872         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
873       IndexedType = CE->getSubExpr()->getType();
874       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
875       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
876         return CGF.Builder.getInt(CAT->getSize());
877       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
878         return CGF.getVLASize(VAT).NumElts;
879       // Ignore pass_object_size here. It's not applicable on decayed pointers.
880     }
881   }
882 
883   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
884   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
885     IndexedType = Base->getType();
886     return POS;
887   }
888 
889   return nullptr;
890 }
891 
892 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
893                                       llvm::Value *Index, QualType IndexType,
894                                       bool Accessed) {
895   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
896          "should not be called unless adding bounds checks");
897   SanitizerScope SanScope(this);
898 
899   QualType IndexedType;
900   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
901   if (!Bound)
902     return;
903 
904   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
905   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
906   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
907 
908   llvm::Constant *StaticData[] = {
909     EmitCheckSourceLocation(E->getExprLoc()),
910     EmitCheckTypeDescriptor(IndexedType),
911     EmitCheckTypeDescriptor(IndexType)
912   };
913   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
914                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
915   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
916             SanitizerHandler::OutOfBounds, StaticData, Index);
917 }
918 
919 
920 CodeGenFunction::ComplexPairTy CodeGenFunction::
921 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
922                          bool isInc, bool isPre) {
923   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
924 
925   llvm::Value *NextVal;
926   if (isa<llvm::IntegerType>(InVal.first->getType())) {
927     uint64_t AmountVal = isInc ? 1 : -1;
928     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
929 
930     // Add the inc/dec to the real part.
931     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
932   } else {
933     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
934     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
935     if (!isInc)
936       FVal.changeSign();
937     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
938 
939     // Add the inc/dec to the real part.
940     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
941   }
942 
943   ComplexPairTy IncVal(NextVal, InVal.second);
944 
945   // Store the updated result through the lvalue.
946   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
947 
948   // If this is a postinc, return the value read from memory, otherwise use the
949   // updated value.
950   return isPre ? IncVal : InVal;
951 }
952 
953 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
954                                              CodeGenFunction *CGF) {
955   // Bind VLAs in the cast type.
956   if (CGF && E->getType()->isVariablyModifiedType())
957     CGF->EmitVariablyModifiedType(E->getType());
958 
959   if (CGDebugInfo *DI = getModuleDebugInfo())
960     DI->EmitExplicitCastType(E->getType());
961 }
962 
963 //===----------------------------------------------------------------------===//
964 //                         LValue Expression Emission
965 //===----------------------------------------------------------------------===//
966 
967 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
968 /// derive a more accurate bound on the alignment of the pointer.
969 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
970                                                   LValueBaseInfo *BaseInfo,
971                                                   TBAAAccessInfo *TBAAInfo) {
972   // We allow this with ObjC object pointers because of fragile ABIs.
973   assert(E->getType()->isPointerType() ||
974          E->getType()->isObjCObjectPointerType());
975   E = E->IgnoreParens();
976 
977   // Casts:
978   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
979     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
980       CGM.EmitExplicitCastExprType(ECE, this);
981 
982     switch (CE->getCastKind()) {
983     // Non-converting casts (but not C's implicit conversion from void*).
984     case CK_BitCast:
985     case CK_NoOp:
986     case CK_AddressSpaceConversion:
987       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
988         if (PtrTy->getPointeeType()->isVoidType())
989           break;
990 
991         LValueBaseInfo InnerBaseInfo;
992         TBAAAccessInfo InnerTBAAInfo;
993         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
994                                                 &InnerBaseInfo,
995                                                 &InnerTBAAInfo);
996         if (BaseInfo) *BaseInfo = InnerBaseInfo;
997         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
998 
999         if (isa<ExplicitCastExpr>(CE)) {
1000           LValueBaseInfo TargetTypeBaseInfo;
1001           TBAAAccessInfo TargetTypeTBAAInfo;
1002           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1003                                                            &TargetTypeBaseInfo,
1004                                                            &TargetTypeTBAAInfo);
1005           if (TBAAInfo)
1006             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1007                                                  TargetTypeTBAAInfo);
1008           // If the source l-value is opaque, honor the alignment of the
1009           // casted-to type.
1010           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1011             if (BaseInfo)
1012               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1013             Addr = Address(Addr.getPointer(), Align);
1014           }
1015         }
1016 
1017         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1018             CE->getCastKind() == CK_BitCast) {
1019           if (auto PT = E->getType()->getAs<PointerType>())
1020             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1021                                       /*MayBeNull=*/true,
1022                                       CodeGenFunction::CFITCK_UnrelatedCast,
1023                                       CE->getLocStart());
1024         }
1025         return CE->getCastKind() != CK_AddressSpaceConversion
1026                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1027                    : Builder.CreateAddrSpaceCast(Addr,
1028                                                  ConvertType(E->getType()));
1029       }
1030       break;
1031 
1032     // Array-to-pointer decay.
1033     case CK_ArrayToPointerDecay:
1034       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1035 
1036     // Derived-to-base conversions.
1037     case CK_UncheckedDerivedToBase:
1038     case CK_DerivedToBase: {
1039       // TODO: Support accesses to members of base classes in TBAA. For now, we
1040       // conservatively pretend that the complete object is of the base class
1041       // type.
1042       if (TBAAInfo)
1043         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1044       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1045       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1046       return GetAddressOfBaseClass(Addr, Derived,
1047                                    CE->path_begin(), CE->path_end(),
1048                                    ShouldNullCheckClassCastValue(CE),
1049                                    CE->getExprLoc());
1050     }
1051 
1052     // TODO: Is there any reason to treat base-to-derived conversions
1053     // specially?
1054     default:
1055       break;
1056     }
1057   }
1058 
1059   // Unary &.
1060   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1061     if (UO->getOpcode() == UO_AddrOf) {
1062       LValue LV = EmitLValue(UO->getSubExpr());
1063       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1064       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1065       return LV.getAddress();
1066     }
1067   }
1068 
1069   // TODO: conditional operators, comma.
1070 
1071   // Otherwise, use the alignment of the type.
1072   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1073                                                    TBAAInfo);
1074   return Address(EmitScalarExpr(E), Align);
1075 }
1076 
1077 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1078   if (Ty->isVoidType())
1079     return RValue::get(nullptr);
1080 
1081   switch (getEvaluationKind(Ty)) {
1082   case TEK_Complex: {
1083     llvm::Type *EltTy =
1084       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1085     llvm::Value *U = llvm::UndefValue::get(EltTy);
1086     return RValue::getComplex(std::make_pair(U, U));
1087   }
1088 
1089   // If this is a use of an undefined aggregate type, the aggregate must have an
1090   // identifiable address.  Just because the contents of the value are undefined
1091   // doesn't mean that the address can't be taken and compared.
1092   case TEK_Aggregate: {
1093     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1094     return RValue::getAggregate(DestPtr);
1095   }
1096 
1097   case TEK_Scalar:
1098     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1099   }
1100   llvm_unreachable("bad evaluation kind");
1101 }
1102 
1103 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1104                                               const char *Name) {
1105   ErrorUnsupported(E, Name);
1106   return GetUndefRValue(E->getType());
1107 }
1108 
1109 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1110                                               const char *Name) {
1111   ErrorUnsupported(E, Name);
1112   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1113   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1114                         E->getType());
1115 }
1116 
1117 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1118   const Expr *Base = Obj;
1119   while (!isa<CXXThisExpr>(Base)) {
1120     // The result of a dynamic_cast can be null.
1121     if (isa<CXXDynamicCastExpr>(Base))
1122       return false;
1123 
1124     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1125       Base = CE->getSubExpr();
1126     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1127       Base = PE->getSubExpr();
1128     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1129       if (UO->getOpcode() == UO_Extension)
1130         Base = UO->getSubExpr();
1131       else
1132         return false;
1133     } else {
1134       return false;
1135     }
1136   }
1137   return true;
1138 }
1139 
1140 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1141   LValue LV;
1142   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1143     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1144   else
1145     LV = EmitLValue(E);
1146   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1147     SanitizerSet SkippedChecks;
1148     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1149       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1150       if (IsBaseCXXThis)
1151         SkippedChecks.set(SanitizerKind::Alignment, true);
1152       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1153         SkippedChecks.set(SanitizerKind::Null, true);
1154     }
1155     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1156                   E->getType(), LV.getAlignment(), SkippedChecks);
1157   }
1158   return LV;
1159 }
1160 
1161 /// EmitLValue - Emit code to compute a designator that specifies the location
1162 /// of the expression.
1163 ///
1164 /// This can return one of two things: a simple address or a bitfield reference.
1165 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1166 /// an LLVM pointer type.
1167 ///
1168 /// If this returns a bitfield reference, nothing about the pointee type of the
1169 /// LLVM value is known: For example, it may not be a pointer to an integer.
1170 ///
1171 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1172 /// this method guarantees that the returned pointer type will point to an LLVM
1173 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1174 /// length type, this is not possible.
1175 ///
1176 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1177   ApplyDebugLocation DL(*this, E);
1178   switch (E->getStmtClass()) {
1179   default: return EmitUnsupportedLValue(E, "l-value expression");
1180 
1181   case Expr::ObjCPropertyRefExprClass:
1182     llvm_unreachable("cannot emit a property reference directly");
1183 
1184   case Expr::ObjCSelectorExprClass:
1185     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1186   case Expr::ObjCIsaExprClass:
1187     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1188   case Expr::BinaryOperatorClass:
1189     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1190   case Expr::CompoundAssignOperatorClass: {
1191     QualType Ty = E->getType();
1192     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1193       Ty = AT->getValueType();
1194     if (!Ty->isAnyComplexType())
1195       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1196     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1197   }
1198   case Expr::CallExprClass:
1199   case Expr::CXXMemberCallExprClass:
1200   case Expr::CXXOperatorCallExprClass:
1201   case Expr::UserDefinedLiteralClass:
1202     return EmitCallExprLValue(cast<CallExpr>(E));
1203   case Expr::VAArgExprClass:
1204     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1205   case Expr::DeclRefExprClass:
1206     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1207   case Expr::ParenExprClass:
1208     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1209   case Expr::GenericSelectionExprClass:
1210     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1211   case Expr::PredefinedExprClass:
1212     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1213   case Expr::StringLiteralClass:
1214     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1215   case Expr::ObjCEncodeExprClass:
1216     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1217   case Expr::PseudoObjectExprClass:
1218     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1219   case Expr::InitListExprClass:
1220     return EmitInitListLValue(cast<InitListExpr>(E));
1221   case Expr::CXXTemporaryObjectExprClass:
1222   case Expr::CXXConstructExprClass:
1223     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1224   case Expr::CXXBindTemporaryExprClass:
1225     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1226   case Expr::CXXUuidofExprClass:
1227     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1228   case Expr::LambdaExprClass:
1229     return EmitLambdaLValue(cast<LambdaExpr>(E));
1230 
1231   case Expr::ExprWithCleanupsClass: {
1232     const auto *cleanups = cast<ExprWithCleanups>(E);
1233     enterFullExpression(cleanups);
1234     RunCleanupsScope Scope(*this);
1235     LValue LV = EmitLValue(cleanups->getSubExpr());
1236     if (LV.isSimple()) {
1237       // Defend against branches out of gnu statement expressions surrounded by
1238       // cleanups.
1239       llvm::Value *V = LV.getPointer();
1240       Scope.ForceCleanup({&V});
1241       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1242                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1243     }
1244     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1245     // bitfield lvalue or some other non-simple lvalue?
1246     return LV;
1247   }
1248 
1249   case Expr::CXXDefaultArgExprClass:
1250     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1251   case Expr::CXXDefaultInitExprClass: {
1252     CXXDefaultInitExprScope Scope(*this);
1253     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1254   }
1255   case Expr::CXXTypeidExprClass:
1256     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1257 
1258   case Expr::ObjCMessageExprClass:
1259     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1260   case Expr::ObjCIvarRefExprClass:
1261     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1262   case Expr::StmtExprClass:
1263     return EmitStmtExprLValue(cast<StmtExpr>(E));
1264   case Expr::UnaryOperatorClass:
1265     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1266   case Expr::ArraySubscriptExprClass:
1267     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1268   case Expr::OMPArraySectionExprClass:
1269     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1270   case Expr::ExtVectorElementExprClass:
1271     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1272   case Expr::MemberExprClass:
1273     return EmitMemberExpr(cast<MemberExpr>(E));
1274   case Expr::CompoundLiteralExprClass:
1275     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1276   case Expr::ConditionalOperatorClass:
1277     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1278   case Expr::BinaryConditionalOperatorClass:
1279     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1280   case Expr::ChooseExprClass:
1281     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1282   case Expr::OpaqueValueExprClass:
1283     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1284   case Expr::SubstNonTypeTemplateParmExprClass:
1285     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1286   case Expr::ImplicitCastExprClass:
1287   case Expr::CStyleCastExprClass:
1288   case Expr::CXXFunctionalCastExprClass:
1289   case Expr::CXXStaticCastExprClass:
1290   case Expr::CXXDynamicCastExprClass:
1291   case Expr::CXXReinterpretCastExprClass:
1292   case Expr::CXXConstCastExprClass:
1293   case Expr::ObjCBridgedCastExprClass:
1294     return EmitCastLValue(cast<CastExpr>(E));
1295 
1296   case Expr::MaterializeTemporaryExprClass:
1297     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1298 
1299   case Expr::CoawaitExprClass:
1300     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1301   case Expr::CoyieldExprClass:
1302     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1303   }
1304 }
1305 
1306 /// Given an object of the given canonical type, can we safely copy a
1307 /// value out of it based on its initializer?
1308 static bool isConstantEmittableObjectType(QualType type) {
1309   assert(type.isCanonical());
1310   assert(!type->isReferenceType());
1311 
1312   // Must be const-qualified but non-volatile.
1313   Qualifiers qs = type.getLocalQualifiers();
1314   if (!qs.hasConst() || qs.hasVolatile()) return false;
1315 
1316   // Otherwise, all object types satisfy this except C++ classes with
1317   // mutable subobjects or non-trivial copy/destroy behavior.
1318   if (const auto *RT = dyn_cast<RecordType>(type))
1319     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1320       if (RD->hasMutableFields() || !RD->isTrivial())
1321         return false;
1322 
1323   return true;
1324 }
1325 
1326 /// Can we constant-emit a load of a reference to a variable of the
1327 /// given type?  This is different from predicates like
1328 /// Decl::isUsableInConstantExpressions because we do want it to apply
1329 /// in situations that don't necessarily satisfy the language's rules
1330 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1331 /// to do this with const float variables even if those variables
1332 /// aren't marked 'constexpr'.
1333 enum ConstantEmissionKind {
1334   CEK_None,
1335   CEK_AsReferenceOnly,
1336   CEK_AsValueOrReference,
1337   CEK_AsValueOnly
1338 };
1339 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1340   type = type.getCanonicalType();
1341   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1342     if (isConstantEmittableObjectType(ref->getPointeeType()))
1343       return CEK_AsValueOrReference;
1344     return CEK_AsReferenceOnly;
1345   }
1346   if (isConstantEmittableObjectType(type))
1347     return CEK_AsValueOnly;
1348   return CEK_None;
1349 }
1350 
1351 /// Try to emit a reference to the given value without producing it as
1352 /// an l-value.  This is actually more than an optimization: we can't
1353 /// produce an l-value for variables that we never actually captured
1354 /// in a block or lambda, which means const int variables or constexpr
1355 /// literals or similar.
1356 CodeGenFunction::ConstantEmission
1357 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1358   ValueDecl *value = refExpr->getDecl();
1359 
1360   // The value needs to be an enum constant or a constant variable.
1361   ConstantEmissionKind CEK;
1362   if (isa<ParmVarDecl>(value)) {
1363     CEK = CEK_None;
1364   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1365     CEK = checkVarTypeForConstantEmission(var->getType());
1366   } else if (isa<EnumConstantDecl>(value)) {
1367     CEK = CEK_AsValueOnly;
1368   } else {
1369     CEK = CEK_None;
1370   }
1371   if (CEK == CEK_None) return ConstantEmission();
1372 
1373   Expr::EvalResult result;
1374   bool resultIsReference;
1375   QualType resultType;
1376 
1377   // It's best to evaluate all the way as an r-value if that's permitted.
1378   if (CEK != CEK_AsReferenceOnly &&
1379       refExpr->EvaluateAsRValue(result, getContext())) {
1380     resultIsReference = false;
1381     resultType = refExpr->getType();
1382 
1383   // Otherwise, try to evaluate as an l-value.
1384   } else if (CEK != CEK_AsValueOnly &&
1385              refExpr->EvaluateAsLValue(result, getContext())) {
1386     resultIsReference = true;
1387     resultType = value->getType();
1388 
1389   // Failure.
1390   } else {
1391     return ConstantEmission();
1392   }
1393 
1394   // In any case, if the initializer has side-effects, abandon ship.
1395   if (result.HasSideEffects)
1396     return ConstantEmission();
1397 
1398   // Emit as a constant.
1399   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1400                                                result.Val, resultType);
1401 
1402   // Make sure we emit a debug reference to the global variable.
1403   // This should probably fire even for
1404   if (isa<VarDecl>(value)) {
1405     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1406       EmitDeclRefExprDbgValue(refExpr, result.Val);
1407   } else {
1408     assert(isa<EnumConstantDecl>(value));
1409     EmitDeclRefExprDbgValue(refExpr, result.Val);
1410   }
1411 
1412   // If we emitted a reference constant, we need to dereference that.
1413   if (resultIsReference)
1414     return ConstantEmission::forReference(C);
1415 
1416   return ConstantEmission::forValue(C);
1417 }
1418 
1419 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1420                                                         const MemberExpr *ME) {
1421   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1422     // Try to emit static variable member expressions as DREs.
1423     return DeclRefExpr::Create(
1424         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1425         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1426         ME->getType(), ME->getValueKind());
1427   }
1428   return nullptr;
1429 }
1430 
1431 CodeGenFunction::ConstantEmission
1432 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1433   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1434     return tryEmitAsConstant(DRE);
1435   return ConstantEmission();
1436 }
1437 
1438 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1439                                                SourceLocation Loc) {
1440   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1441                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1442                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1443 }
1444 
1445 static bool hasBooleanRepresentation(QualType Ty) {
1446   if (Ty->isBooleanType())
1447     return true;
1448 
1449   if (const EnumType *ET = Ty->getAs<EnumType>())
1450     return ET->getDecl()->getIntegerType()->isBooleanType();
1451 
1452   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1453     return hasBooleanRepresentation(AT->getValueType());
1454 
1455   return false;
1456 }
1457 
1458 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1459                             llvm::APInt &Min, llvm::APInt &End,
1460                             bool StrictEnums, bool IsBool) {
1461   const EnumType *ET = Ty->getAs<EnumType>();
1462   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1463                                 ET && !ET->getDecl()->isFixed();
1464   if (!IsBool && !IsRegularCPlusPlusEnum)
1465     return false;
1466 
1467   if (IsBool) {
1468     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1469     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1470   } else {
1471     const EnumDecl *ED = ET->getDecl();
1472     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1473     unsigned Bitwidth = LTy->getScalarSizeInBits();
1474     unsigned NumNegativeBits = ED->getNumNegativeBits();
1475     unsigned NumPositiveBits = ED->getNumPositiveBits();
1476 
1477     if (NumNegativeBits) {
1478       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1479       assert(NumBits <= Bitwidth);
1480       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1481       Min = -End;
1482     } else {
1483       assert(NumPositiveBits <= Bitwidth);
1484       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1485       Min = llvm::APInt(Bitwidth, 0);
1486     }
1487   }
1488   return true;
1489 }
1490 
1491 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1492   llvm::APInt Min, End;
1493   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1494                        hasBooleanRepresentation(Ty)))
1495     return nullptr;
1496 
1497   llvm::MDBuilder MDHelper(getLLVMContext());
1498   return MDHelper.createRange(Min, End);
1499 }
1500 
1501 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1502                                            SourceLocation Loc) {
1503   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1504   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1505   if (!HasBoolCheck && !HasEnumCheck)
1506     return false;
1507 
1508   bool IsBool = hasBooleanRepresentation(Ty) ||
1509                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1510   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1511   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1512   if (!NeedsBoolCheck && !NeedsEnumCheck)
1513     return false;
1514 
1515   // Single-bit booleans don't need to be checked. Special-case this to avoid
1516   // a bit width mismatch when handling bitfield values. This is handled by
1517   // EmitFromMemory for the non-bitfield case.
1518   if (IsBool &&
1519       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1520     return false;
1521 
1522   llvm::APInt Min, End;
1523   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1524     return true;
1525 
1526   auto &Ctx = getLLVMContext();
1527   SanitizerScope SanScope(this);
1528   llvm::Value *Check;
1529   --End;
1530   if (!Min) {
1531     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1532   } else {
1533     llvm::Value *Upper =
1534         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1535     llvm::Value *Lower =
1536         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1537     Check = Builder.CreateAnd(Upper, Lower);
1538   }
1539   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1540                                   EmitCheckTypeDescriptor(Ty)};
1541   SanitizerMask Kind =
1542       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1543   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1544             StaticArgs, EmitCheckValue(Value));
1545   return true;
1546 }
1547 
1548 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1549                                                QualType Ty,
1550                                                SourceLocation Loc,
1551                                                LValueBaseInfo BaseInfo,
1552                                                TBAAAccessInfo TBAAInfo,
1553                                                bool isNontemporal) {
1554   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1555     // For better performance, handle vector loads differently.
1556     if (Ty->isVectorType()) {
1557       const llvm::Type *EltTy = Addr.getElementType();
1558 
1559       const auto *VTy = cast<llvm::VectorType>(EltTy);
1560 
1561       // Handle vectors of size 3 like size 4 for better performance.
1562       if (VTy->getNumElements() == 3) {
1563 
1564         // Bitcast to vec4 type.
1565         llvm::VectorType *vec4Ty =
1566             llvm::VectorType::get(VTy->getElementType(), 4);
1567         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1568         // Now load value.
1569         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1570 
1571         // Shuffle vector to get vec3.
1572         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1573                                         {0, 1, 2}, "extractVec");
1574         return EmitFromMemory(V, Ty);
1575       }
1576     }
1577   }
1578 
1579   // Atomic operations have to be done on integral types.
1580   LValue AtomicLValue =
1581       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1582   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1583     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1584   }
1585 
1586   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1587   if (isNontemporal) {
1588     llvm::MDNode *Node = llvm::MDNode::get(
1589         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1590     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1591   }
1592 
1593   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1594 
1595   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1596     // In order to prevent the optimizer from throwing away the check, don't
1597     // attach range metadata to the load.
1598   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1599     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1600       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1601 
1602   return EmitFromMemory(Load, Ty);
1603 }
1604 
1605 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1606   // Bool has a different representation in memory than in registers.
1607   if (hasBooleanRepresentation(Ty)) {
1608     // This should really always be an i1, but sometimes it's already
1609     // an i8, and it's awkward to track those cases down.
1610     if (Value->getType()->isIntegerTy(1))
1611       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1612     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1613            "wrong value rep of bool");
1614   }
1615 
1616   return Value;
1617 }
1618 
1619 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1620   // Bool has a different representation in memory than in registers.
1621   if (hasBooleanRepresentation(Ty)) {
1622     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1623            "wrong value rep of bool");
1624     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1625   }
1626 
1627   return Value;
1628 }
1629 
1630 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1631                                         bool Volatile, QualType Ty,
1632                                         LValueBaseInfo BaseInfo,
1633                                         TBAAAccessInfo TBAAInfo,
1634                                         bool isInit, bool isNontemporal) {
1635   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1636     // Handle vectors differently to get better performance.
1637     if (Ty->isVectorType()) {
1638       llvm::Type *SrcTy = Value->getType();
1639       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1640       // Handle vec3 special.
1641       if (VecTy && VecTy->getNumElements() == 3) {
1642         // Our source is a vec3, do a shuffle vector to make it a vec4.
1643         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1644                                   Builder.getInt32(2),
1645                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1646         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1647         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1648                                             MaskV, "extractVec");
1649         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1650       }
1651       if (Addr.getElementType() != SrcTy) {
1652         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1653       }
1654     }
1655   }
1656 
1657   Value = EmitToMemory(Value, Ty);
1658 
1659   LValue AtomicLValue =
1660       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1661   if (Ty->isAtomicType() ||
1662       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1663     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1664     return;
1665   }
1666 
1667   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1668   if (isNontemporal) {
1669     llvm::MDNode *Node =
1670         llvm::MDNode::get(Store->getContext(),
1671                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1672     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1673   }
1674 
1675   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1676 }
1677 
1678 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1679                                         bool isInit) {
1680   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1681                     lvalue.getType(), lvalue.getBaseInfo(),
1682                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1683 }
1684 
1685 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1686 /// method emits the address of the lvalue, then loads the result as an rvalue,
1687 /// returning the rvalue.
1688 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1689   if (LV.isObjCWeak()) {
1690     // load of a __weak object.
1691     Address AddrWeakObj = LV.getAddress();
1692     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1693                                                              AddrWeakObj));
1694   }
1695   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1696     // In MRC mode, we do a load+autorelease.
1697     if (!getLangOpts().ObjCAutoRefCount) {
1698       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1699     }
1700 
1701     // In ARC mode, we load retained and then consume the value.
1702     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1703     Object = EmitObjCConsumeObject(LV.getType(), Object);
1704     return RValue::get(Object);
1705   }
1706 
1707   if (LV.isSimple()) {
1708     assert(!LV.getType()->isFunctionType());
1709 
1710     // Everything needs a load.
1711     return RValue::get(EmitLoadOfScalar(LV, Loc));
1712   }
1713 
1714   if (LV.isVectorElt()) {
1715     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1716                                               LV.isVolatileQualified());
1717     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1718                                                     "vecext"));
1719   }
1720 
1721   // If this is a reference to a subset of the elements of a vector, either
1722   // shuffle the input or extract/insert them as appropriate.
1723   if (LV.isExtVectorElt())
1724     return EmitLoadOfExtVectorElementLValue(LV);
1725 
1726   // Global Register variables always invoke intrinsics
1727   if (LV.isGlobalReg())
1728     return EmitLoadOfGlobalRegLValue(LV);
1729 
1730   assert(LV.isBitField() && "Unknown LValue type!");
1731   return EmitLoadOfBitfieldLValue(LV, Loc);
1732 }
1733 
1734 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1735                                                  SourceLocation Loc) {
1736   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1737 
1738   // Get the output type.
1739   llvm::Type *ResLTy = ConvertType(LV.getType());
1740 
1741   Address Ptr = LV.getBitFieldAddress();
1742   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1743 
1744   if (Info.IsSigned) {
1745     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1746     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1747     if (HighBits)
1748       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1749     if (Info.Offset + HighBits)
1750       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1751   } else {
1752     if (Info.Offset)
1753       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1754     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1755       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1756                                                               Info.Size),
1757                               "bf.clear");
1758   }
1759   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1760   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1761   return RValue::get(Val);
1762 }
1763 
1764 // If this is a reference to a subset of the elements of a vector, create an
1765 // appropriate shufflevector.
1766 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1767   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1768                                         LV.isVolatileQualified());
1769 
1770   const llvm::Constant *Elts = LV.getExtVectorElts();
1771 
1772   // If the result of the expression is a non-vector type, we must be extracting
1773   // a single element.  Just codegen as an extractelement.
1774   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1775   if (!ExprVT) {
1776     unsigned InIdx = getAccessedFieldNo(0, Elts);
1777     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1778     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1779   }
1780 
1781   // Always use shuffle vector to try to retain the original program structure
1782   unsigned NumResultElts = ExprVT->getNumElements();
1783 
1784   SmallVector<llvm::Constant*, 4> Mask;
1785   for (unsigned i = 0; i != NumResultElts; ++i)
1786     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1787 
1788   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1789   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1790                                     MaskV);
1791   return RValue::get(Vec);
1792 }
1793 
1794 /// @brief Generates lvalue for partial ext_vector access.
1795 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1796   Address VectorAddress = LV.getExtVectorAddress();
1797   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1798   QualType EQT = ExprVT->getElementType();
1799   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1800 
1801   Address CastToPointerElement =
1802     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1803                                  "conv.ptr.element");
1804 
1805   const llvm::Constant *Elts = LV.getExtVectorElts();
1806   unsigned ix = getAccessedFieldNo(0, Elts);
1807 
1808   Address VectorBasePtrPlusIx =
1809     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1810                                    getContext().getTypeSizeInChars(EQT),
1811                                    "vector.elt");
1812 
1813   return VectorBasePtrPlusIx;
1814 }
1815 
1816 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1817 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1818   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1819          "Bad type for register variable");
1820   llvm::MDNode *RegName = cast<llvm::MDNode>(
1821       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1822 
1823   // We accept integer and pointer types only
1824   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1825   llvm::Type *Ty = OrigTy;
1826   if (OrigTy->isPointerTy())
1827     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1828   llvm::Type *Types[] = { Ty };
1829 
1830   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1831   llvm::Value *Call = Builder.CreateCall(
1832       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1833   if (OrigTy->isPointerTy())
1834     Call = Builder.CreateIntToPtr(Call, OrigTy);
1835   return RValue::get(Call);
1836 }
1837 
1838 
1839 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1840 /// lvalue, where both are guaranteed to the have the same type, and that type
1841 /// is 'Ty'.
1842 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1843                                              bool isInit) {
1844   if (!Dst.isSimple()) {
1845     if (Dst.isVectorElt()) {
1846       // Read/modify/write the vector, inserting the new element.
1847       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1848                                             Dst.isVolatileQualified());
1849       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1850                                         Dst.getVectorIdx(), "vecins");
1851       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1852                           Dst.isVolatileQualified());
1853       return;
1854     }
1855 
1856     // If this is an update of extended vector elements, insert them as
1857     // appropriate.
1858     if (Dst.isExtVectorElt())
1859       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1860 
1861     if (Dst.isGlobalReg())
1862       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1863 
1864     assert(Dst.isBitField() && "Unknown LValue type");
1865     return EmitStoreThroughBitfieldLValue(Src, Dst);
1866   }
1867 
1868   // There's special magic for assigning into an ARC-qualified l-value.
1869   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1870     switch (Lifetime) {
1871     case Qualifiers::OCL_None:
1872       llvm_unreachable("present but none");
1873 
1874     case Qualifiers::OCL_ExplicitNone:
1875       // nothing special
1876       break;
1877 
1878     case Qualifiers::OCL_Strong:
1879       if (isInit) {
1880         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1881         break;
1882       }
1883       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1884       return;
1885 
1886     case Qualifiers::OCL_Weak:
1887       if (isInit)
1888         // Initialize and then skip the primitive store.
1889         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1890       else
1891         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1892       return;
1893 
1894     case Qualifiers::OCL_Autoreleasing:
1895       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1896                                                      Src.getScalarVal()));
1897       // fall into the normal path
1898       break;
1899     }
1900   }
1901 
1902   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1903     // load of a __weak object.
1904     Address LvalueDst = Dst.getAddress();
1905     llvm::Value *src = Src.getScalarVal();
1906      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1907     return;
1908   }
1909 
1910   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1911     // load of a __strong object.
1912     Address LvalueDst = Dst.getAddress();
1913     llvm::Value *src = Src.getScalarVal();
1914     if (Dst.isObjCIvar()) {
1915       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1916       llvm::Type *ResultType = IntPtrTy;
1917       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1918       llvm::Value *RHS = dst.getPointer();
1919       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1920       llvm::Value *LHS =
1921         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1922                                "sub.ptr.lhs.cast");
1923       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1924       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1925                                               BytesBetween);
1926     } else if (Dst.isGlobalObjCRef()) {
1927       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1928                                                 Dst.isThreadLocalRef());
1929     }
1930     else
1931       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1932     return;
1933   }
1934 
1935   assert(Src.isScalar() && "Can't emit an agg store with this method");
1936   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1937 }
1938 
1939 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1940                                                      llvm::Value **Result) {
1941   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1942   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1943   Address Ptr = Dst.getBitFieldAddress();
1944 
1945   // Get the source value, truncated to the width of the bit-field.
1946   llvm::Value *SrcVal = Src.getScalarVal();
1947 
1948   // Cast the source to the storage type and shift it into place.
1949   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1950                                  /*IsSigned=*/false);
1951   llvm::Value *MaskedVal = SrcVal;
1952 
1953   // See if there are other bits in the bitfield's storage we'll need to load
1954   // and mask together with source before storing.
1955   if (Info.StorageSize != Info.Size) {
1956     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1957     llvm::Value *Val =
1958       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1959 
1960     // Mask the source value as needed.
1961     if (!hasBooleanRepresentation(Dst.getType()))
1962       SrcVal = Builder.CreateAnd(SrcVal,
1963                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1964                                                             Info.Size),
1965                                  "bf.value");
1966     MaskedVal = SrcVal;
1967     if (Info.Offset)
1968       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1969 
1970     // Mask out the original value.
1971     Val = Builder.CreateAnd(Val,
1972                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1973                                                      Info.Offset,
1974                                                      Info.Offset + Info.Size),
1975                             "bf.clear");
1976 
1977     // Or together the unchanged values and the source value.
1978     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1979   } else {
1980     assert(Info.Offset == 0);
1981   }
1982 
1983   // Write the new value back out.
1984   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1985 
1986   // Return the new value of the bit-field, if requested.
1987   if (Result) {
1988     llvm::Value *ResultVal = MaskedVal;
1989 
1990     // Sign extend the value if needed.
1991     if (Info.IsSigned) {
1992       assert(Info.Size <= Info.StorageSize);
1993       unsigned HighBits = Info.StorageSize - Info.Size;
1994       if (HighBits) {
1995         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1996         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1997       }
1998     }
1999 
2000     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2001                                       "bf.result.cast");
2002     *Result = EmitFromMemory(ResultVal, Dst.getType());
2003   }
2004 }
2005 
2006 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2007                                                                LValue Dst) {
2008   // This access turns into a read/modify/write of the vector.  Load the input
2009   // value now.
2010   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2011                                         Dst.isVolatileQualified());
2012   const llvm::Constant *Elts = Dst.getExtVectorElts();
2013 
2014   llvm::Value *SrcVal = Src.getScalarVal();
2015 
2016   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2017     unsigned NumSrcElts = VTy->getNumElements();
2018     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2019     if (NumDstElts == NumSrcElts) {
2020       // Use shuffle vector is the src and destination are the same number of
2021       // elements and restore the vector mask since it is on the side it will be
2022       // stored.
2023       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2024       for (unsigned i = 0; i != NumSrcElts; ++i)
2025         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2026 
2027       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2028       Vec = Builder.CreateShuffleVector(SrcVal,
2029                                         llvm::UndefValue::get(Vec->getType()),
2030                                         MaskV);
2031     } else if (NumDstElts > NumSrcElts) {
2032       // Extended the source vector to the same length and then shuffle it
2033       // into the destination.
2034       // FIXME: since we're shuffling with undef, can we just use the indices
2035       //        into that?  This could be simpler.
2036       SmallVector<llvm::Constant*, 4> ExtMask;
2037       for (unsigned i = 0; i != NumSrcElts; ++i)
2038         ExtMask.push_back(Builder.getInt32(i));
2039       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2040       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2041       llvm::Value *ExtSrcVal =
2042         Builder.CreateShuffleVector(SrcVal,
2043                                     llvm::UndefValue::get(SrcVal->getType()),
2044                                     ExtMaskV);
2045       // build identity
2046       SmallVector<llvm::Constant*, 4> Mask;
2047       for (unsigned i = 0; i != NumDstElts; ++i)
2048         Mask.push_back(Builder.getInt32(i));
2049 
2050       // When the vector size is odd and .odd or .hi is used, the last element
2051       // of the Elts constant array will be one past the size of the vector.
2052       // Ignore the last element here, if it is greater than the mask size.
2053       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2054         NumSrcElts--;
2055 
2056       // modify when what gets shuffled in
2057       for (unsigned i = 0; i != NumSrcElts; ++i)
2058         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2059       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2060       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2061     } else {
2062       // We should never shorten the vector
2063       llvm_unreachable("unexpected shorten vector length");
2064     }
2065   } else {
2066     // If the Src is a scalar (not a vector) it must be updating one element.
2067     unsigned InIdx = getAccessedFieldNo(0, Elts);
2068     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2069     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2070   }
2071 
2072   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2073                       Dst.isVolatileQualified());
2074 }
2075 
2076 /// @brief Store of global named registers are always calls to intrinsics.
2077 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2078   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2079          "Bad type for register variable");
2080   llvm::MDNode *RegName = cast<llvm::MDNode>(
2081       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2082   assert(RegName && "Register LValue is not metadata");
2083 
2084   // We accept integer and pointer types only
2085   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2086   llvm::Type *Ty = OrigTy;
2087   if (OrigTy->isPointerTy())
2088     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2089   llvm::Type *Types[] = { Ty };
2090 
2091   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2092   llvm::Value *Value = Src.getScalarVal();
2093   if (OrigTy->isPointerTy())
2094     Value = Builder.CreatePtrToInt(Value, Ty);
2095   Builder.CreateCall(
2096       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2097 }
2098 
2099 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2100 // generating write-barries API. It is currently a global, ivar,
2101 // or neither.
2102 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2103                                  LValue &LV,
2104                                  bool IsMemberAccess=false) {
2105   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2106     return;
2107 
2108   if (isa<ObjCIvarRefExpr>(E)) {
2109     QualType ExpTy = E->getType();
2110     if (IsMemberAccess && ExpTy->isPointerType()) {
2111       // If ivar is a structure pointer, assigning to field of
2112       // this struct follows gcc's behavior and makes it a non-ivar
2113       // writer-barrier conservatively.
2114       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2115       if (ExpTy->isRecordType()) {
2116         LV.setObjCIvar(false);
2117         return;
2118       }
2119     }
2120     LV.setObjCIvar(true);
2121     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2122     LV.setBaseIvarExp(Exp->getBase());
2123     LV.setObjCArray(E->getType()->isArrayType());
2124     return;
2125   }
2126 
2127   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2128     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2129       if (VD->hasGlobalStorage()) {
2130         LV.setGlobalObjCRef(true);
2131         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2132       }
2133     }
2134     LV.setObjCArray(E->getType()->isArrayType());
2135     return;
2136   }
2137 
2138   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2139     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2140     return;
2141   }
2142 
2143   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2144     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2145     if (LV.isObjCIvar()) {
2146       // If cast is to a structure pointer, follow gcc's behavior and make it
2147       // a non-ivar write-barrier.
2148       QualType ExpTy = E->getType();
2149       if (ExpTy->isPointerType())
2150         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2151       if (ExpTy->isRecordType())
2152         LV.setObjCIvar(false);
2153     }
2154     return;
2155   }
2156 
2157   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2158     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2159     return;
2160   }
2161 
2162   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2163     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2164     return;
2165   }
2166 
2167   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2168     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2169     return;
2170   }
2171 
2172   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2173     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2174     return;
2175   }
2176 
2177   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2178     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2179     if (LV.isObjCIvar() && !LV.isObjCArray())
2180       // Using array syntax to assigning to what an ivar points to is not
2181       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2182       LV.setObjCIvar(false);
2183     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2184       // Using array syntax to assigning to what global points to is not
2185       // same as assigning to the global itself. {id *G;} G[i] = 0;
2186       LV.setGlobalObjCRef(false);
2187     return;
2188   }
2189 
2190   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2191     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2192     // We don't know if member is an 'ivar', but this flag is looked at
2193     // only in the context of LV.isObjCIvar().
2194     LV.setObjCArray(E->getType()->isArrayType());
2195     return;
2196   }
2197 }
2198 
2199 static llvm::Value *
2200 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2201                                 llvm::Value *V, llvm::Type *IRType,
2202                                 StringRef Name = StringRef()) {
2203   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2204   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2205 }
2206 
2207 static LValue EmitThreadPrivateVarDeclLValue(
2208     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2209     llvm::Type *RealVarTy, SourceLocation Loc) {
2210   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2211   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2212   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2213 }
2214 
2215 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF,
2216                                                const VarDecl *VD, QualType T) {
2217   for (const auto *D : VD->redecls()) {
2218     if (!VD->hasAttrs())
2219       continue;
2220     if (const auto *Attr = D->getAttr<OMPDeclareTargetDeclAttr>())
2221       if (Attr->getMapType() == OMPDeclareTargetDeclAttr::MT_Link) {
2222         QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2223         Address Addr =
2224             CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2225         return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2226       }
2227   }
2228   return Address::invalid();
2229 }
2230 
2231 Address
2232 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2233                                      LValueBaseInfo *PointeeBaseInfo,
2234                                      TBAAAccessInfo *PointeeTBAAInfo) {
2235   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2236                                             RefLVal.isVolatile());
2237   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2238 
2239   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2240                                             PointeeBaseInfo, PointeeTBAAInfo,
2241                                             /* forPointeeType= */ true);
2242   return Address(Load, Align);
2243 }
2244 
2245 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2246   LValueBaseInfo PointeeBaseInfo;
2247   TBAAAccessInfo PointeeTBAAInfo;
2248   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2249                                             &PointeeTBAAInfo);
2250   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2251                         PointeeBaseInfo, PointeeTBAAInfo);
2252 }
2253 
2254 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2255                                            const PointerType *PtrTy,
2256                                            LValueBaseInfo *BaseInfo,
2257                                            TBAAAccessInfo *TBAAInfo) {
2258   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2259   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2260                                                BaseInfo, TBAAInfo,
2261                                                /*forPointeeType=*/true));
2262 }
2263 
2264 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2265                                                 const PointerType *PtrTy) {
2266   LValueBaseInfo BaseInfo;
2267   TBAAAccessInfo TBAAInfo;
2268   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2269   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2270 }
2271 
2272 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2273                                       const Expr *E, const VarDecl *VD) {
2274   QualType T = E->getType();
2275 
2276   // If it's thread_local, emit a call to its wrapper function instead.
2277   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2278       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2279     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2280   // Check if the variable is marked as declare target with link clause in
2281   // device codegen.
2282   if (CGF.getLangOpts().OpenMPIsDevice) {
2283     Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T);
2284     if (Addr.isValid())
2285       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2286   }
2287 
2288   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2289   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2290   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2291   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2292   Address Addr(V, Alignment);
2293   // Emit reference to the private copy of the variable if it is an OpenMP
2294   // threadprivate variable.
2295   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2296       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2297     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2298                                           E->getExprLoc());
2299   }
2300   LValue LV = VD->getType()->isReferenceType() ?
2301       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2302                                     AlignmentSource::Decl) :
2303       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2304   setObjCGCLValueClass(CGF.getContext(), E, LV);
2305   return LV;
2306 }
2307 
2308 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2309                                                const FunctionDecl *FD) {
2310   if (FD->hasAttr<WeakRefAttr>()) {
2311     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2312     return aliasee.getPointer();
2313   }
2314 
2315   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2316   if (!FD->hasPrototype()) {
2317     if (const FunctionProtoType *Proto =
2318             FD->getType()->getAs<FunctionProtoType>()) {
2319       // Ugly case: for a K&R-style definition, the type of the definition
2320       // isn't the same as the type of a use.  Correct for this with a
2321       // bitcast.
2322       QualType NoProtoType =
2323           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2324       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2325       V = llvm::ConstantExpr::getBitCast(V,
2326                                       CGM.getTypes().ConvertType(NoProtoType));
2327     }
2328   }
2329   return V;
2330 }
2331 
2332 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2333                                      const Expr *E, const FunctionDecl *FD) {
2334   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2335   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2336   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2337                             AlignmentSource::Decl);
2338 }
2339 
2340 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2341                                       llvm::Value *ThisValue) {
2342   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2343   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2344   return CGF.EmitLValueForField(LV, FD);
2345 }
2346 
2347 /// Named Registers are named metadata pointing to the register name
2348 /// which will be read from/written to as an argument to the intrinsic
2349 /// @llvm.read/write_register.
2350 /// So far, only the name is being passed down, but other options such as
2351 /// register type, allocation type or even optimization options could be
2352 /// passed down via the metadata node.
2353 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2354   SmallString<64> Name("llvm.named.register.");
2355   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2356   assert(Asm->getLabel().size() < 64-Name.size() &&
2357       "Register name too big");
2358   Name.append(Asm->getLabel());
2359   llvm::NamedMDNode *M =
2360     CGM.getModule().getOrInsertNamedMetadata(Name);
2361   if (M->getNumOperands() == 0) {
2362     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2363                                               Asm->getLabel());
2364     llvm::Metadata *Ops[] = {Str};
2365     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2366   }
2367 
2368   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2369 
2370   llvm::Value *Ptr =
2371     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2372   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2373 }
2374 
2375 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2376   const NamedDecl *ND = E->getDecl();
2377   QualType T = E->getType();
2378 
2379   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2380     // Global Named registers access via intrinsics only
2381     if (VD->getStorageClass() == SC_Register &&
2382         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2383       return EmitGlobalNamedRegister(VD, CGM);
2384 
2385     // A DeclRefExpr for a reference initialized by a constant expression can
2386     // appear without being odr-used. Directly emit the constant initializer.
2387     const Expr *Init = VD->getAnyInitializer(VD);
2388     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2389         VD->isUsableInConstantExpressions(getContext()) &&
2390         VD->checkInitIsICE() &&
2391         // Do not emit if it is private OpenMP variable.
2392         !(E->refersToEnclosingVariableOrCapture() &&
2393           ((CapturedStmtInfo &&
2394             (LocalDeclMap.count(VD->getCanonicalDecl()) ||
2395              CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
2396            LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
2397            isa<BlockDecl>(CurCodeDecl)))) {
2398       llvm::Constant *Val =
2399         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2400                                             *VD->evaluateValue(),
2401                                             VD->getType());
2402       assert(Val && "failed to emit reference constant expression");
2403       // FIXME: Eventually we will want to emit vector element references.
2404 
2405       // Should we be using the alignment of the constant pointer we emitted?
2406       CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
2407                                                     /* BaseInfo= */ nullptr,
2408                                                     /* TBAAInfo= */ nullptr,
2409                                                     /* forPointeeType= */ true);
2410       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2411     }
2412 
2413     // Check for captured variables.
2414     if (E->refersToEnclosingVariableOrCapture()) {
2415       VD = VD->getCanonicalDecl();
2416       if (auto *FD = LambdaCaptureFields.lookup(VD))
2417         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2418       else if (CapturedStmtInfo) {
2419         auto I = LocalDeclMap.find(VD);
2420         if (I != LocalDeclMap.end()) {
2421           if (VD->getType()->isReferenceType())
2422             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2423                                              AlignmentSource::Decl);
2424           return MakeAddrLValue(I->second, T);
2425         }
2426         LValue CapLVal =
2427             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2428                                     CapturedStmtInfo->getContextValue());
2429         return MakeAddrLValue(
2430             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2431             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2432             CapLVal.getTBAAInfo());
2433       }
2434 
2435       assert(isa<BlockDecl>(CurCodeDecl));
2436       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2437       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2438     }
2439   }
2440 
2441   // FIXME: We should be able to assert this for FunctionDecls as well!
2442   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2443   // those with a valid source location.
2444   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2445           !E->getLocation().isValid()) &&
2446          "Should not use decl without marking it used!");
2447 
2448   if (ND->hasAttr<WeakRefAttr>()) {
2449     const auto *VD = cast<ValueDecl>(ND);
2450     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2451     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2452   }
2453 
2454   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2455     // Check if this is a global variable.
2456     if (VD->hasLinkage() || VD->isStaticDataMember())
2457       return EmitGlobalVarDeclLValue(*this, E, VD);
2458 
2459     Address addr = Address::invalid();
2460 
2461     // The variable should generally be present in the local decl map.
2462     auto iter = LocalDeclMap.find(VD);
2463     if (iter != LocalDeclMap.end()) {
2464       addr = iter->second;
2465 
2466     // Otherwise, it might be static local we haven't emitted yet for
2467     // some reason; most likely, because it's in an outer function.
2468     } else if (VD->isStaticLocal()) {
2469       addr = Address(CGM.getOrCreateStaticVarDecl(
2470           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2471                      getContext().getDeclAlign(VD));
2472 
2473     // No other cases for now.
2474     } else {
2475       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2476     }
2477 
2478 
2479     // Check for OpenMP threadprivate variables.
2480     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2481         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2482       return EmitThreadPrivateVarDeclLValue(
2483           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2484           E->getExprLoc());
2485     }
2486 
2487     // Drill into block byref variables.
2488     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2489     if (isBlockByref) {
2490       addr = emitBlockByrefAddress(addr, VD);
2491     }
2492 
2493     // Drill into reference types.
2494     LValue LV = VD->getType()->isReferenceType() ?
2495         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2496         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2497 
2498     bool isLocalStorage = VD->hasLocalStorage();
2499 
2500     bool NonGCable = isLocalStorage &&
2501                      !VD->getType()->isReferenceType() &&
2502                      !isBlockByref;
2503     if (NonGCable) {
2504       LV.getQuals().removeObjCGCAttr();
2505       LV.setNonGC(true);
2506     }
2507 
2508     bool isImpreciseLifetime =
2509       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2510     if (isImpreciseLifetime)
2511       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2512     setObjCGCLValueClass(getContext(), E, LV);
2513     return LV;
2514   }
2515 
2516   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2517     return EmitFunctionDeclLValue(*this, E, FD);
2518 
2519   // FIXME: While we're emitting a binding from an enclosing scope, all other
2520   // DeclRefExprs we see should be implicitly treated as if they also refer to
2521   // an enclosing scope.
2522   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2523     return EmitLValue(BD->getBinding());
2524 
2525   llvm_unreachable("Unhandled DeclRefExpr");
2526 }
2527 
2528 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2529   // __extension__ doesn't affect lvalue-ness.
2530   if (E->getOpcode() == UO_Extension)
2531     return EmitLValue(E->getSubExpr());
2532 
2533   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2534   switch (E->getOpcode()) {
2535   default: llvm_unreachable("Unknown unary operator lvalue!");
2536   case UO_Deref: {
2537     QualType T = E->getSubExpr()->getType()->getPointeeType();
2538     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2539 
2540     LValueBaseInfo BaseInfo;
2541     TBAAAccessInfo TBAAInfo;
2542     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2543                                             &TBAAInfo);
2544     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2545     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2546 
2547     // We should not generate __weak write barrier on indirect reference
2548     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2549     // But, we continue to generate __strong write barrier on indirect write
2550     // into a pointer to object.
2551     if (getLangOpts().ObjC1 &&
2552         getLangOpts().getGC() != LangOptions::NonGC &&
2553         LV.isObjCWeak())
2554       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2555     return LV;
2556   }
2557   case UO_Real:
2558   case UO_Imag: {
2559     LValue LV = EmitLValue(E->getSubExpr());
2560     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2561 
2562     // __real is valid on scalars.  This is a faster way of testing that.
2563     // __imag can only produce an rvalue on scalars.
2564     if (E->getOpcode() == UO_Real &&
2565         !LV.getAddress().getElementType()->isStructTy()) {
2566       assert(E->getSubExpr()->getType()->isArithmeticType());
2567       return LV;
2568     }
2569 
2570     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2571 
2572     Address Component =
2573       (E->getOpcode() == UO_Real
2574          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2575          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2576     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2577                                    CGM.getTBAAInfoForSubobject(LV, T));
2578     ElemLV.getQuals().addQualifiers(LV.getQuals());
2579     return ElemLV;
2580   }
2581   case UO_PreInc:
2582   case UO_PreDec: {
2583     LValue LV = EmitLValue(E->getSubExpr());
2584     bool isInc = E->getOpcode() == UO_PreInc;
2585 
2586     if (E->getType()->isAnyComplexType())
2587       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2588     else
2589       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2590     return LV;
2591   }
2592   }
2593 }
2594 
2595 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2596   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2597                         E->getType(), AlignmentSource::Decl);
2598 }
2599 
2600 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2601   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2602                         E->getType(), AlignmentSource::Decl);
2603 }
2604 
2605 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2606   auto SL = E->getFunctionName();
2607   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2608   StringRef FnName = CurFn->getName();
2609   if (FnName.startswith("\01"))
2610     FnName = FnName.substr(1);
2611   StringRef NameItems[] = {
2612       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2613   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2614   if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) {
2615     std::string Name = SL->getString();
2616     if (!Name.empty()) {
2617       unsigned Discriminator =
2618           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2619       if (Discriminator)
2620         Name += "_" + Twine(Discriminator + 1).str();
2621       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2622       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2623     } else {
2624       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2625       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2626     }
2627   }
2628   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2629   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2630 }
2631 
2632 /// Emit a type description suitable for use by a runtime sanitizer library. The
2633 /// format of a type descriptor is
2634 ///
2635 /// \code
2636 ///   { i16 TypeKind, i16 TypeInfo }
2637 /// \endcode
2638 ///
2639 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2640 /// integer, 1 for a floating point value, and -1 for anything else.
2641 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2642   // Only emit each type's descriptor once.
2643   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2644     return C;
2645 
2646   uint16_t TypeKind = -1;
2647   uint16_t TypeInfo = 0;
2648 
2649   if (T->isIntegerType()) {
2650     TypeKind = 0;
2651     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2652                (T->isSignedIntegerType() ? 1 : 0);
2653   } else if (T->isFloatingType()) {
2654     TypeKind = 1;
2655     TypeInfo = getContext().getTypeSize(T);
2656   }
2657 
2658   // Format the type name as if for a diagnostic, including quotes and
2659   // optionally an 'aka'.
2660   SmallString<32> Buffer;
2661   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2662                                     (intptr_t)T.getAsOpaquePtr(),
2663                                     StringRef(), StringRef(), None, Buffer,
2664                                     None);
2665 
2666   llvm::Constant *Components[] = {
2667     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2668     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2669   };
2670   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2671 
2672   auto *GV = new llvm::GlobalVariable(
2673       CGM.getModule(), Descriptor->getType(),
2674       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2675   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2676   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2677 
2678   // Remember the descriptor for this type.
2679   CGM.setTypeDescriptorInMap(T, GV);
2680 
2681   return GV;
2682 }
2683 
2684 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2685   llvm::Type *TargetTy = IntPtrTy;
2686 
2687   if (V->getType() == TargetTy)
2688     return V;
2689 
2690   // Floating-point types which fit into intptr_t are bitcast to integers
2691   // and then passed directly (after zero-extension, if necessary).
2692   if (V->getType()->isFloatingPointTy()) {
2693     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2694     if (Bits <= TargetTy->getIntegerBitWidth())
2695       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2696                                                          Bits));
2697   }
2698 
2699   // Integers which fit in intptr_t are zero-extended and passed directly.
2700   if (V->getType()->isIntegerTy() &&
2701       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2702     return Builder.CreateZExt(V, TargetTy);
2703 
2704   // Pointers are passed directly, everything else is passed by address.
2705   if (!V->getType()->isPointerTy()) {
2706     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2707     Builder.CreateStore(V, Ptr);
2708     V = Ptr.getPointer();
2709   }
2710   return Builder.CreatePtrToInt(V, TargetTy);
2711 }
2712 
2713 /// \brief Emit a representation of a SourceLocation for passing to a handler
2714 /// in a sanitizer runtime library. The format for this data is:
2715 /// \code
2716 ///   struct SourceLocation {
2717 ///     const char *Filename;
2718 ///     int32_t Line, Column;
2719 ///   };
2720 /// \endcode
2721 /// For an invalid SourceLocation, the Filename pointer is null.
2722 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2723   llvm::Constant *Filename;
2724   int Line, Column;
2725 
2726   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2727   if (PLoc.isValid()) {
2728     StringRef FilenameString = PLoc.getFilename();
2729 
2730     int PathComponentsToStrip =
2731         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2732     if (PathComponentsToStrip < 0) {
2733       assert(PathComponentsToStrip != INT_MIN);
2734       int PathComponentsToKeep = -PathComponentsToStrip;
2735       auto I = llvm::sys::path::rbegin(FilenameString);
2736       auto E = llvm::sys::path::rend(FilenameString);
2737       while (I != E && --PathComponentsToKeep)
2738         ++I;
2739 
2740       FilenameString = FilenameString.substr(I - E);
2741     } else if (PathComponentsToStrip > 0) {
2742       auto I = llvm::sys::path::begin(FilenameString);
2743       auto E = llvm::sys::path::end(FilenameString);
2744       while (I != E && PathComponentsToStrip--)
2745         ++I;
2746 
2747       if (I != E)
2748         FilenameString =
2749             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2750       else
2751         FilenameString = llvm::sys::path::filename(FilenameString);
2752     }
2753 
2754     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2755     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2756                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2757     Filename = FilenameGV.getPointer();
2758     Line = PLoc.getLine();
2759     Column = PLoc.getColumn();
2760   } else {
2761     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2762     Line = Column = 0;
2763   }
2764 
2765   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2766                             Builder.getInt32(Column)};
2767 
2768   return llvm::ConstantStruct::getAnon(Data);
2769 }
2770 
2771 namespace {
2772 /// \brief Specify under what conditions this check can be recovered
2773 enum class CheckRecoverableKind {
2774   /// Always terminate program execution if this check fails.
2775   Unrecoverable,
2776   /// Check supports recovering, runtime has both fatal (noreturn) and
2777   /// non-fatal handlers for this check.
2778   Recoverable,
2779   /// Runtime conditionally aborts, always need to support recovery.
2780   AlwaysRecoverable
2781 };
2782 }
2783 
2784 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2785   assert(llvm::countPopulation(Kind) == 1);
2786   switch (Kind) {
2787   case SanitizerKind::Vptr:
2788     return CheckRecoverableKind::AlwaysRecoverable;
2789   case SanitizerKind::Return:
2790   case SanitizerKind::Unreachable:
2791     return CheckRecoverableKind::Unrecoverable;
2792   default:
2793     return CheckRecoverableKind::Recoverable;
2794   }
2795 }
2796 
2797 namespace {
2798 struct SanitizerHandlerInfo {
2799   char const *const Name;
2800   unsigned Version;
2801 };
2802 }
2803 
2804 const SanitizerHandlerInfo SanitizerHandlers[] = {
2805 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2806     LIST_SANITIZER_CHECKS
2807 #undef SANITIZER_CHECK
2808 };
2809 
2810 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2811                                  llvm::FunctionType *FnType,
2812                                  ArrayRef<llvm::Value *> FnArgs,
2813                                  SanitizerHandler CheckHandler,
2814                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2815                                  llvm::BasicBlock *ContBB) {
2816   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2817   bool NeedsAbortSuffix =
2818       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2819   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2820   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2821   const StringRef CheckName = CheckInfo.Name;
2822   std::string FnName = "__ubsan_handle_" + CheckName.str();
2823   if (CheckInfo.Version && !MinimalRuntime)
2824     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2825   if (MinimalRuntime)
2826     FnName += "_minimal";
2827   if (NeedsAbortSuffix)
2828     FnName += "_abort";
2829   bool MayReturn =
2830       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2831 
2832   llvm::AttrBuilder B;
2833   if (!MayReturn) {
2834     B.addAttribute(llvm::Attribute::NoReturn)
2835         .addAttribute(llvm::Attribute::NoUnwind);
2836   }
2837   B.addAttribute(llvm::Attribute::UWTable);
2838 
2839   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2840       FnType, FnName,
2841       llvm::AttributeList::get(CGF.getLLVMContext(),
2842                                llvm::AttributeList::FunctionIndex, B),
2843       /*Local=*/true);
2844   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2845   if (!MayReturn) {
2846     HandlerCall->setDoesNotReturn();
2847     CGF.Builder.CreateUnreachable();
2848   } else {
2849     CGF.Builder.CreateBr(ContBB);
2850   }
2851 }
2852 
2853 void CodeGenFunction::EmitCheck(
2854     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2855     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2856     ArrayRef<llvm::Value *> DynamicArgs) {
2857   assert(IsSanitizerScope);
2858   assert(Checked.size() > 0);
2859   assert(CheckHandler >= 0 &&
2860          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
2861   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2862 
2863   llvm::Value *FatalCond = nullptr;
2864   llvm::Value *RecoverableCond = nullptr;
2865   llvm::Value *TrapCond = nullptr;
2866   for (int i = 0, n = Checked.size(); i < n; ++i) {
2867     llvm::Value *Check = Checked[i].first;
2868     // -fsanitize-trap= overrides -fsanitize-recover=.
2869     llvm::Value *&Cond =
2870         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2871             ? TrapCond
2872             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2873                   ? RecoverableCond
2874                   : FatalCond;
2875     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2876   }
2877 
2878   if (TrapCond)
2879     EmitTrapCheck(TrapCond);
2880   if (!FatalCond && !RecoverableCond)
2881     return;
2882 
2883   llvm::Value *JointCond;
2884   if (FatalCond && RecoverableCond)
2885     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2886   else
2887     JointCond = FatalCond ? FatalCond : RecoverableCond;
2888   assert(JointCond);
2889 
2890   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2891   assert(SanOpts.has(Checked[0].second));
2892 #ifndef NDEBUG
2893   for (int i = 1, n = Checked.size(); i < n; ++i) {
2894     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2895            "All recoverable kinds in a single check must be same!");
2896     assert(SanOpts.has(Checked[i].second));
2897   }
2898 #endif
2899 
2900   llvm::BasicBlock *Cont = createBasicBlock("cont");
2901   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2902   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2903   // Give hint that we very much don't expect to execute the handler
2904   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2905   llvm::MDBuilder MDHelper(getLLVMContext());
2906   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2907   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2908   EmitBlock(Handlers);
2909 
2910   // Handler functions take an i8* pointing to the (handler-specific) static
2911   // information block, followed by a sequence of intptr_t arguments
2912   // representing operand values.
2913   SmallVector<llvm::Value *, 4> Args;
2914   SmallVector<llvm::Type *, 4> ArgTypes;
2915   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2916     Args.reserve(DynamicArgs.size() + 1);
2917     ArgTypes.reserve(DynamicArgs.size() + 1);
2918 
2919     // Emit handler arguments and create handler function type.
2920     if (!StaticArgs.empty()) {
2921       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2922       auto *InfoPtr =
2923           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2924                                    llvm::GlobalVariable::PrivateLinkage, Info);
2925       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2926       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2927       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2928       ArgTypes.push_back(Int8PtrTy);
2929     }
2930 
2931     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2932       Args.push_back(EmitCheckValue(DynamicArgs[i]));
2933       ArgTypes.push_back(IntPtrTy);
2934     }
2935   }
2936 
2937   llvm::FunctionType *FnType =
2938     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2939 
2940   if (!FatalCond || !RecoverableCond) {
2941     // Simple case: we need to generate a single handler call, either
2942     // fatal, or non-fatal.
2943     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
2944                          (FatalCond != nullptr), Cont);
2945   } else {
2946     // Emit two handler calls: first one for set of unrecoverable checks,
2947     // another one for recoverable.
2948     llvm::BasicBlock *NonFatalHandlerBB =
2949         createBasicBlock("non_fatal." + CheckName);
2950     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2951     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2952     EmitBlock(FatalHandlerBB);
2953     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
2954                          NonFatalHandlerBB);
2955     EmitBlock(NonFatalHandlerBB);
2956     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
2957                          Cont);
2958   }
2959 
2960   EmitBlock(Cont);
2961 }
2962 
2963 void CodeGenFunction::EmitCfiSlowPathCheck(
2964     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2965     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2966   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2967 
2968   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2969   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2970 
2971   llvm::MDBuilder MDHelper(getLLVMContext());
2972   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2973   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2974 
2975   EmitBlock(CheckBB);
2976 
2977   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
2978 
2979   llvm::CallInst *CheckCall;
2980   llvm::Constant *SlowPathFn;
2981   if (WithDiag) {
2982     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2983     auto *InfoPtr =
2984         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2985                                  llvm::GlobalVariable::PrivateLinkage, Info);
2986     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2987     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2988 
2989     SlowPathFn = CGM.getModule().getOrInsertFunction(
2990         "__cfi_slowpath_diag",
2991         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
2992                                 false));
2993     CheckCall = Builder.CreateCall(
2994         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
2995   } else {
2996     SlowPathFn = CGM.getModule().getOrInsertFunction(
2997         "__cfi_slowpath",
2998         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
2999     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3000   }
3001 
3002   CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts()));
3003   CheckCall->setDoesNotThrow();
3004 
3005   EmitBlock(Cont);
3006 }
3007 
3008 // Emit a stub for __cfi_check function so that the linker knows about this
3009 // symbol in LTO mode.
3010 void CodeGenFunction::EmitCfiCheckStub() {
3011   llvm::Module *M = &CGM.getModule();
3012   auto &Ctx = M->getContext();
3013   llvm::Function *F = llvm::Function::Create(
3014       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3015       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3016   CGM.setDSOLocal(F);
3017   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3018   // FIXME: consider emitting an intrinsic call like
3019   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3020   // which can be lowered in CrossDSOCFI pass to the actual contents of
3021   // __cfi_check. This would allow inlining of __cfi_check calls.
3022   llvm::CallInst::Create(
3023       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3024   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3025 }
3026 
3027 // This function is basically a switch over the CFI failure kind, which is
3028 // extracted from CFICheckFailData (1st function argument). Each case is either
3029 // llvm.trap or a call to one of the two runtime handlers, based on
3030 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3031 // failure kind) traps, but this should really never happen.  CFICheckFailData
3032 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3033 // check kind; in this case __cfi_check_fail traps as well.
3034 void CodeGenFunction::EmitCfiCheckFail() {
3035   SanitizerScope SanScope(this);
3036   FunctionArgList Args;
3037   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3038                             ImplicitParamDecl::Other);
3039   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3040                             ImplicitParamDecl::Other);
3041   Args.push_back(&ArgData);
3042   Args.push_back(&ArgAddr);
3043 
3044   const CGFunctionInfo &FI =
3045     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3046 
3047   llvm::Function *F = llvm::Function::Create(
3048       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3049       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3050   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3051 
3052   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3053                 SourceLocation());
3054 
3055   llvm::Value *Data =
3056       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3057                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3058   llvm::Value *Addr =
3059       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3060                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3061 
3062   // Data == nullptr means the calling module has trap behaviour for this check.
3063   llvm::Value *DataIsNotNullPtr =
3064       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3065   EmitTrapCheck(DataIsNotNullPtr);
3066 
3067   llvm::StructType *SourceLocationTy =
3068       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3069   llvm::StructType *CfiCheckFailDataTy =
3070       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3071 
3072   llvm::Value *V = Builder.CreateConstGEP2_32(
3073       CfiCheckFailDataTy,
3074       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3075       0);
3076   Address CheckKindAddr(V, getIntAlign());
3077   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3078 
3079   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3080       CGM.getLLVMContext(),
3081       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3082   llvm::Value *ValidVtable = Builder.CreateZExt(
3083       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3084                          {Addr, AllVtables}),
3085       IntPtrTy);
3086 
3087   const std::pair<int, SanitizerMask> CheckKinds[] = {
3088       {CFITCK_VCall, SanitizerKind::CFIVCall},
3089       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3090       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3091       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3092       {CFITCK_ICall, SanitizerKind::CFIICall}};
3093 
3094   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3095   for (auto CheckKindMaskPair : CheckKinds) {
3096     int Kind = CheckKindMaskPair.first;
3097     SanitizerMask Mask = CheckKindMaskPair.second;
3098     llvm::Value *Cond =
3099         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3100     if (CGM.getLangOpts().Sanitize.has(Mask))
3101       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3102                 {Data, Addr, ValidVtable});
3103     else
3104       EmitTrapCheck(Cond);
3105   }
3106 
3107   FinishFunction();
3108   // The only reference to this function will be created during LTO link.
3109   // Make sure it survives until then.
3110   CGM.addUsedGlobal(F);
3111 }
3112 
3113 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3114   if (SanOpts.has(SanitizerKind::Unreachable)) {
3115     SanitizerScope SanScope(this);
3116     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3117                              SanitizerKind::Unreachable),
3118               SanitizerHandler::BuiltinUnreachable,
3119               EmitCheckSourceLocation(Loc), None);
3120   }
3121   Builder.CreateUnreachable();
3122 }
3123 
3124 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3125   llvm::BasicBlock *Cont = createBasicBlock("cont");
3126 
3127   // If we're optimizing, collapse all calls to trap down to just one per
3128   // function to save on code size.
3129   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3130     TrapBB = createBasicBlock("trap");
3131     Builder.CreateCondBr(Checked, Cont, TrapBB);
3132     EmitBlock(TrapBB);
3133     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3134     TrapCall->setDoesNotReturn();
3135     TrapCall->setDoesNotThrow();
3136     Builder.CreateUnreachable();
3137   } else {
3138     Builder.CreateCondBr(Checked, Cont, TrapBB);
3139   }
3140 
3141   EmitBlock(Cont);
3142 }
3143 
3144 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3145   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3146 
3147   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3148     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3149                                   CGM.getCodeGenOpts().TrapFuncName);
3150     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3151   }
3152 
3153   return TrapCall;
3154 }
3155 
3156 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3157                                                  LValueBaseInfo *BaseInfo,
3158                                                  TBAAAccessInfo *TBAAInfo) {
3159   assert(E->getType()->isArrayType() &&
3160          "Array to pointer decay must have array source type!");
3161 
3162   // Expressions of array type can't be bitfields or vector elements.
3163   LValue LV = EmitLValue(E);
3164   Address Addr = LV.getAddress();
3165 
3166   // If the array type was an incomplete type, we need to make sure
3167   // the decay ends up being the right type.
3168   llvm::Type *NewTy = ConvertType(E->getType());
3169   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3170 
3171   // Note that VLA pointers are always decayed, so we don't need to do
3172   // anything here.
3173   if (!E->getType()->isVariableArrayType()) {
3174     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3175            "Expected pointer to array");
3176     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3177   }
3178 
3179   // The result of this decay conversion points to an array element within the
3180   // base lvalue. However, since TBAA currently does not support representing
3181   // accesses to elements of member arrays, we conservatively represent accesses
3182   // to the pointee object as if it had no any base lvalue specified.
3183   // TODO: Support TBAA for member arrays.
3184   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3185   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3186   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3187 
3188   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3189 }
3190 
3191 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3192 /// array to pointer, return the array subexpression.
3193 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3194   // If this isn't just an array->pointer decay, bail out.
3195   const auto *CE = dyn_cast<CastExpr>(E);
3196   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3197     return nullptr;
3198 
3199   // If this is a decay from variable width array, bail out.
3200   const Expr *SubExpr = CE->getSubExpr();
3201   if (SubExpr->getType()->isVariableArrayType())
3202     return nullptr;
3203 
3204   return SubExpr;
3205 }
3206 
3207 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3208                                           llvm::Value *ptr,
3209                                           ArrayRef<llvm::Value*> indices,
3210                                           bool inbounds,
3211                                           bool signedIndices,
3212                                           SourceLocation loc,
3213                                     const llvm::Twine &name = "arrayidx") {
3214   if (inbounds) {
3215     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3216                                       CodeGenFunction::NotSubtraction, loc,
3217                                       name);
3218   } else {
3219     return CGF.Builder.CreateGEP(ptr, indices, name);
3220   }
3221 }
3222 
3223 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3224                                       llvm::Value *idx,
3225                                       CharUnits eltSize) {
3226   // If we have a constant index, we can use the exact offset of the
3227   // element we're accessing.
3228   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3229     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3230     return arrayAlign.alignmentAtOffset(offset);
3231 
3232   // Otherwise, use the worst-case alignment for any element.
3233   } else {
3234     return arrayAlign.alignmentOfArrayElement(eltSize);
3235   }
3236 }
3237 
3238 static QualType getFixedSizeElementType(const ASTContext &ctx,
3239                                         const VariableArrayType *vla) {
3240   QualType eltType;
3241   do {
3242     eltType = vla->getElementType();
3243   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3244   return eltType;
3245 }
3246 
3247 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3248                                      ArrayRef<llvm::Value *> indices,
3249                                      QualType eltType, bool inbounds,
3250                                      bool signedIndices, SourceLocation loc,
3251                                      const llvm::Twine &name = "arrayidx") {
3252   // All the indices except that last must be zero.
3253 #ifndef NDEBUG
3254   for (auto idx : indices.drop_back())
3255     assert(isa<llvm::ConstantInt>(idx) &&
3256            cast<llvm::ConstantInt>(idx)->isZero());
3257 #endif
3258 
3259   // Determine the element size of the statically-sized base.  This is
3260   // the thing that the indices are expressed in terms of.
3261   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3262     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3263   }
3264 
3265   // We can use that to compute the best alignment of the element.
3266   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3267   CharUnits eltAlign =
3268     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3269 
3270   llvm::Value *eltPtr = emitArraySubscriptGEP(
3271       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3272   return Address(eltPtr, eltAlign);
3273 }
3274 
3275 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3276                                                bool Accessed) {
3277   // The index must always be an integer, which is not an aggregate.  Emit it
3278   // in lexical order (this complexity is, sadly, required by C++17).
3279   llvm::Value *IdxPre =
3280       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3281   bool SignedIndices = false;
3282   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3283     auto *Idx = IdxPre;
3284     if (E->getLHS() != E->getIdx()) {
3285       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3286       Idx = EmitScalarExpr(E->getIdx());
3287     }
3288 
3289     QualType IdxTy = E->getIdx()->getType();
3290     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3291     SignedIndices |= IdxSigned;
3292 
3293     if (SanOpts.has(SanitizerKind::ArrayBounds))
3294       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3295 
3296     // Extend or truncate the index type to 32 or 64-bits.
3297     if (Promote && Idx->getType() != IntPtrTy)
3298       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3299 
3300     return Idx;
3301   };
3302   IdxPre = nullptr;
3303 
3304   // If the base is a vector type, then we are forming a vector element lvalue
3305   // with this subscript.
3306   if (E->getBase()->getType()->isVectorType() &&
3307       !isa<ExtVectorElementExpr>(E->getBase())) {
3308     // Emit the vector as an lvalue to get its address.
3309     LValue LHS = EmitLValue(E->getBase());
3310     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3311     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3312     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3313                                  LHS.getBaseInfo(), TBAAAccessInfo());
3314   }
3315 
3316   // All the other cases basically behave like simple offsetting.
3317 
3318   // Handle the extvector case we ignored above.
3319   if (isa<ExtVectorElementExpr>(E->getBase())) {
3320     LValue LV = EmitLValue(E->getBase());
3321     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3322     Address Addr = EmitExtVectorElementLValue(LV);
3323 
3324     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3325     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3326                                  SignedIndices, E->getExprLoc());
3327     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3328                           CGM.getTBAAInfoForSubobject(LV, EltType));
3329   }
3330 
3331   LValueBaseInfo EltBaseInfo;
3332   TBAAAccessInfo EltTBAAInfo;
3333   Address Addr = Address::invalid();
3334   if (const VariableArrayType *vla =
3335            getContext().getAsVariableArrayType(E->getType())) {
3336     // The base must be a pointer, which is not an aggregate.  Emit
3337     // it.  It needs to be emitted first in case it's what captures
3338     // the VLA bounds.
3339     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3340     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3341 
3342     // The element count here is the total number of non-VLA elements.
3343     llvm::Value *numElements = getVLASize(vla).NumElts;
3344 
3345     // Effectively, the multiply by the VLA size is part of the GEP.
3346     // GEP indexes are signed, and scaling an index isn't permitted to
3347     // signed-overflow, so we use the same semantics for our explicit
3348     // multiply.  We suppress this if overflow is not undefined behavior.
3349     if (getLangOpts().isSignedOverflowDefined()) {
3350       Idx = Builder.CreateMul(Idx, numElements);
3351     } else {
3352       Idx = Builder.CreateNSWMul(Idx, numElements);
3353     }
3354 
3355     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3356                                  !getLangOpts().isSignedOverflowDefined(),
3357                                  SignedIndices, E->getExprLoc());
3358 
3359   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3360     // Indexing over an interface, as in "NSString *P; P[4];"
3361 
3362     // Emit the base pointer.
3363     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3364     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3365 
3366     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3367     llvm::Value *InterfaceSizeVal =
3368         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3369 
3370     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3371 
3372     // We don't necessarily build correct LLVM struct types for ObjC
3373     // interfaces, so we can't rely on GEP to do this scaling
3374     // correctly, so we need to cast to i8*.  FIXME: is this actually
3375     // true?  A lot of other things in the fragile ABI would break...
3376     llvm::Type *OrigBaseTy = Addr.getType();
3377     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3378 
3379     // Do the GEP.
3380     CharUnits EltAlign =
3381       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3382     llvm::Value *EltPtr =
3383         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3384                               SignedIndices, E->getExprLoc());
3385     Addr = Address(EltPtr, EltAlign);
3386 
3387     // Cast back.
3388     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3389   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3390     // If this is A[i] where A is an array, the frontend will have decayed the
3391     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3392     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3393     // "gep x, i" here.  Emit one "gep A, 0, i".
3394     assert(Array->getType()->isArrayType() &&
3395            "Array to pointer decay must have array source type!");
3396     LValue ArrayLV;
3397     // For simple multidimensional array indexing, set the 'accessed' flag for
3398     // better bounds-checking of the base expression.
3399     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3400       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3401     else
3402       ArrayLV = EmitLValue(Array);
3403     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3404 
3405     // Propagate the alignment from the array itself to the result.
3406     Addr = emitArraySubscriptGEP(
3407         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3408         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3409         E->getExprLoc());
3410     EltBaseInfo = ArrayLV.getBaseInfo();
3411     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3412   } else {
3413     // The base must be a pointer; emit it with an estimate of its alignment.
3414     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3415     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3416     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3417                                  !getLangOpts().isSignedOverflowDefined(),
3418                                  SignedIndices, E->getExprLoc());
3419   }
3420 
3421   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3422 
3423   if (getLangOpts().ObjC1 &&
3424       getLangOpts().getGC() != LangOptions::NonGC) {
3425     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3426     setObjCGCLValueClass(getContext(), E, LV);
3427   }
3428   return LV;
3429 }
3430 
3431 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3432                                        LValueBaseInfo &BaseInfo,
3433                                        TBAAAccessInfo &TBAAInfo,
3434                                        QualType BaseTy, QualType ElTy,
3435                                        bool IsLowerBound) {
3436   LValue BaseLVal;
3437   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3438     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3439     if (BaseTy->isArrayType()) {
3440       Address Addr = BaseLVal.getAddress();
3441       BaseInfo = BaseLVal.getBaseInfo();
3442 
3443       // If the array type was an incomplete type, we need to make sure
3444       // the decay ends up being the right type.
3445       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3446       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3447 
3448       // Note that VLA pointers are always decayed, so we don't need to do
3449       // anything here.
3450       if (!BaseTy->isVariableArrayType()) {
3451         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3452                "Expected pointer to array");
3453         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3454                                            "arraydecay");
3455       }
3456 
3457       return CGF.Builder.CreateElementBitCast(Addr,
3458                                               CGF.ConvertTypeForMem(ElTy));
3459     }
3460     LValueBaseInfo TypeBaseInfo;
3461     TBAAAccessInfo TypeTBAAInfo;
3462     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3463                                                   &TypeTBAAInfo);
3464     BaseInfo.mergeForCast(TypeBaseInfo);
3465     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3466     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3467   }
3468   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3469 }
3470 
3471 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3472                                                 bool IsLowerBound) {
3473   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3474   QualType ResultExprTy;
3475   if (auto *AT = getContext().getAsArrayType(BaseTy))
3476     ResultExprTy = AT->getElementType();
3477   else
3478     ResultExprTy = BaseTy->getPointeeType();
3479   llvm::Value *Idx = nullptr;
3480   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3481     // Requesting lower bound or upper bound, but without provided length and
3482     // without ':' symbol for the default length -> length = 1.
3483     // Idx = LowerBound ?: 0;
3484     if (auto *LowerBound = E->getLowerBound()) {
3485       Idx = Builder.CreateIntCast(
3486           EmitScalarExpr(LowerBound), IntPtrTy,
3487           LowerBound->getType()->hasSignedIntegerRepresentation());
3488     } else
3489       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3490   } else {
3491     // Try to emit length or lower bound as constant. If this is possible, 1
3492     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3493     // IR (LB + Len) - 1.
3494     auto &C = CGM.getContext();
3495     auto *Length = E->getLength();
3496     llvm::APSInt ConstLength;
3497     if (Length) {
3498       // Idx = LowerBound + Length - 1;
3499       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3500         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3501         Length = nullptr;
3502       }
3503       auto *LowerBound = E->getLowerBound();
3504       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3505       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3506         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3507         LowerBound = nullptr;
3508       }
3509       if (!Length)
3510         --ConstLength;
3511       else if (!LowerBound)
3512         --ConstLowerBound;
3513 
3514       if (Length || LowerBound) {
3515         auto *LowerBoundVal =
3516             LowerBound
3517                 ? Builder.CreateIntCast(
3518                       EmitScalarExpr(LowerBound), IntPtrTy,
3519                       LowerBound->getType()->hasSignedIntegerRepresentation())
3520                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3521         auto *LengthVal =
3522             Length
3523                 ? Builder.CreateIntCast(
3524                       EmitScalarExpr(Length), IntPtrTy,
3525                       Length->getType()->hasSignedIntegerRepresentation())
3526                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3527         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3528                                 /*HasNUW=*/false,
3529                                 !getLangOpts().isSignedOverflowDefined());
3530         if (Length && LowerBound) {
3531           Idx = Builder.CreateSub(
3532               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3533               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3534         }
3535       } else
3536         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3537     } else {
3538       // Idx = ArraySize - 1;
3539       QualType ArrayTy = BaseTy->isPointerType()
3540                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3541                              : BaseTy;
3542       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3543         Length = VAT->getSizeExpr();
3544         if (Length->isIntegerConstantExpr(ConstLength, C))
3545           Length = nullptr;
3546       } else {
3547         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3548         ConstLength = CAT->getSize();
3549       }
3550       if (Length) {
3551         auto *LengthVal = Builder.CreateIntCast(
3552             EmitScalarExpr(Length), IntPtrTy,
3553             Length->getType()->hasSignedIntegerRepresentation());
3554         Idx = Builder.CreateSub(
3555             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3556             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3557       } else {
3558         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3559         --ConstLength;
3560         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3561       }
3562     }
3563   }
3564   assert(Idx);
3565 
3566   Address EltPtr = Address::invalid();
3567   LValueBaseInfo BaseInfo;
3568   TBAAAccessInfo TBAAInfo;
3569   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3570     // The base must be a pointer, which is not an aggregate.  Emit
3571     // it.  It needs to be emitted first in case it's what captures
3572     // the VLA bounds.
3573     Address Base =
3574         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3575                                 BaseTy, VLA->getElementType(), IsLowerBound);
3576     // The element count here is the total number of non-VLA elements.
3577     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3578 
3579     // Effectively, the multiply by the VLA size is part of the GEP.
3580     // GEP indexes are signed, and scaling an index isn't permitted to
3581     // signed-overflow, so we use the same semantics for our explicit
3582     // multiply.  We suppress this if overflow is not undefined behavior.
3583     if (getLangOpts().isSignedOverflowDefined())
3584       Idx = Builder.CreateMul(Idx, NumElements);
3585     else
3586       Idx = Builder.CreateNSWMul(Idx, NumElements);
3587     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3588                                    !getLangOpts().isSignedOverflowDefined(),
3589                                    /*SignedIndices=*/false, E->getExprLoc());
3590   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3591     // If this is A[i] where A is an array, the frontend will have decayed the
3592     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3593     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3594     // "gep x, i" here.  Emit one "gep A, 0, i".
3595     assert(Array->getType()->isArrayType() &&
3596            "Array to pointer decay must have array source type!");
3597     LValue ArrayLV;
3598     // For simple multidimensional array indexing, set the 'accessed' flag for
3599     // better bounds-checking of the base expression.
3600     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3601       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3602     else
3603       ArrayLV = EmitLValue(Array);
3604 
3605     // Propagate the alignment from the array itself to the result.
3606     EltPtr = emitArraySubscriptGEP(
3607         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3608         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3609         /*SignedIndices=*/false, E->getExprLoc());
3610     BaseInfo = ArrayLV.getBaseInfo();
3611     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3612   } else {
3613     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3614                                            TBAAInfo, BaseTy, ResultExprTy,
3615                                            IsLowerBound);
3616     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3617                                    !getLangOpts().isSignedOverflowDefined(),
3618                                    /*SignedIndices=*/false, E->getExprLoc());
3619   }
3620 
3621   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3622 }
3623 
3624 LValue CodeGenFunction::
3625 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3626   // Emit the base vector as an l-value.
3627   LValue Base;
3628 
3629   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3630   if (E->isArrow()) {
3631     // If it is a pointer to a vector, emit the address and form an lvalue with
3632     // it.
3633     LValueBaseInfo BaseInfo;
3634     TBAAAccessInfo TBAAInfo;
3635     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3636     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3637     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3638     Base.getQuals().removeObjCGCAttr();
3639   } else if (E->getBase()->isGLValue()) {
3640     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3641     // emit the base as an lvalue.
3642     assert(E->getBase()->getType()->isVectorType());
3643     Base = EmitLValue(E->getBase());
3644   } else {
3645     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3646     assert(E->getBase()->getType()->isVectorType() &&
3647            "Result must be a vector");
3648     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3649 
3650     // Store the vector to memory (because LValue wants an address).
3651     Address VecMem = CreateMemTemp(E->getBase()->getType());
3652     Builder.CreateStore(Vec, VecMem);
3653     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3654                           AlignmentSource::Decl);
3655   }
3656 
3657   QualType type =
3658     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3659 
3660   // Encode the element access list into a vector of unsigned indices.
3661   SmallVector<uint32_t, 4> Indices;
3662   E->getEncodedElementAccess(Indices);
3663 
3664   if (Base.isSimple()) {
3665     llvm::Constant *CV =
3666         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3667     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3668                                     Base.getBaseInfo(), TBAAAccessInfo());
3669   }
3670   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3671 
3672   llvm::Constant *BaseElts = Base.getExtVectorElts();
3673   SmallVector<llvm::Constant *, 4> CElts;
3674 
3675   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3676     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3677   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3678   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3679                                   Base.getBaseInfo(), TBAAAccessInfo());
3680 }
3681 
3682 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3683   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3684     EmitIgnoredExpr(E->getBase());
3685     return EmitDeclRefLValue(DRE);
3686   }
3687 
3688   Expr *BaseExpr = E->getBase();
3689   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3690   LValue BaseLV;
3691   if (E->isArrow()) {
3692     LValueBaseInfo BaseInfo;
3693     TBAAAccessInfo TBAAInfo;
3694     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3695     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3696     SanitizerSet SkippedChecks;
3697     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3698     if (IsBaseCXXThis)
3699       SkippedChecks.set(SanitizerKind::Alignment, true);
3700     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3701       SkippedChecks.set(SanitizerKind::Null, true);
3702     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3703                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3704     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3705   } else
3706     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3707 
3708   NamedDecl *ND = E->getMemberDecl();
3709   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3710     LValue LV = EmitLValueForField(BaseLV, Field);
3711     setObjCGCLValueClass(getContext(), E, LV);
3712     return LV;
3713   }
3714 
3715   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3716     return EmitFunctionDeclLValue(*this, E, FD);
3717 
3718   llvm_unreachable("Unhandled member declaration!");
3719 }
3720 
3721 /// Given that we are currently emitting a lambda, emit an l-value for
3722 /// one of its members.
3723 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3724   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3725   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3726   QualType LambdaTagType =
3727     getContext().getTagDeclType(Field->getParent());
3728   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3729   return EmitLValueForField(LambdaLV, Field);
3730 }
3731 
3732 /// Drill down to the storage of a field without walking into
3733 /// reference types.
3734 ///
3735 /// The resulting address doesn't necessarily have the right type.
3736 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3737                                       const FieldDecl *field) {
3738   const RecordDecl *rec = field->getParent();
3739 
3740   unsigned idx =
3741     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3742 
3743   CharUnits offset;
3744   // Adjust the alignment down to the given offset.
3745   // As a special case, if the LLVM field index is 0, we know that this
3746   // is zero.
3747   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3748                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3749          "LLVM field at index zero had non-zero offset?");
3750   if (idx != 0) {
3751     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3752     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3753     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3754   }
3755 
3756   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3757 }
3758 
3759 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3760   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3761   if (!RD)
3762     return false;
3763 
3764   if (RD->isDynamicClass())
3765     return true;
3766 
3767   for (const auto &Base : RD->bases())
3768     if (hasAnyVptr(Base.getType(), Context))
3769       return true;
3770 
3771   for (const FieldDecl *Field : RD->fields())
3772     if (hasAnyVptr(Field->getType(), Context))
3773       return true;
3774 
3775   return false;
3776 }
3777 
3778 LValue CodeGenFunction::EmitLValueForField(LValue base,
3779                                            const FieldDecl *field) {
3780   LValueBaseInfo BaseInfo = base.getBaseInfo();
3781 
3782   if (field->isBitField()) {
3783     const CGRecordLayout &RL =
3784       CGM.getTypes().getCGRecordLayout(field->getParent());
3785     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3786     Address Addr = base.getAddress();
3787     unsigned Idx = RL.getLLVMFieldNo(field);
3788     if (Idx != 0)
3789       // For structs, we GEP to the field that the record layout suggests.
3790       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3791                                      field->getName());
3792     // Get the access type.
3793     llvm::Type *FieldIntTy =
3794       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3795     if (Addr.getElementType() != FieldIntTy)
3796       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3797 
3798     QualType fieldType =
3799       field->getType().withCVRQualifiers(base.getVRQualifiers());
3800     // TODO: Support TBAA for bit fields.
3801     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
3802     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3803                                 TBAAAccessInfo());
3804   }
3805 
3806   // Fields of may-alias structures are may-alias themselves.
3807   // FIXME: this should get propagated down through anonymous structs
3808   // and unions.
3809   QualType FieldType = field->getType();
3810   const RecordDecl *rec = field->getParent();
3811   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3812   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
3813   TBAAAccessInfo FieldTBAAInfo;
3814   if (base.getTBAAInfo().isMayAlias() ||
3815           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
3816     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3817   } else if (rec->isUnion()) {
3818     // TODO: Support TBAA for unions.
3819     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3820   } else {
3821     // If no base type been assigned for the base access, then try to generate
3822     // one for this base lvalue.
3823     FieldTBAAInfo = base.getTBAAInfo();
3824     if (!FieldTBAAInfo.BaseType) {
3825         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3826         assert(!FieldTBAAInfo.Offset &&
3827                "Nonzero offset for an access with no base type!");
3828     }
3829 
3830     // Adjust offset to be relative to the base type.
3831     const ASTRecordLayout &Layout =
3832         getContext().getASTRecordLayout(field->getParent());
3833     unsigned CharWidth = getContext().getCharWidth();
3834     if (FieldTBAAInfo.BaseType)
3835       FieldTBAAInfo.Offset +=
3836           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3837 
3838     // Update the final access type and size.
3839     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3840     FieldTBAAInfo.Size =
3841         getContext().getTypeSizeInChars(FieldType).getQuantity();
3842   }
3843 
3844   Address addr = base.getAddress();
3845   unsigned RecordCVR = base.getVRQualifiers();
3846   if (rec->isUnion()) {
3847     // For unions, there is no pointer adjustment.
3848     assert(!FieldType->isReferenceType() && "union has reference member");
3849     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3850         hasAnyVptr(FieldType, getContext()))
3851       // Because unions can easily skip invariant.barriers, we need to add
3852       // a barrier every time CXXRecord field with vptr is referenced.
3853       addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()),
3854                      addr.getAlignment());
3855   } else {
3856     // For structs, we GEP to the field that the record layout suggests.
3857     addr = emitAddrOfFieldStorage(*this, addr, field);
3858 
3859     // If this is a reference field, load the reference right now.
3860     if (FieldType->isReferenceType()) {
3861       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
3862                                       FieldTBAAInfo);
3863       if (RecordCVR & Qualifiers::Volatile)
3864         RefLVal.getQuals().setVolatile(true);
3865       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
3866 
3867       // Qualifiers on the struct don't apply to the referencee.
3868       RecordCVR = 0;
3869       FieldType = FieldType->getPointeeType();
3870     }
3871   }
3872 
3873   // Make sure that the address is pointing to the right type.  This is critical
3874   // for both unions and structs.  A union needs a bitcast, a struct element
3875   // will need a bitcast if the LLVM type laid out doesn't match the desired
3876   // type.
3877   addr = Builder.CreateElementBitCast(
3878       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
3879 
3880   if (field->hasAttr<AnnotateAttr>())
3881     addr = EmitFieldAnnotations(field, addr);
3882 
3883   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
3884   LV.getQuals().addCVRQualifiers(RecordCVR);
3885 
3886   // __weak attribute on a field is ignored.
3887   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3888     LV.getQuals().removeObjCGCAttr();
3889 
3890   return LV;
3891 }
3892 
3893 LValue
3894 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3895                                                   const FieldDecl *Field) {
3896   QualType FieldType = Field->getType();
3897 
3898   if (!FieldType->isReferenceType())
3899     return EmitLValueForField(Base, Field);
3900 
3901   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3902 
3903   // Make sure that the address is pointing to the right type.
3904   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3905   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3906 
3907   // TODO: Generate TBAA information that describes this access as a structure
3908   // member access and not just an access to an object of the field's type. This
3909   // should be similar to what we do in EmitLValueForField().
3910   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3911   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
3912   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
3913   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
3914                         CGM.getTBAAInfoForSubobject(Base, FieldType));
3915 }
3916 
3917 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3918   if (E->isFileScope()) {
3919     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3920     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3921   }
3922   if (E->getType()->isVariablyModifiedType())
3923     // make sure to emit the VLA size.
3924     EmitVariablyModifiedType(E->getType());
3925 
3926   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3927   const Expr *InitExpr = E->getInitializer();
3928   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3929 
3930   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3931                    /*Init*/ true);
3932 
3933   return Result;
3934 }
3935 
3936 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3937   if (!E->isGLValue())
3938     // Initializing an aggregate temporary in C++11: T{...}.
3939     return EmitAggExprToLValue(E);
3940 
3941   // An lvalue initializer list must be initializing a reference.
3942   assert(E->isTransparent() && "non-transparent glvalue init list");
3943   return EmitLValue(E->getInit(0));
3944 }
3945 
3946 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3947 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3948 /// LValue is returned and the current block has been terminated.
3949 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3950                                                     const Expr *Operand) {
3951   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3952     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3953     return None;
3954   }
3955 
3956   return CGF.EmitLValue(Operand);
3957 }
3958 
3959 LValue CodeGenFunction::
3960 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3961   if (!expr->isGLValue()) {
3962     // ?: here should be an aggregate.
3963     assert(hasAggregateEvaluationKind(expr->getType()) &&
3964            "Unexpected conditional operator!");
3965     return EmitAggExprToLValue(expr);
3966   }
3967 
3968   OpaqueValueMapping binding(*this, expr);
3969 
3970   const Expr *condExpr = expr->getCond();
3971   bool CondExprBool;
3972   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3973     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3974     if (!CondExprBool) std::swap(live, dead);
3975 
3976     if (!ContainsLabel(dead)) {
3977       // If the true case is live, we need to track its region.
3978       if (CondExprBool)
3979         incrementProfileCounter(expr);
3980       return EmitLValue(live);
3981     }
3982   }
3983 
3984   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3985   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3986   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3987 
3988   ConditionalEvaluation eval(*this);
3989   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3990 
3991   // Any temporaries created here are conditional.
3992   EmitBlock(lhsBlock);
3993   incrementProfileCounter(expr);
3994   eval.begin(*this);
3995   Optional<LValue> lhs =
3996       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3997   eval.end(*this);
3998 
3999   if (lhs && !lhs->isSimple())
4000     return EmitUnsupportedLValue(expr, "conditional operator");
4001 
4002   lhsBlock = Builder.GetInsertBlock();
4003   if (lhs)
4004     Builder.CreateBr(contBlock);
4005 
4006   // Any temporaries created here are conditional.
4007   EmitBlock(rhsBlock);
4008   eval.begin(*this);
4009   Optional<LValue> rhs =
4010       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4011   eval.end(*this);
4012   if (rhs && !rhs->isSimple())
4013     return EmitUnsupportedLValue(expr, "conditional operator");
4014   rhsBlock = Builder.GetInsertBlock();
4015 
4016   EmitBlock(contBlock);
4017 
4018   if (lhs && rhs) {
4019     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4020                                            2, "cond-lvalue");
4021     phi->addIncoming(lhs->getPointer(), lhsBlock);
4022     phi->addIncoming(rhs->getPointer(), rhsBlock);
4023     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4024     AlignmentSource alignSource =
4025       std::max(lhs->getBaseInfo().getAlignmentSource(),
4026                rhs->getBaseInfo().getAlignmentSource());
4027     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4028         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4029     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4030                           TBAAInfo);
4031   } else {
4032     assert((lhs || rhs) &&
4033            "both operands of glvalue conditional are throw-expressions?");
4034     return lhs ? *lhs : *rhs;
4035   }
4036 }
4037 
4038 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4039 /// type. If the cast is to a reference, we can have the usual lvalue result,
4040 /// otherwise if a cast is needed by the code generator in an lvalue context,
4041 /// then it must mean that we need the address of an aggregate in order to
4042 /// access one of its members.  This can happen for all the reasons that casts
4043 /// are permitted with aggregate result, including noop aggregate casts, and
4044 /// cast from scalar to union.
4045 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4046   switch (E->getCastKind()) {
4047   case CK_ToVoid:
4048   case CK_BitCast:
4049   case CK_ArrayToPointerDecay:
4050   case CK_FunctionToPointerDecay:
4051   case CK_NullToMemberPointer:
4052   case CK_NullToPointer:
4053   case CK_IntegralToPointer:
4054   case CK_PointerToIntegral:
4055   case CK_PointerToBoolean:
4056   case CK_VectorSplat:
4057   case CK_IntegralCast:
4058   case CK_BooleanToSignedIntegral:
4059   case CK_IntegralToBoolean:
4060   case CK_IntegralToFloating:
4061   case CK_FloatingToIntegral:
4062   case CK_FloatingToBoolean:
4063   case CK_FloatingCast:
4064   case CK_FloatingRealToComplex:
4065   case CK_FloatingComplexToReal:
4066   case CK_FloatingComplexToBoolean:
4067   case CK_FloatingComplexCast:
4068   case CK_FloatingComplexToIntegralComplex:
4069   case CK_IntegralRealToComplex:
4070   case CK_IntegralComplexToReal:
4071   case CK_IntegralComplexToBoolean:
4072   case CK_IntegralComplexCast:
4073   case CK_IntegralComplexToFloatingComplex:
4074   case CK_DerivedToBaseMemberPointer:
4075   case CK_BaseToDerivedMemberPointer:
4076   case CK_MemberPointerToBoolean:
4077   case CK_ReinterpretMemberPointer:
4078   case CK_AnyPointerToBlockPointerCast:
4079   case CK_ARCProduceObject:
4080   case CK_ARCConsumeObject:
4081   case CK_ARCReclaimReturnedObject:
4082   case CK_ARCExtendBlockObject:
4083   case CK_CopyAndAutoreleaseBlockObject:
4084   case CK_AddressSpaceConversion:
4085   case CK_IntToOCLSampler:
4086     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4087 
4088   case CK_Dependent:
4089     llvm_unreachable("dependent cast kind in IR gen!");
4090 
4091   case CK_BuiltinFnToFnPtr:
4092     llvm_unreachable("builtin functions are handled elsewhere");
4093 
4094   // These are never l-values; just use the aggregate emission code.
4095   case CK_NonAtomicToAtomic:
4096   case CK_AtomicToNonAtomic:
4097     return EmitAggExprToLValue(E);
4098 
4099   case CK_Dynamic: {
4100     LValue LV = EmitLValue(E->getSubExpr());
4101     Address V = LV.getAddress();
4102     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4103     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4104   }
4105 
4106   case CK_ConstructorConversion:
4107   case CK_UserDefinedConversion:
4108   case CK_CPointerToObjCPointerCast:
4109   case CK_BlockPointerToObjCPointerCast:
4110   case CK_NoOp:
4111   case CK_LValueToRValue:
4112     return EmitLValue(E->getSubExpr());
4113 
4114   case CK_UncheckedDerivedToBase:
4115   case CK_DerivedToBase: {
4116     const RecordType *DerivedClassTy =
4117       E->getSubExpr()->getType()->getAs<RecordType>();
4118     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4119 
4120     LValue LV = EmitLValue(E->getSubExpr());
4121     Address This = LV.getAddress();
4122 
4123     // Perform the derived-to-base conversion
4124     Address Base = GetAddressOfBaseClass(
4125         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4126         /*NullCheckValue=*/false, E->getExprLoc());
4127 
4128     // TODO: Support accesses to members of base classes in TBAA. For now, we
4129     // conservatively pretend that the complete object is of the base class
4130     // type.
4131     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4132                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4133   }
4134   case CK_ToUnion:
4135     return EmitAggExprToLValue(E);
4136   case CK_BaseToDerived: {
4137     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4138     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4139 
4140     LValue LV = EmitLValue(E->getSubExpr());
4141 
4142     // Perform the base-to-derived conversion
4143     Address Derived =
4144       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4145                                E->path_begin(), E->path_end(),
4146                                /*NullCheckValue=*/false);
4147 
4148     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4149     // performed and the object is not of the derived type.
4150     if (sanitizePerformTypeCheck())
4151       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4152                     Derived.getPointer(), E->getType());
4153 
4154     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4155       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4156                                 /*MayBeNull=*/false,
4157                                 CFITCK_DerivedCast, E->getLocStart());
4158 
4159     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4160                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4161   }
4162   case CK_LValueBitCast: {
4163     // This must be a reinterpret_cast (or c-style equivalent).
4164     const auto *CE = cast<ExplicitCastExpr>(E);
4165 
4166     CGM.EmitExplicitCastExprType(CE, this);
4167     LValue LV = EmitLValue(E->getSubExpr());
4168     Address V = Builder.CreateBitCast(LV.getAddress(),
4169                                       ConvertType(CE->getTypeAsWritten()));
4170 
4171     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4172       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4173                                 /*MayBeNull=*/false,
4174                                 CFITCK_UnrelatedCast, E->getLocStart());
4175 
4176     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4177                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4178   }
4179   case CK_ObjCObjectLValueCast: {
4180     LValue LV = EmitLValue(E->getSubExpr());
4181     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4182                                              ConvertType(E->getType()));
4183     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4184                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4185   }
4186   case CK_ZeroToOCLQueue:
4187     llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid");
4188   case CK_ZeroToOCLEvent:
4189     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
4190   }
4191 
4192   llvm_unreachable("Unhandled lvalue cast kind?");
4193 }
4194 
4195 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4196   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4197   return getOrCreateOpaqueLValueMapping(e);
4198 }
4199 
4200 LValue
4201 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4202   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4203 
4204   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4205       it = OpaqueLValues.find(e);
4206 
4207   if (it != OpaqueLValues.end())
4208     return it->second;
4209 
4210   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4211   return EmitLValue(e->getSourceExpr());
4212 }
4213 
4214 RValue
4215 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4216   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4217 
4218   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4219       it = OpaqueRValues.find(e);
4220 
4221   if (it != OpaqueRValues.end())
4222     return it->second;
4223 
4224   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4225   return EmitAnyExpr(e->getSourceExpr());
4226 }
4227 
4228 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4229                                            const FieldDecl *FD,
4230                                            SourceLocation Loc) {
4231   QualType FT = FD->getType();
4232   LValue FieldLV = EmitLValueForField(LV, FD);
4233   switch (getEvaluationKind(FT)) {
4234   case TEK_Complex:
4235     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4236   case TEK_Aggregate:
4237     return FieldLV.asAggregateRValue();
4238   case TEK_Scalar:
4239     // This routine is used to load fields one-by-one to perform a copy, so
4240     // don't load reference fields.
4241     if (FD->getType()->isReferenceType())
4242       return RValue::get(FieldLV.getPointer());
4243     return EmitLoadOfLValue(FieldLV, Loc);
4244   }
4245   llvm_unreachable("bad evaluation kind");
4246 }
4247 
4248 //===--------------------------------------------------------------------===//
4249 //                             Expression Emission
4250 //===--------------------------------------------------------------------===//
4251 
4252 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4253                                      ReturnValueSlot ReturnValue) {
4254   // Builtins never have block type.
4255   if (E->getCallee()->getType()->isBlockPointerType())
4256     return EmitBlockCallExpr(E, ReturnValue);
4257 
4258   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4259     return EmitCXXMemberCallExpr(CE, ReturnValue);
4260 
4261   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4262     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4263 
4264   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4265     if (const CXXMethodDecl *MD =
4266           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4267       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4268 
4269   CGCallee callee = EmitCallee(E->getCallee());
4270 
4271   if (callee.isBuiltin()) {
4272     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4273                            E, ReturnValue);
4274   }
4275 
4276   if (callee.isPseudoDestructor()) {
4277     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4278   }
4279 
4280   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4281 }
4282 
4283 /// Emit a CallExpr without considering whether it might be a subclass.
4284 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4285                                            ReturnValueSlot ReturnValue) {
4286   CGCallee Callee = EmitCallee(E->getCallee());
4287   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4288 }
4289 
4290 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4291   if (auto builtinID = FD->getBuiltinID()) {
4292     return CGCallee::forBuiltin(builtinID, FD);
4293   }
4294 
4295   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4296   return CGCallee::forDirect(calleePtr, FD);
4297 }
4298 
4299 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4300   E = E->IgnoreParens();
4301 
4302   // Look through function-to-pointer decay.
4303   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4304     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4305         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4306       return EmitCallee(ICE->getSubExpr());
4307     }
4308 
4309   // Resolve direct calls.
4310   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4311     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4312       return EmitDirectCallee(*this, FD);
4313     }
4314   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4315     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4316       EmitIgnoredExpr(ME->getBase());
4317       return EmitDirectCallee(*this, FD);
4318     }
4319 
4320   // Look through template substitutions.
4321   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4322     return EmitCallee(NTTP->getReplacement());
4323 
4324   // Treat pseudo-destructor calls differently.
4325   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4326     return CGCallee::forPseudoDestructor(PDE);
4327   }
4328 
4329   // Otherwise, we have an indirect reference.
4330   llvm::Value *calleePtr;
4331   QualType functionType;
4332   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4333     calleePtr = EmitScalarExpr(E);
4334     functionType = ptrType->getPointeeType();
4335   } else {
4336     functionType = E->getType();
4337     calleePtr = EmitLValue(E).getPointer();
4338   }
4339   assert(functionType->isFunctionType());
4340   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
4341                           E->getReferencedDeclOfCallee());
4342   CGCallee callee(calleeInfo, calleePtr);
4343   return callee;
4344 }
4345 
4346 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4347   // Comma expressions just emit their LHS then their RHS as an l-value.
4348   if (E->getOpcode() == BO_Comma) {
4349     EmitIgnoredExpr(E->getLHS());
4350     EnsureInsertPoint();
4351     return EmitLValue(E->getRHS());
4352   }
4353 
4354   if (E->getOpcode() == BO_PtrMemD ||
4355       E->getOpcode() == BO_PtrMemI)
4356     return EmitPointerToDataMemberBinaryExpr(E);
4357 
4358   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4359 
4360   // Note that in all of these cases, __block variables need the RHS
4361   // evaluated first just in case the variable gets moved by the RHS.
4362 
4363   switch (getEvaluationKind(E->getType())) {
4364   case TEK_Scalar: {
4365     switch (E->getLHS()->getType().getObjCLifetime()) {
4366     case Qualifiers::OCL_Strong:
4367       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4368 
4369     case Qualifiers::OCL_Autoreleasing:
4370       return EmitARCStoreAutoreleasing(E).first;
4371 
4372     // No reason to do any of these differently.
4373     case Qualifiers::OCL_None:
4374     case Qualifiers::OCL_ExplicitNone:
4375     case Qualifiers::OCL_Weak:
4376       break;
4377     }
4378 
4379     RValue RV = EmitAnyExpr(E->getRHS());
4380     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4381     if (RV.isScalar())
4382       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4383     EmitStoreThroughLValue(RV, LV);
4384     return LV;
4385   }
4386 
4387   case TEK_Complex:
4388     return EmitComplexAssignmentLValue(E);
4389 
4390   case TEK_Aggregate:
4391     return EmitAggExprToLValue(E);
4392   }
4393   llvm_unreachable("bad evaluation kind");
4394 }
4395 
4396 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4397   RValue RV = EmitCallExpr(E);
4398 
4399   if (!RV.isScalar())
4400     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4401                           AlignmentSource::Decl);
4402 
4403   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4404          "Can't have a scalar return unless the return type is a "
4405          "reference type!");
4406 
4407   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4408 }
4409 
4410 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4411   // FIXME: This shouldn't require another copy.
4412   return EmitAggExprToLValue(E);
4413 }
4414 
4415 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4416   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4417          && "binding l-value to type which needs a temporary");
4418   AggValueSlot Slot = CreateAggTemp(E->getType());
4419   EmitCXXConstructExpr(E, Slot);
4420   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4421 }
4422 
4423 LValue
4424 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4425   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4426 }
4427 
4428 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4429   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4430                                       ConvertType(E->getType()));
4431 }
4432 
4433 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4434   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4435                         AlignmentSource::Decl);
4436 }
4437 
4438 LValue
4439 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4440   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4441   Slot.setExternallyDestructed();
4442   EmitAggExpr(E->getSubExpr(), Slot);
4443   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4444   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4445 }
4446 
4447 LValue
4448 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
4449   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4450   EmitLambdaExpr(E, Slot);
4451   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4452 }
4453 
4454 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4455   RValue RV = EmitObjCMessageExpr(E);
4456 
4457   if (!RV.isScalar())
4458     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4459                           AlignmentSource::Decl);
4460 
4461   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4462          "Can't have a scalar return unless the return type is a "
4463          "reference type!");
4464 
4465   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4466 }
4467 
4468 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4469   Address V =
4470     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4471   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4472 }
4473 
4474 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4475                                              const ObjCIvarDecl *Ivar) {
4476   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4477 }
4478 
4479 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4480                                           llvm::Value *BaseValue,
4481                                           const ObjCIvarDecl *Ivar,
4482                                           unsigned CVRQualifiers) {
4483   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4484                                                    Ivar, CVRQualifiers);
4485 }
4486 
4487 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4488   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4489   llvm::Value *BaseValue = nullptr;
4490   const Expr *BaseExpr = E->getBase();
4491   Qualifiers BaseQuals;
4492   QualType ObjectTy;
4493   if (E->isArrow()) {
4494     BaseValue = EmitScalarExpr(BaseExpr);
4495     ObjectTy = BaseExpr->getType()->getPointeeType();
4496     BaseQuals = ObjectTy.getQualifiers();
4497   } else {
4498     LValue BaseLV = EmitLValue(BaseExpr);
4499     BaseValue = BaseLV.getPointer();
4500     ObjectTy = BaseExpr->getType();
4501     BaseQuals = ObjectTy.getQualifiers();
4502   }
4503 
4504   LValue LV =
4505     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4506                       BaseQuals.getCVRQualifiers());
4507   setObjCGCLValueClass(getContext(), E, LV);
4508   return LV;
4509 }
4510 
4511 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4512   // Can only get l-value for message expression returning aggregate type
4513   RValue RV = EmitAnyExprToTemp(E);
4514   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4515                         AlignmentSource::Decl);
4516 }
4517 
4518 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4519                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4520                                  llvm::Value *Chain) {
4521   // Get the actual function type. The callee type will always be a pointer to
4522   // function type or a block pointer type.
4523   assert(CalleeType->isFunctionPointerType() &&
4524          "Call must have function pointer type!");
4525 
4526   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4527 
4528   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4529     // We can only guarantee that a function is called from the correct
4530     // context/function based on the appropriate target attributes,
4531     // so only check in the case where we have both always_inline and target
4532     // since otherwise we could be making a conditional call after a check for
4533     // the proper cpu features (and it won't cause code generation issues due to
4534     // function based code generation).
4535     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4536         TargetDecl->hasAttr<TargetAttr>())
4537       checkTargetFeatures(E, FD);
4538 
4539   CalleeType = getContext().getCanonicalType(CalleeType);
4540 
4541   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4542 
4543   CGCallee Callee = OrigCallee;
4544 
4545   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4546       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4547     if (llvm::Constant *PrefixSig =
4548             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4549       SanitizerScope SanScope(this);
4550       // Remove any (C++17) exception specifications, to allow calling e.g. a
4551       // noexcept function through a non-noexcept pointer.
4552       auto ProtoTy =
4553         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4554       llvm::Constant *FTRTTIConst =
4555           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4556       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4557       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4558           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4559 
4560       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4561 
4562       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4563           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4564       llvm::Value *CalleeSigPtr =
4565           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4566       llvm::Value *CalleeSig =
4567           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4568       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4569 
4570       llvm::BasicBlock *Cont = createBasicBlock("cont");
4571       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4572       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4573 
4574       EmitBlock(TypeCheck);
4575       llvm::Value *CalleeRTTIPtr =
4576           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4577       llvm::Value *CalleeRTTIEncoded =
4578           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4579       llvm::Value *CalleeRTTI =
4580           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4581       llvm::Value *CalleeRTTIMatch =
4582           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4583       llvm::Constant *StaticData[] = {
4584         EmitCheckSourceLocation(E->getLocStart()),
4585         EmitCheckTypeDescriptor(CalleeType)
4586       };
4587       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4588                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4589 
4590       Builder.CreateBr(Cont);
4591       EmitBlock(Cont);
4592     }
4593   }
4594 
4595   const auto *FnType = cast<FunctionType>(PointeeType);
4596 
4597   // If we are checking indirect calls and this call is indirect, check that the
4598   // function pointer is a member of the bit set for the function type.
4599   if (SanOpts.has(SanitizerKind::CFIICall) &&
4600       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4601     SanitizerScope SanScope(this);
4602     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4603 
4604     llvm::Metadata *MD;
4605     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4606       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4607     else
4608       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4609 
4610     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4611 
4612     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4613     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4614     llvm::Value *TypeTest = Builder.CreateCall(
4615         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4616 
4617     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4618     llvm::Constant *StaticData[] = {
4619         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4620         EmitCheckSourceLocation(E->getLocStart()),
4621         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4622     };
4623     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4624       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4625                            CastedCallee, StaticData);
4626     } else {
4627       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4628                 SanitizerHandler::CFICheckFail, StaticData,
4629                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4630     }
4631   }
4632 
4633   CallArgList Args;
4634   if (Chain)
4635     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4636              CGM.getContext().VoidPtrTy);
4637 
4638   // C++17 requires that we evaluate arguments to a call using assignment syntax
4639   // right-to-left, and that we evaluate arguments to certain other operators
4640   // left-to-right. Note that we allow this to override the order dictated by
4641   // the calling convention on the MS ABI, which means that parameter
4642   // destruction order is not necessarily reverse construction order.
4643   // FIXME: Revisit this based on C++ committee response to unimplementability.
4644   EvaluationOrder Order = EvaluationOrder::Default;
4645   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4646     if (OCE->isAssignmentOp())
4647       Order = EvaluationOrder::ForceRightToLeft;
4648     else {
4649       switch (OCE->getOperator()) {
4650       case OO_LessLess:
4651       case OO_GreaterGreater:
4652       case OO_AmpAmp:
4653       case OO_PipePipe:
4654       case OO_Comma:
4655       case OO_ArrowStar:
4656         Order = EvaluationOrder::ForceLeftToRight;
4657         break;
4658       default:
4659         break;
4660       }
4661     }
4662   }
4663 
4664   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4665                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4666 
4667   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4668       Args, FnType, /*isChainCall=*/Chain);
4669 
4670   // C99 6.5.2.2p6:
4671   //   If the expression that denotes the called function has a type
4672   //   that does not include a prototype, [the default argument
4673   //   promotions are performed]. If the number of arguments does not
4674   //   equal the number of parameters, the behavior is undefined. If
4675   //   the function is defined with a type that includes a prototype,
4676   //   and either the prototype ends with an ellipsis (, ...) or the
4677   //   types of the arguments after promotion are not compatible with
4678   //   the types of the parameters, the behavior is undefined. If the
4679   //   function is defined with a type that does not include a
4680   //   prototype, and the types of the arguments after promotion are
4681   //   not compatible with those of the parameters after promotion,
4682   //   the behavior is undefined [except in some trivial cases].
4683   // That is, in the general case, we should assume that a call
4684   // through an unprototyped function type works like a *non-variadic*
4685   // call.  The way we make this work is to cast to the exact type
4686   // of the promoted arguments.
4687   //
4688   // Chain calls use this same code path to add the invisible chain parameter
4689   // to the function type.
4690   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4691     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4692     CalleeTy = CalleeTy->getPointerTo();
4693 
4694     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4695     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4696     Callee.setFunctionPointer(CalleePtr);
4697   }
4698 
4699   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc());
4700 }
4701 
4702 LValue CodeGenFunction::
4703 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4704   Address BaseAddr = Address::invalid();
4705   if (E->getOpcode() == BO_PtrMemI) {
4706     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4707   } else {
4708     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4709   }
4710 
4711   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4712 
4713   const MemberPointerType *MPT
4714     = E->getRHS()->getType()->getAs<MemberPointerType>();
4715 
4716   LValueBaseInfo BaseInfo;
4717   TBAAAccessInfo TBAAInfo;
4718   Address MemberAddr =
4719     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4720                                     &TBAAInfo);
4721 
4722   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4723 }
4724 
4725 /// Given the address of a temporary variable, produce an r-value of
4726 /// its type.
4727 RValue CodeGenFunction::convertTempToRValue(Address addr,
4728                                             QualType type,
4729                                             SourceLocation loc) {
4730   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4731   switch (getEvaluationKind(type)) {
4732   case TEK_Complex:
4733     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4734   case TEK_Aggregate:
4735     return lvalue.asAggregateRValue();
4736   case TEK_Scalar:
4737     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4738   }
4739   llvm_unreachable("bad evaluation kind");
4740 }
4741 
4742 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4743   assert(Val->getType()->isFPOrFPVectorTy());
4744   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4745     return;
4746 
4747   llvm::MDBuilder MDHelper(getLLVMContext());
4748   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4749 
4750   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4751 }
4752 
4753 namespace {
4754   struct LValueOrRValue {
4755     LValue LV;
4756     RValue RV;
4757   };
4758 }
4759 
4760 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4761                                            const PseudoObjectExpr *E,
4762                                            bool forLValue,
4763                                            AggValueSlot slot) {
4764   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4765 
4766   // Find the result expression, if any.
4767   const Expr *resultExpr = E->getResultExpr();
4768   LValueOrRValue result;
4769 
4770   for (PseudoObjectExpr::const_semantics_iterator
4771          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4772     const Expr *semantic = *i;
4773 
4774     // If this semantic expression is an opaque value, bind it
4775     // to the result of its source expression.
4776     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4777       // Skip unique OVEs.
4778       if (ov->isUnique()) {
4779         assert(ov != resultExpr &&
4780                "A unique OVE cannot be used as the result expression");
4781         continue;
4782       }
4783 
4784       // If this is the result expression, we may need to evaluate
4785       // directly into the slot.
4786       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4787       OVMA opaqueData;
4788       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4789           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4790         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4791         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4792                                        AlignmentSource::Decl);
4793         opaqueData = OVMA::bind(CGF, ov, LV);
4794         result.RV = slot.asRValue();
4795 
4796       // Otherwise, emit as normal.
4797       } else {
4798         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4799 
4800         // If this is the result, also evaluate the result now.
4801         if (ov == resultExpr) {
4802           if (forLValue)
4803             result.LV = CGF.EmitLValue(ov);
4804           else
4805             result.RV = CGF.EmitAnyExpr(ov, slot);
4806         }
4807       }
4808 
4809       opaques.push_back(opaqueData);
4810 
4811     // Otherwise, if the expression is the result, evaluate it
4812     // and remember the result.
4813     } else if (semantic == resultExpr) {
4814       if (forLValue)
4815         result.LV = CGF.EmitLValue(semantic);
4816       else
4817         result.RV = CGF.EmitAnyExpr(semantic, slot);
4818 
4819     // Otherwise, evaluate the expression in an ignored context.
4820     } else {
4821       CGF.EmitIgnoredExpr(semantic);
4822     }
4823   }
4824 
4825   // Unbind all the opaques now.
4826   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4827     opaques[i].unbind(CGF);
4828 
4829   return result;
4830 }
4831 
4832 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4833                                                AggValueSlot slot) {
4834   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4835 }
4836 
4837 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4838   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4839 }
4840