1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
65                                                      CharUnits Align,
66                                                      const Twine &Name,
67                                                      llvm::Value *ArraySize) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getQuantity());
70   return Address(Alloca, Align);
71 }
72 
73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
74 /// block. The alloca is casted to default address space if necessary.
75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
76                                           const Twine &Name,
77                                           llvm::Value *ArraySize,
78                                           Address *AllocaAddr) {
79   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
80   if (AllocaAddr)
81     *AllocaAddr = Alloca;
82   llvm::Value *V = Alloca.getPointer();
83   // Alloca always returns a pointer in alloca address space, which may
84   // be different from the type defined by the language. For example,
85   // in C++ the auto variables are in the default address space. Therefore
86   // cast alloca to the default address space when necessary.
87   if (getASTAllocaAddressSpace() != LangAS::Default) {
88     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
89     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
90     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
91     // otherwise alloca is inserted at the current insertion point of the
92     // builder.
93     if (!ArraySize)
94       Builder.SetInsertPoint(AllocaInsertPt);
95     V = getTargetHooks().performAddrSpaceCast(
96         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
97         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
98   }
99 
100   return Address(V, Align);
101 }
102 
103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
105 /// insertion point of the builder.
106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
107                                                     const Twine &Name,
108                                                     llvm::Value *ArraySize) {
109   if (ArraySize)
110     return Builder.CreateAlloca(Ty, ArraySize, Name);
111   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
112                               ArraySize, Name, AllocaInsertPt);
113 }
114 
115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
116 /// default alignment of the corresponding LLVM type, which is *not*
117 /// guaranteed to be related in any way to the expected alignment of
118 /// an AST type that might have been lowered to Ty.
119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
120                                                       const Twine &Name) {
121   CharUnits Align =
122     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
123   return CreateTempAlloca(Ty, Align, Name);
124 }
125 
126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
127   assert(isa<llvm::AllocaInst>(Var.getPointer()));
128   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
129   Store->setAlignment(Var.getAlignment().getQuantity());
130   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
131   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
132 }
133 
134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
135   CharUnits Align = getContext().getTypeAlignInChars(Ty);
136   return CreateTempAlloca(ConvertType(Ty), Align, Name);
137 }
138 
139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
140                                        Address *Alloca) {
141   // FIXME: Should we prefer the preferred type alignment here?
142   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
143 }
144 
145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
146                                        const Twine &Name, Address *Alloca) {
147   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
148                           /*ArraySize=*/nullptr, Alloca);
149 }
150 
151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
152                                                   const Twine &Name) {
153   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
154 }
155 
156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
157                                                   const Twine &Name) {
158   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
159                                   Name);
160 }
161 
162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
163 /// expression and compare the result against zero, returning an Int1Ty value.
164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
165   PGO.setCurrentStmt(E);
166   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
167     llvm::Value *MemPtr = EmitScalarExpr(E);
168     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
169   }
170 
171   QualType BoolTy = getContext().BoolTy;
172   SourceLocation Loc = E->getExprLoc();
173   if (!E->getType()->isAnyComplexType())
174     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
175 
176   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
177                                        Loc);
178 }
179 
180 /// EmitIgnoredExpr - Emit code to compute the specified expression,
181 /// ignoring the result.
182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
183   if (E->isRValue())
184     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
185 
186   // Just emit it as an l-value and drop the result.
187   EmitLValue(E);
188 }
189 
190 /// EmitAnyExpr - Emit code to compute the specified expression which
191 /// can have any type.  The result is returned as an RValue struct.
192 /// If this is an aggregate expression, AggSlot indicates where the
193 /// result should be returned.
194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
195                                     AggValueSlot aggSlot,
196                                     bool ignoreResult) {
197   switch (getEvaluationKind(E->getType())) {
198   case TEK_Scalar:
199     return RValue::get(EmitScalarExpr(E, ignoreResult));
200   case TEK_Complex:
201     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
202   case TEK_Aggregate:
203     if (!ignoreResult && aggSlot.isIgnored())
204       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
205     EmitAggExpr(E, aggSlot);
206     return aggSlot.asRValue();
207   }
208   llvm_unreachable("bad evaluation kind");
209 }
210 
211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
212 /// always be accessible even if no aggregate location is provided.
213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
214   AggValueSlot AggSlot = AggValueSlot::ignored();
215 
216   if (hasAggregateEvaluationKind(E->getType()))
217     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
218   return EmitAnyExpr(E, AggSlot);
219 }
220 
221 /// EmitAnyExprToMem - Evaluate an expression into a given memory
222 /// location.
223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
224                                        Address Location,
225                                        Qualifiers Quals,
226                                        bool IsInit) {
227   // FIXME: This function should take an LValue as an argument.
228   switch (getEvaluationKind(E->getType())) {
229   case TEK_Complex:
230     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
231                               /*isInit*/ false);
232     return;
233 
234   case TEK_Aggregate: {
235     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
236                                          AggValueSlot::IsDestructed_t(IsInit),
237                                          AggValueSlot::DoesNotNeedGCBarriers,
238                                          AggValueSlot::IsAliased_t(!IsInit),
239                                          AggValueSlot::MayOverlap));
240     return;
241   }
242 
243   case TEK_Scalar: {
244     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
245     LValue LV = MakeAddrLValue(Location, E->getType());
246     EmitStoreThroughLValue(RV, LV);
247     return;
248   }
249   }
250   llvm_unreachable("bad evaluation kind");
251 }
252 
253 static void
254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
255                      const Expr *E, Address ReferenceTemporary) {
256   // Objective-C++ ARC:
257   //   If we are binding a reference to a temporary that has ownership, we
258   //   need to perform retain/release operations on the temporary.
259   //
260   // FIXME: This should be looking at E, not M.
261   if (auto Lifetime = M->getType().getObjCLifetime()) {
262     switch (Lifetime) {
263     case Qualifiers::OCL_None:
264     case Qualifiers::OCL_ExplicitNone:
265       // Carry on to normal cleanup handling.
266       break;
267 
268     case Qualifiers::OCL_Autoreleasing:
269       // Nothing to do; cleaned up by an autorelease pool.
270       return;
271 
272     case Qualifiers::OCL_Strong:
273     case Qualifiers::OCL_Weak:
274       switch (StorageDuration Duration = M->getStorageDuration()) {
275       case SD_Static:
276         // Note: we intentionally do not register a cleanup to release
277         // the object on program termination.
278         return;
279 
280       case SD_Thread:
281         // FIXME: We should probably register a cleanup in this case.
282         return;
283 
284       case SD_Automatic:
285       case SD_FullExpression:
286         CodeGenFunction::Destroyer *Destroy;
287         CleanupKind CleanupKind;
288         if (Lifetime == Qualifiers::OCL_Strong) {
289           const ValueDecl *VD = M->getExtendingDecl();
290           bool Precise =
291               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
292           CleanupKind = CGF.getARCCleanupKind();
293           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
294                             : &CodeGenFunction::destroyARCStrongImprecise;
295         } else {
296           // __weak objects always get EH cleanups; otherwise, exceptions
297           // could cause really nasty crashes instead of mere leaks.
298           CleanupKind = NormalAndEHCleanup;
299           Destroy = &CodeGenFunction::destroyARCWeak;
300         }
301         if (Duration == SD_FullExpression)
302           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
303                           M->getType(), *Destroy,
304                           CleanupKind & EHCleanup);
305         else
306           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
307                                           M->getType(),
308                                           *Destroy, CleanupKind & EHCleanup);
309         return;
310 
311       case SD_Dynamic:
312         llvm_unreachable("temporary cannot have dynamic storage duration");
313       }
314       llvm_unreachable("unknown storage duration");
315     }
316   }
317 
318   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
319   if (const RecordType *RT =
320           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
321     // Get the destructor for the reference temporary.
322     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
323     if (!ClassDecl->hasTrivialDestructor())
324       ReferenceTemporaryDtor = ClassDecl->getDestructor();
325   }
326 
327   if (!ReferenceTemporaryDtor)
328     return;
329 
330   // Call the destructor for the temporary.
331   switch (M->getStorageDuration()) {
332   case SD_Static:
333   case SD_Thread: {
334     llvm::Constant *CleanupFn;
335     llvm::Constant *CleanupArg;
336     if (E->getType()->isArrayType()) {
337       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
338           ReferenceTemporary, E->getType(),
339           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
340           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
341       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
342     } else {
343       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
344                                                StructorType::Complete);
345       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
346     }
347     CGF.CGM.getCXXABI().registerGlobalDtor(
348         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
349     break;
350   }
351 
352   case SD_FullExpression:
353     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
354                     CodeGenFunction::destroyCXXObject,
355                     CGF.getLangOpts().Exceptions);
356     break;
357 
358   case SD_Automatic:
359     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
360                                     ReferenceTemporary, E->getType(),
361                                     CodeGenFunction::destroyCXXObject,
362                                     CGF.getLangOpts().Exceptions);
363     break;
364 
365   case SD_Dynamic:
366     llvm_unreachable("temporary cannot have dynamic storage duration");
367   }
368 }
369 
370 static Address createReferenceTemporary(CodeGenFunction &CGF,
371                                         const MaterializeTemporaryExpr *M,
372                                         const Expr *Inner,
373                                         Address *Alloca = nullptr) {
374   auto &TCG = CGF.getTargetHooks();
375   switch (M->getStorageDuration()) {
376   case SD_FullExpression:
377   case SD_Automatic: {
378     // If we have a constant temporary array or record try to promote it into a
379     // constant global under the same rules a normal constant would've been
380     // promoted. This is easier on the optimizer and generally emits fewer
381     // instructions.
382     QualType Ty = Inner->getType();
383     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
384         (Ty->isArrayType() || Ty->isRecordType()) &&
385         CGF.CGM.isTypeConstant(Ty, true))
386       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
387         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
388           auto AS = AddrSpace.getValue();
389           auto *GV = new llvm::GlobalVariable(
390               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
391               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
392               llvm::GlobalValue::NotThreadLocal,
393               CGF.getContext().getTargetAddressSpace(AS));
394           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
395           GV->setAlignment(alignment.getQuantity());
396           llvm::Constant *C = GV;
397           if (AS != LangAS::Default)
398             C = TCG.performAddrSpaceCast(
399                 CGF.CGM, GV, AS, LangAS::Default,
400                 GV->getValueType()->getPointerTo(
401                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
402           // FIXME: Should we put the new global into a COMDAT?
403           return Address(C, alignment);
404         }
405       }
406     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
407   }
408   case SD_Thread:
409   case SD_Static:
410     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
411 
412   case SD_Dynamic:
413     llvm_unreachable("temporary can't have dynamic storage duration");
414   }
415   llvm_unreachable("unknown storage duration");
416 }
417 
418 LValue CodeGenFunction::
419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
420   const Expr *E = M->GetTemporaryExpr();
421 
422     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
423     // as that will cause the lifetime adjustment to be lost for ARC
424   auto ownership = M->getType().getObjCLifetime();
425   if (ownership != Qualifiers::OCL_None &&
426       ownership != Qualifiers::OCL_ExplicitNone) {
427     Address Object = createReferenceTemporary(*this, M, E);
428     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
429       Object = Address(llvm::ConstantExpr::getBitCast(Var,
430                            ConvertTypeForMem(E->getType())
431                              ->getPointerTo(Object.getAddressSpace())),
432                        Object.getAlignment());
433 
434       // createReferenceTemporary will promote the temporary to a global with a
435       // constant initializer if it can.  It can only do this to a value of
436       // ARC-manageable type if the value is global and therefore "immune" to
437       // ref-counting operations.  Therefore we have no need to emit either a
438       // dynamic initialization or a cleanup and we can just return the address
439       // of the temporary.
440       if (Var->hasInitializer())
441         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
442 
443       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
444     }
445     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
446                                        AlignmentSource::Decl);
447 
448     switch (getEvaluationKind(E->getType())) {
449     default: llvm_unreachable("expected scalar or aggregate expression");
450     case TEK_Scalar:
451       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
452       break;
453     case TEK_Aggregate: {
454       EmitAggExpr(E, AggValueSlot::forAddr(Object,
455                                            E->getType().getQualifiers(),
456                                            AggValueSlot::IsDestructed,
457                                            AggValueSlot::DoesNotNeedGCBarriers,
458                                            AggValueSlot::IsNotAliased,
459                                            AggValueSlot::DoesNotOverlap));
460       break;
461     }
462     }
463 
464     pushTemporaryCleanup(*this, M, E, Object);
465     return RefTempDst;
466   }
467 
468   SmallVector<const Expr *, 2> CommaLHSs;
469   SmallVector<SubobjectAdjustment, 2> Adjustments;
470   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
471 
472   for (const auto &Ignored : CommaLHSs)
473     EmitIgnoredExpr(Ignored);
474 
475   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
476     if (opaque->getType()->isRecordType()) {
477       assert(Adjustments.empty());
478       return EmitOpaqueValueLValue(opaque);
479     }
480   }
481 
482   // Create and initialize the reference temporary.
483   Address Alloca = Address::invalid();
484   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
485   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
486           Object.getPointer()->stripPointerCasts())) {
487     Object = Address(llvm::ConstantExpr::getBitCast(
488                          cast<llvm::Constant>(Object.getPointer()),
489                          ConvertTypeForMem(E->getType())->getPointerTo()),
490                      Object.getAlignment());
491     // If the temporary is a global and has a constant initializer or is a
492     // constant temporary that we promoted to a global, we may have already
493     // initialized it.
494     if (!Var->hasInitializer()) {
495       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
496       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
497     }
498   } else {
499     switch (M->getStorageDuration()) {
500     case SD_Automatic:
501       if (auto *Size = EmitLifetimeStart(
502               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
503               Alloca.getPointer())) {
504         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
505                                                   Alloca, Size);
506       }
507       break;
508 
509     case SD_FullExpression: {
510       if (!ShouldEmitLifetimeMarkers)
511         break;
512 
513       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
514       // marker. Instead, start the lifetime of a conditional temporary earlier
515       // so that it's unconditional. Don't do this in ASan's use-after-scope
516       // mode so that it gets the more precise lifetime marks. If the type has
517       // a non-trivial destructor, we'll have a cleanup block for it anyway,
518       // so this typically doesn't help; skip it in that case.
519       ConditionalEvaluation *OldConditional = nullptr;
520       CGBuilderTy::InsertPoint OldIP;
521       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
522           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
523         OldConditional = OutermostConditional;
524         OutermostConditional = nullptr;
525 
526         OldIP = Builder.saveIP();
527         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
528         Builder.restoreIP(CGBuilderTy::InsertPoint(
529             Block, llvm::BasicBlock::iterator(Block->back())));
530       }
531 
532       if (auto *Size = EmitLifetimeStart(
533               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
534               Alloca.getPointer())) {
535         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
536                                              Size);
537       }
538 
539       if (OldConditional) {
540         OutermostConditional = OldConditional;
541         Builder.restoreIP(OldIP);
542       }
543       break;
544     }
545 
546     default:
547       break;
548     }
549     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
550   }
551   pushTemporaryCleanup(*this, M, E, Object);
552 
553   // Perform derived-to-base casts and/or field accesses, to get from the
554   // temporary object we created (and, potentially, for which we extended
555   // the lifetime) to the subobject we're binding the reference to.
556   for (unsigned I = Adjustments.size(); I != 0; --I) {
557     SubobjectAdjustment &Adjustment = Adjustments[I-1];
558     switch (Adjustment.Kind) {
559     case SubobjectAdjustment::DerivedToBaseAdjustment:
560       Object =
561           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
562                                 Adjustment.DerivedToBase.BasePath->path_begin(),
563                                 Adjustment.DerivedToBase.BasePath->path_end(),
564                                 /*NullCheckValue=*/ false, E->getExprLoc());
565       break;
566 
567     case SubobjectAdjustment::FieldAdjustment: {
568       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
569       LV = EmitLValueForField(LV, Adjustment.Field);
570       assert(LV.isSimple() &&
571              "materialized temporary field is not a simple lvalue");
572       Object = LV.getAddress();
573       break;
574     }
575 
576     case SubobjectAdjustment::MemberPointerAdjustment: {
577       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
578       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
579                                                Adjustment.Ptr.MPT);
580       break;
581     }
582     }
583   }
584 
585   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
586 }
587 
588 RValue
589 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
590   // Emit the expression as an lvalue.
591   LValue LV = EmitLValue(E);
592   assert(LV.isSimple());
593   llvm::Value *Value = LV.getPointer();
594 
595   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
596     // C++11 [dcl.ref]p5 (as amended by core issue 453):
597     //   If a glvalue to which a reference is directly bound designates neither
598     //   an existing object or function of an appropriate type nor a region of
599     //   storage of suitable size and alignment to contain an object of the
600     //   reference's type, the behavior is undefined.
601     QualType Ty = E->getType();
602     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
603   }
604 
605   return RValue::get(Value);
606 }
607 
608 
609 /// getAccessedFieldNo - Given an encoded value and a result number, return the
610 /// input field number being accessed.
611 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
612                                              const llvm::Constant *Elts) {
613   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
614       ->getZExtValue();
615 }
616 
617 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
618 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
619                                     llvm::Value *High) {
620   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
621   llvm::Value *K47 = Builder.getInt64(47);
622   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
623   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
624   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
625   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
626   return Builder.CreateMul(B1, KMul);
627 }
628 
629 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
630   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
631          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
632 }
633 
634 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
635   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
636   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
637          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
638           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
639           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
640 }
641 
642 bool CodeGenFunction::sanitizePerformTypeCheck() const {
643   return SanOpts.has(SanitizerKind::Null) |
644          SanOpts.has(SanitizerKind::Alignment) |
645          SanOpts.has(SanitizerKind::ObjectSize) |
646          SanOpts.has(SanitizerKind::Vptr);
647 }
648 
649 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
650                                     llvm::Value *Ptr, QualType Ty,
651                                     CharUnits Alignment,
652                                     SanitizerSet SkippedChecks) {
653   if (!sanitizePerformTypeCheck())
654     return;
655 
656   // Don't check pointers outside the default address space. The null check
657   // isn't correct, the object-size check isn't supported by LLVM, and we can't
658   // communicate the addresses to the runtime handler for the vptr check.
659   if (Ptr->getType()->getPointerAddressSpace())
660     return;
661 
662   // Don't check pointers to volatile data. The behavior here is implementation-
663   // defined.
664   if (Ty.isVolatileQualified())
665     return;
666 
667   SanitizerScope SanScope(this);
668 
669   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
670   llvm::BasicBlock *Done = nullptr;
671 
672   // Quickly determine whether we have a pointer to an alloca. It's possible
673   // to skip null checks, and some alignment checks, for these pointers. This
674   // can reduce compile-time significantly.
675   auto PtrToAlloca =
676       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
677 
678   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
679   llvm::Value *IsNonNull = nullptr;
680   bool IsGuaranteedNonNull =
681       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
682   bool AllowNullPointers = isNullPointerAllowed(TCK);
683   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
684       !IsGuaranteedNonNull) {
685     // The glvalue must not be an empty glvalue.
686     IsNonNull = Builder.CreateIsNotNull(Ptr);
687 
688     // The IR builder can constant-fold the null check if the pointer points to
689     // a constant.
690     IsGuaranteedNonNull = IsNonNull == True;
691 
692     // Skip the null check if the pointer is known to be non-null.
693     if (!IsGuaranteedNonNull) {
694       if (AllowNullPointers) {
695         // When performing pointer casts, it's OK if the value is null.
696         // Skip the remaining checks in that case.
697         Done = createBasicBlock("null");
698         llvm::BasicBlock *Rest = createBasicBlock("not.null");
699         Builder.CreateCondBr(IsNonNull, Rest, Done);
700         EmitBlock(Rest);
701       } else {
702         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
703       }
704     }
705   }
706 
707   if (SanOpts.has(SanitizerKind::ObjectSize) &&
708       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
709       !Ty->isIncompleteType()) {
710     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
711 
712     // The glvalue must refer to a large enough storage region.
713     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
714     //        to check this.
715     // FIXME: Get object address space
716     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
717     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
718     llvm::Value *Min = Builder.getFalse();
719     llvm::Value *NullIsUnknown = Builder.getFalse();
720     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
721     llvm::Value *LargeEnough = Builder.CreateICmpUGE(
722         Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}),
723         llvm::ConstantInt::get(IntPtrTy, Size));
724     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
725   }
726 
727   uint64_t AlignVal = 0;
728   llvm::Value *PtrAsInt = nullptr;
729 
730   if (SanOpts.has(SanitizerKind::Alignment) &&
731       !SkippedChecks.has(SanitizerKind::Alignment)) {
732     AlignVal = Alignment.getQuantity();
733     if (!Ty->isIncompleteType() && !AlignVal)
734       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
735 
736     // The glvalue must be suitably aligned.
737     if (AlignVal > 1 &&
738         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
739       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
740       llvm::Value *Align = Builder.CreateAnd(
741           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
742       llvm::Value *Aligned =
743           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
744       if (Aligned != True)
745         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
746     }
747   }
748 
749   if (Checks.size() > 0) {
750     // Make sure we're not losing information. Alignment needs to be a power of
751     // 2
752     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
753     llvm::Constant *StaticData[] = {
754         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
755         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
756         llvm::ConstantInt::get(Int8Ty, TCK)};
757     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
758               PtrAsInt ? PtrAsInt : Ptr);
759   }
760 
761   // If possible, check that the vptr indicates that there is a subobject of
762   // type Ty at offset zero within this object.
763   //
764   // C++11 [basic.life]p5,6:
765   //   [For storage which does not refer to an object within its lifetime]
766   //   The program has undefined behavior if:
767   //    -- the [pointer or glvalue] is used to access a non-static data member
768   //       or call a non-static member function
769   if (SanOpts.has(SanitizerKind::Vptr) &&
770       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
771     // Ensure that the pointer is non-null before loading it. If there is no
772     // compile-time guarantee, reuse the run-time null check or emit a new one.
773     if (!IsGuaranteedNonNull) {
774       if (!IsNonNull)
775         IsNonNull = Builder.CreateIsNotNull(Ptr);
776       if (!Done)
777         Done = createBasicBlock("vptr.null");
778       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
779       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
780       EmitBlock(VptrNotNull);
781     }
782 
783     // Compute a hash of the mangled name of the type.
784     //
785     // FIXME: This is not guaranteed to be deterministic! Move to a
786     //        fingerprinting mechanism once LLVM provides one. For the time
787     //        being the implementation happens to be deterministic.
788     SmallString<64> MangledName;
789     llvm::raw_svector_ostream Out(MangledName);
790     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
791                                                      Out);
792 
793     // Blacklist based on the mangled type.
794     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
795             SanitizerKind::Vptr, Out.str())) {
796       llvm::hash_code TypeHash = hash_value(Out.str());
797 
798       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
799       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
800       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
801       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
802       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
803       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
804 
805       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
806       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
807 
808       // Look the hash up in our cache.
809       const int CacheSize = 128;
810       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
811       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
812                                                      "__ubsan_vptr_type_cache");
813       llvm::Value *Slot = Builder.CreateAnd(Hash,
814                                             llvm::ConstantInt::get(IntPtrTy,
815                                                                    CacheSize-1));
816       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
817       llvm::Value *CacheVal =
818         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
819                                   getPointerAlign());
820 
821       // If the hash isn't in the cache, call a runtime handler to perform the
822       // hard work of checking whether the vptr is for an object of the right
823       // type. This will either fill in the cache and return, or produce a
824       // diagnostic.
825       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
826       llvm::Constant *StaticData[] = {
827         EmitCheckSourceLocation(Loc),
828         EmitCheckTypeDescriptor(Ty),
829         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
830         llvm::ConstantInt::get(Int8Ty, TCK)
831       };
832       llvm::Value *DynamicData[] = { Ptr, Hash };
833       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
834                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
835                 DynamicData);
836     }
837   }
838 
839   if (Done) {
840     Builder.CreateBr(Done);
841     EmitBlock(Done);
842   }
843 }
844 
845 /// Determine whether this expression refers to a flexible array member in a
846 /// struct. We disable array bounds checks for such members.
847 static bool isFlexibleArrayMemberExpr(const Expr *E) {
848   // For compatibility with existing code, we treat arrays of length 0 or
849   // 1 as flexible array members.
850   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
851   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
852     if (CAT->getSize().ugt(1))
853       return false;
854   } else if (!isa<IncompleteArrayType>(AT))
855     return false;
856 
857   E = E->IgnoreParens();
858 
859   // A flexible array member must be the last member in the class.
860   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
861     // FIXME: If the base type of the member expr is not FD->getParent(),
862     // this should not be treated as a flexible array member access.
863     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
864       RecordDecl::field_iterator FI(
865           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
866       return ++FI == FD->getParent()->field_end();
867     }
868   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
869     return IRE->getDecl()->getNextIvar() == nullptr;
870   }
871 
872   return false;
873 }
874 
875 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
876                                                    QualType EltTy) {
877   ASTContext &C = getContext();
878   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
879   if (!EltSize)
880     return nullptr;
881 
882   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
883   if (!ArrayDeclRef)
884     return nullptr;
885 
886   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
887   if (!ParamDecl)
888     return nullptr;
889 
890   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
891   if (!POSAttr)
892     return nullptr;
893 
894   // Don't load the size if it's a lower bound.
895   int POSType = POSAttr->getType();
896   if (POSType != 0 && POSType != 1)
897     return nullptr;
898 
899   // Find the implicit size parameter.
900   auto PassedSizeIt = SizeArguments.find(ParamDecl);
901   if (PassedSizeIt == SizeArguments.end())
902     return nullptr;
903 
904   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
905   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
906   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
907   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
908                                               C.getSizeType(), E->getExprLoc());
909   llvm::Value *SizeOfElement =
910       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
911   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
912 }
913 
914 /// If Base is known to point to the start of an array, return the length of
915 /// that array. Return 0 if the length cannot be determined.
916 static llvm::Value *getArrayIndexingBound(
917     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
918   // For the vector indexing extension, the bound is the number of elements.
919   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
920     IndexedType = Base->getType();
921     return CGF.Builder.getInt32(VT->getNumElements());
922   }
923 
924   Base = Base->IgnoreParens();
925 
926   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
927     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
928         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
929       IndexedType = CE->getSubExpr()->getType();
930       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
931       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
932         return CGF.Builder.getInt(CAT->getSize());
933       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
934         return CGF.getVLASize(VAT).NumElts;
935       // Ignore pass_object_size here. It's not applicable on decayed pointers.
936     }
937   }
938 
939   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
940   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
941     IndexedType = Base->getType();
942     return POS;
943   }
944 
945   return nullptr;
946 }
947 
948 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
949                                       llvm::Value *Index, QualType IndexType,
950                                       bool Accessed) {
951   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
952          "should not be called unless adding bounds checks");
953   SanitizerScope SanScope(this);
954 
955   QualType IndexedType;
956   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
957   if (!Bound)
958     return;
959 
960   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
961   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
962   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
963 
964   llvm::Constant *StaticData[] = {
965     EmitCheckSourceLocation(E->getExprLoc()),
966     EmitCheckTypeDescriptor(IndexedType),
967     EmitCheckTypeDescriptor(IndexType)
968   };
969   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
970                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
971   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
972             SanitizerHandler::OutOfBounds, StaticData, Index);
973 }
974 
975 
976 CodeGenFunction::ComplexPairTy CodeGenFunction::
977 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
978                          bool isInc, bool isPre) {
979   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
980 
981   llvm::Value *NextVal;
982   if (isa<llvm::IntegerType>(InVal.first->getType())) {
983     uint64_t AmountVal = isInc ? 1 : -1;
984     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
985 
986     // Add the inc/dec to the real part.
987     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
988   } else {
989     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
990     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
991     if (!isInc)
992       FVal.changeSign();
993     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
994 
995     // Add the inc/dec to the real part.
996     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
997   }
998 
999   ComplexPairTy IncVal(NextVal, InVal.second);
1000 
1001   // Store the updated result through the lvalue.
1002   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1003 
1004   // If this is a postinc, return the value read from memory, otherwise use the
1005   // updated value.
1006   return isPre ? IncVal : InVal;
1007 }
1008 
1009 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1010                                              CodeGenFunction *CGF) {
1011   // Bind VLAs in the cast type.
1012   if (CGF && E->getType()->isVariablyModifiedType())
1013     CGF->EmitVariablyModifiedType(E->getType());
1014 
1015   if (CGDebugInfo *DI = getModuleDebugInfo())
1016     DI->EmitExplicitCastType(E->getType());
1017 }
1018 
1019 //===----------------------------------------------------------------------===//
1020 //                         LValue Expression Emission
1021 //===----------------------------------------------------------------------===//
1022 
1023 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1024 /// derive a more accurate bound on the alignment of the pointer.
1025 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1026                                                   LValueBaseInfo *BaseInfo,
1027                                                   TBAAAccessInfo *TBAAInfo) {
1028   // We allow this with ObjC object pointers because of fragile ABIs.
1029   assert(E->getType()->isPointerType() ||
1030          E->getType()->isObjCObjectPointerType());
1031   E = E->IgnoreParens();
1032 
1033   // Casts:
1034   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1035     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1036       CGM.EmitExplicitCastExprType(ECE, this);
1037 
1038     switch (CE->getCastKind()) {
1039     // Non-converting casts (but not C's implicit conversion from void*).
1040     case CK_BitCast:
1041     case CK_NoOp:
1042     case CK_AddressSpaceConversion:
1043       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1044         if (PtrTy->getPointeeType()->isVoidType())
1045           break;
1046 
1047         LValueBaseInfo InnerBaseInfo;
1048         TBAAAccessInfo InnerTBAAInfo;
1049         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1050                                                 &InnerBaseInfo,
1051                                                 &InnerTBAAInfo);
1052         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1053         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1054 
1055         if (isa<ExplicitCastExpr>(CE)) {
1056           LValueBaseInfo TargetTypeBaseInfo;
1057           TBAAAccessInfo TargetTypeTBAAInfo;
1058           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1059                                                            &TargetTypeBaseInfo,
1060                                                            &TargetTypeTBAAInfo);
1061           if (TBAAInfo)
1062             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1063                                                  TargetTypeTBAAInfo);
1064           // If the source l-value is opaque, honor the alignment of the
1065           // casted-to type.
1066           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1067             if (BaseInfo)
1068               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1069             Addr = Address(Addr.getPointer(), Align);
1070           }
1071         }
1072 
1073         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1074             CE->getCastKind() == CK_BitCast) {
1075           if (auto PT = E->getType()->getAs<PointerType>())
1076             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1077                                       /*MayBeNull=*/true,
1078                                       CodeGenFunction::CFITCK_UnrelatedCast,
1079                                       CE->getLocStart());
1080         }
1081         return CE->getCastKind() != CK_AddressSpaceConversion
1082                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1083                    : Builder.CreateAddrSpaceCast(Addr,
1084                                                  ConvertType(E->getType()));
1085       }
1086       break;
1087 
1088     // Array-to-pointer decay.
1089     case CK_ArrayToPointerDecay:
1090       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1091 
1092     // Derived-to-base conversions.
1093     case CK_UncheckedDerivedToBase:
1094     case CK_DerivedToBase: {
1095       // TODO: Support accesses to members of base classes in TBAA. For now, we
1096       // conservatively pretend that the complete object is of the base class
1097       // type.
1098       if (TBAAInfo)
1099         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1100       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1101       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1102       return GetAddressOfBaseClass(Addr, Derived,
1103                                    CE->path_begin(), CE->path_end(),
1104                                    ShouldNullCheckClassCastValue(CE),
1105                                    CE->getExprLoc());
1106     }
1107 
1108     // TODO: Is there any reason to treat base-to-derived conversions
1109     // specially?
1110     default:
1111       break;
1112     }
1113   }
1114 
1115   // Unary &.
1116   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1117     if (UO->getOpcode() == UO_AddrOf) {
1118       LValue LV = EmitLValue(UO->getSubExpr());
1119       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1120       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1121       return LV.getAddress();
1122     }
1123   }
1124 
1125   // TODO: conditional operators, comma.
1126 
1127   // Otherwise, use the alignment of the type.
1128   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1129                                                    TBAAInfo);
1130   return Address(EmitScalarExpr(E), Align);
1131 }
1132 
1133 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1134   if (Ty->isVoidType())
1135     return RValue::get(nullptr);
1136 
1137   switch (getEvaluationKind(Ty)) {
1138   case TEK_Complex: {
1139     llvm::Type *EltTy =
1140       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1141     llvm::Value *U = llvm::UndefValue::get(EltTy);
1142     return RValue::getComplex(std::make_pair(U, U));
1143   }
1144 
1145   // If this is a use of an undefined aggregate type, the aggregate must have an
1146   // identifiable address.  Just because the contents of the value are undefined
1147   // doesn't mean that the address can't be taken and compared.
1148   case TEK_Aggregate: {
1149     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1150     return RValue::getAggregate(DestPtr);
1151   }
1152 
1153   case TEK_Scalar:
1154     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1155   }
1156   llvm_unreachable("bad evaluation kind");
1157 }
1158 
1159 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1160                                               const char *Name) {
1161   ErrorUnsupported(E, Name);
1162   return GetUndefRValue(E->getType());
1163 }
1164 
1165 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1166                                               const char *Name) {
1167   ErrorUnsupported(E, Name);
1168   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1169   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1170                         E->getType());
1171 }
1172 
1173 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1174   const Expr *Base = Obj;
1175   while (!isa<CXXThisExpr>(Base)) {
1176     // The result of a dynamic_cast can be null.
1177     if (isa<CXXDynamicCastExpr>(Base))
1178       return false;
1179 
1180     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1181       Base = CE->getSubExpr();
1182     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1183       Base = PE->getSubExpr();
1184     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1185       if (UO->getOpcode() == UO_Extension)
1186         Base = UO->getSubExpr();
1187       else
1188         return false;
1189     } else {
1190       return false;
1191     }
1192   }
1193   return true;
1194 }
1195 
1196 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1197   LValue LV;
1198   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1199     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1200   else
1201     LV = EmitLValue(E);
1202   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1203     SanitizerSet SkippedChecks;
1204     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1205       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1206       if (IsBaseCXXThis)
1207         SkippedChecks.set(SanitizerKind::Alignment, true);
1208       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1209         SkippedChecks.set(SanitizerKind::Null, true);
1210     }
1211     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1212                   E->getType(), LV.getAlignment(), SkippedChecks);
1213   }
1214   return LV;
1215 }
1216 
1217 /// EmitLValue - Emit code to compute a designator that specifies the location
1218 /// of the expression.
1219 ///
1220 /// This can return one of two things: a simple address or a bitfield reference.
1221 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1222 /// an LLVM pointer type.
1223 ///
1224 /// If this returns a bitfield reference, nothing about the pointee type of the
1225 /// LLVM value is known: For example, it may not be a pointer to an integer.
1226 ///
1227 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1228 /// this method guarantees that the returned pointer type will point to an LLVM
1229 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1230 /// length type, this is not possible.
1231 ///
1232 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1233   ApplyDebugLocation DL(*this, E);
1234   switch (E->getStmtClass()) {
1235   default: return EmitUnsupportedLValue(E, "l-value expression");
1236 
1237   case Expr::ObjCPropertyRefExprClass:
1238     llvm_unreachable("cannot emit a property reference directly");
1239 
1240   case Expr::ObjCSelectorExprClass:
1241     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1242   case Expr::ObjCIsaExprClass:
1243     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1244   case Expr::BinaryOperatorClass:
1245     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1246   case Expr::CompoundAssignOperatorClass: {
1247     QualType Ty = E->getType();
1248     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1249       Ty = AT->getValueType();
1250     if (!Ty->isAnyComplexType())
1251       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1252     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1253   }
1254   case Expr::CallExprClass:
1255   case Expr::CXXMemberCallExprClass:
1256   case Expr::CXXOperatorCallExprClass:
1257   case Expr::UserDefinedLiteralClass:
1258     return EmitCallExprLValue(cast<CallExpr>(E));
1259   case Expr::VAArgExprClass:
1260     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1261   case Expr::DeclRefExprClass:
1262     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1263   case Expr::ParenExprClass:
1264     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1265   case Expr::GenericSelectionExprClass:
1266     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1267   case Expr::PredefinedExprClass:
1268     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1269   case Expr::StringLiteralClass:
1270     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1271   case Expr::ObjCEncodeExprClass:
1272     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1273   case Expr::PseudoObjectExprClass:
1274     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1275   case Expr::InitListExprClass:
1276     return EmitInitListLValue(cast<InitListExpr>(E));
1277   case Expr::CXXTemporaryObjectExprClass:
1278   case Expr::CXXConstructExprClass:
1279     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1280   case Expr::CXXBindTemporaryExprClass:
1281     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1282   case Expr::CXXUuidofExprClass:
1283     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1284   case Expr::LambdaExprClass:
1285     return EmitLambdaLValue(cast<LambdaExpr>(E));
1286 
1287   case Expr::ExprWithCleanupsClass: {
1288     const auto *cleanups = cast<ExprWithCleanups>(E);
1289     enterFullExpression(cleanups);
1290     RunCleanupsScope Scope(*this);
1291     LValue LV = EmitLValue(cleanups->getSubExpr());
1292     if (LV.isSimple()) {
1293       // Defend against branches out of gnu statement expressions surrounded by
1294       // cleanups.
1295       llvm::Value *V = LV.getPointer();
1296       Scope.ForceCleanup({&V});
1297       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1298                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1299     }
1300     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1301     // bitfield lvalue or some other non-simple lvalue?
1302     return LV;
1303   }
1304 
1305   case Expr::CXXDefaultArgExprClass:
1306     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1307   case Expr::CXXDefaultInitExprClass: {
1308     CXXDefaultInitExprScope Scope(*this);
1309     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1310   }
1311   case Expr::CXXTypeidExprClass:
1312     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1313 
1314   case Expr::ObjCMessageExprClass:
1315     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1316   case Expr::ObjCIvarRefExprClass:
1317     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1318   case Expr::StmtExprClass:
1319     return EmitStmtExprLValue(cast<StmtExpr>(E));
1320   case Expr::UnaryOperatorClass:
1321     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1322   case Expr::ArraySubscriptExprClass:
1323     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1324   case Expr::OMPArraySectionExprClass:
1325     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1326   case Expr::ExtVectorElementExprClass:
1327     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1328   case Expr::MemberExprClass:
1329     return EmitMemberExpr(cast<MemberExpr>(E));
1330   case Expr::CompoundLiteralExprClass:
1331     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1332   case Expr::ConditionalOperatorClass:
1333     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1334   case Expr::BinaryConditionalOperatorClass:
1335     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1336   case Expr::ChooseExprClass:
1337     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1338   case Expr::OpaqueValueExprClass:
1339     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1340   case Expr::SubstNonTypeTemplateParmExprClass:
1341     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1342   case Expr::ImplicitCastExprClass:
1343   case Expr::CStyleCastExprClass:
1344   case Expr::CXXFunctionalCastExprClass:
1345   case Expr::CXXStaticCastExprClass:
1346   case Expr::CXXDynamicCastExprClass:
1347   case Expr::CXXReinterpretCastExprClass:
1348   case Expr::CXXConstCastExprClass:
1349   case Expr::ObjCBridgedCastExprClass:
1350     return EmitCastLValue(cast<CastExpr>(E));
1351 
1352   case Expr::MaterializeTemporaryExprClass:
1353     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1354 
1355   case Expr::CoawaitExprClass:
1356     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1357   case Expr::CoyieldExprClass:
1358     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1359   }
1360 }
1361 
1362 /// Given an object of the given canonical type, can we safely copy a
1363 /// value out of it based on its initializer?
1364 static bool isConstantEmittableObjectType(QualType type) {
1365   assert(type.isCanonical());
1366   assert(!type->isReferenceType());
1367 
1368   // Must be const-qualified but non-volatile.
1369   Qualifiers qs = type.getLocalQualifiers();
1370   if (!qs.hasConst() || qs.hasVolatile()) return false;
1371 
1372   // Otherwise, all object types satisfy this except C++ classes with
1373   // mutable subobjects or non-trivial copy/destroy behavior.
1374   if (const auto *RT = dyn_cast<RecordType>(type))
1375     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1376       if (RD->hasMutableFields() || !RD->isTrivial())
1377         return false;
1378 
1379   return true;
1380 }
1381 
1382 /// Can we constant-emit a load of a reference to a variable of the
1383 /// given type?  This is different from predicates like
1384 /// Decl::isUsableInConstantExpressions because we do want it to apply
1385 /// in situations that don't necessarily satisfy the language's rules
1386 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1387 /// to do this with const float variables even if those variables
1388 /// aren't marked 'constexpr'.
1389 enum ConstantEmissionKind {
1390   CEK_None,
1391   CEK_AsReferenceOnly,
1392   CEK_AsValueOrReference,
1393   CEK_AsValueOnly
1394 };
1395 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1396   type = type.getCanonicalType();
1397   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1398     if (isConstantEmittableObjectType(ref->getPointeeType()))
1399       return CEK_AsValueOrReference;
1400     return CEK_AsReferenceOnly;
1401   }
1402   if (isConstantEmittableObjectType(type))
1403     return CEK_AsValueOnly;
1404   return CEK_None;
1405 }
1406 
1407 /// Try to emit a reference to the given value without producing it as
1408 /// an l-value.  This is actually more than an optimization: we can't
1409 /// produce an l-value for variables that we never actually captured
1410 /// in a block or lambda, which means const int variables or constexpr
1411 /// literals or similar.
1412 CodeGenFunction::ConstantEmission
1413 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1414   ValueDecl *value = refExpr->getDecl();
1415 
1416   // The value needs to be an enum constant or a constant variable.
1417   ConstantEmissionKind CEK;
1418   if (isa<ParmVarDecl>(value)) {
1419     CEK = CEK_None;
1420   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1421     CEK = checkVarTypeForConstantEmission(var->getType());
1422   } else if (isa<EnumConstantDecl>(value)) {
1423     CEK = CEK_AsValueOnly;
1424   } else {
1425     CEK = CEK_None;
1426   }
1427   if (CEK == CEK_None) return ConstantEmission();
1428 
1429   Expr::EvalResult result;
1430   bool resultIsReference;
1431   QualType resultType;
1432 
1433   // It's best to evaluate all the way as an r-value if that's permitted.
1434   if (CEK != CEK_AsReferenceOnly &&
1435       refExpr->EvaluateAsRValue(result, getContext())) {
1436     resultIsReference = false;
1437     resultType = refExpr->getType();
1438 
1439   // Otherwise, try to evaluate as an l-value.
1440   } else if (CEK != CEK_AsValueOnly &&
1441              refExpr->EvaluateAsLValue(result, getContext())) {
1442     resultIsReference = true;
1443     resultType = value->getType();
1444 
1445   // Failure.
1446   } else {
1447     return ConstantEmission();
1448   }
1449 
1450   // In any case, if the initializer has side-effects, abandon ship.
1451   if (result.HasSideEffects)
1452     return ConstantEmission();
1453 
1454   // Emit as a constant.
1455   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1456                                                result.Val, resultType);
1457 
1458   // Make sure we emit a debug reference to the global variable.
1459   // This should probably fire even for
1460   if (isa<VarDecl>(value)) {
1461     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1462       EmitDeclRefExprDbgValue(refExpr, result.Val);
1463   } else {
1464     assert(isa<EnumConstantDecl>(value));
1465     EmitDeclRefExprDbgValue(refExpr, result.Val);
1466   }
1467 
1468   // If we emitted a reference constant, we need to dereference that.
1469   if (resultIsReference)
1470     return ConstantEmission::forReference(C);
1471 
1472   return ConstantEmission::forValue(C);
1473 }
1474 
1475 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1476                                                         const MemberExpr *ME) {
1477   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1478     // Try to emit static variable member expressions as DREs.
1479     return DeclRefExpr::Create(
1480         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1481         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1482         ME->getType(), ME->getValueKind());
1483   }
1484   return nullptr;
1485 }
1486 
1487 CodeGenFunction::ConstantEmission
1488 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1489   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1490     return tryEmitAsConstant(DRE);
1491   return ConstantEmission();
1492 }
1493 
1494 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1495                                                SourceLocation Loc) {
1496   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1497                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1498                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1499 }
1500 
1501 static bool hasBooleanRepresentation(QualType Ty) {
1502   if (Ty->isBooleanType())
1503     return true;
1504 
1505   if (const EnumType *ET = Ty->getAs<EnumType>())
1506     return ET->getDecl()->getIntegerType()->isBooleanType();
1507 
1508   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1509     return hasBooleanRepresentation(AT->getValueType());
1510 
1511   return false;
1512 }
1513 
1514 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1515                             llvm::APInt &Min, llvm::APInt &End,
1516                             bool StrictEnums, bool IsBool) {
1517   const EnumType *ET = Ty->getAs<EnumType>();
1518   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1519                                 ET && !ET->getDecl()->isFixed();
1520   if (!IsBool && !IsRegularCPlusPlusEnum)
1521     return false;
1522 
1523   if (IsBool) {
1524     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1525     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1526   } else {
1527     const EnumDecl *ED = ET->getDecl();
1528     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1529     unsigned Bitwidth = LTy->getScalarSizeInBits();
1530     unsigned NumNegativeBits = ED->getNumNegativeBits();
1531     unsigned NumPositiveBits = ED->getNumPositiveBits();
1532 
1533     if (NumNegativeBits) {
1534       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1535       assert(NumBits <= Bitwidth);
1536       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1537       Min = -End;
1538     } else {
1539       assert(NumPositiveBits <= Bitwidth);
1540       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1541       Min = llvm::APInt(Bitwidth, 0);
1542     }
1543   }
1544   return true;
1545 }
1546 
1547 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1548   llvm::APInt Min, End;
1549   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1550                        hasBooleanRepresentation(Ty)))
1551     return nullptr;
1552 
1553   llvm::MDBuilder MDHelper(getLLVMContext());
1554   return MDHelper.createRange(Min, End);
1555 }
1556 
1557 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1558                                            SourceLocation Loc) {
1559   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1560   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1561   if (!HasBoolCheck && !HasEnumCheck)
1562     return false;
1563 
1564   bool IsBool = hasBooleanRepresentation(Ty) ||
1565                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1566   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1567   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1568   if (!NeedsBoolCheck && !NeedsEnumCheck)
1569     return false;
1570 
1571   // Single-bit booleans don't need to be checked. Special-case this to avoid
1572   // a bit width mismatch when handling bitfield values. This is handled by
1573   // EmitFromMemory for the non-bitfield case.
1574   if (IsBool &&
1575       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1576     return false;
1577 
1578   llvm::APInt Min, End;
1579   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1580     return true;
1581 
1582   auto &Ctx = getLLVMContext();
1583   SanitizerScope SanScope(this);
1584   llvm::Value *Check;
1585   --End;
1586   if (!Min) {
1587     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1588   } else {
1589     llvm::Value *Upper =
1590         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1591     llvm::Value *Lower =
1592         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1593     Check = Builder.CreateAnd(Upper, Lower);
1594   }
1595   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1596                                   EmitCheckTypeDescriptor(Ty)};
1597   SanitizerMask Kind =
1598       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1599   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1600             StaticArgs, EmitCheckValue(Value));
1601   return true;
1602 }
1603 
1604 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1605                                                QualType Ty,
1606                                                SourceLocation Loc,
1607                                                LValueBaseInfo BaseInfo,
1608                                                TBAAAccessInfo TBAAInfo,
1609                                                bool isNontemporal) {
1610   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1611     // For better performance, handle vector loads differently.
1612     if (Ty->isVectorType()) {
1613       const llvm::Type *EltTy = Addr.getElementType();
1614 
1615       const auto *VTy = cast<llvm::VectorType>(EltTy);
1616 
1617       // Handle vectors of size 3 like size 4 for better performance.
1618       if (VTy->getNumElements() == 3) {
1619 
1620         // Bitcast to vec4 type.
1621         llvm::VectorType *vec4Ty =
1622             llvm::VectorType::get(VTy->getElementType(), 4);
1623         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1624         // Now load value.
1625         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1626 
1627         // Shuffle vector to get vec3.
1628         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1629                                         {0, 1, 2}, "extractVec");
1630         return EmitFromMemory(V, Ty);
1631       }
1632     }
1633   }
1634 
1635   // Atomic operations have to be done on integral types.
1636   LValue AtomicLValue =
1637       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1638   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1639     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1640   }
1641 
1642   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1643   if (isNontemporal) {
1644     llvm::MDNode *Node = llvm::MDNode::get(
1645         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1646     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1647   }
1648 
1649   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1650 
1651   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1652     // In order to prevent the optimizer from throwing away the check, don't
1653     // attach range metadata to the load.
1654   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1655     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1656       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1657 
1658   return EmitFromMemory(Load, Ty);
1659 }
1660 
1661 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1662   // Bool has a different representation in memory than in registers.
1663   if (hasBooleanRepresentation(Ty)) {
1664     // This should really always be an i1, but sometimes it's already
1665     // an i8, and it's awkward to track those cases down.
1666     if (Value->getType()->isIntegerTy(1))
1667       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1668     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1669            "wrong value rep of bool");
1670   }
1671 
1672   return Value;
1673 }
1674 
1675 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1676   // Bool has a different representation in memory than in registers.
1677   if (hasBooleanRepresentation(Ty)) {
1678     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1679            "wrong value rep of bool");
1680     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1681   }
1682 
1683   return Value;
1684 }
1685 
1686 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1687                                         bool Volatile, QualType Ty,
1688                                         LValueBaseInfo BaseInfo,
1689                                         TBAAAccessInfo TBAAInfo,
1690                                         bool isInit, bool isNontemporal) {
1691   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1692     // Handle vectors differently to get better performance.
1693     if (Ty->isVectorType()) {
1694       llvm::Type *SrcTy = Value->getType();
1695       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1696       // Handle vec3 special.
1697       if (VecTy && VecTy->getNumElements() == 3) {
1698         // Our source is a vec3, do a shuffle vector to make it a vec4.
1699         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1700                                   Builder.getInt32(2),
1701                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1702         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1703         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1704                                             MaskV, "extractVec");
1705         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1706       }
1707       if (Addr.getElementType() != SrcTy) {
1708         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1709       }
1710     }
1711   }
1712 
1713   Value = EmitToMemory(Value, Ty);
1714 
1715   LValue AtomicLValue =
1716       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1717   if (Ty->isAtomicType() ||
1718       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1719     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1720     return;
1721   }
1722 
1723   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1724   if (isNontemporal) {
1725     llvm::MDNode *Node =
1726         llvm::MDNode::get(Store->getContext(),
1727                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1728     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1729   }
1730 
1731   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1732 }
1733 
1734 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1735                                         bool isInit) {
1736   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1737                     lvalue.getType(), lvalue.getBaseInfo(),
1738                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1739 }
1740 
1741 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1742 /// method emits the address of the lvalue, then loads the result as an rvalue,
1743 /// returning the rvalue.
1744 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1745   if (LV.isObjCWeak()) {
1746     // load of a __weak object.
1747     Address AddrWeakObj = LV.getAddress();
1748     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1749                                                              AddrWeakObj));
1750   }
1751   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1752     // In MRC mode, we do a load+autorelease.
1753     if (!getLangOpts().ObjCAutoRefCount) {
1754       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1755     }
1756 
1757     // In ARC mode, we load retained and then consume the value.
1758     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1759     Object = EmitObjCConsumeObject(LV.getType(), Object);
1760     return RValue::get(Object);
1761   }
1762 
1763   if (LV.isSimple()) {
1764     assert(!LV.getType()->isFunctionType());
1765 
1766     // Everything needs a load.
1767     return RValue::get(EmitLoadOfScalar(LV, Loc));
1768   }
1769 
1770   if (LV.isVectorElt()) {
1771     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1772                                               LV.isVolatileQualified());
1773     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1774                                                     "vecext"));
1775   }
1776 
1777   // If this is a reference to a subset of the elements of a vector, either
1778   // shuffle the input or extract/insert them as appropriate.
1779   if (LV.isExtVectorElt())
1780     return EmitLoadOfExtVectorElementLValue(LV);
1781 
1782   // Global Register variables always invoke intrinsics
1783   if (LV.isGlobalReg())
1784     return EmitLoadOfGlobalRegLValue(LV);
1785 
1786   assert(LV.isBitField() && "Unknown LValue type!");
1787   return EmitLoadOfBitfieldLValue(LV, Loc);
1788 }
1789 
1790 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1791                                                  SourceLocation Loc) {
1792   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1793 
1794   // Get the output type.
1795   llvm::Type *ResLTy = ConvertType(LV.getType());
1796 
1797   Address Ptr = LV.getBitFieldAddress();
1798   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1799 
1800   if (Info.IsSigned) {
1801     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1802     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1803     if (HighBits)
1804       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1805     if (Info.Offset + HighBits)
1806       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1807   } else {
1808     if (Info.Offset)
1809       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1810     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1811       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1812                                                               Info.Size),
1813                               "bf.clear");
1814   }
1815   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1816   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1817   return RValue::get(Val);
1818 }
1819 
1820 // If this is a reference to a subset of the elements of a vector, create an
1821 // appropriate shufflevector.
1822 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1823   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1824                                         LV.isVolatileQualified());
1825 
1826   const llvm::Constant *Elts = LV.getExtVectorElts();
1827 
1828   // If the result of the expression is a non-vector type, we must be extracting
1829   // a single element.  Just codegen as an extractelement.
1830   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1831   if (!ExprVT) {
1832     unsigned InIdx = getAccessedFieldNo(0, Elts);
1833     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1834     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1835   }
1836 
1837   // Always use shuffle vector to try to retain the original program structure
1838   unsigned NumResultElts = ExprVT->getNumElements();
1839 
1840   SmallVector<llvm::Constant*, 4> Mask;
1841   for (unsigned i = 0; i != NumResultElts; ++i)
1842     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1843 
1844   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1845   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1846                                     MaskV);
1847   return RValue::get(Vec);
1848 }
1849 
1850 /// Generates lvalue for partial ext_vector access.
1851 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1852   Address VectorAddress = LV.getExtVectorAddress();
1853   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1854   QualType EQT = ExprVT->getElementType();
1855   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1856 
1857   Address CastToPointerElement =
1858     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1859                                  "conv.ptr.element");
1860 
1861   const llvm::Constant *Elts = LV.getExtVectorElts();
1862   unsigned ix = getAccessedFieldNo(0, Elts);
1863 
1864   Address VectorBasePtrPlusIx =
1865     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1866                                    getContext().getTypeSizeInChars(EQT),
1867                                    "vector.elt");
1868 
1869   return VectorBasePtrPlusIx;
1870 }
1871 
1872 /// Load of global gamed gegisters are always calls to intrinsics.
1873 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1874   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1875          "Bad type for register variable");
1876   llvm::MDNode *RegName = cast<llvm::MDNode>(
1877       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1878 
1879   // We accept integer and pointer types only
1880   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1881   llvm::Type *Ty = OrigTy;
1882   if (OrigTy->isPointerTy())
1883     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1884   llvm::Type *Types[] = { Ty };
1885 
1886   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1887   llvm::Value *Call = Builder.CreateCall(
1888       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1889   if (OrigTy->isPointerTy())
1890     Call = Builder.CreateIntToPtr(Call, OrigTy);
1891   return RValue::get(Call);
1892 }
1893 
1894 
1895 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1896 /// lvalue, where both are guaranteed to the have the same type, and that type
1897 /// is 'Ty'.
1898 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1899                                              bool isInit) {
1900   if (!Dst.isSimple()) {
1901     if (Dst.isVectorElt()) {
1902       // Read/modify/write the vector, inserting the new element.
1903       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1904                                             Dst.isVolatileQualified());
1905       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1906                                         Dst.getVectorIdx(), "vecins");
1907       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1908                           Dst.isVolatileQualified());
1909       return;
1910     }
1911 
1912     // If this is an update of extended vector elements, insert them as
1913     // appropriate.
1914     if (Dst.isExtVectorElt())
1915       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1916 
1917     if (Dst.isGlobalReg())
1918       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1919 
1920     assert(Dst.isBitField() && "Unknown LValue type");
1921     return EmitStoreThroughBitfieldLValue(Src, Dst);
1922   }
1923 
1924   // There's special magic for assigning into an ARC-qualified l-value.
1925   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1926     switch (Lifetime) {
1927     case Qualifiers::OCL_None:
1928       llvm_unreachable("present but none");
1929 
1930     case Qualifiers::OCL_ExplicitNone:
1931       // nothing special
1932       break;
1933 
1934     case Qualifiers::OCL_Strong:
1935       if (isInit) {
1936         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1937         break;
1938       }
1939       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1940       return;
1941 
1942     case Qualifiers::OCL_Weak:
1943       if (isInit)
1944         // Initialize and then skip the primitive store.
1945         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1946       else
1947         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1948       return;
1949 
1950     case Qualifiers::OCL_Autoreleasing:
1951       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1952                                                      Src.getScalarVal()));
1953       // fall into the normal path
1954       break;
1955     }
1956   }
1957 
1958   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1959     // load of a __weak object.
1960     Address LvalueDst = Dst.getAddress();
1961     llvm::Value *src = Src.getScalarVal();
1962      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1963     return;
1964   }
1965 
1966   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1967     // load of a __strong object.
1968     Address LvalueDst = Dst.getAddress();
1969     llvm::Value *src = Src.getScalarVal();
1970     if (Dst.isObjCIvar()) {
1971       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1972       llvm::Type *ResultType = IntPtrTy;
1973       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1974       llvm::Value *RHS = dst.getPointer();
1975       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1976       llvm::Value *LHS =
1977         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1978                                "sub.ptr.lhs.cast");
1979       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1980       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1981                                               BytesBetween);
1982     } else if (Dst.isGlobalObjCRef()) {
1983       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1984                                                 Dst.isThreadLocalRef());
1985     }
1986     else
1987       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1988     return;
1989   }
1990 
1991   assert(Src.isScalar() && "Can't emit an agg store with this method");
1992   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1993 }
1994 
1995 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1996                                                      llvm::Value **Result) {
1997   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1998   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1999   Address Ptr = Dst.getBitFieldAddress();
2000 
2001   // Get the source value, truncated to the width of the bit-field.
2002   llvm::Value *SrcVal = Src.getScalarVal();
2003 
2004   // Cast the source to the storage type and shift it into place.
2005   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2006                                  /*IsSigned=*/false);
2007   llvm::Value *MaskedVal = SrcVal;
2008 
2009   // See if there are other bits in the bitfield's storage we'll need to load
2010   // and mask together with source before storing.
2011   if (Info.StorageSize != Info.Size) {
2012     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2013     llvm::Value *Val =
2014       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2015 
2016     // Mask the source value as needed.
2017     if (!hasBooleanRepresentation(Dst.getType()))
2018       SrcVal = Builder.CreateAnd(SrcVal,
2019                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2020                                                             Info.Size),
2021                                  "bf.value");
2022     MaskedVal = SrcVal;
2023     if (Info.Offset)
2024       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2025 
2026     // Mask out the original value.
2027     Val = Builder.CreateAnd(Val,
2028                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2029                                                      Info.Offset,
2030                                                      Info.Offset + Info.Size),
2031                             "bf.clear");
2032 
2033     // Or together the unchanged values and the source value.
2034     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2035   } else {
2036     assert(Info.Offset == 0);
2037   }
2038 
2039   // Write the new value back out.
2040   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2041 
2042   // Return the new value of the bit-field, if requested.
2043   if (Result) {
2044     llvm::Value *ResultVal = MaskedVal;
2045 
2046     // Sign extend the value if needed.
2047     if (Info.IsSigned) {
2048       assert(Info.Size <= Info.StorageSize);
2049       unsigned HighBits = Info.StorageSize - Info.Size;
2050       if (HighBits) {
2051         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2052         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2053       }
2054     }
2055 
2056     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2057                                       "bf.result.cast");
2058     *Result = EmitFromMemory(ResultVal, Dst.getType());
2059   }
2060 }
2061 
2062 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2063                                                                LValue Dst) {
2064   // This access turns into a read/modify/write of the vector.  Load the input
2065   // value now.
2066   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2067                                         Dst.isVolatileQualified());
2068   const llvm::Constant *Elts = Dst.getExtVectorElts();
2069 
2070   llvm::Value *SrcVal = Src.getScalarVal();
2071 
2072   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2073     unsigned NumSrcElts = VTy->getNumElements();
2074     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2075     if (NumDstElts == NumSrcElts) {
2076       // Use shuffle vector is the src and destination are the same number of
2077       // elements and restore the vector mask since it is on the side it will be
2078       // stored.
2079       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2080       for (unsigned i = 0; i != NumSrcElts; ++i)
2081         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2082 
2083       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2084       Vec = Builder.CreateShuffleVector(SrcVal,
2085                                         llvm::UndefValue::get(Vec->getType()),
2086                                         MaskV);
2087     } else if (NumDstElts > NumSrcElts) {
2088       // Extended the source vector to the same length and then shuffle it
2089       // into the destination.
2090       // FIXME: since we're shuffling with undef, can we just use the indices
2091       //        into that?  This could be simpler.
2092       SmallVector<llvm::Constant*, 4> ExtMask;
2093       for (unsigned i = 0; i != NumSrcElts; ++i)
2094         ExtMask.push_back(Builder.getInt32(i));
2095       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2096       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2097       llvm::Value *ExtSrcVal =
2098         Builder.CreateShuffleVector(SrcVal,
2099                                     llvm::UndefValue::get(SrcVal->getType()),
2100                                     ExtMaskV);
2101       // build identity
2102       SmallVector<llvm::Constant*, 4> Mask;
2103       for (unsigned i = 0; i != NumDstElts; ++i)
2104         Mask.push_back(Builder.getInt32(i));
2105 
2106       // When the vector size is odd and .odd or .hi is used, the last element
2107       // of the Elts constant array will be one past the size of the vector.
2108       // Ignore the last element here, if it is greater than the mask size.
2109       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2110         NumSrcElts--;
2111 
2112       // modify when what gets shuffled in
2113       for (unsigned i = 0; i != NumSrcElts; ++i)
2114         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2115       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2116       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2117     } else {
2118       // We should never shorten the vector
2119       llvm_unreachable("unexpected shorten vector length");
2120     }
2121   } else {
2122     // If the Src is a scalar (not a vector) it must be updating one element.
2123     unsigned InIdx = getAccessedFieldNo(0, Elts);
2124     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2125     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2126   }
2127 
2128   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2129                       Dst.isVolatileQualified());
2130 }
2131 
2132 /// Store of global named registers are always calls to intrinsics.
2133 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2134   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2135          "Bad type for register variable");
2136   llvm::MDNode *RegName = cast<llvm::MDNode>(
2137       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2138   assert(RegName && "Register LValue is not metadata");
2139 
2140   // We accept integer and pointer types only
2141   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2142   llvm::Type *Ty = OrigTy;
2143   if (OrigTy->isPointerTy())
2144     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2145   llvm::Type *Types[] = { Ty };
2146 
2147   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2148   llvm::Value *Value = Src.getScalarVal();
2149   if (OrigTy->isPointerTy())
2150     Value = Builder.CreatePtrToInt(Value, Ty);
2151   Builder.CreateCall(
2152       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2153 }
2154 
2155 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2156 // generating write-barries API. It is currently a global, ivar,
2157 // or neither.
2158 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2159                                  LValue &LV,
2160                                  bool IsMemberAccess=false) {
2161   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2162     return;
2163 
2164   if (isa<ObjCIvarRefExpr>(E)) {
2165     QualType ExpTy = E->getType();
2166     if (IsMemberAccess && ExpTy->isPointerType()) {
2167       // If ivar is a structure pointer, assigning to field of
2168       // this struct follows gcc's behavior and makes it a non-ivar
2169       // writer-barrier conservatively.
2170       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2171       if (ExpTy->isRecordType()) {
2172         LV.setObjCIvar(false);
2173         return;
2174       }
2175     }
2176     LV.setObjCIvar(true);
2177     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2178     LV.setBaseIvarExp(Exp->getBase());
2179     LV.setObjCArray(E->getType()->isArrayType());
2180     return;
2181   }
2182 
2183   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2184     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2185       if (VD->hasGlobalStorage()) {
2186         LV.setGlobalObjCRef(true);
2187         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2188       }
2189     }
2190     LV.setObjCArray(E->getType()->isArrayType());
2191     return;
2192   }
2193 
2194   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2195     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2196     return;
2197   }
2198 
2199   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2200     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2201     if (LV.isObjCIvar()) {
2202       // If cast is to a structure pointer, follow gcc's behavior and make it
2203       // a non-ivar write-barrier.
2204       QualType ExpTy = E->getType();
2205       if (ExpTy->isPointerType())
2206         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2207       if (ExpTy->isRecordType())
2208         LV.setObjCIvar(false);
2209     }
2210     return;
2211   }
2212 
2213   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2214     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2215     return;
2216   }
2217 
2218   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2219     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2220     return;
2221   }
2222 
2223   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2224     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2225     return;
2226   }
2227 
2228   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2229     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2230     return;
2231   }
2232 
2233   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2234     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2235     if (LV.isObjCIvar() && !LV.isObjCArray())
2236       // Using array syntax to assigning to what an ivar points to is not
2237       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2238       LV.setObjCIvar(false);
2239     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2240       // Using array syntax to assigning to what global points to is not
2241       // same as assigning to the global itself. {id *G;} G[i] = 0;
2242       LV.setGlobalObjCRef(false);
2243     return;
2244   }
2245 
2246   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2247     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2248     // We don't know if member is an 'ivar', but this flag is looked at
2249     // only in the context of LV.isObjCIvar().
2250     LV.setObjCArray(E->getType()->isArrayType());
2251     return;
2252   }
2253 }
2254 
2255 static llvm::Value *
2256 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2257                                 llvm::Value *V, llvm::Type *IRType,
2258                                 StringRef Name = StringRef()) {
2259   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2260   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2261 }
2262 
2263 static LValue EmitThreadPrivateVarDeclLValue(
2264     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2265     llvm::Type *RealVarTy, SourceLocation Loc) {
2266   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2267   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2268   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2269 }
2270 
2271 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF,
2272                                                const VarDecl *VD, QualType T) {
2273   for (const auto *D : VD->redecls()) {
2274     if (!VD->hasAttrs())
2275       continue;
2276     if (const auto *Attr = D->getAttr<OMPDeclareTargetDeclAttr>())
2277       if (Attr->getMapType() == OMPDeclareTargetDeclAttr::MT_Link) {
2278         QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2279         Address Addr =
2280             CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2281         return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2282       }
2283   }
2284   return Address::invalid();
2285 }
2286 
2287 Address
2288 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2289                                      LValueBaseInfo *PointeeBaseInfo,
2290                                      TBAAAccessInfo *PointeeTBAAInfo) {
2291   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2292                                             RefLVal.isVolatile());
2293   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2294 
2295   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2296                                             PointeeBaseInfo, PointeeTBAAInfo,
2297                                             /* forPointeeType= */ true);
2298   return Address(Load, Align);
2299 }
2300 
2301 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2302   LValueBaseInfo PointeeBaseInfo;
2303   TBAAAccessInfo PointeeTBAAInfo;
2304   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2305                                             &PointeeTBAAInfo);
2306   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2307                         PointeeBaseInfo, PointeeTBAAInfo);
2308 }
2309 
2310 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2311                                            const PointerType *PtrTy,
2312                                            LValueBaseInfo *BaseInfo,
2313                                            TBAAAccessInfo *TBAAInfo) {
2314   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2315   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2316                                                BaseInfo, TBAAInfo,
2317                                                /*forPointeeType=*/true));
2318 }
2319 
2320 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2321                                                 const PointerType *PtrTy) {
2322   LValueBaseInfo BaseInfo;
2323   TBAAAccessInfo TBAAInfo;
2324   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2325   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2326 }
2327 
2328 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2329                                       const Expr *E, const VarDecl *VD) {
2330   QualType T = E->getType();
2331 
2332   // If it's thread_local, emit a call to its wrapper function instead.
2333   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2334       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2335     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2336   // Check if the variable is marked as declare target with link clause in
2337   // device codegen.
2338   if (CGF.getLangOpts().OpenMPIsDevice) {
2339     Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T);
2340     if (Addr.isValid())
2341       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2342   }
2343 
2344   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2345   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2346   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2347   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2348   Address Addr(V, Alignment);
2349   // Emit reference to the private copy of the variable if it is an OpenMP
2350   // threadprivate variable.
2351   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2352       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2353     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2354                                           E->getExprLoc());
2355   }
2356   LValue LV = VD->getType()->isReferenceType() ?
2357       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2358                                     AlignmentSource::Decl) :
2359       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2360   setObjCGCLValueClass(CGF.getContext(), E, LV);
2361   return LV;
2362 }
2363 
2364 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2365                                                const FunctionDecl *FD) {
2366   if (FD->hasAttr<WeakRefAttr>()) {
2367     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2368     return aliasee.getPointer();
2369   }
2370 
2371   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2372   if (!FD->hasPrototype()) {
2373     if (const FunctionProtoType *Proto =
2374             FD->getType()->getAs<FunctionProtoType>()) {
2375       // Ugly case: for a K&R-style definition, the type of the definition
2376       // isn't the same as the type of a use.  Correct for this with a
2377       // bitcast.
2378       QualType NoProtoType =
2379           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2380       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2381       V = llvm::ConstantExpr::getBitCast(V,
2382                                       CGM.getTypes().ConvertType(NoProtoType));
2383     }
2384   }
2385   return V;
2386 }
2387 
2388 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2389                                      const Expr *E, const FunctionDecl *FD) {
2390   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2391   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2392   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2393                             AlignmentSource::Decl);
2394 }
2395 
2396 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2397                                       llvm::Value *ThisValue) {
2398   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2399   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2400   return CGF.EmitLValueForField(LV, FD);
2401 }
2402 
2403 /// Named Registers are named metadata pointing to the register name
2404 /// which will be read from/written to as an argument to the intrinsic
2405 /// @llvm.read/write_register.
2406 /// So far, only the name is being passed down, but other options such as
2407 /// register type, allocation type or even optimization options could be
2408 /// passed down via the metadata node.
2409 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2410   SmallString<64> Name("llvm.named.register.");
2411   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2412   assert(Asm->getLabel().size() < 64-Name.size() &&
2413       "Register name too big");
2414   Name.append(Asm->getLabel());
2415   llvm::NamedMDNode *M =
2416     CGM.getModule().getOrInsertNamedMetadata(Name);
2417   if (M->getNumOperands() == 0) {
2418     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2419                                               Asm->getLabel());
2420     llvm::Metadata *Ops[] = {Str};
2421     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2422   }
2423 
2424   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2425 
2426   llvm::Value *Ptr =
2427     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2428   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2429 }
2430 
2431 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2432   const NamedDecl *ND = E->getDecl();
2433   QualType T = E->getType();
2434 
2435   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2436     // Global Named registers access via intrinsics only
2437     if (VD->getStorageClass() == SC_Register &&
2438         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2439       return EmitGlobalNamedRegister(VD, CGM);
2440 
2441     // A DeclRefExpr for a reference initialized by a constant expression can
2442     // appear without being odr-used. Directly emit the constant initializer.
2443     const Expr *Init = VD->getAnyInitializer(VD);
2444     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2445         VD->isUsableInConstantExpressions(getContext()) &&
2446         VD->checkInitIsICE() &&
2447         // Do not emit if it is private OpenMP variable.
2448         !(E->refersToEnclosingVariableOrCapture() &&
2449           ((CapturedStmtInfo &&
2450             (LocalDeclMap.count(VD->getCanonicalDecl()) ||
2451              CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
2452            LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
2453            isa<BlockDecl>(CurCodeDecl)))) {
2454       llvm::Constant *Val =
2455         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2456                                             *VD->evaluateValue(),
2457                                             VD->getType());
2458       assert(Val && "failed to emit reference constant expression");
2459       // FIXME: Eventually we will want to emit vector element references.
2460 
2461       // Should we be using the alignment of the constant pointer we emitted?
2462       CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
2463                                                     /* BaseInfo= */ nullptr,
2464                                                     /* TBAAInfo= */ nullptr,
2465                                                     /* forPointeeType= */ true);
2466       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2467     }
2468 
2469     // Check for captured variables.
2470     if (E->refersToEnclosingVariableOrCapture()) {
2471       VD = VD->getCanonicalDecl();
2472       if (auto *FD = LambdaCaptureFields.lookup(VD))
2473         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2474       else if (CapturedStmtInfo) {
2475         auto I = LocalDeclMap.find(VD);
2476         if (I != LocalDeclMap.end()) {
2477           if (VD->getType()->isReferenceType())
2478             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2479                                              AlignmentSource::Decl);
2480           return MakeAddrLValue(I->second, T);
2481         }
2482         LValue CapLVal =
2483             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2484                                     CapturedStmtInfo->getContextValue());
2485         return MakeAddrLValue(
2486             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2487             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2488             CapLVal.getTBAAInfo());
2489       }
2490 
2491       assert(isa<BlockDecl>(CurCodeDecl));
2492       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2493       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2494     }
2495   }
2496 
2497   // FIXME: We should be able to assert this for FunctionDecls as well!
2498   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2499   // those with a valid source location.
2500   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2501           !E->getLocation().isValid()) &&
2502          "Should not use decl without marking it used!");
2503 
2504   if (ND->hasAttr<WeakRefAttr>()) {
2505     const auto *VD = cast<ValueDecl>(ND);
2506     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2507     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2508   }
2509 
2510   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2511     // Check if this is a global variable.
2512     if (VD->hasLinkage() || VD->isStaticDataMember())
2513       return EmitGlobalVarDeclLValue(*this, E, VD);
2514 
2515     Address addr = Address::invalid();
2516 
2517     // The variable should generally be present in the local decl map.
2518     auto iter = LocalDeclMap.find(VD);
2519     if (iter != LocalDeclMap.end()) {
2520       addr = iter->second;
2521 
2522     // Otherwise, it might be static local we haven't emitted yet for
2523     // some reason; most likely, because it's in an outer function.
2524     } else if (VD->isStaticLocal()) {
2525       addr = Address(CGM.getOrCreateStaticVarDecl(
2526           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2527                      getContext().getDeclAlign(VD));
2528 
2529     // No other cases for now.
2530     } else {
2531       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2532     }
2533 
2534 
2535     // Check for OpenMP threadprivate variables.
2536     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2537         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2538       return EmitThreadPrivateVarDeclLValue(
2539           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2540           E->getExprLoc());
2541     }
2542 
2543     // Drill into block byref variables.
2544     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2545     if (isBlockByref) {
2546       addr = emitBlockByrefAddress(addr, VD);
2547     }
2548 
2549     // Drill into reference types.
2550     LValue LV = VD->getType()->isReferenceType() ?
2551         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2552         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2553 
2554     bool isLocalStorage = VD->hasLocalStorage();
2555 
2556     bool NonGCable = isLocalStorage &&
2557                      !VD->getType()->isReferenceType() &&
2558                      !isBlockByref;
2559     if (NonGCable) {
2560       LV.getQuals().removeObjCGCAttr();
2561       LV.setNonGC(true);
2562     }
2563 
2564     bool isImpreciseLifetime =
2565       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2566     if (isImpreciseLifetime)
2567       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2568     setObjCGCLValueClass(getContext(), E, LV);
2569     return LV;
2570   }
2571 
2572   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2573     return EmitFunctionDeclLValue(*this, E, FD);
2574 
2575   // FIXME: While we're emitting a binding from an enclosing scope, all other
2576   // DeclRefExprs we see should be implicitly treated as if they also refer to
2577   // an enclosing scope.
2578   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2579     return EmitLValue(BD->getBinding());
2580 
2581   llvm_unreachable("Unhandled DeclRefExpr");
2582 }
2583 
2584 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2585   // __extension__ doesn't affect lvalue-ness.
2586   if (E->getOpcode() == UO_Extension)
2587     return EmitLValue(E->getSubExpr());
2588 
2589   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2590   switch (E->getOpcode()) {
2591   default: llvm_unreachable("Unknown unary operator lvalue!");
2592   case UO_Deref: {
2593     QualType T = E->getSubExpr()->getType()->getPointeeType();
2594     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2595 
2596     LValueBaseInfo BaseInfo;
2597     TBAAAccessInfo TBAAInfo;
2598     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2599                                             &TBAAInfo);
2600     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2601     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2602 
2603     // We should not generate __weak write barrier on indirect reference
2604     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2605     // But, we continue to generate __strong write barrier on indirect write
2606     // into a pointer to object.
2607     if (getLangOpts().ObjC1 &&
2608         getLangOpts().getGC() != LangOptions::NonGC &&
2609         LV.isObjCWeak())
2610       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2611     return LV;
2612   }
2613   case UO_Real:
2614   case UO_Imag: {
2615     LValue LV = EmitLValue(E->getSubExpr());
2616     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2617 
2618     // __real is valid on scalars.  This is a faster way of testing that.
2619     // __imag can only produce an rvalue on scalars.
2620     if (E->getOpcode() == UO_Real &&
2621         !LV.getAddress().getElementType()->isStructTy()) {
2622       assert(E->getSubExpr()->getType()->isArithmeticType());
2623       return LV;
2624     }
2625 
2626     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2627 
2628     Address Component =
2629       (E->getOpcode() == UO_Real
2630          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2631          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2632     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2633                                    CGM.getTBAAInfoForSubobject(LV, T));
2634     ElemLV.getQuals().addQualifiers(LV.getQuals());
2635     return ElemLV;
2636   }
2637   case UO_PreInc:
2638   case UO_PreDec: {
2639     LValue LV = EmitLValue(E->getSubExpr());
2640     bool isInc = E->getOpcode() == UO_PreInc;
2641 
2642     if (E->getType()->isAnyComplexType())
2643       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2644     else
2645       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2646     return LV;
2647   }
2648   }
2649 }
2650 
2651 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2652   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2653                         E->getType(), AlignmentSource::Decl);
2654 }
2655 
2656 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2657   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2658                         E->getType(), AlignmentSource::Decl);
2659 }
2660 
2661 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2662   auto SL = E->getFunctionName();
2663   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2664   StringRef FnName = CurFn->getName();
2665   if (FnName.startswith("\01"))
2666     FnName = FnName.substr(1);
2667   StringRef NameItems[] = {
2668       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2669   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2670   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2671     std::string Name = SL->getString();
2672     if (!Name.empty()) {
2673       unsigned Discriminator =
2674           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2675       if (Discriminator)
2676         Name += "_" + Twine(Discriminator + 1).str();
2677       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2678       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2679     } else {
2680       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2681       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2682     }
2683   }
2684   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2685   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2686 }
2687 
2688 /// Emit a type description suitable for use by a runtime sanitizer library. The
2689 /// format of a type descriptor is
2690 ///
2691 /// \code
2692 ///   { i16 TypeKind, i16 TypeInfo }
2693 /// \endcode
2694 ///
2695 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2696 /// integer, 1 for a floating point value, and -1 for anything else.
2697 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2698   // Only emit each type's descriptor once.
2699   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2700     return C;
2701 
2702   uint16_t TypeKind = -1;
2703   uint16_t TypeInfo = 0;
2704 
2705   if (T->isIntegerType()) {
2706     TypeKind = 0;
2707     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2708                (T->isSignedIntegerType() ? 1 : 0);
2709   } else if (T->isFloatingType()) {
2710     TypeKind = 1;
2711     TypeInfo = getContext().getTypeSize(T);
2712   }
2713 
2714   // Format the type name as if for a diagnostic, including quotes and
2715   // optionally an 'aka'.
2716   SmallString<32> Buffer;
2717   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2718                                     (intptr_t)T.getAsOpaquePtr(),
2719                                     StringRef(), StringRef(), None, Buffer,
2720                                     None);
2721 
2722   llvm::Constant *Components[] = {
2723     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2724     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2725   };
2726   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2727 
2728   auto *GV = new llvm::GlobalVariable(
2729       CGM.getModule(), Descriptor->getType(),
2730       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2731   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2732   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2733 
2734   // Remember the descriptor for this type.
2735   CGM.setTypeDescriptorInMap(T, GV);
2736 
2737   return GV;
2738 }
2739 
2740 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2741   llvm::Type *TargetTy = IntPtrTy;
2742 
2743   if (V->getType() == TargetTy)
2744     return V;
2745 
2746   // Floating-point types which fit into intptr_t are bitcast to integers
2747   // and then passed directly (after zero-extension, if necessary).
2748   if (V->getType()->isFloatingPointTy()) {
2749     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2750     if (Bits <= TargetTy->getIntegerBitWidth())
2751       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2752                                                          Bits));
2753   }
2754 
2755   // Integers which fit in intptr_t are zero-extended and passed directly.
2756   if (V->getType()->isIntegerTy() &&
2757       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2758     return Builder.CreateZExt(V, TargetTy);
2759 
2760   // Pointers are passed directly, everything else is passed by address.
2761   if (!V->getType()->isPointerTy()) {
2762     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2763     Builder.CreateStore(V, Ptr);
2764     V = Ptr.getPointer();
2765   }
2766   return Builder.CreatePtrToInt(V, TargetTy);
2767 }
2768 
2769 /// Emit a representation of a SourceLocation for passing to a handler
2770 /// in a sanitizer runtime library. The format for this data is:
2771 /// \code
2772 ///   struct SourceLocation {
2773 ///     const char *Filename;
2774 ///     int32_t Line, Column;
2775 ///   };
2776 /// \endcode
2777 /// For an invalid SourceLocation, the Filename pointer is null.
2778 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2779   llvm::Constant *Filename;
2780   int Line, Column;
2781 
2782   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2783   if (PLoc.isValid()) {
2784     StringRef FilenameString = PLoc.getFilename();
2785 
2786     int PathComponentsToStrip =
2787         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2788     if (PathComponentsToStrip < 0) {
2789       assert(PathComponentsToStrip != INT_MIN);
2790       int PathComponentsToKeep = -PathComponentsToStrip;
2791       auto I = llvm::sys::path::rbegin(FilenameString);
2792       auto E = llvm::sys::path::rend(FilenameString);
2793       while (I != E && --PathComponentsToKeep)
2794         ++I;
2795 
2796       FilenameString = FilenameString.substr(I - E);
2797     } else if (PathComponentsToStrip > 0) {
2798       auto I = llvm::sys::path::begin(FilenameString);
2799       auto E = llvm::sys::path::end(FilenameString);
2800       while (I != E && PathComponentsToStrip--)
2801         ++I;
2802 
2803       if (I != E)
2804         FilenameString =
2805             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2806       else
2807         FilenameString = llvm::sys::path::filename(FilenameString);
2808     }
2809 
2810     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2811     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2812                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2813     Filename = FilenameGV.getPointer();
2814     Line = PLoc.getLine();
2815     Column = PLoc.getColumn();
2816   } else {
2817     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2818     Line = Column = 0;
2819   }
2820 
2821   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2822                             Builder.getInt32(Column)};
2823 
2824   return llvm::ConstantStruct::getAnon(Data);
2825 }
2826 
2827 namespace {
2828 /// Specify under what conditions this check can be recovered
2829 enum class CheckRecoverableKind {
2830   /// Always terminate program execution if this check fails.
2831   Unrecoverable,
2832   /// Check supports recovering, runtime has both fatal (noreturn) and
2833   /// non-fatal handlers for this check.
2834   Recoverable,
2835   /// Runtime conditionally aborts, always need to support recovery.
2836   AlwaysRecoverable
2837 };
2838 }
2839 
2840 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2841   assert(llvm::countPopulation(Kind) == 1);
2842   switch (Kind) {
2843   case SanitizerKind::Vptr:
2844     return CheckRecoverableKind::AlwaysRecoverable;
2845   case SanitizerKind::Return:
2846   case SanitizerKind::Unreachable:
2847     return CheckRecoverableKind::Unrecoverable;
2848   default:
2849     return CheckRecoverableKind::Recoverable;
2850   }
2851 }
2852 
2853 namespace {
2854 struct SanitizerHandlerInfo {
2855   char const *const Name;
2856   unsigned Version;
2857 };
2858 }
2859 
2860 const SanitizerHandlerInfo SanitizerHandlers[] = {
2861 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2862     LIST_SANITIZER_CHECKS
2863 #undef SANITIZER_CHECK
2864 };
2865 
2866 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2867                                  llvm::FunctionType *FnType,
2868                                  ArrayRef<llvm::Value *> FnArgs,
2869                                  SanitizerHandler CheckHandler,
2870                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2871                                  llvm::BasicBlock *ContBB) {
2872   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2873   bool NeedsAbortSuffix =
2874       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2875   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2876   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2877   const StringRef CheckName = CheckInfo.Name;
2878   std::string FnName = "__ubsan_handle_" + CheckName.str();
2879   if (CheckInfo.Version && !MinimalRuntime)
2880     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2881   if (MinimalRuntime)
2882     FnName += "_minimal";
2883   if (NeedsAbortSuffix)
2884     FnName += "_abort";
2885   bool MayReturn =
2886       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2887 
2888   llvm::AttrBuilder B;
2889   if (!MayReturn) {
2890     B.addAttribute(llvm::Attribute::NoReturn)
2891         .addAttribute(llvm::Attribute::NoUnwind);
2892   }
2893   B.addAttribute(llvm::Attribute::UWTable);
2894 
2895   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2896       FnType, FnName,
2897       llvm::AttributeList::get(CGF.getLLVMContext(),
2898                                llvm::AttributeList::FunctionIndex, B),
2899       /*Local=*/true);
2900   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2901   if (!MayReturn) {
2902     HandlerCall->setDoesNotReturn();
2903     CGF.Builder.CreateUnreachable();
2904   } else {
2905     CGF.Builder.CreateBr(ContBB);
2906   }
2907 }
2908 
2909 void CodeGenFunction::EmitCheck(
2910     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2911     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2912     ArrayRef<llvm::Value *> DynamicArgs) {
2913   assert(IsSanitizerScope);
2914   assert(Checked.size() > 0);
2915   assert(CheckHandler >= 0 &&
2916          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
2917   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2918 
2919   llvm::Value *FatalCond = nullptr;
2920   llvm::Value *RecoverableCond = nullptr;
2921   llvm::Value *TrapCond = nullptr;
2922   for (int i = 0, n = Checked.size(); i < n; ++i) {
2923     llvm::Value *Check = Checked[i].first;
2924     // -fsanitize-trap= overrides -fsanitize-recover=.
2925     llvm::Value *&Cond =
2926         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2927             ? TrapCond
2928             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2929                   ? RecoverableCond
2930                   : FatalCond;
2931     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2932   }
2933 
2934   if (TrapCond)
2935     EmitTrapCheck(TrapCond);
2936   if (!FatalCond && !RecoverableCond)
2937     return;
2938 
2939   llvm::Value *JointCond;
2940   if (FatalCond && RecoverableCond)
2941     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2942   else
2943     JointCond = FatalCond ? FatalCond : RecoverableCond;
2944   assert(JointCond);
2945 
2946   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2947   assert(SanOpts.has(Checked[0].second));
2948 #ifndef NDEBUG
2949   for (int i = 1, n = Checked.size(); i < n; ++i) {
2950     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2951            "All recoverable kinds in a single check must be same!");
2952     assert(SanOpts.has(Checked[i].second));
2953   }
2954 #endif
2955 
2956   llvm::BasicBlock *Cont = createBasicBlock("cont");
2957   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2958   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2959   // Give hint that we very much don't expect to execute the handler
2960   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2961   llvm::MDBuilder MDHelper(getLLVMContext());
2962   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2963   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2964   EmitBlock(Handlers);
2965 
2966   // Handler functions take an i8* pointing to the (handler-specific) static
2967   // information block, followed by a sequence of intptr_t arguments
2968   // representing operand values.
2969   SmallVector<llvm::Value *, 4> Args;
2970   SmallVector<llvm::Type *, 4> ArgTypes;
2971   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2972     Args.reserve(DynamicArgs.size() + 1);
2973     ArgTypes.reserve(DynamicArgs.size() + 1);
2974 
2975     // Emit handler arguments and create handler function type.
2976     if (!StaticArgs.empty()) {
2977       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2978       auto *InfoPtr =
2979           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2980                                    llvm::GlobalVariable::PrivateLinkage, Info);
2981       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2982       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2983       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2984       ArgTypes.push_back(Int8PtrTy);
2985     }
2986 
2987     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2988       Args.push_back(EmitCheckValue(DynamicArgs[i]));
2989       ArgTypes.push_back(IntPtrTy);
2990     }
2991   }
2992 
2993   llvm::FunctionType *FnType =
2994     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2995 
2996   if (!FatalCond || !RecoverableCond) {
2997     // Simple case: we need to generate a single handler call, either
2998     // fatal, or non-fatal.
2999     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3000                          (FatalCond != nullptr), Cont);
3001   } else {
3002     // Emit two handler calls: first one for set of unrecoverable checks,
3003     // another one for recoverable.
3004     llvm::BasicBlock *NonFatalHandlerBB =
3005         createBasicBlock("non_fatal." + CheckName);
3006     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3007     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3008     EmitBlock(FatalHandlerBB);
3009     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3010                          NonFatalHandlerBB);
3011     EmitBlock(NonFatalHandlerBB);
3012     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3013                          Cont);
3014   }
3015 
3016   EmitBlock(Cont);
3017 }
3018 
3019 void CodeGenFunction::EmitCfiSlowPathCheck(
3020     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3021     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3022   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3023 
3024   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3025   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3026 
3027   llvm::MDBuilder MDHelper(getLLVMContext());
3028   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3029   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3030 
3031   EmitBlock(CheckBB);
3032 
3033   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3034 
3035   llvm::CallInst *CheckCall;
3036   llvm::Constant *SlowPathFn;
3037   if (WithDiag) {
3038     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3039     auto *InfoPtr =
3040         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3041                                  llvm::GlobalVariable::PrivateLinkage, Info);
3042     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3043     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3044 
3045     SlowPathFn = CGM.getModule().getOrInsertFunction(
3046         "__cfi_slowpath_diag",
3047         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3048                                 false));
3049     CheckCall = Builder.CreateCall(
3050         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3051   } else {
3052     SlowPathFn = CGM.getModule().getOrInsertFunction(
3053         "__cfi_slowpath",
3054         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3055     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3056   }
3057 
3058   CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts()));
3059   CheckCall->setDoesNotThrow();
3060 
3061   EmitBlock(Cont);
3062 }
3063 
3064 // Emit a stub for __cfi_check function so that the linker knows about this
3065 // symbol in LTO mode.
3066 void CodeGenFunction::EmitCfiCheckStub() {
3067   llvm::Module *M = &CGM.getModule();
3068   auto &Ctx = M->getContext();
3069   llvm::Function *F = llvm::Function::Create(
3070       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3071       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3072   CGM.setDSOLocal(F);
3073   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3074   // FIXME: consider emitting an intrinsic call like
3075   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3076   // which can be lowered in CrossDSOCFI pass to the actual contents of
3077   // __cfi_check. This would allow inlining of __cfi_check calls.
3078   llvm::CallInst::Create(
3079       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3080   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3081 }
3082 
3083 // This function is basically a switch over the CFI failure kind, which is
3084 // extracted from CFICheckFailData (1st function argument). Each case is either
3085 // llvm.trap or a call to one of the two runtime handlers, based on
3086 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3087 // failure kind) traps, but this should really never happen.  CFICheckFailData
3088 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3089 // check kind; in this case __cfi_check_fail traps as well.
3090 void CodeGenFunction::EmitCfiCheckFail() {
3091   SanitizerScope SanScope(this);
3092   FunctionArgList Args;
3093   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3094                             ImplicitParamDecl::Other);
3095   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3096                             ImplicitParamDecl::Other);
3097   Args.push_back(&ArgData);
3098   Args.push_back(&ArgAddr);
3099 
3100   const CGFunctionInfo &FI =
3101     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3102 
3103   llvm::Function *F = llvm::Function::Create(
3104       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3105       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3106   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3107 
3108   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3109                 SourceLocation());
3110 
3111   // This function should not be affected by blacklist. This function does
3112   // not have a source location, but "src:*" would still apply. Revert any
3113   // changes to SanOpts made in StartFunction.
3114   SanOpts = CGM.getLangOpts().Sanitize;
3115 
3116   llvm::Value *Data =
3117       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3118                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3119   llvm::Value *Addr =
3120       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3121                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3122 
3123   // Data == nullptr means the calling module has trap behaviour for this check.
3124   llvm::Value *DataIsNotNullPtr =
3125       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3126   EmitTrapCheck(DataIsNotNullPtr);
3127 
3128   llvm::StructType *SourceLocationTy =
3129       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3130   llvm::StructType *CfiCheckFailDataTy =
3131       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3132 
3133   llvm::Value *V = Builder.CreateConstGEP2_32(
3134       CfiCheckFailDataTy,
3135       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3136       0);
3137   Address CheckKindAddr(V, getIntAlign());
3138   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3139 
3140   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3141       CGM.getLLVMContext(),
3142       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3143   llvm::Value *ValidVtable = Builder.CreateZExt(
3144       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3145                          {Addr, AllVtables}),
3146       IntPtrTy);
3147 
3148   const std::pair<int, SanitizerMask> CheckKinds[] = {
3149       {CFITCK_VCall, SanitizerKind::CFIVCall},
3150       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3151       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3152       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3153       {CFITCK_ICall, SanitizerKind::CFIICall}};
3154 
3155   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3156   for (auto CheckKindMaskPair : CheckKinds) {
3157     int Kind = CheckKindMaskPair.first;
3158     SanitizerMask Mask = CheckKindMaskPair.second;
3159     llvm::Value *Cond =
3160         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3161     if (CGM.getLangOpts().Sanitize.has(Mask))
3162       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3163                 {Data, Addr, ValidVtable});
3164     else
3165       EmitTrapCheck(Cond);
3166   }
3167 
3168   FinishFunction();
3169   // The only reference to this function will be created during LTO link.
3170   // Make sure it survives until then.
3171   CGM.addUsedGlobal(F);
3172 }
3173 
3174 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3175   if (SanOpts.has(SanitizerKind::Unreachable)) {
3176     SanitizerScope SanScope(this);
3177     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3178                              SanitizerKind::Unreachable),
3179               SanitizerHandler::BuiltinUnreachable,
3180               EmitCheckSourceLocation(Loc), None);
3181   }
3182   Builder.CreateUnreachable();
3183 }
3184 
3185 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3186   llvm::BasicBlock *Cont = createBasicBlock("cont");
3187 
3188   // If we're optimizing, collapse all calls to trap down to just one per
3189   // function to save on code size.
3190   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3191     TrapBB = createBasicBlock("trap");
3192     Builder.CreateCondBr(Checked, Cont, TrapBB);
3193     EmitBlock(TrapBB);
3194     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3195     TrapCall->setDoesNotReturn();
3196     TrapCall->setDoesNotThrow();
3197     Builder.CreateUnreachable();
3198   } else {
3199     Builder.CreateCondBr(Checked, Cont, TrapBB);
3200   }
3201 
3202   EmitBlock(Cont);
3203 }
3204 
3205 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3206   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3207 
3208   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3209     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3210                                   CGM.getCodeGenOpts().TrapFuncName);
3211     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3212   }
3213 
3214   return TrapCall;
3215 }
3216 
3217 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3218                                                  LValueBaseInfo *BaseInfo,
3219                                                  TBAAAccessInfo *TBAAInfo) {
3220   assert(E->getType()->isArrayType() &&
3221          "Array to pointer decay must have array source type!");
3222 
3223   // Expressions of array type can't be bitfields or vector elements.
3224   LValue LV = EmitLValue(E);
3225   Address Addr = LV.getAddress();
3226 
3227   // If the array type was an incomplete type, we need to make sure
3228   // the decay ends up being the right type.
3229   llvm::Type *NewTy = ConvertType(E->getType());
3230   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3231 
3232   // Note that VLA pointers are always decayed, so we don't need to do
3233   // anything here.
3234   if (!E->getType()->isVariableArrayType()) {
3235     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3236            "Expected pointer to array");
3237     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3238   }
3239 
3240   // The result of this decay conversion points to an array element within the
3241   // base lvalue. However, since TBAA currently does not support representing
3242   // accesses to elements of member arrays, we conservatively represent accesses
3243   // to the pointee object as if it had no any base lvalue specified.
3244   // TODO: Support TBAA for member arrays.
3245   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3246   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3247   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3248 
3249   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3250 }
3251 
3252 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3253 /// array to pointer, return the array subexpression.
3254 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3255   // If this isn't just an array->pointer decay, bail out.
3256   const auto *CE = dyn_cast<CastExpr>(E);
3257   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3258     return nullptr;
3259 
3260   // If this is a decay from variable width array, bail out.
3261   const Expr *SubExpr = CE->getSubExpr();
3262   if (SubExpr->getType()->isVariableArrayType())
3263     return nullptr;
3264 
3265   return SubExpr;
3266 }
3267 
3268 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3269                                           llvm::Value *ptr,
3270                                           ArrayRef<llvm::Value*> indices,
3271                                           bool inbounds,
3272                                           bool signedIndices,
3273                                           SourceLocation loc,
3274                                     const llvm::Twine &name = "arrayidx") {
3275   if (inbounds) {
3276     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3277                                       CodeGenFunction::NotSubtraction, loc,
3278                                       name);
3279   } else {
3280     return CGF.Builder.CreateGEP(ptr, indices, name);
3281   }
3282 }
3283 
3284 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3285                                       llvm::Value *idx,
3286                                       CharUnits eltSize) {
3287   // If we have a constant index, we can use the exact offset of the
3288   // element we're accessing.
3289   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3290     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3291     return arrayAlign.alignmentAtOffset(offset);
3292 
3293   // Otherwise, use the worst-case alignment for any element.
3294   } else {
3295     return arrayAlign.alignmentOfArrayElement(eltSize);
3296   }
3297 }
3298 
3299 static QualType getFixedSizeElementType(const ASTContext &ctx,
3300                                         const VariableArrayType *vla) {
3301   QualType eltType;
3302   do {
3303     eltType = vla->getElementType();
3304   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3305   return eltType;
3306 }
3307 
3308 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3309                                      ArrayRef<llvm::Value *> indices,
3310                                      QualType eltType, bool inbounds,
3311                                      bool signedIndices, SourceLocation loc,
3312                                      const llvm::Twine &name = "arrayidx") {
3313   // All the indices except that last must be zero.
3314 #ifndef NDEBUG
3315   for (auto idx : indices.drop_back())
3316     assert(isa<llvm::ConstantInt>(idx) &&
3317            cast<llvm::ConstantInt>(idx)->isZero());
3318 #endif
3319 
3320   // Determine the element size of the statically-sized base.  This is
3321   // the thing that the indices are expressed in terms of.
3322   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3323     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3324   }
3325 
3326   // We can use that to compute the best alignment of the element.
3327   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3328   CharUnits eltAlign =
3329     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3330 
3331   llvm::Value *eltPtr = emitArraySubscriptGEP(
3332       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3333   return Address(eltPtr, eltAlign);
3334 }
3335 
3336 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3337                                                bool Accessed) {
3338   // The index must always be an integer, which is not an aggregate.  Emit it
3339   // in lexical order (this complexity is, sadly, required by C++17).
3340   llvm::Value *IdxPre =
3341       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3342   bool SignedIndices = false;
3343   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3344     auto *Idx = IdxPre;
3345     if (E->getLHS() != E->getIdx()) {
3346       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3347       Idx = EmitScalarExpr(E->getIdx());
3348     }
3349 
3350     QualType IdxTy = E->getIdx()->getType();
3351     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3352     SignedIndices |= IdxSigned;
3353 
3354     if (SanOpts.has(SanitizerKind::ArrayBounds))
3355       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3356 
3357     // Extend or truncate the index type to 32 or 64-bits.
3358     if (Promote && Idx->getType() != IntPtrTy)
3359       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3360 
3361     return Idx;
3362   };
3363   IdxPre = nullptr;
3364 
3365   // If the base is a vector type, then we are forming a vector element lvalue
3366   // with this subscript.
3367   if (E->getBase()->getType()->isVectorType() &&
3368       !isa<ExtVectorElementExpr>(E->getBase())) {
3369     // Emit the vector as an lvalue to get its address.
3370     LValue LHS = EmitLValue(E->getBase());
3371     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3372     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3373     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3374                                  LHS.getBaseInfo(), TBAAAccessInfo());
3375   }
3376 
3377   // All the other cases basically behave like simple offsetting.
3378 
3379   // Handle the extvector case we ignored above.
3380   if (isa<ExtVectorElementExpr>(E->getBase())) {
3381     LValue LV = EmitLValue(E->getBase());
3382     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3383     Address Addr = EmitExtVectorElementLValue(LV);
3384 
3385     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3386     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3387                                  SignedIndices, E->getExprLoc());
3388     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3389                           CGM.getTBAAInfoForSubobject(LV, EltType));
3390   }
3391 
3392   LValueBaseInfo EltBaseInfo;
3393   TBAAAccessInfo EltTBAAInfo;
3394   Address Addr = Address::invalid();
3395   if (const VariableArrayType *vla =
3396            getContext().getAsVariableArrayType(E->getType())) {
3397     // The base must be a pointer, which is not an aggregate.  Emit
3398     // it.  It needs to be emitted first in case it's what captures
3399     // the VLA bounds.
3400     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3401     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3402 
3403     // The element count here is the total number of non-VLA elements.
3404     llvm::Value *numElements = getVLASize(vla).NumElts;
3405 
3406     // Effectively, the multiply by the VLA size is part of the GEP.
3407     // GEP indexes are signed, and scaling an index isn't permitted to
3408     // signed-overflow, so we use the same semantics for our explicit
3409     // multiply.  We suppress this if overflow is not undefined behavior.
3410     if (getLangOpts().isSignedOverflowDefined()) {
3411       Idx = Builder.CreateMul(Idx, numElements);
3412     } else {
3413       Idx = Builder.CreateNSWMul(Idx, numElements);
3414     }
3415 
3416     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3417                                  !getLangOpts().isSignedOverflowDefined(),
3418                                  SignedIndices, E->getExprLoc());
3419 
3420   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3421     // Indexing over an interface, as in "NSString *P; P[4];"
3422 
3423     // Emit the base pointer.
3424     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3425     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3426 
3427     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3428     llvm::Value *InterfaceSizeVal =
3429         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3430 
3431     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3432 
3433     // We don't necessarily build correct LLVM struct types for ObjC
3434     // interfaces, so we can't rely on GEP to do this scaling
3435     // correctly, so we need to cast to i8*.  FIXME: is this actually
3436     // true?  A lot of other things in the fragile ABI would break...
3437     llvm::Type *OrigBaseTy = Addr.getType();
3438     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3439 
3440     // Do the GEP.
3441     CharUnits EltAlign =
3442       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3443     llvm::Value *EltPtr =
3444         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3445                               SignedIndices, E->getExprLoc());
3446     Addr = Address(EltPtr, EltAlign);
3447 
3448     // Cast back.
3449     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3450   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3451     // If this is A[i] where A is an array, the frontend will have decayed the
3452     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3453     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3454     // "gep x, i" here.  Emit one "gep A, 0, i".
3455     assert(Array->getType()->isArrayType() &&
3456            "Array to pointer decay must have array source type!");
3457     LValue ArrayLV;
3458     // For simple multidimensional array indexing, set the 'accessed' flag for
3459     // better bounds-checking of the base expression.
3460     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3461       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3462     else
3463       ArrayLV = EmitLValue(Array);
3464     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3465 
3466     // Propagate the alignment from the array itself to the result.
3467     Addr = emitArraySubscriptGEP(
3468         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3469         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3470         E->getExprLoc());
3471     EltBaseInfo = ArrayLV.getBaseInfo();
3472     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3473   } else {
3474     // The base must be a pointer; emit it with an estimate of its alignment.
3475     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3476     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3477     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3478                                  !getLangOpts().isSignedOverflowDefined(),
3479                                  SignedIndices, E->getExprLoc());
3480   }
3481 
3482   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3483 
3484   if (getLangOpts().ObjC1 &&
3485       getLangOpts().getGC() != LangOptions::NonGC) {
3486     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3487     setObjCGCLValueClass(getContext(), E, LV);
3488   }
3489   return LV;
3490 }
3491 
3492 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3493                                        LValueBaseInfo &BaseInfo,
3494                                        TBAAAccessInfo &TBAAInfo,
3495                                        QualType BaseTy, QualType ElTy,
3496                                        bool IsLowerBound) {
3497   LValue BaseLVal;
3498   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3499     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3500     if (BaseTy->isArrayType()) {
3501       Address Addr = BaseLVal.getAddress();
3502       BaseInfo = BaseLVal.getBaseInfo();
3503 
3504       // If the array type was an incomplete type, we need to make sure
3505       // the decay ends up being the right type.
3506       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3507       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3508 
3509       // Note that VLA pointers are always decayed, so we don't need to do
3510       // anything here.
3511       if (!BaseTy->isVariableArrayType()) {
3512         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3513                "Expected pointer to array");
3514         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3515                                            "arraydecay");
3516       }
3517 
3518       return CGF.Builder.CreateElementBitCast(Addr,
3519                                               CGF.ConvertTypeForMem(ElTy));
3520     }
3521     LValueBaseInfo TypeBaseInfo;
3522     TBAAAccessInfo TypeTBAAInfo;
3523     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3524                                                   &TypeTBAAInfo);
3525     BaseInfo.mergeForCast(TypeBaseInfo);
3526     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3527     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3528   }
3529   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3530 }
3531 
3532 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3533                                                 bool IsLowerBound) {
3534   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3535   QualType ResultExprTy;
3536   if (auto *AT = getContext().getAsArrayType(BaseTy))
3537     ResultExprTy = AT->getElementType();
3538   else
3539     ResultExprTy = BaseTy->getPointeeType();
3540   llvm::Value *Idx = nullptr;
3541   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3542     // Requesting lower bound or upper bound, but without provided length and
3543     // without ':' symbol for the default length -> length = 1.
3544     // Idx = LowerBound ?: 0;
3545     if (auto *LowerBound = E->getLowerBound()) {
3546       Idx = Builder.CreateIntCast(
3547           EmitScalarExpr(LowerBound), IntPtrTy,
3548           LowerBound->getType()->hasSignedIntegerRepresentation());
3549     } else
3550       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3551   } else {
3552     // Try to emit length or lower bound as constant. If this is possible, 1
3553     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3554     // IR (LB + Len) - 1.
3555     auto &C = CGM.getContext();
3556     auto *Length = E->getLength();
3557     llvm::APSInt ConstLength;
3558     if (Length) {
3559       // Idx = LowerBound + Length - 1;
3560       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3561         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3562         Length = nullptr;
3563       }
3564       auto *LowerBound = E->getLowerBound();
3565       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3566       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3567         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3568         LowerBound = nullptr;
3569       }
3570       if (!Length)
3571         --ConstLength;
3572       else if (!LowerBound)
3573         --ConstLowerBound;
3574 
3575       if (Length || LowerBound) {
3576         auto *LowerBoundVal =
3577             LowerBound
3578                 ? Builder.CreateIntCast(
3579                       EmitScalarExpr(LowerBound), IntPtrTy,
3580                       LowerBound->getType()->hasSignedIntegerRepresentation())
3581                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3582         auto *LengthVal =
3583             Length
3584                 ? Builder.CreateIntCast(
3585                       EmitScalarExpr(Length), IntPtrTy,
3586                       Length->getType()->hasSignedIntegerRepresentation())
3587                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3588         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3589                                 /*HasNUW=*/false,
3590                                 !getLangOpts().isSignedOverflowDefined());
3591         if (Length && LowerBound) {
3592           Idx = Builder.CreateSub(
3593               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3594               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3595         }
3596       } else
3597         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3598     } else {
3599       // Idx = ArraySize - 1;
3600       QualType ArrayTy = BaseTy->isPointerType()
3601                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3602                              : BaseTy;
3603       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3604         Length = VAT->getSizeExpr();
3605         if (Length->isIntegerConstantExpr(ConstLength, C))
3606           Length = nullptr;
3607       } else {
3608         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3609         ConstLength = CAT->getSize();
3610       }
3611       if (Length) {
3612         auto *LengthVal = Builder.CreateIntCast(
3613             EmitScalarExpr(Length), IntPtrTy,
3614             Length->getType()->hasSignedIntegerRepresentation());
3615         Idx = Builder.CreateSub(
3616             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3617             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3618       } else {
3619         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3620         --ConstLength;
3621         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3622       }
3623     }
3624   }
3625   assert(Idx);
3626 
3627   Address EltPtr = Address::invalid();
3628   LValueBaseInfo BaseInfo;
3629   TBAAAccessInfo TBAAInfo;
3630   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3631     // The base must be a pointer, which is not an aggregate.  Emit
3632     // it.  It needs to be emitted first in case it's what captures
3633     // the VLA bounds.
3634     Address Base =
3635         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3636                                 BaseTy, VLA->getElementType(), IsLowerBound);
3637     // The element count here is the total number of non-VLA elements.
3638     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3639 
3640     // Effectively, the multiply by the VLA size is part of the GEP.
3641     // GEP indexes are signed, and scaling an index isn't permitted to
3642     // signed-overflow, so we use the same semantics for our explicit
3643     // multiply.  We suppress this if overflow is not undefined behavior.
3644     if (getLangOpts().isSignedOverflowDefined())
3645       Idx = Builder.CreateMul(Idx, NumElements);
3646     else
3647       Idx = Builder.CreateNSWMul(Idx, NumElements);
3648     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3649                                    !getLangOpts().isSignedOverflowDefined(),
3650                                    /*SignedIndices=*/false, E->getExprLoc());
3651   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3652     // If this is A[i] where A is an array, the frontend will have decayed the
3653     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3654     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3655     // "gep x, i" here.  Emit one "gep A, 0, i".
3656     assert(Array->getType()->isArrayType() &&
3657            "Array to pointer decay must have array source type!");
3658     LValue ArrayLV;
3659     // For simple multidimensional array indexing, set the 'accessed' flag for
3660     // better bounds-checking of the base expression.
3661     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3662       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3663     else
3664       ArrayLV = EmitLValue(Array);
3665 
3666     // Propagate the alignment from the array itself to the result.
3667     EltPtr = emitArraySubscriptGEP(
3668         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3669         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3670         /*SignedIndices=*/false, E->getExprLoc());
3671     BaseInfo = ArrayLV.getBaseInfo();
3672     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3673   } else {
3674     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3675                                            TBAAInfo, BaseTy, ResultExprTy,
3676                                            IsLowerBound);
3677     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3678                                    !getLangOpts().isSignedOverflowDefined(),
3679                                    /*SignedIndices=*/false, E->getExprLoc());
3680   }
3681 
3682   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3683 }
3684 
3685 LValue CodeGenFunction::
3686 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3687   // Emit the base vector as an l-value.
3688   LValue Base;
3689 
3690   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3691   if (E->isArrow()) {
3692     // If it is a pointer to a vector, emit the address and form an lvalue with
3693     // it.
3694     LValueBaseInfo BaseInfo;
3695     TBAAAccessInfo TBAAInfo;
3696     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3697     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3698     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3699     Base.getQuals().removeObjCGCAttr();
3700   } else if (E->getBase()->isGLValue()) {
3701     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3702     // emit the base as an lvalue.
3703     assert(E->getBase()->getType()->isVectorType());
3704     Base = EmitLValue(E->getBase());
3705   } else {
3706     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3707     assert(E->getBase()->getType()->isVectorType() &&
3708            "Result must be a vector");
3709     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3710 
3711     // Store the vector to memory (because LValue wants an address).
3712     Address VecMem = CreateMemTemp(E->getBase()->getType());
3713     Builder.CreateStore(Vec, VecMem);
3714     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3715                           AlignmentSource::Decl);
3716   }
3717 
3718   QualType type =
3719     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3720 
3721   // Encode the element access list into a vector of unsigned indices.
3722   SmallVector<uint32_t, 4> Indices;
3723   E->getEncodedElementAccess(Indices);
3724 
3725   if (Base.isSimple()) {
3726     llvm::Constant *CV =
3727         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3728     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3729                                     Base.getBaseInfo(), TBAAAccessInfo());
3730   }
3731   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3732 
3733   llvm::Constant *BaseElts = Base.getExtVectorElts();
3734   SmallVector<llvm::Constant *, 4> CElts;
3735 
3736   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3737     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3738   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3739   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3740                                   Base.getBaseInfo(), TBAAAccessInfo());
3741 }
3742 
3743 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3744   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3745     EmitIgnoredExpr(E->getBase());
3746     return EmitDeclRefLValue(DRE);
3747   }
3748 
3749   Expr *BaseExpr = E->getBase();
3750   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3751   LValue BaseLV;
3752   if (E->isArrow()) {
3753     LValueBaseInfo BaseInfo;
3754     TBAAAccessInfo TBAAInfo;
3755     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3756     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3757     SanitizerSet SkippedChecks;
3758     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3759     if (IsBaseCXXThis)
3760       SkippedChecks.set(SanitizerKind::Alignment, true);
3761     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3762       SkippedChecks.set(SanitizerKind::Null, true);
3763     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3764                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3765     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3766   } else
3767     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3768 
3769   NamedDecl *ND = E->getMemberDecl();
3770   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3771     LValue LV = EmitLValueForField(BaseLV, Field);
3772     setObjCGCLValueClass(getContext(), E, LV);
3773     return LV;
3774   }
3775 
3776   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3777     return EmitFunctionDeclLValue(*this, E, FD);
3778 
3779   llvm_unreachable("Unhandled member declaration!");
3780 }
3781 
3782 /// Given that we are currently emitting a lambda, emit an l-value for
3783 /// one of its members.
3784 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3785   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3786   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3787   QualType LambdaTagType =
3788     getContext().getTagDeclType(Field->getParent());
3789   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3790   return EmitLValueForField(LambdaLV, Field);
3791 }
3792 
3793 /// Drill down to the storage of a field without walking into
3794 /// reference types.
3795 ///
3796 /// The resulting address doesn't necessarily have the right type.
3797 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3798                                       const FieldDecl *field) {
3799   const RecordDecl *rec = field->getParent();
3800 
3801   unsigned idx =
3802     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3803 
3804   CharUnits offset;
3805   // Adjust the alignment down to the given offset.
3806   // As a special case, if the LLVM field index is 0, we know that this
3807   // is zero.
3808   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3809                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3810          "LLVM field at index zero had non-zero offset?");
3811   if (idx != 0) {
3812     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3813     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3814     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3815   }
3816 
3817   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3818 }
3819 
3820 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3821   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3822   if (!RD)
3823     return false;
3824 
3825   if (RD->isDynamicClass())
3826     return true;
3827 
3828   for (const auto &Base : RD->bases())
3829     if (hasAnyVptr(Base.getType(), Context))
3830       return true;
3831 
3832   for (const FieldDecl *Field : RD->fields())
3833     if (hasAnyVptr(Field->getType(), Context))
3834       return true;
3835 
3836   return false;
3837 }
3838 
3839 LValue CodeGenFunction::EmitLValueForField(LValue base,
3840                                            const FieldDecl *field) {
3841   LValueBaseInfo BaseInfo = base.getBaseInfo();
3842 
3843   if (field->isBitField()) {
3844     const CGRecordLayout &RL =
3845       CGM.getTypes().getCGRecordLayout(field->getParent());
3846     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3847     Address Addr = base.getAddress();
3848     unsigned Idx = RL.getLLVMFieldNo(field);
3849     if (Idx != 0)
3850       // For structs, we GEP to the field that the record layout suggests.
3851       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3852                                      field->getName());
3853     // Get the access type.
3854     llvm::Type *FieldIntTy =
3855       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3856     if (Addr.getElementType() != FieldIntTy)
3857       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3858 
3859     QualType fieldType =
3860       field->getType().withCVRQualifiers(base.getVRQualifiers());
3861     // TODO: Support TBAA for bit fields.
3862     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
3863     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3864                                 TBAAAccessInfo());
3865   }
3866 
3867   // Fields of may-alias structures are may-alias themselves.
3868   // FIXME: this should get propagated down through anonymous structs
3869   // and unions.
3870   QualType FieldType = field->getType();
3871   const RecordDecl *rec = field->getParent();
3872   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3873   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
3874   TBAAAccessInfo FieldTBAAInfo;
3875   if (base.getTBAAInfo().isMayAlias() ||
3876           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
3877     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3878   } else if (rec->isUnion()) {
3879     // TODO: Support TBAA for unions.
3880     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3881   } else {
3882     // If no base type been assigned for the base access, then try to generate
3883     // one for this base lvalue.
3884     FieldTBAAInfo = base.getTBAAInfo();
3885     if (!FieldTBAAInfo.BaseType) {
3886         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3887         assert(!FieldTBAAInfo.Offset &&
3888                "Nonzero offset for an access with no base type!");
3889     }
3890 
3891     // Adjust offset to be relative to the base type.
3892     const ASTRecordLayout &Layout =
3893         getContext().getASTRecordLayout(field->getParent());
3894     unsigned CharWidth = getContext().getCharWidth();
3895     if (FieldTBAAInfo.BaseType)
3896       FieldTBAAInfo.Offset +=
3897           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3898 
3899     // Update the final access type and size.
3900     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3901     FieldTBAAInfo.Size =
3902         getContext().getTypeSizeInChars(FieldType).getQuantity();
3903   }
3904 
3905   Address addr = base.getAddress();
3906   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
3907     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3908         ClassDef->isDynamicClass()) {
3909       // Getting to any field of dynamic object requires stripping dynamic
3910       // information provided by invariant.group.  This is because accessing
3911       // fields may leak the real address of dynamic object, which could result
3912       // in miscompilation when leaked pointer would be compared.
3913       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
3914       addr = Address(stripped, addr.getAlignment());
3915     }
3916   }
3917 
3918   unsigned RecordCVR = base.getVRQualifiers();
3919   if (rec->isUnion()) {
3920     // For unions, there is no pointer adjustment.
3921     assert(!FieldType->isReferenceType() && "union has reference member");
3922     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3923         hasAnyVptr(FieldType, getContext()))
3924       // Because unions can easily skip invariant.barriers, we need to add
3925       // a barrier every time CXXRecord field with vptr is referenced.
3926       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
3927                      addr.getAlignment());
3928   } else {
3929     // For structs, we GEP to the field that the record layout suggests.
3930     addr = emitAddrOfFieldStorage(*this, addr, field);
3931 
3932     // If this is a reference field, load the reference right now.
3933     if (FieldType->isReferenceType()) {
3934       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
3935                                       FieldTBAAInfo);
3936       if (RecordCVR & Qualifiers::Volatile)
3937         RefLVal.getQuals().setVolatile(true);
3938       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
3939 
3940       // Qualifiers on the struct don't apply to the referencee.
3941       RecordCVR = 0;
3942       FieldType = FieldType->getPointeeType();
3943     }
3944   }
3945 
3946   // Make sure that the address is pointing to the right type.  This is critical
3947   // for both unions and structs.  A union needs a bitcast, a struct element
3948   // will need a bitcast if the LLVM type laid out doesn't match the desired
3949   // type.
3950   addr = Builder.CreateElementBitCast(
3951       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
3952 
3953   if (field->hasAttr<AnnotateAttr>())
3954     addr = EmitFieldAnnotations(field, addr);
3955 
3956   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
3957   LV.getQuals().addCVRQualifiers(RecordCVR);
3958 
3959   // __weak attribute on a field is ignored.
3960   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3961     LV.getQuals().removeObjCGCAttr();
3962 
3963   return LV;
3964 }
3965 
3966 LValue
3967 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3968                                                   const FieldDecl *Field) {
3969   QualType FieldType = Field->getType();
3970 
3971   if (!FieldType->isReferenceType())
3972     return EmitLValueForField(Base, Field);
3973 
3974   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3975 
3976   // Make sure that the address is pointing to the right type.
3977   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3978   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3979 
3980   // TODO: Generate TBAA information that describes this access as a structure
3981   // member access and not just an access to an object of the field's type. This
3982   // should be similar to what we do in EmitLValueForField().
3983   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3984   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
3985   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
3986   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
3987                         CGM.getTBAAInfoForSubobject(Base, FieldType));
3988 }
3989 
3990 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3991   if (E->isFileScope()) {
3992     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3993     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3994   }
3995   if (E->getType()->isVariablyModifiedType())
3996     // make sure to emit the VLA size.
3997     EmitVariablyModifiedType(E->getType());
3998 
3999   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4000   const Expr *InitExpr = E->getInitializer();
4001   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4002 
4003   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4004                    /*Init*/ true);
4005 
4006   return Result;
4007 }
4008 
4009 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4010   if (!E->isGLValue())
4011     // Initializing an aggregate temporary in C++11: T{...}.
4012     return EmitAggExprToLValue(E);
4013 
4014   // An lvalue initializer list must be initializing a reference.
4015   assert(E->isTransparent() && "non-transparent glvalue init list");
4016   return EmitLValue(E->getInit(0));
4017 }
4018 
4019 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4020 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4021 /// LValue is returned and the current block has been terminated.
4022 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4023                                                     const Expr *Operand) {
4024   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4025     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4026     return None;
4027   }
4028 
4029   return CGF.EmitLValue(Operand);
4030 }
4031 
4032 LValue CodeGenFunction::
4033 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4034   if (!expr->isGLValue()) {
4035     // ?: here should be an aggregate.
4036     assert(hasAggregateEvaluationKind(expr->getType()) &&
4037            "Unexpected conditional operator!");
4038     return EmitAggExprToLValue(expr);
4039   }
4040 
4041   OpaqueValueMapping binding(*this, expr);
4042 
4043   const Expr *condExpr = expr->getCond();
4044   bool CondExprBool;
4045   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4046     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4047     if (!CondExprBool) std::swap(live, dead);
4048 
4049     if (!ContainsLabel(dead)) {
4050       // If the true case is live, we need to track its region.
4051       if (CondExprBool)
4052         incrementProfileCounter(expr);
4053       return EmitLValue(live);
4054     }
4055   }
4056 
4057   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4058   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4059   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4060 
4061   ConditionalEvaluation eval(*this);
4062   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4063 
4064   // Any temporaries created here are conditional.
4065   EmitBlock(lhsBlock);
4066   incrementProfileCounter(expr);
4067   eval.begin(*this);
4068   Optional<LValue> lhs =
4069       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4070   eval.end(*this);
4071 
4072   if (lhs && !lhs->isSimple())
4073     return EmitUnsupportedLValue(expr, "conditional operator");
4074 
4075   lhsBlock = Builder.GetInsertBlock();
4076   if (lhs)
4077     Builder.CreateBr(contBlock);
4078 
4079   // Any temporaries created here are conditional.
4080   EmitBlock(rhsBlock);
4081   eval.begin(*this);
4082   Optional<LValue> rhs =
4083       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4084   eval.end(*this);
4085   if (rhs && !rhs->isSimple())
4086     return EmitUnsupportedLValue(expr, "conditional operator");
4087   rhsBlock = Builder.GetInsertBlock();
4088 
4089   EmitBlock(contBlock);
4090 
4091   if (lhs && rhs) {
4092     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4093                                            2, "cond-lvalue");
4094     phi->addIncoming(lhs->getPointer(), lhsBlock);
4095     phi->addIncoming(rhs->getPointer(), rhsBlock);
4096     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4097     AlignmentSource alignSource =
4098       std::max(lhs->getBaseInfo().getAlignmentSource(),
4099                rhs->getBaseInfo().getAlignmentSource());
4100     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4101         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4102     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4103                           TBAAInfo);
4104   } else {
4105     assert((lhs || rhs) &&
4106            "both operands of glvalue conditional are throw-expressions?");
4107     return lhs ? *lhs : *rhs;
4108   }
4109 }
4110 
4111 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4112 /// type. If the cast is to a reference, we can have the usual lvalue result,
4113 /// otherwise if a cast is needed by the code generator in an lvalue context,
4114 /// then it must mean that we need the address of an aggregate in order to
4115 /// access one of its members.  This can happen for all the reasons that casts
4116 /// are permitted with aggregate result, including noop aggregate casts, and
4117 /// cast from scalar to union.
4118 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4119   switch (E->getCastKind()) {
4120   case CK_ToVoid:
4121   case CK_BitCast:
4122   case CK_ArrayToPointerDecay:
4123   case CK_FunctionToPointerDecay:
4124   case CK_NullToMemberPointer:
4125   case CK_NullToPointer:
4126   case CK_IntegralToPointer:
4127   case CK_PointerToIntegral:
4128   case CK_PointerToBoolean:
4129   case CK_VectorSplat:
4130   case CK_IntegralCast:
4131   case CK_BooleanToSignedIntegral:
4132   case CK_IntegralToBoolean:
4133   case CK_IntegralToFloating:
4134   case CK_FloatingToIntegral:
4135   case CK_FloatingToBoolean:
4136   case CK_FloatingCast:
4137   case CK_FloatingRealToComplex:
4138   case CK_FloatingComplexToReal:
4139   case CK_FloatingComplexToBoolean:
4140   case CK_FloatingComplexCast:
4141   case CK_FloatingComplexToIntegralComplex:
4142   case CK_IntegralRealToComplex:
4143   case CK_IntegralComplexToReal:
4144   case CK_IntegralComplexToBoolean:
4145   case CK_IntegralComplexCast:
4146   case CK_IntegralComplexToFloatingComplex:
4147   case CK_DerivedToBaseMemberPointer:
4148   case CK_BaseToDerivedMemberPointer:
4149   case CK_MemberPointerToBoolean:
4150   case CK_ReinterpretMemberPointer:
4151   case CK_AnyPointerToBlockPointerCast:
4152   case CK_ARCProduceObject:
4153   case CK_ARCConsumeObject:
4154   case CK_ARCReclaimReturnedObject:
4155   case CK_ARCExtendBlockObject:
4156   case CK_CopyAndAutoreleaseBlockObject:
4157   case CK_AddressSpaceConversion:
4158   case CK_IntToOCLSampler:
4159     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4160 
4161   case CK_Dependent:
4162     llvm_unreachable("dependent cast kind in IR gen!");
4163 
4164   case CK_BuiltinFnToFnPtr:
4165     llvm_unreachable("builtin functions are handled elsewhere");
4166 
4167   // These are never l-values; just use the aggregate emission code.
4168   case CK_NonAtomicToAtomic:
4169   case CK_AtomicToNonAtomic:
4170     return EmitAggExprToLValue(E);
4171 
4172   case CK_Dynamic: {
4173     LValue LV = EmitLValue(E->getSubExpr());
4174     Address V = LV.getAddress();
4175     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4176     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4177   }
4178 
4179   case CK_ConstructorConversion:
4180   case CK_UserDefinedConversion:
4181   case CK_CPointerToObjCPointerCast:
4182   case CK_BlockPointerToObjCPointerCast:
4183   case CK_NoOp:
4184   case CK_LValueToRValue:
4185     return EmitLValue(E->getSubExpr());
4186 
4187   case CK_UncheckedDerivedToBase:
4188   case CK_DerivedToBase: {
4189     const RecordType *DerivedClassTy =
4190       E->getSubExpr()->getType()->getAs<RecordType>();
4191     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4192 
4193     LValue LV = EmitLValue(E->getSubExpr());
4194     Address This = LV.getAddress();
4195 
4196     // Perform the derived-to-base conversion
4197     Address Base = GetAddressOfBaseClass(
4198         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4199         /*NullCheckValue=*/false, E->getExprLoc());
4200 
4201     // TODO: Support accesses to members of base classes in TBAA. For now, we
4202     // conservatively pretend that the complete object is of the base class
4203     // type.
4204     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4205                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4206   }
4207   case CK_ToUnion:
4208     return EmitAggExprToLValue(E);
4209   case CK_BaseToDerived: {
4210     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4211     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4212 
4213     LValue LV = EmitLValue(E->getSubExpr());
4214 
4215     // Perform the base-to-derived conversion
4216     Address Derived =
4217       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4218                                E->path_begin(), E->path_end(),
4219                                /*NullCheckValue=*/false);
4220 
4221     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4222     // performed and the object is not of the derived type.
4223     if (sanitizePerformTypeCheck())
4224       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4225                     Derived.getPointer(), E->getType());
4226 
4227     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4228       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4229                                 /*MayBeNull=*/false,
4230                                 CFITCK_DerivedCast, E->getLocStart());
4231 
4232     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4233                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4234   }
4235   case CK_LValueBitCast: {
4236     // This must be a reinterpret_cast (or c-style equivalent).
4237     const auto *CE = cast<ExplicitCastExpr>(E);
4238 
4239     CGM.EmitExplicitCastExprType(CE, this);
4240     LValue LV = EmitLValue(E->getSubExpr());
4241     Address V = Builder.CreateBitCast(LV.getAddress(),
4242                                       ConvertType(CE->getTypeAsWritten()));
4243 
4244     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4245       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4246                                 /*MayBeNull=*/false,
4247                                 CFITCK_UnrelatedCast, E->getLocStart());
4248 
4249     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4250                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4251   }
4252   case CK_ObjCObjectLValueCast: {
4253     LValue LV = EmitLValue(E->getSubExpr());
4254     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4255                                              ConvertType(E->getType()));
4256     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4257                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4258   }
4259   case CK_ZeroToOCLQueue:
4260     llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid");
4261   case CK_ZeroToOCLEvent:
4262     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
4263   }
4264 
4265   llvm_unreachable("Unhandled lvalue cast kind?");
4266 }
4267 
4268 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4269   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4270   return getOrCreateOpaqueLValueMapping(e);
4271 }
4272 
4273 LValue
4274 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4275   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4276 
4277   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4278       it = OpaqueLValues.find(e);
4279 
4280   if (it != OpaqueLValues.end())
4281     return it->second;
4282 
4283   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4284   return EmitLValue(e->getSourceExpr());
4285 }
4286 
4287 RValue
4288 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4289   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4290 
4291   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4292       it = OpaqueRValues.find(e);
4293 
4294   if (it != OpaqueRValues.end())
4295     return it->second;
4296 
4297   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4298   return EmitAnyExpr(e->getSourceExpr());
4299 }
4300 
4301 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4302                                            const FieldDecl *FD,
4303                                            SourceLocation Loc) {
4304   QualType FT = FD->getType();
4305   LValue FieldLV = EmitLValueForField(LV, FD);
4306   switch (getEvaluationKind(FT)) {
4307   case TEK_Complex:
4308     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4309   case TEK_Aggregate:
4310     return FieldLV.asAggregateRValue();
4311   case TEK_Scalar:
4312     // This routine is used to load fields one-by-one to perform a copy, so
4313     // don't load reference fields.
4314     if (FD->getType()->isReferenceType())
4315       return RValue::get(FieldLV.getPointer());
4316     return EmitLoadOfLValue(FieldLV, Loc);
4317   }
4318   llvm_unreachable("bad evaluation kind");
4319 }
4320 
4321 //===--------------------------------------------------------------------===//
4322 //                             Expression Emission
4323 //===--------------------------------------------------------------------===//
4324 
4325 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4326                                      ReturnValueSlot ReturnValue) {
4327   // Builtins never have block type.
4328   if (E->getCallee()->getType()->isBlockPointerType())
4329     return EmitBlockCallExpr(E, ReturnValue);
4330 
4331   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4332     return EmitCXXMemberCallExpr(CE, ReturnValue);
4333 
4334   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4335     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4336 
4337   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4338     if (const CXXMethodDecl *MD =
4339           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4340       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4341 
4342   CGCallee callee = EmitCallee(E->getCallee());
4343 
4344   if (callee.isBuiltin()) {
4345     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4346                            E, ReturnValue);
4347   }
4348 
4349   if (callee.isPseudoDestructor()) {
4350     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4351   }
4352 
4353   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4354 }
4355 
4356 /// Emit a CallExpr without considering whether it might be a subclass.
4357 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4358                                            ReturnValueSlot ReturnValue) {
4359   CGCallee Callee = EmitCallee(E->getCallee());
4360   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4361 }
4362 
4363 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4364   if (auto builtinID = FD->getBuiltinID()) {
4365     return CGCallee::forBuiltin(builtinID, FD);
4366   }
4367 
4368   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4369   return CGCallee::forDirect(calleePtr, FD);
4370 }
4371 
4372 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4373   E = E->IgnoreParens();
4374 
4375   // Look through function-to-pointer decay.
4376   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4377     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4378         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4379       return EmitCallee(ICE->getSubExpr());
4380     }
4381 
4382   // Resolve direct calls.
4383   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4384     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4385       return EmitDirectCallee(*this, FD);
4386     }
4387   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4388     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4389       EmitIgnoredExpr(ME->getBase());
4390       return EmitDirectCallee(*this, FD);
4391     }
4392 
4393   // Look through template substitutions.
4394   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4395     return EmitCallee(NTTP->getReplacement());
4396 
4397   // Treat pseudo-destructor calls differently.
4398   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4399     return CGCallee::forPseudoDestructor(PDE);
4400   }
4401 
4402   // Otherwise, we have an indirect reference.
4403   llvm::Value *calleePtr;
4404   QualType functionType;
4405   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4406     calleePtr = EmitScalarExpr(E);
4407     functionType = ptrType->getPointeeType();
4408   } else {
4409     functionType = E->getType();
4410     calleePtr = EmitLValue(E).getPointer();
4411   }
4412   assert(functionType->isFunctionType());
4413   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
4414                           E->getReferencedDeclOfCallee());
4415   CGCallee callee(calleeInfo, calleePtr);
4416   return callee;
4417 }
4418 
4419 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4420   // Comma expressions just emit their LHS then their RHS as an l-value.
4421   if (E->getOpcode() == BO_Comma) {
4422     EmitIgnoredExpr(E->getLHS());
4423     EnsureInsertPoint();
4424     return EmitLValue(E->getRHS());
4425   }
4426 
4427   if (E->getOpcode() == BO_PtrMemD ||
4428       E->getOpcode() == BO_PtrMemI)
4429     return EmitPointerToDataMemberBinaryExpr(E);
4430 
4431   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4432 
4433   // Note that in all of these cases, __block variables need the RHS
4434   // evaluated first just in case the variable gets moved by the RHS.
4435 
4436   switch (getEvaluationKind(E->getType())) {
4437   case TEK_Scalar: {
4438     switch (E->getLHS()->getType().getObjCLifetime()) {
4439     case Qualifiers::OCL_Strong:
4440       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4441 
4442     case Qualifiers::OCL_Autoreleasing:
4443       return EmitARCStoreAutoreleasing(E).first;
4444 
4445     // No reason to do any of these differently.
4446     case Qualifiers::OCL_None:
4447     case Qualifiers::OCL_ExplicitNone:
4448     case Qualifiers::OCL_Weak:
4449       break;
4450     }
4451 
4452     RValue RV = EmitAnyExpr(E->getRHS());
4453     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4454     if (RV.isScalar())
4455       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4456     EmitStoreThroughLValue(RV, LV);
4457     return LV;
4458   }
4459 
4460   case TEK_Complex:
4461     return EmitComplexAssignmentLValue(E);
4462 
4463   case TEK_Aggregate:
4464     return EmitAggExprToLValue(E);
4465   }
4466   llvm_unreachable("bad evaluation kind");
4467 }
4468 
4469 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4470   RValue RV = EmitCallExpr(E);
4471 
4472   if (!RV.isScalar())
4473     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4474                           AlignmentSource::Decl);
4475 
4476   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4477          "Can't have a scalar return unless the return type is a "
4478          "reference type!");
4479 
4480   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4481 }
4482 
4483 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4484   // FIXME: This shouldn't require another copy.
4485   return EmitAggExprToLValue(E);
4486 }
4487 
4488 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4489   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4490          && "binding l-value to type which needs a temporary");
4491   AggValueSlot Slot = CreateAggTemp(E->getType());
4492   EmitCXXConstructExpr(E, Slot);
4493   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4494 }
4495 
4496 LValue
4497 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4498   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4499 }
4500 
4501 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4502   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4503                                       ConvertType(E->getType()));
4504 }
4505 
4506 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4507   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4508                         AlignmentSource::Decl);
4509 }
4510 
4511 LValue
4512 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4513   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4514   Slot.setExternallyDestructed();
4515   EmitAggExpr(E->getSubExpr(), Slot);
4516   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4517   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4518 }
4519 
4520 LValue
4521 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
4522   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4523   EmitLambdaExpr(E, Slot);
4524   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4525 }
4526 
4527 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4528   RValue RV = EmitObjCMessageExpr(E);
4529 
4530   if (!RV.isScalar())
4531     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4532                           AlignmentSource::Decl);
4533 
4534   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4535          "Can't have a scalar return unless the return type is a "
4536          "reference type!");
4537 
4538   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4539 }
4540 
4541 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4542   Address V =
4543     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4544   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4545 }
4546 
4547 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4548                                              const ObjCIvarDecl *Ivar) {
4549   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4550 }
4551 
4552 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4553                                           llvm::Value *BaseValue,
4554                                           const ObjCIvarDecl *Ivar,
4555                                           unsigned CVRQualifiers) {
4556   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4557                                                    Ivar, CVRQualifiers);
4558 }
4559 
4560 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4561   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4562   llvm::Value *BaseValue = nullptr;
4563   const Expr *BaseExpr = E->getBase();
4564   Qualifiers BaseQuals;
4565   QualType ObjectTy;
4566   if (E->isArrow()) {
4567     BaseValue = EmitScalarExpr(BaseExpr);
4568     ObjectTy = BaseExpr->getType()->getPointeeType();
4569     BaseQuals = ObjectTy.getQualifiers();
4570   } else {
4571     LValue BaseLV = EmitLValue(BaseExpr);
4572     BaseValue = BaseLV.getPointer();
4573     ObjectTy = BaseExpr->getType();
4574     BaseQuals = ObjectTy.getQualifiers();
4575   }
4576 
4577   LValue LV =
4578     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4579                       BaseQuals.getCVRQualifiers());
4580   setObjCGCLValueClass(getContext(), E, LV);
4581   return LV;
4582 }
4583 
4584 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4585   // Can only get l-value for message expression returning aggregate type
4586   RValue RV = EmitAnyExprToTemp(E);
4587   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4588                         AlignmentSource::Decl);
4589 }
4590 
4591 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4592                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4593                                  llvm::Value *Chain) {
4594   // Get the actual function type. The callee type will always be a pointer to
4595   // function type or a block pointer type.
4596   assert(CalleeType->isFunctionPointerType() &&
4597          "Call must have function pointer type!");
4598 
4599   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4600 
4601   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4602     // We can only guarantee that a function is called from the correct
4603     // context/function based on the appropriate target attributes,
4604     // so only check in the case where we have both always_inline and target
4605     // since otherwise we could be making a conditional call after a check for
4606     // the proper cpu features (and it won't cause code generation issues due to
4607     // function based code generation).
4608     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4609         TargetDecl->hasAttr<TargetAttr>())
4610       checkTargetFeatures(E, FD);
4611 
4612   CalleeType = getContext().getCanonicalType(CalleeType);
4613 
4614   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4615 
4616   CGCallee Callee = OrigCallee;
4617 
4618   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4619       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4620     if (llvm::Constant *PrefixSig =
4621             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4622       SanitizerScope SanScope(this);
4623       // Remove any (C++17) exception specifications, to allow calling e.g. a
4624       // noexcept function through a non-noexcept pointer.
4625       auto ProtoTy =
4626         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4627       llvm::Constant *FTRTTIConst =
4628           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4629       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4630       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4631           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4632 
4633       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4634 
4635       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4636           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4637       llvm::Value *CalleeSigPtr =
4638           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4639       llvm::Value *CalleeSig =
4640           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4641       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4642 
4643       llvm::BasicBlock *Cont = createBasicBlock("cont");
4644       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4645       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4646 
4647       EmitBlock(TypeCheck);
4648       llvm::Value *CalleeRTTIPtr =
4649           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4650       llvm::Value *CalleeRTTIEncoded =
4651           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4652       llvm::Value *CalleeRTTI =
4653           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4654       llvm::Value *CalleeRTTIMatch =
4655           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4656       llvm::Constant *StaticData[] = {
4657         EmitCheckSourceLocation(E->getLocStart()),
4658         EmitCheckTypeDescriptor(CalleeType)
4659       };
4660       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4661                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4662 
4663       Builder.CreateBr(Cont);
4664       EmitBlock(Cont);
4665     }
4666   }
4667 
4668   const auto *FnType = cast<FunctionType>(PointeeType);
4669 
4670   // If we are checking indirect calls and this call is indirect, check that the
4671   // function pointer is a member of the bit set for the function type.
4672   if (SanOpts.has(SanitizerKind::CFIICall) &&
4673       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4674     SanitizerScope SanScope(this);
4675     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4676 
4677     llvm::Metadata *MD;
4678     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4679       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4680     else
4681       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4682 
4683     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4684 
4685     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4686     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4687     llvm::Value *TypeTest = Builder.CreateCall(
4688         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4689 
4690     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4691     llvm::Constant *StaticData[] = {
4692         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4693         EmitCheckSourceLocation(E->getLocStart()),
4694         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4695     };
4696     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4697       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4698                            CastedCallee, StaticData);
4699     } else {
4700       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4701                 SanitizerHandler::CFICheckFail, StaticData,
4702                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4703     }
4704   }
4705 
4706   CallArgList Args;
4707   if (Chain)
4708     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4709              CGM.getContext().VoidPtrTy);
4710 
4711   // C++17 requires that we evaluate arguments to a call using assignment syntax
4712   // right-to-left, and that we evaluate arguments to certain other operators
4713   // left-to-right. Note that we allow this to override the order dictated by
4714   // the calling convention on the MS ABI, which means that parameter
4715   // destruction order is not necessarily reverse construction order.
4716   // FIXME: Revisit this based on C++ committee response to unimplementability.
4717   EvaluationOrder Order = EvaluationOrder::Default;
4718   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4719     if (OCE->isAssignmentOp())
4720       Order = EvaluationOrder::ForceRightToLeft;
4721     else {
4722       switch (OCE->getOperator()) {
4723       case OO_LessLess:
4724       case OO_GreaterGreater:
4725       case OO_AmpAmp:
4726       case OO_PipePipe:
4727       case OO_Comma:
4728       case OO_ArrowStar:
4729         Order = EvaluationOrder::ForceLeftToRight;
4730         break;
4731       default:
4732         break;
4733       }
4734     }
4735   }
4736 
4737   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4738                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4739 
4740   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4741       Args, FnType, /*isChainCall=*/Chain);
4742 
4743   // C99 6.5.2.2p6:
4744   //   If the expression that denotes the called function has a type
4745   //   that does not include a prototype, [the default argument
4746   //   promotions are performed]. If the number of arguments does not
4747   //   equal the number of parameters, the behavior is undefined. If
4748   //   the function is defined with a type that includes a prototype,
4749   //   and either the prototype ends with an ellipsis (, ...) or the
4750   //   types of the arguments after promotion are not compatible with
4751   //   the types of the parameters, the behavior is undefined. If the
4752   //   function is defined with a type that does not include a
4753   //   prototype, and the types of the arguments after promotion are
4754   //   not compatible with those of the parameters after promotion,
4755   //   the behavior is undefined [except in some trivial cases].
4756   // That is, in the general case, we should assume that a call
4757   // through an unprototyped function type works like a *non-variadic*
4758   // call.  The way we make this work is to cast to the exact type
4759   // of the promoted arguments.
4760   //
4761   // Chain calls use this same code path to add the invisible chain parameter
4762   // to the function type.
4763   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4764     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4765     CalleeTy = CalleeTy->getPointerTo();
4766 
4767     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4768     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4769     Callee.setFunctionPointer(CalleePtr);
4770   }
4771 
4772   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc());
4773 }
4774 
4775 LValue CodeGenFunction::
4776 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4777   Address BaseAddr = Address::invalid();
4778   if (E->getOpcode() == BO_PtrMemI) {
4779     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4780   } else {
4781     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4782   }
4783 
4784   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4785 
4786   const MemberPointerType *MPT
4787     = E->getRHS()->getType()->getAs<MemberPointerType>();
4788 
4789   LValueBaseInfo BaseInfo;
4790   TBAAAccessInfo TBAAInfo;
4791   Address MemberAddr =
4792     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4793                                     &TBAAInfo);
4794 
4795   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4796 }
4797 
4798 /// Given the address of a temporary variable, produce an r-value of
4799 /// its type.
4800 RValue CodeGenFunction::convertTempToRValue(Address addr,
4801                                             QualType type,
4802                                             SourceLocation loc) {
4803   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4804   switch (getEvaluationKind(type)) {
4805   case TEK_Complex:
4806     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4807   case TEK_Aggregate:
4808     return lvalue.asAggregateRValue();
4809   case TEK_Scalar:
4810     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4811   }
4812   llvm_unreachable("bad evaluation kind");
4813 }
4814 
4815 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4816   assert(Val->getType()->isFPOrFPVectorTy());
4817   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4818     return;
4819 
4820   llvm::MDBuilder MDHelper(getLLVMContext());
4821   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4822 
4823   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4824 }
4825 
4826 namespace {
4827   struct LValueOrRValue {
4828     LValue LV;
4829     RValue RV;
4830   };
4831 }
4832 
4833 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4834                                            const PseudoObjectExpr *E,
4835                                            bool forLValue,
4836                                            AggValueSlot slot) {
4837   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4838 
4839   // Find the result expression, if any.
4840   const Expr *resultExpr = E->getResultExpr();
4841   LValueOrRValue result;
4842 
4843   for (PseudoObjectExpr::const_semantics_iterator
4844          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4845     const Expr *semantic = *i;
4846 
4847     // If this semantic expression is an opaque value, bind it
4848     // to the result of its source expression.
4849     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4850       // Skip unique OVEs.
4851       if (ov->isUnique()) {
4852         assert(ov != resultExpr &&
4853                "A unique OVE cannot be used as the result expression");
4854         continue;
4855       }
4856 
4857       // If this is the result expression, we may need to evaluate
4858       // directly into the slot.
4859       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4860       OVMA opaqueData;
4861       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4862           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4863         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4864         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4865                                        AlignmentSource::Decl);
4866         opaqueData = OVMA::bind(CGF, ov, LV);
4867         result.RV = slot.asRValue();
4868 
4869       // Otherwise, emit as normal.
4870       } else {
4871         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4872 
4873         // If this is the result, also evaluate the result now.
4874         if (ov == resultExpr) {
4875           if (forLValue)
4876             result.LV = CGF.EmitLValue(ov);
4877           else
4878             result.RV = CGF.EmitAnyExpr(ov, slot);
4879         }
4880       }
4881 
4882       opaques.push_back(opaqueData);
4883 
4884     // Otherwise, if the expression is the result, evaluate it
4885     // and remember the result.
4886     } else if (semantic == resultExpr) {
4887       if (forLValue)
4888         result.LV = CGF.EmitLValue(semantic);
4889       else
4890         result.RV = CGF.EmitAnyExpr(semantic, slot);
4891 
4892     // Otherwise, evaluate the expression in an ignored context.
4893     } else {
4894       CGF.EmitIgnoredExpr(semantic);
4895     }
4896   }
4897 
4898   // Unbind all the opaques now.
4899   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4900     opaques[i].unbind(CGF);
4901 
4902   return result;
4903 }
4904 
4905 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4906                                                AggValueSlot slot) {
4907   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4908 }
4909 
4910 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4911   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4912 }
4913