1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 65 const Twine &Name, 66 llvm::Value *ArraySize, 67 bool CastToDefaultAddrSpace) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getQuantity()); 70 llvm::Value *V = Alloca; 71 // Alloca always returns a pointer in alloca address space, which may 72 // be different from the type defined by the language. For example, 73 // in C++ the auto variables are in the default address space. Therefore 74 // cast alloca to the default address space when necessary. 75 if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) { 76 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 77 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 78 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 79 // otherwise alloca is inserted at the current insertion point of the 80 // builder. 81 if (!ArraySize) 82 Builder.SetInsertPoint(AllocaInsertPt); 83 V = getTargetHooks().performAddrSpaceCast( 84 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 85 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 86 } 87 88 return Address(V, Align); 89 } 90 91 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 92 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 93 /// insertion point of the builder. 94 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 95 const Twine &Name, 96 llvm::Value *ArraySize) { 97 if (ArraySize) 98 return Builder.CreateAlloca(Ty, ArraySize, Name); 99 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 100 ArraySize, Name, AllocaInsertPt); 101 } 102 103 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 104 /// default alignment of the corresponding LLVM type, which is *not* 105 /// guaranteed to be related in any way to the expected alignment of 106 /// an AST type that might have been lowered to Ty. 107 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 108 const Twine &Name) { 109 CharUnits Align = 110 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 111 return CreateTempAlloca(Ty, Align, Name); 112 } 113 114 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 115 assert(isa<llvm::AllocaInst>(Var.getPointer())); 116 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 117 Store->setAlignment(Var.getAlignment().getQuantity()); 118 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 119 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 120 } 121 122 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 123 CharUnits Align = getContext().getTypeAlignInChars(Ty); 124 return CreateTempAlloca(ConvertType(Ty), Align, Name); 125 } 126 127 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 128 bool CastToDefaultAddrSpace) { 129 // FIXME: Should we prefer the preferred type alignment here? 130 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, 131 CastToDefaultAddrSpace); 132 } 133 134 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 135 const Twine &Name, 136 bool CastToDefaultAddrSpace) { 137 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr, 138 CastToDefaultAddrSpace); 139 } 140 141 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 142 /// expression and compare the result against zero, returning an Int1Ty value. 143 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 144 PGO.setCurrentStmt(E); 145 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 146 llvm::Value *MemPtr = EmitScalarExpr(E); 147 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 148 } 149 150 QualType BoolTy = getContext().BoolTy; 151 SourceLocation Loc = E->getExprLoc(); 152 if (!E->getType()->isAnyComplexType()) 153 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 154 155 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 156 Loc); 157 } 158 159 /// EmitIgnoredExpr - Emit code to compute the specified expression, 160 /// ignoring the result. 161 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 162 if (E->isRValue()) 163 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 164 165 // Just emit it as an l-value and drop the result. 166 EmitLValue(E); 167 } 168 169 /// EmitAnyExpr - Emit code to compute the specified expression which 170 /// can have any type. The result is returned as an RValue struct. 171 /// If this is an aggregate expression, AggSlot indicates where the 172 /// result should be returned. 173 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 174 AggValueSlot aggSlot, 175 bool ignoreResult) { 176 switch (getEvaluationKind(E->getType())) { 177 case TEK_Scalar: 178 return RValue::get(EmitScalarExpr(E, ignoreResult)); 179 case TEK_Complex: 180 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 181 case TEK_Aggregate: 182 if (!ignoreResult && aggSlot.isIgnored()) 183 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 184 EmitAggExpr(E, aggSlot); 185 return aggSlot.asRValue(); 186 } 187 llvm_unreachable("bad evaluation kind"); 188 } 189 190 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 191 /// always be accessible even if no aggregate location is provided. 192 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 193 AggValueSlot AggSlot = AggValueSlot::ignored(); 194 195 if (hasAggregateEvaluationKind(E->getType())) 196 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 197 return EmitAnyExpr(E, AggSlot); 198 } 199 200 /// EmitAnyExprToMem - Evaluate an expression into a given memory 201 /// location. 202 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 203 Address Location, 204 Qualifiers Quals, 205 bool IsInit) { 206 // FIXME: This function should take an LValue as an argument. 207 switch (getEvaluationKind(E->getType())) { 208 case TEK_Complex: 209 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 210 /*isInit*/ false); 211 return; 212 213 case TEK_Aggregate: { 214 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 215 AggValueSlot::IsDestructed_t(IsInit), 216 AggValueSlot::DoesNotNeedGCBarriers, 217 AggValueSlot::IsAliased_t(!IsInit), 218 AggValueSlot::MayOverlap)); 219 return; 220 } 221 222 case TEK_Scalar: { 223 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 224 LValue LV = MakeAddrLValue(Location, E->getType()); 225 EmitStoreThroughLValue(RV, LV); 226 return; 227 } 228 } 229 llvm_unreachable("bad evaluation kind"); 230 } 231 232 static void 233 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 234 const Expr *E, Address ReferenceTemporary) { 235 // Objective-C++ ARC: 236 // If we are binding a reference to a temporary that has ownership, we 237 // need to perform retain/release operations on the temporary. 238 // 239 // FIXME: This should be looking at E, not M. 240 if (auto Lifetime = M->getType().getObjCLifetime()) { 241 switch (Lifetime) { 242 case Qualifiers::OCL_None: 243 case Qualifiers::OCL_ExplicitNone: 244 // Carry on to normal cleanup handling. 245 break; 246 247 case Qualifiers::OCL_Autoreleasing: 248 // Nothing to do; cleaned up by an autorelease pool. 249 return; 250 251 case Qualifiers::OCL_Strong: 252 case Qualifiers::OCL_Weak: 253 switch (StorageDuration Duration = M->getStorageDuration()) { 254 case SD_Static: 255 // Note: we intentionally do not register a cleanup to release 256 // the object on program termination. 257 return; 258 259 case SD_Thread: 260 // FIXME: We should probably register a cleanup in this case. 261 return; 262 263 case SD_Automatic: 264 case SD_FullExpression: 265 CodeGenFunction::Destroyer *Destroy; 266 CleanupKind CleanupKind; 267 if (Lifetime == Qualifiers::OCL_Strong) { 268 const ValueDecl *VD = M->getExtendingDecl(); 269 bool Precise = 270 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 271 CleanupKind = CGF.getARCCleanupKind(); 272 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 273 : &CodeGenFunction::destroyARCStrongImprecise; 274 } else { 275 // __weak objects always get EH cleanups; otherwise, exceptions 276 // could cause really nasty crashes instead of mere leaks. 277 CleanupKind = NormalAndEHCleanup; 278 Destroy = &CodeGenFunction::destroyARCWeak; 279 } 280 if (Duration == SD_FullExpression) 281 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 282 M->getType(), *Destroy, 283 CleanupKind & EHCleanup); 284 else 285 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 286 M->getType(), 287 *Destroy, CleanupKind & EHCleanup); 288 return; 289 290 case SD_Dynamic: 291 llvm_unreachable("temporary cannot have dynamic storage duration"); 292 } 293 llvm_unreachable("unknown storage duration"); 294 } 295 } 296 297 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 298 if (const RecordType *RT = 299 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 300 // Get the destructor for the reference temporary. 301 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 302 if (!ClassDecl->hasTrivialDestructor()) 303 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 304 } 305 306 if (!ReferenceTemporaryDtor) 307 return; 308 309 // Call the destructor for the temporary. 310 switch (M->getStorageDuration()) { 311 case SD_Static: 312 case SD_Thread: { 313 llvm::Constant *CleanupFn; 314 llvm::Constant *CleanupArg; 315 if (E->getType()->isArrayType()) { 316 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 317 ReferenceTemporary, E->getType(), 318 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 319 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 320 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 321 } else { 322 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 323 StructorType::Complete); 324 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 325 } 326 CGF.CGM.getCXXABI().registerGlobalDtor( 327 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 328 break; 329 } 330 331 case SD_FullExpression: 332 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 333 CodeGenFunction::destroyCXXObject, 334 CGF.getLangOpts().Exceptions); 335 break; 336 337 case SD_Automatic: 338 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 339 ReferenceTemporary, E->getType(), 340 CodeGenFunction::destroyCXXObject, 341 CGF.getLangOpts().Exceptions); 342 break; 343 344 case SD_Dynamic: 345 llvm_unreachable("temporary cannot have dynamic storage duration"); 346 } 347 } 348 349 static Address createReferenceTemporary(CodeGenFunction &CGF, 350 const MaterializeTemporaryExpr *M, 351 const Expr *Inner) { 352 auto &TCG = CGF.getTargetHooks(); 353 switch (M->getStorageDuration()) { 354 case SD_FullExpression: 355 case SD_Automatic: { 356 // If we have a constant temporary array or record try to promote it into a 357 // constant global under the same rules a normal constant would've been 358 // promoted. This is easier on the optimizer and generally emits fewer 359 // instructions. 360 QualType Ty = Inner->getType(); 361 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 362 (Ty->isArrayType() || Ty->isRecordType()) && 363 CGF.CGM.isTypeConstant(Ty, true)) 364 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 365 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 366 auto AS = AddrSpace.getValue(); 367 auto *GV = new llvm::GlobalVariable( 368 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 369 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 370 llvm::GlobalValue::NotThreadLocal, 371 CGF.getContext().getTargetAddressSpace(AS)); 372 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 373 GV->setAlignment(alignment.getQuantity()); 374 llvm::Constant *C = GV; 375 if (AS != LangAS::Default) 376 C = TCG.performAddrSpaceCast( 377 CGF.CGM, GV, AS, LangAS::Default, 378 GV->getValueType()->getPointerTo( 379 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 380 // FIXME: Should we put the new global into a COMDAT? 381 return Address(C, alignment); 382 } 383 } 384 return CGF.CreateMemTemp(Ty, "ref.tmp"); 385 } 386 case SD_Thread: 387 case SD_Static: 388 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 389 390 case SD_Dynamic: 391 llvm_unreachable("temporary can't have dynamic storage duration"); 392 } 393 llvm_unreachable("unknown storage duration"); 394 } 395 396 LValue CodeGenFunction:: 397 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 398 const Expr *E = M->GetTemporaryExpr(); 399 400 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 401 // as that will cause the lifetime adjustment to be lost for ARC 402 auto ownership = M->getType().getObjCLifetime(); 403 if (ownership != Qualifiers::OCL_None && 404 ownership != Qualifiers::OCL_ExplicitNone) { 405 Address Object = createReferenceTemporary(*this, M, E); 406 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 407 Object = Address(llvm::ConstantExpr::getBitCast(Var, 408 ConvertTypeForMem(E->getType()) 409 ->getPointerTo(Object.getAddressSpace())), 410 Object.getAlignment()); 411 412 // createReferenceTemporary will promote the temporary to a global with a 413 // constant initializer if it can. It can only do this to a value of 414 // ARC-manageable type if the value is global and therefore "immune" to 415 // ref-counting operations. Therefore we have no need to emit either a 416 // dynamic initialization or a cleanup and we can just return the address 417 // of the temporary. 418 if (Var->hasInitializer()) 419 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 420 421 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 422 } 423 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 424 AlignmentSource::Decl); 425 426 switch (getEvaluationKind(E->getType())) { 427 default: llvm_unreachable("expected scalar or aggregate expression"); 428 case TEK_Scalar: 429 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 430 break; 431 case TEK_Aggregate: { 432 EmitAggExpr(E, AggValueSlot::forAddr(Object, 433 E->getType().getQualifiers(), 434 AggValueSlot::IsDestructed, 435 AggValueSlot::DoesNotNeedGCBarriers, 436 AggValueSlot::IsNotAliased, 437 AggValueSlot::DoesNotOverlap)); 438 break; 439 } 440 } 441 442 pushTemporaryCleanup(*this, M, E, Object); 443 return RefTempDst; 444 } 445 446 SmallVector<const Expr *, 2> CommaLHSs; 447 SmallVector<SubobjectAdjustment, 2> Adjustments; 448 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 449 450 for (const auto &Ignored : CommaLHSs) 451 EmitIgnoredExpr(Ignored); 452 453 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 454 if (opaque->getType()->isRecordType()) { 455 assert(Adjustments.empty()); 456 return EmitOpaqueValueLValue(opaque); 457 } 458 } 459 460 // Create and initialize the reference temporary. 461 Address Object = createReferenceTemporary(*this, M, E); 462 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 463 Object.getPointer()->stripPointerCasts())) { 464 Object = Address(llvm::ConstantExpr::getBitCast( 465 cast<llvm::Constant>(Object.getPointer()), 466 ConvertTypeForMem(E->getType())->getPointerTo()), 467 Object.getAlignment()); 468 // If the temporary is a global and has a constant initializer or is a 469 // constant temporary that we promoted to a global, we may have already 470 // initialized it. 471 if (!Var->hasInitializer()) { 472 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 473 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 474 } 475 } else { 476 switch (M->getStorageDuration()) { 477 case SD_Automatic: 478 case SD_FullExpression: 479 if (auto *Size = EmitLifetimeStart( 480 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 481 Object.getPointer())) { 482 if (M->getStorageDuration() == SD_Automatic) 483 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 484 Object, Size); 485 else 486 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 487 Size); 488 } 489 break; 490 default: 491 break; 492 } 493 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 494 } 495 pushTemporaryCleanup(*this, M, E, Object); 496 497 // Perform derived-to-base casts and/or field accesses, to get from the 498 // temporary object we created (and, potentially, for which we extended 499 // the lifetime) to the subobject we're binding the reference to. 500 for (unsigned I = Adjustments.size(); I != 0; --I) { 501 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 502 switch (Adjustment.Kind) { 503 case SubobjectAdjustment::DerivedToBaseAdjustment: 504 Object = 505 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 506 Adjustment.DerivedToBase.BasePath->path_begin(), 507 Adjustment.DerivedToBase.BasePath->path_end(), 508 /*NullCheckValue=*/ false, E->getExprLoc()); 509 break; 510 511 case SubobjectAdjustment::FieldAdjustment: { 512 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 513 LV = EmitLValueForField(LV, Adjustment.Field); 514 assert(LV.isSimple() && 515 "materialized temporary field is not a simple lvalue"); 516 Object = LV.getAddress(); 517 break; 518 } 519 520 case SubobjectAdjustment::MemberPointerAdjustment: { 521 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 522 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 523 Adjustment.Ptr.MPT); 524 break; 525 } 526 } 527 } 528 529 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 530 } 531 532 RValue 533 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 534 // Emit the expression as an lvalue. 535 LValue LV = EmitLValue(E); 536 assert(LV.isSimple()); 537 llvm::Value *Value = LV.getPointer(); 538 539 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 540 // C++11 [dcl.ref]p5 (as amended by core issue 453): 541 // If a glvalue to which a reference is directly bound designates neither 542 // an existing object or function of an appropriate type nor a region of 543 // storage of suitable size and alignment to contain an object of the 544 // reference's type, the behavior is undefined. 545 QualType Ty = E->getType(); 546 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 547 } 548 549 return RValue::get(Value); 550 } 551 552 553 /// getAccessedFieldNo - Given an encoded value and a result number, return the 554 /// input field number being accessed. 555 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 556 const llvm::Constant *Elts) { 557 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 558 ->getZExtValue(); 559 } 560 561 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 562 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 563 llvm::Value *High) { 564 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 565 llvm::Value *K47 = Builder.getInt64(47); 566 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 567 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 568 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 569 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 570 return Builder.CreateMul(B1, KMul); 571 } 572 573 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 574 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 575 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 576 } 577 578 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 579 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 580 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 581 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 582 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 583 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 584 } 585 586 bool CodeGenFunction::sanitizePerformTypeCheck() const { 587 return SanOpts.has(SanitizerKind::Null) | 588 SanOpts.has(SanitizerKind::Alignment) | 589 SanOpts.has(SanitizerKind::ObjectSize) | 590 SanOpts.has(SanitizerKind::Vptr); 591 } 592 593 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 594 llvm::Value *Ptr, QualType Ty, 595 CharUnits Alignment, 596 SanitizerSet SkippedChecks) { 597 if (!sanitizePerformTypeCheck()) 598 return; 599 600 // Don't check pointers outside the default address space. The null check 601 // isn't correct, the object-size check isn't supported by LLVM, and we can't 602 // communicate the addresses to the runtime handler for the vptr check. 603 if (Ptr->getType()->getPointerAddressSpace()) 604 return; 605 606 // Don't check pointers to volatile data. The behavior here is implementation- 607 // defined. 608 if (Ty.isVolatileQualified()) 609 return; 610 611 SanitizerScope SanScope(this); 612 613 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 614 llvm::BasicBlock *Done = nullptr; 615 616 // Quickly determine whether we have a pointer to an alloca. It's possible 617 // to skip null checks, and some alignment checks, for these pointers. This 618 // can reduce compile-time significantly. 619 auto PtrToAlloca = 620 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 621 622 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 623 llvm::Value *IsNonNull = nullptr; 624 bool IsGuaranteedNonNull = 625 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 626 bool AllowNullPointers = isNullPointerAllowed(TCK); 627 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 628 !IsGuaranteedNonNull) { 629 // The glvalue must not be an empty glvalue. 630 IsNonNull = Builder.CreateIsNotNull(Ptr); 631 632 // The IR builder can constant-fold the null check if the pointer points to 633 // a constant. 634 IsGuaranteedNonNull = IsNonNull == True; 635 636 // Skip the null check if the pointer is known to be non-null. 637 if (!IsGuaranteedNonNull) { 638 if (AllowNullPointers) { 639 // When performing pointer casts, it's OK if the value is null. 640 // Skip the remaining checks in that case. 641 Done = createBasicBlock("null"); 642 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 643 Builder.CreateCondBr(IsNonNull, Rest, Done); 644 EmitBlock(Rest); 645 } else { 646 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 647 } 648 } 649 } 650 651 if (SanOpts.has(SanitizerKind::ObjectSize) && 652 !SkippedChecks.has(SanitizerKind::ObjectSize) && 653 !Ty->isIncompleteType()) { 654 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 655 656 // The glvalue must refer to a large enough storage region. 657 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 658 // to check this. 659 // FIXME: Get object address space 660 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 661 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 662 llvm::Value *Min = Builder.getFalse(); 663 llvm::Value *NullIsUnknown = Builder.getFalse(); 664 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 665 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 666 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 667 llvm::ConstantInt::get(IntPtrTy, Size)); 668 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 669 } 670 671 uint64_t AlignVal = 0; 672 llvm::Value *PtrAsInt = nullptr; 673 674 if (SanOpts.has(SanitizerKind::Alignment) && 675 !SkippedChecks.has(SanitizerKind::Alignment)) { 676 AlignVal = Alignment.getQuantity(); 677 if (!Ty->isIncompleteType() && !AlignVal) 678 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 679 680 // The glvalue must be suitably aligned. 681 if (AlignVal > 1 && 682 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 683 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 684 llvm::Value *Align = Builder.CreateAnd( 685 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 686 llvm::Value *Aligned = 687 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 688 if (Aligned != True) 689 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 690 } 691 } 692 693 if (Checks.size() > 0) { 694 // Make sure we're not losing information. Alignment needs to be a power of 695 // 2 696 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 697 llvm::Constant *StaticData[] = { 698 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 699 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 700 llvm::ConstantInt::get(Int8Ty, TCK)}; 701 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 702 PtrAsInt ? PtrAsInt : Ptr); 703 } 704 705 // If possible, check that the vptr indicates that there is a subobject of 706 // type Ty at offset zero within this object. 707 // 708 // C++11 [basic.life]p5,6: 709 // [For storage which does not refer to an object within its lifetime] 710 // The program has undefined behavior if: 711 // -- the [pointer or glvalue] is used to access a non-static data member 712 // or call a non-static member function 713 if (SanOpts.has(SanitizerKind::Vptr) && 714 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 715 // Ensure that the pointer is non-null before loading it. If there is no 716 // compile-time guarantee, reuse the run-time null check or emit a new one. 717 if (!IsGuaranteedNonNull) { 718 if (!IsNonNull) 719 IsNonNull = Builder.CreateIsNotNull(Ptr); 720 if (!Done) 721 Done = createBasicBlock("vptr.null"); 722 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 723 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 724 EmitBlock(VptrNotNull); 725 } 726 727 // Compute a hash of the mangled name of the type. 728 // 729 // FIXME: This is not guaranteed to be deterministic! Move to a 730 // fingerprinting mechanism once LLVM provides one. For the time 731 // being the implementation happens to be deterministic. 732 SmallString<64> MangledName; 733 llvm::raw_svector_ostream Out(MangledName); 734 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 735 Out); 736 737 // Blacklist based on the mangled type. 738 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 739 SanitizerKind::Vptr, Out.str())) { 740 llvm::hash_code TypeHash = hash_value(Out.str()); 741 742 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 743 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 744 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 745 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 746 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 747 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 748 749 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 750 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 751 752 // Look the hash up in our cache. 753 const int CacheSize = 128; 754 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 755 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 756 "__ubsan_vptr_type_cache"); 757 llvm::Value *Slot = Builder.CreateAnd(Hash, 758 llvm::ConstantInt::get(IntPtrTy, 759 CacheSize-1)); 760 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 761 llvm::Value *CacheVal = 762 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 763 getPointerAlign()); 764 765 // If the hash isn't in the cache, call a runtime handler to perform the 766 // hard work of checking whether the vptr is for an object of the right 767 // type. This will either fill in the cache and return, or produce a 768 // diagnostic. 769 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 770 llvm::Constant *StaticData[] = { 771 EmitCheckSourceLocation(Loc), 772 EmitCheckTypeDescriptor(Ty), 773 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 774 llvm::ConstantInt::get(Int8Ty, TCK) 775 }; 776 llvm::Value *DynamicData[] = { Ptr, Hash }; 777 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 778 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 779 DynamicData); 780 } 781 } 782 783 if (Done) { 784 Builder.CreateBr(Done); 785 EmitBlock(Done); 786 } 787 } 788 789 /// Determine whether this expression refers to a flexible array member in a 790 /// struct. We disable array bounds checks for such members. 791 static bool isFlexibleArrayMemberExpr(const Expr *E) { 792 // For compatibility with existing code, we treat arrays of length 0 or 793 // 1 as flexible array members. 794 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 795 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 796 if (CAT->getSize().ugt(1)) 797 return false; 798 } else if (!isa<IncompleteArrayType>(AT)) 799 return false; 800 801 E = E->IgnoreParens(); 802 803 // A flexible array member must be the last member in the class. 804 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 805 // FIXME: If the base type of the member expr is not FD->getParent(), 806 // this should not be treated as a flexible array member access. 807 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 808 RecordDecl::field_iterator FI( 809 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 810 return ++FI == FD->getParent()->field_end(); 811 } 812 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 813 return IRE->getDecl()->getNextIvar() == nullptr; 814 } 815 816 return false; 817 } 818 819 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 820 QualType EltTy) { 821 ASTContext &C = getContext(); 822 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 823 if (!EltSize) 824 return nullptr; 825 826 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 827 if (!ArrayDeclRef) 828 return nullptr; 829 830 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 831 if (!ParamDecl) 832 return nullptr; 833 834 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 835 if (!POSAttr) 836 return nullptr; 837 838 // Don't load the size if it's a lower bound. 839 int POSType = POSAttr->getType(); 840 if (POSType != 0 && POSType != 1) 841 return nullptr; 842 843 // Find the implicit size parameter. 844 auto PassedSizeIt = SizeArguments.find(ParamDecl); 845 if (PassedSizeIt == SizeArguments.end()) 846 return nullptr; 847 848 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 849 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 850 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 851 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 852 C.getSizeType(), E->getExprLoc()); 853 llvm::Value *SizeOfElement = 854 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 855 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 856 } 857 858 /// If Base is known to point to the start of an array, return the length of 859 /// that array. Return 0 if the length cannot be determined. 860 static llvm::Value *getArrayIndexingBound( 861 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 862 // For the vector indexing extension, the bound is the number of elements. 863 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 864 IndexedType = Base->getType(); 865 return CGF.Builder.getInt32(VT->getNumElements()); 866 } 867 868 Base = Base->IgnoreParens(); 869 870 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 871 if (CE->getCastKind() == CK_ArrayToPointerDecay && 872 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 873 IndexedType = CE->getSubExpr()->getType(); 874 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 875 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 876 return CGF.Builder.getInt(CAT->getSize()); 877 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 878 return CGF.getVLASize(VAT).NumElts; 879 // Ignore pass_object_size here. It's not applicable on decayed pointers. 880 } 881 } 882 883 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 884 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 885 IndexedType = Base->getType(); 886 return POS; 887 } 888 889 return nullptr; 890 } 891 892 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 893 llvm::Value *Index, QualType IndexType, 894 bool Accessed) { 895 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 896 "should not be called unless adding bounds checks"); 897 SanitizerScope SanScope(this); 898 899 QualType IndexedType; 900 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 901 if (!Bound) 902 return; 903 904 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 905 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 906 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 907 908 llvm::Constant *StaticData[] = { 909 EmitCheckSourceLocation(E->getExprLoc()), 910 EmitCheckTypeDescriptor(IndexedType), 911 EmitCheckTypeDescriptor(IndexType) 912 }; 913 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 914 : Builder.CreateICmpULE(IndexVal, BoundVal); 915 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 916 SanitizerHandler::OutOfBounds, StaticData, Index); 917 } 918 919 920 CodeGenFunction::ComplexPairTy CodeGenFunction:: 921 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 922 bool isInc, bool isPre) { 923 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 924 925 llvm::Value *NextVal; 926 if (isa<llvm::IntegerType>(InVal.first->getType())) { 927 uint64_t AmountVal = isInc ? 1 : -1; 928 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 929 930 // Add the inc/dec to the real part. 931 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 932 } else { 933 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 934 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 935 if (!isInc) 936 FVal.changeSign(); 937 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 938 939 // Add the inc/dec to the real part. 940 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 941 } 942 943 ComplexPairTy IncVal(NextVal, InVal.second); 944 945 // Store the updated result through the lvalue. 946 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 947 948 // If this is a postinc, return the value read from memory, otherwise use the 949 // updated value. 950 return isPre ? IncVal : InVal; 951 } 952 953 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 954 CodeGenFunction *CGF) { 955 // Bind VLAs in the cast type. 956 if (CGF && E->getType()->isVariablyModifiedType()) 957 CGF->EmitVariablyModifiedType(E->getType()); 958 959 if (CGDebugInfo *DI = getModuleDebugInfo()) 960 DI->EmitExplicitCastType(E->getType()); 961 } 962 963 //===----------------------------------------------------------------------===// 964 // LValue Expression Emission 965 //===----------------------------------------------------------------------===// 966 967 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 968 /// derive a more accurate bound on the alignment of the pointer. 969 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 970 LValueBaseInfo *BaseInfo, 971 TBAAAccessInfo *TBAAInfo) { 972 // We allow this with ObjC object pointers because of fragile ABIs. 973 assert(E->getType()->isPointerType() || 974 E->getType()->isObjCObjectPointerType()); 975 E = E->IgnoreParens(); 976 977 // Casts: 978 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 979 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 980 CGM.EmitExplicitCastExprType(ECE, this); 981 982 switch (CE->getCastKind()) { 983 // Non-converting casts (but not C's implicit conversion from void*). 984 case CK_BitCast: 985 case CK_NoOp: 986 case CK_AddressSpaceConversion: 987 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 988 if (PtrTy->getPointeeType()->isVoidType()) 989 break; 990 991 LValueBaseInfo InnerBaseInfo; 992 TBAAAccessInfo InnerTBAAInfo; 993 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 994 &InnerBaseInfo, 995 &InnerTBAAInfo); 996 if (BaseInfo) *BaseInfo = InnerBaseInfo; 997 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 998 999 if (isa<ExplicitCastExpr>(CE)) { 1000 LValueBaseInfo TargetTypeBaseInfo; 1001 TBAAAccessInfo TargetTypeTBAAInfo; 1002 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1003 &TargetTypeBaseInfo, 1004 &TargetTypeTBAAInfo); 1005 if (TBAAInfo) 1006 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1007 TargetTypeTBAAInfo); 1008 // If the source l-value is opaque, honor the alignment of the 1009 // casted-to type. 1010 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1011 if (BaseInfo) 1012 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1013 Addr = Address(Addr.getPointer(), Align); 1014 } 1015 } 1016 1017 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1018 CE->getCastKind() == CK_BitCast) { 1019 if (auto PT = E->getType()->getAs<PointerType>()) 1020 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1021 /*MayBeNull=*/true, 1022 CodeGenFunction::CFITCK_UnrelatedCast, 1023 CE->getLocStart()); 1024 } 1025 return CE->getCastKind() != CK_AddressSpaceConversion 1026 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1027 : Builder.CreateAddrSpaceCast(Addr, 1028 ConvertType(E->getType())); 1029 } 1030 break; 1031 1032 // Array-to-pointer decay. 1033 case CK_ArrayToPointerDecay: 1034 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1035 1036 // Derived-to-base conversions. 1037 case CK_UncheckedDerivedToBase: 1038 case CK_DerivedToBase: { 1039 // TODO: Support accesses to members of base classes in TBAA. For now, we 1040 // conservatively pretend that the complete object is of the base class 1041 // type. 1042 if (TBAAInfo) 1043 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1044 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1045 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1046 return GetAddressOfBaseClass(Addr, Derived, 1047 CE->path_begin(), CE->path_end(), 1048 ShouldNullCheckClassCastValue(CE), 1049 CE->getExprLoc()); 1050 } 1051 1052 // TODO: Is there any reason to treat base-to-derived conversions 1053 // specially? 1054 default: 1055 break; 1056 } 1057 } 1058 1059 // Unary &. 1060 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1061 if (UO->getOpcode() == UO_AddrOf) { 1062 LValue LV = EmitLValue(UO->getSubExpr()); 1063 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1064 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1065 return LV.getAddress(); 1066 } 1067 } 1068 1069 // TODO: conditional operators, comma. 1070 1071 // Otherwise, use the alignment of the type. 1072 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1073 TBAAInfo); 1074 return Address(EmitScalarExpr(E), Align); 1075 } 1076 1077 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1078 if (Ty->isVoidType()) 1079 return RValue::get(nullptr); 1080 1081 switch (getEvaluationKind(Ty)) { 1082 case TEK_Complex: { 1083 llvm::Type *EltTy = 1084 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1085 llvm::Value *U = llvm::UndefValue::get(EltTy); 1086 return RValue::getComplex(std::make_pair(U, U)); 1087 } 1088 1089 // If this is a use of an undefined aggregate type, the aggregate must have an 1090 // identifiable address. Just because the contents of the value are undefined 1091 // doesn't mean that the address can't be taken and compared. 1092 case TEK_Aggregate: { 1093 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1094 return RValue::getAggregate(DestPtr); 1095 } 1096 1097 case TEK_Scalar: 1098 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1099 } 1100 llvm_unreachable("bad evaluation kind"); 1101 } 1102 1103 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1104 const char *Name) { 1105 ErrorUnsupported(E, Name); 1106 return GetUndefRValue(E->getType()); 1107 } 1108 1109 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1110 const char *Name) { 1111 ErrorUnsupported(E, Name); 1112 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1113 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1114 E->getType()); 1115 } 1116 1117 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1118 const Expr *Base = Obj; 1119 while (!isa<CXXThisExpr>(Base)) { 1120 // The result of a dynamic_cast can be null. 1121 if (isa<CXXDynamicCastExpr>(Base)) 1122 return false; 1123 1124 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1125 Base = CE->getSubExpr(); 1126 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1127 Base = PE->getSubExpr(); 1128 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1129 if (UO->getOpcode() == UO_Extension) 1130 Base = UO->getSubExpr(); 1131 else 1132 return false; 1133 } else { 1134 return false; 1135 } 1136 } 1137 return true; 1138 } 1139 1140 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1141 LValue LV; 1142 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1143 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1144 else 1145 LV = EmitLValue(E); 1146 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1147 SanitizerSet SkippedChecks; 1148 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1149 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1150 if (IsBaseCXXThis) 1151 SkippedChecks.set(SanitizerKind::Alignment, true); 1152 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1153 SkippedChecks.set(SanitizerKind::Null, true); 1154 } 1155 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1156 E->getType(), LV.getAlignment(), SkippedChecks); 1157 } 1158 return LV; 1159 } 1160 1161 /// EmitLValue - Emit code to compute a designator that specifies the location 1162 /// of the expression. 1163 /// 1164 /// This can return one of two things: a simple address or a bitfield reference. 1165 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1166 /// an LLVM pointer type. 1167 /// 1168 /// If this returns a bitfield reference, nothing about the pointee type of the 1169 /// LLVM value is known: For example, it may not be a pointer to an integer. 1170 /// 1171 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1172 /// this method guarantees that the returned pointer type will point to an LLVM 1173 /// type of the same size of the lvalue's type. If the lvalue has a variable 1174 /// length type, this is not possible. 1175 /// 1176 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1177 ApplyDebugLocation DL(*this, E); 1178 switch (E->getStmtClass()) { 1179 default: return EmitUnsupportedLValue(E, "l-value expression"); 1180 1181 case Expr::ObjCPropertyRefExprClass: 1182 llvm_unreachable("cannot emit a property reference directly"); 1183 1184 case Expr::ObjCSelectorExprClass: 1185 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1186 case Expr::ObjCIsaExprClass: 1187 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1188 case Expr::BinaryOperatorClass: 1189 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1190 case Expr::CompoundAssignOperatorClass: { 1191 QualType Ty = E->getType(); 1192 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1193 Ty = AT->getValueType(); 1194 if (!Ty->isAnyComplexType()) 1195 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1196 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1197 } 1198 case Expr::CallExprClass: 1199 case Expr::CXXMemberCallExprClass: 1200 case Expr::CXXOperatorCallExprClass: 1201 case Expr::UserDefinedLiteralClass: 1202 return EmitCallExprLValue(cast<CallExpr>(E)); 1203 case Expr::VAArgExprClass: 1204 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1205 case Expr::DeclRefExprClass: 1206 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1207 case Expr::ParenExprClass: 1208 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1209 case Expr::GenericSelectionExprClass: 1210 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1211 case Expr::PredefinedExprClass: 1212 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1213 case Expr::StringLiteralClass: 1214 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1215 case Expr::ObjCEncodeExprClass: 1216 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1217 case Expr::PseudoObjectExprClass: 1218 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1219 case Expr::InitListExprClass: 1220 return EmitInitListLValue(cast<InitListExpr>(E)); 1221 case Expr::CXXTemporaryObjectExprClass: 1222 case Expr::CXXConstructExprClass: 1223 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1224 case Expr::CXXBindTemporaryExprClass: 1225 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1226 case Expr::CXXUuidofExprClass: 1227 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1228 case Expr::LambdaExprClass: 1229 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1230 1231 case Expr::ExprWithCleanupsClass: { 1232 const auto *cleanups = cast<ExprWithCleanups>(E); 1233 enterFullExpression(cleanups); 1234 RunCleanupsScope Scope(*this); 1235 LValue LV = EmitLValue(cleanups->getSubExpr()); 1236 if (LV.isSimple()) { 1237 // Defend against branches out of gnu statement expressions surrounded by 1238 // cleanups. 1239 llvm::Value *V = LV.getPointer(); 1240 Scope.ForceCleanup({&V}); 1241 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1242 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1243 } 1244 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1245 // bitfield lvalue or some other non-simple lvalue? 1246 return LV; 1247 } 1248 1249 case Expr::CXXDefaultArgExprClass: 1250 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1251 case Expr::CXXDefaultInitExprClass: { 1252 CXXDefaultInitExprScope Scope(*this); 1253 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1254 } 1255 case Expr::CXXTypeidExprClass: 1256 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1257 1258 case Expr::ObjCMessageExprClass: 1259 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1260 case Expr::ObjCIvarRefExprClass: 1261 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1262 case Expr::StmtExprClass: 1263 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1264 case Expr::UnaryOperatorClass: 1265 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1266 case Expr::ArraySubscriptExprClass: 1267 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1268 case Expr::OMPArraySectionExprClass: 1269 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1270 case Expr::ExtVectorElementExprClass: 1271 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1272 case Expr::MemberExprClass: 1273 return EmitMemberExpr(cast<MemberExpr>(E)); 1274 case Expr::CompoundLiteralExprClass: 1275 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1276 case Expr::ConditionalOperatorClass: 1277 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1278 case Expr::BinaryConditionalOperatorClass: 1279 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1280 case Expr::ChooseExprClass: 1281 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1282 case Expr::OpaqueValueExprClass: 1283 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1284 case Expr::SubstNonTypeTemplateParmExprClass: 1285 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1286 case Expr::ImplicitCastExprClass: 1287 case Expr::CStyleCastExprClass: 1288 case Expr::CXXFunctionalCastExprClass: 1289 case Expr::CXXStaticCastExprClass: 1290 case Expr::CXXDynamicCastExprClass: 1291 case Expr::CXXReinterpretCastExprClass: 1292 case Expr::CXXConstCastExprClass: 1293 case Expr::ObjCBridgedCastExprClass: 1294 return EmitCastLValue(cast<CastExpr>(E)); 1295 1296 case Expr::MaterializeTemporaryExprClass: 1297 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1298 1299 case Expr::CoawaitExprClass: 1300 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1301 case Expr::CoyieldExprClass: 1302 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1303 } 1304 } 1305 1306 /// Given an object of the given canonical type, can we safely copy a 1307 /// value out of it based on its initializer? 1308 static bool isConstantEmittableObjectType(QualType type) { 1309 assert(type.isCanonical()); 1310 assert(!type->isReferenceType()); 1311 1312 // Must be const-qualified but non-volatile. 1313 Qualifiers qs = type.getLocalQualifiers(); 1314 if (!qs.hasConst() || qs.hasVolatile()) return false; 1315 1316 // Otherwise, all object types satisfy this except C++ classes with 1317 // mutable subobjects or non-trivial copy/destroy behavior. 1318 if (const auto *RT = dyn_cast<RecordType>(type)) 1319 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1320 if (RD->hasMutableFields() || !RD->isTrivial()) 1321 return false; 1322 1323 return true; 1324 } 1325 1326 /// Can we constant-emit a load of a reference to a variable of the 1327 /// given type? This is different from predicates like 1328 /// Decl::isUsableInConstantExpressions because we do want it to apply 1329 /// in situations that don't necessarily satisfy the language's rules 1330 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1331 /// to do this with const float variables even if those variables 1332 /// aren't marked 'constexpr'. 1333 enum ConstantEmissionKind { 1334 CEK_None, 1335 CEK_AsReferenceOnly, 1336 CEK_AsValueOrReference, 1337 CEK_AsValueOnly 1338 }; 1339 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1340 type = type.getCanonicalType(); 1341 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1342 if (isConstantEmittableObjectType(ref->getPointeeType())) 1343 return CEK_AsValueOrReference; 1344 return CEK_AsReferenceOnly; 1345 } 1346 if (isConstantEmittableObjectType(type)) 1347 return CEK_AsValueOnly; 1348 return CEK_None; 1349 } 1350 1351 /// Try to emit a reference to the given value without producing it as 1352 /// an l-value. This is actually more than an optimization: we can't 1353 /// produce an l-value for variables that we never actually captured 1354 /// in a block or lambda, which means const int variables or constexpr 1355 /// literals or similar. 1356 CodeGenFunction::ConstantEmission 1357 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1358 ValueDecl *value = refExpr->getDecl(); 1359 1360 // The value needs to be an enum constant or a constant variable. 1361 ConstantEmissionKind CEK; 1362 if (isa<ParmVarDecl>(value)) { 1363 CEK = CEK_None; 1364 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1365 CEK = checkVarTypeForConstantEmission(var->getType()); 1366 } else if (isa<EnumConstantDecl>(value)) { 1367 CEK = CEK_AsValueOnly; 1368 } else { 1369 CEK = CEK_None; 1370 } 1371 if (CEK == CEK_None) return ConstantEmission(); 1372 1373 Expr::EvalResult result; 1374 bool resultIsReference; 1375 QualType resultType; 1376 1377 // It's best to evaluate all the way as an r-value if that's permitted. 1378 if (CEK != CEK_AsReferenceOnly && 1379 refExpr->EvaluateAsRValue(result, getContext())) { 1380 resultIsReference = false; 1381 resultType = refExpr->getType(); 1382 1383 // Otherwise, try to evaluate as an l-value. 1384 } else if (CEK != CEK_AsValueOnly && 1385 refExpr->EvaluateAsLValue(result, getContext())) { 1386 resultIsReference = true; 1387 resultType = value->getType(); 1388 1389 // Failure. 1390 } else { 1391 return ConstantEmission(); 1392 } 1393 1394 // In any case, if the initializer has side-effects, abandon ship. 1395 if (result.HasSideEffects) 1396 return ConstantEmission(); 1397 1398 // Emit as a constant. 1399 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1400 result.Val, resultType); 1401 1402 // Make sure we emit a debug reference to the global variable. 1403 // This should probably fire even for 1404 if (isa<VarDecl>(value)) { 1405 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1406 EmitDeclRefExprDbgValue(refExpr, result.Val); 1407 } else { 1408 assert(isa<EnumConstantDecl>(value)); 1409 EmitDeclRefExprDbgValue(refExpr, result.Val); 1410 } 1411 1412 // If we emitted a reference constant, we need to dereference that. 1413 if (resultIsReference) 1414 return ConstantEmission::forReference(C); 1415 1416 return ConstantEmission::forValue(C); 1417 } 1418 1419 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1420 const MemberExpr *ME) { 1421 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1422 // Try to emit static variable member expressions as DREs. 1423 return DeclRefExpr::Create( 1424 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1425 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1426 ME->getType(), ME->getValueKind()); 1427 } 1428 return nullptr; 1429 } 1430 1431 CodeGenFunction::ConstantEmission 1432 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1433 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1434 return tryEmitAsConstant(DRE); 1435 return ConstantEmission(); 1436 } 1437 1438 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1439 SourceLocation Loc) { 1440 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1441 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1442 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1443 } 1444 1445 static bool hasBooleanRepresentation(QualType Ty) { 1446 if (Ty->isBooleanType()) 1447 return true; 1448 1449 if (const EnumType *ET = Ty->getAs<EnumType>()) 1450 return ET->getDecl()->getIntegerType()->isBooleanType(); 1451 1452 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1453 return hasBooleanRepresentation(AT->getValueType()); 1454 1455 return false; 1456 } 1457 1458 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1459 llvm::APInt &Min, llvm::APInt &End, 1460 bool StrictEnums, bool IsBool) { 1461 const EnumType *ET = Ty->getAs<EnumType>(); 1462 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1463 ET && !ET->getDecl()->isFixed(); 1464 if (!IsBool && !IsRegularCPlusPlusEnum) 1465 return false; 1466 1467 if (IsBool) { 1468 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1469 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1470 } else { 1471 const EnumDecl *ED = ET->getDecl(); 1472 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1473 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1474 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1475 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1476 1477 if (NumNegativeBits) { 1478 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1479 assert(NumBits <= Bitwidth); 1480 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1481 Min = -End; 1482 } else { 1483 assert(NumPositiveBits <= Bitwidth); 1484 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1485 Min = llvm::APInt(Bitwidth, 0); 1486 } 1487 } 1488 return true; 1489 } 1490 1491 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1492 llvm::APInt Min, End; 1493 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1494 hasBooleanRepresentation(Ty))) 1495 return nullptr; 1496 1497 llvm::MDBuilder MDHelper(getLLVMContext()); 1498 return MDHelper.createRange(Min, End); 1499 } 1500 1501 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1502 SourceLocation Loc) { 1503 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1504 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1505 if (!HasBoolCheck && !HasEnumCheck) 1506 return false; 1507 1508 bool IsBool = hasBooleanRepresentation(Ty) || 1509 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1510 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1511 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1512 if (!NeedsBoolCheck && !NeedsEnumCheck) 1513 return false; 1514 1515 // Single-bit booleans don't need to be checked. Special-case this to avoid 1516 // a bit width mismatch when handling bitfield values. This is handled by 1517 // EmitFromMemory for the non-bitfield case. 1518 if (IsBool && 1519 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1520 return false; 1521 1522 llvm::APInt Min, End; 1523 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1524 return true; 1525 1526 auto &Ctx = getLLVMContext(); 1527 SanitizerScope SanScope(this); 1528 llvm::Value *Check; 1529 --End; 1530 if (!Min) { 1531 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1532 } else { 1533 llvm::Value *Upper = 1534 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1535 llvm::Value *Lower = 1536 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1537 Check = Builder.CreateAnd(Upper, Lower); 1538 } 1539 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1540 EmitCheckTypeDescriptor(Ty)}; 1541 SanitizerMask Kind = 1542 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1543 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1544 StaticArgs, EmitCheckValue(Value)); 1545 return true; 1546 } 1547 1548 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1549 QualType Ty, 1550 SourceLocation Loc, 1551 LValueBaseInfo BaseInfo, 1552 TBAAAccessInfo TBAAInfo, 1553 bool isNontemporal) { 1554 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1555 // For better performance, handle vector loads differently. 1556 if (Ty->isVectorType()) { 1557 const llvm::Type *EltTy = Addr.getElementType(); 1558 1559 const auto *VTy = cast<llvm::VectorType>(EltTy); 1560 1561 // Handle vectors of size 3 like size 4 for better performance. 1562 if (VTy->getNumElements() == 3) { 1563 1564 // Bitcast to vec4 type. 1565 llvm::VectorType *vec4Ty = 1566 llvm::VectorType::get(VTy->getElementType(), 4); 1567 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1568 // Now load value. 1569 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1570 1571 // Shuffle vector to get vec3. 1572 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1573 {0, 1, 2}, "extractVec"); 1574 return EmitFromMemory(V, Ty); 1575 } 1576 } 1577 } 1578 1579 // Atomic operations have to be done on integral types. 1580 LValue AtomicLValue = 1581 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1582 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1583 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1584 } 1585 1586 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1587 if (isNontemporal) { 1588 llvm::MDNode *Node = llvm::MDNode::get( 1589 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1590 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1591 } 1592 1593 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1594 1595 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1596 // In order to prevent the optimizer from throwing away the check, don't 1597 // attach range metadata to the load. 1598 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1599 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1600 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1601 1602 return EmitFromMemory(Load, Ty); 1603 } 1604 1605 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1606 // Bool has a different representation in memory than in registers. 1607 if (hasBooleanRepresentation(Ty)) { 1608 // This should really always be an i1, but sometimes it's already 1609 // an i8, and it's awkward to track those cases down. 1610 if (Value->getType()->isIntegerTy(1)) 1611 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1612 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1613 "wrong value rep of bool"); 1614 } 1615 1616 return Value; 1617 } 1618 1619 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1620 // Bool has a different representation in memory than in registers. 1621 if (hasBooleanRepresentation(Ty)) { 1622 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1623 "wrong value rep of bool"); 1624 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1625 } 1626 1627 return Value; 1628 } 1629 1630 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1631 bool Volatile, QualType Ty, 1632 LValueBaseInfo BaseInfo, 1633 TBAAAccessInfo TBAAInfo, 1634 bool isInit, bool isNontemporal) { 1635 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1636 // Handle vectors differently to get better performance. 1637 if (Ty->isVectorType()) { 1638 llvm::Type *SrcTy = Value->getType(); 1639 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1640 // Handle vec3 special. 1641 if (VecTy && VecTy->getNumElements() == 3) { 1642 // Our source is a vec3, do a shuffle vector to make it a vec4. 1643 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1644 Builder.getInt32(2), 1645 llvm::UndefValue::get(Builder.getInt32Ty())}; 1646 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1647 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1648 MaskV, "extractVec"); 1649 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1650 } 1651 if (Addr.getElementType() != SrcTy) { 1652 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1653 } 1654 } 1655 } 1656 1657 Value = EmitToMemory(Value, Ty); 1658 1659 LValue AtomicLValue = 1660 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1661 if (Ty->isAtomicType() || 1662 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1663 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1664 return; 1665 } 1666 1667 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1668 if (isNontemporal) { 1669 llvm::MDNode *Node = 1670 llvm::MDNode::get(Store->getContext(), 1671 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1672 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1673 } 1674 1675 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1676 } 1677 1678 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1679 bool isInit) { 1680 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1681 lvalue.getType(), lvalue.getBaseInfo(), 1682 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1683 } 1684 1685 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1686 /// method emits the address of the lvalue, then loads the result as an rvalue, 1687 /// returning the rvalue. 1688 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1689 if (LV.isObjCWeak()) { 1690 // load of a __weak object. 1691 Address AddrWeakObj = LV.getAddress(); 1692 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1693 AddrWeakObj)); 1694 } 1695 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1696 // In MRC mode, we do a load+autorelease. 1697 if (!getLangOpts().ObjCAutoRefCount) { 1698 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1699 } 1700 1701 // In ARC mode, we load retained and then consume the value. 1702 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1703 Object = EmitObjCConsumeObject(LV.getType(), Object); 1704 return RValue::get(Object); 1705 } 1706 1707 if (LV.isSimple()) { 1708 assert(!LV.getType()->isFunctionType()); 1709 1710 // Everything needs a load. 1711 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1712 } 1713 1714 if (LV.isVectorElt()) { 1715 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1716 LV.isVolatileQualified()); 1717 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1718 "vecext")); 1719 } 1720 1721 // If this is a reference to a subset of the elements of a vector, either 1722 // shuffle the input or extract/insert them as appropriate. 1723 if (LV.isExtVectorElt()) 1724 return EmitLoadOfExtVectorElementLValue(LV); 1725 1726 // Global Register variables always invoke intrinsics 1727 if (LV.isGlobalReg()) 1728 return EmitLoadOfGlobalRegLValue(LV); 1729 1730 assert(LV.isBitField() && "Unknown LValue type!"); 1731 return EmitLoadOfBitfieldLValue(LV, Loc); 1732 } 1733 1734 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1735 SourceLocation Loc) { 1736 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1737 1738 // Get the output type. 1739 llvm::Type *ResLTy = ConvertType(LV.getType()); 1740 1741 Address Ptr = LV.getBitFieldAddress(); 1742 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1743 1744 if (Info.IsSigned) { 1745 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1746 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1747 if (HighBits) 1748 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1749 if (Info.Offset + HighBits) 1750 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1751 } else { 1752 if (Info.Offset) 1753 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1754 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1755 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1756 Info.Size), 1757 "bf.clear"); 1758 } 1759 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1760 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1761 return RValue::get(Val); 1762 } 1763 1764 // If this is a reference to a subset of the elements of a vector, create an 1765 // appropriate shufflevector. 1766 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1767 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1768 LV.isVolatileQualified()); 1769 1770 const llvm::Constant *Elts = LV.getExtVectorElts(); 1771 1772 // If the result of the expression is a non-vector type, we must be extracting 1773 // a single element. Just codegen as an extractelement. 1774 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1775 if (!ExprVT) { 1776 unsigned InIdx = getAccessedFieldNo(0, Elts); 1777 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1778 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1779 } 1780 1781 // Always use shuffle vector to try to retain the original program structure 1782 unsigned NumResultElts = ExprVT->getNumElements(); 1783 1784 SmallVector<llvm::Constant*, 4> Mask; 1785 for (unsigned i = 0; i != NumResultElts; ++i) 1786 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1787 1788 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1789 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1790 MaskV); 1791 return RValue::get(Vec); 1792 } 1793 1794 /// @brief Generates lvalue for partial ext_vector access. 1795 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1796 Address VectorAddress = LV.getExtVectorAddress(); 1797 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1798 QualType EQT = ExprVT->getElementType(); 1799 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1800 1801 Address CastToPointerElement = 1802 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1803 "conv.ptr.element"); 1804 1805 const llvm::Constant *Elts = LV.getExtVectorElts(); 1806 unsigned ix = getAccessedFieldNo(0, Elts); 1807 1808 Address VectorBasePtrPlusIx = 1809 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1810 getContext().getTypeSizeInChars(EQT), 1811 "vector.elt"); 1812 1813 return VectorBasePtrPlusIx; 1814 } 1815 1816 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1817 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1818 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1819 "Bad type for register variable"); 1820 llvm::MDNode *RegName = cast<llvm::MDNode>( 1821 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1822 1823 // We accept integer and pointer types only 1824 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1825 llvm::Type *Ty = OrigTy; 1826 if (OrigTy->isPointerTy()) 1827 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1828 llvm::Type *Types[] = { Ty }; 1829 1830 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1831 llvm::Value *Call = Builder.CreateCall( 1832 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1833 if (OrigTy->isPointerTy()) 1834 Call = Builder.CreateIntToPtr(Call, OrigTy); 1835 return RValue::get(Call); 1836 } 1837 1838 1839 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1840 /// lvalue, where both are guaranteed to the have the same type, and that type 1841 /// is 'Ty'. 1842 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1843 bool isInit) { 1844 if (!Dst.isSimple()) { 1845 if (Dst.isVectorElt()) { 1846 // Read/modify/write the vector, inserting the new element. 1847 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1848 Dst.isVolatileQualified()); 1849 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1850 Dst.getVectorIdx(), "vecins"); 1851 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1852 Dst.isVolatileQualified()); 1853 return; 1854 } 1855 1856 // If this is an update of extended vector elements, insert them as 1857 // appropriate. 1858 if (Dst.isExtVectorElt()) 1859 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1860 1861 if (Dst.isGlobalReg()) 1862 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1863 1864 assert(Dst.isBitField() && "Unknown LValue type"); 1865 return EmitStoreThroughBitfieldLValue(Src, Dst); 1866 } 1867 1868 // There's special magic for assigning into an ARC-qualified l-value. 1869 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1870 switch (Lifetime) { 1871 case Qualifiers::OCL_None: 1872 llvm_unreachable("present but none"); 1873 1874 case Qualifiers::OCL_ExplicitNone: 1875 // nothing special 1876 break; 1877 1878 case Qualifiers::OCL_Strong: 1879 if (isInit) { 1880 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1881 break; 1882 } 1883 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1884 return; 1885 1886 case Qualifiers::OCL_Weak: 1887 if (isInit) 1888 // Initialize and then skip the primitive store. 1889 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1890 else 1891 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1892 return; 1893 1894 case Qualifiers::OCL_Autoreleasing: 1895 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1896 Src.getScalarVal())); 1897 // fall into the normal path 1898 break; 1899 } 1900 } 1901 1902 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1903 // load of a __weak object. 1904 Address LvalueDst = Dst.getAddress(); 1905 llvm::Value *src = Src.getScalarVal(); 1906 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1907 return; 1908 } 1909 1910 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1911 // load of a __strong object. 1912 Address LvalueDst = Dst.getAddress(); 1913 llvm::Value *src = Src.getScalarVal(); 1914 if (Dst.isObjCIvar()) { 1915 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1916 llvm::Type *ResultType = IntPtrTy; 1917 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1918 llvm::Value *RHS = dst.getPointer(); 1919 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1920 llvm::Value *LHS = 1921 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1922 "sub.ptr.lhs.cast"); 1923 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1924 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1925 BytesBetween); 1926 } else if (Dst.isGlobalObjCRef()) { 1927 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1928 Dst.isThreadLocalRef()); 1929 } 1930 else 1931 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1932 return; 1933 } 1934 1935 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1936 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1937 } 1938 1939 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1940 llvm::Value **Result) { 1941 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1942 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1943 Address Ptr = Dst.getBitFieldAddress(); 1944 1945 // Get the source value, truncated to the width of the bit-field. 1946 llvm::Value *SrcVal = Src.getScalarVal(); 1947 1948 // Cast the source to the storage type and shift it into place. 1949 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1950 /*IsSigned=*/false); 1951 llvm::Value *MaskedVal = SrcVal; 1952 1953 // See if there are other bits in the bitfield's storage we'll need to load 1954 // and mask together with source before storing. 1955 if (Info.StorageSize != Info.Size) { 1956 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1957 llvm::Value *Val = 1958 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1959 1960 // Mask the source value as needed. 1961 if (!hasBooleanRepresentation(Dst.getType())) 1962 SrcVal = Builder.CreateAnd(SrcVal, 1963 llvm::APInt::getLowBitsSet(Info.StorageSize, 1964 Info.Size), 1965 "bf.value"); 1966 MaskedVal = SrcVal; 1967 if (Info.Offset) 1968 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1969 1970 // Mask out the original value. 1971 Val = Builder.CreateAnd(Val, 1972 ~llvm::APInt::getBitsSet(Info.StorageSize, 1973 Info.Offset, 1974 Info.Offset + Info.Size), 1975 "bf.clear"); 1976 1977 // Or together the unchanged values and the source value. 1978 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1979 } else { 1980 assert(Info.Offset == 0); 1981 } 1982 1983 // Write the new value back out. 1984 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1985 1986 // Return the new value of the bit-field, if requested. 1987 if (Result) { 1988 llvm::Value *ResultVal = MaskedVal; 1989 1990 // Sign extend the value if needed. 1991 if (Info.IsSigned) { 1992 assert(Info.Size <= Info.StorageSize); 1993 unsigned HighBits = Info.StorageSize - Info.Size; 1994 if (HighBits) { 1995 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1996 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1997 } 1998 } 1999 2000 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2001 "bf.result.cast"); 2002 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2003 } 2004 } 2005 2006 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2007 LValue Dst) { 2008 // This access turns into a read/modify/write of the vector. Load the input 2009 // value now. 2010 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2011 Dst.isVolatileQualified()); 2012 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2013 2014 llvm::Value *SrcVal = Src.getScalarVal(); 2015 2016 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2017 unsigned NumSrcElts = VTy->getNumElements(); 2018 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2019 if (NumDstElts == NumSrcElts) { 2020 // Use shuffle vector is the src and destination are the same number of 2021 // elements and restore the vector mask since it is on the side it will be 2022 // stored. 2023 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2024 for (unsigned i = 0; i != NumSrcElts; ++i) 2025 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2026 2027 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2028 Vec = Builder.CreateShuffleVector(SrcVal, 2029 llvm::UndefValue::get(Vec->getType()), 2030 MaskV); 2031 } else if (NumDstElts > NumSrcElts) { 2032 // Extended the source vector to the same length and then shuffle it 2033 // into the destination. 2034 // FIXME: since we're shuffling with undef, can we just use the indices 2035 // into that? This could be simpler. 2036 SmallVector<llvm::Constant*, 4> ExtMask; 2037 for (unsigned i = 0; i != NumSrcElts; ++i) 2038 ExtMask.push_back(Builder.getInt32(i)); 2039 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2040 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2041 llvm::Value *ExtSrcVal = 2042 Builder.CreateShuffleVector(SrcVal, 2043 llvm::UndefValue::get(SrcVal->getType()), 2044 ExtMaskV); 2045 // build identity 2046 SmallVector<llvm::Constant*, 4> Mask; 2047 for (unsigned i = 0; i != NumDstElts; ++i) 2048 Mask.push_back(Builder.getInt32(i)); 2049 2050 // When the vector size is odd and .odd or .hi is used, the last element 2051 // of the Elts constant array will be one past the size of the vector. 2052 // Ignore the last element here, if it is greater than the mask size. 2053 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2054 NumSrcElts--; 2055 2056 // modify when what gets shuffled in 2057 for (unsigned i = 0; i != NumSrcElts; ++i) 2058 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2059 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2060 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2061 } else { 2062 // We should never shorten the vector 2063 llvm_unreachable("unexpected shorten vector length"); 2064 } 2065 } else { 2066 // If the Src is a scalar (not a vector) it must be updating one element. 2067 unsigned InIdx = getAccessedFieldNo(0, Elts); 2068 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2069 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2070 } 2071 2072 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2073 Dst.isVolatileQualified()); 2074 } 2075 2076 /// @brief Store of global named registers are always calls to intrinsics. 2077 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2078 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2079 "Bad type for register variable"); 2080 llvm::MDNode *RegName = cast<llvm::MDNode>( 2081 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2082 assert(RegName && "Register LValue is not metadata"); 2083 2084 // We accept integer and pointer types only 2085 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2086 llvm::Type *Ty = OrigTy; 2087 if (OrigTy->isPointerTy()) 2088 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2089 llvm::Type *Types[] = { Ty }; 2090 2091 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2092 llvm::Value *Value = Src.getScalarVal(); 2093 if (OrigTy->isPointerTy()) 2094 Value = Builder.CreatePtrToInt(Value, Ty); 2095 Builder.CreateCall( 2096 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2097 } 2098 2099 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2100 // generating write-barries API. It is currently a global, ivar, 2101 // or neither. 2102 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2103 LValue &LV, 2104 bool IsMemberAccess=false) { 2105 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2106 return; 2107 2108 if (isa<ObjCIvarRefExpr>(E)) { 2109 QualType ExpTy = E->getType(); 2110 if (IsMemberAccess && ExpTy->isPointerType()) { 2111 // If ivar is a structure pointer, assigning to field of 2112 // this struct follows gcc's behavior and makes it a non-ivar 2113 // writer-barrier conservatively. 2114 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2115 if (ExpTy->isRecordType()) { 2116 LV.setObjCIvar(false); 2117 return; 2118 } 2119 } 2120 LV.setObjCIvar(true); 2121 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2122 LV.setBaseIvarExp(Exp->getBase()); 2123 LV.setObjCArray(E->getType()->isArrayType()); 2124 return; 2125 } 2126 2127 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2128 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2129 if (VD->hasGlobalStorage()) { 2130 LV.setGlobalObjCRef(true); 2131 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2132 } 2133 } 2134 LV.setObjCArray(E->getType()->isArrayType()); 2135 return; 2136 } 2137 2138 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2139 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2140 return; 2141 } 2142 2143 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2144 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2145 if (LV.isObjCIvar()) { 2146 // If cast is to a structure pointer, follow gcc's behavior and make it 2147 // a non-ivar write-barrier. 2148 QualType ExpTy = E->getType(); 2149 if (ExpTy->isPointerType()) 2150 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2151 if (ExpTy->isRecordType()) 2152 LV.setObjCIvar(false); 2153 } 2154 return; 2155 } 2156 2157 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2158 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2159 return; 2160 } 2161 2162 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2163 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2164 return; 2165 } 2166 2167 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2168 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2169 return; 2170 } 2171 2172 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2173 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2174 return; 2175 } 2176 2177 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2178 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2179 if (LV.isObjCIvar() && !LV.isObjCArray()) 2180 // Using array syntax to assigning to what an ivar points to is not 2181 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2182 LV.setObjCIvar(false); 2183 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2184 // Using array syntax to assigning to what global points to is not 2185 // same as assigning to the global itself. {id *G;} G[i] = 0; 2186 LV.setGlobalObjCRef(false); 2187 return; 2188 } 2189 2190 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2191 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2192 // We don't know if member is an 'ivar', but this flag is looked at 2193 // only in the context of LV.isObjCIvar(). 2194 LV.setObjCArray(E->getType()->isArrayType()); 2195 return; 2196 } 2197 } 2198 2199 static llvm::Value * 2200 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2201 llvm::Value *V, llvm::Type *IRType, 2202 StringRef Name = StringRef()) { 2203 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2204 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2205 } 2206 2207 static LValue EmitThreadPrivateVarDeclLValue( 2208 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2209 llvm::Type *RealVarTy, SourceLocation Loc) { 2210 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2211 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2212 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2213 } 2214 2215 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF, 2216 const VarDecl *VD, QualType T) { 2217 for (const auto *D : VD->redecls()) { 2218 if (!VD->hasAttrs()) 2219 continue; 2220 if (const auto *Attr = D->getAttr<OMPDeclareTargetDeclAttr>()) 2221 if (Attr->getMapType() == OMPDeclareTargetDeclAttr::MT_Link) { 2222 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2223 Address Addr = 2224 CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2225 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2226 } 2227 } 2228 return Address::invalid(); 2229 } 2230 2231 Address 2232 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2233 LValueBaseInfo *PointeeBaseInfo, 2234 TBAAAccessInfo *PointeeTBAAInfo) { 2235 llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), 2236 RefLVal.isVolatile()); 2237 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2238 2239 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2240 PointeeBaseInfo, PointeeTBAAInfo, 2241 /* forPointeeType= */ true); 2242 return Address(Load, Align); 2243 } 2244 2245 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2246 LValueBaseInfo PointeeBaseInfo; 2247 TBAAAccessInfo PointeeTBAAInfo; 2248 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2249 &PointeeTBAAInfo); 2250 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2251 PointeeBaseInfo, PointeeTBAAInfo); 2252 } 2253 2254 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2255 const PointerType *PtrTy, 2256 LValueBaseInfo *BaseInfo, 2257 TBAAAccessInfo *TBAAInfo) { 2258 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2259 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2260 BaseInfo, TBAAInfo, 2261 /*forPointeeType=*/true)); 2262 } 2263 2264 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2265 const PointerType *PtrTy) { 2266 LValueBaseInfo BaseInfo; 2267 TBAAAccessInfo TBAAInfo; 2268 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2269 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2270 } 2271 2272 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2273 const Expr *E, const VarDecl *VD) { 2274 QualType T = E->getType(); 2275 2276 // If it's thread_local, emit a call to its wrapper function instead. 2277 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2278 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2279 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2280 // Check if the variable is marked as declare target with link clause in 2281 // device codegen. 2282 if (CGF.getLangOpts().OpenMPIsDevice) { 2283 Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T); 2284 if (Addr.isValid()) 2285 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2286 } 2287 2288 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2289 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2290 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2291 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2292 Address Addr(V, Alignment); 2293 // Emit reference to the private copy of the variable if it is an OpenMP 2294 // threadprivate variable. 2295 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2296 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2297 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2298 E->getExprLoc()); 2299 } 2300 LValue LV = VD->getType()->isReferenceType() ? 2301 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2302 AlignmentSource::Decl) : 2303 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2304 setObjCGCLValueClass(CGF.getContext(), E, LV); 2305 return LV; 2306 } 2307 2308 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2309 const FunctionDecl *FD) { 2310 if (FD->hasAttr<WeakRefAttr>()) { 2311 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2312 return aliasee.getPointer(); 2313 } 2314 2315 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2316 if (!FD->hasPrototype()) { 2317 if (const FunctionProtoType *Proto = 2318 FD->getType()->getAs<FunctionProtoType>()) { 2319 // Ugly case: for a K&R-style definition, the type of the definition 2320 // isn't the same as the type of a use. Correct for this with a 2321 // bitcast. 2322 QualType NoProtoType = 2323 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2324 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2325 V = llvm::ConstantExpr::getBitCast(V, 2326 CGM.getTypes().ConvertType(NoProtoType)); 2327 } 2328 } 2329 return V; 2330 } 2331 2332 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2333 const Expr *E, const FunctionDecl *FD) { 2334 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2335 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2336 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2337 AlignmentSource::Decl); 2338 } 2339 2340 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2341 llvm::Value *ThisValue) { 2342 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2343 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2344 return CGF.EmitLValueForField(LV, FD); 2345 } 2346 2347 /// Named Registers are named metadata pointing to the register name 2348 /// which will be read from/written to as an argument to the intrinsic 2349 /// @llvm.read/write_register. 2350 /// So far, only the name is being passed down, but other options such as 2351 /// register type, allocation type or even optimization options could be 2352 /// passed down via the metadata node. 2353 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2354 SmallString<64> Name("llvm.named.register."); 2355 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2356 assert(Asm->getLabel().size() < 64-Name.size() && 2357 "Register name too big"); 2358 Name.append(Asm->getLabel()); 2359 llvm::NamedMDNode *M = 2360 CGM.getModule().getOrInsertNamedMetadata(Name); 2361 if (M->getNumOperands() == 0) { 2362 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2363 Asm->getLabel()); 2364 llvm::Metadata *Ops[] = {Str}; 2365 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2366 } 2367 2368 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2369 2370 llvm::Value *Ptr = 2371 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2372 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2373 } 2374 2375 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2376 const NamedDecl *ND = E->getDecl(); 2377 QualType T = E->getType(); 2378 2379 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2380 // Global Named registers access via intrinsics only 2381 if (VD->getStorageClass() == SC_Register && 2382 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2383 return EmitGlobalNamedRegister(VD, CGM); 2384 2385 // A DeclRefExpr for a reference initialized by a constant expression can 2386 // appear without being odr-used. Directly emit the constant initializer. 2387 const Expr *Init = VD->getAnyInitializer(VD); 2388 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2389 VD->isUsableInConstantExpressions(getContext()) && 2390 VD->checkInitIsICE() && 2391 // Do not emit if it is private OpenMP variable. 2392 !(E->refersToEnclosingVariableOrCapture() && 2393 ((CapturedStmtInfo && 2394 (LocalDeclMap.count(VD->getCanonicalDecl()) || 2395 CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || 2396 LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || 2397 isa<BlockDecl>(CurCodeDecl)))) { 2398 llvm::Constant *Val = 2399 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2400 *VD->evaluateValue(), 2401 VD->getType()); 2402 assert(Val && "failed to emit reference constant expression"); 2403 // FIXME: Eventually we will want to emit vector element references. 2404 2405 // Should we be using the alignment of the constant pointer we emitted? 2406 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), 2407 /* BaseInfo= */ nullptr, 2408 /* TBAAInfo= */ nullptr, 2409 /* forPointeeType= */ true); 2410 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2411 } 2412 2413 // Check for captured variables. 2414 if (E->refersToEnclosingVariableOrCapture()) { 2415 VD = VD->getCanonicalDecl(); 2416 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2417 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2418 else if (CapturedStmtInfo) { 2419 auto I = LocalDeclMap.find(VD); 2420 if (I != LocalDeclMap.end()) { 2421 if (VD->getType()->isReferenceType()) 2422 return EmitLoadOfReferenceLValue(I->second, VD->getType(), 2423 AlignmentSource::Decl); 2424 return MakeAddrLValue(I->second, T); 2425 } 2426 LValue CapLVal = 2427 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2428 CapturedStmtInfo->getContextValue()); 2429 return MakeAddrLValue( 2430 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2431 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2432 CapLVal.getTBAAInfo()); 2433 } 2434 2435 assert(isa<BlockDecl>(CurCodeDecl)); 2436 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2437 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2438 } 2439 } 2440 2441 // FIXME: We should be able to assert this for FunctionDecls as well! 2442 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2443 // those with a valid source location. 2444 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2445 !E->getLocation().isValid()) && 2446 "Should not use decl without marking it used!"); 2447 2448 if (ND->hasAttr<WeakRefAttr>()) { 2449 const auto *VD = cast<ValueDecl>(ND); 2450 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2451 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2452 } 2453 2454 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2455 // Check if this is a global variable. 2456 if (VD->hasLinkage() || VD->isStaticDataMember()) 2457 return EmitGlobalVarDeclLValue(*this, E, VD); 2458 2459 Address addr = Address::invalid(); 2460 2461 // The variable should generally be present in the local decl map. 2462 auto iter = LocalDeclMap.find(VD); 2463 if (iter != LocalDeclMap.end()) { 2464 addr = iter->second; 2465 2466 // Otherwise, it might be static local we haven't emitted yet for 2467 // some reason; most likely, because it's in an outer function. 2468 } else if (VD->isStaticLocal()) { 2469 addr = Address(CGM.getOrCreateStaticVarDecl( 2470 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2471 getContext().getDeclAlign(VD)); 2472 2473 // No other cases for now. 2474 } else { 2475 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2476 } 2477 2478 2479 // Check for OpenMP threadprivate variables. 2480 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2481 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2482 return EmitThreadPrivateVarDeclLValue( 2483 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2484 E->getExprLoc()); 2485 } 2486 2487 // Drill into block byref variables. 2488 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2489 if (isBlockByref) { 2490 addr = emitBlockByrefAddress(addr, VD); 2491 } 2492 2493 // Drill into reference types. 2494 LValue LV = VD->getType()->isReferenceType() ? 2495 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2496 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2497 2498 bool isLocalStorage = VD->hasLocalStorage(); 2499 2500 bool NonGCable = isLocalStorage && 2501 !VD->getType()->isReferenceType() && 2502 !isBlockByref; 2503 if (NonGCable) { 2504 LV.getQuals().removeObjCGCAttr(); 2505 LV.setNonGC(true); 2506 } 2507 2508 bool isImpreciseLifetime = 2509 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2510 if (isImpreciseLifetime) 2511 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2512 setObjCGCLValueClass(getContext(), E, LV); 2513 return LV; 2514 } 2515 2516 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2517 return EmitFunctionDeclLValue(*this, E, FD); 2518 2519 // FIXME: While we're emitting a binding from an enclosing scope, all other 2520 // DeclRefExprs we see should be implicitly treated as if they also refer to 2521 // an enclosing scope. 2522 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2523 return EmitLValue(BD->getBinding()); 2524 2525 llvm_unreachable("Unhandled DeclRefExpr"); 2526 } 2527 2528 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2529 // __extension__ doesn't affect lvalue-ness. 2530 if (E->getOpcode() == UO_Extension) 2531 return EmitLValue(E->getSubExpr()); 2532 2533 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2534 switch (E->getOpcode()) { 2535 default: llvm_unreachable("Unknown unary operator lvalue!"); 2536 case UO_Deref: { 2537 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2538 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2539 2540 LValueBaseInfo BaseInfo; 2541 TBAAAccessInfo TBAAInfo; 2542 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2543 &TBAAInfo); 2544 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2545 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2546 2547 // We should not generate __weak write barrier on indirect reference 2548 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2549 // But, we continue to generate __strong write barrier on indirect write 2550 // into a pointer to object. 2551 if (getLangOpts().ObjC1 && 2552 getLangOpts().getGC() != LangOptions::NonGC && 2553 LV.isObjCWeak()) 2554 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2555 return LV; 2556 } 2557 case UO_Real: 2558 case UO_Imag: { 2559 LValue LV = EmitLValue(E->getSubExpr()); 2560 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2561 2562 // __real is valid on scalars. This is a faster way of testing that. 2563 // __imag can only produce an rvalue on scalars. 2564 if (E->getOpcode() == UO_Real && 2565 !LV.getAddress().getElementType()->isStructTy()) { 2566 assert(E->getSubExpr()->getType()->isArithmeticType()); 2567 return LV; 2568 } 2569 2570 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2571 2572 Address Component = 2573 (E->getOpcode() == UO_Real 2574 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2575 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2576 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2577 CGM.getTBAAInfoForSubobject(LV, T)); 2578 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2579 return ElemLV; 2580 } 2581 case UO_PreInc: 2582 case UO_PreDec: { 2583 LValue LV = EmitLValue(E->getSubExpr()); 2584 bool isInc = E->getOpcode() == UO_PreInc; 2585 2586 if (E->getType()->isAnyComplexType()) 2587 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2588 else 2589 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2590 return LV; 2591 } 2592 } 2593 } 2594 2595 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2596 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2597 E->getType(), AlignmentSource::Decl); 2598 } 2599 2600 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2601 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2602 E->getType(), AlignmentSource::Decl); 2603 } 2604 2605 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2606 auto SL = E->getFunctionName(); 2607 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2608 StringRef FnName = CurFn->getName(); 2609 if (FnName.startswith("\01")) 2610 FnName = FnName.substr(1); 2611 StringRef NameItems[] = { 2612 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2613 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2614 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2615 std::string Name = SL->getString(); 2616 if (!Name.empty()) { 2617 unsigned Discriminator = 2618 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2619 if (Discriminator) 2620 Name += "_" + Twine(Discriminator + 1).str(); 2621 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2622 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2623 } else { 2624 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2625 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2626 } 2627 } 2628 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2629 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2630 } 2631 2632 /// Emit a type description suitable for use by a runtime sanitizer library. The 2633 /// format of a type descriptor is 2634 /// 2635 /// \code 2636 /// { i16 TypeKind, i16 TypeInfo } 2637 /// \endcode 2638 /// 2639 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2640 /// integer, 1 for a floating point value, and -1 for anything else. 2641 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2642 // Only emit each type's descriptor once. 2643 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2644 return C; 2645 2646 uint16_t TypeKind = -1; 2647 uint16_t TypeInfo = 0; 2648 2649 if (T->isIntegerType()) { 2650 TypeKind = 0; 2651 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2652 (T->isSignedIntegerType() ? 1 : 0); 2653 } else if (T->isFloatingType()) { 2654 TypeKind = 1; 2655 TypeInfo = getContext().getTypeSize(T); 2656 } 2657 2658 // Format the type name as if for a diagnostic, including quotes and 2659 // optionally an 'aka'. 2660 SmallString<32> Buffer; 2661 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2662 (intptr_t)T.getAsOpaquePtr(), 2663 StringRef(), StringRef(), None, Buffer, 2664 None); 2665 2666 llvm::Constant *Components[] = { 2667 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2668 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2669 }; 2670 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2671 2672 auto *GV = new llvm::GlobalVariable( 2673 CGM.getModule(), Descriptor->getType(), 2674 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2675 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2676 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2677 2678 // Remember the descriptor for this type. 2679 CGM.setTypeDescriptorInMap(T, GV); 2680 2681 return GV; 2682 } 2683 2684 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2685 llvm::Type *TargetTy = IntPtrTy; 2686 2687 if (V->getType() == TargetTy) 2688 return V; 2689 2690 // Floating-point types which fit into intptr_t are bitcast to integers 2691 // and then passed directly (after zero-extension, if necessary). 2692 if (V->getType()->isFloatingPointTy()) { 2693 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2694 if (Bits <= TargetTy->getIntegerBitWidth()) 2695 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2696 Bits)); 2697 } 2698 2699 // Integers which fit in intptr_t are zero-extended and passed directly. 2700 if (V->getType()->isIntegerTy() && 2701 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2702 return Builder.CreateZExt(V, TargetTy); 2703 2704 // Pointers are passed directly, everything else is passed by address. 2705 if (!V->getType()->isPointerTy()) { 2706 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2707 Builder.CreateStore(V, Ptr); 2708 V = Ptr.getPointer(); 2709 } 2710 return Builder.CreatePtrToInt(V, TargetTy); 2711 } 2712 2713 /// \brief Emit a representation of a SourceLocation for passing to a handler 2714 /// in a sanitizer runtime library. The format for this data is: 2715 /// \code 2716 /// struct SourceLocation { 2717 /// const char *Filename; 2718 /// int32_t Line, Column; 2719 /// }; 2720 /// \endcode 2721 /// For an invalid SourceLocation, the Filename pointer is null. 2722 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2723 llvm::Constant *Filename; 2724 int Line, Column; 2725 2726 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2727 if (PLoc.isValid()) { 2728 StringRef FilenameString = PLoc.getFilename(); 2729 2730 int PathComponentsToStrip = 2731 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2732 if (PathComponentsToStrip < 0) { 2733 assert(PathComponentsToStrip != INT_MIN); 2734 int PathComponentsToKeep = -PathComponentsToStrip; 2735 auto I = llvm::sys::path::rbegin(FilenameString); 2736 auto E = llvm::sys::path::rend(FilenameString); 2737 while (I != E && --PathComponentsToKeep) 2738 ++I; 2739 2740 FilenameString = FilenameString.substr(I - E); 2741 } else if (PathComponentsToStrip > 0) { 2742 auto I = llvm::sys::path::begin(FilenameString); 2743 auto E = llvm::sys::path::end(FilenameString); 2744 while (I != E && PathComponentsToStrip--) 2745 ++I; 2746 2747 if (I != E) 2748 FilenameString = 2749 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2750 else 2751 FilenameString = llvm::sys::path::filename(FilenameString); 2752 } 2753 2754 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2755 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2756 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2757 Filename = FilenameGV.getPointer(); 2758 Line = PLoc.getLine(); 2759 Column = PLoc.getColumn(); 2760 } else { 2761 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2762 Line = Column = 0; 2763 } 2764 2765 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2766 Builder.getInt32(Column)}; 2767 2768 return llvm::ConstantStruct::getAnon(Data); 2769 } 2770 2771 namespace { 2772 /// \brief Specify under what conditions this check can be recovered 2773 enum class CheckRecoverableKind { 2774 /// Always terminate program execution if this check fails. 2775 Unrecoverable, 2776 /// Check supports recovering, runtime has both fatal (noreturn) and 2777 /// non-fatal handlers for this check. 2778 Recoverable, 2779 /// Runtime conditionally aborts, always need to support recovery. 2780 AlwaysRecoverable 2781 }; 2782 } 2783 2784 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2785 assert(llvm::countPopulation(Kind) == 1); 2786 switch (Kind) { 2787 case SanitizerKind::Vptr: 2788 return CheckRecoverableKind::AlwaysRecoverable; 2789 case SanitizerKind::Return: 2790 case SanitizerKind::Unreachable: 2791 return CheckRecoverableKind::Unrecoverable; 2792 default: 2793 return CheckRecoverableKind::Recoverable; 2794 } 2795 } 2796 2797 namespace { 2798 struct SanitizerHandlerInfo { 2799 char const *const Name; 2800 unsigned Version; 2801 }; 2802 } 2803 2804 const SanitizerHandlerInfo SanitizerHandlers[] = { 2805 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2806 LIST_SANITIZER_CHECKS 2807 #undef SANITIZER_CHECK 2808 }; 2809 2810 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2811 llvm::FunctionType *FnType, 2812 ArrayRef<llvm::Value *> FnArgs, 2813 SanitizerHandler CheckHandler, 2814 CheckRecoverableKind RecoverKind, bool IsFatal, 2815 llvm::BasicBlock *ContBB) { 2816 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2817 bool NeedsAbortSuffix = 2818 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2819 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2820 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2821 const StringRef CheckName = CheckInfo.Name; 2822 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2823 if (CheckInfo.Version && !MinimalRuntime) 2824 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2825 if (MinimalRuntime) 2826 FnName += "_minimal"; 2827 if (NeedsAbortSuffix) 2828 FnName += "_abort"; 2829 bool MayReturn = 2830 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2831 2832 llvm::AttrBuilder B; 2833 if (!MayReturn) { 2834 B.addAttribute(llvm::Attribute::NoReturn) 2835 .addAttribute(llvm::Attribute::NoUnwind); 2836 } 2837 B.addAttribute(llvm::Attribute::UWTable); 2838 2839 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2840 FnType, FnName, 2841 llvm::AttributeList::get(CGF.getLLVMContext(), 2842 llvm::AttributeList::FunctionIndex, B), 2843 /*Local=*/true); 2844 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2845 if (!MayReturn) { 2846 HandlerCall->setDoesNotReturn(); 2847 CGF.Builder.CreateUnreachable(); 2848 } else { 2849 CGF.Builder.CreateBr(ContBB); 2850 } 2851 } 2852 2853 void CodeGenFunction::EmitCheck( 2854 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2855 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2856 ArrayRef<llvm::Value *> DynamicArgs) { 2857 assert(IsSanitizerScope); 2858 assert(Checked.size() > 0); 2859 assert(CheckHandler >= 0 && 2860 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 2861 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2862 2863 llvm::Value *FatalCond = nullptr; 2864 llvm::Value *RecoverableCond = nullptr; 2865 llvm::Value *TrapCond = nullptr; 2866 for (int i = 0, n = Checked.size(); i < n; ++i) { 2867 llvm::Value *Check = Checked[i].first; 2868 // -fsanitize-trap= overrides -fsanitize-recover=. 2869 llvm::Value *&Cond = 2870 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2871 ? TrapCond 2872 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2873 ? RecoverableCond 2874 : FatalCond; 2875 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2876 } 2877 2878 if (TrapCond) 2879 EmitTrapCheck(TrapCond); 2880 if (!FatalCond && !RecoverableCond) 2881 return; 2882 2883 llvm::Value *JointCond; 2884 if (FatalCond && RecoverableCond) 2885 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2886 else 2887 JointCond = FatalCond ? FatalCond : RecoverableCond; 2888 assert(JointCond); 2889 2890 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2891 assert(SanOpts.has(Checked[0].second)); 2892 #ifndef NDEBUG 2893 for (int i = 1, n = Checked.size(); i < n; ++i) { 2894 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2895 "All recoverable kinds in a single check must be same!"); 2896 assert(SanOpts.has(Checked[i].second)); 2897 } 2898 #endif 2899 2900 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2901 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2902 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2903 // Give hint that we very much don't expect to execute the handler 2904 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2905 llvm::MDBuilder MDHelper(getLLVMContext()); 2906 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2907 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2908 EmitBlock(Handlers); 2909 2910 // Handler functions take an i8* pointing to the (handler-specific) static 2911 // information block, followed by a sequence of intptr_t arguments 2912 // representing operand values. 2913 SmallVector<llvm::Value *, 4> Args; 2914 SmallVector<llvm::Type *, 4> ArgTypes; 2915 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2916 Args.reserve(DynamicArgs.size() + 1); 2917 ArgTypes.reserve(DynamicArgs.size() + 1); 2918 2919 // Emit handler arguments and create handler function type. 2920 if (!StaticArgs.empty()) { 2921 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2922 auto *InfoPtr = 2923 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2924 llvm::GlobalVariable::PrivateLinkage, Info); 2925 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2926 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2927 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2928 ArgTypes.push_back(Int8PtrTy); 2929 } 2930 2931 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2932 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2933 ArgTypes.push_back(IntPtrTy); 2934 } 2935 } 2936 2937 llvm::FunctionType *FnType = 2938 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2939 2940 if (!FatalCond || !RecoverableCond) { 2941 // Simple case: we need to generate a single handler call, either 2942 // fatal, or non-fatal. 2943 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2944 (FatalCond != nullptr), Cont); 2945 } else { 2946 // Emit two handler calls: first one for set of unrecoverable checks, 2947 // another one for recoverable. 2948 llvm::BasicBlock *NonFatalHandlerBB = 2949 createBasicBlock("non_fatal." + CheckName); 2950 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2951 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2952 EmitBlock(FatalHandlerBB); 2953 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2954 NonFatalHandlerBB); 2955 EmitBlock(NonFatalHandlerBB); 2956 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2957 Cont); 2958 } 2959 2960 EmitBlock(Cont); 2961 } 2962 2963 void CodeGenFunction::EmitCfiSlowPathCheck( 2964 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2965 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2966 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2967 2968 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2969 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2970 2971 llvm::MDBuilder MDHelper(getLLVMContext()); 2972 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2973 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2974 2975 EmitBlock(CheckBB); 2976 2977 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2978 2979 llvm::CallInst *CheckCall; 2980 llvm::Constant *SlowPathFn; 2981 if (WithDiag) { 2982 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2983 auto *InfoPtr = 2984 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2985 llvm::GlobalVariable::PrivateLinkage, Info); 2986 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2987 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2988 2989 SlowPathFn = CGM.getModule().getOrInsertFunction( 2990 "__cfi_slowpath_diag", 2991 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2992 false)); 2993 CheckCall = Builder.CreateCall( 2994 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2995 } else { 2996 SlowPathFn = CGM.getModule().getOrInsertFunction( 2997 "__cfi_slowpath", 2998 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2999 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3000 } 3001 3002 CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts())); 3003 CheckCall->setDoesNotThrow(); 3004 3005 EmitBlock(Cont); 3006 } 3007 3008 // Emit a stub for __cfi_check function so that the linker knows about this 3009 // symbol in LTO mode. 3010 void CodeGenFunction::EmitCfiCheckStub() { 3011 llvm::Module *M = &CGM.getModule(); 3012 auto &Ctx = M->getContext(); 3013 llvm::Function *F = llvm::Function::Create( 3014 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3015 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3016 CGM.setDSOLocal(F); 3017 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3018 // FIXME: consider emitting an intrinsic call like 3019 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3020 // which can be lowered in CrossDSOCFI pass to the actual contents of 3021 // __cfi_check. This would allow inlining of __cfi_check calls. 3022 llvm::CallInst::Create( 3023 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3024 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3025 } 3026 3027 // This function is basically a switch over the CFI failure kind, which is 3028 // extracted from CFICheckFailData (1st function argument). Each case is either 3029 // llvm.trap or a call to one of the two runtime handlers, based on 3030 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3031 // failure kind) traps, but this should really never happen. CFICheckFailData 3032 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3033 // check kind; in this case __cfi_check_fail traps as well. 3034 void CodeGenFunction::EmitCfiCheckFail() { 3035 SanitizerScope SanScope(this); 3036 FunctionArgList Args; 3037 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3038 ImplicitParamDecl::Other); 3039 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3040 ImplicitParamDecl::Other); 3041 Args.push_back(&ArgData); 3042 Args.push_back(&ArgAddr); 3043 3044 const CGFunctionInfo &FI = 3045 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3046 3047 llvm::Function *F = llvm::Function::Create( 3048 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3049 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3050 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3051 3052 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3053 SourceLocation()); 3054 3055 llvm::Value *Data = 3056 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3057 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3058 llvm::Value *Addr = 3059 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3060 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3061 3062 // Data == nullptr means the calling module has trap behaviour for this check. 3063 llvm::Value *DataIsNotNullPtr = 3064 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3065 EmitTrapCheck(DataIsNotNullPtr); 3066 3067 llvm::StructType *SourceLocationTy = 3068 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3069 llvm::StructType *CfiCheckFailDataTy = 3070 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3071 3072 llvm::Value *V = Builder.CreateConstGEP2_32( 3073 CfiCheckFailDataTy, 3074 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3075 0); 3076 Address CheckKindAddr(V, getIntAlign()); 3077 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3078 3079 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3080 CGM.getLLVMContext(), 3081 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3082 llvm::Value *ValidVtable = Builder.CreateZExt( 3083 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3084 {Addr, AllVtables}), 3085 IntPtrTy); 3086 3087 const std::pair<int, SanitizerMask> CheckKinds[] = { 3088 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3089 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3090 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3091 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3092 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3093 3094 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3095 for (auto CheckKindMaskPair : CheckKinds) { 3096 int Kind = CheckKindMaskPair.first; 3097 SanitizerMask Mask = CheckKindMaskPair.second; 3098 llvm::Value *Cond = 3099 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3100 if (CGM.getLangOpts().Sanitize.has(Mask)) 3101 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3102 {Data, Addr, ValidVtable}); 3103 else 3104 EmitTrapCheck(Cond); 3105 } 3106 3107 FinishFunction(); 3108 // The only reference to this function will be created during LTO link. 3109 // Make sure it survives until then. 3110 CGM.addUsedGlobal(F); 3111 } 3112 3113 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3114 if (SanOpts.has(SanitizerKind::Unreachable)) { 3115 SanitizerScope SanScope(this); 3116 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3117 SanitizerKind::Unreachable), 3118 SanitizerHandler::BuiltinUnreachable, 3119 EmitCheckSourceLocation(Loc), None); 3120 } 3121 Builder.CreateUnreachable(); 3122 } 3123 3124 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3125 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3126 3127 // If we're optimizing, collapse all calls to trap down to just one per 3128 // function to save on code size. 3129 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3130 TrapBB = createBasicBlock("trap"); 3131 Builder.CreateCondBr(Checked, Cont, TrapBB); 3132 EmitBlock(TrapBB); 3133 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3134 TrapCall->setDoesNotReturn(); 3135 TrapCall->setDoesNotThrow(); 3136 Builder.CreateUnreachable(); 3137 } else { 3138 Builder.CreateCondBr(Checked, Cont, TrapBB); 3139 } 3140 3141 EmitBlock(Cont); 3142 } 3143 3144 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3145 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3146 3147 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3148 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3149 CGM.getCodeGenOpts().TrapFuncName); 3150 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3151 } 3152 3153 return TrapCall; 3154 } 3155 3156 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3157 LValueBaseInfo *BaseInfo, 3158 TBAAAccessInfo *TBAAInfo) { 3159 assert(E->getType()->isArrayType() && 3160 "Array to pointer decay must have array source type!"); 3161 3162 // Expressions of array type can't be bitfields or vector elements. 3163 LValue LV = EmitLValue(E); 3164 Address Addr = LV.getAddress(); 3165 3166 // If the array type was an incomplete type, we need to make sure 3167 // the decay ends up being the right type. 3168 llvm::Type *NewTy = ConvertType(E->getType()); 3169 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3170 3171 // Note that VLA pointers are always decayed, so we don't need to do 3172 // anything here. 3173 if (!E->getType()->isVariableArrayType()) { 3174 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3175 "Expected pointer to array"); 3176 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3177 } 3178 3179 // The result of this decay conversion points to an array element within the 3180 // base lvalue. However, since TBAA currently does not support representing 3181 // accesses to elements of member arrays, we conservatively represent accesses 3182 // to the pointee object as if it had no any base lvalue specified. 3183 // TODO: Support TBAA for member arrays. 3184 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3185 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3186 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3187 3188 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3189 } 3190 3191 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3192 /// array to pointer, return the array subexpression. 3193 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3194 // If this isn't just an array->pointer decay, bail out. 3195 const auto *CE = dyn_cast<CastExpr>(E); 3196 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3197 return nullptr; 3198 3199 // If this is a decay from variable width array, bail out. 3200 const Expr *SubExpr = CE->getSubExpr(); 3201 if (SubExpr->getType()->isVariableArrayType()) 3202 return nullptr; 3203 3204 return SubExpr; 3205 } 3206 3207 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3208 llvm::Value *ptr, 3209 ArrayRef<llvm::Value*> indices, 3210 bool inbounds, 3211 bool signedIndices, 3212 SourceLocation loc, 3213 const llvm::Twine &name = "arrayidx") { 3214 if (inbounds) { 3215 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3216 CodeGenFunction::NotSubtraction, loc, 3217 name); 3218 } else { 3219 return CGF.Builder.CreateGEP(ptr, indices, name); 3220 } 3221 } 3222 3223 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3224 llvm::Value *idx, 3225 CharUnits eltSize) { 3226 // If we have a constant index, we can use the exact offset of the 3227 // element we're accessing. 3228 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3229 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3230 return arrayAlign.alignmentAtOffset(offset); 3231 3232 // Otherwise, use the worst-case alignment for any element. 3233 } else { 3234 return arrayAlign.alignmentOfArrayElement(eltSize); 3235 } 3236 } 3237 3238 static QualType getFixedSizeElementType(const ASTContext &ctx, 3239 const VariableArrayType *vla) { 3240 QualType eltType; 3241 do { 3242 eltType = vla->getElementType(); 3243 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3244 return eltType; 3245 } 3246 3247 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3248 ArrayRef<llvm::Value *> indices, 3249 QualType eltType, bool inbounds, 3250 bool signedIndices, SourceLocation loc, 3251 const llvm::Twine &name = "arrayidx") { 3252 // All the indices except that last must be zero. 3253 #ifndef NDEBUG 3254 for (auto idx : indices.drop_back()) 3255 assert(isa<llvm::ConstantInt>(idx) && 3256 cast<llvm::ConstantInt>(idx)->isZero()); 3257 #endif 3258 3259 // Determine the element size of the statically-sized base. This is 3260 // the thing that the indices are expressed in terms of. 3261 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3262 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3263 } 3264 3265 // We can use that to compute the best alignment of the element. 3266 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3267 CharUnits eltAlign = 3268 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3269 3270 llvm::Value *eltPtr = emitArraySubscriptGEP( 3271 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3272 return Address(eltPtr, eltAlign); 3273 } 3274 3275 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3276 bool Accessed) { 3277 // The index must always be an integer, which is not an aggregate. Emit it 3278 // in lexical order (this complexity is, sadly, required by C++17). 3279 llvm::Value *IdxPre = 3280 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3281 bool SignedIndices = false; 3282 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3283 auto *Idx = IdxPre; 3284 if (E->getLHS() != E->getIdx()) { 3285 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3286 Idx = EmitScalarExpr(E->getIdx()); 3287 } 3288 3289 QualType IdxTy = E->getIdx()->getType(); 3290 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3291 SignedIndices |= IdxSigned; 3292 3293 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3294 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3295 3296 // Extend or truncate the index type to 32 or 64-bits. 3297 if (Promote && Idx->getType() != IntPtrTy) 3298 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3299 3300 return Idx; 3301 }; 3302 IdxPre = nullptr; 3303 3304 // If the base is a vector type, then we are forming a vector element lvalue 3305 // with this subscript. 3306 if (E->getBase()->getType()->isVectorType() && 3307 !isa<ExtVectorElementExpr>(E->getBase())) { 3308 // Emit the vector as an lvalue to get its address. 3309 LValue LHS = EmitLValue(E->getBase()); 3310 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3311 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3312 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3313 LHS.getBaseInfo(), TBAAAccessInfo()); 3314 } 3315 3316 // All the other cases basically behave like simple offsetting. 3317 3318 // Handle the extvector case we ignored above. 3319 if (isa<ExtVectorElementExpr>(E->getBase())) { 3320 LValue LV = EmitLValue(E->getBase()); 3321 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3322 Address Addr = EmitExtVectorElementLValue(LV); 3323 3324 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3325 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3326 SignedIndices, E->getExprLoc()); 3327 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3328 CGM.getTBAAInfoForSubobject(LV, EltType)); 3329 } 3330 3331 LValueBaseInfo EltBaseInfo; 3332 TBAAAccessInfo EltTBAAInfo; 3333 Address Addr = Address::invalid(); 3334 if (const VariableArrayType *vla = 3335 getContext().getAsVariableArrayType(E->getType())) { 3336 // The base must be a pointer, which is not an aggregate. Emit 3337 // it. It needs to be emitted first in case it's what captures 3338 // the VLA bounds. 3339 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3340 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3341 3342 // The element count here is the total number of non-VLA elements. 3343 llvm::Value *numElements = getVLASize(vla).NumElts; 3344 3345 // Effectively, the multiply by the VLA size is part of the GEP. 3346 // GEP indexes are signed, and scaling an index isn't permitted to 3347 // signed-overflow, so we use the same semantics for our explicit 3348 // multiply. We suppress this if overflow is not undefined behavior. 3349 if (getLangOpts().isSignedOverflowDefined()) { 3350 Idx = Builder.CreateMul(Idx, numElements); 3351 } else { 3352 Idx = Builder.CreateNSWMul(Idx, numElements); 3353 } 3354 3355 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3356 !getLangOpts().isSignedOverflowDefined(), 3357 SignedIndices, E->getExprLoc()); 3358 3359 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3360 // Indexing over an interface, as in "NSString *P; P[4];" 3361 3362 // Emit the base pointer. 3363 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3364 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3365 3366 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3367 llvm::Value *InterfaceSizeVal = 3368 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3369 3370 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3371 3372 // We don't necessarily build correct LLVM struct types for ObjC 3373 // interfaces, so we can't rely on GEP to do this scaling 3374 // correctly, so we need to cast to i8*. FIXME: is this actually 3375 // true? A lot of other things in the fragile ABI would break... 3376 llvm::Type *OrigBaseTy = Addr.getType(); 3377 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3378 3379 // Do the GEP. 3380 CharUnits EltAlign = 3381 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3382 llvm::Value *EltPtr = 3383 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3384 SignedIndices, E->getExprLoc()); 3385 Addr = Address(EltPtr, EltAlign); 3386 3387 // Cast back. 3388 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3389 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3390 // If this is A[i] where A is an array, the frontend will have decayed the 3391 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3392 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3393 // "gep x, i" here. Emit one "gep A, 0, i". 3394 assert(Array->getType()->isArrayType() && 3395 "Array to pointer decay must have array source type!"); 3396 LValue ArrayLV; 3397 // For simple multidimensional array indexing, set the 'accessed' flag for 3398 // better bounds-checking of the base expression. 3399 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3400 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3401 else 3402 ArrayLV = EmitLValue(Array); 3403 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3404 3405 // Propagate the alignment from the array itself to the result. 3406 Addr = emitArraySubscriptGEP( 3407 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3408 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3409 E->getExprLoc()); 3410 EltBaseInfo = ArrayLV.getBaseInfo(); 3411 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3412 } else { 3413 // The base must be a pointer; emit it with an estimate of its alignment. 3414 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3415 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3416 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3417 !getLangOpts().isSignedOverflowDefined(), 3418 SignedIndices, E->getExprLoc()); 3419 } 3420 3421 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3422 3423 if (getLangOpts().ObjC1 && 3424 getLangOpts().getGC() != LangOptions::NonGC) { 3425 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3426 setObjCGCLValueClass(getContext(), E, LV); 3427 } 3428 return LV; 3429 } 3430 3431 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3432 LValueBaseInfo &BaseInfo, 3433 TBAAAccessInfo &TBAAInfo, 3434 QualType BaseTy, QualType ElTy, 3435 bool IsLowerBound) { 3436 LValue BaseLVal; 3437 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3438 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3439 if (BaseTy->isArrayType()) { 3440 Address Addr = BaseLVal.getAddress(); 3441 BaseInfo = BaseLVal.getBaseInfo(); 3442 3443 // If the array type was an incomplete type, we need to make sure 3444 // the decay ends up being the right type. 3445 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3446 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3447 3448 // Note that VLA pointers are always decayed, so we don't need to do 3449 // anything here. 3450 if (!BaseTy->isVariableArrayType()) { 3451 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3452 "Expected pointer to array"); 3453 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3454 "arraydecay"); 3455 } 3456 3457 return CGF.Builder.CreateElementBitCast(Addr, 3458 CGF.ConvertTypeForMem(ElTy)); 3459 } 3460 LValueBaseInfo TypeBaseInfo; 3461 TBAAAccessInfo TypeTBAAInfo; 3462 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3463 &TypeTBAAInfo); 3464 BaseInfo.mergeForCast(TypeBaseInfo); 3465 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3466 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3467 } 3468 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3469 } 3470 3471 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3472 bool IsLowerBound) { 3473 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3474 QualType ResultExprTy; 3475 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3476 ResultExprTy = AT->getElementType(); 3477 else 3478 ResultExprTy = BaseTy->getPointeeType(); 3479 llvm::Value *Idx = nullptr; 3480 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3481 // Requesting lower bound or upper bound, but without provided length and 3482 // without ':' symbol for the default length -> length = 1. 3483 // Idx = LowerBound ?: 0; 3484 if (auto *LowerBound = E->getLowerBound()) { 3485 Idx = Builder.CreateIntCast( 3486 EmitScalarExpr(LowerBound), IntPtrTy, 3487 LowerBound->getType()->hasSignedIntegerRepresentation()); 3488 } else 3489 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3490 } else { 3491 // Try to emit length or lower bound as constant. If this is possible, 1 3492 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3493 // IR (LB + Len) - 1. 3494 auto &C = CGM.getContext(); 3495 auto *Length = E->getLength(); 3496 llvm::APSInt ConstLength; 3497 if (Length) { 3498 // Idx = LowerBound + Length - 1; 3499 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3500 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3501 Length = nullptr; 3502 } 3503 auto *LowerBound = E->getLowerBound(); 3504 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3505 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3506 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3507 LowerBound = nullptr; 3508 } 3509 if (!Length) 3510 --ConstLength; 3511 else if (!LowerBound) 3512 --ConstLowerBound; 3513 3514 if (Length || LowerBound) { 3515 auto *LowerBoundVal = 3516 LowerBound 3517 ? Builder.CreateIntCast( 3518 EmitScalarExpr(LowerBound), IntPtrTy, 3519 LowerBound->getType()->hasSignedIntegerRepresentation()) 3520 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3521 auto *LengthVal = 3522 Length 3523 ? Builder.CreateIntCast( 3524 EmitScalarExpr(Length), IntPtrTy, 3525 Length->getType()->hasSignedIntegerRepresentation()) 3526 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3527 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3528 /*HasNUW=*/false, 3529 !getLangOpts().isSignedOverflowDefined()); 3530 if (Length && LowerBound) { 3531 Idx = Builder.CreateSub( 3532 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3533 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3534 } 3535 } else 3536 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3537 } else { 3538 // Idx = ArraySize - 1; 3539 QualType ArrayTy = BaseTy->isPointerType() 3540 ? E->getBase()->IgnoreParenImpCasts()->getType() 3541 : BaseTy; 3542 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3543 Length = VAT->getSizeExpr(); 3544 if (Length->isIntegerConstantExpr(ConstLength, C)) 3545 Length = nullptr; 3546 } else { 3547 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3548 ConstLength = CAT->getSize(); 3549 } 3550 if (Length) { 3551 auto *LengthVal = Builder.CreateIntCast( 3552 EmitScalarExpr(Length), IntPtrTy, 3553 Length->getType()->hasSignedIntegerRepresentation()); 3554 Idx = Builder.CreateSub( 3555 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3556 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3557 } else { 3558 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3559 --ConstLength; 3560 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3561 } 3562 } 3563 } 3564 assert(Idx); 3565 3566 Address EltPtr = Address::invalid(); 3567 LValueBaseInfo BaseInfo; 3568 TBAAAccessInfo TBAAInfo; 3569 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3570 // The base must be a pointer, which is not an aggregate. Emit 3571 // it. It needs to be emitted first in case it's what captures 3572 // the VLA bounds. 3573 Address Base = 3574 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3575 BaseTy, VLA->getElementType(), IsLowerBound); 3576 // The element count here is the total number of non-VLA elements. 3577 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3578 3579 // Effectively, the multiply by the VLA size is part of the GEP. 3580 // GEP indexes are signed, and scaling an index isn't permitted to 3581 // signed-overflow, so we use the same semantics for our explicit 3582 // multiply. We suppress this if overflow is not undefined behavior. 3583 if (getLangOpts().isSignedOverflowDefined()) 3584 Idx = Builder.CreateMul(Idx, NumElements); 3585 else 3586 Idx = Builder.CreateNSWMul(Idx, NumElements); 3587 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3588 !getLangOpts().isSignedOverflowDefined(), 3589 /*SignedIndices=*/false, E->getExprLoc()); 3590 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3591 // If this is A[i] where A is an array, the frontend will have decayed the 3592 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3593 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3594 // "gep x, i" here. Emit one "gep A, 0, i". 3595 assert(Array->getType()->isArrayType() && 3596 "Array to pointer decay must have array source type!"); 3597 LValue ArrayLV; 3598 // For simple multidimensional array indexing, set the 'accessed' flag for 3599 // better bounds-checking of the base expression. 3600 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3601 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3602 else 3603 ArrayLV = EmitLValue(Array); 3604 3605 // Propagate the alignment from the array itself to the result. 3606 EltPtr = emitArraySubscriptGEP( 3607 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3608 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3609 /*SignedIndices=*/false, E->getExprLoc()); 3610 BaseInfo = ArrayLV.getBaseInfo(); 3611 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3612 } else { 3613 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3614 TBAAInfo, BaseTy, ResultExprTy, 3615 IsLowerBound); 3616 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3617 !getLangOpts().isSignedOverflowDefined(), 3618 /*SignedIndices=*/false, E->getExprLoc()); 3619 } 3620 3621 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3622 } 3623 3624 LValue CodeGenFunction:: 3625 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3626 // Emit the base vector as an l-value. 3627 LValue Base; 3628 3629 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3630 if (E->isArrow()) { 3631 // If it is a pointer to a vector, emit the address and form an lvalue with 3632 // it. 3633 LValueBaseInfo BaseInfo; 3634 TBAAAccessInfo TBAAInfo; 3635 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3636 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3637 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3638 Base.getQuals().removeObjCGCAttr(); 3639 } else if (E->getBase()->isGLValue()) { 3640 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3641 // emit the base as an lvalue. 3642 assert(E->getBase()->getType()->isVectorType()); 3643 Base = EmitLValue(E->getBase()); 3644 } else { 3645 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3646 assert(E->getBase()->getType()->isVectorType() && 3647 "Result must be a vector"); 3648 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3649 3650 // Store the vector to memory (because LValue wants an address). 3651 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3652 Builder.CreateStore(Vec, VecMem); 3653 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3654 AlignmentSource::Decl); 3655 } 3656 3657 QualType type = 3658 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3659 3660 // Encode the element access list into a vector of unsigned indices. 3661 SmallVector<uint32_t, 4> Indices; 3662 E->getEncodedElementAccess(Indices); 3663 3664 if (Base.isSimple()) { 3665 llvm::Constant *CV = 3666 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3667 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3668 Base.getBaseInfo(), TBAAAccessInfo()); 3669 } 3670 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3671 3672 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3673 SmallVector<llvm::Constant *, 4> CElts; 3674 3675 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3676 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3677 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3678 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3679 Base.getBaseInfo(), TBAAAccessInfo()); 3680 } 3681 3682 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3683 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3684 EmitIgnoredExpr(E->getBase()); 3685 return EmitDeclRefLValue(DRE); 3686 } 3687 3688 Expr *BaseExpr = E->getBase(); 3689 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3690 LValue BaseLV; 3691 if (E->isArrow()) { 3692 LValueBaseInfo BaseInfo; 3693 TBAAAccessInfo TBAAInfo; 3694 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3695 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3696 SanitizerSet SkippedChecks; 3697 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3698 if (IsBaseCXXThis) 3699 SkippedChecks.set(SanitizerKind::Alignment, true); 3700 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3701 SkippedChecks.set(SanitizerKind::Null, true); 3702 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3703 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3704 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3705 } else 3706 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3707 3708 NamedDecl *ND = E->getMemberDecl(); 3709 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3710 LValue LV = EmitLValueForField(BaseLV, Field); 3711 setObjCGCLValueClass(getContext(), E, LV); 3712 return LV; 3713 } 3714 3715 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3716 return EmitFunctionDeclLValue(*this, E, FD); 3717 3718 llvm_unreachable("Unhandled member declaration!"); 3719 } 3720 3721 /// Given that we are currently emitting a lambda, emit an l-value for 3722 /// one of its members. 3723 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3724 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3725 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3726 QualType LambdaTagType = 3727 getContext().getTagDeclType(Field->getParent()); 3728 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3729 return EmitLValueForField(LambdaLV, Field); 3730 } 3731 3732 /// Drill down to the storage of a field without walking into 3733 /// reference types. 3734 /// 3735 /// The resulting address doesn't necessarily have the right type. 3736 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3737 const FieldDecl *field) { 3738 const RecordDecl *rec = field->getParent(); 3739 3740 unsigned idx = 3741 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3742 3743 CharUnits offset; 3744 // Adjust the alignment down to the given offset. 3745 // As a special case, if the LLVM field index is 0, we know that this 3746 // is zero. 3747 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3748 .getFieldOffset(field->getFieldIndex()) == 0) && 3749 "LLVM field at index zero had non-zero offset?"); 3750 if (idx != 0) { 3751 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3752 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3753 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3754 } 3755 3756 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3757 } 3758 3759 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3760 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3761 if (!RD) 3762 return false; 3763 3764 if (RD->isDynamicClass()) 3765 return true; 3766 3767 for (const auto &Base : RD->bases()) 3768 if (hasAnyVptr(Base.getType(), Context)) 3769 return true; 3770 3771 for (const FieldDecl *Field : RD->fields()) 3772 if (hasAnyVptr(Field->getType(), Context)) 3773 return true; 3774 3775 return false; 3776 } 3777 3778 LValue CodeGenFunction::EmitLValueForField(LValue base, 3779 const FieldDecl *field) { 3780 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3781 3782 if (field->isBitField()) { 3783 const CGRecordLayout &RL = 3784 CGM.getTypes().getCGRecordLayout(field->getParent()); 3785 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3786 Address Addr = base.getAddress(); 3787 unsigned Idx = RL.getLLVMFieldNo(field); 3788 if (Idx != 0) 3789 // For structs, we GEP to the field that the record layout suggests. 3790 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3791 field->getName()); 3792 // Get the access type. 3793 llvm::Type *FieldIntTy = 3794 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3795 if (Addr.getElementType() != FieldIntTy) 3796 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3797 3798 QualType fieldType = 3799 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3800 // TODO: Support TBAA for bit fields. 3801 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 3802 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 3803 TBAAAccessInfo()); 3804 } 3805 3806 // Fields of may-alias structures are may-alias themselves. 3807 // FIXME: this should get propagated down through anonymous structs 3808 // and unions. 3809 QualType FieldType = field->getType(); 3810 const RecordDecl *rec = field->getParent(); 3811 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 3812 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 3813 TBAAAccessInfo FieldTBAAInfo; 3814 if (base.getTBAAInfo().isMayAlias() || 3815 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 3816 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3817 } else if (rec->isUnion()) { 3818 // TODO: Support TBAA for unions. 3819 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3820 } else { 3821 // If no base type been assigned for the base access, then try to generate 3822 // one for this base lvalue. 3823 FieldTBAAInfo = base.getTBAAInfo(); 3824 if (!FieldTBAAInfo.BaseType) { 3825 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3826 assert(!FieldTBAAInfo.Offset && 3827 "Nonzero offset for an access with no base type!"); 3828 } 3829 3830 // Adjust offset to be relative to the base type. 3831 const ASTRecordLayout &Layout = 3832 getContext().getASTRecordLayout(field->getParent()); 3833 unsigned CharWidth = getContext().getCharWidth(); 3834 if (FieldTBAAInfo.BaseType) 3835 FieldTBAAInfo.Offset += 3836 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3837 3838 // Update the final access type and size. 3839 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 3840 FieldTBAAInfo.Size = 3841 getContext().getTypeSizeInChars(FieldType).getQuantity(); 3842 } 3843 3844 Address addr = base.getAddress(); 3845 unsigned RecordCVR = base.getVRQualifiers(); 3846 if (rec->isUnion()) { 3847 // For unions, there is no pointer adjustment. 3848 assert(!FieldType->isReferenceType() && "union has reference member"); 3849 if (CGM.getCodeGenOpts().StrictVTablePointers && 3850 hasAnyVptr(FieldType, getContext())) 3851 // Because unions can easily skip invariant.barriers, we need to add 3852 // a barrier every time CXXRecord field with vptr is referenced. 3853 addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()), 3854 addr.getAlignment()); 3855 } else { 3856 // For structs, we GEP to the field that the record layout suggests. 3857 addr = emitAddrOfFieldStorage(*this, addr, field); 3858 3859 // If this is a reference field, load the reference right now. 3860 if (FieldType->isReferenceType()) { 3861 LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo, 3862 FieldTBAAInfo); 3863 if (RecordCVR & Qualifiers::Volatile) 3864 RefLVal.getQuals().setVolatile(true); 3865 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 3866 3867 // Qualifiers on the struct don't apply to the referencee. 3868 RecordCVR = 0; 3869 FieldType = FieldType->getPointeeType(); 3870 } 3871 } 3872 3873 // Make sure that the address is pointing to the right type. This is critical 3874 // for both unions and structs. A union needs a bitcast, a struct element 3875 // will need a bitcast if the LLVM type laid out doesn't match the desired 3876 // type. 3877 addr = Builder.CreateElementBitCast( 3878 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 3879 3880 if (field->hasAttr<AnnotateAttr>()) 3881 addr = EmitFieldAnnotations(field, addr); 3882 3883 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 3884 LV.getQuals().addCVRQualifiers(RecordCVR); 3885 3886 // __weak attribute on a field is ignored. 3887 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3888 LV.getQuals().removeObjCGCAttr(); 3889 3890 return LV; 3891 } 3892 3893 LValue 3894 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3895 const FieldDecl *Field) { 3896 QualType FieldType = Field->getType(); 3897 3898 if (!FieldType->isReferenceType()) 3899 return EmitLValueForField(Base, Field); 3900 3901 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3902 3903 // Make sure that the address is pointing to the right type. 3904 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3905 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3906 3907 // TODO: Generate TBAA information that describes this access as a structure 3908 // member access and not just an access to an object of the field's type. This 3909 // should be similar to what we do in EmitLValueForField(). 3910 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3911 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 3912 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 3913 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 3914 CGM.getTBAAInfoForSubobject(Base, FieldType)); 3915 } 3916 3917 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3918 if (E->isFileScope()) { 3919 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3920 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3921 } 3922 if (E->getType()->isVariablyModifiedType()) 3923 // make sure to emit the VLA size. 3924 EmitVariablyModifiedType(E->getType()); 3925 3926 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3927 const Expr *InitExpr = E->getInitializer(); 3928 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3929 3930 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3931 /*Init*/ true); 3932 3933 return Result; 3934 } 3935 3936 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3937 if (!E->isGLValue()) 3938 // Initializing an aggregate temporary in C++11: T{...}. 3939 return EmitAggExprToLValue(E); 3940 3941 // An lvalue initializer list must be initializing a reference. 3942 assert(E->isTransparent() && "non-transparent glvalue init list"); 3943 return EmitLValue(E->getInit(0)); 3944 } 3945 3946 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3947 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3948 /// LValue is returned and the current block has been terminated. 3949 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3950 const Expr *Operand) { 3951 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3952 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3953 return None; 3954 } 3955 3956 return CGF.EmitLValue(Operand); 3957 } 3958 3959 LValue CodeGenFunction:: 3960 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3961 if (!expr->isGLValue()) { 3962 // ?: here should be an aggregate. 3963 assert(hasAggregateEvaluationKind(expr->getType()) && 3964 "Unexpected conditional operator!"); 3965 return EmitAggExprToLValue(expr); 3966 } 3967 3968 OpaqueValueMapping binding(*this, expr); 3969 3970 const Expr *condExpr = expr->getCond(); 3971 bool CondExprBool; 3972 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3973 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3974 if (!CondExprBool) std::swap(live, dead); 3975 3976 if (!ContainsLabel(dead)) { 3977 // If the true case is live, we need to track its region. 3978 if (CondExprBool) 3979 incrementProfileCounter(expr); 3980 return EmitLValue(live); 3981 } 3982 } 3983 3984 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3985 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3986 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3987 3988 ConditionalEvaluation eval(*this); 3989 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3990 3991 // Any temporaries created here are conditional. 3992 EmitBlock(lhsBlock); 3993 incrementProfileCounter(expr); 3994 eval.begin(*this); 3995 Optional<LValue> lhs = 3996 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3997 eval.end(*this); 3998 3999 if (lhs && !lhs->isSimple()) 4000 return EmitUnsupportedLValue(expr, "conditional operator"); 4001 4002 lhsBlock = Builder.GetInsertBlock(); 4003 if (lhs) 4004 Builder.CreateBr(contBlock); 4005 4006 // Any temporaries created here are conditional. 4007 EmitBlock(rhsBlock); 4008 eval.begin(*this); 4009 Optional<LValue> rhs = 4010 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4011 eval.end(*this); 4012 if (rhs && !rhs->isSimple()) 4013 return EmitUnsupportedLValue(expr, "conditional operator"); 4014 rhsBlock = Builder.GetInsertBlock(); 4015 4016 EmitBlock(contBlock); 4017 4018 if (lhs && rhs) { 4019 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 4020 2, "cond-lvalue"); 4021 phi->addIncoming(lhs->getPointer(), lhsBlock); 4022 phi->addIncoming(rhs->getPointer(), rhsBlock); 4023 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4024 AlignmentSource alignSource = 4025 std::max(lhs->getBaseInfo().getAlignmentSource(), 4026 rhs->getBaseInfo().getAlignmentSource()); 4027 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4028 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4029 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4030 TBAAInfo); 4031 } else { 4032 assert((lhs || rhs) && 4033 "both operands of glvalue conditional are throw-expressions?"); 4034 return lhs ? *lhs : *rhs; 4035 } 4036 } 4037 4038 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4039 /// type. If the cast is to a reference, we can have the usual lvalue result, 4040 /// otherwise if a cast is needed by the code generator in an lvalue context, 4041 /// then it must mean that we need the address of an aggregate in order to 4042 /// access one of its members. This can happen for all the reasons that casts 4043 /// are permitted with aggregate result, including noop aggregate casts, and 4044 /// cast from scalar to union. 4045 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4046 switch (E->getCastKind()) { 4047 case CK_ToVoid: 4048 case CK_BitCast: 4049 case CK_ArrayToPointerDecay: 4050 case CK_FunctionToPointerDecay: 4051 case CK_NullToMemberPointer: 4052 case CK_NullToPointer: 4053 case CK_IntegralToPointer: 4054 case CK_PointerToIntegral: 4055 case CK_PointerToBoolean: 4056 case CK_VectorSplat: 4057 case CK_IntegralCast: 4058 case CK_BooleanToSignedIntegral: 4059 case CK_IntegralToBoolean: 4060 case CK_IntegralToFloating: 4061 case CK_FloatingToIntegral: 4062 case CK_FloatingToBoolean: 4063 case CK_FloatingCast: 4064 case CK_FloatingRealToComplex: 4065 case CK_FloatingComplexToReal: 4066 case CK_FloatingComplexToBoolean: 4067 case CK_FloatingComplexCast: 4068 case CK_FloatingComplexToIntegralComplex: 4069 case CK_IntegralRealToComplex: 4070 case CK_IntegralComplexToReal: 4071 case CK_IntegralComplexToBoolean: 4072 case CK_IntegralComplexCast: 4073 case CK_IntegralComplexToFloatingComplex: 4074 case CK_DerivedToBaseMemberPointer: 4075 case CK_BaseToDerivedMemberPointer: 4076 case CK_MemberPointerToBoolean: 4077 case CK_ReinterpretMemberPointer: 4078 case CK_AnyPointerToBlockPointerCast: 4079 case CK_ARCProduceObject: 4080 case CK_ARCConsumeObject: 4081 case CK_ARCReclaimReturnedObject: 4082 case CK_ARCExtendBlockObject: 4083 case CK_CopyAndAutoreleaseBlockObject: 4084 case CK_AddressSpaceConversion: 4085 case CK_IntToOCLSampler: 4086 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4087 4088 case CK_Dependent: 4089 llvm_unreachable("dependent cast kind in IR gen!"); 4090 4091 case CK_BuiltinFnToFnPtr: 4092 llvm_unreachable("builtin functions are handled elsewhere"); 4093 4094 // These are never l-values; just use the aggregate emission code. 4095 case CK_NonAtomicToAtomic: 4096 case CK_AtomicToNonAtomic: 4097 return EmitAggExprToLValue(E); 4098 4099 case CK_Dynamic: { 4100 LValue LV = EmitLValue(E->getSubExpr()); 4101 Address V = LV.getAddress(); 4102 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4103 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4104 } 4105 4106 case CK_ConstructorConversion: 4107 case CK_UserDefinedConversion: 4108 case CK_CPointerToObjCPointerCast: 4109 case CK_BlockPointerToObjCPointerCast: 4110 case CK_NoOp: 4111 case CK_LValueToRValue: 4112 return EmitLValue(E->getSubExpr()); 4113 4114 case CK_UncheckedDerivedToBase: 4115 case CK_DerivedToBase: { 4116 const RecordType *DerivedClassTy = 4117 E->getSubExpr()->getType()->getAs<RecordType>(); 4118 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4119 4120 LValue LV = EmitLValue(E->getSubExpr()); 4121 Address This = LV.getAddress(); 4122 4123 // Perform the derived-to-base conversion 4124 Address Base = GetAddressOfBaseClass( 4125 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4126 /*NullCheckValue=*/false, E->getExprLoc()); 4127 4128 // TODO: Support accesses to members of base classes in TBAA. For now, we 4129 // conservatively pretend that the complete object is of the base class 4130 // type. 4131 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4132 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4133 } 4134 case CK_ToUnion: 4135 return EmitAggExprToLValue(E); 4136 case CK_BaseToDerived: { 4137 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4138 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4139 4140 LValue LV = EmitLValue(E->getSubExpr()); 4141 4142 // Perform the base-to-derived conversion 4143 Address Derived = 4144 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4145 E->path_begin(), E->path_end(), 4146 /*NullCheckValue=*/false); 4147 4148 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4149 // performed and the object is not of the derived type. 4150 if (sanitizePerformTypeCheck()) 4151 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4152 Derived.getPointer(), E->getType()); 4153 4154 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4155 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4156 /*MayBeNull=*/false, 4157 CFITCK_DerivedCast, E->getLocStart()); 4158 4159 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4160 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4161 } 4162 case CK_LValueBitCast: { 4163 // This must be a reinterpret_cast (or c-style equivalent). 4164 const auto *CE = cast<ExplicitCastExpr>(E); 4165 4166 CGM.EmitExplicitCastExprType(CE, this); 4167 LValue LV = EmitLValue(E->getSubExpr()); 4168 Address V = Builder.CreateBitCast(LV.getAddress(), 4169 ConvertType(CE->getTypeAsWritten())); 4170 4171 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4172 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4173 /*MayBeNull=*/false, 4174 CFITCK_UnrelatedCast, E->getLocStart()); 4175 4176 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4177 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4178 } 4179 case CK_ObjCObjectLValueCast: { 4180 LValue LV = EmitLValue(E->getSubExpr()); 4181 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4182 ConvertType(E->getType())); 4183 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4184 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4185 } 4186 case CK_ZeroToOCLQueue: 4187 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 4188 case CK_ZeroToOCLEvent: 4189 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 4190 } 4191 4192 llvm_unreachable("Unhandled lvalue cast kind?"); 4193 } 4194 4195 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4196 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4197 return getOrCreateOpaqueLValueMapping(e); 4198 } 4199 4200 LValue 4201 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4202 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4203 4204 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4205 it = OpaqueLValues.find(e); 4206 4207 if (it != OpaqueLValues.end()) 4208 return it->second; 4209 4210 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4211 return EmitLValue(e->getSourceExpr()); 4212 } 4213 4214 RValue 4215 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4216 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4217 4218 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4219 it = OpaqueRValues.find(e); 4220 4221 if (it != OpaqueRValues.end()) 4222 return it->second; 4223 4224 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4225 return EmitAnyExpr(e->getSourceExpr()); 4226 } 4227 4228 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4229 const FieldDecl *FD, 4230 SourceLocation Loc) { 4231 QualType FT = FD->getType(); 4232 LValue FieldLV = EmitLValueForField(LV, FD); 4233 switch (getEvaluationKind(FT)) { 4234 case TEK_Complex: 4235 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4236 case TEK_Aggregate: 4237 return FieldLV.asAggregateRValue(); 4238 case TEK_Scalar: 4239 // This routine is used to load fields one-by-one to perform a copy, so 4240 // don't load reference fields. 4241 if (FD->getType()->isReferenceType()) 4242 return RValue::get(FieldLV.getPointer()); 4243 return EmitLoadOfLValue(FieldLV, Loc); 4244 } 4245 llvm_unreachable("bad evaluation kind"); 4246 } 4247 4248 //===--------------------------------------------------------------------===// 4249 // Expression Emission 4250 //===--------------------------------------------------------------------===// 4251 4252 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4253 ReturnValueSlot ReturnValue) { 4254 // Builtins never have block type. 4255 if (E->getCallee()->getType()->isBlockPointerType()) 4256 return EmitBlockCallExpr(E, ReturnValue); 4257 4258 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4259 return EmitCXXMemberCallExpr(CE, ReturnValue); 4260 4261 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4262 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4263 4264 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4265 if (const CXXMethodDecl *MD = 4266 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4267 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4268 4269 CGCallee callee = EmitCallee(E->getCallee()); 4270 4271 if (callee.isBuiltin()) { 4272 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4273 E, ReturnValue); 4274 } 4275 4276 if (callee.isPseudoDestructor()) { 4277 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4278 } 4279 4280 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4281 } 4282 4283 /// Emit a CallExpr without considering whether it might be a subclass. 4284 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4285 ReturnValueSlot ReturnValue) { 4286 CGCallee Callee = EmitCallee(E->getCallee()); 4287 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4288 } 4289 4290 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4291 if (auto builtinID = FD->getBuiltinID()) { 4292 return CGCallee::forBuiltin(builtinID, FD); 4293 } 4294 4295 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4296 return CGCallee::forDirect(calleePtr, FD); 4297 } 4298 4299 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4300 E = E->IgnoreParens(); 4301 4302 // Look through function-to-pointer decay. 4303 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4304 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4305 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4306 return EmitCallee(ICE->getSubExpr()); 4307 } 4308 4309 // Resolve direct calls. 4310 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4311 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4312 return EmitDirectCallee(*this, FD); 4313 } 4314 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4315 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4316 EmitIgnoredExpr(ME->getBase()); 4317 return EmitDirectCallee(*this, FD); 4318 } 4319 4320 // Look through template substitutions. 4321 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4322 return EmitCallee(NTTP->getReplacement()); 4323 4324 // Treat pseudo-destructor calls differently. 4325 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4326 return CGCallee::forPseudoDestructor(PDE); 4327 } 4328 4329 // Otherwise, we have an indirect reference. 4330 llvm::Value *calleePtr; 4331 QualType functionType; 4332 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4333 calleePtr = EmitScalarExpr(E); 4334 functionType = ptrType->getPointeeType(); 4335 } else { 4336 functionType = E->getType(); 4337 calleePtr = EmitLValue(E).getPointer(); 4338 } 4339 assert(functionType->isFunctionType()); 4340 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4341 E->getReferencedDeclOfCallee()); 4342 CGCallee callee(calleeInfo, calleePtr); 4343 return callee; 4344 } 4345 4346 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4347 // Comma expressions just emit their LHS then their RHS as an l-value. 4348 if (E->getOpcode() == BO_Comma) { 4349 EmitIgnoredExpr(E->getLHS()); 4350 EnsureInsertPoint(); 4351 return EmitLValue(E->getRHS()); 4352 } 4353 4354 if (E->getOpcode() == BO_PtrMemD || 4355 E->getOpcode() == BO_PtrMemI) 4356 return EmitPointerToDataMemberBinaryExpr(E); 4357 4358 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4359 4360 // Note that in all of these cases, __block variables need the RHS 4361 // evaluated first just in case the variable gets moved by the RHS. 4362 4363 switch (getEvaluationKind(E->getType())) { 4364 case TEK_Scalar: { 4365 switch (E->getLHS()->getType().getObjCLifetime()) { 4366 case Qualifiers::OCL_Strong: 4367 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4368 4369 case Qualifiers::OCL_Autoreleasing: 4370 return EmitARCStoreAutoreleasing(E).first; 4371 4372 // No reason to do any of these differently. 4373 case Qualifiers::OCL_None: 4374 case Qualifiers::OCL_ExplicitNone: 4375 case Qualifiers::OCL_Weak: 4376 break; 4377 } 4378 4379 RValue RV = EmitAnyExpr(E->getRHS()); 4380 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4381 if (RV.isScalar()) 4382 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4383 EmitStoreThroughLValue(RV, LV); 4384 return LV; 4385 } 4386 4387 case TEK_Complex: 4388 return EmitComplexAssignmentLValue(E); 4389 4390 case TEK_Aggregate: 4391 return EmitAggExprToLValue(E); 4392 } 4393 llvm_unreachable("bad evaluation kind"); 4394 } 4395 4396 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4397 RValue RV = EmitCallExpr(E); 4398 4399 if (!RV.isScalar()) 4400 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4401 AlignmentSource::Decl); 4402 4403 assert(E->getCallReturnType(getContext())->isReferenceType() && 4404 "Can't have a scalar return unless the return type is a " 4405 "reference type!"); 4406 4407 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4408 } 4409 4410 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4411 // FIXME: This shouldn't require another copy. 4412 return EmitAggExprToLValue(E); 4413 } 4414 4415 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4416 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4417 && "binding l-value to type which needs a temporary"); 4418 AggValueSlot Slot = CreateAggTemp(E->getType()); 4419 EmitCXXConstructExpr(E, Slot); 4420 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4421 } 4422 4423 LValue 4424 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4425 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4426 } 4427 4428 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4429 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4430 ConvertType(E->getType())); 4431 } 4432 4433 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4434 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4435 AlignmentSource::Decl); 4436 } 4437 4438 LValue 4439 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4440 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4441 Slot.setExternallyDestructed(); 4442 EmitAggExpr(E->getSubExpr(), Slot); 4443 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4444 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4445 } 4446 4447 LValue 4448 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4449 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4450 EmitLambdaExpr(E, Slot); 4451 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4452 } 4453 4454 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4455 RValue RV = EmitObjCMessageExpr(E); 4456 4457 if (!RV.isScalar()) 4458 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4459 AlignmentSource::Decl); 4460 4461 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4462 "Can't have a scalar return unless the return type is a " 4463 "reference type!"); 4464 4465 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4466 } 4467 4468 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4469 Address V = 4470 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4471 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4472 } 4473 4474 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4475 const ObjCIvarDecl *Ivar) { 4476 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4477 } 4478 4479 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4480 llvm::Value *BaseValue, 4481 const ObjCIvarDecl *Ivar, 4482 unsigned CVRQualifiers) { 4483 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4484 Ivar, CVRQualifiers); 4485 } 4486 4487 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4488 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4489 llvm::Value *BaseValue = nullptr; 4490 const Expr *BaseExpr = E->getBase(); 4491 Qualifiers BaseQuals; 4492 QualType ObjectTy; 4493 if (E->isArrow()) { 4494 BaseValue = EmitScalarExpr(BaseExpr); 4495 ObjectTy = BaseExpr->getType()->getPointeeType(); 4496 BaseQuals = ObjectTy.getQualifiers(); 4497 } else { 4498 LValue BaseLV = EmitLValue(BaseExpr); 4499 BaseValue = BaseLV.getPointer(); 4500 ObjectTy = BaseExpr->getType(); 4501 BaseQuals = ObjectTy.getQualifiers(); 4502 } 4503 4504 LValue LV = 4505 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4506 BaseQuals.getCVRQualifiers()); 4507 setObjCGCLValueClass(getContext(), E, LV); 4508 return LV; 4509 } 4510 4511 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4512 // Can only get l-value for message expression returning aggregate type 4513 RValue RV = EmitAnyExprToTemp(E); 4514 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4515 AlignmentSource::Decl); 4516 } 4517 4518 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4519 const CallExpr *E, ReturnValueSlot ReturnValue, 4520 llvm::Value *Chain) { 4521 // Get the actual function type. The callee type will always be a pointer to 4522 // function type or a block pointer type. 4523 assert(CalleeType->isFunctionPointerType() && 4524 "Call must have function pointer type!"); 4525 4526 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4527 4528 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4529 // We can only guarantee that a function is called from the correct 4530 // context/function based on the appropriate target attributes, 4531 // so only check in the case where we have both always_inline and target 4532 // since otherwise we could be making a conditional call after a check for 4533 // the proper cpu features (and it won't cause code generation issues due to 4534 // function based code generation). 4535 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4536 TargetDecl->hasAttr<TargetAttr>()) 4537 checkTargetFeatures(E, FD); 4538 4539 CalleeType = getContext().getCanonicalType(CalleeType); 4540 4541 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4542 4543 CGCallee Callee = OrigCallee; 4544 4545 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4546 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4547 if (llvm::Constant *PrefixSig = 4548 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4549 SanitizerScope SanScope(this); 4550 // Remove any (C++17) exception specifications, to allow calling e.g. a 4551 // noexcept function through a non-noexcept pointer. 4552 auto ProtoTy = 4553 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4554 llvm::Constant *FTRTTIConst = 4555 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4556 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4557 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4558 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4559 4560 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4561 4562 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4563 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4564 llvm::Value *CalleeSigPtr = 4565 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4566 llvm::Value *CalleeSig = 4567 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4568 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4569 4570 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4571 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4572 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4573 4574 EmitBlock(TypeCheck); 4575 llvm::Value *CalleeRTTIPtr = 4576 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4577 llvm::Value *CalleeRTTIEncoded = 4578 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4579 llvm::Value *CalleeRTTI = 4580 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4581 llvm::Value *CalleeRTTIMatch = 4582 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4583 llvm::Constant *StaticData[] = { 4584 EmitCheckSourceLocation(E->getLocStart()), 4585 EmitCheckTypeDescriptor(CalleeType) 4586 }; 4587 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4588 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4589 4590 Builder.CreateBr(Cont); 4591 EmitBlock(Cont); 4592 } 4593 } 4594 4595 const auto *FnType = cast<FunctionType>(PointeeType); 4596 4597 // If we are checking indirect calls and this call is indirect, check that the 4598 // function pointer is a member of the bit set for the function type. 4599 if (SanOpts.has(SanitizerKind::CFIICall) && 4600 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4601 SanitizerScope SanScope(this); 4602 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4603 4604 llvm::Metadata *MD; 4605 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4606 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4607 else 4608 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4609 4610 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4611 4612 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4613 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4614 llvm::Value *TypeTest = Builder.CreateCall( 4615 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4616 4617 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4618 llvm::Constant *StaticData[] = { 4619 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4620 EmitCheckSourceLocation(E->getLocStart()), 4621 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4622 }; 4623 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4624 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4625 CastedCallee, StaticData); 4626 } else { 4627 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4628 SanitizerHandler::CFICheckFail, StaticData, 4629 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4630 } 4631 } 4632 4633 CallArgList Args; 4634 if (Chain) 4635 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4636 CGM.getContext().VoidPtrTy); 4637 4638 // C++17 requires that we evaluate arguments to a call using assignment syntax 4639 // right-to-left, and that we evaluate arguments to certain other operators 4640 // left-to-right. Note that we allow this to override the order dictated by 4641 // the calling convention on the MS ABI, which means that parameter 4642 // destruction order is not necessarily reverse construction order. 4643 // FIXME: Revisit this based on C++ committee response to unimplementability. 4644 EvaluationOrder Order = EvaluationOrder::Default; 4645 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4646 if (OCE->isAssignmentOp()) 4647 Order = EvaluationOrder::ForceRightToLeft; 4648 else { 4649 switch (OCE->getOperator()) { 4650 case OO_LessLess: 4651 case OO_GreaterGreater: 4652 case OO_AmpAmp: 4653 case OO_PipePipe: 4654 case OO_Comma: 4655 case OO_ArrowStar: 4656 Order = EvaluationOrder::ForceLeftToRight; 4657 break; 4658 default: 4659 break; 4660 } 4661 } 4662 } 4663 4664 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4665 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4666 4667 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4668 Args, FnType, /*isChainCall=*/Chain); 4669 4670 // C99 6.5.2.2p6: 4671 // If the expression that denotes the called function has a type 4672 // that does not include a prototype, [the default argument 4673 // promotions are performed]. If the number of arguments does not 4674 // equal the number of parameters, the behavior is undefined. If 4675 // the function is defined with a type that includes a prototype, 4676 // and either the prototype ends with an ellipsis (, ...) or the 4677 // types of the arguments after promotion are not compatible with 4678 // the types of the parameters, the behavior is undefined. If the 4679 // function is defined with a type that does not include a 4680 // prototype, and the types of the arguments after promotion are 4681 // not compatible with those of the parameters after promotion, 4682 // the behavior is undefined [except in some trivial cases]. 4683 // That is, in the general case, we should assume that a call 4684 // through an unprototyped function type works like a *non-variadic* 4685 // call. The way we make this work is to cast to the exact type 4686 // of the promoted arguments. 4687 // 4688 // Chain calls use this same code path to add the invisible chain parameter 4689 // to the function type. 4690 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4691 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4692 CalleeTy = CalleeTy->getPointerTo(); 4693 4694 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4695 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4696 Callee.setFunctionPointer(CalleePtr); 4697 } 4698 4699 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 4700 } 4701 4702 LValue CodeGenFunction:: 4703 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4704 Address BaseAddr = Address::invalid(); 4705 if (E->getOpcode() == BO_PtrMemI) { 4706 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4707 } else { 4708 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4709 } 4710 4711 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4712 4713 const MemberPointerType *MPT 4714 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4715 4716 LValueBaseInfo BaseInfo; 4717 TBAAAccessInfo TBAAInfo; 4718 Address MemberAddr = 4719 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4720 &TBAAInfo); 4721 4722 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4723 } 4724 4725 /// Given the address of a temporary variable, produce an r-value of 4726 /// its type. 4727 RValue CodeGenFunction::convertTempToRValue(Address addr, 4728 QualType type, 4729 SourceLocation loc) { 4730 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4731 switch (getEvaluationKind(type)) { 4732 case TEK_Complex: 4733 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4734 case TEK_Aggregate: 4735 return lvalue.asAggregateRValue(); 4736 case TEK_Scalar: 4737 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4738 } 4739 llvm_unreachable("bad evaluation kind"); 4740 } 4741 4742 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4743 assert(Val->getType()->isFPOrFPVectorTy()); 4744 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4745 return; 4746 4747 llvm::MDBuilder MDHelper(getLLVMContext()); 4748 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4749 4750 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4751 } 4752 4753 namespace { 4754 struct LValueOrRValue { 4755 LValue LV; 4756 RValue RV; 4757 }; 4758 } 4759 4760 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4761 const PseudoObjectExpr *E, 4762 bool forLValue, 4763 AggValueSlot slot) { 4764 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4765 4766 // Find the result expression, if any. 4767 const Expr *resultExpr = E->getResultExpr(); 4768 LValueOrRValue result; 4769 4770 for (PseudoObjectExpr::const_semantics_iterator 4771 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4772 const Expr *semantic = *i; 4773 4774 // If this semantic expression is an opaque value, bind it 4775 // to the result of its source expression. 4776 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4777 // Skip unique OVEs. 4778 if (ov->isUnique()) { 4779 assert(ov != resultExpr && 4780 "A unique OVE cannot be used as the result expression"); 4781 continue; 4782 } 4783 4784 // If this is the result expression, we may need to evaluate 4785 // directly into the slot. 4786 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4787 OVMA opaqueData; 4788 if (ov == resultExpr && ov->isRValue() && !forLValue && 4789 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4790 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4791 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4792 AlignmentSource::Decl); 4793 opaqueData = OVMA::bind(CGF, ov, LV); 4794 result.RV = slot.asRValue(); 4795 4796 // Otherwise, emit as normal. 4797 } else { 4798 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4799 4800 // If this is the result, also evaluate the result now. 4801 if (ov == resultExpr) { 4802 if (forLValue) 4803 result.LV = CGF.EmitLValue(ov); 4804 else 4805 result.RV = CGF.EmitAnyExpr(ov, slot); 4806 } 4807 } 4808 4809 opaques.push_back(opaqueData); 4810 4811 // Otherwise, if the expression is the result, evaluate it 4812 // and remember the result. 4813 } else if (semantic == resultExpr) { 4814 if (forLValue) 4815 result.LV = CGF.EmitLValue(semantic); 4816 else 4817 result.RV = CGF.EmitAnyExpr(semantic, slot); 4818 4819 // Otherwise, evaluate the expression in an ignored context. 4820 } else { 4821 CGF.EmitIgnoredExpr(semantic); 4822 } 4823 } 4824 4825 // Unbind all the opaques now. 4826 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4827 opaques[i].unbind(CGF); 4828 4829 return result; 4830 } 4831 4832 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4833 AggValueSlot slot) { 4834 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4835 } 4836 4837 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4838 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4839 } 4840