1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/ADT/Hashing.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/Support/ConvertUTF.h" 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 //===--------------------------------------------------------------------===// 39 // Miscellaneous Helper Methods 40 //===--------------------------------------------------------------------===// 41 42 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 43 unsigned addressSpace = 44 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 45 46 llvm::PointerType *destType = Int8PtrTy; 47 if (addressSpace) 48 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 49 50 if (value->getType() == destType) return value; 51 return Builder.CreateBitCast(value, destType); 52 } 53 54 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 55 /// block. 56 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 57 const Twine &Name) { 58 if (!Builder.isNamePreserving()) 59 return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt); 60 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt); 61 } 62 63 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 64 llvm::Value *Init) { 65 auto *Store = new llvm::StoreInst(Init, Var); 66 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 67 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 68 } 69 70 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 71 const Twine &Name) { 72 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 73 // FIXME: Should we prefer the preferred type alignment here? 74 CharUnits Align = getContext().getTypeAlignInChars(Ty); 75 Alloc->setAlignment(Align.getQuantity()); 76 return Alloc; 77 } 78 79 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 80 const Twine &Name) { 81 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 82 // FIXME: Should we prefer the preferred type alignment here? 83 CharUnits Align = getContext().getTypeAlignInChars(Ty); 84 Alloc->setAlignment(Align.getQuantity()); 85 return Alloc; 86 } 87 88 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 89 /// expression and compare the result against zero, returning an Int1Ty value. 90 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 91 PGO.setCurrentStmt(E); 92 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 93 llvm::Value *MemPtr = EmitScalarExpr(E); 94 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 95 } 96 97 QualType BoolTy = getContext().BoolTy; 98 if (!E->getType()->isAnyComplexType()) 99 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 100 101 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 102 } 103 104 /// EmitIgnoredExpr - Emit code to compute the specified expression, 105 /// ignoring the result. 106 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 107 if (E->isRValue()) 108 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 109 110 // Just emit it as an l-value and drop the result. 111 EmitLValue(E); 112 } 113 114 /// EmitAnyExpr - Emit code to compute the specified expression which 115 /// can have any type. The result is returned as an RValue struct. 116 /// If this is an aggregate expression, AggSlot indicates where the 117 /// result should be returned. 118 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 119 AggValueSlot aggSlot, 120 bool ignoreResult) { 121 switch (getEvaluationKind(E->getType())) { 122 case TEK_Scalar: 123 return RValue::get(EmitScalarExpr(E, ignoreResult)); 124 case TEK_Complex: 125 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 126 case TEK_Aggregate: 127 if (!ignoreResult && aggSlot.isIgnored()) 128 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 129 EmitAggExpr(E, aggSlot); 130 return aggSlot.asRValue(); 131 } 132 llvm_unreachable("bad evaluation kind"); 133 } 134 135 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 136 /// always be accessible even if no aggregate location is provided. 137 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 138 AggValueSlot AggSlot = AggValueSlot::ignored(); 139 140 if (hasAggregateEvaluationKind(E->getType())) 141 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 142 return EmitAnyExpr(E, AggSlot); 143 } 144 145 /// EmitAnyExprToMem - Evaluate an expression into a given memory 146 /// location. 147 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 148 llvm::Value *Location, 149 Qualifiers Quals, 150 bool IsInit) { 151 // FIXME: This function should take an LValue as an argument. 152 switch (getEvaluationKind(E->getType())) { 153 case TEK_Complex: 154 EmitComplexExprIntoLValue(E, 155 MakeNaturalAlignAddrLValue(Location, E->getType()), 156 /*isInit*/ false); 157 return; 158 159 case TEK_Aggregate: { 160 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 161 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 162 AggValueSlot::IsDestructed_t(IsInit), 163 AggValueSlot::DoesNotNeedGCBarriers, 164 AggValueSlot::IsAliased_t(!IsInit))); 165 return; 166 } 167 168 case TEK_Scalar: { 169 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 170 LValue LV = MakeAddrLValue(Location, E->getType()); 171 EmitStoreThroughLValue(RV, LV); 172 return; 173 } 174 } 175 llvm_unreachable("bad evaluation kind"); 176 } 177 178 static void 179 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 180 const Expr *E, llvm::Value *ReferenceTemporary) { 181 // Objective-C++ ARC: 182 // If we are binding a reference to a temporary that has ownership, we 183 // need to perform retain/release operations on the temporary. 184 // 185 // FIXME: This should be looking at E, not M. 186 if (CGF.getLangOpts().ObjCAutoRefCount && 187 M->getType()->isObjCLifetimeType()) { 188 QualType ObjCARCReferenceLifetimeType = M->getType(); 189 switch (Qualifiers::ObjCLifetime Lifetime = 190 ObjCARCReferenceLifetimeType.getObjCLifetime()) { 191 case Qualifiers::OCL_None: 192 case Qualifiers::OCL_ExplicitNone: 193 // Carry on to normal cleanup handling. 194 break; 195 196 case Qualifiers::OCL_Autoreleasing: 197 // Nothing to do; cleaned up by an autorelease pool. 198 return; 199 200 case Qualifiers::OCL_Strong: 201 case Qualifiers::OCL_Weak: 202 switch (StorageDuration Duration = M->getStorageDuration()) { 203 case SD_Static: 204 // Note: we intentionally do not register a cleanup to release 205 // the object on program termination. 206 return; 207 208 case SD_Thread: 209 // FIXME: We should probably register a cleanup in this case. 210 return; 211 212 case SD_Automatic: 213 case SD_FullExpression: 214 CodeGenFunction::Destroyer *Destroy; 215 CleanupKind CleanupKind; 216 if (Lifetime == Qualifiers::OCL_Strong) { 217 const ValueDecl *VD = M->getExtendingDecl(); 218 bool Precise = 219 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 220 CleanupKind = CGF.getARCCleanupKind(); 221 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 222 : &CodeGenFunction::destroyARCStrongImprecise; 223 } else { 224 // __weak objects always get EH cleanups; otherwise, exceptions 225 // could cause really nasty crashes instead of mere leaks. 226 CleanupKind = NormalAndEHCleanup; 227 Destroy = &CodeGenFunction::destroyARCWeak; 228 } 229 if (Duration == SD_FullExpression) 230 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 231 ObjCARCReferenceLifetimeType, *Destroy, 232 CleanupKind & EHCleanup); 233 else 234 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 235 ObjCARCReferenceLifetimeType, 236 *Destroy, CleanupKind & EHCleanup); 237 return; 238 239 case SD_Dynamic: 240 llvm_unreachable("temporary cannot have dynamic storage duration"); 241 } 242 llvm_unreachable("unknown storage duration"); 243 } 244 } 245 246 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 247 if (const RecordType *RT = 248 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 249 // Get the destructor for the reference temporary. 250 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 251 if (!ClassDecl->hasTrivialDestructor()) 252 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 253 } 254 255 if (!ReferenceTemporaryDtor) 256 return; 257 258 // Call the destructor for the temporary. 259 switch (M->getStorageDuration()) { 260 case SD_Static: 261 case SD_Thread: { 262 llvm::Constant *CleanupFn; 263 llvm::Constant *CleanupArg; 264 if (E->getType()->isArrayType()) { 265 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 266 cast<llvm::Constant>(ReferenceTemporary), E->getType(), 267 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 268 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 269 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 270 } else { 271 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 272 StructorType::Complete); 273 CleanupArg = cast<llvm::Constant>(ReferenceTemporary); 274 } 275 CGF.CGM.getCXXABI().registerGlobalDtor( 276 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 277 break; 278 } 279 280 case SD_FullExpression: 281 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 282 CodeGenFunction::destroyCXXObject, 283 CGF.getLangOpts().Exceptions); 284 break; 285 286 case SD_Automatic: 287 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 288 ReferenceTemporary, E->getType(), 289 CodeGenFunction::destroyCXXObject, 290 CGF.getLangOpts().Exceptions); 291 break; 292 293 case SD_Dynamic: 294 llvm_unreachable("temporary cannot have dynamic storage duration"); 295 } 296 } 297 298 static llvm::Value * 299 createReferenceTemporary(CodeGenFunction &CGF, 300 const MaterializeTemporaryExpr *M, const Expr *Inner) { 301 switch (M->getStorageDuration()) { 302 case SD_FullExpression: 303 case SD_Automatic: 304 return CGF.CreateMemTemp(Inner->getType(), "ref.tmp"); 305 306 case SD_Thread: 307 case SD_Static: 308 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 309 310 case SD_Dynamic: 311 llvm_unreachable("temporary can't have dynamic storage duration"); 312 } 313 llvm_unreachable("unknown storage duration"); 314 } 315 316 LValue CodeGenFunction:: 317 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 318 const Expr *E = M->GetTemporaryExpr(); 319 320 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 321 // as that will cause the lifetime adjustment to be lost for ARC 322 if (getLangOpts().ObjCAutoRefCount && 323 M->getType()->isObjCLifetimeType() && 324 M->getType().getObjCLifetime() != Qualifiers::OCL_None && 325 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 326 llvm::Value *Object = createReferenceTemporary(*this, M, E); 327 LValue RefTempDst = MakeAddrLValue(Object, M->getType()); 328 329 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 330 // We should not have emitted the initializer for this temporary as a 331 // constant. 332 assert(!Var->hasInitializer()); 333 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 334 } 335 336 switch (getEvaluationKind(E->getType())) { 337 default: llvm_unreachable("expected scalar or aggregate expression"); 338 case TEK_Scalar: 339 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 340 break; 341 case TEK_Aggregate: { 342 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 343 EmitAggExpr(E, AggValueSlot::forAddr(Object, Alignment, 344 E->getType().getQualifiers(), 345 AggValueSlot::IsDestructed, 346 AggValueSlot::DoesNotNeedGCBarriers, 347 AggValueSlot::IsNotAliased)); 348 break; 349 } 350 } 351 352 pushTemporaryCleanup(*this, M, E, Object); 353 return RefTempDst; 354 } 355 356 SmallVector<const Expr *, 2> CommaLHSs; 357 SmallVector<SubobjectAdjustment, 2> Adjustments; 358 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 359 360 for (const auto &Ignored : CommaLHSs) 361 EmitIgnoredExpr(Ignored); 362 363 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 364 if (opaque->getType()->isRecordType()) { 365 assert(Adjustments.empty()); 366 return EmitOpaqueValueLValue(opaque); 367 } 368 } 369 370 // Create and initialize the reference temporary. 371 llvm::Value *Object = createReferenceTemporary(*this, M, E); 372 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 373 // If the temporary is a global and has a constant initializer, we may 374 // have already initialized it. 375 if (!Var->hasInitializer()) { 376 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 377 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 378 } 379 } else { 380 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 381 } 382 pushTemporaryCleanup(*this, M, E, Object); 383 384 // Perform derived-to-base casts and/or field accesses, to get from the 385 // temporary object we created (and, potentially, for which we extended 386 // the lifetime) to the subobject we're binding the reference to. 387 for (unsigned I = Adjustments.size(); I != 0; --I) { 388 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 389 switch (Adjustment.Kind) { 390 case SubobjectAdjustment::DerivedToBaseAdjustment: 391 Object = 392 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 393 Adjustment.DerivedToBase.BasePath->path_begin(), 394 Adjustment.DerivedToBase.BasePath->path_end(), 395 /*NullCheckValue=*/ false, E->getExprLoc()); 396 break; 397 398 case SubobjectAdjustment::FieldAdjustment: { 399 LValue LV = MakeAddrLValue(Object, E->getType()); 400 LV = EmitLValueForField(LV, Adjustment.Field); 401 assert(LV.isSimple() && 402 "materialized temporary field is not a simple lvalue"); 403 Object = LV.getAddress(); 404 break; 405 } 406 407 case SubobjectAdjustment::MemberPointerAdjustment: { 408 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 409 Object = CGM.getCXXABI().EmitMemberDataPointerAddress( 410 *this, E, Object, Ptr, Adjustment.Ptr.MPT); 411 break; 412 } 413 } 414 } 415 416 return MakeAddrLValue(Object, M->getType()); 417 } 418 419 RValue 420 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 421 // Emit the expression as an lvalue. 422 LValue LV = EmitLValue(E); 423 assert(LV.isSimple()); 424 llvm::Value *Value = LV.getAddress(); 425 426 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 427 // C++11 [dcl.ref]p5 (as amended by core issue 453): 428 // If a glvalue to which a reference is directly bound designates neither 429 // an existing object or function of an appropriate type nor a region of 430 // storage of suitable size and alignment to contain an object of the 431 // reference's type, the behavior is undefined. 432 QualType Ty = E->getType(); 433 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 434 } 435 436 return RValue::get(Value); 437 } 438 439 440 /// getAccessedFieldNo - Given an encoded value and a result number, return the 441 /// input field number being accessed. 442 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 443 const llvm::Constant *Elts) { 444 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 445 ->getZExtValue(); 446 } 447 448 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 449 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 450 llvm::Value *High) { 451 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 452 llvm::Value *K47 = Builder.getInt64(47); 453 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 454 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 455 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 456 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 457 return Builder.CreateMul(B1, KMul); 458 } 459 460 bool CodeGenFunction::sanitizePerformTypeCheck() const { 461 return SanOpts.has(SanitizerKind::Null) | 462 SanOpts.has(SanitizerKind::Alignment) | 463 SanOpts.has(SanitizerKind::ObjectSize) | 464 SanOpts.has(SanitizerKind::Vptr); 465 } 466 467 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 468 llvm::Value *Address, QualType Ty, 469 CharUnits Alignment, bool SkipNullCheck) { 470 if (!sanitizePerformTypeCheck()) 471 return; 472 473 // Don't check pointers outside the default address space. The null check 474 // isn't correct, the object-size check isn't supported by LLVM, and we can't 475 // communicate the addresses to the runtime handler for the vptr check. 476 if (Address->getType()->getPointerAddressSpace()) 477 return; 478 479 SanitizerScope SanScope(this); 480 481 SmallVector<std::pair<llvm::Value *, SanitizerKind>, 3> Checks; 482 llvm::BasicBlock *Done = nullptr; 483 484 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 485 TCK == TCK_UpcastToVirtualBase; 486 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 487 !SkipNullCheck) { 488 // The glvalue must not be an empty glvalue. 489 llvm::Value *IsNonNull = Builder.CreateICmpNE( 490 Address, llvm::Constant::getNullValue(Address->getType())); 491 492 if (AllowNullPointers) { 493 // When performing pointer casts, it's OK if the value is null. 494 // Skip the remaining checks in that case. 495 Done = createBasicBlock("null"); 496 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 497 Builder.CreateCondBr(IsNonNull, Rest, Done); 498 EmitBlock(Rest); 499 } else { 500 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 501 } 502 } 503 504 if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) { 505 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 506 507 // The glvalue must refer to a large enough storage region. 508 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 509 // to check this. 510 // FIXME: Get object address space 511 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 512 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 513 llvm::Value *Min = Builder.getFalse(); 514 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 515 llvm::Value *LargeEnough = 516 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 517 llvm::ConstantInt::get(IntPtrTy, Size)); 518 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 519 } 520 521 uint64_t AlignVal = 0; 522 523 if (SanOpts.has(SanitizerKind::Alignment)) { 524 AlignVal = Alignment.getQuantity(); 525 if (!Ty->isIncompleteType() && !AlignVal) 526 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 527 528 // The glvalue must be suitably aligned. 529 if (AlignVal) { 530 llvm::Value *Align = 531 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 532 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 533 llvm::Value *Aligned = 534 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 535 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 536 } 537 } 538 539 if (Checks.size() > 0) { 540 llvm::Constant *StaticData[] = { 541 EmitCheckSourceLocation(Loc), 542 EmitCheckTypeDescriptor(Ty), 543 llvm::ConstantInt::get(SizeTy, AlignVal), 544 llvm::ConstantInt::get(Int8Ty, TCK) 545 }; 546 EmitCheck(Checks, "type_mismatch", StaticData, Address); 547 } 548 549 // If possible, check that the vptr indicates that there is a subobject of 550 // type Ty at offset zero within this object. 551 // 552 // C++11 [basic.life]p5,6: 553 // [For storage which does not refer to an object within its lifetime] 554 // The program has undefined behavior if: 555 // -- the [pointer or glvalue] is used to access a non-static data member 556 // or call a non-static member function 557 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 558 if (SanOpts.has(SanitizerKind::Vptr) && 559 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 560 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 561 TCK == TCK_UpcastToVirtualBase) && 562 RD && RD->hasDefinition() && RD->isDynamicClass()) { 563 // Compute a hash of the mangled name of the type. 564 // 565 // FIXME: This is not guaranteed to be deterministic! Move to a 566 // fingerprinting mechanism once LLVM provides one. For the time 567 // being the implementation happens to be deterministic. 568 SmallString<64> MangledName; 569 llvm::raw_svector_ostream Out(MangledName); 570 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 571 Out); 572 573 // Blacklist based on the mangled type. 574 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 575 Out.str())) { 576 llvm::hash_code TypeHash = hash_value(Out.str()); 577 578 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 579 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 580 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 581 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 582 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 583 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 584 585 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 586 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 587 588 // Look the hash up in our cache. 589 const int CacheSize = 128; 590 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 591 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 592 "__ubsan_vptr_type_cache"); 593 llvm::Value *Slot = Builder.CreateAnd(Hash, 594 llvm::ConstantInt::get(IntPtrTy, 595 CacheSize-1)); 596 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 597 llvm::Value *CacheVal = 598 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 599 600 // If the hash isn't in the cache, call a runtime handler to perform the 601 // hard work of checking whether the vptr is for an object of the right 602 // type. This will either fill in the cache and return, or produce a 603 // diagnostic. 604 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 605 llvm::Constant *StaticData[] = { 606 EmitCheckSourceLocation(Loc), 607 EmitCheckTypeDescriptor(Ty), 608 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 609 llvm::ConstantInt::get(Int8Ty, TCK) 610 }; 611 llvm::Value *DynamicData[] = { Address, Hash }; 612 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 613 "dynamic_type_cache_miss", StaticData, DynamicData); 614 } 615 } 616 617 if (Done) { 618 Builder.CreateBr(Done); 619 EmitBlock(Done); 620 } 621 } 622 623 /// Determine whether this expression refers to a flexible array member in a 624 /// struct. We disable array bounds checks for such members. 625 static bool isFlexibleArrayMemberExpr(const Expr *E) { 626 // For compatibility with existing code, we treat arrays of length 0 or 627 // 1 as flexible array members. 628 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 629 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 630 if (CAT->getSize().ugt(1)) 631 return false; 632 } else if (!isa<IncompleteArrayType>(AT)) 633 return false; 634 635 E = E->IgnoreParens(); 636 637 // A flexible array member must be the last member in the class. 638 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 639 // FIXME: If the base type of the member expr is not FD->getParent(), 640 // this should not be treated as a flexible array member access. 641 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 642 RecordDecl::field_iterator FI( 643 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 644 return ++FI == FD->getParent()->field_end(); 645 } 646 } 647 648 return false; 649 } 650 651 /// If Base is known to point to the start of an array, return the length of 652 /// that array. Return 0 if the length cannot be determined. 653 static llvm::Value *getArrayIndexingBound( 654 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 655 // For the vector indexing extension, the bound is the number of elements. 656 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 657 IndexedType = Base->getType(); 658 return CGF.Builder.getInt32(VT->getNumElements()); 659 } 660 661 Base = Base->IgnoreParens(); 662 663 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 664 if (CE->getCastKind() == CK_ArrayToPointerDecay && 665 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 666 IndexedType = CE->getSubExpr()->getType(); 667 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 668 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 669 return CGF.Builder.getInt(CAT->getSize()); 670 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 671 return CGF.getVLASize(VAT).first; 672 } 673 } 674 675 return nullptr; 676 } 677 678 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 679 llvm::Value *Index, QualType IndexType, 680 bool Accessed) { 681 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 682 "should not be called unless adding bounds checks"); 683 SanitizerScope SanScope(this); 684 685 QualType IndexedType; 686 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 687 if (!Bound) 688 return; 689 690 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 691 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 692 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 693 694 llvm::Constant *StaticData[] = { 695 EmitCheckSourceLocation(E->getExprLoc()), 696 EmitCheckTypeDescriptor(IndexedType), 697 EmitCheckTypeDescriptor(IndexType) 698 }; 699 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 700 : Builder.CreateICmpULE(IndexVal, BoundVal); 701 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds", 702 StaticData, Index); 703 } 704 705 706 CodeGenFunction::ComplexPairTy CodeGenFunction:: 707 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 708 bool isInc, bool isPre) { 709 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 710 711 llvm::Value *NextVal; 712 if (isa<llvm::IntegerType>(InVal.first->getType())) { 713 uint64_t AmountVal = isInc ? 1 : -1; 714 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 715 716 // Add the inc/dec to the real part. 717 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 718 } else { 719 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 720 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 721 if (!isInc) 722 FVal.changeSign(); 723 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 724 725 // Add the inc/dec to the real part. 726 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 727 } 728 729 ComplexPairTy IncVal(NextVal, InVal.second); 730 731 // Store the updated result through the lvalue. 732 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 733 734 // If this is a postinc, return the value read from memory, otherwise use the 735 // updated value. 736 return isPre ? IncVal : InVal; 737 } 738 739 //===----------------------------------------------------------------------===// 740 // LValue Expression Emission 741 //===----------------------------------------------------------------------===// 742 743 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 744 if (Ty->isVoidType()) 745 return RValue::get(nullptr); 746 747 switch (getEvaluationKind(Ty)) { 748 case TEK_Complex: { 749 llvm::Type *EltTy = 750 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 751 llvm::Value *U = llvm::UndefValue::get(EltTy); 752 return RValue::getComplex(std::make_pair(U, U)); 753 } 754 755 // If this is a use of an undefined aggregate type, the aggregate must have an 756 // identifiable address. Just because the contents of the value are undefined 757 // doesn't mean that the address can't be taken and compared. 758 case TEK_Aggregate: { 759 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 760 return RValue::getAggregate(DestPtr); 761 } 762 763 case TEK_Scalar: 764 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 765 } 766 llvm_unreachable("bad evaluation kind"); 767 } 768 769 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 770 const char *Name) { 771 ErrorUnsupported(E, Name); 772 return GetUndefRValue(E->getType()); 773 } 774 775 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 776 const char *Name) { 777 ErrorUnsupported(E, Name); 778 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 779 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 780 } 781 782 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 783 LValue LV; 784 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 785 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 786 else 787 LV = EmitLValue(E); 788 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 789 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 790 E->getType(), LV.getAlignment()); 791 return LV; 792 } 793 794 /// EmitLValue - Emit code to compute a designator that specifies the location 795 /// of the expression. 796 /// 797 /// This can return one of two things: a simple address or a bitfield reference. 798 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 799 /// an LLVM pointer type. 800 /// 801 /// If this returns a bitfield reference, nothing about the pointee type of the 802 /// LLVM value is known: For example, it may not be a pointer to an integer. 803 /// 804 /// If this returns a normal address, and if the lvalue's C type is fixed size, 805 /// this method guarantees that the returned pointer type will point to an LLVM 806 /// type of the same size of the lvalue's type. If the lvalue has a variable 807 /// length type, this is not possible. 808 /// 809 LValue CodeGenFunction::EmitLValue(const Expr *E) { 810 switch (E->getStmtClass()) { 811 default: return EmitUnsupportedLValue(E, "l-value expression"); 812 813 case Expr::ObjCPropertyRefExprClass: 814 llvm_unreachable("cannot emit a property reference directly"); 815 816 case Expr::ObjCSelectorExprClass: 817 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 818 case Expr::ObjCIsaExprClass: 819 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 820 case Expr::BinaryOperatorClass: 821 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 822 case Expr::CompoundAssignOperatorClass: 823 if (!E->getType()->isAnyComplexType()) 824 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 825 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 826 case Expr::CallExprClass: 827 case Expr::CXXMemberCallExprClass: 828 case Expr::CXXOperatorCallExprClass: 829 case Expr::UserDefinedLiteralClass: 830 return EmitCallExprLValue(cast<CallExpr>(E)); 831 case Expr::VAArgExprClass: 832 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 833 case Expr::DeclRefExprClass: 834 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 835 case Expr::ParenExprClass: 836 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 837 case Expr::GenericSelectionExprClass: 838 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 839 case Expr::PredefinedExprClass: 840 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 841 case Expr::StringLiteralClass: 842 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 843 case Expr::ObjCEncodeExprClass: 844 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 845 case Expr::PseudoObjectExprClass: 846 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 847 case Expr::InitListExprClass: 848 return EmitInitListLValue(cast<InitListExpr>(E)); 849 case Expr::CXXTemporaryObjectExprClass: 850 case Expr::CXXConstructExprClass: 851 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 852 case Expr::CXXBindTemporaryExprClass: 853 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 854 case Expr::CXXUuidofExprClass: 855 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 856 case Expr::LambdaExprClass: 857 return EmitLambdaLValue(cast<LambdaExpr>(E)); 858 859 case Expr::ExprWithCleanupsClass: { 860 const auto *cleanups = cast<ExprWithCleanups>(E); 861 enterFullExpression(cleanups); 862 RunCleanupsScope Scope(*this); 863 return EmitLValue(cleanups->getSubExpr()); 864 } 865 866 case Expr::CXXDefaultArgExprClass: 867 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 868 case Expr::CXXDefaultInitExprClass: { 869 CXXDefaultInitExprScope Scope(*this); 870 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 871 } 872 case Expr::CXXTypeidExprClass: 873 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 874 875 case Expr::ObjCMessageExprClass: 876 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 877 case Expr::ObjCIvarRefExprClass: 878 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 879 case Expr::StmtExprClass: 880 return EmitStmtExprLValue(cast<StmtExpr>(E)); 881 case Expr::UnaryOperatorClass: 882 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 883 case Expr::ArraySubscriptExprClass: 884 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 885 case Expr::ExtVectorElementExprClass: 886 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 887 case Expr::MemberExprClass: 888 return EmitMemberExpr(cast<MemberExpr>(E)); 889 case Expr::CompoundLiteralExprClass: 890 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 891 case Expr::ConditionalOperatorClass: 892 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 893 case Expr::BinaryConditionalOperatorClass: 894 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 895 case Expr::ChooseExprClass: 896 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 897 case Expr::OpaqueValueExprClass: 898 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 899 case Expr::SubstNonTypeTemplateParmExprClass: 900 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 901 case Expr::ImplicitCastExprClass: 902 case Expr::CStyleCastExprClass: 903 case Expr::CXXFunctionalCastExprClass: 904 case Expr::CXXStaticCastExprClass: 905 case Expr::CXXDynamicCastExprClass: 906 case Expr::CXXReinterpretCastExprClass: 907 case Expr::CXXConstCastExprClass: 908 case Expr::ObjCBridgedCastExprClass: 909 return EmitCastLValue(cast<CastExpr>(E)); 910 911 case Expr::MaterializeTemporaryExprClass: 912 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 913 } 914 } 915 916 /// Given an object of the given canonical type, can we safely copy a 917 /// value out of it based on its initializer? 918 static bool isConstantEmittableObjectType(QualType type) { 919 assert(type.isCanonical()); 920 assert(!type->isReferenceType()); 921 922 // Must be const-qualified but non-volatile. 923 Qualifiers qs = type.getLocalQualifiers(); 924 if (!qs.hasConst() || qs.hasVolatile()) return false; 925 926 // Otherwise, all object types satisfy this except C++ classes with 927 // mutable subobjects or non-trivial copy/destroy behavior. 928 if (const auto *RT = dyn_cast<RecordType>(type)) 929 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 930 if (RD->hasMutableFields() || !RD->isTrivial()) 931 return false; 932 933 return true; 934 } 935 936 /// Can we constant-emit a load of a reference to a variable of the 937 /// given type? This is different from predicates like 938 /// Decl::isUsableInConstantExpressions because we do want it to apply 939 /// in situations that don't necessarily satisfy the language's rules 940 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 941 /// to do this with const float variables even if those variables 942 /// aren't marked 'constexpr'. 943 enum ConstantEmissionKind { 944 CEK_None, 945 CEK_AsReferenceOnly, 946 CEK_AsValueOrReference, 947 CEK_AsValueOnly 948 }; 949 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 950 type = type.getCanonicalType(); 951 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 952 if (isConstantEmittableObjectType(ref->getPointeeType())) 953 return CEK_AsValueOrReference; 954 return CEK_AsReferenceOnly; 955 } 956 if (isConstantEmittableObjectType(type)) 957 return CEK_AsValueOnly; 958 return CEK_None; 959 } 960 961 /// Try to emit a reference to the given value without producing it as 962 /// an l-value. This is actually more than an optimization: we can't 963 /// produce an l-value for variables that we never actually captured 964 /// in a block or lambda, which means const int variables or constexpr 965 /// literals or similar. 966 CodeGenFunction::ConstantEmission 967 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 968 ValueDecl *value = refExpr->getDecl(); 969 970 // The value needs to be an enum constant or a constant variable. 971 ConstantEmissionKind CEK; 972 if (isa<ParmVarDecl>(value)) { 973 CEK = CEK_None; 974 } else if (auto *var = dyn_cast<VarDecl>(value)) { 975 CEK = checkVarTypeForConstantEmission(var->getType()); 976 } else if (isa<EnumConstantDecl>(value)) { 977 CEK = CEK_AsValueOnly; 978 } else { 979 CEK = CEK_None; 980 } 981 if (CEK == CEK_None) return ConstantEmission(); 982 983 Expr::EvalResult result; 984 bool resultIsReference; 985 QualType resultType; 986 987 // It's best to evaluate all the way as an r-value if that's permitted. 988 if (CEK != CEK_AsReferenceOnly && 989 refExpr->EvaluateAsRValue(result, getContext())) { 990 resultIsReference = false; 991 resultType = refExpr->getType(); 992 993 // Otherwise, try to evaluate as an l-value. 994 } else if (CEK != CEK_AsValueOnly && 995 refExpr->EvaluateAsLValue(result, getContext())) { 996 resultIsReference = true; 997 resultType = value->getType(); 998 999 // Failure. 1000 } else { 1001 return ConstantEmission(); 1002 } 1003 1004 // In any case, if the initializer has side-effects, abandon ship. 1005 if (result.HasSideEffects) 1006 return ConstantEmission(); 1007 1008 // Emit as a constant. 1009 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1010 1011 // Make sure we emit a debug reference to the global variable. 1012 // This should probably fire even for 1013 if (isa<VarDecl>(value)) { 1014 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1015 EmitDeclRefExprDbgValue(refExpr, C); 1016 } else { 1017 assert(isa<EnumConstantDecl>(value)); 1018 EmitDeclRefExprDbgValue(refExpr, C); 1019 } 1020 1021 // If we emitted a reference constant, we need to dereference that. 1022 if (resultIsReference) 1023 return ConstantEmission::forReference(C); 1024 1025 return ConstantEmission::forValue(C); 1026 } 1027 1028 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1029 SourceLocation Loc) { 1030 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1031 lvalue.getAlignment().getQuantity(), 1032 lvalue.getType(), Loc, lvalue.getTBAAInfo(), 1033 lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); 1034 } 1035 1036 static bool hasBooleanRepresentation(QualType Ty) { 1037 if (Ty->isBooleanType()) 1038 return true; 1039 1040 if (const EnumType *ET = Ty->getAs<EnumType>()) 1041 return ET->getDecl()->getIntegerType()->isBooleanType(); 1042 1043 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1044 return hasBooleanRepresentation(AT->getValueType()); 1045 1046 return false; 1047 } 1048 1049 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1050 llvm::APInt &Min, llvm::APInt &End, 1051 bool StrictEnums) { 1052 const EnumType *ET = Ty->getAs<EnumType>(); 1053 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1054 ET && !ET->getDecl()->isFixed(); 1055 bool IsBool = hasBooleanRepresentation(Ty); 1056 if (!IsBool && !IsRegularCPlusPlusEnum) 1057 return false; 1058 1059 if (IsBool) { 1060 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1061 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1062 } else { 1063 const EnumDecl *ED = ET->getDecl(); 1064 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1065 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1066 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1067 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1068 1069 if (NumNegativeBits) { 1070 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1071 assert(NumBits <= Bitwidth); 1072 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1073 Min = -End; 1074 } else { 1075 assert(NumPositiveBits <= Bitwidth); 1076 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1077 Min = llvm::APInt(Bitwidth, 0); 1078 } 1079 } 1080 return true; 1081 } 1082 1083 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1084 llvm::APInt Min, End; 1085 if (!getRangeForType(*this, Ty, Min, End, 1086 CGM.getCodeGenOpts().StrictEnums)) 1087 return nullptr; 1088 1089 llvm::MDBuilder MDHelper(getLLVMContext()); 1090 return MDHelper.createRange(Min, End); 1091 } 1092 1093 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1094 unsigned Alignment, QualType Ty, 1095 SourceLocation Loc, 1096 llvm::MDNode *TBAAInfo, 1097 QualType TBAABaseType, 1098 uint64_t TBAAOffset) { 1099 // For better performance, handle vector loads differently. 1100 if (Ty->isVectorType()) { 1101 llvm::Value *V; 1102 const llvm::Type *EltTy = 1103 cast<llvm::PointerType>(Addr->getType())->getElementType(); 1104 1105 const auto *VTy = cast<llvm::VectorType>(EltTy); 1106 1107 // Handle vectors of size 3, like size 4 for better performance. 1108 if (VTy->getNumElements() == 3) { 1109 1110 // Bitcast to vec4 type. 1111 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1112 4); 1113 llvm::PointerType *ptVec4Ty = 1114 llvm::PointerType::get(vec4Ty, 1115 (cast<llvm::PointerType>( 1116 Addr->getType()))->getAddressSpace()); 1117 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1118 "castToVec4"); 1119 // Now load value. 1120 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1121 1122 // Shuffle vector to get vec3. 1123 llvm::Constant *Mask[] = { 1124 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0), 1125 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1), 1126 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2) 1127 }; 1128 1129 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1130 V = Builder.CreateShuffleVector(LoadVal, 1131 llvm::UndefValue::get(vec4Ty), 1132 MaskV, "extractVec"); 1133 return EmitFromMemory(V, Ty); 1134 } 1135 } 1136 1137 // Atomic operations have to be done on integral types. 1138 if (Ty->isAtomicType()) { 1139 LValue lvalue = LValue::MakeAddr(Addr, Ty, 1140 CharUnits::fromQuantity(Alignment), 1141 getContext(), TBAAInfo); 1142 return EmitAtomicLoad(lvalue, Loc).getScalarVal(); 1143 } 1144 1145 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1146 if (Volatile) 1147 Load->setVolatile(true); 1148 if (Alignment) 1149 Load->setAlignment(Alignment); 1150 if (TBAAInfo) { 1151 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1152 TBAAOffset); 1153 if (TBAAPath) 1154 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/); 1155 } 1156 1157 bool NeedsBoolCheck = 1158 SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty); 1159 bool NeedsEnumCheck = 1160 SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>(); 1161 if (NeedsBoolCheck || NeedsEnumCheck) { 1162 SanitizerScope SanScope(this); 1163 llvm::APInt Min, End; 1164 if (getRangeForType(*this, Ty, Min, End, true)) { 1165 --End; 1166 llvm::Value *Check; 1167 if (!Min) 1168 Check = Builder.CreateICmpULE( 1169 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1170 else { 1171 llvm::Value *Upper = Builder.CreateICmpSLE( 1172 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1173 llvm::Value *Lower = Builder.CreateICmpSGE( 1174 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1175 Check = Builder.CreateAnd(Upper, Lower); 1176 } 1177 llvm::Constant *StaticArgs[] = { 1178 EmitCheckSourceLocation(Loc), 1179 EmitCheckTypeDescriptor(Ty) 1180 }; 1181 SanitizerKind Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1182 EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs, 1183 EmitCheckValue(Load)); 1184 } 1185 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1186 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1187 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1188 1189 return EmitFromMemory(Load, Ty); 1190 } 1191 1192 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1193 // Bool has a different representation in memory than in registers. 1194 if (hasBooleanRepresentation(Ty)) { 1195 // This should really always be an i1, but sometimes it's already 1196 // an i8, and it's awkward to track those cases down. 1197 if (Value->getType()->isIntegerTy(1)) 1198 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1199 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1200 "wrong value rep of bool"); 1201 } 1202 1203 return Value; 1204 } 1205 1206 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1207 // Bool has a different representation in memory than in registers. 1208 if (hasBooleanRepresentation(Ty)) { 1209 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1210 "wrong value rep of bool"); 1211 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1212 } 1213 1214 return Value; 1215 } 1216 1217 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1218 bool Volatile, unsigned Alignment, 1219 QualType Ty, llvm::MDNode *TBAAInfo, 1220 bool isInit, QualType TBAABaseType, 1221 uint64_t TBAAOffset) { 1222 1223 // Handle vectors differently to get better performance. 1224 if (Ty->isVectorType()) { 1225 llvm::Type *SrcTy = Value->getType(); 1226 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1227 // Handle vec3 special. 1228 if (VecTy->getNumElements() == 3) { 1229 llvm::LLVMContext &VMContext = getLLVMContext(); 1230 1231 // Our source is a vec3, do a shuffle vector to make it a vec4. 1232 SmallVector<llvm::Constant*, 4> Mask; 1233 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1234 0)); 1235 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1236 1)); 1237 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1238 2)); 1239 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1240 1241 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1242 Value = Builder.CreateShuffleVector(Value, 1243 llvm::UndefValue::get(VecTy), 1244 MaskV, "extractVec"); 1245 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1246 } 1247 auto *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1248 if (DstPtr->getElementType() != SrcTy) { 1249 llvm::Type *MemTy = 1250 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1251 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1252 } 1253 } 1254 1255 Value = EmitToMemory(Value, Ty); 1256 1257 if (Ty->isAtomicType()) { 1258 EmitAtomicStore(RValue::get(Value), 1259 LValue::MakeAddr(Addr, Ty, 1260 CharUnits::fromQuantity(Alignment), 1261 getContext(), TBAAInfo), 1262 isInit); 1263 return; 1264 } 1265 1266 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1267 if (Alignment) 1268 Store->setAlignment(Alignment); 1269 if (TBAAInfo) { 1270 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1271 TBAAOffset); 1272 if (TBAAPath) 1273 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/); 1274 } 1275 } 1276 1277 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1278 bool isInit) { 1279 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1280 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1281 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1282 lvalue.getTBAAOffset()); 1283 } 1284 1285 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1286 /// method emits the address of the lvalue, then loads the result as an rvalue, 1287 /// returning the rvalue. 1288 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1289 if (LV.isObjCWeak()) { 1290 // load of a __weak object. 1291 llvm::Value *AddrWeakObj = LV.getAddress(); 1292 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1293 AddrWeakObj)); 1294 } 1295 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1296 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1297 Object = EmitObjCConsumeObject(LV.getType(), Object); 1298 return RValue::get(Object); 1299 } 1300 1301 if (LV.isSimple()) { 1302 assert(!LV.getType()->isFunctionType()); 1303 1304 // Everything needs a load. 1305 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1306 } 1307 1308 if (LV.isVectorElt()) { 1309 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1310 LV.isVolatileQualified()); 1311 Load->setAlignment(LV.getAlignment().getQuantity()); 1312 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1313 "vecext")); 1314 } 1315 1316 // If this is a reference to a subset of the elements of a vector, either 1317 // shuffle the input or extract/insert them as appropriate. 1318 if (LV.isExtVectorElt()) 1319 return EmitLoadOfExtVectorElementLValue(LV); 1320 1321 // Global Register variables always invoke intrinsics 1322 if (LV.isGlobalReg()) 1323 return EmitLoadOfGlobalRegLValue(LV); 1324 1325 assert(LV.isBitField() && "Unknown LValue type!"); 1326 return EmitLoadOfBitfieldLValue(LV); 1327 } 1328 1329 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1330 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1331 1332 // Get the output type. 1333 llvm::Type *ResLTy = ConvertType(LV.getType()); 1334 1335 llvm::Value *Ptr = LV.getBitFieldAddr(); 1336 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), 1337 "bf.load"); 1338 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1339 1340 if (Info.IsSigned) { 1341 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1342 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1343 if (HighBits) 1344 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1345 if (Info.Offset + HighBits) 1346 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1347 } else { 1348 if (Info.Offset) 1349 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1350 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1351 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1352 Info.Size), 1353 "bf.clear"); 1354 } 1355 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1356 1357 return RValue::get(Val); 1358 } 1359 1360 // If this is a reference to a subset of the elements of a vector, create an 1361 // appropriate shufflevector. 1362 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1363 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1364 LV.isVolatileQualified()); 1365 Load->setAlignment(LV.getAlignment().getQuantity()); 1366 llvm::Value *Vec = Load; 1367 1368 const llvm::Constant *Elts = LV.getExtVectorElts(); 1369 1370 // If the result of the expression is a non-vector type, we must be extracting 1371 // a single element. Just codegen as an extractelement. 1372 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1373 if (!ExprVT) { 1374 unsigned InIdx = getAccessedFieldNo(0, Elts); 1375 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1376 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1377 } 1378 1379 // Always use shuffle vector to try to retain the original program structure 1380 unsigned NumResultElts = ExprVT->getNumElements(); 1381 1382 SmallVector<llvm::Constant*, 4> Mask; 1383 for (unsigned i = 0; i != NumResultElts; ++i) 1384 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1385 1386 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1387 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1388 MaskV); 1389 return RValue::get(Vec); 1390 } 1391 1392 /// @brief Generates lvalue for partial ext_vector access. 1393 llvm::Value *CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1394 llvm::Value *VectorAddress = LV.getExtVectorAddr(); 1395 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1396 QualType EQT = ExprVT->getElementType(); 1397 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1398 llvm::Type *VectorElementPtrToTy = VectorElementTy->getPointerTo(); 1399 1400 llvm::Value *CastToPointerElement = 1401 Builder.CreateBitCast(VectorAddress, 1402 VectorElementPtrToTy, "conv.ptr.element"); 1403 1404 const llvm::Constant *Elts = LV.getExtVectorElts(); 1405 unsigned ix = getAccessedFieldNo(0, Elts); 1406 1407 llvm::Value *VectorBasePtrPlusIx = 1408 Builder.CreateInBoundsGEP(CastToPointerElement, 1409 llvm::ConstantInt::get(SizeTy, ix), "add.ptr"); 1410 1411 return VectorBasePtrPlusIx; 1412 } 1413 1414 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1415 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1416 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1417 "Bad type for register variable"); 1418 llvm::MDNode *RegName = cast<llvm::MDNode>( 1419 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1420 1421 // We accept integer and pointer types only 1422 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1423 llvm::Type *Ty = OrigTy; 1424 if (OrigTy->isPointerTy()) 1425 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1426 llvm::Type *Types[] = { Ty }; 1427 1428 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1429 llvm::Value *Call = Builder.CreateCall( 1430 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1431 if (OrigTy->isPointerTy()) 1432 Call = Builder.CreateIntToPtr(Call, OrigTy); 1433 return RValue::get(Call); 1434 } 1435 1436 1437 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1438 /// lvalue, where both are guaranteed to the have the same type, and that type 1439 /// is 'Ty'. 1440 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1441 bool isInit, 1442 SourceLocation DbgLoc) { 1443 if (auto *DI = getDebugInfo()) 1444 DI->EmitLocation(Builder, DbgLoc); 1445 1446 if (!Dst.isSimple()) { 1447 if (Dst.isVectorElt()) { 1448 // Read/modify/write the vector, inserting the new element. 1449 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1450 Dst.isVolatileQualified()); 1451 Load->setAlignment(Dst.getAlignment().getQuantity()); 1452 llvm::Value *Vec = Load; 1453 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1454 Dst.getVectorIdx(), "vecins"); 1455 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1456 Dst.isVolatileQualified()); 1457 Store->setAlignment(Dst.getAlignment().getQuantity()); 1458 return; 1459 } 1460 1461 // If this is an update of extended vector elements, insert them as 1462 // appropriate. 1463 if (Dst.isExtVectorElt()) 1464 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1465 1466 if (Dst.isGlobalReg()) 1467 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1468 1469 assert(Dst.isBitField() && "Unknown LValue type"); 1470 return EmitStoreThroughBitfieldLValue(Src, Dst); 1471 } 1472 1473 // There's special magic for assigning into an ARC-qualified l-value. 1474 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1475 switch (Lifetime) { 1476 case Qualifiers::OCL_None: 1477 llvm_unreachable("present but none"); 1478 1479 case Qualifiers::OCL_ExplicitNone: 1480 // nothing special 1481 break; 1482 1483 case Qualifiers::OCL_Strong: 1484 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1485 return; 1486 1487 case Qualifiers::OCL_Weak: 1488 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1489 return; 1490 1491 case Qualifiers::OCL_Autoreleasing: 1492 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1493 Src.getScalarVal())); 1494 // fall into the normal path 1495 break; 1496 } 1497 } 1498 1499 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1500 // load of a __weak object. 1501 llvm::Value *LvalueDst = Dst.getAddress(); 1502 llvm::Value *src = Src.getScalarVal(); 1503 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1504 return; 1505 } 1506 1507 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1508 // load of a __strong object. 1509 llvm::Value *LvalueDst = Dst.getAddress(); 1510 llvm::Value *src = Src.getScalarVal(); 1511 if (Dst.isObjCIvar()) { 1512 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1513 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1514 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1515 llvm::Value *dst = RHS; 1516 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1517 llvm::Value *LHS = 1518 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1519 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1520 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1521 BytesBetween); 1522 } else if (Dst.isGlobalObjCRef()) { 1523 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1524 Dst.isThreadLocalRef()); 1525 } 1526 else 1527 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1528 return; 1529 } 1530 1531 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1532 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1533 } 1534 1535 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1536 llvm::Value **Result) { 1537 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1538 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1539 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1540 1541 // Get the source value, truncated to the width of the bit-field. 1542 llvm::Value *SrcVal = Src.getScalarVal(); 1543 1544 // Cast the source to the storage type and shift it into place. 1545 SrcVal = Builder.CreateIntCast(SrcVal, 1546 Ptr->getType()->getPointerElementType(), 1547 /*IsSigned=*/false); 1548 llvm::Value *MaskedVal = SrcVal; 1549 1550 // See if there are other bits in the bitfield's storage we'll need to load 1551 // and mask together with source before storing. 1552 if (Info.StorageSize != Info.Size) { 1553 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1554 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 1555 "bf.load"); 1556 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1557 1558 // Mask the source value as needed. 1559 if (!hasBooleanRepresentation(Dst.getType())) 1560 SrcVal = Builder.CreateAnd(SrcVal, 1561 llvm::APInt::getLowBitsSet(Info.StorageSize, 1562 Info.Size), 1563 "bf.value"); 1564 MaskedVal = SrcVal; 1565 if (Info.Offset) 1566 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1567 1568 // Mask out the original value. 1569 Val = Builder.CreateAnd(Val, 1570 ~llvm::APInt::getBitsSet(Info.StorageSize, 1571 Info.Offset, 1572 Info.Offset + Info.Size), 1573 "bf.clear"); 1574 1575 // Or together the unchanged values and the source value. 1576 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1577 } else { 1578 assert(Info.Offset == 0); 1579 } 1580 1581 // Write the new value back out. 1582 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, 1583 Dst.isVolatileQualified()); 1584 Store->setAlignment(Info.StorageAlignment); 1585 1586 // Return the new value of the bit-field, if requested. 1587 if (Result) { 1588 llvm::Value *ResultVal = MaskedVal; 1589 1590 // Sign extend the value if needed. 1591 if (Info.IsSigned) { 1592 assert(Info.Size <= Info.StorageSize); 1593 unsigned HighBits = Info.StorageSize - Info.Size; 1594 if (HighBits) { 1595 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1596 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1597 } 1598 } 1599 1600 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1601 "bf.result.cast"); 1602 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1603 } 1604 } 1605 1606 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1607 LValue Dst) { 1608 // This access turns into a read/modify/write of the vector. Load the input 1609 // value now. 1610 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1611 Dst.isVolatileQualified()); 1612 Load->setAlignment(Dst.getAlignment().getQuantity()); 1613 llvm::Value *Vec = Load; 1614 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1615 1616 llvm::Value *SrcVal = Src.getScalarVal(); 1617 1618 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1619 unsigned NumSrcElts = VTy->getNumElements(); 1620 unsigned NumDstElts = 1621 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1622 if (NumDstElts == NumSrcElts) { 1623 // Use shuffle vector is the src and destination are the same number of 1624 // elements and restore the vector mask since it is on the side it will be 1625 // stored. 1626 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1627 for (unsigned i = 0; i != NumSrcElts; ++i) 1628 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1629 1630 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1631 Vec = Builder.CreateShuffleVector(SrcVal, 1632 llvm::UndefValue::get(Vec->getType()), 1633 MaskV); 1634 } else if (NumDstElts > NumSrcElts) { 1635 // Extended the source vector to the same length and then shuffle it 1636 // into the destination. 1637 // FIXME: since we're shuffling with undef, can we just use the indices 1638 // into that? This could be simpler. 1639 SmallVector<llvm::Constant*, 4> ExtMask; 1640 for (unsigned i = 0; i != NumSrcElts; ++i) 1641 ExtMask.push_back(Builder.getInt32(i)); 1642 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1643 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1644 llvm::Value *ExtSrcVal = 1645 Builder.CreateShuffleVector(SrcVal, 1646 llvm::UndefValue::get(SrcVal->getType()), 1647 ExtMaskV); 1648 // build identity 1649 SmallVector<llvm::Constant*, 4> Mask; 1650 for (unsigned i = 0; i != NumDstElts; ++i) 1651 Mask.push_back(Builder.getInt32(i)); 1652 1653 // When the vector size is odd and .odd or .hi is used, the last element 1654 // of the Elts constant array will be one past the size of the vector. 1655 // Ignore the last element here, if it is greater than the mask size. 1656 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1657 NumSrcElts--; 1658 1659 // modify when what gets shuffled in 1660 for (unsigned i = 0; i != NumSrcElts; ++i) 1661 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1662 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1663 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1664 } else { 1665 // We should never shorten the vector 1666 llvm_unreachable("unexpected shorten vector length"); 1667 } 1668 } else { 1669 // If the Src is a scalar (not a vector) it must be updating one element. 1670 unsigned InIdx = getAccessedFieldNo(0, Elts); 1671 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1672 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1673 } 1674 1675 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1676 Dst.isVolatileQualified()); 1677 Store->setAlignment(Dst.getAlignment().getQuantity()); 1678 } 1679 1680 /// @brief Store of global named registers are always calls to intrinsics. 1681 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1682 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1683 "Bad type for register variable"); 1684 llvm::MDNode *RegName = cast<llvm::MDNode>( 1685 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1686 assert(RegName && "Register LValue is not metadata"); 1687 1688 // We accept integer and pointer types only 1689 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1690 llvm::Type *Ty = OrigTy; 1691 if (OrigTy->isPointerTy()) 1692 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1693 llvm::Type *Types[] = { Ty }; 1694 1695 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1696 llvm::Value *Value = Src.getScalarVal(); 1697 if (OrigTy->isPointerTy()) 1698 Value = Builder.CreatePtrToInt(Value, Ty); 1699 Builder.CreateCall2(F, llvm::MetadataAsValue::get(Ty->getContext(), RegName), 1700 Value); 1701 } 1702 1703 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1704 // generating write-barries API. It is currently a global, ivar, 1705 // or neither. 1706 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1707 LValue &LV, 1708 bool IsMemberAccess=false) { 1709 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1710 return; 1711 1712 if (isa<ObjCIvarRefExpr>(E)) { 1713 QualType ExpTy = E->getType(); 1714 if (IsMemberAccess && ExpTy->isPointerType()) { 1715 // If ivar is a structure pointer, assigning to field of 1716 // this struct follows gcc's behavior and makes it a non-ivar 1717 // writer-barrier conservatively. 1718 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1719 if (ExpTy->isRecordType()) { 1720 LV.setObjCIvar(false); 1721 return; 1722 } 1723 } 1724 LV.setObjCIvar(true); 1725 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1726 LV.setBaseIvarExp(Exp->getBase()); 1727 LV.setObjCArray(E->getType()->isArrayType()); 1728 return; 1729 } 1730 1731 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1732 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1733 if (VD->hasGlobalStorage()) { 1734 LV.setGlobalObjCRef(true); 1735 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1736 } 1737 } 1738 LV.setObjCArray(E->getType()->isArrayType()); 1739 return; 1740 } 1741 1742 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1743 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1744 return; 1745 } 1746 1747 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1748 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1749 if (LV.isObjCIvar()) { 1750 // If cast is to a structure pointer, follow gcc's behavior and make it 1751 // a non-ivar write-barrier. 1752 QualType ExpTy = E->getType(); 1753 if (ExpTy->isPointerType()) 1754 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1755 if (ExpTy->isRecordType()) 1756 LV.setObjCIvar(false); 1757 } 1758 return; 1759 } 1760 1761 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1762 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1763 return; 1764 } 1765 1766 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1767 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1768 return; 1769 } 1770 1771 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 1772 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1773 return; 1774 } 1775 1776 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1777 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1778 return; 1779 } 1780 1781 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1782 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1783 if (LV.isObjCIvar() && !LV.isObjCArray()) 1784 // Using array syntax to assigning to what an ivar points to is not 1785 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1786 LV.setObjCIvar(false); 1787 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1788 // Using array syntax to assigning to what global points to is not 1789 // same as assigning to the global itself. {id *G;} G[i] = 0; 1790 LV.setGlobalObjCRef(false); 1791 return; 1792 } 1793 1794 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 1795 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1796 // We don't know if member is an 'ivar', but this flag is looked at 1797 // only in the context of LV.isObjCIvar(). 1798 LV.setObjCArray(E->getType()->isArrayType()); 1799 return; 1800 } 1801 } 1802 1803 static llvm::Value * 1804 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1805 llvm::Value *V, llvm::Type *IRType, 1806 StringRef Name = StringRef()) { 1807 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1808 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1809 } 1810 1811 static LValue EmitThreadPrivateVarDeclLValue( 1812 CodeGenFunction &CGF, const VarDecl *VD, QualType T, llvm::Value *V, 1813 llvm::Type *RealVarTy, CharUnits Alignment, SourceLocation Loc) { 1814 V = CGF.CGM.getOpenMPRuntime().getOMPAddrOfThreadPrivate(CGF, VD, V, Loc); 1815 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1816 return CGF.MakeAddrLValue(V, T, Alignment); 1817 } 1818 1819 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1820 const Expr *E, const VarDecl *VD) { 1821 QualType T = E->getType(); 1822 1823 // If it's thread_local, emit a call to its wrapper function instead. 1824 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 1825 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 1826 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 1827 1828 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1829 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1830 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1831 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1832 LValue LV; 1833 // Emit reference to the private copy of the variable if it is an OpenMP 1834 // threadprivate variable. 1835 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 1836 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, V, RealVarTy, Alignment, 1837 E->getExprLoc()); 1838 if (VD->getType()->isReferenceType()) { 1839 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1840 LI->setAlignment(Alignment.getQuantity()); 1841 V = LI; 1842 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1843 } else { 1844 LV = CGF.MakeAddrLValue(V, T, Alignment); 1845 } 1846 setObjCGCLValueClass(CGF.getContext(), E, LV); 1847 return LV; 1848 } 1849 1850 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1851 const Expr *E, const FunctionDecl *FD) { 1852 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1853 if (!FD->hasPrototype()) { 1854 if (const FunctionProtoType *Proto = 1855 FD->getType()->getAs<FunctionProtoType>()) { 1856 // Ugly case: for a K&R-style definition, the type of the definition 1857 // isn't the same as the type of a use. Correct for this with a 1858 // bitcast. 1859 QualType NoProtoType = 1860 CGF.getContext().getFunctionNoProtoType(Proto->getReturnType()); 1861 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1862 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1863 } 1864 } 1865 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1866 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1867 } 1868 1869 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 1870 llvm::Value *ThisValue) { 1871 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 1872 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 1873 return CGF.EmitLValueForField(LV, FD); 1874 } 1875 1876 /// Named Registers are named metadata pointing to the register name 1877 /// which will be read from/written to as an argument to the intrinsic 1878 /// @llvm.read/write_register. 1879 /// So far, only the name is being passed down, but other options such as 1880 /// register type, allocation type or even optimization options could be 1881 /// passed down via the metadata node. 1882 static LValue EmitGlobalNamedRegister(const VarDecl *VD, 1883 CodeGenModule &CGM, 1884 CharUnits Alignment) { 1885 SmallString<64> Name("llvm.named.register."); 1886 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 1887 assert(Asm->getLabel().size() < 64-Name.size() && 1888 "Register name too big"); 1889 Name.append(Asm->getLabel()); 1890 llvm::NamedMDNode *M = 1891 CGM.getModule().getOrInsertNamedMetadata(Name); 1892 if (M->getNumOperands() == 0) { 1893 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 1894 Asm->getLabel()); 1895 llvm::Metadata *Ops[] = {Str}; 1896 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 1897 } 1898 return LValue::MakeGlobalReg( 1899 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)), 1900 VD->getType(), Alignment); 1901 } 1902 1903 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1904 const NamedDecl *ND = E->getDecl(); 1905 CharUnits Alignment = getContext().getDeclAlign(ND); 1906 QualType T = E->getType(); 1907 1908 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1909 // Check for captured variables. 1910 if (E->refersToCapturedVariable()) { 1911 if (auto *FD = LambdaCaptureFields.lookup(VD)) 1912 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 1913 else if (CapturedStmtInfo) { 1914 if (auto *V = LocalDeclMap.lookup(VD)) 1915 return MakeAddrLValue(V, T, Alignment); 1916 else 1917 return EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 1918 CapturedStmtInfo->getContextValue()); 1919 } 1920 assert(isa<BlockDecl>(CurCodeDecl)); 1921 return MakeAddrLValue(GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()), 1922 T, Alignment); 1923 } 1924 1925 // Global Named registers access via intrinsics only 1926 if (VD->getStorageClass() == SC_Register && 1927 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 1928 return EmitGlobalNamedRegister(VD, CGM, Alignment); 1929 1930 // A DeclRefExpr for a reference initialized by a constant expression can 1931 // appear without being odr-used. Directly emit the constant initializer. 1932 const Expr *Init = VD->getAnyInitializer(VD); 1933 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1934 VD->isUsableInConstantExpressions(getContext()) && 1935 VD->checkInitIsICE()) { 1936 llvm::Constant *Val = 1937 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1938 assert(Val && "failed to emit reference constant expression"); 1939 // FIXME: Eventually we will want to emit vector element references. 1940 return MakeAddrLValue(Val, T, Alignment); 1941 } 1942 } 1943 1944 // FIXME: We should be able to assert this for FunctionDecls as well! 1945 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1946 // those with a valid source location. 1947 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1948 !E->getLocation().isValid()) && 1949 "Should not use decl without marking it used!"); 1950 1951 if (ND->hasAttr<WeakRefAttr>()) { 1952 const auto *VD = cast<ValueDecl>(ND); 1953 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1954 return MakeAddrLValue(Aliasee, T, Alignment); 1955 } 1956 1957 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1958 // Check if this is a global variable. 1959 if (VD->hasLinkage() || VD->isStaticDataMember()) 1960 return EmitGlobalVarDeclLValue(*this, E, VD); 1961 1962 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1963 1964 llvm::Value *V = LocalDeclMap.lookup(VD); 1965 if (!V && VD->isStaticLocal()) 1966 V = CGM.getOrCreateStaticVarDecl( 1967 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 1968 1969 // Check if variable is threadprivate. 1970 if (V && getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 1971 return EmitThreadPrivateVarDeclLValue( 1972 *this, VD, T, V, getTypes().ConvertTypeForMem(VD->getType()), 1973 Alignment, E->getExprLoc()); 1974 1975 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1976 1977 if (isBlockVariable) 1978 V = BuildBlockByrefAddress(V, VD); 1979 1980 LValue LV; 1981 if (VD->getType()->isReferenceType()) { 1982 llvm::LoadInst *LI = Builder.CreateLoad(V); 1983 LI->setAlignment(Alignment.getQuantity()); 1984 V = LI; 1985 LV = MakeNaturalAlignAddrLValue(V, T); 1986 } else { 1987 LV = MakeAddrLValue(V, T, Alignment); 1988 } 1989 1990 bool isLocalStorage = VD->hasLocalStorage(); 1991 1992 bool NonGCable = isLocalStorage && 1993 !VD->getType()->isReferenceType() && 1994 !isBlockVariable; 1995 if (NonGCable) { 1996 LV.getQuals().removeObjCGCAttr(); 1997 LV.setNonGC(true); 1998 } 1999 2000 bool isImpreciseLifetime = 2001 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2002 if (isImpreciseLifetime) 2003 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2004 setObjCGCLValueClass(getContext(), E, LV); 2005 return LV; 2006 } 2007 2008 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2009 return EmitFunctionDeclLValue(*this, E, FD); 2010 2011 llvm_unreachable("Unhandled DeclRefExpr"); 2012 } 2013 2014 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2015 // __extension__ doesn't affect lvalue-ness. 2016 if (E->getOpcode() == UO_Extension) 2017 return EmitLValue(E->getSubExpr()); 2018 2019 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2020 switch (E->getOpcode()) { 2021 default: llvm_unreachable("Unknown unary operator lvalue!"); 2022 case UO_Deref: { 2023 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2024 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2025 2026 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 2027 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2028 2029 // We should not generate __weak write barrier on indirect reference 2030 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2031 // But, we continue to generate __strong write barrier on indirect write 2032 // into a pointer to object. 2033 if (getLangOpts().ObjC1 && 2034 getLangOpts().getGC() != LangOptions::NonGC && 2035 LV.isObjCWeak()) 2036 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2037 return LV; 2038 } 2039 case UO_Real: 2040 case UO_Imag: { 2041 LValue LV = EmitLValue(E->getSubExpr()); 2042 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2043 llvm::Value *Addr = LV.getAddress(); 2044 2045 // __real is valid on scalars. This is a faster way of testing that. 2046 // __imag can only produce an rvalue on scalars. 2047 if (E->getOpcode() == UO_Real && 2048 !cast<llvm::PointerType>(Addr->getType()) 2049 ->getElementType()->isStructTy()) { 2050 assert(E->getSubExpr()->getType()->isArithmeticType()); 2051 return LV; 2052 } 2053 2054 assert(E->getSubExpr()->getType()->isAnyComplexType()); 2055 2056 unsigned Idx = E->getOpcode() == UO_Imag; 2057 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 2058 Idx, "idx"), 2059 ExprTy); 2060 } 2061 case UO_PreInc: 2062 case UO_PreDec: { 2063 LValue LV = EmitLValue(E->getSubExpr()); 2064 bool isInc = E->getOpcode() == UO_PreInc; 2065 2066 if (E->getType()->isAnyComplexType()) 2067 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2068 else 2069 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2070 return LV; 2071 } 2072 } 2073 } 2074 2075 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2076 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2077 E->getType()); 2078 } 2079 2080 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2081 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2082 E->getType()); 2083 } 2084 2085 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2086 auto SL = E->getFunctionName(); 2087 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2088 StringRef FnName = CurFn->getName(); 2089 if (FnName.startswith("\01")) 2090 FnName = FnName.substr(1); 2091 StringRef NameItems[] = { 2092 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2093 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2094 if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) { 2095 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str(), 1); 2096 return MakeAddrLValue(C, E->getType()); 2097 } 2098 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2099 return MakeAddrLValue(C, E->getType()); 2100 } 2101 2102 /// Emit a type description suitable for use by a runtime sanitizer library. The 2103 /// format of a type descriptor is 2104 /// 2105 /// \code 2106 /// { i16 TypeKind, i16 TypeInfo } 2107 /// \endcode 2108 /// 2109 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2110 /// integer, 1 for a floating point value, and -1 for anything else. 2111 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2112 // Only emit each type's descriptor once. 2113 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2114 return C; 2115 2116 uint16_t TypeKind = -1; 2117 uint16_t TypeInfo = 0; 2118 2119 if (T->isIntegerType()) { 2120 TypeKind = 0; 2121 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2122 (T->isSignedIntegerType() ? 1 : 0); 2123 } else if (T->isFloatingType()) { 2124 TypeKind = 1; 2125 TypeInfo = getContext().getTypeSize(T); 2126 } 2127 2128 // Format the type name as if for a diagnostic, including quotes and 2129 // optionally an 'aka'. 2130 SmallString<32> Buffer; 2131 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2132 (intptr_t)T.getAsOpaquePtr(), 2133 StringRef(), StringRef(), None, Buffer, 2134 None); 2135 2136 llvm::Constant *Components[] = { 2137 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2138 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2139 }; 2140 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2141 2142 auto *GV = new llvm::GlobalVariable( 2143 CGM.getModule(), Descriptor->getType(), 2144 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2145 GV->setUnnamedAddr(true); 2146 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2147 2148 // Remember the descriptor for this type. 2149 CGM.setTypeDescriptorInMap(T, GV); 2150 2151 return GV; 2152 } 2153 2154 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2155 llvm::Type *TargetTy = IntPtrTy; 2156 2157 // Floating-point types which fit into intptr_t are bitcast to integers 2158 // and then passed directly (after zero-extension, if necessary). 2159 if (V->getType()->isFloatingPointTy()) { 2160 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2161 if (Bits <= TargetTy->getIntegerBitWidth()) 2162 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2163 Bits)); 2164 } 2165 2166 // Integers which fit in intptr_t are zero-extended and passed directly. 2167 if (V->getType()->isIntegerTy() && 2168 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2169 return Builder.CreateZExt(V, TargetTy); 2170 2171 // Pointers are passed directly, everything else is passed by address. 2172 if (!V->getType()->isPointerTy()) { 2173 llvm::Value *Ptr = CreateTempAlloca(V->getType()); 2174 Builder.CreateStore(V, Ptr); 2175 V = Ptr; 2176 } 2177 return Builder.CreatePtrToInt(V, TargetTy); 2178 } 2179 2180 /// \brief Emit a representation of a SourceLocation for passing to a handler 2181 /// in a sanitizer runtime library. The format for this data is: 2182 /// \code 2183 /// struct SourceLocation { 2184 /// const char *Filename; 2185 /// int32_t Line, Column; 2186 /// }; 2187 /// \endcode 2188 /// For an invalid SourceLocation, the Filename pointer is null. 2189 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2190 llvm::Constant *Filename; 2191 int Line, Column; 2192 2193 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2194 if (PLoc.isValid()) { 2195 auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src"); 2196 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(FilenameGV); 2197 Filename = FilenameGV; 2198 Line = PLoc.getLine(); 2199 Column = PLoc.getColumn(); 2200 } else { 2201 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2202 Line = Column = 0; 2203 } 2204 2205 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2206 Builder.getInt32(Column)}; 2207 2208 return llvm::ConstantStruct::getAnon(Data); 2209 } 2210 2211 namespace { 2212 /// \brief Specify under what conditions this check can be recovered 2213 enum class CheckRecoverableKind { 2214 /// Always terminate program execution if this check fails 2215 Unrecoverable, 2216 /// Check supports recovering, allows user to specify which 2217 Recoverable, 2218 /// Runtime conditionally aborts, always need to support recovery. 2219 AlwaysRecoverable 2220 }; 2221 } 2222 2223 static CheckRecoverableKind getRecoverableKind(SanitizerKind Kind) { 2224 switch (Kind) { 2225 case SanitizerKind::Vptr: 2226 return CheckRecoverableKind::AlwaysRecoverable; 2227 case SanitizerKind::Return: 2228 case SanitizerKind::Unreachable: 2229 return CheckRecoverableKind::Unrecoverable; 2230 default: 2231 return CheckRecoverableKind::Recoverable; 2232 } 2233 } 2234 2235 void CodeGenFunction::EmitCheck( 2236 ArrayRef<std::pair<llvm::Value *, SanitizerKind>> Checked, 2237 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 2238 ArrayRef<llvm::Value *> DynamicArgs) { 2239 assert(IsSanitizerScope); 2240 assert(Checked.size() > 0); 2241 llvm::Value *Cond = Checked[0].first; 2242 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2243 assert(SanOpts.has(Checked[0].second)); 2244 for (int i = 1, n = Checked.size(); i < n; ++i) { 2245 Cond = Builder.CreateAnd(Cond, Checked[i].first); 2246 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2247 "All recoverable kinds in a single check must be same!"); 2248 assert(SanOpts.has(Checked[i].second)); 2249 } 2250 2251 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) { 2252 assert (RecoverKind != CheckRecoverableKind::AlwaysRecoverable && 2253 "Runtime call required for AlwaysRecoverable kind!"); 2254 return EmitTrapCheck(Cond); 2255 } 2256 2257 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2258 2259 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); 2260 2261 llvm::Instruction *Branch = Builder.CreateCondBr(Cond, Cont, Handler); 2262 2263 // Give hint that we very much don't expect to execute the handler 2264 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2265 llvm::MDBuilder MDHelper(getLLVMContext()); 2266 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2267 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2268 2269 EmitBlock(Handler); 2270 2271 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2272 auto *InfoPtr = 2273 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2274 llvm::GlobalVariable::PrivateLinkage, Info); 2275 InfoPtr->setUnnamedAddr(true); 2276 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2277 2278 SmallVector<llvm::Value *, 4> Args; 2279 SmallVector<llvm::Type *, 4> ArgTypes; 2280 Args.reserve(DynamicArgs.size() + 1); 2281 ArgTypes.reserve(DynamicArgs.size() + 1); 2282 2283 // Handler functions take an i8* pointing to the (handler-specific) static 2284 // information block, followed by a sequence of intptr_t arguments 2285 // representing operand values. 2286 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2287 ArgTypes.push_back(Int8PtrTy); 2288 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2289 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2290 ArgTypes.push_back(IntPtrTy); 2291 } 2292 2293 bool Recover = RecoverKind == CheckRecoverableKind::AlwaysRecoverable || 2294 (RecoverKind == CheckRecoverableKind::Recoverable && 2295 CGM.getCodeGenOpts().SanitizeRecover); 2296 2297 llvm::FunctionType *FnType = 2298 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2299 llvm::AttrBuilder B; 2300 if (!Recover) { 2301 B.addAttribute(llvm::Attribute::NoReturn) 2302 .addAttribute(llvm::Attribute::NoUnwind); 2303 } 2304 B.addAttribute(llvm::Attribute::UWTable); 2305 2306 // Checks that have two variants use a suffix to differentiate them 2307 bool NeedsAbortSuffix = RecoverKind != CheckRecoverableKind::Unrecoverable && 2308 !CGM.getCodeGenOpts().SanitizeRecover; 2309 std::string FunctionName = ("__ubsan_handle_" + CheckName + 2310 (NeedsAbortSuffix? "_abort" : "")).str(); 2311 llvm::Value *Fn = CGM.CreateRuntimeFunction( 2312 FnType, FunctionName, 2313 llvm::AttributeSet::get(getLLVMContext(), 2314 llvm::AttributeSet::FunctionIndex, B)); 2315 llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args); 2316 if (Recover) { 2317 Builder.CreateBr(Cont); 2318 } else { 2319 HandlerCall->setDoesNotReturn(); 2320 Builder.CreateUnreachable(); 2321 } 2322 2323 EmitBlock(Cont); 2324 } 2325 2326 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2327 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2328 2329 // If we're optimizing, collapse all calls to trap down to just one per 2330 // function to save on code size. 2331 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2332 TrapBB = createBasicBlock("trap"); 2333 Builder.CreateCondBr(Checked, Cont, TrapBB); 2334 EmitBlock(TrapBB); 2335 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2336 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2337 TrapCall->setDoesNotReturn(); 2338 TrapCall->setDoesNotThrow(); 2339 Builder.CreateUnreachable(); 2340 } else { 2341 Builder.CreateCondBr(Checked, Cont, TrapBB); 2342 } 2343 2344 EmitBlock(Cont); 2345 } 2346 2347 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2348 /// array to pointer, return the array subexpression. 2349 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2350 // If this isn't just an array->pointer decay, bail out. 2351 const auto *CE = dyn_cast<CastExpr>(E); 2352 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2353 return nullptr; 2354 2355 // If this is a decay from variable width array, bail out. 2356 const Expr *SubExpr = CE->getSubExpr(); 2357 if (SubExpr->getType()->isVariableArrayType()) 2358 return nullptr; 2359 2360 return SubExpr; 2361 } 2362 2363 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2364 bool Accessed) { 2365 // The index must always be an integer, which is not an aggregate. Emit it. 2366 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2367 QualType IdxTy = E->getIdx()->getType(); 2368 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2369 2370 if (SanOpts.has(SanitizerKind::ArrayBounds)) 2371 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2372 2373 // If the base is a vector type, then we are forming a vector element lvalue 2374 // with this subscript. 2375 if (E->getBase()->getType()->isVectorType() && 2376 !isa<ExtVectorElementExpr>(E->getBase())) { 2377 // Emit the vector as an lvalue to get its address. 2378 LValue LHS = EmitLValue(E->getBase()); 2379 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2380 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2381 E->getBase()->getType(), LHS.getAlignment()); 2382 } 2383 2384 // Extend or truncate the index type to 32 or 64-bits. 2385 if (Idx->getType() != IntPtrTy) 2386 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2387 2388 // We know that the pointer points to a type of the correct size, unless the 2389 // size is a VLA or Objective-C interface. 2390 llvm::Value *Address = nullptr; 2391 CharUnits ArrayAlignment; 2392 if (isa<ExtVectorElementExpr>(E->getBase())) { 2393 LValue LV = EmitLValue(E->getBase()); 2394 Address = EmitExtVectorElementLValue(LV); 2395 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2396 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 2397 QualType EQT = ExprVT->getElementType(); 2398 return MakeAddrLValue(Address, EQT, 2399 getContext().getTypeAlignInChars(EQT)); 2400 } 2401 else if (const VariableArrayType *vla = 2402 getContext().getAsVariableArrayType(E->getType())) { 2403 // The base must be a pointer, which is not an aggregate. Emit 2404 // it. It needs to be emitted first in case it's what captures 2405 // the VLA bounds. 2406 Address = EmitScalarExpr(E->getBase()); 2407 2408 // The element count here is the total number of non-VLA elements. 2409 llvm::Value *numElements = getVLASize(vla).first; 2410 2411 if (auto *DI = getDebugInfo()) 2412 DI->EmitLocation(Builder, E->getLocStart()); 2413 2414 // Effectively, the multiply by the VLA size is part of the GEP. 2415 // GEP indexes are signed, and scaling an index isn't permitted to 2416 // signed-overflow, so we use the same semantics for our explicit 2417 // multiply. We suppress this if overflow is not undefined behavior. 2418 if (getLangOpts().isSignedOverflowDefined()) { 2419 Idx = Builder.CreateMul(Idx, numElements); 2420 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2421 } else { 2422 Idx = Builder.CreateNSWMul(Idx, numElements); 2423 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2424 } 2425 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2426 // Indexing over an interface, as in "NSString *P; P[4];" 2427 llvm::Value *InterfaceSize = 2428 llvm::ConstantInt::get(Idx->getType(), 2429 getContext().getTypeSizeInChars(OIT).getQuantity()); 2430 2431 Idx = Builder.CreateMul(Idx, InterfaceSize); 2432 2433 // The base must be a pointer, which is not an aggregate. Emit it. 2434 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2435 Address = EmitCastToVoidPtr(Base); 2436 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2437 Address = Builder.CreateBitCast(Address, Base->getType()); 2438 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2439 // If this is A[i] where A is an array, the frontend will have decayed the 2440 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2441 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2442 // "gep x, i" here. Emit one "gep A, 0, i". 2443 assert(Array->getType()->isArrayType() && 2444 "Array to pointer decay must have array source type!"); 2445 LValue ArrayLV; 2446 // For simple multidimensional array indexing, set the 'accessed' flag for 2447 // better bounds-checking of the base expression. 2448 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2449 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2450 else 2451 ArrayLV = EmitLValue(Array); 2452 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2453 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2454 llvm::Value *Args[] = { Zero, Idx }; 2455 2456 // Propagate the alignment from the array itself to the result. 2457 ArrayAlignment = ArrayLV.getAlignment(); 2458 2459 if (auto *DI = getDebugInfo()) 2460 DI->EmitLocation(Builder, E->getLocStart()); 2461 2462 if (getLangOpts().isSignedOverflowDefined()) 2463 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2464 else 2465 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2466 } else { 2467 // The base must be a pointer, which is not an aggregate. Emit it. 2468 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2469 if (auto *DI = getDebugInfo()) 2470 DI->EmitLocation(Builder, E->getLocStart()); 2471 if (getLangOpts().isSignedOverflowDefined()) 2472 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2473 else 2474 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2475 } 2476 2477 QualType T = E->getBase()->getType()->getPointeeType(); 2478 assert(!T.isNull() && 2479 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2480 2481 2482 // Limit the alignment to that of the result type. 2483 LValue LV; 2484 if (!ArrayAlignment.isZero()) { 2485 CharUnits Align = getContext().getTypeAlignInChars(T); 2486 ArrayAlignment = std::min(Align, ArrayAlignment); 2487 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2488 } else { 2489 LV = MakeNaturalAlignAddrLValue(Address, T); 2490 } 2491 2492 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2493 2494 if (getLangOpts().ObjC1 && 2495 getLangOpts().getGC() != LangOptions::NonGC) { 2496 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2497 setObjCGCLValueClass(getContext(), E, LV); 2498 } 2499 return LV; 2500 } 2501 2502 static 2503 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2504 SmallVectorImpl<unsigned> &Elts) { 2505 SmallVector<llvm::Constant*, 4> CElts; 2506 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2507 CElts.push_back(Builder.getInt32(Elts[i])); 2508 2509 return llvm::ConstantVector::get(CElts); 2510 } 2511 2512 LValue CodeGenFunction:: 2513 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2514 // Emit the base vector as an l-value. 2515 LValue Base; 2516 2517 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2518 if (E->isArrow()) { 2519 // If it is a pointer to a vector, emit the address and form an lvalue with 2520 // it. 2521 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2522 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2523 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2524 Base.getQuals().removeObjCGCAttr(); 2525 } else if (E->getBase()->isGLValue()) { 2526 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2527 // emit the base as an lvalue. 2528 assert(E->getBase()->getType()->isVectorType()); 2529 Base = EmitLValue(E->getBase()); 2530 } else { 2531 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2532 assert(E->getBase()->getType()->isVectorType() && 2533 "Result must be a vector"); 2534 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2535 2536 // Store the vector to memory (because LValue wants an address). 2537 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2538 Builder.CreateStore(Vec, VecMem); 2539 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2540 } 2541 2542 QualType type = 2543 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2544 2545 // Encode the element access list into a vector of unsigned indices. 2546 SmallVector<unsigned, 4> Indices; 2547 E->getEncodedElementAccess(Indices); 2548 2549 if (Base.isSimple()) { 2550 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2551 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2552 Base.getAlignment()); 2553 } 2554 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2555 2556 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2557 SmallVector<llvm::Constant *, 4> CElts; 2558 2559 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2560 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2561 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2562 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2563 Base.getAlignment()); 2564 } 2565 2566 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2567 Expr *BaseExpr = E->getBase(); 2568 2569 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2570 LValue BaseLV; 2571 if (E->isArrow()) { 2572 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2573 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2574 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2575 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2576 } else 2577 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2578 2579 NamedDecl *ND = E->getMemberDecl(); 2580 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 2581 LValue LV = EmitLValueForField(BaseLV, Field); 2582 setObjCGCLValueClass(getContext(), E, LV); 2583 return LV; 2584 } 2585 2586 if (auto *VD = dyn_cast<VarDecl>(ND)) 2587 return EmitGlobalVarDeclLValue(*this, E, VD); 2588 2589 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2590 return EmitFunctionDeclLValue(*this, E, FD); 2591 2592 llvm_unreachable("Unhandled member declaration!"); 2593 } 2594 2595 /// Given that we are currently emitting a lambda, emit an l-value for 2596 /// one of its members. 2597 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 2598 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 2599 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 2600 QualType LambdaTagType = 2601 getContext().getTagDeclType(Field->getParent()); 2602 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 2603 return EmitLValueForField(LambdaLV, Field); 2604 } 2605 2606 LValue CodeGenFunction::EmitLValueForField(LValue base, 2607 const FieldDecl *field) { 2608 if (field->isBitField()) { 2609 const CGRecordLayout &RL = 2610 CGM.getTypes().getCGRecordLayout(field->getParent()); 2611 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2612 llvm::Value *Addr = base.getAddress(); 2613 unsigned Idx = RL.getLLVMFieldNo(field); 2614 if (Idx != 0) 2615 // For structs, we GEP to the field that the record layout suggests. 2616 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 2617 // Get the access type. 2618 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2619 getLLVMContext(), Info.StorageSize, 2620 CGM.getContext().getTargetAddressSpace(base.getType())); 2621 if (Addr->getType() != PtrTy) 2622 Addr = Builder.CreateBitCast(Addr, PtrTy); 2623 2624 QualType fieldType = 2625 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2626 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2627 } 2628 2629 const RecordDecl *rec = field->getParent(); 2630 QualType type = field->getType(); 2631 CharUnits alignment = getContext().getDeclAlign(field); 2632 2633 // FIXME: It should be impossible to have an LValue without alignment for a 2634 // complete type. 2635 if (!base.getAlignment().isZero()) 2636 alignment = std::min(alignment, base.getAlignment()); 2637 2638 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2639 2640 llvm::Value *addr = base.getAddress(); 2641 unsigned cvr = base.getVRQualifiers(); 2642 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 2643 if (rec->isUnion()) { 2644 // For unions, there is no pointer adjustment. 2645 assert(!type->isReferenceType() && "union has reference member"); 2646 // TODO: handle path-aware TBAA for union. 2647 TBAAPath = false; 2648 } else { 2649 // For structs, we GEP to the field that the record layout suggests. 2650 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2651 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2652 2653 // If this is a reference field, load the reference right now. 2654 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2655 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2656 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2657 load->setAlignment(alignment.getQuantity()); 2658 2659 // Loading the reference will disable path-aware TBAA. 2660 TBAAPath = false; 2661 if (CGM.shouldUseTBAA()) { 2662 llvm::MDNode *tbaa; 2663 if (mayAlias) 2664 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2665 else 2666 tbaa = CGM.getTBAAInfo(type); 2667 if (tbaa) 2668 CGM.DecorateInstruction(load, tbaa); 2669 } 2670 2671 addr = load; 2672 mayAlias = false; 2673 type = refType->getPointeeType(); 2674 if (type->isIncompleteType()) 2675 alignment = CharUnits(); 2676 else 2677 alignment = getContext().getTypeAlignInChars(type); 2678 cvr = 0; // qualifiers don't recursively apply to referencee 2679 } 2680 } 2681 2682 // Make sure that the address is pointing to the right type. This is critical 2683 // for both unions and structs. A union needs a bitcast, a struct element 2684 // will need a bitcast if the LLVM type laid out doesn't match the desired 2685 // type. 2686 addr = EmitBitCastOfLValueToProperType(*this, addr, 2687 CGM.getTypes().ConvertTypeForMem(type), 2688 field->getName()); 2689 2690 if (field->hasAttr<AnnotateAttr>()) 2691 addr = EmitFieldAnnotations(field, addr); 2692 2693 LValue LV = MakeAddrLValue(addr, type, alignment); 2694 LV.getQuals().addCVRQualifiers(cvr); 2695 if (TBAAPath) { 2696 const ASTRecordLayout &Layout = 2697 getContext().getASTRecordLayout(field->getParent()); 2698 // Set the base type to be the base type of the base LValue and 2699 // update offset to be relative to the base type. 2700 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 2701 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 2702 Layout.getFieldOffset(field->getFieldIndex()) / 2703 getContext().getCharWidth()); 2704 } 2705 2706 // __weak attribute on a field is ignored. 2707 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2708 LV.getQuals().removeObjCGCAttr(); 2709 2710 // Fields of may_alias structs act like 'char' for TBAA purposes. 2711 // FIXME: this should get propagated down through anonymous structs 2712 // and unions. 2713 if (mayAlias && LV.getTBAAInfo()) 2714 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2715 2716 return LV; 2717 } 2718 2719 LValue 2720 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2721 const FieldDecl *Field) { 2722 QualType FieldType = Field->getType(); 2723 2724 if (!FieldType->isReferenceType()) 2725 return EmitLValueForField(Base, Field); 2726 2727 const CGRecordLayout &RL = 2728 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2729 unsigned idx = RL.getLLVMFieldNo(Field); 2730 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2731 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2732 2733 // Make sure that the address is pointing to the right type. This is critical 2734 // for both unions and structs. A union needs a bitcast, a struct element 2735 // will need a bitcast if the LLVM type laid out doesn't match the desired 2736 // type. 2737 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2738 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2739 2740 CharUnits Alignment = getContext().getDeclAlign(Field); 2741 2742 // FIXME: It should be impossible to have an LValue without alignment for a 2743 // complete type. 2744 if (!Base.getAlignment().isZero()) 2745 Alignment = std::min(Alignment, Base.getAlignment()); 2746 2747 return MakeAddrLValue(V, FieldType, Alignment); 2748 } 2749 2750 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2751 if (E->isFileScope()) { 2752 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2753 return MakeAddrLValue(GlobalPtr, E->getType()); 2754 } 2755 if (E->getType()->isVariablyModifiedType()) 2756 // make sure to emit the VLA size. 2757 EmitVariablyModifiedType(E->getType()); 2758 2759 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2760 const Expr *InitExpr = E->getInitializer(); 2761 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2762 2763 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2764 /*Init*/ true); 2765 2766 return Result; 2767 } 2768 2769 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2770 if (!E->isGLValue()) 2771 // Initializing an aggregate temporary in C++11: T{...}. 2772 return EmitAggExprToLValue(E); 2773 2774 // An lvalue initializer list must be initializing a reference. 2775 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2776 return EmitLValue(E->getInit(0)); 2777 } 2778 2779 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 2780 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 2781 /// LValue is returned and the current block has been terminated. 2782 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 2783 const Expr *Operand) { 2784 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 2785 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 2786 return None; 2787 } 2788 2789 return CGF.EmitLValue(Operand); 2790 } 2791 2792 LValue CodeGenFunction:: 2793 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2794 if (!expr->isGLValue()) { 2795 // ?: here should be an aggregate. 2796 assert(hasAggregateEvaluationKind(expr->getType()) && 2797 "Unexpected conditional operator!"); 2798 return EmitAggExprToLValue(expr); 2799 } 2800 2801 OpaqueValueMapping binding(*this, expr); 2802 RegionCounter Cnt = getPGORegionCounter(expr); 2803 2804 const Expr *condExpr = expr->getCond(); 2805 bool CondExprBool; 2806 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2807 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2808 if (!CondExprBool) std::swap(live, dead); 2809 2810 if (!ContainsLabel(dead)) { 2811 // If the true case is live, we need to track its region. 2812 if (CondExprBool) 2813 Cnt.beginRegion(Builder); 2814 return EmitLValue(live); 2815 } 2816 } 2817 2818 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2819 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2820 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2821 2822 ConditionalEvaluation eval(*this); 2823 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount()); 2824 2825 // Any temporaries created here are conditional. 2826 EmitBlock(lhsBlock); 2827 Cnt.beginRegion(Builder); 2828 eval.begin(*this); 2829 Optional<LValue> lhs = 2830 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 2831 eval.end(*this); 2832 2833 if (lhs && !lhs->isSimple()) 2834 return EmitUnsupportedLValue(expr, "conditional operator"); 2835 2836 lhsBlock = Builder.GetInsertBlock(); 2837 if (lhs) 2838 Builder.CreateBr(contBlock); 2839 2840 // Any temporaries created here are conditional. 2841 EmitBlock(rhsBlock); 2842 eval.begin(*this); 2843 Optional<LValue> rhs = 2844 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 2845 eval.end(*this); 2846 if (rhs && !rhs->isSimple()) 2847 return EmitUnsupportedLValue(expr, "conditional operator"); 2848 rhsBlock = Builder.GetInsertBlock(); 2849 2850 EmitBlock(contBlock); 2851 2852 if (lhs && rhs) { 2853 llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(), 2854 2, "cond-lvalue"); 2855 phi->addIncoming(lhs->getAddress(), lhsBlock); 2856 phi->addIncoming(rhs->getAddress(), rhsBlock); 2857 return MakeAddrLValue(phi, expr->getType()); 2858 } else { 2859 assert((lhs || rhs) && 2860 "both operands of glvalue conditional are throw-expressions?"); 2861 return lhs ? *lhs : *rhs; 2862 } 2863 } 2864 2865 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2866 /// type. If the cast is to a reference, we can have the usual lvalue result, 2867 /// otherwise if a cast is needed by the code generator in an lvalue context, 2868 /// then it must mean that we need the address of an aggregate in order to 2869 /// access one of its members. This can happen for all the reasons that casts 2870 /// are permitted with aggregate result, including noop aggregate casts, and 2871 /// cast from scalar to union. 2872 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2873 switch (E->getCastKind()) { 2874 case CK_ToVoid: 2875 case CK_BitCast: 2876 case CK_ArrayToPointerDecay: 2877 case CK_FunctionToPointerDecay: 2878 case CK_NullToMemberPointer: 2879 case CK_NullToPointer: 2880 case CK_IntegralToPointer: 2881 case CK_PointerToIntegral: 2882 case CK_PointerToBoolean: 2883 case CK_VectorSplat: 2884 case CK_IntegralCast: 2885 case CK_IntegralToBoolean: 2886 case CK_IntegralToFloating: 2887 case CK_FloatingToIntegral: 2888 case CK_FloatingToBoolean: 2889 case CK_FloatingCast: 2890 case CK_FloatingRealToComplex: 2891 case CK_FloatingComplexToReal: 2892 case CK_FloatingComplexToBoolean: 2893 case CK_FloatingComplexCast: 2894 case CK_FloatingComplexToIntegralComplex: 2895 case CK_IntegralRealToComplex: 2896 case CK_IntegralComplexToReal: 2897 case CK_IntegralComplexToBoolean: 2898 case CK_IntegralComplexCast: 2899 case CK_IntegralComplexToFloatingComplex: 2900 case CK_DerivedToBaseMemberPointer: 2901 case CK_BaseToDerivedMemberPointer: 2902 case CK_MemberPointerToBoolean: 2903 case CK_ReinterpretMemberPointer: 2904 case CK_AnyPointerToBlockPointerCast: 2905 case CK_ARCProduceObject: 2906 case CK_ARCConsumeObject: 2907 case CK_ARCReclaimReturnedObject: 2908 case CK_ARCExtendBlockObject: 2909 case CK_CopyAndAutoreleaseBlockObject: 2910 case CK_AddressSpaceConversion: 2911 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2912 2913 case CK_Dependent: 2914 llvm_unreachable("dependent cast kind in IR gen!"); 2915 2916 case CK_BuiltinFnToFnPtr: 2917 llvm_unreachable("builtin functions are handled elsewhere"); 2918 2919 // These are never l-values; just use the aggregate emission code. 2920 case CK_NonAtomicToAtomic: 2921 case CK_AtomicToNonAtomic: 2922 return EmitAggExprToLValue(E); 2923 2924 case CK_Dynamic: { 2925 LValue LV = EmitLValue(E->getSubExpr()); 2926 llvm::Value *V = LV.getAddress(); 2927 const auto *DCE = cast<CXXDynamicCastExpr>(E); 2928 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2929 } 2930 2931 case CK_ConstructorConversion: 2932 case CK_UserDefinedConversion: 2933 case CK_CPointerToObjCPointerCast: 2934 case CK_BlockPointerToObjCPointerCast: 2935 case CK_NoOp: 2936 case CK_LValueToRValue: 2937 return EmitLValue(E->getSubExpr()); 2938 2939 case CK_UncheckedDerivedToBase: 2940 case CK_DerivedToBase: { 2941 const RecordType *DerivedClassTy = 2942 E->getSubExpr()->getType()->getAs<RecordType>(); 2943 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2944 2945 LValue LV = EmitLValue(E->getSubExpr()); 2946 llvm::Value *This = LV.getAddress(); 2947 2948 // Perform the derived-to-base conversion 2949 llvm::Value *Base = GetAddressOfBaseClass( 2950 This, DerivedClassDecl, E->path_begin(), E->path_end(), 2951 /*NullCheckValue=*/false, E->getExprLoc()); 2952 2953 return MakeAddrLValue(Base, E->getType()); 2954 } 2955 case CK_ToUnion: 2956 return EmitAggExprToLValue(E); 2957 case CK_BaseToDerived: { 2958 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2959 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2960 2961 LValue LV = EmitLValue(E->getSubExpr()); 2962 2963 // Perform the base-to-derived conversion 2964 llvm::Value *Derived = 2965 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2966 E->path_begin(), E->path_end(), 2967 /*NullCheckValue=*/false); 2968 2969 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 2970 // performed and the object is not of the derived type. 2971 if (sanitizePerformTypeCheck()) 2972 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 2973 Derived, E->getType()); 2974 2975 return MakeAddrLValue(Derived, E->getType()); 2976 } 2977 case CK_LValueBitCast: { 2978 // This must be a reinterpret_cast (or c-style equivalent). 2979 const auto *CE = cast<ExplicitCastExpr>(E); 2980 2981 LValue LV = EmitLValue(E->getSubExpr()); 2982 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2983 ConvertType(CE->getTypeAsWritten())); 2984 return MakeAddrLValue(V, E->getType()); 2985 } 2986 case CK_ObjCObjectLValueCast: { 2987 LValue LV = EmitLValue(E->getSubExpr()); 2988 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2989 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2990 ConvertType(ToType)); 2991 return MakeAddrLValue(V, E->getType()); 2992 } 2993 case CK_ZeroToOCLEvent: 2994 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 2995 } 2996 2997 llvm_unreachable("Unhandled lvalue cast kind?"); 2998 } 2999 3000 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 3001 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 3002 return getOpaqueLValueMapping(e); 3003 } 3004 3005 RValue CodeGenFunction::EmitRValueForField(LValue LV, 3006 const FieldDecl *FD, 3007 SourceLocation Loc) { 3008 QualType FT = FD->getType(); 3009 LValue FieldLV = EmitLValueForField(LV, FD); 3010 switch (getEvaluationKind(FT)) { 3011 case TEK_Complex: 3012 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 3013 case TEK_Aggregate: 3014 return FieldLV.asAggregateRValue(); 3015 case TEK_Scalar: 3016 return EmitLoadOfLValue(FieldLV, Loc); 3017 } 3018 llvm_unreachable("bad evaluation kind"); 3019 } 3020 3021 //===--------------------------------------------------------------------===// 3022 // Expression Emission 3023 //===--------------------------------------------------------------------===// 3024 3025 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 3026 ReturnValueSlot ReturnValue) { 3027 if (CGDebugInfo *DI = getDebugInfo()) { 3028 SourceLocation Loc = E->getLocStart(); 3029 // Force column info to be generated so we can differentiate 3030 // multiple call sites on the same line in the debug info. 3031 // FIXME: This is insufficient. Two calls coming from the same macro 3032 // expansion will still get the same line/column and break debug info. It's 3033 // possible that LLVM can be fixed to not rely on this uniqueness, at which 3034 // point this workaround can be removed. 3035 const FunctionDecl* Callee = E->getDirectCallee(); 3036 bool ForceColumnInfo = Callee && Callee->isInlineSpecified(); 3037 DI->EmitLocation(Builder, Loc, ForceColumnInfo); 3038 } 3039 3040 // Builtins never have block type. 3041 if (E->getCallee()->getType()->isBlockPointerType()) 3042 return EmitBlockCallExpr(E, ReturnValue); 3043 3044 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 3045 return EmitCXXMemberCallExpr(CE, ReturnValue); 3046 3047 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 3048 return EmitCUDAKernelCallExpr(CE, ReturnValue); 3049 3050 const Decl *TargetDecl = E->getCalleeDecl(); 3051 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 3052 if (unsigned builtinID = FD->getBuiltinID()) 3053 return EmitBuiltinExpr(FD, builtinID, E, ReturnValue); 3054 } 3055 3056 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 3057 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 3058 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 3059 3060 if (const auto *PseudoDtor = 3061 dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 3062 QualType DestroyedType = PseudoDtor->getDestroyedType(); 3063 if (getLangOpts().ObjCAutoRefCount && 3064 DestroyedType->isObjCLifetimeType() && 3065 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 3066 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 3067 // Automatic Reference Counting: 3068 // If the pseudo-expression names a retainable object with weak or 3069 // strong lifetime, the object shall be released. 3070 Expr *BaseExpr = PseudoDtor->getBase(); 3071 llvm::Value *BaseValue = nullptr; 3072 Qualifiers BaseQuals; 3073 3074 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3075 if (PseudoDtor->isArrow()) { 3076 BaseValue = EmitScalarExpr(BaseExpr); 3077 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 3078 BaseQuals = PTy->getPointeeType().getQualifiers(); 3079 } else { 3080 LValue BaseLV = EmitLValue(BaseExpr); 3081 BaseValue = BaseLV.getAddress(); 3082 QualType BaseTy = BaseExpr->getType(); 3083 BaseQuals = BaseTy.getQualifiers(); 3084 } 3085 3086 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 3087 case Qualifiers::OCL_None: 3088 case Qualifiers::OCL_ExplicitNone: 3089 case Qualifiers::OCL_Autoreleasing: 3090 break; 3091 3092 case Qualifiers::OCL_Strong: 3093 EmitARCRelease(Builder.CreateLoad(BaseValue, 3094 PseudoDtor->getDestroyedType().isVolatileQualified()), 3095 ARCPreciseLifetime); 3096 break; 3097 3098 case Qualifiers::OCL_Weak: 3099 EmitARCDestroyWeak(BaseValue); 3100 break; 3101 } 3102 } else { 3103 // C++ [expr.pseudo]p1: 3104 // The result shall only be used as the operand for the function call 3105 // operator (), and the result of such a call has type void. The only 3106 // effect is the evaluation of the postfix-expression before the dot or 3107 // arrow. 3108 EmitScalarExpr(E->getCallee()); 3109 } 3110 3111 return RValue::get(nullptr); 3112 } 3113 3114 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 3115 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue, 3116 TargetDecl); 3117 } 3118 3119 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 3120 // Comma expressions just emit their LHS then their RHS as an l-value. 3121 if (E->getOpcode() == BO_Comma) { 3122 EmitIgnoredExpr(E->getLHS()); 3123 EnsureInsertPoint(); 3124 return EmitLValue(E->getRHS()); 3125 } 3126 3127 if (E->getOpcode() == BO_PtrMemD || 3128 E->getOpcode() == BO_PtrMemI) 3129 return EmitPointerToDataMemberBinaryExpr(E); 3130 3131 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 3132 3133 // Note that in all of these cases, __block variables need the RHS 3134 // evaluated first just in case the variable gets moved by the RHS. 3135 3136 switch (getEvaluationKind(E->getType())) { 3137 case TEK_Scalar: { 3138 switch (E->getLHS()->getType().getObjCLifetime()) { 3139 case Qualifiers::OCL_Strong: 3140 return EmitARCStoreStrong(E, /*ignored*/ false).first; 3141 3142 case Qualifiers::OCL_Autoreleasing: 3143 return EmitARCStoreAutoreleasing(E).first; 3144 3145 // No reason to do any of these differently. 3146 case Qualifiers::OCL_None: 3147 case Qualifiers::OCL_ExplicitNone: 3148 case Qualifiers::OCL_Weak: 3149 break; 3150 } 3151 3152 RValue RV = EmitAnyExpr(E->getRHS()); 3153 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 3154 if (CGDebugInfo *DI = getDebugInfo()) 3155 DI->EmitLocation(Builder, E->getLocStart()); 3156 EmitStoreThroughLValue(RV, LV); 3157 return LV; 3158 } 3159 3160 case TEK_Complex: 3161 return EmitComplexAssignmentLValue(E); 3162 3163 case TEK_Aggregate: 3164 return EmitAggExprToLValue(E); 3165 } 3166 llvm_unreachable("bad evaluation kind"); 3167 } 3168 3169 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 3170 RValue RV = EmitCallExpr(E); 3171 3172 if (!RV.isScalar()) 3173 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3174 3175 assert(E->getCallReturnType()->isReferenceType() && 3176 "Can't have a scalar return unless the return type is a " 3177 "reference type!"); 3178 3179 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3180 } 3181 3182 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3183 // FIXME: This shouldn't require another copy. 3184 return EmitAggExprToLValue(E); 3185 } 3186 3187 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3188 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3189 && "binding l-value to type which needs a temporary"); 3190 AggValueSlot Slot = CreateAggTemp(E->getType()); 3191 EmitCXXConstructExpr(E, Slot); 3192 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3193 } 3194 3195 LValue 3196 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3197 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3198 } 3199 3200 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3201 return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E), 3202 ConvertType(E->getType())->getPointerTo()); 3203 } 3204 3205 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3206 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 3207 } 3208 3209 LValue 3210 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3211 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3212 Slot.setExternallyDestructed(); 3213 EmitAggExpr(E->getSubExpr(), Slot); 3214 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 3215 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3216 } 3217 3218 LValue 3219 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3220 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3221 EmitLambdaExpr(E, Slot); 3222 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3223 } 3224 3225 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3226 RValue RV = EmitObjCMessageExpr(E); 3227 3228 if (!RV.isScalar()) 3229 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3230 3231 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 3232 "Can't have a scalar return unless the return type is a " 3233 "reference type!"); 3234 3235 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3236 } 3237 3238 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3239 llvm::Value *V = 3240 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); 3241 return MakeAddrLValue(V, E->getType()); 3242 } 3243 3244 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3245 const ObjCIvarDecl *Ivar) { 3246 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3247 } 3248 3249 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3250 llvm::Value *BaseValue, 3251 const ObjCIvarDecl *Ivar, 3252 unsigned CVRQualifiers) { 3253 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3254 Ivar, CVRQualifiers); 3255 } 3256 3257 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3258 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3259 llvm::Value *BaseValue = nullptr; 3260 const Expr *BaseExpr = E->getBase(); 3261 Qualifiers BaseQuals; 3262 QualType ObjectTy; 3263 if (E->isArrow()) { 3264 BaseValue = EmitScalarExpr(BaseExpr); 3265 ObjectTy = BaseExpr->getType()->getPointeeType(); 3266 BaseQuals = ObjectTy.getQualifiers(); 3267 } else { 3268 LValue BaseLV = EmitLValue(BaseExpr); 3269 // FIXME: this isn't right for bitfields. 3270 BaseValue = BaseLV.getAddress(); 3271 ObjectTy = BaseExpr->getType(); 3272 BaseQuals = ObjectTy.getQualifiers(); 3273 } 3274 3275 LValue LV = 3276 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3277 BaseQuals.getCVRQualifiers()); 3278 setObjCGCLValueClass(getContext(), E, LV); 3279 return LV; 3280 } 3281 3282 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3283 // Can only get l-value for message expression returning aggregate type 3284 RValue RV = EmitAnyExprToTemp(E); 3285 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3286 } 3287 3288 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3289 const CallExpr *E, ReturnValueSlot ReturnValue, 3290 const Decl *TargetDecl, llvm::Value *Chain) { 3291 // Get the actual function type. The callee type will always be a pointer to 3292 // function type or a block pointer type. 3293 assert(CalleeType->isFunctionPointerType() && 3294 "Call must have function pointer type!"); 3295 3296 CalleeType = getContext().getCanonicalType(CalleeType); 3297 3298 const auto *FnType = 3299 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3300 3301 // Force column info to differentiate multiple inlined call sites on 3302 // the same line, analoguous to EmitCallExpr. 3303 // FIXME: This is insufficient. Two calls coming from the same macro expansion 3304 // will still get the same line/column and break debug info. It's possible 3305 // that LLVM can be fixed to not rely on this uniqueness, at which point this 3306 // workaround can be removed. 3307 bool ForceColumnInfo = false; 3308 if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl)) 3309 ForceColumnInfo = FD->isInlineSpecified(); 3310 3311 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 3312 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 3313 if (llvm::Constant *PrefixSig = 3314 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 3315 SanitizerScope SanScope(this); 3316 llvm::Constant *FTRTTIConst = 3317 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 3318 llvm::Type *PrefixStructTyElems[] = { 3319 PrefixSig->getType(), 3320 FTRTTIConst->getType() 3321 }; 3322 llvm::StructType *PrefixStructTy = llvm::StructType::get( 3323 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 3324 3325 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 3326 Callee, llvm::PointerType::getUnqual(PrefixStructTy)); 3327 llvm::Value *CalleeSigPtr = 3328 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0); 3329 llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr); 3330 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 3331 3332 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3333 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 3334 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 3335 3336 EmitBlock(TypeCheck); 3337 llvm::Value *CalleeRTTIPtr = 3338 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1); 3339 llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr); 3340 llvm::Value *CalleeRTTIMatch = 3341 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 3342 llvm::Constant *StaticData[] = { 3343 EmitCheckSourceLocation(E->getLocStart()), 3344 EmitCheckTypeDescriptor(CalleeType) 3345 }; 3346 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 3347 "function_type_mismatch", StaticData, Callee); 3348 3349 Builder.CreateBr(Cont); 3350 EmitBlock(Cont); 3351 } 3352 } 3353 3354 CallArgList Args; 3355 if (Chain) 3356 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 3357 CGM.getContext().VoidPtrTy); 3358 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arg_begin(), 3359 E->arg_end(), E->getDirectCallee(), /*ParamsToSkip*/ 0, 3360 ForceColumnInfo); 3361 3362 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 3363 Args, FnType, /*isChainCall=*/Chain); 3364 3365 // C99 6.5.2.2p6: 3366 // If the expression that denotes the called function has a type 3367 // that does not include a prototype, [the default argument 3368 // promotions are performed]. If the number of arguments does not 3369 // equal the number of parameters, the behavior is undefined. If 3370 // the function is defined with a type that includes a prototype, 3371 // and either the prototype ends with an ellipsis (, ...) or the 3372 // types of the arguments after promotion are not compatible with 3373 // the types of the parameters, the behavior is undefined. If the 3374 // function is defined with a type that does not include a 3375 // prototype, and the types of the arguments after promotion are 3376 // not compatible with those of the parameters after promotion, 3377 // the behavior is undefined [except in some trivial cases]. 3378 // That is, in the general case, we should assume that a call 3379 // through an unprototyped function type works like a *non-variadic* 3380 // call. The way we make this work is to cast to the exact type 3381 // of the promoted arguments. 3382 // 3383 // Chain calls use this same code path to add the invisible chain parameter 3384 // to the function type. 3385 if (isa<FunctionNoProtoType>(FnType) || Chain) { 3386 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3387 CalleeTy = CalleeTy->getPointerTo(); 3388 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3389 } 3390 3391 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3392 } 3393 3394 LValue CodeGenFunction:: 3395 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3396 llvm::Value *BaseV; 3397 if (E->getOpcode() == BO_PtrMemI) 3398 BaseV = EmitScalarExpr(E->getLHS()); 3399 else 3400 BaseV = EmitLValue(E->getLHS()).getAddress(); 3401 3402 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3403 3404 const MemberPointerType *MPT 3405 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3406 3407 llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress( 3408 *this, E, BaseV, OffsetV, MPT); 3409 3410 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3411 } 3412 3413 /// Given the address of a temporary variable, produce an r-value of 3414 /// its type. 3415 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, 3416 QualType type, 3417 SourceLocation loc) { 3418 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); 3419 switch (getEvaluationKind(type)) { 3420 case TEK_Complex: 3421 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 3422 case TEK_Aggregate: 3423 return lvalue.asAggregateRValue(); 3424 case TEK_Scalar: 3425 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 3426 } 3427 llvm_unreachable("bad evaluation kind"); 3428 } 3429 3430 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3431 assert(Val->getType()->isFPOrFPVectorTy()); 3432 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3433 return; 3434 3435 llvm::MDBuilder MDHelper(getLLVMContext()); 3436 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3437 3438 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3439 } 3440 3441 namespace { 3442 struct LValueOrRValue { 3443 LValue LV; 3444 RValue RV; 3445 }; 3446 } 3447 3448 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3449 const PseudoObjectExpr *E, 3450 bool forLValue, 3451 AggValueSlot slot) { 3452 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3453 3454 // Find the result expression, if any. 3455 const Expr *resultExpr = E->getResultExpr(); 3456 LValueOrRValue result; 3457 3458 for (PseudoObjectExpr::const_semantics_iterator 3459 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3460 const Expr *semantic = *i; 3461 3462 // If this semantic expression is an opaque value, bind it 3463 // to the result of its source expression. 3464 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3465 3466 // If this is the result expression, we may need to evaluate 3467 // directly into the slot. 3468 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3469 OVMA opaqueData; 3470 if (ov == resultExpr && ov->isRValue() && !forLValue && 3471 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 3472 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3473 3474 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3475 opaqueData = OVMA::bind(CGF, ov, LV); 3476 result.RV = slot.asRValue(); 3477 3478 // Otherwise, emit as normal. 3479 } else { 3480 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3481 3482 // If this is the result, also evaluate the result now. 3483 if (ov == resultExpr) { 3484 if (forLValue) 3485 result.LV = CGF.EmitLValue(ov); 3486 else 3487 result.RV = CGF.EmitAnyExpr(ov, slot); 3488 } 3489 } 3490 3491 opaques.push_back(opaqueData); 3492 3493 // Otherwise, if the expression is the result, evaluate it 3494 // and remember the result. 3495 } else if (semantic == resultExpr) { 3496 if (forLValue) 3497 result.LV = CGF.EmitLValue(semantic); 3498 else 3499 result.RV = CGF.EmitAnyExpr(semantic, slot); 3500 3501 // Otherwise, evaluate the expression in an ignored context. 3502 } else { 3503 CGF.EmitIgnoredExpr(semantic); 3504 } 3505 } 3506 3507 // Unbind all the opaques now. 3508 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3509 opaques[i].unbind(CGF); 3510 3511 return result; 3512 } 3513 3514 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3515 AggValueSlot slot) { 3516 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3517 } 3518 3519 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3520 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3521 } 3522