1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/ADT/Hashing.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/Support/ConvertUTF.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Transforms/Utils/SanitizerStats.h" 39 40 #include <string> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 //===--------------------------------------------------------------------===// 46 // Miscellaneous Helper Methods 47 //===--------------------------------------------------------------------===// 48 49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 50 unsigned addressSpace = 51 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 52 53 llvm::PointerType *destType = Int8PtrTy; 54 if (addressSpace) 55 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 56 57 if (value->getType() == destType) return value; 58 return Builder.CreateBitCast(value, destType); 59 } 60 61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 62 /// block. 63 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 64 const Twine &Name) { 65 auto Alloca = CreateTempAlloca(Ty, Name); 66 Alloca->setAlignment(Align.getQuantity()); 67 return Address(Alloca, Align); 68 } 69 70 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 71 /// block. 72 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 73 const Twine &Name) { 74 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 75 nullptr, Name, AllocaInsertPt); 76 } 77 78 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 79 /// default alignment of the corresponding LLVM type, which is *not* 80 /// guaranteed to be related in any way to the expected alignment of 81 /// an AST type that might have been lowered to Ty. 82 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 83 const Twine &Name) { 84 CharUnits Align = 85 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 86 return CreateTempAlloca(Ty, Align, Name); 87 } 88 89 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 90 assert(isa<llvm::AllocaInst>(Var.getPointer())); 91 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 92 Store->setAlignment(Var.getAlignment().getQuantity()); 93 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 94 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 95 } 96 97 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 98 CharUnits Align = getContext().getTypeAlignInChars(Ty); 99 return CreateTempAlloca(ConvertType(Ty), Align, Name); 100 } 101 102 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) { 103 // FIXME: Should we prefer the preferred type alignment here? 104 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name); 105 } 106 107 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 108 const Twine &Name) { 109 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name); 110 } 111 112 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 113 /// expression and compare the result against zero, returning an Int1Ty value. 114 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 115 PGO.setCurrentStmt(E); 116 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 117 llvm::Value *MemPtr = EmitScalarExpr(E); 118 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 119 } 120 121 QualType BoolTy = getContext().BoolTy; 122 SourceLocation Loc = E->getExprLoc(); 123 if (!E->getType()->isAnyComplexType()) 124 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 125 126 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 127 Loc); 128 } 129 130 /// EmitIgnoredExpr - Emit code to compute the specified expression, 131 /// ignoring the result. 132 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 133 if (E->isRValue()) 134 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 135 136 // Just emit it as an l-value and drop the result. 137 EmitLValue(E); 138 } 139 140 /// EmitAnyExpr - Emit code to compute the specified expression which 141 /// can have any type. The result is returned as an RValue struct. 142 /// If this is an aggregate expression, AggSlot indicates where the 143 /// result should be returned. 144 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 145 AggValueSlot aggSlot, 146 bool ignoreResult) { 147 switch (getEvaluationKind(E->getType())) { 148 case TEK_Scalar: 149 return RValue::get(EmitScalarExpr(E, ignoreResult)); 150 case TEK_Complex: 151 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 152 case TEK_Aggregate: 153 if (!ignoreResult && aggSlot.isIgnored()) 154 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 155 EmitAggExpr(E, aggSlot); 156 return aggSlot.asRValue(); 157 } 158 llvm_unreachable("bad evaluation kind"); 159 } 160 161 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 162 /// always be accessible even if no aggregate location is provided. 163 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 164 AggValueSlot AggSlot = AggValueSlot::ignored(); 165 166 if (hasAggregateEvaluationKind(E->getType())) 167 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 168 return EmitAnyExpr(E, AggSlot); 169 } 170 171 /// EmitAnyExprToMem - Evaluate an expression into a given memory 172 /// location. 173 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 174 Address Location, 175 Qualifiers Quals, 176 bool IsInit) { 177 // FIXME: This function should take an LValue as an argument. 178 switch (getEvaluationKind(E->getType())) { 179 case TEK_Complex: 180 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 181 /*isInit*/ false); 182 return; 183 184 case TEK_Aggregate: { 185 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 186 AggValueSlot::IsDestructed_t(IsInit), 187 AggValueSlot::DoesNotNeedGCBarriers, 188 AggValueSlot::IsAliased_t(!IsInit))); 189 return; 190 } 191 192 case TEK_Scalar: { 193 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 194 LValue LV = MakeAddrLValue(Location, E->getType()); 195 EmitStoreThroughLValue(RV, LV); 196 return; 197 } 198 } 199 llvm_unreachable("bad evaluation kind"); 200 } 201 202 static void 203 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 204 const Expr *E, Address ReferenceTemporary) { 205 // Objective-C++ ARC: 206 // If we are binding a reference to a temporary that has ownership, we 207 // need to perform retain/release operations on the temporary. 208 // 209 // FIXME: This should be looking at E, not M. 210 if (auto Lifetime = M->getType().getObjCLifetime()) { 211 switch (Lifetime) { 212 case Qualifiers::OCL_None: 213 case Qualifiers::OCL_ExplicitNone: 214 // Carry on to normal cleanup handling. 215 break; 216 217 case Qualifiers::OCL_Autoreleasing: 218 // Nothing to do; cleaned up by an autorelease pool. 219 return; 220 221 case Qualifiers::OCL_Strong: 222 case Qualifiers::OCL_Weak: 223 switch (StorageDuration Duration = M->getStorageDuration()) { 224 case SD_Static: 225 // Note: we intentionally do not register a cleanup to release 226 // the object on program termination. 227 return; 228 229 case SD_Thread: 230 // FIXME: We should probably register a cleanup in this case. 231 return; 232 233 case SD_Automatic: 234 case SD_FullExpression: 235 CodeGenFunction::Destroyer *Destroy; 236 CleanupKind CleanupKind; 237 if (Lifetime == Qualifiers::OCL_Strong) { 238 const ValueDecl *VD = M->getExtendingDecl(); 239 bool Precise = 240 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 241 CleanupKind = CGF.getARCCleanupKind(); 242 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 243 : &CodeGenFunction::destroyARCStrongImprecise; 244 } else { 245 // __weak objects always get EH cleanups; otherwise, exceptions 246 // could cause really nasty crashes instead of mere leaks. 247 CleanupKind = NormalAndEHCleanup; 248 Destroy = &CodeGenFunction::destroyARCWeak; 249 } 250 if (Duration == SD_FullExpression) 251 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 252 M->getType(), *Destroy, 253 CleanupKind & EHCleanup); 254 else 255 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 256 M->getType(), 257 *Destroy, CleanupKind & EHCleanup); 258 return; 259 260 case SD_Dynamic: 261 llvm_unreachable("temporary cannot have dynamic storage duration"); 262 } 263 llvm_unreachable("unknown storage duration"); 264 } 265 } 266 267 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 268 if (const RecordType *RT = 269 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 270 // Get the destructor for the reference temporary. 271 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 272 if (!ClassDecl->hasTrivialDestructor()) 273 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 274 } 275 276 if (!ReferenceTemporaryDtor) 277 return; 278 279 // Call the destructor for the temporary. 280 switch (M->getStorageDuration()) { 281 case SD_Static: 282 case SD_Thread: { 283 llvm::Constant *CleanupFn; 284 llvm::Constant *CleanupArg; 285 if (E->getType()->isArrayType()) { 286 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 287 ReferenceTemporary, E->getType(), 288 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 289 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 290 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 291 } else { 292 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 293 StructorType::Complete); 294 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 295 } 296 CGF.CGM.getCXXABI().registerGlobalDtor( 297 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 298 break; 299 } 300 301 case SD_FullExpression: 302 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 303 CodeGenFunction::destroyCXXObject, 304 CGF.getLangOpts().Exceptions); 305 break; 306 307 case SD_Automatic: 308 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 309 ReferenceTemporary, E->getType(), 310 CodeGenFunction::destroyCXXObject, 311 CGF.getLangOpts().Exceptions); 312 break; 313 314 case SD_Dynamic: 315 llvm_unreachable("temporary cannot have dynamic storage duration"); 316 } 317 } 318 319 static Address 320 createReferenceTemporary(CodeGenFunction &CGF, 321 const MaterializeTemporaryExpr *M, const Expr *Inner) { 322 switch (M->getStorageDuration()) { 323 case SD_FullExpression: 324 case SD_Automatic: { 325 // If we have a constant temporary array or record try to promote it into a 326 // constant global under the same rules a normal constant would've been 327 // promoted. This is easier on the optimizer and generally emits fewer 328 // instructions. 329 QualType Ty = Inner->getType(); 330 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 331 (Ty->isArrayType() || Ty->isRecordType()) && 332 CGF.CGM.isTypeConstant(Ty, true)) 333 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 334 auto *GV = new llvm::GlobalVariable( 335 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 336 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp"); 337 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 338 GV->setAlignment(alignment.getQuantity()); 339 // FIXME: Should we put the new global into a COMDAT? 340 return Address(GV, alignment); 341 } 342 return CGF.CreateMemTemp(Ty, "ref.tmp"); 343 } 344 case SD_Thread: 345 case SD_Static: 346 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 347 348 case SD_Dynamic: 349 llvm_unreachable("temporary can't have dynamic storage duration"); 350 } 351 llvm_unreachable("unknown storage duration"); 352 } 353 354 LValue CodeGenFunction:: 355 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 356 const Expr *E = M->GetTemporaryExpr(); 357 358 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 359 // as that will cause the lifetime adjustment to be lost for ARC 360 auto ownership = M->getType().getObjCLifetime(); 361 if (ownership != Qualifiers::OCL_None && 362 ownership != Qualifiers::OCL_ExplicitNone) { 363 Address Object = createReferenceTemporary(*this, M, E); 364 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 365 Object = Address(llvm::ConstantExpr::getBitCast(Var, 366 ConvertTypeForMem(E->getType()) 367 ->getPointerTo(Object.getAddressSpace())), 368 Object.getAlignment()); 369 370 // createReferenceTemporary will promote the temporary to a global with a 371 // constant initializer if it can. It can only do this to a value of 372 // ARC-manageable type if the value is global and therefore "immune" to 373 // ref-counting operations. Therefore we have no need to emit either a 374 // dynamic initialization or a cleanup and we can just return the address 375 // of the temporary. 376 if (Var->hasInitializer()) 377 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 378 379 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 380 } 381 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 382 AlignmentSource::Decl); 383 384 switch (getEvaluationKind(E->getType())) { 385 default: llvm_unreachable("expected scalar or aggregate expression"); 386 case TEK_Scalar: 387 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 388 break; 389 case TEK_Aggregate: { 390 EmitAggExpr(E, AggValueSlot::forAddr(Object, 391 E->getType().getQualifiers(), 392 AggValueSlot::IsDestructed, 393 AggValueSlot::DoesNotNeedGCBarriers, 394 AggValueSlot::IsNotAliased)); 395 break; 396 } 397 } 398 399 pushTemporaryCleanup(*this, M, E, Object); 400 return RefTempDst; 401 } 402 403 SmallVector<const Expr *, 2> CommaLHSs; 404 SmallVector<SubobjectAdjustment, 2> Adjustments; 405 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 406 407 for (const auto &Ignored : CommaLHSs) 408 EmitIgnoredExpr(Ignored); 409 410 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 411 if (opaque->getType()->isRecordType()) { 412 assert(Adjustments.empty()); 413 return EmitOpaqueValueLValue(opaque); 414 } 415 } 416 417 // Create and initialize the reference temporary. 418 Address Object = createReferenceTemporary(*this, M, E); 419 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 420 Object = Address(llvm::ConstantExpr::getBitCast( 421 Var, ConvertTypeForMem(E->getType())->getPointerTo()), 422 Object.getAlignment()); 423 // If the temporary is a global and has a constant initializer or is a 424 // constant temporary that we promoted to a global, we may have already 425 // initialized it. 426 if (!Var->hasInitializer()) { 427 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 428 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 429 } 430 } else { 431 switch (M->getStorageDuration()) { 432 case SD_Automatic: 433 case SD_FullExpression: 434 if (auto *Size = EmitLifetimeStart( 435 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 436 Object.getPointer())) { 437 if (M->getStorageDuration() == SD_Automatic) 438 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 439 Object, Size); 440 else 441 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 442 Size); 443 } 444 break; 445 default: 446 break; 447 } 448 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 449 } 450 pushTemporaryCleanup(*this, M, E, Object); 451 452 // Perform derived-to-base casts and/or field accesses, to get from the 453 // temporary object we created (and, potentially, for which we extended 454 // the lifetime) to the subobject we're binding the reference to. 455 for (unsigned I = Adjustments.size(); I != 0; --I) { 456 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 457 switch (Adjustment.Kind) { 458 case SubobjectAdjustment::DerivedToBaseAdjustment: 459 Object = 460 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 461 Adjustment.DerivedToBase.BasePath->path_begin(), 462 Adjustment.DerivedToBase.BasePath->path_end(), 463 /*NullCheckValue=*/ false, E->getExprLoc()); 464 break; 465 466 case SubobjectAdjustment::FieldAdjustment: { 467 LValue LV = MakeAddrLValue(Object, E->getType(), 468 AlignmentSource::Decl); 469 LV = EmitLValueForField(LV, Adjustment.Field); 470 assert(LV.isSimple() && 471 "materialized temporary field is not a simple lvalue"); 472 Object = LV.getAddress(); 473 break; 474 } 475 476 case SubobjectAdjustment::MemberPointerAdjustment: { 477 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 478 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 479 Adjustment.Ptr.MPT); 480 break; 481 } 482 } 483 } 484 485 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 486 } 487 488 RValue 489 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 490 // Emit the expression as an lvalue. 491 LValue LV = EmitLValue(E); 492 assert(LV.isSimple()); 493 llvm::Value *Value = LV.getPointer(); 494 495 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 496 // C++11 [dcl.ref]p5 (as amended by core issue 453): 497 // If a glvalue to which a reference is directly bound designates neither 498 // an existing object or function of an appropriate type nor a region of 499 // storage of suitable size and alignment to contain an object of the 500 // reference's type, the behavior is undefined. 501 QualType Ty = E->getType(); 502 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 503 } 504 505 return RValue::get(Value); 506 } 507 508 509 /// getAccessedFieldNo - Given an encoded value and a result number, return the 510 /// input field number being accessed. 511 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 512 const llvm::Constant *Elts) { 513 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 514 ->getZExtValue(); 515 } 516 517 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 518 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 519 llvm::Value *High) { 520 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 521 llvm::Value *K47 = Builder.getInt64(47); 522 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 523 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 524 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 525 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 526 return Builder.CreateMul(B1, KMul); 527 } 528 529 bool CodeGenFunction::sanitizePerformTypeCheck() const { 530 return SanOpts.has(SanitizerKind::Null) | 531 SanOpts.has(SanitizerKind::Alignment) | 532 SanOpts.has(SanitizerKind::ObjectSize) | 533 SanOpts.has(SanitizerKind::Vptr); 534 } 535 536 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 537 llvm::Value *Ptr, QualType Ty, 538 CharUnits Alignment, 539 SanitizerSet SkippedChecks) { 540 if (!sanitizePerformTypeCheck()) 541 return; 542 543 // Don't check pointers outside the default address space. The null check 544 // isn't correct, the object-size check isn't supported by LLVM, and we can't 545 // communicate the addresses to the runtime handler for the vptr check. 546 if (Ptr->getType()->getPointerAddressSpace()) 547 return; 548 549 SanitizerScope SanScope(this); 550 551 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 552 llvm::BasicBlock *Done = nullptr; 553 554 // Quickly determine whether we have a pointer to an alloca. It's possible 555 // to skip null checks, and some alignment checks, for these pointers. This 556 // can reduce compile-time significantly. 557 auto PtrToAlloca = 558 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 559 560 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 561 TCK == TCK_UpcastToVirtualBase; 562 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 563 !SkippedChecks.has(SanitizerKind::Null) && !PtrToAlloca) { 564 // The glvalue must not be an empty glvalue. 565 llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr); 566 567 // The IR builder can constant-fold the null check if the pointer points to 568 // a constant. 569 bool PtrIsNonNull = 570 IsNonNull == llvm::ConstantInt::getTrue(getLLVMContext()); 571 572 // Skip the null check if the pointer is known to be non-null. 573 if (!PtrIsNonNull) { 574 if (AllowNullPointers) { 575 // When performing pointer casts, it's OK if the value is null. 576 // Skip the remaining checks in that case. 577 Done = createBasicBlock("null"); 578 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 579 Builder.CreateCondBr(IsNonNull, Rest, Done); 580 EmitBlock(Rest); 581 } else { 582 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 583 } 584 } 585 } 586 587 if (SanOpts.has(SanitizerKind::ObjectSize) && 588 !SkippedChecks.has(SanitizerKind::ObjectSize) && 589 !Ty->isIncompleteType()) { 590 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 591 592 // The glvalue must refer to a large enough storage region. 593 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 594 // to check this. 595 // FIXME: Get object address space 596 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 597 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 598 llvm::Value *Min = Builder.getFalse(); 599 llvm::Value *NullIsUnknown = Builder.getFalse(); 600 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 601 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 602 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 603 llvm::ConstantInt::get(IntPtrTy, Size)); 604 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 605 } 606 607 uint64_t AlignVal = 0; 608 609 if (SanOpts.has(SanitizerKind::Alignment) && 610 !SkippedChecks.has(SanitizerKind::Alignment)) { 611 AlignVal = Alignment.getQuantity(); 612 if (!Ty->isIncompleteType() && !AlignVal) 613 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 614 615 // The glvalue must be suitably aligned. 616 if (AlignVal > 1 && 617 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 618 llvm::Value *Align = 619 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy), 620 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 621 llvm::Value *Aligned = 622 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 623 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 624 } 625 } 626 627 if (Checks.size() > 0) { 628 // Make sure we're not losing information. Alignment needs to be a power of 629 // 2 630 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 631 llvm::Constant *StaticData[] = { 632 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 633 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 634 llvm::ConstantInt::get(Int8Ty, TCK)}; 635 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr); 636 } 637 638 // If possible, check that the vptr indicates that there is a subobject of 639 // type Ty at offset zero within this object. 640 // 641 // C++11 [basic.life]p5,6: 642 // [For storage which does not refer to an object within its lifetime] 643 // The program has undefined behavior if: 644 // -- the [pointer or glvalue] is used to access a non-static data member 645 // or call a non-static member function 646 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 647 if (SanOpts.has(SanitizerKind::Vptr) && 648 !SkippedChecks.has(SanitizerKind::Vptr) && 649 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 650 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 651 TCK == TCK_UpcastToVirtualBase) && 652 RD && RD->hasDefinition() && RD->isDynamicClass()) { 653 // Compute a hash of the mangled name of the type. 654 // 655 // FIXME: This is not guaranteed to be deterministic! Move to a 656 // fingerprinting mechanism once LLVM provides one. For the time 657 // being the implementation happens to be deterministic. 658 SmallString<64> MangledName; 659 llvm::raw_svector_ostream Out(MangledName); 660 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 661 Out); 662 663 // Blacklist based on the mangled type. 664 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 665 Out.str())) { 666 llvm::hash_code TypeHash = hash_value(Out.str()); 667 668 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 669 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 670 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 671 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 672 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 673 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 674 675 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 676 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 677 678 // Look the hash up in our cache. 679 const int CacheSize = 128; 680 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 681 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 682 "__ubsan_vptr_type_cache"); 683 llvm::Value *Slot = Builder.CreateAnd(Hash, 684 llvm::ConstantInt::get(IntPtrTy, 685 CacheSize-1)); 686 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 687 llvm::Value *CacheVal = 688 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 689 getPointerAlign()); 690 691 // If the hash isn't in the cache, call a runtime handler to perform the 692 // hard work of checking whether the vptr is for an object of the right 693 // type. This will either fill in the cache and return, or produce a 694 // diagnostic. 695 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 696 llvm::Constant *StaticData[] = { 697 EmitCheckSourceLocation(Loc), 698 EmitCheckTypeDescriptor(Ty), 699 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 700 llvm::ConstantInt::get(Int8Ty, TCK) 701 }; 702 llvm::Value *DynamicData[] = { Ptr, Hash }; 703 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 704 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 705 DynamicData); 706 } 707 } 708 709 if (Done) { 710 Builder.CreateBr(Done); 711 EmitBlock(Done); 712 } 713 } 714 715 /// Determine whether this expression refers to a flexible array member in a 716 /// struct. We disable array bounds checks for such members. 717 static bool isFlexibleArrayMemberExpr(const Expr *E) { 718 // For compatibility with existing code, we treat arrays of length 0 or 719 // 1 as flexible array members. 720 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 721 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 722 if (CAT->getSize().ugt(1)) 723 return false; 724 } else if (!isa<IncompleteArrayType>(AT)) 725 return false; 726 727 E = E->IgnoreParens(); 728 729 // A flexible array member must be the last member in the class. 730 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 731 // FIXME: If the base type of the member expr is not FD->getParent(), 732 // this should not be treated as a flexible array member access. 733 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 734 RecordDecl::field_iterator FI( 735 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 736 return ++FI == FD->getParent()->field_end(); 737 } 738 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 739 return IRE->getDecl()->getNextIvar() == nullptr; 740 } 741 742 return false; 743 } 744 745 /// If Base is known to point to the start of an array, return the length of 746 /// that array. Return 0 if the length cannot be determined. 747 static llvm::Value *getArrayIndexingBound( 748 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 749 // For the vector indexing extension, the bound is the number of elements. 750 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 751 IndexedType = Base->getType(); 752 return CGF.Builder.getInt32(VT->getNumElements()); 753 } 754 755 Base = Base->IgnoreParens(); 756 757 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 758 if (CE->getCastKind() == CK_ArrayToPointerDecay && 759 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 760 IndexedType = CE->getSubExpr()->getType(); 761 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 762 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 763 return CGF.Builder.getInt(CAT->getSize()); 764 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 765 return CGF.getVLASize(VAT).first; 766 } 767 } 768 769 return nullptr; 770 } 771 772 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 773 llvm::Value *Index, QualType IndexType, 774 bool Accessed) { 775 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 776 "should not be called unless adding bounds checks"); 777 SanitizerScope SanScope(this); 778 779 QualType IndexedType; 780 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 781 if (!Bound) 782 return; 783 784 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 785 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 786 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 787 788 llvm::Constant *StaticData[] = { 789 EmitCheckSourceLocation(E->getExprLoc()), 790 EmitCheckTypeDescriptor(IndexedType), 791 EmitCheckTypeDescriptor(IndexType) 792 }; 793 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 794 : Builder.CreateICmpULE(IndexVal, BoundVal); 795 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 796 SanitizerHandler::OutOfBounds, StaticData, Index); 797 } 798 799 800 CodeGenFunction::ComplexPairTy CodeGenFunction:: 801 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 802 bool isInc, bool isPre) { 803 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 804 805 llvm::Value *NextVal; 806 if (isa<llvm::IntegerType>(InVal.first->getType())) { 807 uint64_t AmountVal = isInc ? 1 : -1; 808 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 809 810 // Add the inc/dec to the real part. 811 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 812 } else { 813 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 814 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 815 if (!isInc) 816 FVal.changeSign(); 817 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 818 819 // Add the inc/dec to the real part. 820 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 821 } 822 823 ComplexPairTy IncVal(NextVal, InVal.second); 824 825 // Store the updated result through the lvalue. 826 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 827 828 // If this is a postinc, return the value read from memory, otherwise use the 829 // updated value. 830 return isPre ? IncVal : InVal; 831 } 832 833 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 834 CodeGenFunction *CGF) { 835 // Bind VLAs in the cast type. 836 if (CGF && E->getType()->isVariablyModifiedType()) 837 CGF->EmitVariablyModifiedType(E->getType()); 838 839 if (CGDebugInfo *DI = getModuleDebugInfo()) 840 DI->EmitExplicitCastType(E->getType()); 841 } 842 843 //===----------------------------------------------------------------------===// 844 // LValue Expression Emission 845 //===----------------------------------------------------------------------===// 846 847 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 848 /// derive a more accurate bound on the alignment of the pointer. 849 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 850 AlignmentSource *Source) { 851 // We allow this with ObjC object pointers because of fragile ABIs. 852 assert(E->getType()->isPointerType() || 853 E->getType()->isObjCObjectPointerType()); 854 E = E->IgnoreParens(); 855 856 // Casts: 857 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 858 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 859 CGM.EmitExplicitCastExprType(ECE, this); 860 861 switch (CE->getCastKind()) { 862 // Non-converting casts (but not C's implicit conversion from void*). 863 case CK_BitCast: 864 case CK_NoOp: 865 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 866 if (PtrTy->getPointeeType()->isVoidType()) 867 break; 868 869 AlignmentSource InnerSource; 870 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource); 871 if (Source) *Source = InnerSource; 872 873 // If this is an explicit bitcast, and the source l-value is 874 // opaque, honor the alignment of the casted-to type. 875 if (isa<ExplicitCastExpr>(CE) && 876 InnerSource != AlignmentSource::Decl) { 877 Addr = Address(Addr.getPointer(), 878 getNaturalPointeeTypeAlignment(E->getType(), Source)); 879 } 880 881 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 882 CE->getCastKind() == CK_BitCast) { 883 if (auto PT = E->getType()->getAs<PointerType>()) 884 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 885 /*MayBeNull=*/true, 886 CodeGenFunction::CFITCK_UnrelatedCast, 887 CE->getLocStart()); 888 } 889 890 return Builder.CreateBitCast(Addr, ConvertType(E->getType())); 891 } 892 break; 893 894 // Array-to-pointer decay. 895 case CK_ArrayToPointerDecay: 896 return EmitArrayToPointerDecay(CE->getSubExpr(), Source); 897 898 // Derived-to-base conversions. 899 case CK_UncheckedDerivedToBase: 900 case CK_DerivedToBase: { 901 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source); 902 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 903 return GetAddressOfBaseClass(Addr, Derived, 904 CE->path_begin(), CE->path_end(), 905 ShouldNullCheckClassCastValue(CE), 906 CE->getExprLoc()); 907 } 908 909 // TODO: Is there any reason to treat base-to-derived conversions 910 // specially? 911 default: 912 break; 913 } 914 } 915 916 // Unary &. 917 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 918 if (UO->getOpcode() == UO_AddrOf) { 919 LValue LV = EmitLValue(UO->getSubExpr()); 920 if (Source) *Source = LV.getAlignmentSource(); 921 return LV.getAddress(); 922 } 923 } 924 925 // TODO: conditional operators, comma. 926 927 // Otherwise, use the alignment of the type. 928 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source); 929 return Address(EmitScalarExpr(E), Align); 930 } 931 932 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 933 if (Ty->isVoidType()) 934 return RValue::get(nullptr); 935 936 switch (getEvaluationKind(Ty)) { 937 case TEK_Complex: { 938 llvm::Type *EltTy = 939 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 940 llvm::Value *U = llvm::UndefValue::get(EltTy); 941 return RValue::getComplex(std::make_pair(U, U)); 942 } 943 944 // If this is a use of an undefined aggregate type, the aggregate must have an 945 // identifiable address. Just because the contents of the value are undefined 946 // doesn't mean that the address can't be taken and compared. 947 case TEK_Aggregate: { 948 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 949 return RValue::getAggregate(DestPtr); 950 } 951 952 case TEK_Scalar: 953 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 954 } 955 llvm_unreachable("bad evaluation kind"); 956 } 957 958 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 959 const char *Name) { 960 ErrorUnsupported(E, Name); 961 return GetUndefRValue(E->getType()); 962 } 963 964 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 965 const char *Name) { 966 ErrorUnsupported(E, Name); 967 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 968 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 969 E->getType()); 970 } 971 972 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 973 const Expr *Base = Obj; 974 while (!isa<CXXThisExpr>(Base)) { 975 // The result of a dynamic_cast can be null. 976 if (isa<CXXDynamicCastExpr>(Base)) 977 return false; 978 979 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 980 Base = CE->getSubExpr(); 981 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 982 Base = PE->getSubExpr(); 983 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 984 if (UO->getOpcode() == UO_Extension) 985 Base = UO->getSubExpr(); 986 else 987 return false; 988 } else { 989 return false; 990 } 991 } 992 return true; 993 } 994 995 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 996 LValue LV; 997 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 998 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 999 else 1000 LV = EmitLValue(E); 1001 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1002 SanitizerSet SkippedChecks; 1003 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1004 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1005 if (IsBaseCXXThis) 1006 SkippedChecks.set(SanitizerKind::Alignment, true); 1007 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1008 SkippedChecks.set(SanitizerKind::Null, true); 1009 } 1010 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1011 E->getType(), LV.getAlignment(), SkippedChecks); 1012 } 1013 return LV; 1014 } 1015 1016 /// EmitLValue - Emit code to compute a designator that specifies the location 1017 /// of the expression. 1018 /// 1019 /// This can return one of two things: a simple address or a bitfield reference. 1020 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1021 /// an LLVM pointer type. 1022 /// 1023 /// If this returns a bitfield reference, nothing about the pointee type of the 1024 /// LLVM value is known: For example, it may not be a pointer to an integer. 1025 /// 1026 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1027 /// this method guarantees that the returned pointer type will point to an LLVM 1028 /// type of the same size of the lvalue's type. If the lvalue has a variable 1029 /// length type, this is not possible. 1030 /// 1031 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1032 ApplyDebugLocation DL(*this, E); 1033 switch (E->getStmtClass()) { 1034 default: return EmitUnsupportedLValue(E, "l-value expression"); 1035 1036 case Expr::ObjCPropertyRefExprClass: 1037 llvm_unreachable("cannot emit a property reference directly"); 1038 1039 case Expr::ObjCSelectorExprClass: 1040 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1041 case Expr::ObjCIsaExprClass: 1042 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1043 case Expr::BinaryOperatorClass: 1044 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1045 case Expr::CompoundAssignOperatorClass: { 1046 QualType Ty = E->getType(); 1047 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1048 Ty = AT->getValueType(); 1049 if (!Ty->isAnyComplexType()) 1050 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1051 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1052 } 1053 case Expr::CallExprClass: 1054 case Expr::CXXMemberCallExprClass: 1055 case Expr::CXXOperatorCallExprClass: 1056 case Expr::UserDefinedLiteralClass: 1057 return EmitCallExprLValue(cast<CallExpr>(E)); 1058 case Expr::VAArgExprClass: 1059 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1060 case Expr::DeclRefExprClass: 1061 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1062 case Expr::ParenExprClass: 1063 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1064 case Expr::GenericSelectionExprClass: 1065 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1066 case Expr::PredefinedExprClass: 1067 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1068 case Expr::StringLiteralClass: 1069 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1070 case Expr::ObjCEncodeExprClass: 1071 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1072 case Expr::PseudoObjectExprClass: 1073 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1074 case Expr::InitListExprClass: 1075 return EmitInitListLValue(cast<InitListExpr>(E)); 1076 case Expr::CXXTemporaryObjectExprClass: 1077 case Expr::CXXConstructExprClass: 1078 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1079 case Expr::CXXBindTemporaryExprClass: 1080 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1081 case Expr::CXXUuidofExprClass: 1082 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1083 case Expr::LambdaExprClass: 1084 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1085 1086 case Expr::ExprWithCleanupsClass: { 1087 const auto *cleanups = cast<ExprWithCleanups>(E); 1088 enterFullExpression(cleanups); 1089 RunCleanupsScope Scope(*this); 1090 LValue LV = EmitLValue(cleanups->getSubExpr()); 1091 if (LV.isSimple()) { 1092 // Defend against branches out of gnu statement expressions surrounded by 1093 // cleanups. 1094 llvm::Value *V = LV.getPointer(); 1095 Scope.ForceCleanup({&V}); 1096 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1097 getContext(), LV.getAlignmentSource(), 1098 LV.getTBAAInfo()); 1099 } 1100 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1101 // bitfield lvalue or some other non-simple lvalue? 1102 return LV; 1103 } 1104 1105 case Expr::CXXDefaultArgExprClass: 1106 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1107 case Expr::CXXDefaultInitExprClass: { 1108 CXXDefaultInitExprScope Scope(*this); 1109 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1110 } 1111 case Expr::CXXTypeidExprClass: 1112 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1113 1114 case Expr::ObjCMessageExprClass: 1115 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1116 case Expr::ObjCIvarRefExprClass: 1117 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1118 case Expr::StmtExprClass: 1119 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1120 case Expr::UnaryOperatorClass: 1121 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1122 case Expr::ArraySubscriptExprClass: 1123 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1124 case Expr::OMPArraySectionExprClass: 1125 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1126 case Expr::ExtVectorElementExprClass: 1127 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1128 case Expr::MemberExprClass: 1129 return EmitMemberExpr(cast<MemberExpr>(E)); 1130 case Expr::CompoundLiteralExprClass: 1131 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1132 case Expr::ConditionalOperatorClass: 1133 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1134 case Expr::BinaryConditionalOperatorClass: 1135 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1136 case Expr::ChooseExprClass: 1137 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1138 case Expr::OpaqueValueExprClass: 1139 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1140 case Expr::SubstNonTypeTemplateParmExprClass: 1141 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1142 case Expr::ImplicitCastExprClass: 1143 case Expr::CStyleCastExprClass: 1144 case Expr::CXXFunctionalCastExprClass: 1145 case Expr::CXXStaticCastExprClass: 1146 case Expr::CXXDynamicCastExprClass: 1147 case Expr::CXXReinterpretCastExprClass: 1148 case Expr::CXXConstCastExprClass: 1149 case Expr::ObjCBridgedCastExprClass: 1150 return EmitCastLValue(cast<CastExpr>(E)); 1151 1152 case Expr::MaterializeTemporaryExprClass: 1153 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1154 } 1155 } 1156 1157 /// Given an object of the given canonical type, can we safely copy a 1158 /// value out of it based on its initializer? 1159 static bool isConstantEmittableObjectType(QualType type) { 1160 assert(type.isCanonical()); 1161 assert(!type->isReferenceType()); 1162 1163 // Must be const-qualified but non-volatile. 1164 Qualifiers qs = type.getLocalQualifiers(); 1165 if (!qs.hasConst() || qs.hasVolatile()) return false; 1166 1167 // Otherwise, all object types satisfy this except C++ classes with 1168 // mutable subobjects or non-trivial copy/destroy behavior. 1169 if (const auto *RT = dyn_cast<RecordType>(type)) 1170 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1171 if (RD->hasMutableFields() || !RD->isTrivial()) 1172 return false; 1173 1174 return true; 1175 } 1176 1177 /// Can we constant-emit a load of a reference to a variable of the 1178 /// given type? This is different from predicates like 1179 /// Decl::isUsableInConstantExpressions because we do want it to apply 1180 /// in situations that don't necessarily satisfy the language's rules 1181 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1182 /// to do this with const float variables even if those variables 1183 /// aren't marked 'constexpr'. 1184 enum ConstantEmissionKind { 1185 CEK_None, 1186 CEK_AsReferenceOnly, 1187 CEK_AsValueOrReference, 1188 CEK_AsValueOnly 1189 }; 1190 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1191 type = type.getCanonicalType(); 1192 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1193 if (isConstantEmittableObjectType(ref->getPointeeType())) 1194 return CEK_AsValueOrReference; 1195 return CEK_AsReferenceOnly; 1196 } 1197 if (isConstantEmittableObjectType(type)) 1198 return CEK_AsValueOnly; 1199 return CEK_None; 1200 } 1201 1202 /// Try to emit a reference to the given value without producing it as 1203 /// an l-value. This is actually more than an optimization: we can't 1204 /// produce an l-value for variables that we never actually captured 1205 /// in a block or lambda, which means const int variables or constexpr 1206 /// literals or similar. 1207 CodeGenFunction::ConstantEmission 1208 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1209 ValueDecl *value = refExpr->getDecl(); 1210 1211 // The value needs to be an enum constant or a constant variable. 1212 ConstantEmissionKind CEK; 1213 if (isa<ParmVarDecl>(value)) { 1214 CEK = CEK_None; 1215 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1216 CEK = checkVarTypeForConstantEmission(var->getType()); 1217 } else if (isa<EnumConstantDecl>(value)) { 1218 CEK = CEK_AsValueOnly; 1219 } else { 1220 CEK = CEK_None; 1221 } 1222 if (CEK == CEK_None) return ConstantEmission(); 1223 1224 Expr::EvalResult result; 1225 bool resultIsReference; 1226 QualType resultType; 1227 1228 // It's best to evaluate all the way as an r-value if that's permitted. 1229 if (CEK != CEK_AsReferenceOnly && 1230 refExpr->EvaluateAsRValue(result, getContext())) { 1231 resultIsReference = false; 1232 resultType = refExpr->getType(); 1233 1234 // Otherwise, try to evaluate as an l-value. 1235 } else if (CEK != CEK_AsValueOnly && 1236 refExpr->EvaluateAsLValue(result, getContext())) { 1237 resultIsReference = true; 1238 resultType = value->getType(); 1239 1240 // Failure. 1241 } else { 1242 return ConstantEmission(); 1243 } 1244 1245 // In any case, if the initializer has side-effects, abandon ship. 1246 if (result.HasSideEffects) 1247 return ConstantEmission(); 1248 1249 // Emit as a constant. 1250 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1251 1252 // Make sure we emit a debug reference to the global variable. 1253 // This should probably fire even for 1254 if (isa<VarDecl>(value)) { 1255 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1256 EmitDeclRefExprDbgValue(refExpr, result.Val); 1257 } else { 1258 assert(isa<EnumConstantDecl>(value)); 1259 EmitDeclRefExprDbgValue(refExpr, result.Val); 1260 } 1261 1262 // If we emitted a reference constant, we need to dereference that. 1263 if (resultIsReference) 1264 return ConstantEmission::forReference(C); 1265 1266 return ConstantEmission::forValue(C); 1267 } 1268 1269 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1270 SourceLocation Loc) { 1271 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1272 lvalue.getType(), Loc, lvalue.getAlignmentSource(), 1273 lvalue.getTBAAInfo(), 1274 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(), 1275 lvalue.isNontemporal()); 1276 } 1277 1278 static bool hasBooleanRepresentation(QualType Ty) { 1279 if (Ty->isBooleanType()) 1280 return true; 1281 1282 if (const EnumType *ET = Ty->getAs<EnumType>()) 1283 return ET->getDecl()->getIntegerType()->isBooleanType(); 1284 1285 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1286 return hasBooleanRepresentation(AT->getValueType()); 1287 1288 return false; 1289 } 1290 1291 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1292 llvm::APInt &Min, llvm::APInt &End, 1293 bool StrictEnums, bool IsBool) { 1294 const EnumType *ET = Ty->getAs<EnumType>(); 1295 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1296 ET && !ET->getDecl()->isFixed(); 1297 if (!IsBool && !IsRegularCPlusPlusEnum) 1298 return false; 1299 1300 if (IsBool) { 1301 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1302 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1303 } else { 1304 const EnumDecl *ED = ET->getDecl(); 1305 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1306 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1307 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1308 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1309 1310 if (NumNegativeBits) { 1311 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1312 assert(NumBits <= Bitwidth); 1313 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1314 Min = -End; 1315 } else { 1316 assert(NumPositiveBits <= Bitwidth); 1317 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1318 Min = llvm::APInt(Bitwidth, 0); 1319 } 1320 } 1321 return true; 1322 } 1323 1324 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1325 llvm::APInt Min, End; 1326 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1327 hasBooleanRepresentation(Ty))) 1328 return nullptr; 1329 1330 llvm::MDBuilder MDHelper(getLLVMContext()); 1331 return MDHelper.createRange(Min, End); 1332 } 1333 1334 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1335 SourceLocation Loc) { 1336 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1337 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1338 if (!HasBoolCheck && !HasEnumCheck) 1339 return false; 1340 1341 bool IsBool = hasBooleanRepresentation(Ty) || 1342 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1343 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1344 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1345 if (!NeedsBoolCheck && !NeedsEnumCheck) 1346 return false; 1347 1348 // Single-bit booleans don't need to be checked. Special-case this to avoid 1349 // a bit width mismatch when handling bitfield values. This is handled by 1350 // EmitFromMemory for the non-bitfield case. 1351 if (IsBool && 1352 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1353 return false; 1354 1355 llvm::APInt Min, End; 1356 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1357 return true; 1358 1359 SanitizerScope SanScope(this); 1360 llvm::Value *Check; 1361 --End; 1362 if (!Min) { 1363 Check = Builder.CreateICmpULE( 1364 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1365 } else { 1366 llvm::Value *Upper = Builder.CreateICmpSLE( 1367 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1368 llvm::Value *Lower = Builder.CreateICmpSGE( 1369 Value, llvm::ConstantInt::get(getLLVMContext(), Min)); 1370 Check = Builder.CreateAnd(Upper, Lower); 1371 } 1372 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1373 EmitCheckTypeDescriptor(Ty)}; 1374 SanitizerMask Kind = 1375 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1376 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1377 StaticArgs, EmitCheckValue(Value)); 1378 return true; 1379 } 1380 1381 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1382 QualType Ty, 1383 SourceLocation Loc, 1384 AlignmentSource AlignSource, 1385 llvm::MDNode *TBAAInfo, 1386 QualType TBAABaseType, 1387 uint64_t TBAAOffset, 1388 bool isNontemporal) { 1389 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1390 // For better performance, handle vector loads differently. 1391 if (Ty->isVectorType()) { 1392 const llvm::Type *EltTy = Addr.getElementType(); 1393 1394 const auto *VTy = cast<llvm::VectorType>(EltTy); 1395 1396 // Handle vectors of size 3 like size 4 for better performance. 1397 if (VTy->getNumElements() == 3) { 1398 1399 // Bitcast to vec4 type. 1400 llvm::VectorType *vec4Ty = 1401 llvm::VectorType::get(VTy->getElementType(), 4); 1402 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1403 // Now load value. 1404 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1405 1406 // Shuffle vector to get vec3. 1407 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1408 {0, 1, 2}, "extractVec"); 1409 return EmitFromMemory(V, Ty); 1410 } 1411 } 1412 } 1413 1414 // Atomic operations have to be done on integral types. 1415 LValue AtomicLValue = 1416 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1417 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1418 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1419 } 1420 1421 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1422 if (isNontemporal) { 1423 llvm::MDNode *Node = llvm::MDNode::get( 1424 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1425 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1426 } 1427 if (TBAAInfo) { 1428 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1429 TBAAOffset); 1430 if (TBAAPath) 1431 CGM.DecorateInstructionWithTBAA(Load, TBAAPath, 1432 false /*ConvertTypeToTag*/); 1433 } 1434 1435 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1436 // In order to prevent the optimizer from throwing away the check, don't 1437 // attach range metadata to the load. 1438 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1439 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1440 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1441 1442 return EmitFromMemory(Load, Ty); 1443 } 1444 1445 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1446 // Bool has a different representation in memory than in registers. 1447 if (hasBooleanRepresentation(Ty)) { 1448 // This should really always be an i1, but sometimes it's already 1449 // an i8, and it's awkward to track those cases down. 1450 if (Value->getType()->isIntegerTy(1)) 1451 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1452 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1453 "wrong value rep of bool"); 1454 } 1455 1456 return Value; 1457 } 1458 1459 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1460 // Bool has a different representation in memory than in registers. 1461 if (hasBooleanRepresentation(Ty)) { 1462 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1463 "wrong value rep of bool"); 1464 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1465 } 1466 1467 return Value; 1468 } 1469 1470 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1471 bool Volatile, QualType Ty, 1472 AlignmentSource AlignSource, 1473 llvm::MDNode *TBAAInfo, 1474 bool isInit, QualType TBAABaseType, 1475 uint64_t TBAAOffset, 1476 bool isNontemporal) { 1477 1478 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1479 // Handle vectors differently to get better performance. 1480 if (Ty->isVectorType()) { 1481 llvm::Type *SrcTy = Value->getType(); 1482 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1483 // Handle vec3 special. 1484 if (VecTy->getNumElements() == 3) { 1485 // Our source is a vec3, do a shuffle vector to make it a vec4. 1486 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1487 Builder.getInt32(2), 1488 llvm::UndefValue::get(Builder.getInt32Ty())}; 1489 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1490 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1491 MaskV, "extractVec"); 1492 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1493 } 1494 if (Addr.getElementType() != SrcTy) { 1495 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1496 } 1497 } 1498 } 1499 1500 Value = EmitToMemory(Value, Ty); 1501 1502 LValue AtomicLValue = 1503 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1504 if (Ty->isAtomicType() || 1505 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1506 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1507 return; 1508 } 1509 1510 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1511 if (isNontemporal) { 1512 llvm::MDNode *Node = 1513 llvm::MDNode::get(Store->getContext(), 1514 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1515 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1516 } 1517 if (TBAAInfo) { 1518 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1519 TBAAOffset); 1520 if (TBAAPath) 1521 CGM.DecorateInstructionWithTBAA(Store, TBAAPath, 1522 false /*ConvertTypeToTag*/); 1523 } 1524 } 1525 1526 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1527 bool isInit) { 1528 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1529 lvalue.getType(), lvalue.getAlignmentSource(), 1530 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1531 lvalue.getTBAAOffset(), lvalue.isNontemporal()); 1532 } 1533 1534 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1535 /// method emits the address of the lvalue, then loads the result as an rvalue, 1536 /// returning the rvalue. 1537 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1538 if (LV.isObjCWeak()) { 1539 // load of a __weak object. 1540 Address AddrWeakObj = LV.getAddress(); 1541 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1542 AddrWeakObj)); 1543 } 1544 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1545 // In MRC mode, we do a load+autorelease. 1546 if (!getLangOpts().ObjCAutoRefCount) { 1547 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1548 } 1549 1550 // In ARC mode, we load retained and then consume the value. 1551 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1552 Object = EmitObjCConsumeObject(LV.getType(), Object); 1553 return RValue::get(Object); 1554 } 1555 1556 if (LV.isSimple()) { 1557 assert(!LV.getType()->isFunctionType()); 1558 1559 // Everything needs a load. 1560 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1561 } 1562 1563 if (LV.isVectorElt()) { 1564 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1565 LV.isVolatileQualified()); 1566 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1567 "vecext")); 1568 } 1569 1570 // If this is a reference to a subset of the elements of a vector, either 1571 // shuffle the input or extract/insert them as appropriate. 1572 if (LV.isExtVectorElt()) 1573 return EmitLoadOfExtVectorElementLValue(LV); 1574 1575 // Global Register variables always invoke intrinsics 1576 if (LV.isGlobalReg()) 1577 return EmitLoadOfGlobalRegLValue(LV); 1578 1579 assert(LV.isBitField() && "Unknown LValue type!"); 1580 return EmitLoadOfBitfieldLValue(LV, Loc); 1581 } 1582 1583 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1584 SourceLocation Loc) { 1585 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1586 1587 // Get the output type. 1588 llvm::Type *ResLTy = ConvertType(LV.getType()); 1589 1590 Address Ptr = LV.getBitFieldAddress(); 1591 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1592 1593 if (Info.IsSigned) { 1594 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1595 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1596 if (HighBits) 1597 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1598 if (Info.Offset + HighBits) 1599 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1600 } else { 1601 if (Info.Offset) 1602 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1603 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1604 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1605 Info.Size), 1606 "bf.clear"); 1607 } 1608 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1609 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1610 return RValue::get(Val); 1611 } 1612 1613 // If this is a reference to a subset of the elements of a vector, create an 1614 // appropriate shufflevector. 1615 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1616 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1617 LV.isVolatileQualified()); 1618 1619 const llvm::Constant *Elts = LV.getExtVectorElts(); 1620 1621 // If the result of the expression is a non-vector type, we must be extracting 1622 // a single element. Just codegen as an extractelement. 1623 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1624 if (!ExprVT) { 1625 unsigned InIdx = getAccessedFieldNo(0, Elts); 1626 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1627 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1628 } 1629 1630 // Always use shuffle vector to try to retain the original program structure 1631 unsigned NumResultElts = ExprVT->getNumElements(); 1632 1633 SmallVector<llvm::Constant*, 4> Mask; 1634 for (unsigned i = 0; i != NumResultElts; ++i) 1635 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1636 1637 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1638 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1639 MaskV); 1640 return RValue::get(Vec); 1641 } 1642 1643 /// @brief Generates lvalue for partial ext_vector access. 1644 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1645 Address VectorAddress = LV.getExtVectorAddress(); 1646 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1647 QualType EQT = ExprVT->getElementType(); 1648 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1649 1650 Address CastToPointerElement = 1651 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1652 "conv.ptr.element"); 1653 1654 const llvm::Constant *Elts = LV.getExtVectorElts(); 1655 unsigned ix = getAccessedFieldNo(0, Elts); 1656 1657 Address VectorBasePtrPlusIx = 1658 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1659 getContext().getTypeSizeInChars(EQT), 1660 "vector.elt"); 1661 1662 return VectorBasePtrPlusIx; 1663 } 1664 1665 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1666 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1667 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1668 "Bad type for register variable"); 1669 llvm::MDNode *RegName = cast<llvm::MDNode>( 1670 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1671 1672 // We accept integer and pointer types only 1673 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1674 llvm::Type *Ty = OrigTy; 1675 if (OrigTy->isPointerTy()) 1676 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1677 llvm::Type *Types[] = { Ty }; 1678 1679 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1680 llvm::Value *Call = Builder.CreateCall( 1681 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1682 if (OrigTy->isPointerTy()) 1683 Call = Builder.CreateIntToPtr(Call, OrigTy); 1684 return RValue::get(Call); 1685 } 1686 1687 1688 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1689 /// lvalue, where both are guaranteed to the have the same type, and that type 1690 /// is 'Ty'. 1691 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1692 bool isInit) { 1693 if (!Dst.isSimple()) { 1694 if (Dst.isVectorElt()) { 1695 // Read/modify/write the vector, inserting the new element. 1696 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1697 Dst.isVolatileQualified()); 1698 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1699 Dst.getVectorIdx(), "vecins"); 1700 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1701 Dst.isVolatileQualified()); 1702 return; 1703 } 1704 1705 // If this is an update of extended vector elements, insert them as 1706 // appropriate. 1707 if (Dst.isExtVectorElt()) 1708 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1709 1710 if (Dst.isGlobalReg()) 1711 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1712 1713 assert(Dst.isBitField() && "Unknown LValue type"); 1714 return EmitStoreThroughBitfieldLValue(Src, Dst); 1715 } 1716 1717 // There's special magic for assigning into an ARC-qualified l-value. 1718 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1719 switch (Lifetime) { 1720 case Qualifiers::OCL_None: 1721 llvm_unreachable("present but none"); 1722 1723 case Qualifiers::OCL_ExplicitNone: 1724 // nothing special 1725 break; 1726 1727 case Qualifiers::OCL_Strong: 1728 if (isInit) { 1729 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1730 break; 1731 } 1732 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1733 return; 1734 1735 case Qualifiers::OCL_Weak: 1736 if (isInit) 1737 // Initialize and then skip the primitive store. 1738 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1739 else 1740 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1741 return; 1742 1743 case Qualifiers::OCL_Autoreleasing: 1744 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1745 Src.getScalarVal())); 1746 // fall into the normal path 1747 break; 1748 } 1749 } 1750 1751 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1752 // load of a __weak object. 1753 Address LvalueDst = Dst.getAddress(); 1754 llvm::Value *src = Src.getScalarVal(); 1755 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1756 return; 1757 } 1758 1759 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1760 // load of a __strong object. 1761 Address LvalueDst = Dst.getAddress(); 1762 llvm::Value *src = Src.getScalarVal(); 1763 if (Dst.isObjCIvar()) { 1764 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1765 llvm::Type *ResultType = IntPtrTy; 1766 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1767 llvm::Value *RHS = dst.getPointer(); 1768 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1769 llvm::Value *LHS = 1770 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1771 "sub.ptr.lhs.cast"); 1772 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1773 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1774 BytesBetween); 1775 } else if (Dst.isGlobalObjCRef()) { 1776 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1777 Dst.isThreadLocalRef()); 1778 } 1779 else 1780 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1781 return; 1782 } 1783 1784 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1785 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1786 } 1787 1788 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1789 llvm::Value **Result) { 1790 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1791 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1792 Address Ptr = Dst.getBitFieldAddress(); 1793 1794 // Get the source value, truncated to the width of the bit-field. 1795 llvm::Value *SrcVal = Src.getScalarVal(); 1796 1797 // Cast the source to the storage type and shift it into place. 1798 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1799 /*IsSigned=*/false); 1800 llvm::Value *MaskedVal = SrcVal; 1801 1802 // See if there are other bits in the bitfield's storage we'll need to load 1803 // and mask together with source before storing. 1804 if (Info.StorageSize != Info.Size) { 1805 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1806 llvm::Value *Val = 1807 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1808 1809 // Mask the source value as needed. 1810 if (!hasBooleanRepresentation(Dst.getType())) 1811 SrcVal = Builder.CreateAnd(SrcVal, 1812 llvm::APInt::getLowBitsSet(Info.StorageSize, 1813 Info.Size), 1814 "bf.value"); 1815 MaskedVal = SrcVal; 1816 if (Info.Offset) 1817 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1818 1819 // Mask out the original value. 1820 Val = Builder.CreateAnd(Val, 1821 ~llvm::APInt::getBitsSet(Info.StorageSize, 1822 Info.Offset, 1823 Info.Offset + Info.Size), 1824 "bf.clear"); 1825 1826 // Or together the unchanged values and the source value. 1827 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1828 } else { 1829 assert(Info.Offset == 0); 1830 } 1831 1832 // Write the new value back out. 1833 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1834 1835 // Return the new value of the bit-field, if requested. 1836 if (Result) { 1837 llvm::Value *ResultVal = MaskedVal; 1838 1839 // Sign extend the value if needed. 1840 if (Info.IsSigned) { 1841 assert(Info.Size <= Info.StorageSize); 1842 unsigned HighBits = Info.StorageSize - Info.Size; 1843 if (HighBits) { 1844 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1845 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1846 } 1847 } 1848 1849 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1850 "bf.result.cast"); 1851 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1852 } 1853 } 1854 1855 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1856 LValue Dst) { 1857 // This access turns into a read/modify/write of the vector. Load the input 1858 // value now. 1859 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1860 Dst.isVolatileQualified()); 1861 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1862 1863 llvm::Value *SrcVal = Src.getScalarVal(); 1864 1865 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1866 unsigned NumSrcElts = VTy->getNumElements(); 1867 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1868 if (NumDstElts == NumSrcElts) { 1869 // Use shuffle vector is the src and destination are the same number of 1870 // elements and restore the vector mask since it is on the side it will be 1871 // stored. 1872 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1873 for (unsigned i = 0; i != NumSrcElts; ++i) 1874 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1875 1876 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1877 Vec = Builder.CreateShuffleVector(SrcVal, 1878 llvm::UndefValue::get(Vec->getType()), 1879 MaskV); 1880 } else if (NumDstElts > NumSrcElts) { 1881 // Extended the source vector to the same length and then shuffle it 1882 // into the destination. 1883 // FIXME: since we're shuffling with undef, can we just use the indices 1884 // into that? This could be simpler. 1885 SmallVector<llvm::Constant*, 4> ExtMask; 1886 for (unsigned i = 0; i != NumSrcElts; ++i) 1887 ExtMask.push_back(Builder.getInt32(i)); 1888 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1889 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1890 llvm::Value *ExtSrcVal = 1891 Builder.CreateShuffleVector(SrcVal, 1892 llvm::UndefValue::get(SrcVal->getType()), 1893 ExtMaskV); 1894 // build identity 1895 SmallVector<llvm::Constant*, 4> Mask; 1896 for (unsigned i = 0; i != NumDstElts; ++i) 1897 Mask.push_back(Builder.getInt32(i)); 1898 1899 // When the vector size is odd and .odd or .hi is used, the last element 1900 // of the Elts constant array will be one past the size of the vector. 1901 // Ignore the last element here, if it is greater than the mask size. 1902 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1903 NumSrcElts--; 1904 1905 // modify when what gets shuffled in 1906 for (unsigned i = 0; i != NumSrcElts; ++i) 1907 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1908 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1909 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1910 } else { 1911 // We should never shorten the vector 1912 llvm_unreachable("unexpected shorten vector length"); 1913 } 1914 } else { 1915 // If the Src is a scalar (not a vector) it must be updating one element. 1916 unsigned InIdx = getAccessedFieldNo(0, Elts); 1917 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1918 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1919 } 1920 1921 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 1922 Dst.isVolatileQualified()); 1923 } 1924 1925 /// @brief Store of global named registers are always calls to intrinsics. 1926 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1927 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1928 "Bad type for register variable"); 1929 llvm::MDNode *RegName = cast<llvm::MDNode>( 1930 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1931 assert(RegName && "Register LValue is not metadata"); 1932 1933 // We accept integer and pointer types only 1934 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1935 llvm::Type *Ty = OrigTy; 1936 if (OrigTy->isPointerTy()) 1937 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1938 llvm::Type *Types[] = { Ty }; 1939 1940 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1941 llvm::Value *Value = Src.getScalarVal(); 1942 if (OrigTy->isPointerTy()) 1943 Value = Builder.CreatePtrToInt(Value, Ty); 1944 Builder.CreateCall( 1945 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 1946 } 1947 1948 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1949 // generating write-barries API. It is currently a global, ivar, 1950 // or neither. 1951 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1952 LValue &LV, 1953 bool IsMemberAccess=false) { 1954 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1955 return; 1956 1957 if (isa<ObjCIvarRefExpr>(E)) { 1958 QualType ExpTy = E->getType(); 1959 if (IsMemberAccess && ExpTy->isPointerType()) { 1960 // If ivar is a structure pointer, assigning to field of 1961 // this struct follows gcc's behavior and makes it a non-ivar 1962 // writer-barrier conservatively. 1963 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1964 if (ExpTy->isRecordType()) { 1965 LV.setObjCIvar(false); 1966 return; 1967 } 1968 } 1969 LV.setObjCIvar(true); 1970 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1971 LV.setBaseIvarExp(Exp->getBase()); 1972 LV.setObjCArray(E->getType()->isArrayType()); 1973 return; 1974 } 1975 1976 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1977 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1978 if (VD->hasGlobalStorage()) { 1979 LV.setGlobalObjCRef(true); 1980 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1981 } 1982 } 1983 LV.setObjCArray(E->getType()->isArrayType()); 1984 return; 1985 } 1986 1987 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1988 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1989 return; 1990 } 1991 1992 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1993 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1994 if (LV.isObjCIvar()) { 1995 // If cast is to a structure pointer, follow gcc's behavior and make it 1996 // a non-ivar write-barrier. 1997 QualType ExpTy = E->getType(); 1998 if (ExpTy->isPointerType()) 1999 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2000 if (ExpTy->isRecordType()) 2001 LV.setObjCIvar(false); 2002 } 2003 return; 2004 } 2005 2006 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2007 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2008 return; 2009 } 2010 2011 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2012 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2013 return; 2014 } 2015 2016 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2017 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2018 return; 2019 } 2020 2021 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2022 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2023 return; 2024 } 2025 2026 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2027 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2028 if (LV.isObjCIvar() && !LV.isObjCArray()) 2029 // Using array syntax to assigning to what an ivar points to is not 2030 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2031 LV.setObjCIvar(false); 2032 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2033 // Using array syntax to assigning to what global points to is not 2034 // same as assigning to the global itself. {id *G;} G[i] = 0; 2035 LV.setGlobalObjCRef(false); 2036 return; 2037 } 2038 2039 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2040 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2041 // We don't know if member is an 'ivar', but this flag is looked at 2042 // only in the context of LV.isObjCIvar(). 2043 LV.setObjCArray(E->getType()->isArrayType()); 2044 return; 2045 } 2046 } 2047 2048 static llvm::Value * 2049 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2050 llvm::Value *V, llvm::Type *IRType, 2051 StringRef Name = StringRef()) { 2052 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2053 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2054 } 2055 2056 static LValue EmitThreadPrivateVarDeclLValue( 2057 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2058 llvm::Type *RealVarTy, SourceLocation Loc) { 2059 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2060 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2061 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2062 } 2063 2064 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 2065 const ReferenceType *RefTy, 2066 AlignmentSource *Source) { 2067 llvm::Value *Ptr = Builder.CreateLoad(Addr); 2068 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 2069 Source, /*forPointee*/ true)); 2070 2071 } 2072 2073 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 2074 const ReferenceType *RefTy) { 2075 AlignmentSource Source; 2076 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source); 2077 return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source); 2078 } 2079 2080 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2081 const PointerType *PtrTy, 2082 AlignmentSource *Source) { 2083 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2084 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), Source, 2085 /*forPointeeType=*/true)); 2086 } 2087 2088 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2089 const PointerType *PtrTy) { 2090 AlignmentSource Source; 2091 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &Source); 2092 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), Source); 2093 } 2094 2095 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2096 const Expr *E, const VarDecl *VD) { 2097 QualType T = E->getType(); 2098 2099 // If it's thread_local, emit a call to its wrapper function instead. 2100 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2101 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2102 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2103 2104 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2105 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2106 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2107 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2108 Address Addr(V, Alignment); 2109 LValue LV; 2110 // Emit reference to the private copy of the variable if it is an OpenMP 2111 // threadprivate variable. 2112 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2113 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2114 E->getExprLoc()); 2115 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2116 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2117 } else { 2118 LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2119 } 2120 setObjCGCLValueClass(CGF.getContext(), E, LV); 2121 return LV; 2122 } 2123 2124 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2125 const FunctionDecl *FD) { 2126 if (FD->hasAttr<WeakRefAttr>()) { 2127 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2128 return aliasee.getPointer(); 2129 } 2130 2131 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2132 if (!FD->hasPrototype()) { 2133 if (const FunctionProtoType *Proto = 2134 FD->getType()->getAs<FunctionProtoType>()) { 2135 // Ugly case: for a K&R-style definition, the type of the definition 2136 // isn't the same as the type of a use. Correct for this with a 2137 // bitcast. 2138 QualType NoProtoType = 2139 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2140 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2141 V = llvm::ConstantExpr::getBitCast(V, 2142 CGM.getTypes().ConvertType(NoProtoType)); 2143 } 2144 } 2145 return V; 2146 } 2147 2148 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2149 const Expr *E, const FunctionDecl *FD) { 2150 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2151 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2152 return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl); 2153 } 2154 2155 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2156 llvm::Value *ThisValue) { 2157 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2158 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2159 return CGF.EmitLValueForField(LV, FD); 2160 } 2161 2162 /// Named Registers are named metadata pointing to the register name 2163 /// which will be read from/written to as an argument to the intrinsic 2164 /// @llvm.read/write_register. 2165 /// So far, only the name is being passed down, but other options such as 2166 /// register type, allocation type or even optimization options could be 2167 /// passed down via the metadata node. 2168 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2169 SmallString<64> Name("llvm.named.register."); 2170 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2171 assert(Asm->getLabel().size() < 64-Name.size() && 2172 "Register name too big"); 2173 Name.append(Asm->getLabel()); 2174 llvm::NamedMDNode *M = 2175 CGM.getModule().getOrInsertNamedMetadata(Name); 2176 if (M->getNumOperands() == 0) { 2177 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2178 Asm->getLabel()); 2179 llvm::Metadata *Ops[] = {Str}; 2180 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2181 } 2182 2183 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2184 2185 llvm::Value *Ptr = 2186 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2187 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2188 } 2189 2190 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2191 const NamedDecl *ND = E->getDecl(); 2192 QualType T = E->getType(); 2193 2194 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2195 // Global Named registers access via intrinsics only 2196 if (VD->getStorageClass() == SC_Register && 2197 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2198 return EmitGlobalNamedRegister(VD, CGM); 2199 2200 // A DeclRefExpr for a reference initialized by a constant expression can 2201 // appear without being odr-used. Directly emit the constant initializer. 2202 const Expr *Init = VD->getAnyInitializer(VD); 2203 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2204 VD->isUsableInConstantExpressions(getContext()) && 2205 VD->checkInitIsICE() && 2206 // Do not emit if it is private OpenMP variable. 2207 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo && 2208 LocalDeclMap.count(VD))) { 2209 llvm::Constant *Val = 2210 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 2211 assert(Val && "failed to emit reference constant expression"); 2212 // FIXME: Eventually we will want to emit vector element references. 2213 2214 // Should we be using the alignment of the constant pointer we emitted? 2215 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2216 /*pointee*/ true); 2217 2218 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2219 } 2220 2221 // Check for captured variables. 2222 if (E->refersToEnclosingVariableOrCapture()) { 2223 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2224 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2225 else if (CapturedStmtInfo) { 2226 auto I = LocalDeclMap.find(VD); 2227 if (I != LocalDeclMap.end()) { 2228 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2229 return EmitLoadOfReferenceLValue(I->second, RefTy); 2230 return MakeAddrLValue(I->second, T); 2231 } 2232 LValue CapLVal = 2233 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2234 CapturedStmtInfo->getContextValue()); 2235 return MakeAddrLValue( 2236 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2237 CapLVal.getType(), AlignmentSource::Decl); 2238 } 2239 2240 assert(isa<BlockDecl>(CurCodeDecl)); 2241 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2242 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2243 } 2244 } 2245 2246 // FIXME: We should be able to assert this for FunctionDecls as well! 2247 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2248 // those with a valid source location. 2249 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2250 !E->getLocation().isValid()) && 2251 "Should not use decl without marking it used!"); 2252 2253 if (ND->hasAttr<WeakRefAttr>()) { 2254 const auto *VD = cast<ValueDecl>(ND); 2255 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2256 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2257 } 2258 2259 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2260 // Check if this is a global variable. 2261 if (VD->hasLinkage() || VD->isStaticDataMember()) 2262 return EmitGlobalVarDeclLValue(*this, E, VD); 2263 2264 Address addr = Address::invalid(); 2265 2266 // The variable should generally be present in the local decl map. 2267 auto iter = LocalDeclMap.find(VD); 2268 if (iter != LocalDeclMap.end()) { 2269 addr = iter->second; 2270 2271 // Otherwise, it might be static local we haven't emitted yet for 2272 // some reason; most likely, because it's in an outer function. 2273 } else if (VD->isStaticLocal()) { 2274 addr = Address(CGM.getOrCreateStaticVarDecl( 2275 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2276 getContext().getDeclAlign(VD)); 2277 2278 // No other cases for now. 2279 } else { 2280 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2281 } 2282 2283 2284 // Check for OpenMP threadprivate variables. 2285 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2286 return EmitThreadPrivateVarDeclLValue( 2287 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2288 E->getExprLoc()); 2289 } 2290 2291 // Drill into block byref variables. 2292 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2293 if (isBlockByref) { 2294 addr = emitBlockByrefAddress(addr, VD); 2295 } 2296 2297 // Drill into reference types. 2298 LValue LV; 2299 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2300 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2301 } else { 2302 LV = MakeAddrLValue(addr, T, AlignmentSource::Decl); 2303 } 2304 2305 bool isLocalStorage = VD->hasLocalStorage(); 2306 2307 bool NonGCable = isLocalStorage && 2308 !VD->getType()->isReferenceType() && 2309 !isBlockByref; 2310 if (NonGCable) { 2311 LV.getQuals().removeObjCGCAttr(); 2312 LV.setNonGC(true); 2313 } 2314 2315 bool isImpreciseLifetime = 2316 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2317 if (isImpreciseLifetime) 2318 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2319 setObjCGCLValueClass(getContext(), E, LV); 2320 return LV; 2321 } 2322 2323 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2324 return EmitFunctionDeclLValue(*this, E, FD); 2325 2326 // FIXME: While we're emitting a binding from an enclosing scope, all other 2327 // DeclRefExprs we see should be implicitly treated as if they also refer to 2328 // an enclosing scope. 2329 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2330 return EmitLValue(BD->getBinding()); 2331 2332 llvm_unreachable("Unhandled DeclRefExpr"); 2333 } 2334 2335 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2336 // __extension__ doesn't affect lvalue-ness. 2337 if (E->getOpcode() == UO_Extension) 2338 return EmitLValue(E->getSubExpr()); 2339 2340 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2341 switch (E->getOpcode()) { 2342 default: llvm_unreachable("Unknown unary operator lvalue!"); 2343 case UO_Deref: { 2344 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2345 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2346 2347 AlignmentSource AlignSource; 2348 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource); 2349 LValue LV = MakeAddrLValue(Addr, T, AlignSource); 2350 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2351 2352 // We should not generate __weak write barrier on indirect reference 2353 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2354 // But, we continue to generate __strong write barrier on indirect write 2355 // into a pointer to object. 2356 if (getLangOpts().ObjC1 && 2357 getLangOpts().getGC() != LangOptions::NonGC && 2358 LV.isObjCWeak()) 2359 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2360 return LV; 2361 } 2362 case UO_Real: 2363 case UO_Imag: { 2364 LValue LV = EmitLValue(E->getSubExpr()); 2365 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2366 2367 // __real is valid on scalars. This is a faster way of testing that. 2368 // __imag can only produce an rvalue on scalars. 2369 if (E->getOpcode() == UO_Real && 2370 !LV.getAddress().getElementType()->isStructTy()) { 2371 assert(E->getSubExpr()->getType()->isArithmeticType()); 2372 return LV; 2373 } 2374 2375 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2376 2377 Address Component = 2378 (E->getOpcode() == UO_Real 2379 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2380 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2381 LValue ElemLV = MakeAddrLValue(Component, T, LV.getAlignmentSource()); 2382 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2383 return ElemLV; 2384 } 2385 case UO_PreInc: 2386 case UO_PreDec: { 2387 LValue LV = EmitLValue(E->getSubExpr()); 2388 bool isInc = E->getOpcode() == UO_PreInc; 2389 2390 if (E->getType()->isAnyComplexType()) 2391 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2392 else 2393 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2394 return LV; 2395 } 2396 } 2397 } 2398 2399 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2400 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2401 E->getType(), AlignmentSource::Decl); 2402 } 2403 2404 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2405 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2406 E->getType(), AlignmentSource::Decl); 2407 } 2408 2409 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2410 auto SL = E->getFunctionName(); 2411 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2412 StringRef FnName = CurFn->getName(); 2413 if (FnName.startswith("\01")) 2414 FnName = FnName.substr(1); 2415 StringRef NameItems[] = { 2416 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2417 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2418 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2419 std::string Name = SL->getString(); 2420 if (!Name.empty()) { 2421 unsigned Discriminator = 2422 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2423 if (Discriminator) 2424 Name += "_" + Twine(Discriminator + 1).str(); 2425 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2426 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2427 } else { 2428 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2429 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2430 } 2431 } 2432 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2433 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2434 } 2435 2436 /// Emit a type description suitable for use by a runtime sanitizer library. The 2437 /// format of a type descriptor is 2438 /// 2439 /// \code 2440 /// { i16 TypeKind, i16 TypeInfo } 2441 /// \endcode 2442 /// 2443 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2444 /// integer, 1 for a floating point value, and -1 for anything else. 2445 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2446 // Only emit each type's descriptor once. 2447 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2448 return C; 2449 2450 uint16_t TypeKind = -1; 2451 uint16_t TypeInfo = 0; 2452 2453 if (T->isIntegerType()) { 2454 TypeKind = 0; 2455 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2456 (T->isSignedIntegerType() ? 1 : 0); 2457 } else if (T->isFloatingType()) { 2458 TypeKind = 1; 2459 TypeInfo = getContext().getTypeSize(T); 2460 } 2461 2462 // Format the type name as if for a diagnostic, including quotes and 2463 // optionally an 'aka'. 2464 SmallString<32> Buffer; 2465 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2466 (intptr_t)T.getAsOpaquePtr(), 2467 StringRef(), StringRef(), None, Buffer, 2468 None); 2469 2470 llvm::Constant *Components[] = { 2471 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2472 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2473 }; 2474 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2475 2476 auto *GV = new llvm::GlobalVariable( 2477 CGM.getModule(), Descriptor->getType(), 2478 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2479 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2480 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2481 2482 // Remember the descriptor for this type. 2483 CGM.setTypeDescriptorInMap(T, GV); 2484 2485 return GV; 2486 } 2487 2488 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2489 llvm::Type *TargetTy = IntPtrTy; 2490 2491 // Floating-point types which fit into intptr_t are bitcast to integers 2492 // and then passed directly (after zero-extension, if necessary). 2493 if (V->getType()->isFloatingPointTy()) { 2494 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2495 if (Bits <= TargetTy->getIntegerBitWidth()) 2496 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2497 Bits)); 2498 } 2499 2500 // Integers which fit in intptr_t are zero-extended and passed directly. 2501 if (V->getType()->isIntegerTy() && 2502 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2503 return Builder.CreateZExt(V, TargetTy); 2504 2505 // Pointers are passed directly, everything else is passed by address. 2506 if (!V->getType()->isPointerTy()) { 2507 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2508 Builder.CreateStore(V, Ptr); 2509 V = Ptr.getPointer(); 2510 } 2511 return Builder.CreatePtrToInt(V, TargetTy); 2512 } 2513 2514 /// \brief Emit a representation of a SourceLocation for passing to a handler 2515 /// in a sanitizer runtime library. The format for this data is: 2516 /// \code 2517 /// struct SourceLocation { 2518 /// const char *Filename; 2519 /// int32_t Line, Column; 2520 /// }; 2521 /// \endcode 2522 /// For an invalid SourceLocation, the Filename pointer is null. 2523 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2524 llvm::Constant *Filename; 2525 int Line, Column; 2526 2527 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2528 if (PLoc.isValid()) { 2529 StringRef FilenameString = PLoc.getFilename(); 2530 2531 int PathComponentsToStrip = 2532 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2533 if (PathComponentsToStrip < 0) { 2534 assert(PathComponentsToStrip != INT_MIN); 2535 int PathComponentsToKeep = -PathComponentsToStrip; 2536 auto I = llvm::sys::path::rbegin(FilenameString); 2537 auto E = llvm::sys::path::rend(FilenameString); 2538 while (I != E && --PathComponentsToKeep) 2539 ++I; 2540 2541 FilenameString = FilenameString.substr(I - E); 2542 } else if (PathComponentsToStrip > 0) { 2543 auto I = llvm::sys::path::begin(FilenameString); 2544 auto E = llvm::sys::path::end(FilenameString); 2545 while (I != E && PathComponentsToStrip--) 2546 ++I; 2547 2548 if (I != E) 2549 FilenameString = 2550 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2551 else 2552 FilenameString = llvm::sys::path::filename(FilenameString); 2553 } 2554 2555 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2556 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2557 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2558 Filename = FilenameGV.getPointer(); 2559 Line = PLoc.getLine(); 2560 Column = PLoc.getColumn(); 2561 } else { 2562 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2563 Line = Column = 0; 2564 } 2565 2566 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2567 Builder.getInt32(Column)}; 2568 2569 return llvm::ConstantStruct::getAnon(Data); 2570 } 2571 2572 namespace { 2573 /// \brief Specify under what conditions this check can be recovered 2574 enum class CheckRecoverableKind { 2575 /// Always terminate program execution if this check fails. 2576 Unrecoverable, 2577 /// Check supports recovering, runtime has both fatal (noreturn) and 2578 /// non-fatal handlers for this check. 2579 Recoverable, 2580 /// Runtime conditionally aborts, always need to support recovery. 2581 AlwaysRecoverable 2582 }; 2583 } 2584 2585 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2586 assert(llvm::countPopulation(Kind) == 1); 2587 switch (Kind) { 2588 case SanitizerKind::Vptr: 2589 return CheckRecoverableKind::AlwaysRecoverable; 2590 case SanitizerKind::Return: 2591 case SanitizerKind::Unreachable: 2592 return CheckRecoverableKind::Unrecoverable; 2593 default: 2594 return CheckRecoverableKind::Recoverable; 2595 } 2596 } 2597 2598 namespace { 2599 struct SanitizerHandlerInfo { 2600 char const *const Name; 2601 unsigned Version; 2602 }; 2603 } 2604 2605 const SanitizerHandlerInfo SanitizerHandlers[] = { 2606 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2607 LIST_SANITIZER_CHECKS 2608 #undef SANITIZER_CHECK 2609 }; 2610 2611 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2612 llvm::FunctionType *FnType, 2613 ArrayRef<llvm::Value *> FnArgs, 2614 SanitizerHandler CheckHandler, 2615 CheckRecoverableKind RecoverKind, bool IsFatal, 2616 llvm::BasicBlock *ContBB) { 2617 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2618 bool NeedsAbortSuffix = 2619 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2620 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2621 const StringRef CheckName = CheckInfo.Name; 2622 std::string FnName = 2623 ("__ubsan_handle_" + CheckName + 2624 (CheckInfo.Version ? "_v" + llvm::utostr(CheckInfo.Version) : "") + 2625 (NeedsAbortSuffix ? "_abort" : "")) 2626 .str(); 2627 bool MayReturn = 2628 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2629 2630 llvm::AttrBuilder B; 2631 if (!MayReturn) { 2632 B.addAttribute(llvm::Attribute::NoReturn) 2633 .addAttribute(llvm::Attribute::NoUnwind); 2634 } 2635 B.addAttribute(llvm::Attribute::UWTable); 2636 2637 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2638 FnType, FnName, 2639 llvm::AttributeList::get(CGF.getLLVMContext(), 2640 llvm::AttributeList::FunctionIndex, B), 2641 /*Local=*/true); 2642 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2643 if (!MayReturn) { 2644 HandlerCall->setDoesNotReturn(); 2645 CGF.Builder.CreateUnreachable(); 2646 } else { 2647 CGF.Builder.CreateBr(ContBB); 2648 } 2649 } 2650 2651 void CodeGenFunction::EmitCheck( 2652 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2653 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2654 ArrayRef<llvm::Value *> DynamicArgs) { 2655 assert(IsSanitizerScope); 2656 assert(Checked.size() > 0); 2657 assert(CheckHandler >= 0 && 2658 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2659 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2660 2661 llvm::Value *FatalCond = nullptr; 2662 llvm::Value *RecoverableCond = nullptr; 2663 llvm::Value *TrapCond = nullptr; 2664 for (int i = 0, n = Checked.size(); i < n; ++i) { 2665 llvm::Value *Check = Checked[i].first; 2666 // -fsanitize-trap= overrides -fsanitize-recover=. 2667 llvm::Value *&Cond = 2668 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2669 ? TrapCond 2670 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2671 ? RecoverableCond 2672 : FatalCond; 2673 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2674 } 2675 2676 if (TrapCond) 2677 EmitTrapCheck(TrapCond); 2678 if (!FatalCond && !RecoverableCond) 2679 return; 2680 2681 llvm::Value *JointCond; 2682 if (FatalCond && RecoverableCond) 2683 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2684 else 2685 JointCond = FatalCond ? FatalCond : RecoverableCond; 2686 assert(JointCond); 2687 2688 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2689 assert(SanOpts.has(Checked[0].second)); 2690 #ifndef NDEBUG 2691 for (int i = 1, n = Checked.size(); i < n; ++i) { 2692 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2693 "All recoverable kinds in a single check must be same!"); 2694 assert(SanOpts.has(Checked[i].second)); 2695 } 2696 #endif 2697 2698 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2699 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2700 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2701 // Give hint that we very much don't expect to execute the handler 2702 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2703 llvm::MDBuilder MDHelper(getLLVMContext()); 2704 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2705 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2706 EmitBlock(Handlers); 2707 2708 // Handler functions take an i8* pointing to the (handler-specific) static 2709 // information block, followed by a sequence of intptr_t arguments 2710 // representing operand values. 2711 SmallVector<llvm::Value *, 4> Args; 2712 SmallVector<llvm::Type *, 4> ArgTypes; 2713 Args.reserve(DynamicArgs.size() + 1); 2714 ArgTypes.reserve(DynamicArgs.size() + 1); 2715 2716 // Emit handler arguments and create handler function type. 2717 if (!StaticArgs.empty()) { 2718 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2719 auto *InfoPtr = 2720 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2721 llvm::GlobalVariable::PrivateLinkage, Info); 2722 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2723 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2724 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2725 ArgTypes.push_back(Int8PtrTy); 2726 } 2727 2728 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2729 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2730 ArgTypes.push_back(IntPtrTy); 2731 } 2732 2733 llvm::FunctionType *FnType = 2734 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2735 2736 if (!FatalCond || !RecoverableCond) { 2737 // Simple case: we need to generate a single handler call, either 2738 // fatal, or non-fatal. 2739 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2740 (FatalCond != nullptr), Cont); 2741 } else { 2742 // Emit two handler calls: first one for set of unrecoverable checks, 2743 // another one for recoverable. 2744 llvm::BasicBlock *NonFatalHandlerBB = 2745 createBasicBlock("non_fatal." + CheckName); 2746 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2747 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2748 EmitBlock(FatalHandlerBB); 2749 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2750 NonFatalHandlerBB); 2751 EmitBlock(NonFatalHandlerBB); 2752 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2753 Cont); 2754 } 2755 2756 EmitBlock(Cont); 2757 } 2758 2759 void CodeGenFunction::EmitCfiSlowPathCheck( 2760 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2761 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2762 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2763 2764 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2765 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2766 2767 llvm::MDBuilder MDHelper(getLLVMContext()); 2768 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2769 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2770 2771 EmitBlock(CheckBB); 2772 2773 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2774 2775 llvm::CallInst *CheckCall; 2776 if (WithDiag) { 2777 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2778 auto *InfoPtr = 2779 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2780 llvm::GlobalVariable::PrivateLinkage, Info); 2781 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2782 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2783 2784 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2785 "__cfi_slowpath_diag", 2786 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2787 false)); 2788 CheckCall = Builder.CreateCall( 2789 SlowPathDiagFn, 2790 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2791 } else { 2792 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2793 "__cfi_slowpath", 2794 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2795 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2796 } 2797 2798 CheckCall->setDoesNotThrow(); 2799 2800 EmitBlock(Cont); 2801 } 2802 2803 // Emit a stub for __cfi_check function so that the linker knows about this 2804 // symbol in LTO mode. 2805 void CodeGenFunction::EmitCfiCheckStub() { 2806 llvm::Module *M = &CGM.getModule(); 2807 auto &Ctx = M->getContext(); 2808 llvm::Function *F = llvm::Function::Create( 2809 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 2810 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 2811 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 2812 // FIXME: consider emitting an intrinsic call like 2813 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 2814 // which can be lowered in CrossDSOCFI pass to the actual contents of 2815 // __cfi_check. This would allow inlining of __cfi_check calls. 2816 llvm::CallInst::Create( 2817 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 2818 llvm::ReturnInst::Create(Ctx, nullptr, BB); 2819 } 2820 2821 // This function is basically a switch over the CFI failure kind, which is 2822 // extracted from CFICheckFailData (1st function argument). Each case is either 2823 // llvm.trap or a call to one of the two runtime handlers, based on 2824 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2825 // failure kind) traps, but this should really never happen. CFICheckFailData 2826 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2827 // check kind; in this case __cfi_check_fail traps as well. 2828 void CodeGenFunction::EmitCfiCheckFail() { 2829 SanitizerScope SanScope(this); 2830 FunctionArgList Args; 2831 ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr, 2832 getContext().VoidPtrTy); 2833 ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr, 2834 getContext().VoidPtrTy); 2835 Args.push_back(&ArgData); 2836 Args.push_back(&ArgAddr); 2837 2838 const CGFunctionInfo &FI = 2839 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2840 2841 llvm::Function *F = llvm::Function::Create( 2842 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2843 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2844 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2845 2846 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2847 SourceLocation()); 2848 2849 llvm::Value *Data = 2850 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2851 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2852 llvm::Value *Addr = 2853 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2854 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2855 2856 // Data == nullptr means the calling module has trap behaviour for this check. 2857 llvm::Value *DataIsNotNullPtr = 2858 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2859 EmitTrapCheck(DataIsNotNullPtr); 2860 2861 llvm::StructType *SourceLocationTy = 2862 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 2863 llvm::StructType *CfiCheckFailDataTy = 2864 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 2865 2866 llvm::Value *V = Builder.CreateConstGEP2_32( 2867 CfiCheckFailDataTy, 2868 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2869 0); 2870 Address CheckKindAddr(V, getIntAlign()); 2871 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2872 2873 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2874 CGM.getLLVMContext(), 2875 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2876 llvm::Value *ValidVtable = Builder.CreateZExt( 2877 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2878 {Addr, AllVtables}), 2879 IntPtrTy); 2880 2881 const std::pair<int, SanitizerMask> CheckKinds[] = { 2882 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2883 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2884 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2885 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2886 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2887 2888 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2889 for (auto CheckKindMaskPair : CheckKinds) { 2890 int Kind = CheckKindMaskPair.first; 2891 SanitizerMask Mask = CheckKindMaskPair.second; 2892 llvm::Value *Cond = 2893 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2894 if (CGM.getLangOpts().Sanitize.has(Mask)) 2895 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 2896 {Data, Addr, ValidVtable}); 2897 else 2898 EmitTrapCheck(Cond); 2899 } 2900 2901 FinishFunction(); 2902 // The only reference to this function will be created during LTO link. 2903 // Make sure it survives until then. 2904 CGM.addUsedGlobal(F); 2905 } 2906 2907 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2908 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2909 2910 // If we're optimizing, collapse all calls to trap down to just one per 2911 // function to save on code size. 2912 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2913 TrapBB = createBasicBlock("trap"); 2914 Builder.CreateCondBr(Checked, Cont, TrapBB); 2915 EmitBlock(TrapBB); 2916 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2917 TrapCall->setDoesNotReturn(); 2918 TrapCall->setDoesNotThrow(); 2919 Builder.CreateUnreachable(); 2920 } else { 2921 Builder.CreateCondBr(Checked, Cont, TrapBB); 2922 } 2923 2924 EmitBlock(Cont); 2925 } 2926 2927 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 2928 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 2929 2930 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 2931 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 2932 CGM.getCodeGenOpts().TrapFuncName); 2933 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 2934 } 2935 2936 return TrapCall; 2937 } 2938 2939 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 2940 AlignmentSource *AlignSource) { 2941 assert(E->getType()->isArrayType() && 2942 "Array to pointer decay must have array source type!"); 2943 2944 // Expressions of array type can't be bitfields or vector elements. 2945 LValue LV = EmitLValue(E); 2946 Address Addr = LV.getAddress(); 2947 if (AlignSource) *AlignSource = LV.getAlignmentSource(); 2948 2949 // If the array type was an incomplete type, we need to make sure 2950 // the decay ends up being the right type. 2951 llvm::Type *NewTy = ConvertType(E->getType()); 2952 Addr = Builder.CreateElementBitCast(Addr, NewTy); 2953 2954 // Note that VLA pointers are always decayed, so we don't need to do 2955 // anything here. 2956 if (!E->getType()->isVariableArrayType()) { 2957 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 2958 "Expected pointer to array"); 2959 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 2960 } 2961 2962 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 2963 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 2964 } 2965 2966 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2967 /// array to pointer, return the array subexpression. 2968 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2969 // If this isn't just an array->pointer decay, bail out. 2970 const auto *CE = dyn_cast<CastExpr>(E); 2971 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2972 return nullptr; 2973 2974 // If this is a decay from variable width array, bail out. 2975 const Expr *SubExpr = CE->getSubExpr(); 2976 if (SubExpr->getType()->isVariableArrayType()) 2977 return nullptr; 2978 2979 return SubExpr; 2980 } 2981 2982 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 2983 llvm::Value *ptr, 2984 ArrayRef<llvm::Value*> indices, 2985 bool inbounds, 2986 const llvm::Twine &name = "arrayidx") { 2987 if (inbounds) { 2988 return CGF.Builder.CreateInBoundsGEP(ptr, indices, name); 2989 } else { 2990 return CGF.Builder.CreateGEP(ptr, indices, name); 2991 } 2992 } 2993 2994 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 2995 llvm::Value *idx, 2996 CharUnits eltSize) { 2997 // If we have a constant index, we can use the exact offset of the 2998 // element we're accessing. 2999 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3000 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3001 return arrayAlign.alignmentAtOffset(offset); 3002 3003 // Otherwise, use the worst-case alignment for any element. 3004 } else { 3005 return arrayAlign.alignmentOfArrayElement(eltSize); 3006 } 3007 } 3008 3009 static QualType getFixedSizeElementType(const ASTContext &ctx, 3010 const VariableArrayType *vla) { 3011 QualType eltType; 3012 do { 3013 eltType = vla->getElementType(); 3014 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3015 return eltType; 3016 } 3017 3018 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3019 ArrayRef<llvm::Value*> indices, 3020 QualType eltType, bool inbounds, 3021 const llvm::Twine &name = "arrayidx") { 3022 // All the indices except that last must be zero. 3023 #ifndef NDEBUG 3024 for (auto idx : indices.drop_back()) 3025 assert(isa<llvm::ConstantInt>(idx) && 3026 cast<llvm::ConstantInt>(idx)->isZero()); 3027 #endif 3028 3029 // Determine the element size of the statically-sized base. This is 3030 // the thing that the indices are expressed in terms of. 3031 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3032 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3033 } 3034 3035 // We can use that to compute the best alignment of the element. 3036 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3037 CharUnits eltAlign = 3038 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3039 3040 llvm::Value *eltPtr = 3041 emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name); 3042 return Address(eltPtr, eltAlign); 3043 } 3044 3045 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3046 bool Accessed) { 3047 // The index must always be an integer, which is not an aggregate. Emit it 3048 // in lexical order (this complexity is, sadly, required by C++17). 3049 llvm::Value *IdxPre = 3050 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3051 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3052 auto *Idx = IdxPre; 3053 if (E->getLHS() != E->getIdx()) { 3054 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3055 Idx = EmitScalarExpr(E->getIdx()); 3056 } 3057 3058 QualType IdxTy = E->getIdx()->getType(); 3059 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3060 3061 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3062 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3063 3064 // Extend or truncate the index type to 32 or 64-bits. 3065 if (Promote && Idx->getType() != IntPtrTy) 3066 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3067 3068 return Idx; 3069 }; 3070 IdxPre = nullptr; 3071 3072 // If the base is a vector type, then we are forming a vector element lvalue 3073 // with this subscript. 3074 if (E->getBase()->getType()->isVectorType() && 3075 !isa<ExtVectorElementExpr>(E->getBase())) { 3076 // Emit the vector as an lvalue to get its address. 3077 LValue LHS = EmitLValue(E->getBase()); 3078 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3079 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3080 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 3081 E->getBase()->getType(), 3082 LHS.getAlignmentSource()); 3083 } 3084 3085 // All the other cases basically behave like simple offsetting. 3086 3087 // Handle the extvector case we ignored above. 3088 if (isa<ExtVectorElementExpr>(E->getBase())) { 3089 LValue LV = EmitLValue(E->getBase()); 3090 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3091 Address Addr = EmitExtVectorElementLValue(LV); 3092 3093 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3094 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true); 3095 return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource()); 3096 } 3097 3098 AlignmentSource AlignSource; 3099 Address Addr = Address::invalid(); 3100 if (const VariableArrayType *vla = 3101 getContext().getAsVariableArrayType(E->getType())) { 3102 // The base must be a pointer, which is not an aggregate. Emit 3103 // it. It needs to be emitted first in case it's what captures 3104 // the VLA bounds. 3105 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3106 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3107 3108 // The element count here is the total number of non-VLA elements. 3109 llvm::Value *numElements = getVLASize(vla).first; 3110 3111 // Effectively, the multiply by the VLA size is part of the GEP. 3112 // GEP indexes are signed, and scaling an index isn't permitted to 3113 // signed-overflow, so we use the same semantics for our explicit 3114 // multiply. We suppress this if overflow is not undefined behavior. 3115 if (getLangOpts().isSignedOverflowDefined()) { 3116 Idx = Builder.CreateMul(Idx, numElements); 3117 } else { 3118 Idx = Builder.CreateNSWMul(Idx, numElements); 3119 } 3120 3121 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3122 !getLangOpts().isSignedOverflowDefined()); 3123 3124 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3125 // Indexing over an interface, as in "NSString *P; P[4];" 3126 3127 // Emit the base pointer. 3128 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3129 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3130 3131 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3132 llvm::Value *InterfaceSizeVal = 3133 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3134 3135 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3136 3137 // We don't necessarily build correct LLVM struct types for ObjC 3138 // interfaces, so we can't rely on GEP to do this scaling 3139 // correctly, so we need to cast to i8*. FIXME: is this actually 3140 // true? A lot of other things in the fragile ABI would break... 3141 llvm::Type *OrigBaseTy = Addr.getType(); 3142 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3143 3144 // Do the GEP. 3145 CharUnits EltAlign = 3146 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3147 llvm::Value *EltPtr = 3148 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false); 3149 Addr = Address(EltPtr, EltAlign); 3150 3151 // Cast back. 3152 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3153 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3154 // If this is A[i] where A is an array, the frontend will have decayed the 3155 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3156 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3157 // "gep x, i" here. Emit one "gep A, 0, i". 3158 assert(Array->getType()->isArrayType() && 3159 "Array to pointer decay must have array source type!"); 3160 LValue ArrayLV; 3161 // For simple multidimensional array indexing, set the 'accessed' flag for 3162 // better bounds-checking of the base expression. 3163 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3164 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3165 else 3166 ArrayLV = EmitLValue(Array); 3167 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3168 3169 // Propagate the alignment from the array itself to the result. 3170 Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(), 3171 {CGM.getSize(CharUnits::Zero()), Idx}, 3172 E->getType(), 3173 !getLangOpts().isSignedOverflowDefined()); 3174 AlignSource = ArrayLV.getAlignmentSource(); 3175 } else { 3176 // The base must be a pointer; emit it with an estimate of its alignment. 3177 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3178 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3179 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3180 !getLangOpts().isSignedOverflowDefined()); 3181 } 3182 3183 LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource); 3184 3185 // TODO: Preserve/extend path TBAA metadata? 3186 3187 if (getLangOpts().ObjC1 && 3188 getLangOpts().getGC() != LangOptions::NonGC) { 3189 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3190 setObjCGCLValueClass(getContext(), E, LV); 3191 } 3192 return LV; 3193 } 3194 3195 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3196 AlignmentSource &AlignSource, 3197 QualType BaseTy, QualType ElTy, 3198 bool IsLowerBound) { 3199 LValue BaseLVal; 3200 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3201 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3202 if (BaseTy->isArrayType()) { 3203 Address Addr = BaseLVal.getAddress(); 3204 AlignSource = BaseLVal.getAlignmentSource(); 3205 3206 // If the array type was an incomplete type, we need to make sure 3207 // the decay ends up being the right type. 3208 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3209 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3210 3211 // Note that VLA pointers are always decayed, so we don't need to do 3212 // anything here. 3213 if (!BaseTy->isVariableArrayType()) { 3214 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3215 "Expected pointer to array"); 3216 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3217 "arraydecay"); 3218 } 3219 3220 return CGF.Builder.CreateElementBitCast(Addr, 3221 CGF.ConvertTypeForMem(ElTy)); 3222 } 3223 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &AlignSource); 3224 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3225 } 3226 return CGF.EmitPointerWithAlignment(Base, &AlignSource); 3227 } 3228 3229 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3230 bool IsLowerBound) { 3231 QualType BaseTy; 3232 if (auto *ASE = 3233 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 3234 BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE); 3235 else 3236 BaseTy = E->getBase()->getType(); 3237 QualType ResultExprTy; 3238 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3239 ResultExprTy = AT->getElementType(); 3240 else 3241 ResultExprTy = BaseTy->getPointeeType(); 3242 llvm::Value *Idx = nullptr; 3243 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3244 // Requesting lower bound or upper bound, but without provided length and 3245 // without ':' symbol for the default length -> length = 1. 3246 // Idx = LowerBound ?: 0; 3247 if (auto *LowerBound = E->getLowerBound()) { 3248 Idx = Builder.CreateIntCast( 3249 EmitScalarExpr(LowerBound), IntPtrTy, 3250 LowerBound->getType()->hasSignedIntegerRepresentation()); 3251 } else 3252 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3253 } else { 3254 // Try to emit length or lower bound as constant. If this is possible, 1 3255 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3256 // IR (LB + Len) - 1. 3257 auto &C = CGM.getContext(); 3258 auto *Length = E->getLength(); 3259 llvm::APSInt ConstLength; 3260 if (Length) { 3261 // Idx = LowerBound + Length - 1; 3262 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3263 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3264 Length = nullptr; 3265 } 3266 auto *LowerBound = E->getLowerBound(); 3267 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3268 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3269 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3270 LowerBound = nullptr; 3271 } 3272 if (!Length) 3273 --ConstLength; 3274 else if (!LowerBound) 3275 --ConstLowerBound; 3276 3277 if (Length || LowerBound) { 3278 auto *LowerBoundVal = 3279 LowerBound 3280 ? Builder.CreateIntCast( 3281 EmitScalarExpr(LowerBound), IntPtrTy, 3282 LowerBound->getType()->hasSignedIntegerRepresentation()) 3283 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3284 auto *LengthVal = 3285 Length 3286 ? Builder.CreateIntCast( 3287 EmitScalarExpr(Length), IntPtrTy, 3288 Length->getType()->hasSignedIntegerRepresentation()) 3289 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3290 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3291 /*HasNUW=*/false, 3292 !getLangOpts().isSignedOverflowDefined()); 3293 if (Length && LowerBound) { 3294 Idx = Builder.CreateSub( 3295 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3296 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3297 } 3298 } else 3299 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3300 } else { 3301 // Idx = ArraySize - 1; 3302 QualType ArrayTy = BaseTy->isPointerType() 3303 ? E->getBase()->IgnoreParenImpCasts()->getType() 3304 : BaseTy; 3305 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3306 Length = VAT->getSizeExpr(); 3307 if (Length->isIntegerConstantExpr(ConstLength, C)) 3308 Length = nullptr; 3309 } else { 3310 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3311 ConstLength = CAT->getSize(); 3312 } 3313 if (Length) { 3314 auto *LengthVal = Builder.CreateIntCast( 3315 EmitScalarExpr(Length), IntPtrTy, 3316 Length->getType()->hasSignedIntegerRepresentation()); 3317 Idx = Builder.CreateSub( 3318 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3319 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3320 } else { 3321 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3322 --ConstLength; 3323 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3324 } 3325 } 3326 } 3327 assert(Idx); 3328 3329 Address EltPtr = Address::invalid(); 3330 AlignmentSource AlignSource; 3331 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3332 // The base must be a pointer, which is not an aggregate. Emit 3333 // it. It needs to be emitted first in case it's what captures 3334 // the VLA bounds. 3335 Address Base = 3336 emitOMPArraySectionBase(*this, E->getBase(), AlignSource, BaseTy, 3337 VLA->getElementType(), IsLowerBound); 3338 // The element count here is the total number of non-VLA elements. 3339 llvm::Value *NumElements = getVLASize(VLA).first; 3340 3341 // Effectively, the multiply by the VLA size is part of the GEP. 3342 // GEP indexes are signed, and scaling an index isn't permitted to 3343 // signed-overflow, so we use the same semantics for our explicit 3344 // multiply. We suppress this if overflow is not undefined behavior. 3345 if (getLangOpts().isSignedOverflowDefined()) 3346 Idx = Builder.CreateMul(Idx, NumElements); 3347 else 3348 Idx = Builder.CreateNSWMul(Idx, NumElements); 3349 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3350 !getLangOpts().isSignedOverflowDefined()); 3351 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3352 // If this is A[i] where A is an array, the frontend will have decayed the 3353 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3354 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3355 // "gep x, i" here. Emit one "gep A, 0, i". 3356 assert(Array->getType()->isArrayType() && 3357 "Array to pointer decay must have array source type!"); 3358 LValue ArrayLV; 3359 // For simple multidimensional array indexing, set the 'accessed' flag for 3360 // better bounds-checking of the base expression. 3361 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3362 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3363 else 3364 ArrayLV = EmitLValue(Array); 3365 3366 // Propagate the alignment from the array itself to the result. 3367 EltPtr = emitArraySubscriptGEP( 3368 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3369 ResultExprTy, !getLangOpts().isSignedOverflowDefined()); 3370 AlignSource = ArrayLV.getAlignmentSource(); 3371 } else { 3372 Address Base = emitOMPArraySectionBase(*this, E->getBase(), AlignSource, 3373 BaseTy, ResultExprTy, IsLowerBound); 3374 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3375 !getLangOpts().isSignedOverflowDefined()); 3376 } 3377 3378 return MakeAddrLValue(EltPtr, ResultExprTy, AlignSource); 3379 } 3380 3381 LValue CodeGenFunction:: 3382 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3383 // Emit the base vector as an l-value. 3384 LValue Base; 3385 3386 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3387 if (E->isArrow()) { 3388 // If it is a pointer to a vector, emit the address and form an lvalue with 3389 // it. 3390 AlignmentSource AlignSource; 3391 Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3392 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3393 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource); 3394 Base.getQuals().removeObjCGCAttr(); 3395 } else if (E->getBase()->isGLValue()) { 3396 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3397 // emit the base as an lvalue. 3398 assert(E->getBase()->getType()->isVectorType()); 3399 Base = EmitLValue(E->getBase()); 3400 } else { 3401 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3402 assert(E->getBase()->getType()->isVectorType() && 3403 "Result must be a vector"); 3404 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3405 3406 // Store the vector to memory (because LValue wants an address). 3407 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3408 Builder.CreateStore(Vec, VecMem); 3409 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3410 AlignmentSource::Decl); 3411 } 3412 3413 QualType type = 3414 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3415 3416 // Encode the element access list into a vector of unsigned indices. 3417 SmallVector<uint32_t, 4> Indices; 3418 E->getEncodedElementAccess(Indices); 3419 3420 if (Base.isSimple()) { 3421 llvm::Constant *CV = 3422 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3423 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3424 Base.getAlignmentSource()); 3425 } 3426 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3427 3428 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3429 SmallVector<llvm::Constant *, 4> CElts; 3430 3431 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3432 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3433 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3434 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3435 Base.getAlignmentSource()); 3436 } 3437 3438 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3439 Expr *BaseExpr = E->getBase(); 3440 3441 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3442 LValue BaseLV; 3443 if (E->isArrow()) { 3444 AlignmentSource AlignSource; 3445 Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource); 3446 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3447 SanitizerSet SkippedChecks; 3448 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3449 if (IsBaseCXXThis) 3450 SkippedChecks.set(SanitizerKind::Alignment, true); 3451 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3452 SkippedChecks.set(SanitizerKind::Null, true); 3453 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3454 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3455 BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource); 3456 } else 3457 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3458 3459 NamedDecl *ND = E->getMemberDecl(); 3460 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3461 LValue LV = EmitLValueForField(BaseLV, Field); 3462 setObjCGCLValueClass(getContext(), E, LV); 3463 return LV; 3464 } 3465 3466 if (auto *VD = dyn_cast<VarDecl>(ND)) 3467 return EmitGlobalVarDeclLValue(*this, E, VD); 3468 3469 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3470 return EmitFunctionDeclLValue(*this, E, FD); 3471 3472 llvm_unreachable("Unhandled member declaration!"); 3473 } 3474 3475 /// Given that we are currently emitting a lambda, emit an l-value for 3476 /// one of its members. 3477 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3478 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3479 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3480 QualType LambdaTagType = 3481 getContext().getTagDeclType(Field->getParent()); 3482 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3483 return EmitLValueForField(LambdaLV, Field); 3484 } 3485 3486 /// Drill down to the storage of a field without walking into 3487 /// reference types. 3488 /// 3489 /// The resulting address doesn't necessarily have the right type. 3490 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3491 const FieldDecl *field) { 3492 const RecordDecl *rec = field->getParent(); 3493 3494 unsigned idx = 3495 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3496 3497 CharUnits offset; 3498 // Adjust the alignment down to the given offset. 3499 // As a special case, if the LLVM field index is 0, we know that this 3500 // is zero. 3501 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3502 .getFieldOffset(field->getFieldIndex()) == 0) && 3503 "LLVM field at index zero had non-zero offset?"); 3504 if (idx != 0) { 3505 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3506 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3507 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3508 } 3509 3510 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3511 } 3512 3513 LValue CodeGenFunction::EmitLValueForField(LValue base, 3514 const FieldDecl *field) { 3515 AlignmentSource fieldAlignSource = 3516 getFieldAlignmentSource(base.getAlignmentSource()); 3517 3518 if (field->isBitField()) { 3519 const CGRecordLayout &RL = 3520 CGM.getTypes().getCGRecordLayout(field->getParent()); 3521 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3522 Address Addr = base.getAddress(); 3523 unsigned Idx = RL.getLLVMFieldNo(field); 3524 if (Idx != 0) 3525 // For structs, we GEP to the field that the record layout suggests. 3526 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3527 field->getName()); 3528 // Get the access type. 3529 llvm::Type *FieldIntTy = 3530 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3531 if (Addr.getElementType() != FieldIntTy) 3532 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3533 3534 QualType fieldType = 3535 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3536 return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource); 3537 } 3538 3539 const RecordDecl *rec = field->getParent(); 3540 QualType type = field->getType(); 3541 3542 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 3543 3544 Address addr = base.getAddress(); 3545 unsigned cvr = base.getVRQualifiers(); 3546 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3547 if (rec->isUnion()) { 3548 // For unions, there is no pointer adjustment. 3549 assert(!type->isReferenceType() && "union has reference member"); 3550 // TODO: handle path-aware TBAA for union. 3551 TBAAPath = false; 3552 } else { 3553 // For structs, we GEP to the field that the record layout suggests. 3554 addr = emitAddrOfFieldStorage(*this, addr, field); 3555 3556 // If this is a reference field, load the reference right now. 3557 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3558 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3559 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3560 3561 // Loading the reference will disable path-aware TBAA. 3562 TBAAPath = false; 3563 if (CGM.shouldUseTBAA()) { 3564 llvm::MDNode *tbaa; 3565 if (mayAlias) 3566 tbaa = CGM.getTBAAInfo(getContext().CharTy); 3567 else 3568 tbaa = CGM.getTBAAInfo(type); 3569 if (tbaa) 3570 CGM.DecorateInstructionWithTBAA(load, tbaa); 3571 } 3572 3573 mayAlias = false; 3574 type = refType->getPointeeType(); 3575 3576 CharUnits alignment = 3577 getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true); 3578 addr = Address(load, alignment); 3579 3580 // Qualifiers on the struct don't apply to the referencee, and 3581 // we'll pick up CVR from the actual type later, so reset these 3582 // additional qualifiers now. 3583 cvr = 0; 3584 } 3585 } 3586 3587 // Make sure that the address is pointing to the right type. This is critical 3588 // for both unions and structs. A union needs a bitcast, a struct element 3589 // will need a bitcast if the LLVM type laid out doesn't match the desired 3590 // type. 3591 addr = Builder.CreateElementBitCast(addr, 3592 CGM.getTypes().ConvertTypeForMem(type), 3593 field->getName()); 3594 3595 if (field->hasAttr<AnnotateAttr>()) 3596 addr = EmitFieldAnnotations(field, addr); 3597 3598 LValue LV = MakeAddrLValue(addr, type, fieldAlignSource); 3599 LV.getQuals().addCVRQualifiers(cvr); 3600 if (TBAAPath) { 3601 const ASTRecordLayout &Layout = 3602 getContext().getASTRecordLayout(field->getParent()); 3603 // Set the base type to be the base type of the base LValue and 3604 // update offset to be relative to the base type. 3605 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 3606 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 3607 Layout.getFieldOffset(field->getFieldIndex()) / 3608 getContext().getCharWidth()); 3609 } 3610 3611 // __weak attribute on a field is ignored. 3612 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3613 LV.getQuals().removeObjCGCAttr(); 3614 3615 // Fields of may_alias structs act like 'char' for TBAA purposes. 3616 // FIXME: this should get propagated down through anonymous structs 3617 // and unions. 3618 if (mayAlias && LV.getTBAAInfo()) 3619 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 3620 3621 return LV; 3622 } 3623 3624 LValue 3625 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3626 const FieldDecl *Field) { 3627 QualType FieldType = Field->getType(); 3628 3629 if (!FieldType->isReferenceType()) 3630 return EmitLValueForField(Base, Field); 3631 3632 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3633 3634 // Make sure that the address is pointing to the right type. 3635 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3636 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3637 3638 // TODO: access-path TBAA? 3639 auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource()); 3640 return MakeAddrLValue(V, FieldType, FieldAlignSource); 3641 } 3642 3643 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3644 if (E->isFileScope()) { 3645 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3646 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3647 } 3648 if (E->getType()->isVariablyModifiedType()) 3649 // make sure to emit the VLA size. 3650 EmitVariablyModifiedType(E->getType()); 3651 3652 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3653 const Expr *InitExpr = E->getInitializer(); 3654 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3655 3656 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3657 /*Init*/ true); 3658 3659 return Result; 3660 } 3661 3662 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3663 if (!E->isGLValue()) 3664 // Initializing an aggregate temporary in C++11: T{...}. 3665 return EmitAggExprToLValue(E); 3666 3667 // An lvalue initializer list must be initializing a reference. 3668 assert(E->isTransparent() && "non-transparent glvalue init list"); 3669 return EmitLValue(E->getInit(0)); 3670 } 3671 3672 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3673 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3674 /// LValue is returned and the current block has been terminated. 3675 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3676 const Expr *Operand) { 3677 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3678 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3679 return None; 3680 } 3681 3682 return CGF.EmitLValue(Operand); 3683 } 3684 3685 LValue CodeGenFunction:: 3686 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3687 if (!expr->isGLValue()) { 3688 // ?: here should be an aggregate. 3689 assert(hasAggregateEvaluationKind(expr->getType()) && 3690 "Unexpected conditional operator!"); 3691 return EmitAggExprToLValue(expr); 3692 } 3693 3694 OpaqueValueMapping binding(*this, expr); 3695 3696 const Expr *condExpr = expr->getCond(); 3697 bool CondExprBool; 3698 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3699 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3700 if (!CondExprBool) std::swap(live, dead); 3701 3702 if (!ContainsLabel(dead)) { 3703 // If the true case is live, we need to track its region. 3704 if (CondExprBool) 3705 incrementProfileCounter(expr); 3706 return EmitLValue(live); 3707 } 3708 } 3709 3710 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3711 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3712 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3713 3714 ConditionalEvaluation eval(*this); 3715 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3716 3717 // Any temporaries created here are conditional. 3718 EmitBlock(lhsBlock); 3719 incrementProfileCounter(expr); 3720 eval.begin(*this); 3721 Optional<LValue> lhs = 3722 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3723 eval.end(*this); 3724 3725 if (lhs && !lhs->isSimple()) 3726 return EmitUnsupportedLValue(expr, "conditional operator"); 3727 3728 lhsBlock = Builder.GetInsertBlock(); 3729 if (lhs) 3730 Builder.CreateBr(contBlock); 3731 3732 // Any temporaries created here are conditional. 3733 EmitBlock(rhsBlock); 3734 eval.begin(*this); 3735 Optional<LValue> rhs = 3736 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3737 eval.end(*this); 3738 if (rhs && !rhs->isSimple()) 3739 return EmitUnsupportedLValue(expr, "conditional operator"); 3740 rhsBlock = Builder.GetInsertBlock(); 3741 3742 EmitBlock(contBlock); 3743 3744 if (lhs && rhs) { 3745 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3746 2, "cond-lvalue"); 3747 phi->addIncoming(lhs->getPointer(), lhsBlock); 3748 phi->addIncoming(rhs->getPointer(), rhsBlock); 3749 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3750 AlignmentSource alignSource = 3751 std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource()); 3752 return MakeAddrLValue(result, expr->getType(), alignSource); 3753 } else { 3754 assert((lhs || rhs) && 3755 "both operands of glvalue conditional are throw-expressions?"); 3756 return lhs ? *lhs : *rhs; 3757 } 3758 } 3759 3760 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3761 /// type. If the cast is to a reference, we can have the usual lvalue result, 3762 /// otherwise if a cast is needed by the code generator in an lvalue context, 3763 /// then it must mean that we need the address of an aggregate in order to 3764 /// access one of its members. This can happen for all the reasons that casts 3765 /// are permitted with aggregate result, including noop aggregate casts, and 3766 /// cast from scalar to union. 3767 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3768 switch (E->getCastKind()) { 3769 case CK_ToVoid: 3770 case CK_BitCast: 3771 case CK_ArrayToPointerDecay: 3772 case CK_FunctionToPointerDecay: 3773 case CK_NullToMemberPointer: 3774 case CK_NullToPointer: 3775 case CK_IntegralToPointer: 3776 case CK_PointerToIntegral: 3777 case CK_PointerToBoolean: 3778 case CK_VectorSplat: 3779 case CK_IntegralCast: 3780 case CK_BooleanToSignedIntegral: 3781 case CK_IntegralToBoolean: 3782 case CK_IntegralToFloating: 3783 case CK_FloatingToIntegral: 3784 case CK_FloatingToBoolean: 3785 case CK_FloatingCast: 3786 case CK_FloatingRealToComplex: 3787 case CK_FloatingComplexToReal: 3788 case CK_FloatingComplexToBoolean: 3789 case CK_FloatingComplexCast: 3790 case CK_FloatingComplexToIntegralComplex: 3791 case CK_IntegralRealToComplex: 3792 case CK_IntegralComplexToReal: 3793 case CK_IntegralComplexToBoolean: 3794 case CK_IntegralComplexCast: 3795 case CK_IntegralComplexToFloatingComplex: 3796 case CK_DerivedToBaseMemberPointer: 3797 case CK_BaseToDerivedMemberPointer: 3798 case CK_MemberPointerToBoolean: 3799 case CK_ReinterpretMemberPointer: 3800 case CK_AnyPointerToBlockPointerCast: 3801 case CK_ARCProduceObject: 3802 case CK_ARCConsumeObject: 3803 case CK_ARCReclaimReturnedObject: 3804 case CK_ARCExtendBlockObject: 3805 case CK_CopyAndAutoreleaseBlockObject: 3806 case CK_AddressSpaceConversion: 3807 case CK_IntToOCLSampler: 3808 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3809 3810 case CK_Dependent: 3811 llvm_unreachable("dependent cast kind in IR gen!"); 3812 3813 case CK_BuiltinFnToFnPtr: 3814 llvm_unreachable("builtin functions are handled elsewhere"); 3815 3816 // These are never l-values; just use the aggregate emission code. 3817 case CK_NonAtomicToAtomic: 3818 case CK_AtomicToNonAtomic: 3819 return EmitAggExprToLValue(E); 3820 3821 case CK_Dynamic: { 3822 LValue LV = EmitLValue(E->getSubExpr()); 3823 Address V = LV.getAddress(); 3824 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3825 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3826 } 3827 3828 case CK_ConstructorConversion: 3829 case CK_UserDefinedConversion: 3830 case CK_CPointerToObjCPointerCast: 3831 case CK_BlockPointerToObjCPointerCast: 3832 case CK_NoOp: 3833 case CK_LValueToRValue: 3834 return EmitLValue(E->getSubExpr()); 3835 3836 case CK_UncheckedDerivedToBase: 3837 case CK_DerivedToBase: { 3838 const RecordType *DerivedClassTy = 3839 E->getSubExpr()->getType()->getAs<RecordType>(); 3840 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3841 3842 LValue LV = EmitLValue(E->getSubExpr()); 3843 Address This = LV.getAddress(); 3844 3845 // Perform the derived-to-base conversion 3846 Address Base = GetAddressOfBaseClass( 3847 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3848 /*NullCheckValue=*/false, E->getExprLoc()); 3849 3850 return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource()); 3851 } 3852 case CK_ToUnion: 3853 return EmitAggExprToLValue(E); 3854 case CK_BaseToDerived: { 3855 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3856 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3857 3858 LValue LV = EmitLValue(E->getSubExpr()); 3859 3860 // Perform the base-to-derived conversion 3861 Address Derived = 3862 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3863 E->path_begin(), E->path_end(), 3864 /*NullCheckValue=*/false); 3865 3866 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3867 // performed and the object is not of the derived type. 3868 if (sanitizePerformTypeCheck()) 3869 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3870 Derived.getPointer(), E->getType()); 3871 3872 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3873 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 3874 /*MayBeNull=*/false, 3875 CFITCK_DerivedCast, E->getLocStart()); 3876 3877 return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource()); 3878 } 3879 case CK_LValueBitCast: { 3880 // This must be a reinterpret_cast (or c-style equivalent). 3881 const auto *CE = cast<ExplicitCastExpr>(E); 3882 3883 CGM.EmitExplicitCastExprType(CE, this); 3884 LValue LV = EmitLValue(E->getSubExpr()); 3885 Address V = Builder.CreateBitCast(LV.getAddress(), 3886 ConvertType(CE->getTypeAsWritten())); 3887 3888 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 3889 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 3890 /*MayBeNull=*/false, 3891 CFITCK_UnrelatedCast, E->getLocStart()); 3892 3893 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3894 } 3895 case CK_ObjCObjectLValueCast: { 3896 LValue LV = EmitLValue(E->getSubExpr()); 3897 Address V = Builder.CreateElementBitCast(LV.getAddress(), 3898 ConvertType(E->getType())); 3899 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3900 } 3901 case CK_ZeroToOCLQueue: 3902 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 3903 case CK_ZeroToOCLEvent: 3904 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 3905 } 3906 3907 llvm_unreachable("Unhandled lvalue cast kind?"); 3908 } 3909 3910 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 3911 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 3912 return getOpaqueLValueMapping(e); 3913 } 3914 3915 RValue CodeGenFunction::EmitRValueForField(LValue LV, 3916 const FieldDecl *FD, 3917 SourceLocation Loc) { 3918 QualType FT = FD->getType(); 3919 LValue FieldLV = EmitLValueForField(LV, FD); 3920 switch (getEvaluationKind(FT)) { 3921 case TEK_Complex: 3922 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 3923 case TEK_Aggregate: 3924 return FieldLV.asAggregateRValue(); 3925 case TEK_Scalar: 3926 // This routine is used to load fields one-by-one to perform a copy, so 3927 // don't load reference fields. 3928 if (FD->getType()->isReferenceType()) 3929 return RValue::get(FieldLV.getPointer()); 3930 return EmitLoadOfLValue(FieldLV, Loc); 3931 } 3932 llvm_unreachable("bad evaluation kind"); 3933 } 3934 3935 //===--------------------------------------------------------------------===// 3936 // Expression Emission 3937 //===--------------------------------------------------------------------===// 3938 3939 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 3940 ReturnValueSlot ReturnValue) { 3941 // Builtins never have block type. 3942 if (E->getCallee()->getType()->isBlockPointerType()) 3943 return EmitBlockCallExpr(E, ReturnValue); 3944 3945 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 3946 return EmitCXXMemberCallExpr(CE, ReturnValue); 3947 3948 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 3949 return EmitCUDAKernelCallExpr(CE, ReturnValue); 3950 3951 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 3952 if (const CXXMethodDecl *MD = 3953 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 3954 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 3955 3956 CGCallee callee = EmitCallee(E->getCallee()); 3957 3958 if (callee.isBuiltin()) { 3959 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 3960 E, ReturnValue); 3961 } 3962 3963 if (callee.isPseudoDestructor()) { 3964 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 3965 } 3966 3967 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 3968 } 3969 3970 /// Emit a CallExpr without considering whether it might be a subclass. 3971 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 3972 ReturnValueSlot ReturnValue) { 3973 CGCallee Callee = EmitCallee(E->getCallee()); 3974 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 3975 } 3976 3977 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 3978 if (auto builtinID = FD->getBuiltinID()) { 3979 return CGCallee::forBuiltin(builtinID, FD); 3980 } 3981 3982 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 3983 return CGCallee::forDirect(calleePtr, FD); 3984 } 3985 3986 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 3987 E = E->IgnoreParens(); 3988 3989 // Look through function-to-pointer decay. 3990 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 3991 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 3992 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 3993 return EmitCallee(ICE->getSubExpr()); 3994 } 3995 3996 // Resolve direct calls. 3997 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 3998 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3999 return EmitDirectCallee(*this, FD); 4000 } 4001 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4002 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4003 EmitIgnoredExpr(ME->getBase()); 4004 return EmitDirectCallee(*this, FD); 4005 } 4006 4007 // Look through template substitutions. 4008 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4009 return EmitCallee(NTTP->getReplacement()); 4010 4011 // Treat pseudo-destructor calls differently. 4012 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4013 return CGCallee::forPseudoDestructor(PDE); 4014 } 4015 4016 // Otherwise, we have an indirect reference. 4017 llvm::Value *calleePtr; 4018 QualType functionType; 4019 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4020 calleePtr = EmitScalarExpr(E); 4021 functionType = ptrType->getPointeeType(); 4022 } else { 4023 functionType = E->getType(); 4024 calleePtr = EmitLValue(E).getPointer(); 4025 } 4026 assert(functionType->isFunctionType()); 4027 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4028 E->getReferencedDeclOfCallee()); 4029 CGCallee callee(calleeInfo, calleePtr); 4030 return callee; 4031 } 4032 4033 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4034 // Comma expressions just emit their LHS then their RHS as an l-value. 4035 if (E->getOpcode() == BO_Comma) { 4036 EmitIgnoredExpr(E->getLHS()); 4037 EnsureInsertPoint(); 4038 return EmitLValue(E->getRHS()); 4039 } 4040 4041 if (E->getOpcode() == BO_PtrMemD || 4042 E->getOpcode() == BO_PtrMemI) 4043 return EmitPointerToDataMemberBinaryExpr(E); 4044 4045 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4046 4047 // Note that in all of these cases, __block variables need the RHS 4048 // evaluated first just in case the variable gets moved by the RHS. 4049 4050 switch (getEvaluationKind(E->getType())) { 4051 case TEK_Scalar: { 4052 switch (E->getLHS()->getType().getObjCLifetime()) { 4053 case Qualifiers::OCL_Strong: 4054 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4055 4056 case Qualifiers::OCL_Autoreleasing: 4057 return EmitARCStoreAutoreleasing(E).first; 4058 4059 // No reason to do any of these differently. 4060 case Qualifiers::OCL_None: 4061 case Qualifiers::OCL_ExplicitNone: 4062 case Qualifiers::OCL_Weak: 4063 break; 4064 } 4065 4066 RValue RV = EmitAnyExpr(E->getRHS()); 4067 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4068 if (RV.isScalar()) 4069 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4070 EmitStoreThroughLValue(RV, LV); 4071 return LV; 4072 } 4073 4074 case TEK_Complex: 4075 return EmitComplexAssignmentLValue(E); 4076 4077 case TEK_Aggregate: 4078 return EmitAggExprToLValue(E); 4079 } 4080 llvm_unreachable("bad evaluation kind"); 4081 } 4082 4083 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4084 RValue RV = EmitCallExpr(E); 4085 4086 if (!RV.isScalar()) 4087 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4088 AlignmentSource::Decl); 4089 4090 assert(E->getCallReturnType(getContext())->isReferenceType() && 4091 "Can't have a scalar return unless the return type is a " 4092 "reference type!"); 4093 4094 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4095 } 4096 4097 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4098 // FIXME: This shouldn't require another copy. 4099 return EmitAggExprToLValue(E); 4100 } 4101 4102 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4103 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4104 && "binding l-value to type which needs a temporary"); 4105 AggValueSlot Slot = CreateAggTemp(E->getType()); 4106 EmitCXXConstructExpr(E, Slot); 4107 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4108 AlignmentSource::Decl); 4109 } 4110 4111 LValue 4112 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4113 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4114 } 4115 4116 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4117 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4118 ConvertType(E->getType())); 4119 } 4120 4121 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4122 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4123 AlignmentSource::Decl); 4124 } 4125 4126 LValue 4127 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4128 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4129 Slot.setExternallyDestructed(); 4130 EmitAggExpr(E->getSubExpr(), Slot); 4131 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4132 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4133 AlignmentSource::Decl); 4134 } 4135 4136 LValue 4137 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4138 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4139 EmitLambdaExpr(E, Slot); 4140 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4141 AlignmentSource::Decl); 4142 } 4143 4144 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4145 RValue RV = EmitObjCMessageExpr(E); 4146 4147 if (!RV.isScalar()) 4148 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4149 AlignmentSource::Decl); 4150 4151 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4152 "Can't have a scalar return unless the return type is a " 4153 "reference type!"); 4154 4155 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4156 } 4157 4158 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4159 Address V = 4160 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4161 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4162 } 4163 4164 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4165 const ObjCIvarDecl *Ivar) { 4166 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4167 } 4168 4169 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4170 llvm::Value *BaseValue, 4171 const ObjCIvarDecl *Ivar, 4172 unsigned CVRQualifiers) { 4173 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4174 Ivar, CVRQualifiers); 4175 } 4176 4177 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4178 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4179 llvm::Value *BaseValue = nullptr; 4180 const Expr *BaseExpr = E->getBase(); 4181 Qualifiers BaseQuals; 4182 QualType ObjectTy; 4183 if (E->isArrow()) { 4184 BaseValue = EmitScalarExpr(BaseExpr); 4185 ObjectTy = BaseExpr->getType()->getPointeeType(); 4186 BaseQuals = ObjectTy.getQualifiers(); 4187 } else { 4188 LValue BaseLV = EmitLValue(BaseExpr); 4189 BaseValue = BaseLV.getPointer(); 4190 ObjectTy = BaseExpr->getType(); 4191 BaseQuals = ObjectTy.getQualifiers(); 4192 } 4193 4194 LValue LV = 4195 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4196 BaseQuals.getCVRQualifiers()); 4197 setObjCGCLValueClass(getContext(), E, LV); 4198 return LV; 4199 } 4200 4201 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4202 // Can only get l-value for message expression returning aggregate type 4203 RValue RV = EmitAnyExprToTemp(E); 4204 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4205 AlignmentSource::Decl); 4206 } 4207 4208 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4209 const CallExpr *E, ReturnValueSlot ReturnValue, 4210 llvm::Value *Chain) { 4211 // Get the actual function type. The callee type will always be a pointer to 4212 // function type or a block pointer type. 4213 assert(CalleeType->isFunctionPointerType() && 4214 "Call must have function pointer type!"); 4215 4216 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4217 4218 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4219 // We can only guarantee that a function is called from the correct 4220 // context/function based on the appropriate target attributes, 4221 // so only check in the case where we have both always_inline and target 4222 // since otherwise we could be making a conditional call after a check for 4223 // the proper cpu features (and it won't cause code generation issues due to 4224 // function based code generation). 4225 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4226 TargetDecl->hasAttr<TargetAttr>()) 4227 checkTargetFeatures(E, FD); 4228 4229 CalleeType = getContext().getCanonicalType(CalleeType); 4230 4231 const auto *FnType = 4232 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4233 4234 CGCallee Callee = OrigCallee; 4235 4236 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4237 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4238 if (llvm::Constant *PrefixSig = 4239 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4240 SanitizerScope SanScope(this); 4241 llvm::Constant *FTRTTIConst = 4242 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4243 llvm::Type *PrefixStructTyElems[] = { 4244 PrefixSig->getType(), 4245 FTRTTIConst->getType() 4246 }; 4247 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4248 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4249 4250 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4251 4252 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4253 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4254 llvm::Value *CalleeSigPtr = 4255 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4256 llvm::Value *CalleeSig = 4257 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4258 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4259 4260 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4261 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4262 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4263 4264 EmitBlock(TypeCheck); 4265 llvm::Value *CalleeRTTIPtr = 4266 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4267 llvm::Value *CalleeRTTI = 4268 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4269 llvm::Value *CalleeRTTIMatch = 4270 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4271 llvm::Constant *StaticData[] = { 4272 EmitCheckSourceLocation(E->getLocStart()), 4273 EmitCheckTypeDescriptor(CalleeType) 4274 }; 4275 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4276 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4277 4278 Builder.CreateBr(Cont); 4279 EmitBlock(Cont); 4280 } 4281 } 4282 4283 // If we are checking indirect calls and this call is indirect, check that the 4284 // function pointer is a member of the bit set for the function type. 4285 if (SanOpts.has(SanitizerKind::CFIICall) && 4286 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4287 SanitizerScope SanScope(this); 4288 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4289 4290 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4291 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4292 4293 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4294 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4295 llvm::Value *TypeTest = Builder.CreateCall( 4296 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4297 4298 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4299 llvm::Constant *StaticData[] = { 4300 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4301 EmitCheckSourceLocation(E->getLocStart()), 4302 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4303 }; 4304 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4305 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4306 CastedCallee, StaticData); 4307 } else { 4308 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4309 SanitizerHandler::CFICheckFail, StaticData, 4310 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4311 } 4312 } 4313 4314 CallArgList Args; 4315 if (Chain) 4316 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4317 CGM.getContext().VoidPtrTy); 4318 4319 // C++17 requires that we evaluate arguments to a call using assignment syntax 4320 // right-to-left, and that we evaluate arguments to certain other operators 4321 // left-to-right. Note that we allow this to override the order dictated by 4322 // the calling convention on the MS ABI, which means that parameter 4323 // destruction order is not necessarily reverse construction order. 4324 // FIXME: Revisit this based on C++ committee response to unimplementability. 4325 EvaluationOrder Order = EvaluationOrder::Default; 4326 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4327 if (OCE->isAssignmentOp()) 4328 Order = EvaluationOrder::ForceRightToLeft; 4329 else { 4330 switch (OCE->getOperator()) { 4331 case OO_LessLess: 4332 case OO_GreaterGreater: 4333 case OO_AmpAmp: 4334 case OO_PipePipe: 4335 case OO_Comma: 4336 case OO_ArrowStar: 4337 Order = EvaluationOrder::ForceLeftToRight; 4338 break; 4339 default: 4340 break; 4341 } 4342 } 4343 } 4344 4345 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4346 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4347 4348 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4349 Args, FnType, /*isChainCall=*/Chain); 4350 4351 // C99 6.5.2.2p6: 4352 // If the expression that denotes the called function has a type 4353 // that does not include a prototype, [the default argument 4354 // promotions are performed]. If the number of arguments does not 4355 // equal the number of parameters, the behavior is undefined. If 4356 // the function is defined with a type that includes a prototype, 4357 // and either the prototype ends with an ellipsis (, ...) or the 4358 // types of the arguments after promotion are not compatible with 4359 // the types of the parameters, the behavior is undefined. If the 4360 // function is defined with a type that does not include a 4361 // prototype, and the types of the arguments after promotion are 4362 // not compatible with those of the parameters after promotion, 4363 // the behavior is undefined [except in some trivial cases]. 4364 // That is, in the general case, we should assume that a call 4365 // through an unprototyped function type works like a *non-variadic* 4366 // call. The way we make this work is to cast to the exact type 4367 // of the promoted arguments. 4368 // 4369 // Chain calls use this same code path to add the invisible chain parameter 4370 // to the function type. 4371 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4372 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4373 CalleeTy = CalleeTy->getPointerTo(); 4374 4375 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4376 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4377 Callee.setFunctionPointer(CalleePtr); 4378 } 4379 4380 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4381 } 4382 4383 LValue CodeGenFunction:: 4384 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4385 Address BaseAddr = Address::invalid(); 4386 if (E->getOpcode() == BO_PtrMemI) { 4387 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4388 } else { 4389 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4390 } 4391 4392 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4393 4394 const MemberPointerType *MPT 4395 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4396 4397 AlignmentSource AlignSource; 4398 Address MemberAddr = 4399 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, 4400 &AlignSource); 4401 4402 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource); 4403 } 4404 4405 /// Given the address of a temporary variable, produce an r-value of 4406 /// its type. 4407 RValue CodeGenFunction::convertTempToRValue(Address addr, 4408 QualType type, 4409 SourceLocation loc) { 4410 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4411 switch (getEvaluationKind(type)) { 4412 case TEK_Complex: 4413 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4414 case TEK_Aggregate: 4415 return lvalue.asAggregateRValue(); 4416 case TEK_Scalar: 4417 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4418 } 4419 llvm_unreachable("bad evaluation kind"); 4420 } 4421 4422 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4423 assert(Val->getType()->isFPOrFPVectorTy()); 4424 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4425 return; 4426 4427 llvm::MDBuilder MDHelper(getLLVMContext()); 4428 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4429 4430 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4431 } 4432 4433 namespace { 4434 struct LValueOrRValue { 4435 LValue LV; 4436 RValue RV; 4437 }; 4438 } 4439 4440 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4441 const PseudoObjectExpr *E, 4442 bool forLValue, 4443 AggValueSlot slot) { 4444 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4445 4446 // Find the result expression, if any. 4447 const Expr *resultExpr = E->getResultExpr(); 4448 LValueOrRValue result; 4449 4450 for (PseudoObjectExpr::const_semantics_iterator 4451 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4452 const Expr *semantic = *i; 4453 4454 // If this semantic expression is an opaque value, bind it 4455 // to the result of its source expression. 4456 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4457 4458 // If this is the result expression, we may need to evaluate 4459 // directly into the slot. 4460 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4461 OVMA opaqueData; 4462 if (ov == resultExpr && ov->isRValue() && !forLValue && 4463 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4464 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4465 4466 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4467 AlignmentSource::Decl); 4468 opaqueData = OVMA::bind(CGF, ov, LV); 4469 result.RV = slot.asRValue(); 4470 4471 // Otherwise, emit as normal. 4472 } else { 4473 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4474 4475 // If this is the result, also evaluate the result now. 4476 if (ov == resultExpr) { 4477 if (forLValue) 4478 result.LV = CGF.EmitLValue(ov); 4479 else 4480 result.RV = CGF.EmitAnyExpr(ov, slot); 4481 } 4482 } 4483 4484 opaques.push_back(opaqueData); 4485 4486 // Otherwise, if the expression is the result, evaluate it 4487 // and remember the result. 4488 } else if (semantic == resultExpr) { 4489 if (forLValue) 4490 result.LV = CGF.EmitLValue(semantic); 4491 else 4492 result.RV = CGF.EmitAnyExpr(semantic, slot); 4493 4494 // Otherwise, evaluate the expression in an ignored context. 4495 } else { 4496 CGF.EmitIgnoredExpr(semantic); 4497 } 4498 } 4499 4500 // Unbind all the opaques now. 4501 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4502 opaques[i].unbind(CGF); 4503 4504 return result; 4505 } 4506 4507 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4508 AggValueSlot slot) { 4509 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4510 } 4511 4512 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4513 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4514 } 4515