1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/Hashing.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/Support/ConvertUTF.h"
34 
35 using namespace clang;
36 using namespace CodeGen;
37 
38 //===--------------------------------------------------------------------===//
39 //                        Miscellaneous Helper Methods
40 //===--------------------------------------------------------------------===//
41 
42 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
43   unsigned addressSpace =
44     cast<llvm::PointerType>(value->getType())->getAddressSpace();
45 
46   llvm::PointerType *destType = Int8PtrTy;
47   if (addressSpace)
48     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
49 
50   if (value->getType() == destType) return value;
51   return Builder.CreateBitCast(value, destType);
52 }
53 
54 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
55 /// block.
56 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
57                                                     const Twine &Name) {
58   if (!Builder.isNamePreserving())
59     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
60   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
61 }
62 
63 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
64                                      llvm::Value *Init) {
65   auto *Store = new llvm::StoreInst(Init, Var);
66   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
67   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
68 }
69 
70 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
71                                                 const Twine &Name) {
72   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
73   // FIXME: Should we prefer the preferred type alignment here?
74   CharUnits Align = getContext().getTypeAlignInChars(Ty);
75   Alloc->setAlignment(Align.getQuantity());
76   return Alloc;
77 }
78 
79 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
80                                                  const Twine &Name) {
81   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
82   // FIXME: Should we prefer the preferred type alignment here?
83   CharUnits Align = getContext().getTypeAlignInChars(Ty);
84   Alloc->setAlignment(Align.getQuantity());
85   return Alloc;
86 }
87 
88 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
89 /// expression and compare the result against zero, returning an Int1Ty value.
90 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
91   PGO.setCurrentStmt(E);
92   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
93     llvm::Value *MemPtr = EmitScalarExpr(E);
94     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
95   }
96 
97   QualType BoolTy = getContext().BoolTy;
98   if (!E->getType()->isAnyComplexType())
99     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
100 
101   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
102 }
103 
104 /// EmitIgnoredExpr - Emit code to compute the specified expression,
105 /// ignoring the result.
106 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
107   if (E->isRValue())
108     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
109 
110   // Just emit it as an l-value and drop the result.
111   EmitLValue(E);
112 }
113 
114 /// EmitAnyExpr - Emit code to compute the specified expression which
115 /// can have any type.  The result is returned as an RValue struct.
116 /// If this is an aggregate expression, AggSlot indicates where the
117 /// result should be returned.
118 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
119                                     AggValueSlot aggSlot,
120                                     bool ignoreResult) {
121   switch (getEvaluationKind(E->getType())) {
122   case TEK_Scalar:
123     return RValue::get(EmitScalarExpr(E, ignoreResult));
124   case TEK_Complex:
125     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
126   case TEK_Aggregate:
127     if (!ignoreResult && aggSlot.isIgnored())
128       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
129     EmitAggExpr(E, aggSlot);
130     return aggSlot.asRValue();
131   }
132   llvm_unreachable("bad evaluation kind");
133 }
134 
135 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
136 /// always be accessible even if no aggregate location is provided.
137 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
138   AggValueSlot AggSlot = AggValueSlot::ignored();
139 
140   if (hasAggregateEvaluationKind(E->getType()))
141     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
142   return EmitAnyExpr(E, AggSlot);
143 }
144 
145 /// EmitAnyExprToMem - Evaluate an expression into a given memory
146 /// location.
147 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
148                                        llvm::Value *Location,
149                                        Qualifiers Quals,
150                                        bool IsInit) {
151   // FIXME: This function should take an LValue as an argument.
152   switch (getEvaluationKind(E->getType())) {
153   case TEK_Complex:
154     EmitComplexExprIntoLValue(E,
155                          MakeNaturalAlignAddrLValue(Location, E->getType()),
156                               /*isInit*/ false);
157     return;
158 
159   case TEK_Aggregate: {
160     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
161     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
162                                          AggValueSlot::IsDestructed_t(IsInit),
163                                          AggValueSlot::DoesNotNeedGCBarriers,
164                                          AggValueSlot::IsAliased_t(!IsInit)));
165     return;
166   }
167 
168   case TEK_Scalar: {
169     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
170     LValue LV = MakeAddrLValue(Location, E->getType());
171     EmitStoreThroughLValue(RV, LV);
172     return;
173   }
174   }
175   llvm_unreachable("bad evaluation kind");
176 }
177 
178 static void
179 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
180                      const Expr *E, llvm::Value *ReferenceTemporary) {
181   // Objective-C++ ARC:
182   //   If we are binding a reference to a temporary that has ownership, we
183   //   need to perform retain/release operations on the temporary.
184   //
185   // FIXME: This should be looking at E, not M.
186   if (CGF.getLangOpts().ObjCAutoRefCount &&
187       M->getType()->isObjCLifetimeType()) {
188     QualType ObjCARCReferenceLifetimeType = M->getType();
189     switch (Qualifiers::ObjCLifetime Lifetime =
190                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
191     case Qualifiers::OCL_None:
192     case Qualifiers::OCL_ExplicitNone:
193       // Carry on to normal cleanup handling.
194       break;
195 
196     case Qualifiers::OCL_Autoreleasing:
197       // Nothing to do; cleaned up by an autorelease pool.
198       return;
199 
200     case Qualifiers::OCL_Strong:
201     case Qualifiers::OCL_Weak:
202       switch (StorageDuration Duration = M->getStorageDuration()) {
203       case SD_Static:
204         // Note: we intentionally do not register a cleanup to release
205         // the object on program termination.
206         return;
207 
208       case SD_Thread:
209         // FIXME: We should probably register a cleanup in this case.
210         return;
211 
212       case SD_Automatic:
213       case SD_FullExpression:
214         CodeGenFunction::Destroyer *Destroy;
215         CleanupKind CleanupKind;
216         if (Lifetime == Qualifiers::OCL_Strong) {
217           const ValueDecl *VD = M->getExtendingDecl();
218           bool Precise =
219               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
220           CleanupKind = CGF.getARCCleanupKind();
221           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
222                             : &CodeGenFunction::destroyARCStrongImprecise;
223         } else {
224           // __weak objects always get EH cleanups; otherwise, exceptions
225           // could cause really nasty crashes instead of mere leaks.
226           CleanupKind = NormalAndEHCleanup;
227           Destroy = &CodeGenFunction::destroyARCWeak;
228         }
229         if (Duration == SD_FullExpression)
230           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
231                           ObjCARCReferenceLifetimeType, *Destroy,
232                           CleanupKind & EHCleanup);
233         else
234           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
235                                           ObjCARCReferenceLifetimeType,
236                                           *Destroy, CleanupKind & EHCleanup);
237         return;
238 
239       case SD_Dynamic:
240         llvm_unreachable("temporary cannot have dynamic storage duration");
241       }
242       llvm_unreachable("unknown storage duration");
243     }
244   }
245 
246   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
247   if (const RecordType *RT =
248           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
249     // Get the destructor for the reference temporary.
250     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
251     if (!ClassDecl->hasTrivialDestructor())
252       ReferenceTemporaryDtor = ClassDecl->getDestructor();
253   }
254 
255   if (!ReferenceTemporaryDtor)
256     return;
257 
258   // Call the destructor for the temporary.
259   switch (M->getStorageDuration()) {
260   case SD_Static:
261   case SD_Thread: {
262     llvm::Constant *CleanupFn;
263     llvm::Constant *CleanupArg;
264     if (E->getType()->isArrayType()) {
265       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
266           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
267           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
268           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
269       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
270     } else {
271       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
272                                                StructorType::Complete);
273       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
274     }
275     CGF.CGM.getCXXABI().registerGlobalDtor(
276         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
277     break;
278   }
279 
280   case SD_FullExpression:
281     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
282                     CodeGenFunction::destroyCXXObject,
283                     CGF.getLangOpts().Exceptions);
284     break;
285 
286   case SD_Automatic:
287     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
288                                     ReferenceTemporary, E->getType(),
289                                     CodeGenFunction::destroyCXXObject,
290                                     CGF.getLangOpts().Exceptions);
291     break;
292 
293   case SD_Dynamic:
294     llvm_unreachable("temporary cannot have dynamic storage duration");
295   }
296 }
297 
298 static llvm::Value *
299 createReferenceTemporary(CodeGenFunction &CGF,
300                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
301   switch (M->getStorageDuration()) {
302   case SD_FullExpression:
303   case SD_Automatic:
304     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
305 
306   case SD_Thread:
307   case SD_Static:
308     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
309 
310   case SD_Dynamic:
311     llvm_unreachable("temporary can't have dynamic storage duration");
312   }
313   llvm_unreachable("unknown storage duration");
314 }
315 
316 LValue CodeGenFunction::
317 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
318   const Expr *E = M->GetTemporaryExpr();
319 
320     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
321     // as that will cause the lifetime adjustment to be lost for ARC
322   if (getLangOpts().ObjCAutoRefCount &&
323       M->getType()->isObjCLifetimeType() &&
324       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
325       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
326     llvm::Value *Object = createReferenceTemporary(*this, M, E);
327     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
328 
329     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
330       // We should not have emitted the initializer for this temporary as a
331       // constant.
332       assert(!Var->hasInitializer());
333       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
334     }
335 
336     switch (getEvaluationKind(E->getType())) {
337     default: llvm_unreachable("expected scalar or aggregate expression");
338     case TEK_Scalar:
339       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
340       break;
341     case TEK_Aggregate: {
342       CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
343       EmitAggExpr(E, AggValueSlot::forAddr(Object, Alignment,
344                                            E->getType().getQualifiers(),
345                                            AggValueSlot::IsDestructed,
346                                            AggValueSlot::DoesNotNeedGCBarriers,
347                                            AggValueSlot::IsNotAliased));
348       break;
349     }
350     }
351 
352     pushTemporaryCleanup(*this, M, E, Object);
353     return RefTempDst;
354   }
355 
356   SmallVector<const Expr *, 2> CommaLHSs;
357   SmallVector<SubobjectAdjustment, 2> Adjustments;
358   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
359 
360   for (const auto &Ignored : CommaLHSs)
361     EmitIgnoredExpr(Ignored);
362 
363   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
364     if (opaque->getType()->isRecordType()) {
365       assert(Adjustments.empty());
366       return EmitOpaqueValueLValue(opaque);
367     }
368   }
369 
370   // Create and initialize the reference temporary.
371   llvm::Value *Object = createReferenceTemporary(*this, M, E);
372   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
373     // If the temporary is a global and has a constant initializer, we may
374     // have already initialized it.
375     if (!Var->hasInitializer()) {
376       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
377       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
378     }
379   } else {
380     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
381   }
382   pushTemporaryCleanup(*this, M, E, Object);
383 
384   // Perform derived-to-base casts and/or field accesses, to get from the
385   // temporary object we created (and, potentially, for which we extended
386   // the lifetime) to the subobject we're binding the reference to.
387   for (unsigned I = Adjustments.size(); I != 0; --I) {
388     SubobjectAdjustment &Adjustment = Adjustments[I-1];
389     switch (Adjustment.Kind) {
390     case SubobjectAdjustment::DerivedToBaseAdjustment:
391       Object =
392           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
393                                 Adjustment.DerivedToBase.BasePath->path_begin(),
394                                 Adjustment.DerivedToBase.BasePath->path_end(),
395                                 /*NullCheckValue=*/ false, E->getExprLoc());
396       break;
397 
398     case SubobjectAdjustment::FieldAdjustment: {
399       LValue LV = MakeAddrLValue(Object, E->getType());
400       LV = EmitLValueForField(LV, Adjustment.Field);
401       assert(LV.isSimple() &&
402              "materialized temporary field is not a simple lvalue");
403       Object = LV.getAddress();
404       break;
405     }
406 
407     case SubobjectAdjustment::MemberPointerAdjustment: {
408       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
409       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
410           *this, E, Object, Ptr, Adjustment.Ptr.MPT);
411       break;
412     }
413     }
414   }
415 
416   return MakeAddrLValue(Object, M->getType());
417 }
418 
419 RValue
420 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
421   // Emit the expression as an lvalue.
422   LValue LV = EmitLValue(E);
423   assert(LV.isSimple());
424   llvm::Value *Value = LV.getAddress();
425 
426   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
427     // C++11 [dcl.ref]p5 (as amended by core issue 453):
428     //   If a glvalue to which a reference is directly bound designates neither
429     //   an existing object or function of an appropriate type nor a region of
430     //   storage of suitable size and alignment to contain an object of the
431     //   reference's type, the behavior is undefined.
432     QualType Ty = E->getType();
433     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
434   }
435 
436   return RValue::get(Value);
437 }
438 
439 
440 /// getAccessedFieldNo - Given an encoded value and a result number, return the
441 /// input field number being accessed.
442 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
443                                              const llvm::Constant *Elts) {
444   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
445       ->getZExtValue();
446 }
447 
448 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
449 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
450                                     llvm::Value *High) {
451   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
452   llvm::Value *K47 = Builder.getInt64(47);
453   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
454   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
455   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
456   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
457   return Builder.CreateMul(B1, KMul);
458 }
459 
460 bool CodeGenFunction::sanitizePerformTypeCheck() const {
461   return SanOpts.has(SanitizerKind::Null) |
462          SanOpts.has(SanitizerKind::Alignment) |
463          SanOpts.has(SanitizerKind::ObjectSize) |
464          SanOpts.has(SanitizerKind::Vptr);
465 }
466 
467 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
468                                     llvm::Value *Address, QualType Ty,
469                                     CharUnits Alignment, bool SkipNullCheck) {
470   if (!sanitizePerformTypeCheck())
471     return;
472 
473   // Don't check pointers outside the default address space. The null check
474   // isn't correct, the object-size check isn't supported by LLVM, and we can't
475   // communicate the addresses to the runtime handler for the vptr check.
476   if (Address->getType()->getPointerAddressSpace())
477     return;
478 
479   SanitizerScope SanScope(this);
480 
481   SmallVector<std::pair<llvm::Value *, SanitizerKind>, 3> Checks;
482   llvm::BasicBlock *Done = nullptr;
483 
484   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
485                            TCK == TCK_UpcastToVirtualBase;
486   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
487       !SkipNullCheck) {
488     // The glvalue must not be an empty glvalue.
489     llvm::Value *IsNonNull = Builder.CreateICmpNE(
490         Address, llvm::Constant::getNullValue(Address->getType()));
491 
492     if (AllowNullPointers) {
493       // When performing pointer casts, it's OK if the value is null.
494       // Skip the remaining checks in that case.
495       Done = createBasicBlock("null");
496       llvm::BasicBlock *Rest = createBasicBlock("not.null");
497       Builder.CreateCondBr(IsNonNull, Rest, Done);
498       EmitBlock(Rest);
499     } else {
500       Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
501     }
502   }
503 
504   if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
505     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
506 
507     // The glvalue must refer to a large enough storage region.
508     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
509     //        to check this.
510     // FIXME: Get object address space
511     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
512     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
513     llvm::Value *Min = Builder.getFalse();
514     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
515     llvm::Value *LargeEnough =
516         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
517                               llvm::ConstantInt::get(IntPtrTy, Size));
518     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
519   }
520 
521   uint64_t AlignVal = 0;
522 
523   if (SanOpts.has(SanitizerKind::Alignment)) {
524     AlignVal = Alignment.getQuantity();
525     if (!Ty->isIncompleteType() && !AlignVal)
526       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
527 
528     // The glvalue must be suitably aligned.
529     if (AlignVal) {
530       llvm::Value *Align =
531           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
532                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
533       llvm::Value *Aligned =
534         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
535       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
536     }
537   }
538 
539   if (Checks.size() > 0) {
540     llvm::Constant *StaticData[] = {
541       EmitCheckSourceLocation(Loc),
542       EmitCheckTypeDescriptor(Ty),
543       llvm::ConstantInt::get(SizeTy, AlignVal),
544       llvm::ConstantInt::get(Int8Ty, TCK)
545     };
546     EmitCheck(Checks, "type_mismatch", StaticData, Address);
547   }
548 
549   // If possible, check that the vptr indicates that there is a subobject of
550   // type Ty at offset zero within this object.
551   //
552   // C++11 [basic.life]p5,6:
553   //   [For storage which does not refer to an object within its lifetime]
554   //   The program has undefined behavior if:
555   //    -- the [pointer or glvalue] is used to access a non-static data member
556   //       or call a non-static member function
557   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
558   if (SanOpts.has(SanitizerKind::Vptr) &&
559       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
560        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
561        TCK == TCK_UpcastToVirtualBase) &&
562       RD && RD->hasDefinition() && RD->isDynamicClass()) {
563     // Compute a hash of the mangled name of the type.
564     //
565     // FIXME: This is not guaranteed to be deterministic! Move to a
566     //        fingerprinting mechanism once LLVM provides one. For the time
567     //        being the implementation happens to be deterministic.
568     SmallString<64> MangledName;
569     llvm::raw_svector_ostream Out(MangledName);
570     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
571                                                      Out);
572 
573     // Blacklist based on the mangled type.
574     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
575             Out.str())) {
576       llvm::hash_code TypeHash = hash_value(Out.str());
577 
578       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
579       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
580       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
581       llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
582       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
583       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
584 
585       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
586       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
587 
588       // Look the hash up in our cache.
589       const int CacheSize = 128;
590       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
591       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
592                                                      "__ubsan_vptr_type_cache");
593       llvm::Value *Slot = Builder.CreateAnd(Hash,
594                                             llvm::ConstantInt::get(IntPtrTy,
595                                                                    CacheSize-1));
596       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
597       llvm::Value *CacheVal =
598         Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
599 
600       // If the hash isn't in the cache, call a runtime handler to perform the
601       // hard work of checking whether the vptr is for an object of the right
602       // type. This will either fill in the cache and return, or produce a
603       // diagnostic.
604       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
605       llvm::Constant *StaticData[] = {
606         EmitCheckSourceLocation(Loc),
607         EmitCheckTypeDescriptor(Ty),
608         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
609         llvm::ConstantInt::get(Int8Ty, TCK)
610       };
611       llvm::Value *DynamicData[] = { Address, Hash };
612       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
613                 "dynamic_type_cache_miss", StaticData, DynamicData);
614     }
615   }
616 
617   if (Done) {
618     Builder.CreateBr(Done);
619     EmitBlock(Done);
620   }
621 }
622 
623 /// Determine whether this expression refers to a flexible array member in a
624 /// struct. We disable array bounds checks for such members.
625 static bool isFlexibleArrayMemberExpr(const Expr *E) {
626   // For compatibility with existing code, we treat arrays of length 0 or
627   // 1 as flexible array members.
628   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
629   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
630     if (CAT->getSize().ugt(1))
631       return false;
632   } else if (!isa<IncompleteArrayType>(AT))
633     return false;
634 
635   E = E->IgnoreParens();
636 
637   // A flexible array member must be the last member in the class.
638   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
639     // FIXME: If the base type of the member expr is not FD->getParent(),
640     // this should not be treated as a flexible array member access.
641     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
642       RecordDecl::field_iterator FI(
643           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
644       return ++FI == FD->getParent()->field_end();
645     }
646   }
647 
648   return false;
649 }
650 
651 /// If Base is known to point to the start of an array, return the length of
652 /// that array. Return 0 if the length cannot be determined.
653 static llvm::Value *getArrayIndexingBound(
654     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
655   // For the vector indexing extension, the bound is the number of elements.
656   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
657     IndexedType = Base->getType();
658     return CGF.Builder.getInt32(VT->getNumElements());
659   }
660 
661   Base = Base->IgnoreParens();
662 
663   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
664     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
665         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
666       IndexedType = CE->getSubExpr()->getType();
667       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
668       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
669         return CGF.Builder.getInt(CAT->getSize());
670       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
671         return CGF.getVLASize(VAT).first;
672     }
673   }
674 
675   return nullptr;
676 }
677 
678 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
679                                       llvm::Value *Index, QualType IndexType,
680                                       bool Accessed) {
681   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
682          "should not be called unless adding bounds checks");
683   SanitizerScope SanScope(this);
684 
685   QualType IndexedType;
686   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
687   if (!Bound)
688     return;
689 
690   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
691   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
692   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
693 
694   llvm::Constant *StaticData[] = {
695     EmitCheckSourceLocation(E->getExprLoc()),
696     EmitCheckTypeDescriptor(IndexedType),
697     EmitCheckTypeDescriptor(IndexType)
698   };
699   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
700                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
701   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
702             StaticData, Index);
703 }
704 
705 
706 CodeGenFunction::ComplexPairTy CodeGenFunction::
707 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
708                          bool isInc, bool isPre) {
709   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
710 
711   llvm::Value *NextVal;
712   if (isa<llvm::IntegerType>(InVal.first->getType())) {
713     uint64_t AmountVal = isInc ? 1 : -1;
714     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
715 
716     // Add the inc/dec to the real part.
717     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
718   } else {
719     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
720     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
721     if (!isInc)
722       FVal.changeSign();
723     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
724 
725     // Add the inc/dec to the real part.
726     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
727   }
728 
729   ComplexPairTy IncVal(NextVal, InVal.second);
730 
731   // Store the updated result through the lvalue.
732   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
733 
734   // If this is a postinc, return the value read from memory, otherwise use the
735   // updated value.
736   return isPre ? IncVal : InVal;
737 }
738 
739 //===----------------------------------------------------------------------===//
740 //                         LValue Expression Emission
741 //===----------------------------------------------------------------------===//
742 
743 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
744   if (Ty->isVoidType())
745     return RValue::get(nullptr);
746 
747   switch (getEvaluationKind(Ty)) {
748   case TEK_Complex: {
749     llvm::Type *EltTy =
750       ConvertType(Ty->castAs<ComplexType>()->getElementType());
751     llvm::Value *U = llvm::UndefValue::get(EltTy);
752     return RValue::getComplex(std::make_pair(U, U));
753   }
754 
755   // If this is a use of an undefined aggregate type, the aggregate must have an
756   // identifiable address.  Just because the contents of the value are undefined
757   // doesn't mean that the address can't be taken and compared.
758   case TEK_Aggregate: {
759     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
760     return RValue::getAggregate(DestPtr);
761   }
762 
763   case TEK_Scalar:
764     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
765   }
766   llvm_unreachable("bad evaluation kind");
767 }
768 
769 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
770                                               const char *Name) {
771   ErrorUnsupported(E, Name);
772   return GetUndefRValue(E->getType());
773 }
774 
775 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
776                                               const char *Name) {
777   ErrorUnsupported(E, Name);
778   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
779   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
780 }
781 
782 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
783   LValue LV;
784   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
785     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
786   else
787     LV = EmitLValue(E);
788   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
789     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
790                   E->getType(), LV.getAlignment());
791   return LV;
792 }
793 
794 /// EmitLValue - Emit code to compute a designator that specifies the location
795 /// of the expression.
796 ///
797 /// This can return one of two things: a simple address or a bitfield reference.
798 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
799 /// an LLVM pointer type.
800 ///
801 /// If this returns a bitfield reference, nothing about the pointee type of the
802 /// LLVM value is known: For example, it may not be a pointer to an integer.
803 ///
804 /// If this returns a normal address, and if the lvalue's C type is fixed size,
805 /// this method guarantees that the returned pointer type will point to an LLVM
806 /// type of the same size of the lvalue's type.  If the lvalue has a variable
807 /// length type, this is not possible.
808 ///
809 LValue CodeGenFunction::EmitLValue(const Expr *E) {
810   switch (E->getStmtClass()) {
811   default: return EmitUnsupportedLValue(E, "l-value expression");
812 
813   case Expr::ObjCPropertyRefExprClass:
814     llvm_unreachable("cannot emit a property reference directly");
815 
816   case Expr::ObjCSelectorExprClass:
817     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
818   case Expr::ObjCIsaExprClass:
819     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
820   case Expr::BinaryOperatorClass:
821     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
822   case Expr::CompoundAssignOperatorClass:
823     if (!E->getType()->isAnyComplexType())
824       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
825     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
826   case Expr::CallExprClass:
827   case Expr::CXXMemberCallExprClass:
828   case Expr::CXXOperatorCallExprClass:
829   case Expr::UserDefinedLiteralClass:
830     return EmitCallExprLValue(cast<CallExpr>(E));
831   case Expr::VAArgExprClass:
832     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
833   case Expr::DeclRefExprClass:
834     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
835   case Expr::ParenExprClass:
836     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
837   case Expr::GenericSelectionExprClass:
838     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
839   case Expr::PredefinedExprClass:
840     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
841   case Expr::StringLiteralClass:
842     return EmitStringLiteralLValue(cast<StringLiteral>(E));
843   case Expr::ObjCEncodeExprClass:
844     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
845   case Expr::PseudoObjectExprClass:
846     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
847   case Expr::InitListExprClass:
848     return EmitInitListLValue(cast<InitListExpr>(E));
849   case Expr::CXXTemporaryObjectExprClass:
850   case Expr::CXXConstructExprClass:
851     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
852   case Expr::CXXBindTemporaryExprClass:
853     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
854   case Expr::CXXUuidofExprClass:
855     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
856   case Expr::LambdaExprClass:
857     return EmitLambdaLValue(cast<LambdaExpr>(E));
858 
859   case Expr::ExprWithCleanupsClass: {
860     const auto *cleanups = cast<ExprWithCleanups>(E);
861     enterFullExpression(cleanups);
862     RunCleanupsScope Scope(*this);
863     return EmitLValue(cleanups->getSubExpr());
864   }
865 
866   case Expr::CXXDefaultArgExprClass:
867     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
868   case Expr::CXXDefaultInitExprClass: {
869     CXXDefaultInitExprScope Scope(*this);
870     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
871   }
872   case Expr::CXXTypeidExprClass:
873     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
874 
875   case Expr::ObjCMessageExprClass:
876     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
877   case Expr::ObjCIvarRefExprClass:
878     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
879   case Expr::StmtExprClass:
880     return EmitStmtExprLValue(cast<StmtExpr>(E));
881   case Expr::UnaryOperatorClass:
882     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
883   case Expr::ArraySubscriptExprClass:
884     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
885   case Expr::ExtVectorElementExprClass:
886     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
887   case Expr::MemberExprClass:
888     return EmitMemberExpr(cast<MemberExpr>(E));
889   case Expr::CompoundLiteralExprClass:
890     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
891   case Expr::ConditionalOperatorClass:
892     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
893   case Expr::BinaryConditionalOperatorClass:
894     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
895   case Expr::ChooseExprClass:
896     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
897   case Expr::OpaqueValueExprClass:
898     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
899   case Expr::SubstNonTypeTemplateParmExprClass:
900     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
901   case Expr::ImplicitCastExprClass:
902   case Expr::CStyleCastExprClass:
903   case Expr::CXXFunctionalCastExprClass:
904   case Expr::CXXStaticCastExprClass:
905   case Expr::CXXDynamicCastExprClass:
906   case Expr::CXXReinterpretCastExprClass:
907   case Expr::CXXConstCastExprClass:
908   case Expr::ObjCBridgedCastExprClass:
909     return EmitCastLValue(cast<CastExpr>(E));
910 
911   case Expr::MaterializeTemporaryExprClass:
912     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
913   }
914 }
915 
916 /// Given an object of the given canonical type, can we safely copy a
917 /// value out of it based on its initializer?
918 static bool isConstantEmittableObjectType(QualType type) {
919   assert(type.isCanonical());
920   assert(!type->isReferenceType());
921 
922   // Must be const-qualified but non-volatile.
923   Qualifiers qs = type.getLocalQualifiers();
924   if (!qs.hasConst() || qs.hasVolatile()) return false;
925 
926   // Otherwise, all object types satisfy this except C++ classes with
927   // mutable subobjects or non-trivial copy/destroy behavior.
928   if (const auto *RT = dyn_cast<RecordType>(type))
929     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
930       if (RD->hasMutableFields() || !RD->isTrivial())
931         return false;
932 
933   return true;
934 }
935 
936 /// Can we constant-emit a load of a reference to a variable of the
937 /// given type?  This is different from predicates like
938 /// Decl::isUsableInConstantExpressions because we do want it to apply
939 /// in situations that don't necessarily satisfy the language's rules
940 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
941 /// to do this with const float variables even if those variables
942 /// aren't marked 'constexpr'.
943 enum ConstantEmissionKind {
944   CEK_None,
945   CEK_AsReferenceOnly,
946   CEK_AsValueOrReference,
947   CEK_AsValueOnly
948 };
949 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
950   type = type.getCanonicalType();
951   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
952     if (isConstantEmittableObjectType(ref->getPointeeType()))
953       return CEK_AsValueOrReference;
954     return CEK_AsReferenceOnly;
955   }
956   if (isConstantEmittableObjectType(type))
957     return CEK_AsValueOnly;
958   return CEK_None;
959 }
960 
961 /// Try to emit a reference to the given value without producing it as
962 /// an l-value.  This is actually more than an optimization: we can't
963 /// produce an l-value for variables that we never actually captured
964 /// in a block or lambda, which means const int variables or constexpr
965 /// literals or similar.
966 CodeGenFunction::ConstantEmission
967 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
968   ValueDecl *value = refExpr->getDecl();
969 
970   // The value needs to be an enum constant or a constant variable.
971   ConstantEmissionKind CEK;
972   if (isa<ParmVarDecl>(value)) {
973     CEK = CEK_None;
974   } else if (auto *var = dyn_cast<VarDecl>(value)) {
975     CEK = checkVarTypeForConstantEmission(var->getType());
976   } else if (isa<EnumConstantDecl>(value)) {
977     CEK = CEK_AsValueOnly;
978   } else {
979     CEK = CEK_None;
980   }
981   if (CEK == CEK_None) return ConstantEmission();
982 
983   Expr::EvalResult result;
984   bool resultIsReference;
985   QualType resultType;
986 
987   // It's best to evaluate all the way as an r-value if that's permitted.
988   if (CEK != CEK_AsReferenceOnly &&
989       refExpr->EvaluateAsRValue(result, getContext())) {
990     resultIsReference = false;
991     resultType = refExpr->getType();
992 
993   // Otherwise, try to evaluate as an l-value.
994   } else if (CEK != CEK_AsValueOnly &&
995              refExpr->EvaluateAsLValue(result, getContext())) {
996     resultIsReference = true;
997     resultType = value->getType();
998 
999   // Failure.
1000   } else {
1001     return ConstantEmission();
1002   }
1003 
1004   // In any case, if the initializer has side-effects, abandon ship.
1005   if (result.HasSideEffects)
1006     return ConstantEmission();
1007 
1008   // Emit as a constant.
1009   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1010 
1011   // Make sure we emit a debug reference to the global variable.
1012   // This should probably fire even for
1013   if (isa<VarDecl>(value)) {
1014     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1015       EmitDeclRefExprDbgValue(refExpr, C);
1016   } else {
1017     assert(isa<EnumConstantDecl>(value));
1018     EmitDeclRefExprDbgValue(refExpr, C);
1019   }
1020 
1021   // If we emitted a reference constant, we need to dereference that.
1022   if (resultIsReference)
1023     return ConstantEmission::forReference(C);
1024 
1025   return ConstantEmission::forValue(C);
1026 }
1027 
1028 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1029                                                SourceLocation Loc) {
1030   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1031                           lvalue.getAlignment().getQuantity(),
1032                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
1033                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
1034 }
1035 
1036 static bool hasBooleanRepresentation(QualType Ty) {
1037   if (Ty->isBooleanType())
1038     return true;
1039 
1040   if (const EnumType *ET = Ty->getAs<EnumType>())
1041     return ET->getDecl()->getIntegerType()->isBooleanType();
1042 
1043   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1044     return hasBooleanRepresentation(AT->getValueType());
1045 
1046   return false;
1047 }
1048 
1049 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1050                             llvm::APInt &Min, llvm::APInt &End,
1051                             bool StrictEnums) {
1052   const EnumType *ET = Ty->getAs<EnumType>();
1053   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1054                                 ET && !ET->getDecl()->isFixed();
1055   bool IsBool = hasBooleanRepresentation(Ty);
1056   if (!IsBool && !IsRegularCPlusPlusEnum)
1057     return false;
1058 
1059   if (IsBool) {
1060     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1061     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1062   } else {
1063     const EnumDecl *ED = ET->getDecl();
1064     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1065     unsigned Bitwidth = LTy->getScalarSizeInBits();
1066     unsigned NumNegativeBits = ED->getNumNegativeBits();
1067     unsigned NumPositiveBits = ED->getNumPositiveBits();
1068 
1069     if (NumNegativeBits) {
1070       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1071       assert(NumBits <= Bitwidth);
1072       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1073       Min = -End;
1074     } else {
1075       assert(NumPositiveBits <= Bitwidth);
1076       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1077       Min = llvm::APInt(Bitwidth, 0);
1078     }
1079   }
1080   return true;
1081 }
1082 
1083 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1084   llvm::APInt Min, End;
1085   if (!getRangeForType(*this, Ty, Min, End,
1086                        CGM.getCodeGenOpts().StrictEnums))
1087     return nullptr;
1088 
1089   llvm::MDBuilder MDHelper(getLLVMContext());
1090   return MDHelper.createRange(Min, End);
1091 }
1092 
1093 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1094                                                unsigned Alignment, QualType Ty,
1095                                                SourceLocation Loc,
1096                                                llvm::MDNode *TBAAInfo,
1097                                                QualType TBAABaseType,
1098                                                uint64_t TBAAOffset) {
1099   // For better performance, handle vector loads differently.
1100   if (Ty->isVectorType()) {
1101     llvm::Value *V;
1102     const llvm::Type *EltTy =
1103     cast<llvm::PointerType>(Addr->getType())->getElementType();
1104 
1105     const auto *VTy = cast<llvm::VectorType>(EltTy);
1106 
1107     // Handle vectors of size 3, like size 4 for better performance.
1108     if (VTy->getNumElements() == 3) {
1109 
1110       // Bitcast to vec4 type.
1111       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1112                                                          4);
1113       llvm::PointerType *ptVec4Ty =
1114       llvm::PointerType::get(vec4Ty,
1115                              (cast<llvm::PointerType>(
1116                                       Addr->getType()))->getAddressSpace());
1117       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1118                                                 "castToVec4");
1119       // Now load value.
1120       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1121 
1122       // Shuffle vector to get vec3.
1123       llvm::Constant *Mask[] = {
1124         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1125         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1126         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1127       };
1128 
1129       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1130       V = Builder.CreateShuffleVector(LoadVal,
1131                                       llvm::UndefValue::get(vec4Ty),
1132                                       MaskV, "extractVec");
1133       return EmitFromMemory(V, Ty);
1134     }
1135   }
1136 
1137   // Atomic operations have to be done on integral types.
1138   if (Ty->isAtomicType()) {
1139     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1140                                      CharUnits::fromQuantity(Alignment),
1141                                      getContext(), TBAAInfo);
1142     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1143   }
1144 
1145   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1146   if (Volatile)
1147     Load->setVolatile(true);
1148   if (Alignment)
1149     Load->setAlignment(Alignment);
1150   if (TBAAInfo) {
1151     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1152                                                       TBAAOffset);
1153     if (TBAAPath)
1154       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1155   }
1156 
1157   bool NeedsBoolCheck =
1158       SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
1159   bool NeedsEnumCheck =
1160       SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
1161   if (NeedsBoolCheck || NeedsEnumCheck) {
1162     SanitizerScope SanScope(this);
1163     llvm::APInt Min, End;
1164     if (getRangeForType(*this, Ty, Min, End, true)) {
1165       --End;
1166       llvm::Value *Check;
1167       if (!Min)
1168         Check = Builder.CreateICmpULE(
1169           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1170       else {
1171         llvm::Value *Upper = Builder.CreateICmpSLE(
1172           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1173         llvm::Value *Lower = Builder.CreateICmpSGE(
1174           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1175         Check = Builder.CreateAnd(Upper, Lower);
1176       }
1177       llvm::Constant *StaticArgs[] = {
1178         EmitCheckSourceLocation(Loc),
1179         EmitCheckTypeDescriptor(Ty)
1180       };
1181       SanitizerKind Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1182       EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
1183                 EmitCheckValue(Load));
1184     }
1185   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1186     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1187       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1188 
1189   return EmitFromMemory(Load, Ty);
1190 }
1191 
1192 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1193   // Bool has a different representation in memory than in registers.
1194   if (hasBooleanRepresentation(Ty)) {
1195     // This should really always be an i1, but sometimes it's already
1196     // an i8, and it's awkward to track those cases down.
1197     if (Value->getType()->isIntegerTy(1))
1198       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1199     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1200            "wrong value rep of bool");
1201   }
1202 
1203   return Value;
1204 }
1205 
1206 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1207   // Bool has a different representation in memory than in registers.
1208   if (hasBooleanRepresentation(Ty)) {
1209     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1210            "wrong value rep of bool");
1211     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1212   }
1213 
1214   return Value;
1215 }
1216 
1217 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1218                                         bool Volatile, unsigned Alignment,
1219                                         QualType Ty, llvm::MDNode *TBAAInfo,
1220                                         bool isInit, QualType TBAABaseType,
1221                                         uint64_t TBAAOffset) {
1222 
1223   // Handle vectors differently to get better performance.
1224   if (Ty->isVectorType()) {
1225     llvm::Type *SrcTy = Value->getType();
1226     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1227     // Handle vec3 special.
1228     if (VecTy->getNumElements() == 3) {
1229       llvm::LLVMContext &VMContext = getLLVMContext();
1230 
1231       // Our source is a vec3, do a shuffle vector to make it a vec4.
1232       SmallVector<llvm::Constant*, 4> Mask;
1233       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1234                                             0));
1235       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1236                                             1));
1237       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1238                                             2));
1239       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1240 
1241       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1242       Value = Builder.CreateShuffleVector(Value,
1243                                           llvm::UndefValue::get(VecTy),
1244                                           MaskV, "extractVec");
1245       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1246     }
1247     auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
1248     if (DstPtr->getElementType() != SrcTy) {
1249       llvm::Type *MemTy =
1250       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1251       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1252     }
1253   }
1254 
1255   Value = EmitToMemory(Value, Ty);
1256 
1257   if (Ty->isAtomicType()) {
1258     EmitAtomicStore(RValue::get(Value),
1259                     LValue::MakeAddr(Addr, Ty,
1260                                      CharUnits::fromQuantity(Alignment),
1261                                      getContext(), TBAAInfo),
1262                     isInit);
1263     return;
1264   }
1265 
1266   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1267   if (Alignment)
1268     Store->setAlignment(Alignment);
1269   if (TBAAInfo) {
1270     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1271                                                       TBAAOffset);
1272     if (TBAAPath)
1273       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1274   }
1275 }
1276 
1277 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1278                                         bool isInit) {
1279   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1280                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1281                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1282                     lvalue.getTBAAOffset());
1283 }
1284 
1285 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1286 /// method emits the address of the lvalue, then loads the result as an rvalue,
1287 /// returning the rvalue.
1288 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1289   if (LV.isObjCWeak()) {
1290     // load of a __weak object.
1291     llvm::Value *AddrWeakObj = LV.getAddress();
1292     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1293                                                              AddrWeakObj));
1294   }
1295   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1296     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1297     Object = EmitObjCConsumeObject(LV.getType(), Object);
1298     return RValue::get(Object);
1299   }
1300 
1301   if (LV.isSimple()) {
1302     assert(!LV.getType()->isFunctionType());
1303 
1304     // Everything needs a load.
1305     return RValue::get(EmitLoadOfScalar(LV, Loc));
1306   }
1307 
1308   if (LV.isVectorElt()) {
1309     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1310                                               LV.isVolatileQualified());
1311     Load->setAlignment(LV.getAlignment().getQuantity());
1312     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1313                                                     "vecext"));
1314   }
1315 
1316   // If this is a reference to a subset of the elements of a vector, either
1317   // shuffle the input or extract/insert them as appropriate.
1318   if (LV.isExtVectorElt())
1319     return EmitLoadOfExtVectorElementLValue(LV);
1320 
1321   // Global Register variables always invoke intrinsics
1322   if (LV.isGlobalReg())
1323     return EmitLoadOfGlobalRegLValue(LV);
1324 
1325   assert(LV.isBitField() && "Unknown LValue type!");
1326   return EmitLoadOfBitfieldLValue(LV);
1327 }
1328 
1329 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1330   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1331 
1332   // Get the output type.
1333   llvm::Type *ResLTy = ConvertType(LV.getType());
1334 
1335   llvm::Value *Ptr = LV.getBitFieldAddr();
1336   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1337                                         "bf.load");
1338   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1339 
1340   if (Info.IsSigned) {
1341     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1342     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1343     if (HighBits)
1344       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1345     if (Info.Offset + HighBits)
1346       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1347   } else {
1348     if (Info.Offset)
1349       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1350     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1351       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1352                                                               Info.Size),
1353                               "bf.clear");
1354   }
1355   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1356 
1357   return RValue::get(Val);
1358 }
1359 
1360 // If this is a reference to a subset of the elements of a vector, create an
1361 // appropriate shufflevector.
1362 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1363   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1364                                             LV.isVolatileQualified());
1365   Load->setAlignment(LV.getAlignment().getQuantity());
1366   llvm::Value *Vec = Load;
1367 
1368   const llvm::Constant *Elts = LV.getExtVectorElts();
1369 
1370   // If the result of the expression is a non-vector type, we must be extracting
1371   // a single element.  Just codegen as an extractelement.
1372   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1373   if (!ExprVT) {
1374     unsigned InIdx = getAccessedFieldNo(0, Elts);
1375     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1376     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1377   }
1378 
1379   // Always use shuffle vector to try to retain the original program structure
1380   unsigned NumResultElts = ExprVT->getNumElements();
1381 
1382   SmallVector<llvm::Constant*, 4> Mask;
1383   for (unsigned i = 0; i != NumResultElts; ++i)
1384     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1385 
1386   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1387   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1388                                     MaskV);
1389   return RValue::get(Vec);
1390 }
1391 
1392 /// @brief Generates lvalue for partial ext_vector access.
1393 llvm::Value *CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1394   llvm::Value *VectorAddress = LV.getExtVectorAddr();
1395   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1396   QualType EQT = ExprVT->getElementType();
1397   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1398   llvm::Type *VectorElementPtrToTy = VectorElementTy->getPointerTo();
1399 
1400   llvm::Value *CastToPointerElement =
1401     Builder.CreateBitCast(VectorAddress,
1402                           VectorElementPtrToTy, "conv.ptr.element");
1403 
1404   const llvm::Constant *Elts = LV.getExtVectorElts();
1405   unsigned ix = getAccessedFieldNo(0, Elts);
1406 
1407   llvm::Value *VectorBasePtrPlusIx =
1408     Builder.CreateInBoundsGEP(CastToPointerElement,
1409                               llvm::ConstantInt::get(SizeTy, ix), "add.ptr");
1410 
1411   return VectorBasePtrPlusIx;
1412 }
1413 
1414 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1415 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1416   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1417          "Bad type for register variable");
1418   llvm::MDNode *RegName = cast<llvm::MDNode>(
1419       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1420 
1421   // We accept integer and pointer types only
1422   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1423   llvm::Type *Ty = OrigTy;
1424   if (OrigTy->isPointerTy())
1425     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1426   llvm::Type *Types[] = { Ty };
1427 
1428   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1429   llvm::Value *Call = Builder.CreateCall(
1430       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1431   if (OrigTy->isPointerTy())
1432     Call = Builder.CreateIntToPtr(Call, OrigTy);
1433   return RValue::get(Call);
1434 }
1435 
1436 
1437 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1438 /// lvalue, where both are guaranteed to the have the same type, and that type
1439 /// is 'Ty'.
1440 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1441                                              bool isInit,
1442                                              SourceLocation DbgLoc) {
1443   if (auto *DI = getDebugInfo())
1444     DI->EmitLocation(Builder, DbgLoc);
1445 
1446   if (!Dst.isSimple()) {
1447     if (Dst.isVectorElt()) {
1448       // Read/modify/write the vector, inserting the new element.
1449       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1450                                                 Dst.isVolatileQualified());
1451       Load->setAlignment(Dst.getAlignment().getQuantity());
1452       llvm::Value *Vec = Load;
1453       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1454                                         Dst.getVectorIdx(), "vecins");
1455       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1456                                                    Dst.isVolatileQualified());
1457       Store->setAlignment(Dst.getAlignment().getQuantity());
1458       return;
1459     }
1460 
1461     // If this is an update of extended vector elements, insert them as
1462     // appropriate.
1463     if (Dst.isExtVectorElt())
1464       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1465 
1466     if (Dst.isGlobalReg())
1467       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1468 
1469     assert(Dst.isBitField() && "Unknown LValue type");
1470     return EmitStoreThroughBitfieldLValue(Src, Dst);
1471   }
1472 
1473   // There's special magic for assigning into an ARC-qualified l-value.
1474   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1475     switch (Lifetime) {
1476     case Qualifiers::OCL_None:
1477       llvm_unreachable("present but none");
1478 
1479     case Qualifiers::OCL_ExplicitNone:
1480       // nothing special
1481       break;
1482 
1483     case Qualifiers::OCL_Strong:
1484       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1485       return;
1486 
1487     case Qualifiers::OCL_Weak:
1488       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1489       return;
1490 
1491     case Qualifiers::OCL_Autoreleasing:
1492       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1493                                                      Src.getScalarVal()));
1494       // fall into the normal path
1495       break;
1496     }
1497   }
1498 
1499   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1500     // load of a __weak object.
1501     llvm::Value *LvalueDst = Dst.getAddress();
1502     llvm::Value *src = Src.getScalarVal();
1503      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1504     return;
1505   }
1506 
1507   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1508     // load of a __strong object.
1509     llvm::Value *LvalueDst = Dst.getAddress();
1510     llvm::Value *src = Src.getScalarVal();
1511     if (Dst.isObjCIvar()) {
1512       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1513       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1514       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1515       llvm::Value *dst = RHS;
1516       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1517       llvm::Value *LHS =
1518         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1519       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1520       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1521                                               BytesBetween);
1522     } else if (Dst.isGlobalObjCRef()) {
1523       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1524                                                 Dst.isThreadLocalRef());
1525     }
1526     else
1527       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1528     return;
1529   }
1530 
1531   assert(Src.isScalar() && "Can't emit an agg store with this method");
1532   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1533 }
1534 
1535 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1536                                                      llvm::Value **Result) {
1537   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1538   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1539   llvm::Value *Ptr = Dst.getBitFieldAddr();
1540 
1541   // Get the source value, truncated to the width of the bit-field.
1542   llvm::Value *SrcVal = Src.getScalarVal();
1543 
1544   // Cast the source to the storage type and shift it into place.
1545   SrcVal = Builder.CreateIntCast(SrcVal,
1546                                  Ptr->getType()->getPointerElementType(),
1547                                  /*IsSigned=*/false);
1548   llvm::Value *MaskedVal = SrcVal;
1549 
1550   // See if there are other bits in the bitfield's storage we'll need to load
1551   // and mask together with source before storing.
1552   if (Info.StorageSize != Info.Size) {
1553     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1554     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1555                                           "bf.load");
1556     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1557 
1558     // Mask the source value as needed.
1559     if (!hasBooleanRepresentation(Dst.getType()))
1560       SrcVal = Builder.CreateAnd(SrcVal,
1561                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1562                                                             Info.Size),
1563                                  "bf.value");
1564     MaskedVal = SrcVal;
1565     if (Info.Offset)
1566       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1567 
1568     // Mask out the original value.
1569     Val = Builder.CreateAnd(Val,
1570                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1571                                                      Info.Offset,
1572                                                      Info.Offset + Info.Size),
1573                             "bf.clear");
1574 
1575     // Or together the unchanged values and the source value.
1576     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1577   } else {
1578     assert(Info.Offset == 0);
1579   }
1580 
1581   // Write the new value back out.
1582   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1583                                                Dst.isVolatileQualified());
1584   Store->setAlignment(Info.StorageAlignment);
1585 
1586   // Return the new value of the bit-field, if requested.
1587   if (Result) {
1588     llvm::Value *ResultVal = MaskedVal;
1589 
1590     // Sign extend the value if needed.
1591     if (Info.IsSigned) {
1592       assert(Info.Size <= Info.StorageSize);
1593       unsigned HighBits = Info.StorageSize - Info.Size;
1594       if (HighBits) {
1595         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1596         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1597       }
1598     }
1599 
1600     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1601                                       "bf.result.cast");
1602     *Result = EmitFromMemory(ResultVal, Dst.getType());
1603   }
1604 }
1605 
1606 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1607                                                                LValue Dst) {
1608   // This access turns into a read/modify/write of the vector.  Load the input
1609   // value now.
1610   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1611                                             Dst.isVolatileQualified());
1612   Load->setAlignment(Dst.getAlignment().getQuantity());
1613   llvm::Value *Vec = Load;
1614   const llvm::Constant *Elts = Dst.getExtVectorElts();
1615 
1616   llvm::Value *SrcVal = Src.getScalarVal();
1617 
1618   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1619     unsigned NumSrcElts = VTy->getNumElements();
1620     unsigned NumDstElts =
1621        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1622     if (NumDstElts == NumSrcElts) {
1623       // Use shuffle vector is the src and destination are the same number of
1624       // elements and restore the vector mask since it is on the side it will be
1625       // stored.
1626       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1627       for (unsigned i = 0; i != NumSrcElts; ++i)
1628         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1629 
1630       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1631       Vec = Builder.CreateShuffleVector(SrcVal,
1632                                         llvm::UndefValue::get(Vec->getType()),
1633                                         MaskV);
1634     } else if (NumDstElts > NumSrcElts) {
1635       // Extended the source vector to the same length and then shuffle it
1636       // into the destination.
1637       // FIXME: since we're shuffling with undef, can we just use the indices
1638       //        into that?  This could be simpler.
1639       SmallVector<llvm::Constant*, 4> ExtMask;
1640       for (unsigned i = 0; i != NumSrcElts; ++i)
1641         ExtMask.push_back(Builder.getInt32(i));
1642       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1643       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1644       llvm::Value *ExtSrcVal =
1645         Builder.CreateShuffleVector(SrcVal,
1646                                     llvm::UndefValue::get(SrcVal->getType()),
1647                                     ExtMaskV);
1648       // build identity
1649       SmallVector<llvm::Constant*, 4> Mask;
1650       for (unsigned i = 0; i != NumDstElts; ++i)
1651         Mask.push_back(Builder.getInt32(i));
1652 
1653       // When the vector size is odd and .odd or .hi is used, the last element
1654       // of the Elts constant array will be one past the size of the vector.
1655       // Ignore the last element here, if it is greater than the mask size.
1656       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1657         NumSrcElts--;
1658 
1659       // modify when what gets shuffled in
1660       for (unsigned i = 0; i != NumSrcElts; ++i)
1661         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1662       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1663       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1664     } else {
1665       // We should never shorten the vector
1666       llvm_unreachable("unexpected shorten vector length");
1667     }
1668   } else {
1669     // If the Src is a scalar (not a vector) it must be updating one element.
1670     unsigned InIdx = getAccessedFieldNo(0, Elts);
1671     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1672     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1673   }
1674 
1675   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1676                                                Dst.isVolatileQualified());
1677   Store->setAlignment(Dst.getAlignment().getQuantity());
1678 }
1679 
1680 /// @brief Store of global named registers are always calls to intrinsics.
1681 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1682   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1683          "Bad type for register variable");
1684   llvm::MDNode *RegName = cast<llvm::MDNode>(
1685       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
1686   assert(RegName && "Register LValue is not metadata");
1687 
1688   // We accept integer and pointer types only
1689   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1690   llvm::Type *Ty = OrigTy;
1691   if (OrigTy->isPointerTy())
1692     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1693   llvm::Type *Types[] = { Ty };
1694 
1695   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1696   llvm::Value *Value = Src.getScalarVal();
1697   if (OrigTy->isPointerTy())
1698     Value = Builder.CreatePtrToInt(Value, Ty);
1699   Builder.CreateCall2(F, llvm::MetadataAsValue::get(Ty->getContext(), RegName),
1700                       Value);
1701 }
1702 
1703 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1704 // generating write-barries API. It is currently a global, ivar,
1705 // or neither.
1706 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1707                                  LValue &LV,
1708                                  bool IsMemberAccess=false) {
1709   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1710     return;
1711 
1712   if (isa<ObjCIvarRefExpr>(E)) {
1713     QualType ExpTy = E->getType();
1714     if (IsMemberAccess && ExpTy->isPointerType()) {
1715       // If ivar is a structure pointer, assigning to field of
1716       // this struct follows gcc's behavior and makes it a non-ivar
1717       // writer-barrier conservatively.
1718       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1719       if (ExpTy->isRecordType()) {
1720         LV.setObjCIvar(false);
1721         return;
1722       }
1723     }
1724     LV.setObjCIvar(true);
1725     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1726     LV.setBaseIvarExp(Exp->getBase());
1727     LV.setObjCArray(E->getType()->isArrayType());
1728     return;
1729   }
1730 
1731   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1732     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1733       if (VD->hasGlobalStorage()) {
1734         LV.setGlobalObjCRef(true);
1735         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1736       }
1737     }
1738     LV.setObjCArray(E->getType()->isArrayType());
1739     return;
1740   }
1741 
1742   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1743     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1744     return;
1745   }
1746 
1747   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1748     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1749     if (LV.isObjCIvar()) {
1750       // If cast is to a structure pointer, follow gcc's behavior and make it
1751       // a non-ivar write-barrier.
1752       QualType ExpTy = E->getType();
1753       if (ExpTy->isPointerType())
1754         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1755       if (ExpTy->isRecordType())
1756         LV.setObjCIvar(false);
1757     }
1758     return;
1759   }
1760 
1761   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1762     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1763     return;
1764   }
1765 
1766   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1767     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1768     return;
1769   }
1770 
1771   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1772     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1773     return;
1774   }
1775 
1776   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1777     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1778     return;
1779   }
1780 
1781   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1782     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1783     if (LV.isObjCIvar() && !LV.isObjCArray())
1784       // Using array syntax to assigning to what an ivar points to is not
1785       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1786       LV.setObjCIvar(false);
1787     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1788       // Using array syntax to assigning to what global points to is not
1789       // same as assigning to the global itself. {id *G;} G[i] = 0;
1790       LV.setGlobalObjCRef(false);
1791     return;
1792   }
1793 
1794   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1795     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1796     // We don't know if member is an 'ivar', but this flag is looked at
1797     // only in the context of LV.isObjCIvar().
1798     LV.setObjCArray(E->getType()->isArrayType());
1799     return;
1800   }
1801 }
1802 
1803 static llvm::Value *
1804 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1805                                 llvm::Value *V, llvm::Type *IRType,
1806                                 StringRef Name = StringRef()) {
1807   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1808   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1809 }
1810 
1811 static LValue EmitThreadPrivateVarDeclLValue(
1812     CodeGenFunction &CGF, const VarDecl *VD, QualType T, llvm::Value *V,
1813     llvm::Type *RealVarTy, CharUnits Alignment, SourceLocation Loc) {
1814   V = CGF.CGM.getOpenMPRuntime().getOMPAddrOfThreadPrivate(CGF, VD, V, Loc);
1815   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1816   return CGF.MakeAddrLValue(V, T, Alignment);
1817 }
1818 
1819 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1820                                       const Expr *E, const VarDecl *VD) {
1821   QualType T = E->getType();
1822 
1823   // If it's thread_local, emit a call to its wrapper function instead.
1824   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1825       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
1826     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1827 
1828   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1829   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1830   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1831   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1832   LValue LV;
1833   // Emit reference to the private copy of the variable if it is an OpenMP
1834   // threadprivate variable.
1835   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
1836     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, V, RealVarTy, Alignment,
1837                                           E->getExprLoc());
1838   if (VD->getType()->isReferenceType()) {
1839     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1840     LI->setAlignment(Alignment.getQuantity());
1841     V = LI;
1842     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1843   } else {
1844     LV = CGF.MakeAddrLValue(V, T, Alignment);
1845   }
1846   setObjCGCLValueClass(CGF.getContext(), E, LV);
1847   return LV;
1848 }
1849 
1850 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1851                                      const Expr *E, const FunctionDecl *FD) {
1852   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1853   if (!FD->hasPrototype()) {
1854     if (const FunctionProtoType *Proto =
1855             FD->getType()->getAs<FunctionProtoType>()) {
1856       // Ugly case: for a K&R-style definition, the type of the definition
1857       // isn't the same as the type of a use.  Correct for this with a
1858       // bitcast.
1859       QualType NoProtoType =
1860           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1861       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1862       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1863     }
1864   }
1865   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1866   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1867 }
1868 
1869 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1870                                       llvm::Value *ThisValue) {
1871   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1872   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1873   return CGF.EmitLValueForField(LV, FD);
1874 }
1875 
1876 /// Named Registers are named metadata pointing to the register name
1877 /// which will be read from/written to as an argument to the intrinsic
1878 /// @llvm.read/write_register.
1879 /// So far, only the name is being passed down, but other options such as
1880 /// register type, allocation type or even optimization options could be
1881 /// passed down via the metadata node.
1882 static LValue EmitGlobalNamedRegister(const VarDecl *VD,
1883                                       CodeGenModule &CGM,
1884                                       CharUnits Alignment) {
1885   SmallString<64> Name("llvm.named.register.");
1886   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
1887   assert(Asm->getLabel().size() < 64-Name.size() &&
1888       "Register name too big");
1889   Name.append(Asm->getLabel());
1890   llvm::NamedMDNode *M =
1891     CGM.getModule().getOrInsertNamedMetadata(Name);
1892   if (M->getNumOperands() == 0) {
1893     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
1894                                               Asm->getLabel());
1895     llvm::Metadata *Ops[] = {Str};
1896     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
1897   }
1898   return LValue::MakeGlobalReg(
1899       llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)),
1900       VD->getType(), Alignment);
1901 }
1902 
1903 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1904   const NamedDecl *ND = E->getDecl();
1905   CharUnits Alignment = getContext().getDeclAlign(ND);
1906   QualType T = E->getType();
1907 
1908   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1909     // Check for captured variables.
1910     if (E->refersToCapturedVariable()) {
1911       if (auto *FD = LambdaCaptureFields.lookup(VD))
1912         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1913       else if (CapturedStmtInfo) {
1914         if (auto *V = LocalDeclMap.lookup(VD))
1915           return MakeAddrLValue(V, T, Alignment);
1916         else
1917           return EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
1918                                          CapturedStmtInfo->getContextValue());
1919       }
1920       assert(isa<BlockDecl>(CurCodeDecl));
1921       return MakeAddrLValue(GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()),
1922                             T, Alignment);
1923     }
1924 
1925     // Global Named registers access via intrinsics only
1926     if (VD->getStorageClass() == SC_Register &&
1927         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
1928       return EmitGlobalNamedRegister(VD, CGM, Alignment);
1929 
1930     // A DeclRefExpr for a reference initialized by a constant expression can
1931     // appear without being odr-used. Directly emit the constant initializer.
1932     const Expr *Init = VD->getAnyInitializer(VD);
1933     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1934         VD->isUsableInConstantExpressions(getContext()) &&
1935         VD->checkInitIsICE()) {
1936       llvm::Constant *Val =
1937         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1938       assert(Val && "failed to emit reference constant expression");
1939       // FIXME: Eventually we will want to emit vector element references.
1940       return MakeAddrLValue(Val, T, Alignment);
1941     }
1942   }
1943 
1944   // FIXME: We should be able to assert this for FunctionDecls as well!
1945   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1946   // those with a valid source location.
1947   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1948           !E->getLocation().isValid()) &&
1949          "Should not use decl without marking it used!");
1950 
1951   if (ND->hasAttr<WeakRefAttr>()) {
1952     const auto *VD = cast<ValueDecl>(ND);
1953     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1954     return MakeAddrLValue(Aliasee, T, Alignment);
1955   }
1956 
1957   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1958     // Check if this is a global variable.
1959     if (VD->hasLinkage() || VD->isStaticDataMember())
1960       return EmitGlobalVarDeclLValue(*this, E, VD);
1961 
1962     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1963 
1964     llvm::Value *V = LocalDeclMap.lookup(VD);
1965     if (!V && VD->isStaticLocal())
1966       V = CGM.getOrCreateStaticVarDecl(
1967           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false));
1968 
1969     // Check if variable is threadprivate.
1970     if (V && getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
1971       return EmitThreadPrivateVarDeclLValue(
1972           *this, VD, T, V, getTypes().ConvertTypeForMem(VD->getType()),
1973           Alignment, E->getExprLoc());
1974 
1975     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1976 
1977     if (isBlockVariable)
1978       V = BuildBlockByrefAddress(V, VD);
1979 
1980     LValue LV;
1981     if (VD->getType()->isReferenceType()) {
1982       llvm::LoadInst *LI = Builder.CreateLoad(V);
1983       LI->setAlignment(Alignment.getQuantity());
1984       V = LI;
1985       LV = MakeNaturalAlignAddrLValue(V, T);
1986     } else {
1987       LV = MakeAddrLValue(V, T, Alignment);
1988     }
1989 
1990     bool isLocalStorage = VD->hasLocalStorage();
1991 
1992     bool NonGCable = isLocalStorage &&
1993                      !VD->getType()->isReferenceType() &&
1994                      !isBlockVariable;
1995     if (NonGCable) {
1996       LV.getQuals().removeObjCGCAttr();
1997       LV.setNonGC(true);
1998     }
1999 
2000     bool isImpreciseLifetime =
2001       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2002     if (isImpreciseLifetime)
2003       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2004     setObjCGCLValueClass(getContext(), E, LV);
2005     return LV;
2006   }
2007 
2008   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2009     return EmitFunctionDeclLValue(*this, E, FD);
2010 
2011   llvm_unreachable("Unhandled DeclRefExpr");
2012 }
2013 
2014 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2015   // __extension__ doesn't affect lvalue-ness.
2016   if (E->getOpcode() == UO_Extension)
2017     return EmitLValue(E->getSubExpr());
2018 
2019   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2020   switch (E->getOpcode()) {
2021   default: llvm_unreachable("Unknown unary operator lvalue!");
2022   case UO_Deref: {
2023     QualType T = E->getSubExpr()->getType()->getPointeeType();
2024     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2025 
2026     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
2027     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2028 
2029     // We should not generate __weak write barrier on indirect reference
2030     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2031     // But, we continue to generate __strong write barrier on indirect write
2032     // into a pointer to object.
2033     if (getLangOpts().ObjC1 &&
2034         getLangOpts().getGC() != LangOptions::NonGC &&
2035         LV.isObjCWeak())
2036       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2037     return LV;
2038   }
2039   case UO_Real:
2040   case UO_Imag: {
2041     LValue LV = EmitLValue(E->getSubExpr());
2042     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2043     llvm::Value *Addr = LV.getAddress();
2044 
2045     // __real is valid on scalars.  This is a faster way of testing that.
2046     // __imag can only produce an rvalue on scalars.
2047     if (E->getOpcode() == UO_Real &&
2048         !cast<llvm::PointerType>(Addr->getType())
2049            ->getElementType()->isStructTy()) {
2050       assert(E->getSubExpr()->getType()->isArithmeticType());
2051       return LV;
2052     }
2053 
2054     assert(E->getSubExpr()->getType()->isAnyComplexType());
2055 
2056     unsigned Idx = E->getOpcode() == UO_Imag;
2057     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
2058                                                   Idx, "idx"),
2059                           ExprTy);
2060   }
2061   case UO_PreInc:
2062   case UO_PreDec: {
2063     LValue LV = EmitLValue(E->getSubExpr());
2064     bool isInc = E->getOpcode() == UO_PreInc;
2065 
2066     if (E->getType()->isAnyComplexType())
2067       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2068     else
2069       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2070     return LV;
2071   }
2072   }
2073 }
2074 
2075 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2076   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2077                         E->getType());
2078 }
2079 
2080 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2081   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2082                         E->getType());
2083 }
2084 
2085 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2086   auto SL = E->getFunctionName();
2087   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2088   StringRef FnName = CurFn->getName();
2089   if (FnName.startswith("\01"))
2090     FnName = FnName.substr(1);
2091   StringRef NameItems[] = {
2092       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2093   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2094   if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
2095     auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str(), 1);
2096     return MakeAddrLValue(C, E->getType());
2097   }
2098   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2099   return MakeAddrLValue(C, E->getType());
2100 }
2101 
2102 /// Emit a type description suitable for use by a runtime sanitizer library. The
2103 /// format of a type descriptor is
2104 ///
2105 /// \code
2106 ///   { i16 TypeKind, i16 TypeInfo }
2107 /// \endcode
2108 ///
2109 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2110 /// integer, 1 for a floating point value, and -1 for anything else.
2111 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2112   // Only emit each type's descriptor once.
2113   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2114     return C;
2115 
2116   uint16_t TypeKind = -1;
2117   uint16_t TypeInfo = 0;
2118 
2119   if (T->isIntegerType()) {
2120     TypeKind = 0;
2121     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2122                (T->isSignedIntegerType() ? 1 : 0);
2123   } else if (T->isFloatingType()) {
2124     TypeKind = 1;
2125     TypeInfo = getContext().getTypeSize(T);
2126   }
2127 
2128   // Format the type name as if for a diagnostic, including quotes and
2129   // optionally an 'aka'.
2130   SmallString<32> Buffer;
2131   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2132                                     (intptr_t)T.getAsOpaquePtr(),
2133                                     StringRef(), StringRef(), None, Buffer,
2134                                     None);
2135 
2136   llvm::Constant *Components[] = {
2137     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2138     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2139   };
2140   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2141 
2142   auto *GV = new llvm::GlobalVariable(
2143       CGM.getModule(), Descriptor->getType(),
2144       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2145   GV->setUnnamedAddr(true);
2146   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2147 
2148   // Remember the descriptor for this type.
2149   CGM.setTypeDescriptorInMap(T, GV);
2150 
2151   return GV;
2152 }
2153 
2154 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2155   llvm::Type *TargetTy = IntPtrTy;
2156 
2157   // Floating-point types which fit into intptr_t are bitcast to integers
2158   // and then passed directly (after zero-extension, if necessary).
2159   if (V->getType()->isFloatingPointTy()) {
2160     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2161     if (Bits <= TargetTy->getIntegerBitWidth())
2162       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2163                                                          Bits));
2164   }
2165 
2166   // Integers which fit in intptr_t are zero-extended and passed directly.
2167   if (V->getType()->isIntegerTy() &&
2168       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2169     return Builder.CreateZExt(V, TargetTy);
2170 
2171   // Pointers are passed directly, everything else is passed by address.
2172   if (!V->getType()->isPointerTy()) {
2173     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2174     Builder.CreateStore(V, Ptr);
2175     V = Ptr;
2176   }
2177   return Builder.CreatePtrToInt(V, TargetTy);
2178 }
2179 
2180 /// \brief Emit a representation of a SourceLocation for passing to a handler
2181 /// in a sanitizer runtime library. The format for this data is:
2182 /// \code
2183 ///   struct SourceLocation {
2184 ///     const char *Filename;
2185 ///     int32_t Line, Column;
2186 ///   };
2187 /// \endcode
2188 /// For an invalid SourceLocation, the Filename pointer is null.
2189 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2190   llvm::Constant *Filename;
2191   int Line, Column;
2192 
2193   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2194   if (PLoc.isValid()) {
2195     auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src");
2196     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(FilenameGV);
2197     Filename = FilenameGV;
2198     Line = PLoc.getLine();
2199     Column = PLoc.getColumn();
2200   } else {
2201     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2202     Line = Column = 0;
2203   }
2204 
2205   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2206                             Builder.getInt32(Column)};
2207 
2208   return llvm::ConstantStruct::getAnon(Data);
2209 }
2210 
2211 namespace {
2212 /// \brief Specify under what conditions this check can be recovered
2213 enum class CheckRecoverableKind {
2214   /// Always terminate program execution if this check fails
2215   Unrecoverable,
2216   /// Check supports recovering, allows user to specify which
2217   Recoverable,
2218   /// Runtime conditionally aborts, always need to support recovery.
2219   AlwaysRecoverable
2220 };
2221 }
2222 
2223 static CheckRecoverableKind getRecoverableKind(SanitizerKind Kind) {
2224   switch (Kind) {
2225   case SanitizerKind::Vptr:
2226     return CheckRecoverableKind::AlwaysRecoverable;
2227   case SanitizerKind::Return:
2228   case SanitizerKind::Unreachable:
2229     return CheckRecoverableKind::Unrecoverable;
2230   default:
2231     return CheckRecoverableKind::Recoverable;
2232   }
2233 }
2234 
2235 void CodeGenFunction::EmitCheck(
2236     ArrayRef<std::pair<llvm::Value *, SanitizerKind>> Checked,
2237     StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2238     ArrayRef<llvm::Value *> DynamicArgs) {
2239   assert(IsSanitizerScope);
2240   assert(Checked.size() > 0);
2241   llvm::Value *Cond = Checked[0].first;
2242   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2243   assert(SanOpts.has(Checked[0].second));
2244   for (int i = 1, n = Checked.size(); i < n; ++i) {
2245     Cond = Builder.CreateAnd(Cond, Checked[i].first);
2246     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2247            "All recoverable kinds in a single check must be same!");
2248     assert(SanOpts.has(Checked[i].second));
2249   }
2250 
2251   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2252     assert (RecoverKind != CheckRecoverableKind::AlwaysRecoverable &&
2253             "Runtime call required for AlwaysRecoverable kind!");
2254     return EmitTrapCheck(Cond);
2255   }
2256 
2257   llvm::BasicBlock *Cont = createBasicBlock("cont");
2258 
2259   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2260 
2261   llvm::Instruction *Branch = Builder.CreateCondBr(Cond, Cont, Handler);
2262 
2263   // Give hint that we very much don't expect to execute the handler
2264   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2265   llvm::MDBuilder MDHelper(getLLVMContext());
2266   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2267   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2268 
2269   EmitBlock(Handler);
2270 
2271   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2272   auto *InfoPtr =
2273       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2274                                llvm::GlobalVariable::PrivateLinkage, Info);
2275   InfoPtr->setUnnamedAddr(true);
2276   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2277 
2278   SmallVector<llvm::Value *, 4> Args;
2279   SmallVector<llvm::Type *, 4> ArgTypes;
2280   Args.reserve(DynamicArgs.size() + 1);
2281   ArgTypes.reserve(DynamicArgs.size() + 1);
2282 
2283   // Handler functions take an i8* pointing to the (handler-specific) static
2284   // information block, followed by a sequence of intptr_t arguments
2285   // representing operand values.
2286   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2287   ArgTypes.push_back(Int8PtrTy);
2288   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2289     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2290     ArgTypes.push_back(IntPtrTy);
2291   }
2292 
2293   bool Recover = RecoverKind == CheckRecoverableKind::AlwaysRecoverable ||
2294                  (RecoverKind == CheckRecoverableKind::Recoverable &&
2295                   CGM.getCodeGenOpts().SanitizeRecover);
2296 
2297   llvm::FunctionType *FnType =
2298     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2299   llvm::AttrBuilder B;
2300   if (!Recover) {
2301     B.addAttribute(llvm::Attribute::NoReturn)
2302      .addAttribute(llvm::Attribute::NoUnwind);
2303   }
2304   B.addAttribute(llvm::Attribute::UWTable);
2305 
2306   // Checks that have two variants use a suffix to differentiate them
2307   bool NeedsAbortSuffix = RecoverKind != CheckRecoverableKind::Unrecoverable &&
2308                           !CGM.getCodeGenOpts().SanitizeRecover;
2309   std::string FunctionName = ("__ubsan_handle_" + CheckName +
2310                               (NeedsAbortSuffix? "_abort" : "")).str();
2311   llvm::Value *Fn = CGM.CreateRuntimeFunction(
2312       FnType, FunctionName,
2313       llvm::AttributeSet::get(getLLVMContext(),
2314                               llvm::AttributeSet::FunctionIndex, B));
2315   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2316   if (Recover) {
2317     Builder.CreateBr(Cont);
2318   } else {
2319     HandlerCall->setDoesNotReturn();
2320     Builder.CreateUnreachable();
2321   }
2322 
2323   EmitBlock(Cont);
2324 }
2325 
2326 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2327   llvm::BasicBlock *Cont = createBasicBlock("cont");
2328 
2329   // If we're optimizing, collapse all calls to trap down to just one per
2330   // function to save on code size.
2331   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2332     TrapBB = createBasicBlock("trap");
2333     Builder.CreateCondBr(Checked, Cont, TrapBB);
2334     EmitBlock(TrapBB);
2335     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2336     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2337     TrapCall->setDoesNotReturn();
2338     TrapCall->setDoesNotThrow();
2339     Builder.CreateUnreachable();
2340   } else {
2341     Builder.CreateCondBr(Checked, Cont, TrapBB);
2342   }
2343 
2344   EmitBlock(Cont);
2345 }
2346 
2347 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2348 /// array to pointer, return the array subexpression.
2349 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2350   // If this isn't just an array->pointer decay, bail out.
2351   const auto *CE = dyn_cast<CastExpr>(E);
2352   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2353     return nullptr;
2354 
2355   // If this is a decay from variable width array, bail out.
2356   const Expr *SubExpr = CE->getSubExpr();
2357   if (SubExpr->getType()->isVariableArrayType())
2358     return nullptr;
2359 
2360   return SubExpr;
2361 }
2362 
2363 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2364                                                bool Accessed) {
2365   // The index must always be an integer, which is not an aggregate.  Emit it.
2366   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2367   QualType IdxTy  = E->getIdx()->getType();
2368   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2369 
2370   if (SanOpts.has(SanitizerKind::ArrayBounds))
2371     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2372 
2373   // If the base is a vector type, then we are forming a vector element lvalue
2374   // with this subscript.
2375   if (E->getBase()->getType()->isVectorType() &&
2376       !isa<ExtVectorElementExpr>(E->getBase())) {
2377     // Emit the vector as an lvalue to get its address.
2378     LValue LHS = EmitLValue(E->getBase());
2379     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2380     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2381                                  E->getBase()->getType(), LHS.getAlignment());
2382   }
2383 
2384   // Extend or truncate the index type to 32 or 64-bits.
2385   if (Idx->getType() != IntPtrTy)
2386     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2387 
2388   // We know that the pointer points to a type of the correct size, unless the
2389   // size is a VLA or Objective-C interface.
2390   llvm::Value *Address = nullptr;
2391   CharUnits ArrayAlignment;
2392   if (isa<ExtVectorElementExpr>(E->getBase())) {
2393     LValue LV = EmitLValue(E->getBase());
2394     Address = EmitExtVectorElementLValue(LV);
2395     Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2396     const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2397     QualType EQT = ExprVT->getElementType();
2398     return MakeAddrLValue(Address, EQT,
2399                           getContext().getTypeAlignInChars(EQT));
2400   }
2401   else if (const VariableArrayType *vla =
2402            getContext().getAsVariableArrayType(E->getType())) {
2403     // The base must be a pointer, which is not an aggregate.  Emit
2404     // it.  It needs to be emitted first in case it's what captures
2405     // the VLA bounds.
2406     Address = EmitScalarExpr(E->getBase());
2407 
2408     // The element count here is the total number of non-VLA elements.
2409     llvm::Value *numElements = getVLASize(vla).first;
2410 
2411     if (auto *DI = getDebugInfo())
2412       DI->EmitLocation(Builder, E->getLocStart());
2413 
2414     // Effectively, the multiply by the VLA size is part of the GEP.
2415     // GEP indexes are signed, and scaling an index isn't permitted to
2416     // signed-overflow, so we use the same semantics for our explicit
2417     // multiply.  We suppress this if overflow is not undefined behavior.
2418     if (getLangOpts().isSignedOverflowDefined()) {
2419       Idx = Builder.CreateMul(Idx, numElements);
2420       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2421     } else {
2422       Idx = Builder.CreateNSWMul(Idx, numElements);
2423       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2424     }
2425   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2426     // Indexing over an interface, as in "NSString *P; P[4];"
2427     llvm::Value *InterfaceSize =
2428       llvm::ConstantInt::get(Idx->getType(),
2429           getContext().getTypeSizeInChars(OIT).getQuantity());
2430 
2431     Idx = Builder.CreateMul(Idx, InterfaceSize);
2432 
2433     // The base must be a pointer, which is not an aggregate.  Emit it.
2434     llvm::Value *Base = EmitScalarExpr(E->getBase());
2435     Address = EmitCastToVoidPtr(Base);
2436     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2437     Address = Builder.CreateBitCast(Address, Base->getType());
2438   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2439     // If this is A[i] where A is an array, the frontend will have decayed the
2440     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2441     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2442     // "gep x, i" here.  Emit one "gep A, 0, i".
2443     assert(Array->getType()->isArrayType() &&
2444            "Array to pointer decay must have array source type!");
2445     LValue ArrayLV;
2446     // For simple multidimensional array indexing, set the 'accessed' flag for
2447     // better bounds-checking of the base expression.
2448     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2449       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2450     else
2451       ArrayLV = EmitLValue(Array);
2452     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2453     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2454     llvm::Value *Args[] = { Zero, Idx };
2455 
2456     // Propagate the alignment from the array itself to the result.
2457     ArrayAlignment = ArrayLV.getAlignment();
2458 
2459     if (auto *DI = getDebugInfo())
2460       DI->EmitLocation(Builder, E->getLocStart());
2461 
2462     if (getLangOpts().isSignedOverflowDefined())
2463       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2464     else
2465       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2466   } else {
2467     // The base must be a pointer, which is not an aggregate.  Emit it.
2468     llvm::Value *Base = EmitScalarExpr(E->getBase());
2469     if (auto *DI = getDebugInfo())
2470       DI->EmitLocation(Builder, E->getLocStart());
2471     if (getLangOpts().isSignedOverflowDefined())
2472       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2473     else
2474       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2475   }
2476 
2477   QualType T = E->getBase()->getType()->getPointeeType();
2478   assert(!T.isNull() &&
2479          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2480 
2481 
2482   // Limit the alignment to that of the result type.
2483   LValue LV;
2484   if (!ArrayAlignment.isZero()) {
2485     CharUnits Align = getContext().getTypeAlignInChars(T);
2486     ArrayAlignment = std::min(Align, ArrayAlignment);
2487     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2488   } else {
2489     LV = MakeNaturalAlignAddrLValue(Address, T);
2490   }
2491 
2492   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2493 
2494   if (getLangOpts().ObjC1 &&
2495       getLangOpts().getGC() != LangOptions::NonGC) {
2496     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2497     setObjCGCLValueClass(getContext(), E, LV);
2498   }
2499   return LV;
2500 }
2501 
2502 static
2503 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2504                                        SmallVectorImpl<unsigned> &Elts) {
2505   SmallVector<llvm::Constant*, 4> CElts;
2506   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2507     CElts.push_back(Builder.getInt32(Elts[i]));
2508 
2509   return llvm::ConstantVector::get(CElts);
2510 }
2511 
2512 LValue CodeGenFunction::
2513 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2514   // Emit the base vector as an l-value.
2515   LValue Base;
2516 
2517   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2518   if (E->isArrow()) {
2519     // If it is a pointer to a vector, emit the address and form an lvalue with
2520     // it.
2521     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2522     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2523     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2524     Base.getQuals().removeObjCGCAttr();
2525   } else if (E->getBase()->isGLValue()) {
2526     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2527     // emit the base as an lvalue.
2528     assert(E->getBase()->getType()->isVectorType());
2529     Base = EmitLValue(E->getBase());
2530   } else {
2531     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2532     assert(E->getBase()->getType()->isVectorType() &&
2533            "Result must be a vector");
2534     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2535 
2536     // Store the vector to memory (because LValue wants an address).
2537     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2538     Builder.CreateStore(Vec, VecMem);
2539     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2540   }
2541 
2542   QualType type =
2543     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2544 
2545   // Encode the element access list into a vector of unsigned indices.
2546   SmallVector<unsigned, 4> Indices;
2547   E->getEncodedElementAccess(Indices);
2548 
2549   if (Base.isSimple()) {
2550     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2551     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2552                                     Base.getAlignment());
2553   }
2554   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2555 
2556   llvm::Constant *BaseElts = Base.getExtVectorElts();
2557   SmallVector<llvm::Constant *, 4> CElts;
2558 
2559   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2560     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2561   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2562   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2563                                   Base.getAlignment());
2564 }
2565 
2566 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2567   Expr *BaseExpr = E->getBase();
2568 
2569   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2570   LValue BaseLV;
2571   if (E->isArrow()) {
2572     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2573     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2574     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2575     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2576   } else
2577     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2578 
2579   NamedDecl *ND = E->getMemberDecl();
2580   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
2581     LValue LV = EmitLValueForField(BaseLV, Field);
2582     setObjCGCLValueClass(getContext(), E, LV);
2583     return LV;
2584   }
2585 
2586   if (auto *VD = dyn_cast<VarDecl>(ND))
2587     return EmitGlobalVarDeclLValue(*this, E, VD);
2588 
2589   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2590     return EmitFunctionDeclLValue(*this, E, FD);
2591 
2592   llvm_unreachable("Unhandled member declaration!");
2593 }
2594 
2595 /// Given that we are currently emitting a lambda, emit an l-value for
2596 /// one of its members.
2597 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2598   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2599   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2600   QualType LambdaTagType =
2601     getContext().getTagDeclType(Field->getParent());
2602   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2603   return EmitLValueForField(LambdaLV, Field);
2604 }
2605 
2606 LValue CodeGenFunction::EmitLValueForField(LValue base,
2607                                            const FieldDecl *field) {
2608   if (field->isBitField()) {
2609     const CGRecordLayout &RL =
2610       CGM.getTypes().getCGRecordLayout(field->getParent());
2611     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2612     llvm::Value *Addr = base.getAddress();
2613     unsigned Idx = RL.getLLVMFieldNo(field);
2614     if (Idx != 0)
2615       // For structs, we GEP to the field that the record layout suggests.
2616       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2617     // Get the access type.
2618     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2619       getLLVMContext(), Info.StorageSize,
2620       CGM.getContext().getTargetAddressSpace(base.getType()));
2621     if (Addr->getType() != PtrTy)
2622       Addr = Builder.CreateBitCast(Addr, PtrTy);
2623 
2624     QualType fieldType =
2625       field->getType().withCVRQualifiers(base.getVRQualifiers());
2626     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2627   }
2628 
2629   const RecordDecl *rec = field->getParent();
2630   QualType type = field->getType();
2631   CharUnits alignment = getContext().getDeclAlign(field);
2632 
2633   // FIXME: It should be impossible to have an LValue without alignment for a
2634   // complete type.
2635   if (!base.getAlignment().isZero())
2636     alignment = std::min(alignment, base.getAlignment());
2637 
2638   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2639 
2640   llvm::Value *addr = base.getAddress();
2641   unsigned cvr = base.getVRQualifiers();
2642   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2643   if (rec->isUnion()) {
2644     // For unions, there is no pointer adjustment.
2645     assert(!type->isReferenceType() && "union has reference member");
2646     // TODO: handle path-aware TBAA for union.
2647     TBAAPath = false;
2648   } else {
2649     // For structs, we GEP to the field that the record layout suggests.
2650     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2651     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2652 
2653     // If this is a reference field, load the reference right now.
2654     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2655       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2656       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2657       load->setAlignment(alignment.getQuantity());
2658 
2659       // Loading the reference will disable path-aware TBAA.
2660       TBAAPath = false;
2661       if (CGM.shouldUseTBAA()) {
2662         llvm::MDNode *tbaa;
2663         if (mayAlias)
2664           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2665         else
2666           tbaa = CGM.getTBAAInfo(type);
2667         if (tbaa)
2668           CGM.DecorateInstruction(load, tbaa);
2669       }
2670 
2671       addr = load;
2672       mayAlias = false;
2673       type = refType->getPointeeType();
2674       if (type->isIncompleteType())
2675         alignment = CharUnits();
2676       else
2677         alignment = getContext().getTypeAlignInChars(type);
2678       cvr = 0; // qualifiers don't recursively apply to referencee
2679     }
2680   }
2681 
2682   // Make sure that the address is pointing to the right type.  This is critical
2683   // for both unions and structs.  A union needs a bitcast, a struct element
2684   // will need a bitcast if the LLVM type laid out doesn't match the desired
2685   // type.
2686   addr = EmitBitCastOfLValueToProperType(*this, addr,
2687                                          CGM.getTypes().ConvertTypeForMem(type),
2688                                          field->getName());
2689 
2690   if (field->hasAttr<AnnotateAttr>())
2691     addr = EmitFieldAnnotations(field, addr);
2692 
2693   LValue LV = MakeAddrLValue(addr, type, alignment);
2694   LV.getQuals().addCVRQualifiers(cvr);
2695   if (TBAAPath) {
2696     const ASTRecordLayout &Layout =
2697         getContext().getASTRecordLayout(field->getParent());
2698     // Set the base type to be the base type of the base LValue and
2699     // update offset to be relative to the base type.
2700     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2701     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2702                      Layout.getFieldOffset(field->getFieldIndex()) /
2703                                            getContext().getCharWidth());
2704   }
2705 
2706   // __weak attribute on a field is ignored.
2707   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2708     LV.getQuals().removeObjCGCAttr();
2709 
2710   // Fields of may_alias structs act like 'char' for TBAA purposes.
2711   // FIXME: this should get propagated down through anonymous structs
2712   // and unions.
2713   if (mayAlias && LV.getTBAAInfo())
2714     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2715 
2716   return LV;
2717 }
2718 
2719 LValue
2720 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2721                                                   const FieldDecl *Field) {
2722   QualType FieldType = Field->getType();
2723 
2724   if (!FieldType->isReferenceType())
2725     return EmitLValueForField(Base, Field);
2726 
2727   const CGRecordLayout &RL =
2728     CGM.getTypes().getCGRecordLayout(Field->getParent());
2729   unsigned idx = RL.getLLVMFieldNo(Field);
2730   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2731   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2732 
2733   // Make sure that the address is pointing to the right type.  This is critical
2734   // for both unions and structs.  A union needs a bitcast, a struct element
2735   // will need a bitcast if the LLVM type laid out doesn't match the desired
2736   // type.
2737   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2738   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2739 
2740   CharUnits Alignment = getContext().getDeclAlign(Field);
2741 
2742   // FIXME: It should be impossible to have an LValue without alignment for a
2743   // complete type.
2744   if (!Base.getAlignment().isZero())
2745     Alignment = std::min(Alignment, Base.getAlignment());
2746 
2747   return MakeAddrLValue(V, FieldType, Alignment);
2748 }
2749 
2750 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2751   if (E->isFileScope()) {
2752     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2753     return MakeAddrLValue(GlobalPtr, E->getType());
2754   }
2755   if (E->getType()->isVariablyModifiedType())
2756     // make sure to emit the VLA size.
2757     EmitVariablyModifiedType(E->getType());
2758 
2759   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2760   const Expr *InitExpr = E->getInitializer();
2761   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2762 
2763   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2764                    /*Init*/ true);
2765 
2766   return Result;
2767 }
2768 
2769 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2770   if (!E->isGLValue())
2771     // Initializing an aggregate temporary in C++11: T{...}.
2772     return EmitAggExprToLValue(E);
2773 
2774   // An lvalue initializer list must be initializing a reference.
2775   assert(E->getNumInits() == 1 && "reference init with multiple values");
2776   return EmitLValue(E->getInit(0));
2777 }
2778 
2779 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
2780 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
2781 /// LValue is returned and the current block has been terminated.
2782 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
2783                                                     const Expr *Operand) {
2784   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
2785     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
2786     return None;
2787   }
2788 
2789   return CGF.EmitLValue(Operand);
2790 }
2791 
2792 LValue CodeGenFunction::
2793 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2794   if (!expr->isGLValue()) {
2795     // ?: here should be an aggregate.
2796     assert(hasAggregateEvaluationKind(expr->getType()) &&
2797            "Unexpected conditional operator!");
2798     return EmitAggExprToLValue(expr);
2799   }
2800 
2801   OpaqueValueMapping binding(*this, expr);
2802   RegionCounter Cnt = getPGORegionCounter(expr);
2803 
2804   const Expr *condExpr = expr->getCond();
2805   bool CondExprBool;
2806   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2807     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2808     if (!CondExprBool) std::swap(live, dead);
2809 
2810     if (!ContainsLabel(dead)) {
2811       // If the true case is live, we need to track its region.
2812       if (CondExprBool)
2813         Cnt.beginRegion(Builder);
2814       return EmitLValue(live);
2815     }
2816   }
2817 
2818   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2819   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2820   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2821 
2822   ConditionalEvaluation eval(*this);
2823   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
2824 
2825   // Any temporaries created here are conditional.
2826   EmitBlock(lhsBlock);
2827   Cnt.beginRegion(Builder);
2828   eval.begin(*this);
2829   Optional<LValue> lhs =
2830       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
2831   eval.end(*this);
2832 
2833   if (lhs && !lhs->isSimple())
2834     return EmitUnsupportedLValue(expr, "conditional operator");
2835 
2836   lhsBlock = Builder.GetInsertBlock();
2837   if (lhs)
2838     Builder.CreateBr(contBlock);
2839 
2840   // Any temporaries created here are conditional.
2841   EmitBlock(rhsBlock);
2842   eval.begin(*this);
2843   Optional<LValue> rhs =
2844       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
2845   eval.end(*this);
2846   if (rhs && !rhs->isSimple())
2847     return EmitUnsupportedLValue(expr, "conditional operator");
2848   rhsBlock = Builder.GetInsertBlock();
2849 
2850   EmitBlock(contBlock);
2851 
2852   if (lhs && rhs) {
2853     llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
2854                                            2, "cond-lvalue");
2855     phi->addIncoming(lhs->getAddress(), lhsBlock);
2856     phi->addIncoming(rhs->getAddress(), rhsBlock);
2857     return MakeAddrLValue(phi, expr->getType());
2858   } else {
2859     assert((lhs || rhs) &&
2860            "both operands of glvalue conditional are throw-expressions?");
2861     return lhs ? *lhs : *rhs;
2862   }
2863 }
2864 
2865 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2866 /// type. If the cast is to a reference, we can have the usual lvalue result,
2867 /// otherwise if a cast is needed by the code generator in an lvalue context,
2868 /// then it must mean that we need the address of an aggregate in order to
2869 /// access one of its members.  This can happen for all the reasons that casts
2870 /// are permitted with aggregate result, including noop aggregate casts, and
2871 /// cast from scalar to union.
2872 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2873   switch (E->getCastKind()) {
2874   case CK_ToVoid:
2875   case CK_BitCast:
2876   case CK_ArrayToPointerDecay:
2877   case CK_FunctionToPointerDecay:
2878   case CK_NullToMemberPointer:
2879   case CK_NullToPointer:
2880   case CK_IntegralToPointer:
2881   case CK_PointerToIntegral:
2882   case CK_PointerToBoolean:
2883   case CK_VectorSplat:
2884   case CK_IntegralCast:
2885   case CK_IntegralToBoolean:
2886   case CK_IntegralToFloating:
2887   case CK_FloatingToIntegral:
2888   case CK_FloatingToBoolean:
2889   case CK_FloatingCast:
2890   case CK_FloatingRealToComplex:
2891   case CK_FloatingComplexToReal:
2892   case CK_FloatingComplexToBoolean:
2893   case CK_FloatingComplexCast:
2894   case CK_FloatingComplexToIntegralComplex:
2895   case CK_IntegralRealToComplex:
2896   case CK_IntegralComplexToReal:
2897   case CK_IntegralComplexToBoolean:
2898   case CK_IntegralComplexCast:
2899   case CK_IntegralComplexToFloatingComplex:
2900   case CK_DerivedToBaseMemberPointer:
2901   case CK_BaseToDerivedMemberPointer:
2902   case CK_MemberPointerToBoolean:
2903   case CK_ReinterpretMemberPointer:
2904   case CK_AnyPointerToBlockPointerCast:
2905   case CK_ARCProduceObject:
2906   case CK_ARCConsumeObject:
2907   case CK_ARCReclaimReturnedObject:
2908   case CK_ARCExtendBlockObject:
2909   case CK_CopyAndAutoreleaseBlockObject:
2910   case CK_AddressSpaceConversion:
2911     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2912 
2913   case CK_Dependent:
2914     llvm_unreachable("dependent cast kind in IR gen!");
2915 
2916   case CK_BuiltinFnToFnPtr:
2917     llvm_unreachable("builtin functions are handled elsewhere");
2918 
2919   // These are never l-values; just use the aggregate emission code.
2920   case CK_NonAtomicToAtomic:
2921   case CK_AtomicToNonAtomic:
2922     return EmitAggExprToLValue(E);
2923 
2924   case CK_Dynamic: {
2925     LValue LV = EmitLValue(E->getSubExpr());
2926     llvm::Value *V = LV.getAddress();
2927     const auto *DCE = cast<CXXDynamicCastExpr>(E);
2928     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2929   }
2930 
2931   case CK_ConstructorConversion:
2932   case CK_UserDefinedConversion:
2933   case CK_CPointerToObjCPointerCast:
2934   case CK_BlockPointerToObjCPointerCast:
2935   case CK_NoOp:
2936   case CK_LValueToRValue:
2937     return EmitLValue(E->getSubExpr());
2938 
2939   case CK_UncheckedDerivedToBase:
2940   case CK_DerivedToBase: {
2941     const RecordType *DerivedClassTy =
2942       E->getSubExpr()->getType()->getAs<RecordType>();
2943     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2944 
2945     LValue LV = EmitLValue(E->getSubExpr());
2946     llvm::Value *This = LV.getAddress();
2947 
2948     // Perform the derived-to-base conversion
2949     llvm::Value *Base = GetAddressOfBaseClass(
2950         This, DerivedClassDecl, E->path_begin(), E->path_end(),
2951         /*NullCheckValue=*/false, E->getExprLoc());
2952 
2953     return MakeAddrLValue(Base, E->getType());
2954   }
2955   case CK_ToUnion:
2956     return EmitAggExprToLValue(E);
2957   case CK_BaseToDerived: {
2958     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2959     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2960 
2961     LValue LV = EmitLValue(E->getSubExpr());
2962 
2963     // Perform the base-to-derived conversion
2964     llvm::Value *Derived =
2965       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2966                                E->path_begin(), E->path_end(),
2967                                /*NullCheckValue=*/false);
2968 
2969     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2970     // performed and the object is not of the derived type.
2971     if (sanitizePerformTypeCheck())
2972       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2973                     Derived, E->getType());
2974 
2975     return MakeAddrLValue(Derived, E->getType());
2976   }
2977   case CK_LValueBitCast: {
2978     // This must be a reinterpret_cast (or c-style equivalent).
2979     const auto *CE = cast<ExplicitCastExpr>(E);
2980 
2981     LValue LV = EmitLValue(E->getSubExpr());
2982     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2983                                            ConvertType(CE->getTypeAsWritten()));
2984     return MakeAddrLValue(V, E->getType());
2985   }
2986   case CK_ObjCObjectLValueCast: {
2987     LValue LV = EmitLValue(E->getSubExpr());
2988     QualType ToType = getContext().getLValueReferenceType(E->getType());
2989     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2990                                            ConvertType(ToType));
2991     return MakeAddrLValue(V, E->getType());
2992   }
2993   case CK_ZeroToOCLEvent:
2994     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2995   }
2996 
2997   llvm_unreachable("Unhandled lvalue cast kind?");
2998 }
2999 
3000 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
3001   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
3002   return getOpaqueLValueMapping(e);
3003 }
3004 
3005 RValue CodeGenFunction::EmitRValueForField(LValue LV,
3006                                            const FieldDecl *FD,
3007                                            SourceLocation Loc) {
3008   QualType FT = FD->getType();
3009   LValue FieldLV = EmitLValueForField(LV, FD);
3010   switch (getEvaluationKind(FT)) {
3011   case TEK_Complex:
3012     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
3013   case TEK_Aggregate:
3014     return FieldLV.asAggregateRValue();
3015   case TEK_Scalar:
3016     return EmitLoadOfLValue(FieldLV, Loc);
3017   }
3018   llvm_unreachable("bad evaluation kind");
3019 }
3020 
3021 //===--------------------------------------------------------------------===//
3022 //                             Expression Emission
3023 //===--------------------------------------------------------------------===//
3024 
3025 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
3026                                      ReturnValueSlot ReturnValue) {
3027   if (CGDebugInfo *DI = getDebugInfo()) {
3028     SourceLocation Loc = E->getLocStart();
3029     // Force column info to be generated so we can differentiate
3030     // multiple call sites on the same line in the debug info.
3031     // FIXME: This is insufficient. Two calls coming from the same macro
3032     // expansion will still get the same line/column and break debug info. It's
3033     // possible that LLVM can be fixed to not rely on this uniqueness, at which
3034     // point this workaround can be removed.
3035     const FunctionDecl* Callee = E->getDirectCallee();
3036     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
3037     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
3038   }
3039 
3040   // Builtins never have block type.
3041   if (E->getCallee()->getType()->isBlockPointerType())
3042     return EmitBlockCallExpr(E, ReturnValue);
3043 
3044   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
3045     return EmitCXXMemberCallExpr(CE, ReturnValue);
3046 
3047   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
3048     return EmitCUDAKernelCallExpr(CE, ReturnValue);
3049 
3050   const Decl *TargetDecl = E->getCalleeDecl();
3051   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
3052     if (unsigned builtinID = FD->getBuiltinID())
3053       return EmitBuiltinExpr(FD, builtinID, E, ReturnValue);
3054   }
3055 
3056   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
3057     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
3058       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
3059 
3060   if (const auto *PseudoDtor =
3061           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
3062     QualType DestroyedType = PseudoDtor->getDestroyedType();
3063     if (getLangOpts().ObjCAutoRefCount &&
3064         DestroyedType->isObjCLifetimeType() &&
3065         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
3066          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
3067       // Automatic Reference Counting:
3068       //   If the pseudo-expression names a retainable object with weak or
3069       //   strong lifetime, the object shall be released.
3070       Expr *BaseExpr = PseudoDtor->getBase();
3071       llvm::Value *BaseValue = nullptr;
3072       Qualifiers BaseQuals;
3073 
3074       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
3075       if (PseudoDtor->isArrow()) {
3076         BaseValue = EmitScalarExpr(BaseExpr);
3077         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
3078         BaseQuals = PTy->getPointeeType().getQualifiers();
3079       } else {
3080         LValue BaseLV = EmitLValue(BaseExpr);
3081         BaseValue = BaseLV.getAddress();
3082         QualType BaseTy = BaseExpr->getType();
3083         BaseQuals = BaseTy.getQualifiers();
3084       }
3085 
3086       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
3087       case Qualifiers::OCL_None:
3088       case Qualifiers::OCL_ExplicitNone:
3089       case Qualifiers::OCL_Autoreleasing:
3090         break;
3091 
3092       case Qualifiers::OCL_Strong:
3093         EmitARCRelease(Builder.CreateLoad(BaseValue,
3094                           PseudoDtor->getDestroyedType().isVolatileQualified()),
3095                        ARCPreciseLifetime);
3096         break;
3097 
3098       case Qualifiers::OCL_Weak:
3099         EmitARCDestroyWeak(BaseValue);
3100         break;
3101       }
3102     } else {
3103       // C++ [expr.pseudo]p1:
3104       //   The result shall only be used as the operand for the function call
3105       //   operator (), and the result of such a call has type void. The only
3106       //   effect is the evaluation of the postfix-expression before the dot or
3107       //   arrow.
3108       EmitScalarExpr(E->getCallee());
3109     }
3110 
3111     return RValue::get(nullptr);
3112   }
3113 
3114   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3115   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
3116                   TargetDecl);
3117 }
3118 
3119 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3120   // Comma expressions just emit their LHS then their RHS as an l-value.
3121   if (E->getOpcode() == BO_Comma) {
3122     EmitIgnoredExpr(E->getLHS());
3123     EnsureInsertPoint();
3124     return EmitLValue(E->getRHS());
3125   }
3126 
3127   if (E->getOpcode() == BO_PtrMemD ||
3128       E->getOpcode() == BO_PtrMemI)
3129     return EmitPointerToDataMemberBinaryExpr(E);
3130 
3131   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3132 
3133   // Note that in all of these cases, __block variables need the RHS
3134   // evaluated first just in case the variable gets moved by the RHS.
3135 
3136   switch (getEvaluationKind(E->getType())) {
3137   case TEK_Scalar: {
3138     switch (E->getLHS()->getType().getObjCLifetime()) {
3139     case Qualifiers::OCL_Strong:
3140       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3141 
3142     case Qualifiers::OCL_Autoreleasing:
3143       return EmitARCStoreAutoreleasing(E).first;
3144 
3145     // No reason to do any of these differently.
3146     case Qualifiers::OCL_None:
3147     case Qualifiers::OCL_ExplicitNone:
3148     case Qualifiers::OCL_Weak:
3149       break;
3150     }
3151 
3152     RValue RV = EmitAnyExpr(E->getRHS());
3153     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3154     if (CGDebugInfo *DI = getDebugInfo())
3155       DI->EmitLocation(Builder, E->getLocStart());
3156     EmitStoreThroughLValue(RV, LV);
3157     return LV;
3158   }
3159 
3160   case TEK_Complex:
3161     return EmitComplexAssignmentLValue(E);
3162 
3163   case TEK_Aggregate:
3164     return EmitAggExprToLValue(E);
3165   }
3166   llvm_unreachable("bad evaluation kind");
3167 }
3168 
3169 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3170   RValue RV = EmitCallExpr(E);
3171 
3172   if (!RV.isScalar())
3173     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3174 
3175   assert(E->getCallReturnType()->isReferenceType() &&
3176          "Can't have a scalar return unless the return type is a "
3177          "reference type!");
3178 
3179   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3180 }
3181 
3182 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3183   // FIXME: This shouldn't require another copy.
3184   return EmitAggExprToLValue(E);
3185 }
3186 
3187 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3188   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3189          && "binding l-value to type which needs a temporary");
3190   AggValueSlot Slot = CreateAggTemp(E->getType());
3191   EmitCXXConstructExpr(E, Slot);
3192   return MakeAddrLValue(Slot.getAddr(), E->getType());
3193 }
3194 
3195 LValue
3196 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3197   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3198 }
3199 
3200 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3201   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3202                                ConvertType(E->getType())->getPointerTo());
3203 }
3204 
3205 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3206   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3207 }
3208 
3209 LValue
3210 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3211   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3212   Slot.setExternallyDestructed();
3213   EmitAggExpr(E->getSubExpr(), Slot);
3214   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3215   return MakeAddrLValue(Slot.getAddr(), E->getType());
3216 }
3217 
3218 LValue
3219 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3220   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3221   EmitLambdaExpr(E, Slot);
3222   return MakeAddrLValue(Slot.getAddr(), E->getType());
3223 }
3224 
3225 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3226   RValue RV = EmitObjCMessageExpr(E);
3227 
3228   if (!RV.isScalar())
3229     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3230 
3231   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3232          "Can't have a scalar return unless the return type is a "
3233          "reference type!");
3234 
3235   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3236 }
3237 
3238 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3239   llvm::Value *V =
3240     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3241   return MakeAddrLValue(V, E->getType());
3242 }
3243 
3244 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3245                                              const ObjCIvarDecl *Ivar) {
3246   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3247 }
3248 
3249 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3250                                           llvm::Value *BaseValue,
3251                                           const ObjCIvarDecl *Ivar,
3252                                           unsigned CVRQualifiers) {
3253   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3254                                                    Ivar, CVRQualifiers);
3255 }
3256 
3257 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3258   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3259   llvm::Value *BaseValue = nullptr;
3260   const Expr *BaseExpr = E->getBase();
3261   Qualifiers BaseQuals;
3262   QualType ObjectTy;
3263   if (E->isArrow()) {
3264     BaseValue = EmitScalarExpr(BaseExpr);
3265     ObjectTy = BaseExpr->getType()->getPointeeType();
3266     BaseQuals = ObjectTy.getQualifiers();
3267   } else {
3268     LValue BaseLV = EmitLValue(BaseExpr);
3269     // FIXME: this isn't right for bitfields.
3270     BaseValue = BaseLV.getAddress();
3271     ObjectTy = BaseExpr->getType();
3272     BaseQuals = ObjectTy.getQualifiers();
3273   }
3274 
3275   LValue LV =
3276     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3277                       BaseQuals.getCVRQualifiers());
3278   setObjCGCLValueClass(getContext(), E, LV);
3279   return LV;
3280 }
3281 
3282 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3283   // Can only get l-value for message expression returning aggregate type
3284   RValue RV = EmitAnyExprToTemp(E);
3285   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3286 }
3287 
3288 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3289                                  const CallExpr *E, ReturnValueSlot ReturnValue,
3290                                  const Decl *TargetDecl, llvm::Value *Chain) {
3291   // Get the actual function type. The callee type will always be a pointer to
3292   // function type or a block pointer type.
3293   assert(CalleeType->isFunctionPointerType() &&
3294          "Call must have function pointer type!");
3295 
3296   CalleeType = getContext().getCanonicalType(CalleeType);
3297 
3298   const auto *FnType =
3299       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3300 
3301   // Force column info to differentiate multiple inlined call sites on
3302   // the same line, analoguous to EmitCallExpr.
3303   // FIXME: This is insufficient. Two calls coming from the same macro expansion
3304   // will still get the same line/column and break debug info. It's possible
3305   // that LLVM can be fixed to not rely on this uniqueness, at which point this
3306   // workaround can be removed.
3307   bool ForceColumnInfo = false;
3308   if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3309     ForceColumnInfo = FD->isInlineSpecified();
3310 
3311   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
3312       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3313     if (llvm::Constant *PrefixSig =
3314             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3315       SanitizerScope SanScope(this);
3316       llvm::Constant *FTRTTIConst =
3317           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3318       llvm::Type *PrefixStructTyElems[] = {
3319         PrefixSig->getType(),
3320         FTRTTIConst->getType()
3321       };
3322       llvm::StructType *PrefixStructTy = llvm::StructType::get(
3323           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3324 
3325       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3326           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3327       llvm::Value *CalleeSigPtr =
3328           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
3329       llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3330       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3331 
3332       llvm::BasicBlock *Cont = createBasicBlock("cont");
3333       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3334       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3335 
3336       EmitBlock(TypeCheck);
3337       llvm::Value *CalleeRTTIPtr =
3338           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
3339       llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3340       llvm::Value *CalleeRTTIMatch =
3341           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3342       llvm::Constant *StaticData[] = {
3343         EmitCheckSourceLocation(E->getLocStart()),
3344         EmitCheckTypeDescriptor(CalleeType)
3345       };
3346       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
3347                 "function_type_mismatch", StaticData, Callee);
3348 
3349       Builder.CreateBr(Cont);
3350       EmitBlock(Cont);
3351     }
3352   }
3353 
3354   CallArgList Args;
3355   if (Chain)
3356     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
3357              CGM.getContext().VoidPtrTy);
3358   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arg_begin(),
3359                E->arg_end(), E->getDirectCallee(), /*ParamsToSkip*/ 0,
3360                ForceColumnInfo);
3361 
3362   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
3363       Args, FnType, /*isChainCall=*/Chain);
3364 
3365   // C99 6.5.2.2p6:
3366   //   If the expression that denotes the called function has a type
3367   //   that does not include a prototype, [the default argument
3368   //   promotions are performed]. If the number of arguments does not
3369   //   equal the number of parameters, the behavior is undefined. If
3370   //   the function is defined with a type that includes a prototype,
3371   //   and either the prototype ends with an ellipsis (, ...) or the
3372   //   types of the arguments after promotion are not compatible with
3373   //   the types of the parameters, the behavior is undefined. If the
3374   //   function is defined with a type that does not include a
3375   //   prototype, and the types of the arguments after promotion are
3376   //   not compatible with those of the parameters after promotion,
3377   //   the behavior is undefined [except in some trivial cases].
3378   // That is, in the general case, we should assume that a call
3379   // through an unprototyped function type works like a *non-variadic*
3380   // call.  The way we make this work is to cast to the exact type
3381   // of the promoted arguments.
3382   //
3383   // Chain calls use this same code path to add the invisible chain parameter
3384   // to the function type.
3385   if (isa<FunctionNoProtoType>(FnType) || Chain) {
3386     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3387     CalleeTy = CalleeTy->getPointerTo();
3388     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3389   }
3390 
3391   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3392 }
3393 
3394 LValue CodeGenFunction::
3395 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3396   llvm::Value *BaseV;
3397   if (E->getOpcode() == BO_PtrMemI)
3398     BaseV = EmitScalarExpr(E->getLHS());
3399   else
3400     BaseV = EmitLValue(E->getLHS()).getAddress();
3401 
3402   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3403 
3404   const MemberPointerType *MPT
3405     = E->getRHS()->getType()->getAs<MemberPointerType>();
3406 
3407   llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
3408       *this, E, BaseV, OffsetV, MPT);
3409 
3410   return MakeAddrLValue(AddV, MPT->getPointeeType());
3411 }
3412 
3413 /// Given the address of a temporary variable, produce an r-value of
3414 /// its type.
3415 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3416                                             QualType type,
3417                                             SourceLocation loc) {
3418   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3419   switch (getEvaluationKind(type)) {
3420   case TEK_Complex:
3421     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3422   case TEK_Aggregate:
3423     return lvalue.asAggregateRValue();
3424   case TEK_Scalar:
3425     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3426   }
3427   llvm_unreachable("bad evaluation kind");
3428 }
3429 
3430 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3431   assert(Val->getType()->isFPOrFPVectorTy());
3432   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3433     return;
3434 
3435   llvm::MDBuilder MDHelper(getLLVMContext());
3436   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3437 
3438   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3439 }
3440 
3441 namespace {
3442   struct LValueOrRValue {
3443     LValue LV;
3444     RValue RV;
3445   };
3446 }
3447 
3448 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3449                                            const PseudoObjectExpr *E,
3450                                            bool forLValue,
3451                                            AggValueSlot slot) {
3452   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3453 
3454   // Find the result expression, if any.
3455   const Expr *resultExpr = E->getResultExpr();
3456   LValueOrRValue result;
3457 
3458   for (PseudoObjectExpr::const_semantics_iterator
3459          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3460     const Expr *semantic = *i;
3461 
3462     // If this semantic expression is an opaque value, bind it
3463     // to the result of its source expression.
3464     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3465 
3466       // If this is the result expression, we may need to evaluate
3467       // directly into the slot.
3468       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3469       OVMA opaqueData;
3470       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3471           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3472         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3473 
3474         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3475         opaqueData = OVMA::bind(CGF, ov, LV);
3476         result.RV = slot.asRValue();
3477 
3478       // Otherwise, emit as normal.
3479       } else {
3480         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3481 
3482         // If this is the result, also evaluate the result now.
3483         if (ov == resultExpr) {
3484           if (forLValue)
3485             result.LV = CGF.EmitLValue(ov);
3486           else
3487             result.RV = CGF.EmitAnyExpr(ov, slot);
3488         }
3489       }
3490 
3491       opaques.push_back(opaqueData);
3492 
3493     // Otherwise, if the expression is the result, evaluate it
3494     // and remember the result.
3495     } else if (semantic == resultExpr) {
3496       if (forLValue)
3497         result.LV = CGF.EmitLValue(semantic);
3498       else
3499         result.RV = CGF.EmitAnyExpr(semantic, slot);
3500 
3501     // Otherwise, evaluate the expression in an ignored context.
3502     } else {
3503       CGF.EmitIgnoredExpr(semantic);
3504     }
3505   }
3506 
3507   // Unbind all the opaques now.
3508   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3509     opaques[i].unbind(CGF);
3510 
3511   return result;
3512 }
3513 
3514 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3515                                                AggValueSlot slot) {
3516   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3517 }
3518 
3519 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3520   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3521 }
3522