1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCXXABI.h" 14 #include "CGCall.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "ConstantEmitter.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Basic/CodeGenOptions.h" 29 #include "llvm/ADT/Hashing.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/Support/ConvertUTF.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Transforms/Utils/SanitizerStats.h" 39 40 #include <string> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 //===--------------------------------------------------------------------===// 46 // Miscellaneous Helper Methods 47 //===--------------------------------------------------------------------===// 48 49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 50 unsigned addressSpace = 51 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 52 53 llvm::PointerType *destType = Int8PtrTy; 54 if (addressSpace) 55 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 56 57 if (value->getType() == destType) return value; 58 return Builder.CreateBitCast(value, destType); 59 } 60 61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 62 /// block. 63 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 64 CharUnits Align, 65 const Twine &Name, 66 llvm::Value *ArraySize) { 67 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 68 Alloca->setAlignment(Align.getQuantity()); 69 return Address(Alloca, Align); 70 } 71 72 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 73 /// block. The alloca is casted to default address space if necessary. 74 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 75 const Twine &Name, 76 llvm::Value *ArraySize, 77 Address *AllocaAddr) { 78 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 79 if (AllocaAddr) 80 *AllocaAddr = Alloca; 81 llvm::Value *V = Alloca.getPointer(); 82 // Alloca always returns a pointer in alloca address space, which may 83 // be different from the type defined by the language. For example, 84 // in C++ the auto variables are in the default address space. Therefore 85 // cast alloca to the default address space when necessary. 86 if (getASTAllocaAddressSpace() != LangAS::Default) { 87 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 88 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 89 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 90 // otherwise alloca is inserted at the current insertion point of the 91 // builder. 92 if (!ArraySize) 93 Builder.SetInsertPoint(AllocaInsertPt); 94 V = getTargetHooks().performAddrSpaceCast( 95 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 96 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 97 } 98 99 return Address(V, Align); 100 } 101 102 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 103 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 104 /// insertion point of the builder. 105 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 106 const Twine &Name, 107 llvm::Value *ArraySize) { 108 if (ArraySize) 109 return Builder.CreateAlloca(Ty, ArraySize, Name); 110 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 111 ArraySize, Name, AllocaInsertPt); 112 } 113 114 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 115 /// default alignment of the corresponding LLVM type, which is *not* 116 /// guaranteed to be related in any way to the expected alignment of 117 /// an AST type that might have been lowered to Ty. 118 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 119 const Twine &Name) { 120 CharUnits Align = 121 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 122 return CreateTempAlloca(Ty, Align, Name); 123 } 124 125 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 126 assert(isa<llvm::AllocaInst>(Var.getPointer())); 127 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 128 Store->setAlignment(Var.getAlignment().getQuantity()); 129 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 130 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 131 } 132 133 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 134 CharUnits Align = getContext().getTypeAlignInChars(Ty); 135 return CreateTempAlloca(ConvertType(Ty), Align, Name); 136 } 137 138 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 139 Address *Alloca) { 140 // FIXME: Should we prefer the preferred type alignment here? 141 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 142 } 143 144 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 145 const Twine &Name, Address *Alloca) { 146 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 147 /*ArraySize=*/nullptr, Alloca); 148 } 149 150 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 151 const Twine &Name) { 152 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 153 } 154 155 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 156 const Twine &Name) { 157 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 158 Name); 159 } 160 161 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 162 /// expression and compare the result against zero, returning an Int1Ty value. 163 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 164 PGO.setCurrentStmt(E); 165 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 166 llvm::Value *MemPtr = EmitScalarExpr(E); 167 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 168 } 169 170 QualType BoolTy = getContext().BoolTy; 171 SourceLocation Loc = E->getExprLoc(); 172 if (!E->getType()->isAnyComplexType()) 173 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 174 175 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 176 Loc); 177 } 178 179 /// EmitIgnoredExpr - Emit code to compute the specified expression, 180 /// ignoring the result. 181 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 182 if (E->isRValue()) 183 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 184 185 // Just emit it as an l-value and drop the result. 186 EmitLValue(E); 187 } 188 189 /// EmitAnyExpr - Emit code to compute the specified expression which 190 /// can have any type. The result is returned as an RValue struct. 191 /// If this is an aggregate expression, AggSlot indicates where the 192 /// result should be returned. 193 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 194 AggValueSlot aggSlot, 195 bool ignoreResult) { 196 switch (getEvaluationKind(E->getType())) { 197 case TEK_Scalar: 198 return RValue::get(EmitScalarExpr(E, ignoreResult)); 199 case TEK_Complex: 200 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 201 case TEK_Aggregate: 202 if (!ignoreResult && aggSlot.isIgnored()) 203 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 204 EmitAggExpr(E, aggSlot); 205 return aggSlot.asRValue(); 206 } 207 llvm_unreachable("bad evaluation kind"); 208 } 209 210 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 211 /// always be accessible even if no aggregate location is provided. 212 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 213 AggValueSlot AggSlot = AggValueSlot::ignored(); 214 215 if (hasAggregateEvaluationKind(E->getType())) 216 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 217 return EmitAnyExpr(E, AggSlot); 218 } 219 220 /// EmitAnyExprToMem - Evaluate an expression into a given memory 221 /// location. 222 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 223 Address Location, 224 Qualifiers Quals, 225 bool IsInit) { 226 // FIXME: This function should take an LValue as an argument. 227 switch (getEvaluationKind(E->getType())) { 228 case TEK_Complex: 229 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 230 /*isInit*/ false); 231 return; 232 233 case TEK_Aggregate: { 234 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 235 AggValueSlot::IsDestructed_t(IsInit), 236 AggValueSlot::DoesNotNeedGCBarriers, 237 AggValueSlot::IsAliased_t(!IsInit), 238 AggValueSlot::MayOverlap)); 239 return; 240 } 241 242 case TEK_Scalar: { 243 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 244 LValue LV = MakeAddrLValue(Location, E->getType()); 245 EmitStoreThroughLValue(RV, LV); 246 return; 247 } 248 } 249 llvm_unreachable("bad evaluation kind"); 250 } 251 252 static void 253 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 254 const Expr *E, Address ReferenceTemporary) { 255 // Objective-C++ ARC: 256 // If we are binding a reference to a temporary that has ownership, we 257 // need to perform retain/release operations on the temporary. 258 // 259 // FIXME: This should be looking at E, not M. 260 if (auto Lifetime = M->getType().getObjCLifetime()) { 261 switch (Lifetime) { 262 case Qualifiers::OCL_None: 263 case Qualifiers::OCL_ExplicitNone: 264 // Carry on to normal cleanup handling. 265 break; 266 267 case Qualifiers::OCL_Autoreleasing: 268 // Nothing to do; cleaned up by an autorelease pool. 269 return; 270 271 case Qualifiers::OCL_Strong: 272 case Qualifiers::OCL_Weak: 273 switch (StorageDuration Duration = M->getStorageDuration()) { 274 case SD_Static: 275 // Note: we intentionally do not register a cleanup to release 276 // the object on program termination. 277 return; 278 279 case SD_Thread: 280 // FIXME: We should probably register a cleanup in this case. 281 return; 282 283 case SD_Automatic: 284 case SD_FullExpression: 285 CodeGenFunction::Destroyer *Destroy; 286 CleanupKind CleanupKind; 287 if (Lifetime == Qualifiers::OCL_Strong) { 288 const ValueDecl *VD = M->getExtendingDecl(); 289 bool Precise = 290 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 291 CleanupKind = CGF.getARCCleanupKind(); 292 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 293 : &CodeGenFunction::destroyARCStrongImprecise; 294 } else { 295 // __weak objects always get EH cleanups; otherwise, exceptions 296 // could cause really nasty crashes instead of mere leaks. 297 CleanupKind = NormalAndEHCleanup; 298 Destroy = &CodeGenFunction::destroyARCWeak; 299 } 300 if (Duration == SD_FullExpression) 301 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 302 M->getType(), *Destroy, 303 CleanupKind & EHCleanup); 304 else 305 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 306 M->getType(), 307 *Destroy, CleanupKind & EHCleanup); 308 return; 309 310 case SD_Dynamic: 311 llvm_unreachable("temporary cannot have dynamic storage duration"); 312 } 313 llvm_unreachable("unknown storage duration"); 314 } 315 } 316 317 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 318 if (const RecordType *RT = 319 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 320 // Get the destructor for the reference temporary. 321 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 322 if (!ClassDecl->hasTrivialDestructor()) 323 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 324 } 325 326 if (!ReferenceTemporaryDtor) 327 return; 328 329 // Call the destructor for the temporary. 330 switch (M->getStorageDuration()) { 331 case SD_Static: 332 case SD_Thread: { 333 llvm::Constant *CleanupFn; 334 llvm::Constant *CleanupArg; 335 if (E->getType()->isArrayType()) { 336 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 337 ReferenceTemporary, E->getType(), 338 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 339 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 340 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 341 } else { 342 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 343 StructorType::Complete); 344 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 345 } 346 CGF.CGM.getCXXABI().registerGlobalDtor( 347 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 348 break; 349 } 350 351 case SD_FullExpression: 352 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 353 CodeGenFunction::destroyCXXObject, 354 CGF.getLangOpts().Exceptions); 355 break; 356 357 case SD_Automatic: 358 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 359 ReferenceTemporary, E->getType(), 360 CodeGenFunction::destroyCXXObject, 361 CGF.getLangOpts().Exceptions); 362 break; 363 364 case SD_Dynamic: 365 llvm_unreachable("temporary cannot have dynamic storage duration"); 366 } 367 } 368 369 static Address createReferenceTemporary(CodeGenFunction &CGF, 370 const MaterializeTemporaryExpr *M, 371 const Expr *Inner, 372 Address *Alloca = nullptr) { 373 auto &TCG = CGF.getTargetHooks(); 374 switch (M->getStorageDuration()) { 375 case SD_FullExpression: 376 case SD_Automatic: { 377 // If we have a constant temporary array or record try to promote it into a 378 // constant global under the same rules a normal constant would've been 379 // promoted. This is easier on the optimizer and generally emits fewer 380 // instructions. 381 QualType Ty = Inner->getType(); 382 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 383 (Ty->isArrayType() || Ty->isRecordType()) && 384 CGF.CGM.isTypeConstant(Ty, true)) 385 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 386 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 387 auto AS = AddrSpace.getValue(); 388 auto *GV = new llvm::GlobalVariable( 389 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 390 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 391 llvm::GlobalValue::NotThreadLocal, 392 CGF.getContext().getTargetAddressSpace(AS)); 393 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 394 GV->setAlignment(alignment.getQuantity()); 395 llvm::Constant *C = GV; 396 if (AS != LangAS::Default) 397 C = TCG.performAddrSpaceCast( 398 CGF.CGM, GV, AS, LangAS::Default, 399 GV->getValueType()->getPointerTo( 400 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 401 // FIXME: Should we put the new global into a COMDAT? 402 return Address(C, alignment); 403 } 404 } 405 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 406 } 407 case SD_Thread: 408 case SD_Static: 409 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 410 411 case SD_Dynamic: 412 llvm_unreachable("temporary can't have dynamic storage duration"); 413 } 414 llvm_unreachable("unknown storage duration"); 415 } 416 417 LValue CodeGenFunction:: 418 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 419 const Expr *E = M->GetTemporaryExpr(); 420 421 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 422 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 423 "Reference should never be pseudo-strong!"); 424 425 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 426 // as that will cause the lifetime adjustment to be lost for ARC 427 auto ownership = M->getType().getObjCLifetime(); 428 if (ownership != Qualifiers::OCL_None && 429 ownership != Qualifiers::OCL_ExplicitNone) { 430 Address Object = createReferenceTemporary(*this, M, E); 431 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 432 Object = Address(llvm::ConstantExpr::getBitCast(Var, 433 ConvertTypeForMem(E->getType()) 434 ->getPointerTo(Object.getAddressSpace())), 435 Object.getAlignment()); 436 437 // createReferenceTemporary will promote the temporary to a global with a 438 // constant initializer if it can. It can only do this to a value of 439 // ARC-manageable type if the value is global and therefore "immune" to 440 // ref-counting operations. Therefore we have no need to emit either a 441 // dynamic initialization or a cleanup and we can just return the address 442 // of the temporary. 443 if (Var->hasInitializer()) 444 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 445 446 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 447 } 448 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 449 AlignmentSource::Decl); 450 451 switch (getEvaluationKind(E->getType())) { 452 default: llvm_unreachable("expected scalar or aggregate expression"); 453 case TEK_Scalar: 454 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 455 break; 456 case TEK_Aggregate: { 457 EmitAggExpr(E, AggValueSlot::forAddr(Object, 458 E->getType().getQualifiers(), 459 AggValueSlot::IsDestructed, 460 AggValueSlot::DoesNotNeedGCBarriers, 461 AggValueSlot::IsNotAliased, 462 AggValueSlot::DoesNotOverlap)); 463 break; 464 } 465 } 466 467 pushTemporaryCleanup(*this, M, E, Object); 468 return RefTempDst; 469 } 470 471 SmallVector<const Expr *, 2> CommaLHSs; 472 SmallVector<SubobjectAdjustment, 2> Adjustments; 473 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 474 475 for (const auto &Ignored : CommaLHSs) 476 EmitIgnoredExpr(Ignored); 477 478 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 479 if (opaque->getType()->isRecordType()) { 480 assert(Adjustments.empty()); 481 return EmitOpaqueValueLValue(opaque); 482 } 483 } 484 485 // Create and initialize the reference temporary. 486 Address Alloca = Address::invalid(); 487 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 488 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 489 Object.getPointer()->stripPointerCasts())) { 490 Object = Address(llvm::ConstantExpr::getBitCast( 491 cast<llvm::Constant>(Object.getPointer()), 492 ConvertTypeForMem(E->getType())->getPointerTo()), 493 Object.getAlignment()); 494 // If the temporary is a global and has a constant initializer or is a 495 // constant temporary that we promoted to a global, we may have already 496 // initialized it. 497 if (!Var->hasInitializer()) { 498 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 499 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 500 } 501 } else { 502 switch (M->getStorageDuration()) { 503 case SD_Automatic: 504 if (auto *Size = EmitLifetimeStart( 505 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 506 Alloca.getPointer())) { 507 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 508 Alloca, Size); 509 } 510 break; 511 512 case SD_FullExpression: { 513 if (!ShouldEmitLifetimeMarkers) 514 break; 515 516 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 517 // marker. Instead, start the lifetime of a conditional temporary earlier 518 // so that it's unconditional. Don't do this in ASan's use-after-scope 519 // mode so that it gets the more precise lifetime marks. If the type has 520 // a non-trivial destructor, we'll have a cleanup block for it anyway, 521 // so this typically doesn't help; skip it in that case. 522 ConditionalEvaluation *OldConditional = nullptr; 523 CGBuilderTy::InsertPoint OldIP; 524 if (isInConditionalBranch() && !E->getType().isDestructedType() && 525 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 526 OldConditional = OutermostConditional; 527 OutermostConditional = nullptr; 528 529 OldIP = Builder.saveIP(); 530 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 531 Builder.restoreIP(CGBuilderTy::InsertPoint( 532 Block, llvm::BasicBlock::iterator(Block->back()))); 533 } 534 535 if (auto *Size = EmitLifetimeStart( 536 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 537 Alloca.getPointer())) { 538 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 539 Size); 540 } 541 542 if (OldConditional) { 543 OutermostConditional = OldConditional; 544 Builder.restoreIP(OldIP); 545 } 546 break; 547 } 548 549 default: 550 break; 551 } 552 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 553 } 554 pushTemporaryCleanup(*this, M, E, Object); 555 556 // Perform derived-to-base casts and/or field accesses, to get from the 557 // temporary object we created (and, potentially, for which we extended 558 // the lifetime) to the subobject we're binding the reference to. 559 for (unsigned I = Adjustments.size(); I != 0; --I) { 560 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 561 switch (Adjustment.Kind) { 562 case SubobjectAdjustment::DerivedToBaseAdjustment: 563 Object = 564 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 565 Adjustment.DerivedToBase.BasePath->path_begin(), 566 Adjustment.DerivedToBase.BasePath->path_end(), 567 /*NullCheckValue=*/ false, E->getExprLoc()); 568 break; 569 570 case SubobjectAdjustment::FieldAdjustment: { 571 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 572 LV = EmitLValueForField(LV, Adjustment.Field); 573 assert(LV.isSimple() && 574 "materialized temporary field is not a simple lvalue"); 575 Object = LV.getAddress(); 576 break; 577 } 578 579 case SubobjectAdjustment::MemberPointerAdjustment: { 580 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 581 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 582 Adjustment.Ptr.MPT); 583 break; 584 } 585 } 586 } 587 588 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 589 } 590 591 RValue 592 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 593 // Emit the expression as an lvalue. 594 LValue LV = EmitLValue(E); 595 assert(LV.isSimple()); 596 llvm::Value *Value = LV.getPointer(); 597 598 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 599 // C++11 [dcl.ref]p5 (as amended by core issue 453): 600 // If a glvalue to which a reference is directly bound designates neither 601 // an existing object or function of an appropriate type nor a region of 602 // storage of suitable size and alignment to contain an object of the 603 // reference's type, the behavior is undefined. 604 QualType Ty = E->getType(); 605 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 606 } 607 608 return RValue::get(Value); 609 } 610 611 612 /// getAccessedFieldNo - Given an encoded value and a result number, return the 613 /// input field number being accessed. 614 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 615 const llvm::Constant *Elts) { 616 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 617 ->getZExtValue(); 618 } 619 620 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 621 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 622 llvm::Value *High) { 623 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 624 llvm::Value *K47 = Builder.getInt64(47); 625 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 626 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 627 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 628 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 629 return Builder.CreateMul(B1, KMul); 630 } 631 632 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 633 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 634 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 635 } 636 637 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 638 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 639 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 640 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 641 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 642 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 643 } 644 645 bool CodeGenFunction::sanitizePerformTypeCheck() const { 646 return SanOpts.has(SanitizerKind::Null) | 647 SanOpts.has(SanitizerKind::Alignment) | 648 SanOpts.has(SanitizerKind::ObjectSize) | 649 SanOpts.has(SanitizerKind::Vptr); 650 } 651 652 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 653 llvm::Value *Ptr, QualType Ty, 654 CharUnits Alignment, 655 SanitizerSet SkippedChecks) { 656 if (!sanitizePerformTypeCheck()) 657 return; 658 659 // Don't check pointers outside the default address space. The null check 660 // isn't correct, the object-size check isn't supported by LLVM, and we can't 661 // communicate the addresses to the runtime handler for the vptr check. 662 if (Ptr->getType()->getPointerAddressSpace()) 663 return; 664 665 // Don't check pointers to volatile data. The behavior here is implementation- 666 // defined. 667 if (Ty.isVolatileQualified()) 668 return; 669 670 SanitizerScope SanScope(this); 671 672 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 673 llvm::BasicBlock *Done = nullptr; 674 675 // Quickly determine whether we have a pointer to an alloca. It's possible 676 // to skip null checks, and some alignment checks, for these pointers. This 677 // can reduce compile-time significantly. 678 auto PtrToAlloca = 679 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 680 681 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 682 llvm::Value *IsNonNull = nullptr; 683 bool IsGuaranteedNonNull = 684 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 685 bool AllowNullPointers = isNullPointerAllowed(TCK); 686 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 687 !IsGuaranteedNonNull) { 688 // The glvalue must not be an empty glvalue. 689 IsNonNull = Builder.CreateIsNotNull(Ptr); 690 691 // The IR builder can constant-fold the null check if the pointer points to 692 // a constant. 693 IsGuaranteedNonNull = IsNonNull == True; 694 695 // Skip the null check if the pointer is known to be non-null. 696 if (!IsGuaranteedNonNull) { 697 if (AllowNullPointers) { 698 // When performing pointer casts, it's OK if the value is null. 699 // Skip the remaining checks in that case. 700 Done = createBasicBlock("null"); 701 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 702 Builder.CreateCondBr(IsNonNull, Rest, Done); 703 EmitBlock(Rest); 704 } else { 705 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 706 } 707 } 708 } 709 710 if (SanOpts.has(SanitizerKind::ObjectSize) && 711 !SkippedChecks.has(SanitizerKind::ObjectSize) && 712 !Ty->isIncompleteType()) { 713 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 714 715 // The glvalue must refer to a large enough storage region. 716 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 717 // to check this. 718 // FIXME: Get object address space 719 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 720 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 721 llvm::Value *Min = Builder.getFalse(); 722 llvm::Value *NullIsUnknown = Builder.getFalse(); 723 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 724 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 725 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 726 llvm::ConstantInt::get(IntPtrTy, Size)); 727 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 728 } 729 730 uint64_t AlignVal = 0; 731 llvm::Value *PtrAsInt = nullptr; 732 733 if (SanOpts.has(SanitizerKind::Alignment) && 734 !SkippedChecks.has(SanitizerKind::Alignment)) { 735 AlignVal = Alignment.getQuantity(); 736 if (!Ty->isIncompleteType() && !AlignVal) 737 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 738 739 // The glvalue must be suitably aligned. 740 if (AlignVal > 1 && 741 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 742 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 743 llvm::Value *Align = Builder.CreateAnd( 744 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 745 llvm::Value *Aligned = 746 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 747 if (Aligned != True) 748 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 749 } 750 } 751 752 if (Checks.size() > 0) { 753 // Make sure we're not losing information. Alignment needs to be a power of 754 // 2 755 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 756 llvm::Constant *StaticData[] = { 757 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 758 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 759 llvm::ConstantInt::get(Int8Ty, TCK)}; 760 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 761 PtrAsInt ? PtrAsInt : Ptr); 762 } 763 764 // If possible, check that the vptr indicates that there is a subobject of 765 // type Ty at offset zero within this object. 766 // 767 // C++11 [basic.life]p5,6: 768 // [For storage which does not refer to an object within its lifetime] 769 // The program has undefined behavior if: 770 // -- the [pointer or glvalue] is used to access a non-static data member 771 // or call a non-static member function 772 if (SanOpts.has(SanitizerKind::Vptr) && 773 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 774 // Ensure that the pointer is non-null before loading it. If there is no 775 // compile-time guarantee, reuse the run-time null check or emit a new one. 776 if (!IsGuaranteedNonNull) { 777 if (!IsNonNull) 778 IsNonNull = Builder.CreateIsNotNull(Ptr); 779 if (!Done) 780 Done = createBasicBlock("vptr.null"); 781 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 782 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 783 EmitBlock(VptrNotNull); 784 } 785 786 // Compute a hash of the mangled name of the type. 787 // 788 // FIXME: This is not guaranteed to be deterministic! Move to a 789 // fingerprinting mechanism once LLVM provides one. For the time 790 // being the implementation happens to be deterministic. 791 SmallString<64> MangledName; 792 llvm::raw_svector_ostream Out(MangledName); 793 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 794 Out); 795 796 // Blacklist based on the mangled type. 797 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 798 SanitizerKind::Vptr, Out.str())) { 799 llvm::hash_code TypeHash = hash_value(Out.str()); 800 801 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 802 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 803 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 804 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 805 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 806 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 807 808 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 809 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 810 811 // Look the hash up in our cache. 812 const int CacheSize = 128; 813 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 814 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 815 "__ubsan_vptr_type_cache"); 816 llvm::Value *Slot = Builder.CreateAnd(Hash, 817 llvm::ConstantInt::get(IntPtrTy, 818 CacheSize-1)); 819 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 820 llvm::Value *CacheVal = 821 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 822 getPointerAlign()); 823 824 // If the hash isn't in the cache, call a runtime handler to perform the 825 // hard work of checking whether the vptr is for an object of the right 826 // type. This will either fill in the cache and return, or produce a 827 // diagnostic. 828 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 829 llvm::Constant *StaticData[] = { 830 EmitCheckSourceLocation(Loc), 831 EmitCheckTypeDescriptor(Ty), 832 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 833 llvm::ConstantInt::get(Int8Ty, TCK) 834 }; 835 llvm::Value *DynamicData[] = { Ptr, Hash }; 836 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 837 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 838 DynamicData); 839 } 840 } 841 842 if (Done) { 843 Builder.CreateBr(Done); 844 EmitBlock(Done); 845 } 846 } 847 848 /// Determine whether this expression refers to a flexible array member in a 849 /// struct. We disable array bounds checks for such members. 850 static bool isFlexibleArrayMemberExpr(const Expr *E) { 851 // For compatibility with existing code, we treat arrays of length 0 or 852 // 1 as flexible array members. 853 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 854 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 855 if (CAT->getSize().ugt(1)) 856 return false; 857 } else if (!isa<IncompleteArrayType>(AT)) 858 return false; 859 860 E = E->IgnoreParens(); 861 862 // A flexible array member must be the last member in the class. 863 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 864 // FIXME: If the base type of the member expr is not FD->getParent(), 865 // this should not be treated as a flexible array member access. 866 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 867 RecordDecl::field_iterator FI( 868 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 869 return ++FI == FD->getParent()->field_end(); 870 } 871 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 872 return IRE->getDecl()->getNextIvar() == nullptr; 873 } 874 875 return false; 876 } 877 878 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 879 QualType EltTy) { 880 ASTContext &C = getContext(); 881 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 882 if (!EltSize) 883 return nullptr; 884 885 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 886 if (!ArrayDeclRef) 887 return nullptr; 888 889 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 890 if (!ParamDecl) 891 return nullptr; 892 893 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 894 if (!POSAttr) 895 return nullptr; 896 897 // Don't load the size if it's a lower bound. 898 int POSType = POSAttr->getType(); 899 if (POSType != 0 && POSType != 1) 900 return nullptr; 901 902 // Find the implicit size parameter. 903 auto PassedSizeIt = SizeArguments.find(ParamDecl); 904 if (PassedSizeIt == SizeArguments.end()) 905 return nullptr; 906 907 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 908 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 909 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 910 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 911 C.getSizeType(), E->getExprLoc()); 912 llvm::Value *SizeOfElement = 913 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 914 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 915 } 916 917 /// If Base is known to point to the start of an array, return the length of 918 /// that array. Return 0 if the length cannot be determined. 919 static llvm::Value *getArrayIndexingBound( 920 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 921 // For the vector indexing extension, the bound is the number of elements. 922 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 923 IndexedType = Base->getType(); 924 return CGF.Builder.getInt32(VT->getNumElements()); 925 } 926 927 Base = Base->IgnoreParens(); 928 929 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 930 if (CE->getCastKind() == CK_ArrayToPointerDecay && 931 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 932 IndexedType = CE->getSubExpr()->getType(); 933 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 934 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 935 return CGF.Builder.getInt(CAT->getSize()); 936 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 937 return CGF.getVLASize(VAT).NumElts; 938 // Ignore pass_object_size here. It's not applicable on decayed pointers. 939 } 940 } 941 942 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 943 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 944 IndexedType = Base->getType(); 945 return POS; 946 } 947 948 return nullptr; 949 } 950 951 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 952 llvm::Value *Index, QualType IndexType, 953 bool Accessed) { 954 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 955 "should not be called unless adding bounds checks"); 956 SanitizerScope SanScope(this); 957 958 QualType IndexedType; 959 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 960 if (!Bound) 961 return; 962 963 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 964 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 965 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 966 967 llvm::Constant *StaticData[] = { 968 EmitCheckSourceLocation(E->getExprLoc()), 969 EmitCheckTypeDescriptor(IndexedType), 970 EmitCheckTypeDescriptor(IndexType) 971 }; 972 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 973 : Builder.CreateICmpULE(IndexVal, BoundVal); 974 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 975 SanitizerHandler::OutOfBounds, StaticData, Index); 976 } 977 978 979 CodeGenFunction::ComplexPairTy CodeGenFunction:: 980 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 981 bool isInc, bool isPre) { 982 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 983 984 llvm::Value *NextVal; 985 if (isa<llvm::IntegerType>(InVal.first->getType())) { 986 uint64_t AmountVal = isInc ? 1 : -1; 987 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 988 989 // Add the inc/dec to the real part. 990 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 991 } else { 992 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 993 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 994 if (!isInc) 995 FVal.changeSign(); 996 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 997 998 // Add the inc/dec to the real part. 999 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1000 } 1001 1002 ComplexPairTy IncVal(NextVal, InVal.second); 1003 1004 // Store the updated result through the lvalue. 1005 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1006 1007 // If this is a postinc, return the value read from memory, otherwise use the 1008 // updated value. 1009 return isPre ? IncVal : InVal; 1010 } 1011 1012 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1013 CodeGenFunction *CGF) { 1014 // Bind VLAs in the cast type. 1015 if (CGF && E->getType()->isVariablyModifiedType()) 1016 CGF->EmitVariablyModifiedType(E->getType()); 1017 1018 if (CGDebugInfo *DI = getModuleDebugInfo()) 1019 DI->EmitExplicitCastType(E->getType()); 1020 } 1021 1022 //===----------------------------------------------------------------------===// 1023 // LValue Expression Emission 1024 //===----------------------------------------------------------------------===// 1025 1026 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1027 /// derive a more accurate bound on the alignment of the pointer. 1028 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1029 LValueBaseInfo *BaseInfo, 1030 TBAAAccessInfo *TBAAInfo) { 1031 // We allow this with ObjC object pointers because of fragile ABIs. 1032 assert(E->getType()->isPointerType() || 1033 E->getType()->isObjCObjectPointerType()); 1034 E = E->IgnoreParens(); 1035 1036 // Casts: 1037 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1038 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1039 CGM.EmitExplicitCastExprType(ECE, this); 1040 1041 switch (CE->getCastKind()) { 1042 // Non-converting casts (but not C's implicit conversion from void*). 1043 case CK_BitCast: 1044 case CK_NoOp: 1045 case CK_AddressSpaceConversion: 1046 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1047 if (PtrTy->getPointeeType()->isVoidType()) 1048 break; 1049 1050 LValueBaseInfo InnerBaseInfo; 1051 TBAAAccessInfo InnerTBAAInfo; 1052 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1053 &InnerBaseInfo, 1054 &InnerTBAAInfo); 1055 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1056 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1057 1058 if (isa<ExplicitCastExpr>(CE)) { 1059 LValueBaseInfo TargetTypeBaseInfo; 1060 TBAAAccessInfo TargetTypeTBAAInfo; 1061 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1062 &TargetTypeBaseInfo, 1063 &TargetTypeTBAAInfo); 1064 if (TBAAInfo) 1065 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1066 TargetTypeTBAAInfo); 1067 // If the source l-value is opaque, honor the alignment of the 1068 // casted-to type. 1069 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1070 if (BaseInfo) 1071 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1072 Addr = Address(Addr.getPointer(), Align); 1073 } 1074 } 1075 1076 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1077 CE->getCastKind() == CK_BitCast) { 1078 if (auto PT = E->getType()->getAs<PointerType>()) 1079 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1080 /*MayBeNull=*/true, 1081 CodeGenFunction::CFITCK_UnrelatedCast, 1082 CE->getBeginLoc()); 1083 } 1084 return CE->getCastKind() != CK_AddressSpaceConversion 1085 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1086 : Builder.CreateAddrSpaceCast(Addr, 1087 ConvertType(E->getType())); 1088 } 1089 break; 1090 1091 // Array-to-pointer decay. 1092 case CK_ArrayToPointerDecay: 1093 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1094 1095 // Derived-to-base conversions. 1096 case CK_UncheckedDerivedToBase: 1097 case CK_DerivedToBase: { 1098 // TODO: Support accesses to members of base classes in TBAA. For now, we 1099 // conservatively pretend that the complete object is of the base class 1100 // type. 1101 if (TBAAInfo) 1102 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1103 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1104 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1105 return GetAddressOfBaseClass(Addr, Derived, 1106 CE->path_begin(), CE->path_end(), 1107 ShouldNullCheckClassCastValue(CE), 1108 CE->getExprLoc()); 1109 } 1110 1111 // TODO: Is there any reason to treat base-to-derived conversions 1112 // specially? 1113 default: 1114 break; 1115 } 1116 } 1117 1118 // Unary &. 1119 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1120 if (UO->getOpcode() == UO_AddrOf) { 1121 LValue LV = EmitLValue(UO->getSubExpr()); 1122 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1123 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1124 return LV.getAddress(); 1125 } 1126 } 1127 1128 // TODO: conditional operators, comma. 1129 1130 // Otherwise, use the alignment of the type. 1131 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1132 TBAAInfo); 1133 return Address(EmitScalarExpr(E), Align); 1134 } 1135 1136 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1137 if (Ty->isVoidType()) 1138 return RValue::get(nullptr); 1139 1140 switch (getEvaluationKind(Ty)) { 1141 case TEK_Complex: { 1142 llvm::Type *EltTy = 1143 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1144 llvm::Value *U = llvm::UndefValue::get(EltTy); 1145 return RValue::getComplex(std::make_pair(U, U)); 1146 } 1147 1148 // If this is a use of an undefined aggregate type, the aggregate must have an 1149 // identifiable address. Just because the contents of the value are undefined 1150 // doesn't mean that the address can't be taken and compared. 1151 case TEK_Aggregate: { 1152 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1153 return RValue::getAggregate(DestPtr); 1154 } 1155 1156 case TEK_Scalar: 1157 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1158 } 1159 llvm_unreachable("bad evaluation kind"); 1160 } 1161 1162 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1163 const char *Name) { 1164 ErrorUnsupported(E, Name); 1165 return GetUndefRValue(E->getType()); 1166 } 1167 1168 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1169 const char *Name) { 1170 ErrorUnsupported(E, Name); 1171 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1172 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1173 E->getType()); 1174 } 1175 1176 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1177 const Expr *Base = Obj; 1178 while (!isa<CXXThisExpr>(Base)) { 1179 // The result of a dynamic_cast can be null. 1180 if (isa<CXXDynamicCastExpr>(Base)) 1181 return false; 1182 1183 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1184 Base = CE->getSubExpr(); 1185 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1186 Base = PE->getSubExpr(); 1187 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1188 if (UO->getOpcode() == UO_Extension) 1189 Base = UO->getSubExpr(); 1190 else 1191 return false; 1192 } else { 1193 return false; 1194 } 1195 } 1196 return true; 1197 } 1198 1199 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1200 LValue LV; 1201 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1202 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1203 else 1204 LV = EmitLValue(E); 1205 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1206 SanitizerSet SkippedChecks; 1207 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1208 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1209 if (IsBaseCXXThis) 1210 SkippedChecks.set(SanitizerKind::Alignment, true); 1211 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1212 SkippedChecks.set(SanitizerKind::Null, true); 1213 } 1214 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1215 E->getType(), LV.getAlignment(), SkippedChecks); 1216 } 1217 return LV; 1218 } 1219 1220 /// EmitLValue - Emit code to compute a designator that specifies the location 1221 /// of the expression. 1222 /// 1223 /// This can return one of two things: a simple address or a bitfield reference. 1224 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1225 /// an LLVM pointer type. 1226 /// 1227 /// If this returns a bitfield reference, nothing about the pointee type of the 1228 /// LLVM value is known: For example, it may not be a pointer to an integer. 1229 /// 1230 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1231 /// this method guarantees that the returned pointer type will point to an LLVM 1232 /// type of the same size of the lvalue's type. If the lvalue has a variable 1233 /// length type, this is not possible. 1234 /// 1235 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1236 ApplyDebugLocation DL(*this, E); 1237 switch (E->getStmtClass()) { 1238 default: return EmitUnsupportedLValue(E, "l-value expression"); 1239 1240 case Expr::ObjCPropertyRefExprClass: 1241 llvm_unreachable("cannot emit a property reference directly"); 1242 1243 case Expr::ObjCSelectorExprClass: 1244 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1245 case Expr::ObjCIsaExprClass: 1246 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1247 case Expr::BinaryOperatorClass: 1248 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1249 case Expr::CompoundAssignOperatorClass: { 1250 QualType Ty = E->getType(); 1251 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1252 Ty = AT->getValueType(); 1253 if (!Ty->isAnyComplexType()) 1254 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1255 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1256 } 1257 case Expr::CallExprClass: 1258 case Expr::CXXMemberCallExprClass: 1259 case Expr::CXXOperatorCallExprClass: 1260 case Expr::UserDefinedLiteralClass: 1261 return EmitCallExprLValue(cast<CallExpr>(E)); 1262 case Expr::VAArgExprClass: 1263 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1264 case Expr::DeclRefExprClass: 1265 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1266 case Expr::ConstantExprClass: 1267 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1268 case Expr::ParenExprClass: 1269 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1270 case Expr::GenericSelectionExprClass: 1271 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1272 case Expr::PredefinedExprClass: 1273 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1274 case Expr::StringLiteralClass: 1275 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1276 case Expr::ObjCEncodeExprClass: 1277 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1278 case Expr::PseudoObjectExprClass: 1279 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1280 case Expr::InitListExprClass: 1281 return EmitInitListLValue(cast<InitListExpr>(E)); 1282 case Expr::CXXTemporaryObjectExprClass: 1283 case Expr::CXXConstructExprClass: 1284 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1285 case Expr::CXXBindTemporaryExprClass: 1286 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1287 case Expr::CXXUuidofExprClass: 1288 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1289 1290 case Expr::ExprWithCleanupsClass: { 1291 const auto *cleanups = cast<ExprWithCleanups>(E); 1292 enterFullExpression(cleanups); 1293 RunCleanupsScope Scope(*this); 1294 LValue LV = EmitLValue(cleanups->getSubExpr()); 1295 if (LV.isSimple()) { 1296 // Defend against branches out of gnu statement expressions surrounded by 1297 // cleanups. 1298 llvm::Value *V = LV.getPointer(); 1299 Scope.ForceCleanup({&V}); 1300 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1301 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1302 } 1303 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1304 // bitfield lvalue or some other non-simple lvalue? 1305 return LV; 1306 } 1307 1308 case Expr::CXXDefaultArgExprClass: 1309 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1310 case Expr::CXXDefaultInitExprClass: { 1311 CXXDefaultInitExprScope Scope(*this); 1312 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1313 } 1314 case Expr::CXXTypeidExprClass: 1315 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1316 1317 case Expr::ObjCMessageExprClass: 1318 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1319 case Expr::ObjCIvarRefExprClass: 1320 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1321 case Expr::StmtExprClass: 1322 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1323 case Expr::UnaryOperatorClass: 1324 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1325 case Expr::ArraySubscriptExprClass: 1326 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1327 case Expr::OMPArraySectionExprClass: 1328 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1329 case Expr::ExtVectorElementExprClass: 1330 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1331 case Expr::MemberExprClass: 1332 return EmitMemberExpr(cast<MemberExpr>(E)); 1333 case Expr::CompoundLiteralExprClass: 1334 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1335 case Expr::ConditionalOperatorClass: 1336 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1337 case Expr::BinaryConditionalOperatorClass: 1338 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1339 case Expr::ChooseExprClass: 1340 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1341 case Expr::OpaqueValueExprClass: 1342 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1343 case Expr::SubstNonTypeTemplateParmExprClass: 1344 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1345 case Expr::ImplicitCastExprClass: 1346 case Expr::CStyleCastExprClass: 1347 case Expr::CXXFunctionalCastExprClass: 1348 case Expr::CXXStaticCastExprClass: 1349 case Expr::CXXDynamicCastExprClass: 1350 case Expr::CXXReinterpretCastExprClass: 1351 case Expr::CXXConstCastExprClass: 1352 case Expr::ObjCBridgedCastExprClass: 1353 return EmitCastLValue(cast<CastExpr>(E)); 1354 1355 case Expr::MaterializeTemporaryExprClass: 1356 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1357 1358 case Expr::CoawaitExprClass: 1359 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1360 case Expr::CoyieldExprClass: 1361 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1362 } 1363 } 1364 1365 /// Given an object of the given canonical type, can we safely copy a 1366 /// value out of it based on its initializer? 1367 static bool isConstantEmittableObjectType(QualType type) { 1368 assert(type.isCanonical()); 1369 assert(!type->isReferenceType()); 1370 1371 // Must be const-qualified but non-volatile. 1372 Qualifiers qs = type.getLocalQualifiers(); 1373 if (!qs.hasConst() || qs.hasVolatile()) return false; 1374 1375 // Otherwise, all object types satisfy this except C++ classes with 1376 // mutable subobjects or non-trivial copy/destroy behavior. 1377 if (const auto *RT = dyn_cast<RecordType>(type)) 1378 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1379 if (RD->hasMutableFields() || !RD->isTrivial()) 1380 return false; 1381 1382 return true; 1383 } 1384 1385 /// Can we constant-emit a load of a reference to a variable of the 1386 /// given type? This is different from predicates like 1387 /// Decl::isUsableInConstantExpressions because we do want it to apply 1388 /// in situations that don't necessarily satisfy the language's rules 1389 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1390 /// to do this with const float variables even if those variables 1391 /// aren't marked 'constexpr'. 1392 enum ConstantEmissionKind { 1393 CEK_None, 1394 CEK_AsReferenceOnly, 1395 CEK_AsValueOrReference, 1396 CEK_AsValueOnly 1397 }; 1398 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1399 type = type.getCanonicalType(); 1400 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1401 if (isConstantEmittableObjectType(ref->getPointeeType())) 1402 return CEK_AsValueOrReference; 1403 return CEK_AsReferenceOnly; 1404 } 1405 if (isConstantEmittableObjectType(type)) 1406 return CEK_AsValueOnly; 1407 return CEK_None; 1408 } 1409 1410 /// Try to emit a reference to the given value without producing it as 1411 /// an l-value. This is actually more than an optimization: we can't 1412 /// produce an l-value for variables that we never actually captured 1413 /// in a block or lambda, which means const int variables or constexpr 1414 /// literals or similar. 1415 CodeGenFunction::ConstantEmission 1416 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1417 ValueDecl *value = refExpr->getDecl(); 1418 1419 // The value needs to be an enum constant or a constant variable. 1420 ConstantEmissionKind CEK; 1421 if (isa<ParmVarDecl>(value)) { 1422 CEK = CEK_None; 1423 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1424 CEK = checkVarTypeForConstantEmission(var->getType()); 1425 } else if (isa<EnumConstantDecl>(value)) { 1426 CEK = CEK_AsValueOnly; 1427 } else { 1428 CEK = CEK_None; 1429 } 1430 if (CEK == CEK_None) return ConstantEmission(); 1431 1432 Expr::EvalResult result; 1433 bool resultIsReference; 1434 QualType resultType; 1435 1436 // It's best to evaluate all the way as an r-value if that's permitted. 1437 if (CEK != CEK_AsReferenceOnly && 1438 refExpr->EvaluateAsRValue(result, getContext())) { 1439 resultIsReference = false; 1440 resultType = refExpr->getType(); 1441 1442 // Otherwise, try to evaluate as an l-value. 1443 } else if (CEK != CEK_AsValueOnly && 1444 refExpr->EvaluateAsLValue(result, getContext())) { 1445 resultIsReference = true; 1446 resultType = value->getType(); 1447 1448 // Failure. 1449 } else { 1450 return ConstantEmission(); 1451 } 1452 1453 // In any case, if the initializer has side-effects, abandon ship. 1454 if (result.HasSideEffects) 1455 return ConstantEmission(); 1456 1457 // Emit as a constant. 1458 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1459 result.Val, resultType); 1460 1461 // Make sure we emit a debug reference to the global variable. 1462 // This should probably fire even for 1463 if (isa<VarDecl>(value)) { 1464 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1465 EmitDeclRefExprDbgValue(refExpr, result.Val); 1466 } else { 1467 assert(isa<EnumConstantDecl>(value)); 1468 EmitDeclRefExprDbgValue(refExpr, result.Val); 1469 } 1470 1471 // If we emitted a reference constant, we need to dereference that. 1472 if (resultIsReference) 1473 return ConstantEmission::forReference(C); 1474 1475 return ConstantEmission::forValue(C); 1476 } 1477 1478 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1479 const MemberExpr *ME) { 1480 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1481 // Try to emit static variable member expressions as DREs. 1482 return DeclRefExpr::Create( 1483 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1484 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1485 ME->getType(), ME->getValueKind()); 1486 } 1487 return nullptr; 1488 } 1489 1490 CodeGenFunction::ConstantEmission 1491 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1492 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1493 return tryEmitAsConstant(DRE); 1494 return ConstantEmission(); 1495 } 1496 1497 llvm::Value *CodeGenFunction::emitScalarConstant( 1498 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1499 assert(Constant && "not a constant"); 1500 if (Constant.isReference()) 1501 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1502 E->getExprLoc()) 1503 .getScalarVal(); 1504 return Constant.getValue(); 1505 } 1506 1507 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1508 SourceLocation Loc) { 1509 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1510 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1511 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1512 } 1513 1514 static bool hasBooleanRepresentation(QualType Ty) { 1515 if (Ty->isBooleanType()) 1516 return true; 1517 1518 if (const EnumType *ET = Ty->getAs<EnumType>()) 1519 return ET->getDecl()->getIntegerType()->isBooleanType(); 1520 1521 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1522 return hasBooleanRepresentation(AT->getValueType()); 1523 1524 return false; 1525 } 1526 1527 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1528 llvm::APInt &Min, llvm::APInt &End, 1529 bool StrictEnums, bool IsBool) { 1530 const EnumType *ET = Ty->getAs<EnumType>(); 1531 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1532 ET && !ET->getDecl()->isFixed(); 1533 if (!IsBool && !IsRegularCPlusPlusEnum) 1534 return false; 1535 1536 if (IsBool) { 1537 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1538 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1539 } else { 1540 const EnumDecl *ED = ET->getDecl(); 1541 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1542 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1543 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1544 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1545 1546 if (NumNegativeBits) { 1547 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1548 assert(NumBits <= Bitwidth); 1549 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1550 Min = -End; 1551 } else { 1552 assert(NumPositiveBits <= Bitwidth); 1553 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1554 Min = llvm::APInt(Bitwidth, 0); 1555 } 1556 } 1557 return true; 1558 } 1559 1560 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1561 llvm::APInt Min, End; 1562 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1563 hasBooleanRepresentation(Ty))) 1564 return nullptr; 1565 1566 llvm::MDBuilder MDHelper(getLLVMContext()); 1567 return MDHelper.createRange(Min, End); 1568 } 1569 1570 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1571 SourceLocation Loc) { 1572 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1573 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1574 if (!HasBoolCheck && !HasEnumCheck) 1575 return false; 1576 1577 bool IsBool = hasBooleanRepresentation(Ty) || 1578 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1579 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1580 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1581 if (!NeedsBoolCheck && !NeedsEnumCheck) 1582 return false; 1583 1584 // Single-bit booleans don't need to be checked. Special-case this to avoid 1585 // a bit width mismatch when handling bitfield values. This is handled by 1586 // EmitFromMemory for the non-bitfield case. 1587 if (IsBool && 1588 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1589 return false; 1590 1591 llvm::APInt Min, End; 1592 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1593 return true; 1594 1595 auto &Ctx = getLLVMContext(); 1596 SanitizerScope SanScope(this); 1597 llvm::Value *Check; 1598 --End; 1599 if (!Min) { 1600 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1601 } else { 1602 llvm::Value *Upper = 1603 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1604 llvm::Value *Lower = 1605 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1606 Check = Builder.CreateAnd(Upper, Lower); 1607 } 1608 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1609 EmitCheckTypeDescriptor(Ty)}; 1610 SanitizerMask Kind = 1611 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1612 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1613 StaticArgs, EmitCheckValue(Value)); 1614 return true; 1615 } 1616 1617 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1618 QualType Ty, 1619 SourceLocation Loc, 1620 LValueBaseInfo BaseInfo, 1621 TBAAAccessInfo TBAAInfo, 1622 bool isNontemporal) { 1623 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1624 // For better performance, handle vector loads differently. 1625 if (Ty->isVectorType()) { 1626 const llvm::Type *EltTy = Addr.getElementType(); 1627 1628 const auto *VTy = cast<llvm::VectorType>(EltTy); 1629 1630 // Handle vectors of size 3 like size 4 for better performance. 1631 if (VTy->getNumElements() == 3) { 1632 1633 // Bitcast to vec4 type. 1634 llvm::VectorType *vec4Ty = 1635 llvm::VectorType::get(VTy->getElementType(), 4); 1636 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1637 // Now load value. 1638 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1639 1640 // Shuffle vector to get vec3. 1641 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1642 {0, 1, 2}, "extractVec"); 1643 return EmitFromMemory(V, Ty); 1644 } 1645 } 1646 } 1647 1648 // Atomic operations have to be done on integral types. 1649 LValue AtomicLValue = 1650 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1651 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1652 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1653 } 1654 1655 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1656 if (isNontemporal) { 1657 llvm::MDNode *Node = llvm::MDNode::get( 1658 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1659 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1660 } 1661 1662 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1663 1664 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1665 // In order to prevent the optimizer from throwing away the check, don't 1666 // attach range metadata to the load. 1667 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1668 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1669 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1670 1671 return EmitFromMemory(Load, Ty); 1672 } 1673 1674 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1675 // Bool has a different representation in memory than in registers. 1676 if (hasBooleanRepresentation(Ty)) { 1677 // This should really always be an i1, but sometimes it's already 1678 // an i8, and it's awkward to track those cases down. 1679 if (Value->getType()->isIntegerTy(1)) 1680 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1681 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1682 "wrong value rep of bool"); 1683 } 1684 1685 return Value; 1686 } 1687 1688 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1689 // Bool has a different representation in memory than in registers. 1690 if (hasBooleanRepresentation(Ty)) { 1691 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1692 "wrong value rep of bool"); 1693 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1694 } 1695 1696 return Value; 1697 } 1698 1699 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1700 bool Volatile, QualType Ty, 1701 LValueBaseInfo BaseInfo, 1702 TBAAAccessInfo TBAAInfo, 1703 bool isInit, bool isNontemporal) { 1704 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1705 // Handle vectors differently to get better performance. 1706 if (Ty->isVectorType()) { 1707 llvm::Type *SrcTy = Value->getType(); 1708 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1709 // Handle vec3 special. 1710 if (VecTy && VecTy->getNumElements() == 3) { 1711 // Our source is a vec3, do a shuffle vector to make it a vec4. 1712 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1713 Builder.getInt32(2), 1714 llvm::UndefValue::get(Builder.getInt32Ty())}; 1715 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1716 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1717 MaskV, "extractVec"); 1718 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1719 } 1720 if (Addr.getElementType() != SrcTy) { 1721 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1722 } 1723 } 1724 } 1725 1726 Value = EmitToMemory(Value, Ty); 1727 1728 LValue AtomicLValue = 1729 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1730 if (Ty->isAtomicType() || 1731 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1732 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1733 return; 1734 } 1735 1736 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1737 if (isNontemporal) { 1738 llvm::MDNode *Node = 1739 llvm::MDNode::get(Store->getContext(), 1740 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1741 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1742 } 1743 1744 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1745 } 1746 1747 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1748 bool isInit) { 1749 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1750 lvalue.getType(), lvalue.getBaseInfo(), 1751 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1752 } 1753 1754 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1755 /// method emits the address of the lvalue, then loads the result as an rvalue, 1756 /// returning the rvalue. 1757 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1758 if (LV.isObjCWeak()) { 1759 // load of a __weak object. 1760 Address AddrWeakObj = LV.getAddress(); 1761 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1762 AddrWeakObj)); 1763 } 1764 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1765 // In MRC mode, we do a load+autorelease. 1766 if (!getLangOpts().ObjCAutoRefCount) { 1767 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1768 } 1769 1770 // In ARC mode, we load retained and then consume the value. 1771 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1772 Object = EmitObjCConsumeObject(LV.getType(), Object); 1773 return RValue::get(Object); 1774 } 1775 1776 if (LV.isSimple()) { 1777 assert(!LV.getType()->isFunctionType()); 1778 1779 // Everything needs a load. 1780 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1781 } 1782 1783 if (LV.isVectorElt()) { 1784 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1785 LV.isVolatileQualified()); 1786 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1787 "vecext")); 1788 } 1789 1790 // If this is a reference to a subset of the elements of a vector, either 1791 // shuffle the input or extract/insert them as appropriate. 1792 if (LV.isExtVectorElt()) 1793 return EmitLoadOfExtVectorElementLValue(LV); 1794 1795 // Global Register variables always invoke intrinsics 1796 if (LV.isGlobalReg()) 1797 return EmitLoadOfGlobalRegLValue(LV); 1798 1799 assert(LV.isBitField() && "Unknown LValue type!"); 1800 return EmitLoadOfBitfieldLValue(LV, Loc); 1801 } 1802 1803 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1804 SourceLocation Loc) { 1805 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1806 1807 // Get the output type. 1808 llvm::Type *ResLTy = ConvertType(LV.getType()); 1809 1810 Address Ptr = LV.getBitFieldAddress(); 1811 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1812 1813 if (Info.IsSigned) { 1814 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1815 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1816 if (HighBits) 1817 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1818 if (Info.Offset + HighBits) 1819 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1820 } else { 1821 if (Info.Offset) 1822 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1823 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1824 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1825 Info.Size), 1826 "bf.clear"); 1827 } 1828 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1829 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1830 return RValue::get(Val); 1831 } 1832 1833 // If this is a reference to a subset of the elements of a vector, create an 1834 // appropriate shufflevector. 1835 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1836 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1837 LV.isVolatileQualified()); 1838 1839 const llvm::Constant *Elts = LV.getExtVectorElts(); 1840 1841 // If the result of the expression is a non-vector type, we must be extracting 1842 // a single element. Just codegen as an extractelement. 1843 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1844 if (!ExprVT) { 1845 unsigned InIdx = getAccessedFieldNo(0, Elts); 1846 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1847 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1848 } 1849 1850 // Always use shuffle vector to try to retain the original program structure 1851 unsigned NumResultElts = ExprVT->getNumElements(); 1852 1853 SmallVector<llvm::Constant*, 4> Mask; 1854 for (unsigned i = 0; i != NumResultElts; ++i) 1855 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1856 1857 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1858 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1859 MaskV); 1860 return RValue::get(Vec); 1861 } 1862 1863 /// Generates lvalue for partial ext_vector access. 1864 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1865 Address VectorAddress = LV.getExtVectorAddress(); 1866 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1867 QualType EQT = ExprVT->getElementType(); 1868 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1869 1870 Address CastToPointerElement = 1871 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1872 "conv.ptr.element"); 1873 1874 const llvm::Constant *Elts = LV.getExtVectorElts(); 1875 unsigned ix = getAccessedFieldNo(0, Elts); 1876 1877 Address VectorBasePtrPlusIx = 1878 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1879 getContext().getTypeSizeInChars(EQT), 1880 "vector.elt"); 1881 1882 return VectorBasePtrPlusIx; 1883 } 1884 1885 /// Load of global gamed gegisters are always calls to intrinsics. 1886 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1887 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1888 "Bad type for register variable"); 1889 llvm::MDNode *RegName = cast<llvm::MDNode>( 1890 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1891 1892 // We accept integer and pointer types only 1893 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1894 llvm::Type *Ty = OrigTy; 1895 if (OrigTy->isPointerTy()) 1896 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1897 llvm::Type *Types[] = { Ty }; 1898 1899 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1900 llvm::Value *Call = Builder.CreateCall( 1901 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1902 if (OrigTy->isPointerTy()) 1903 Call = Builder.CreateIntToPtr(Call, OrigTy); 1904 return RValue::get(Call); 1905 } 1906 1907 1908 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1909 /// lvalue, where both are guaranteed to the have the same type, and that type 1910 /// is 'Ty'. 1911 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1912 bool isInit) { 1913 if (!Dst.isSimple()) { 1914 if (Dst.isVectorElt()) { 1915 // Read/modify/write the vector, inserting the new element. 1916 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1917 Dst.isVolatileQualified()); 1918 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1919 Dst.getVectorIdx(), "vecins"); 1920 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1921 Dst.isVolatileQualified()); 1922 return; 1923 } 1924 1925 // If this is an update of extended vector elements, insert them as 1926 // appropriate. 1927 if (Dst.isExtVectorElt()) 1928 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1929 1930 if (Dst.isGlobalReg()) 1931 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1932 1933 assert(Dst.isBitField() && "Unknown LValue type"); 1934 return EmitStoreThroughBitfieldLValue(Src, Dst); 1935 } 1936 1937 // There's special magic for assigning into an ARC-qualified l-value. 1938 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1939 switch (Lifetime) { 1940 case Qualifiers::OCL_None: 1941 llvm_unreachable("present but none"); 1942 1943 case Qualifiers::OCL_ExplicitNone: 1944 // nothing special 1945 break; 1946 1947 case Qualifiers::OCL_Strong: 1948 if (isInit) { 1949 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1950 break; 1951 } 1952 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1953 return; 1954 1955 case Qualifiers::OCL_Weak: 1956 if (isInit) 1957 // Initialize and then skip the primitive store. 1958 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1959 else 1960 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1961 return; 1962 1963 case Qualifiers::OCL_Autoreleasing: 1964 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1965 Src.getScalarVal())); 1966 // fall into the normal path 1967 break; 1968 } 1969 } 1970 1971 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1972 // load of a __weak object. 1973 Address LvalueDst = Dst.getAddress(); 1974 llvm::Value *src = Src.getScalarVal(); 1975 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1976 return; 1977 } 1978 1979 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1980 // load of a __strong object. 1981 Address LvalueDst = Dst.getAddress(); 1982 llvm::Value *src = Src.getScalarVal(); 1983 if (Dst.isObjCIvar()) { 1984 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1985 llvm::Type *ResultType = IntPtrTy; 1986 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1987 llvm::Value *RHS = dst.getPointer(); 1988 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1989 llvm::Value *LHS = 1990 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1991 "sub.ptr.lhs.cast"); 1992 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1993 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1994 BytesBetween); 1995 } else if (Dst.isGlobalObjCRef()) { 1996 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1997 Dst.isThreadLocalRef()); 1998 } 1999 else 2000 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2001 return; 2002 } 2003 2004 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2005 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2006 } 2007 2008 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2009 llvm::Value **Result) { 2010 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2011 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2012 Address Ptr = Dst.getBitFieldAddress(); 2013 2014 // Get the source value, truncated to the width of the bit-field. 2015 llvm::Value *SrcVal = Src.getScalarVal(); 2016 2017 // Cast the source to the storage type and shift it into place. 2018 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2019 /*IsSigned=*/false); 2020 llvm::Value *MaskedVal = SrcVal; 2021 2022 // See if there are other bits in the bitfield's storage we'll need to load 2023 // and mask together with source before storing. 2024 if (Info.StorageSize != Info.Size) { 2025 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 2026 llvm::Value *Val = 2027 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2028 2029 // Mask the source value as needed. 2030 if (!hasBooleanRepresentation(Dst.getType())) 2031 SrcVal = Builder.CreateAnd(SrcVal, 2032 llvm::APInt::getLowBitsSet(Info.StorageSize, 2033 Info.Size), 2034 "bf.value"); 2035 MaskedVal = SrcVal; 2036 if (Info.Offset) 2037 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 2038 2039 // Mask out the original value. 2040 Val = Builder.CreateAnd(Val, 2041 ~llvm::APInt::getBitsSet(Info.StorageSize, 2042 Info.Offset, 2043 Info.Offset + Info.Size), 2044 "bf.clear"); 2045 2046 // Or together the unchanged values and the source value. 2047 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2048 } else { 2049 assert(Info.Offset == 0); 2050 } 2051 2052 // Write the new value back out. 2053 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2054 2055 // Return the new value of the bit-field, if requested. 2056 if (Result) { 2057 llvm::Value *ResultVal = MaskedVal; 2058 2059 // Sign extend the value if needed. 2060 if (Info.IsSigned) { 2061 assert(Info.Size <= Info.StorageSize); 2062 unsigned HighBits = Info.StorageSize - Info.Size; 2063 if (HighBits) { 2064 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2065 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2066 } 2067 } 2068 2069 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2070 "bf.result.cast"); 2071 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2072 } 2073 } 2074 2075 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2076 LValue Dst) { 2077 // This access turns into a read/modify/write of the vector. Load the input 2078 // value now. 2079 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2080 Dst.isVolatileQualified()); 2081 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2082 2083 llvm::Value *SrcVal = Src.getScalarVal(); 2084 2085 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2086 unsigned NumSrcElts = VTy->getNumElements(); 2087 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2088 if (NumDstElts == NumSrcElts) { 2089 // Use shuffle vector is the src and destination are the same number of 2090 // elements and restore the vector mask since it is on the side it will be 2091 // stored. 2092 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2093 for (unsigned i = 0; i != NumSrcElts; ++i) 2094 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2095 2096 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2097 Vec = Builder.CreateShuffleVector(SrcVal, 2098 llvm::UndefValue::get(Vec->getType()), 2099 MaskV); 2100 } else if (NumDstElts > NumSrcElts) { 2101 // Extended the source vector to the same length and then shuffle it 2102 // into the destination. 2103 // FIXME: since we're shuffling with undef, can we just use the indices 2104 // into that? This could be simpler. 2105 SmallVector<llvm::Constant*, 4> ExtMask; 2106 for (unsigned i = 0; i != NumSrcElts; ++i) 2107 ExtMask.push_back(Builder.getInt32(i)); 2108 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2109 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2110 llvm::Value *ExtSrcVal = 2111 Builder.CreateShuffleVector(SrcVal, 2112 llvm::UndefValue::get(SrcVal->getType()), 2113 ExtMaskV); 2114 // build identity 2115 SmallVector<llvm::Constant*, 4> Mask; 2116 for (unsigned i = 0; i != NumDstElts; ++i) 2117 Mask.push_back(Builder.getInt32(i)); 2118 2119 // When the vector size is odd and .odd or .hi is used, the last element 2120 // of the Elts constant array will be one past the size of the vector. 2121 // Ignore the last element here, if it is greater than the mask size. 2122 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2123 NumSrcElts--; 2124 2125 // modify when what gets shuffled in 2126 for (unsigned i = 0; i != NumSrcElts; ++i) 2127 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2128 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2129 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2130 } else { 2131 // We should never shorten the vector 2132 llvm_unreachable("unexpected shorten vector length"); 2133 } 2134 } else { 2135 // If the Src is a scalar (not a vector) it must be updating one element. 2136 unsigned InIdx = getAccessedFieldNo(0, Elts); 2137 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2138 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2139 } 2140 2141 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2142 Dst.isVolatileQualified()); 2143 } 2144 2145 /// Store of global named registers are always calls to intrinsics. 2146 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2147 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2148 "Bad type for register variable"); 2149 llvm::MDNode *RegName = cast<llvm::MDNode>( 2150 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2151 assert(RegName && "Register LValue is not metadata"); 2152 2153 // We accept integer and pointer types only 2154 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2155 llvm::Type *Ty = OrigTy; 2156 if (OrigTy->isPointerTy()) 2157 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2158 llvm::Type *Types[] = { Ty }; 2159 2160 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2161 llvm::Value *Value = Src.getScalarVal(); 2162 if (OrigTy->isPointerTy()) 2163 Value = Builder.CreatePtrToInt(Value, Ty); 2164 Builder.CreateCall( 2165 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2166 } 2167 2168 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2169 // generating write-barries API. It is currently a global, ivar, 2170 // or neither. 2171 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2172 LValue &LV, 2173 bool IsMemberAccess=false) { 2174 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2175 return; 2176 2177 if (isa<ObjCIvarRefExpr>(E)) { 2178 QualType ExpTy = E->getType(); 2179 if (IsMemberAccess && ExpTy->isPointerType()) { 2180 // If ivar is a structure pointer, assigning to field of 2181 // this struct follows gcc's behavior and makes it a non-ivar 2182 // writer-barrier conservatively. 2183 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2184 if (ExpTy->isRecordType()) { 2185 LV.setObjCIvar(false); 2186 return; 2187 } 2188 } 2189 LV.setObjCIvar(true); 2190 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2191 LV.setBaseIvarExp(Exp->getBase()); 2192 LV.setObjCArray(E->getType()->isArrayType()); 2193 return; 2194 } 2195 2196 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2197 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2198 if (VD->hasGlobalStorage()) { 2199 LV.setGlobalObjCRef(true); 2200 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2201 } 2202 } 2203 LV.setObjCArray(E->getType()->isArrayType()); 2204 return; 2205 } 2206 2207 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2208 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2209 return; 2210 } 2211 2212 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2213 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2214 if (LV.isObjCIvar()) { 2215 // If cast is to a structure pointer, follow gcc's behavior and make it 2216 // a non-ivar write-barrier. 2217 QualType ExpTy = E->getType(); 2218 if (ExpTy->isPointerType()) 2219 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2220 if (ExpTy->isRecordType()) 2221 LV.setObjCIvar(false); 2222 } 2223 return; 2224 } 2225 2226 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2227 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2228 return; 2229 } 2230 2231 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2232 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2233 return; 2234 } 2235 2236 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2237 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2238 return; 2239 } 2240 2241 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2242 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2243 return; 2244 } 2245 2246 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2247 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2248 if (LV.isObjCIvar() && !LV.isObjCArray()) 2249 // Using array syntax to assigning to what an ivar points to is not 2250 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2251 LV.setObjCIvar(false); 2252 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2253 // Using array syntax to assigning to what global points to is not 2254 // same as assigning to the global itself. {id *G;} G[i] = 0; 2255 LV.setGlobalObjCRef(false); 2256 return; 2257 } 2258 2259 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2260 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2261 // We don't know if member is an 'ivar', but this flag is looked at 2262 // only in the context of LV.isObjCIvar(). 2263 LV.setObjCArray(E->getType()->isArrayType()); 2264 return; 2265 } 2266 } 2267 2268 static llvm::Value * 2269 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2270 llvm::Value *V, llvm::Type *IRType, 2271 StringRef Name = StringRef()) { 2272 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2273 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2274 } 2275 2276 static LValue EmitThreadPrivateVarDeclLValue( 2277 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2278 llvm::Type *RealVarTy, SourceLocation Loc) { 2279 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2280 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2281 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2282 } 2283 2284 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF, 2285 const VarDecl *VD, QualType T) { 2286 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2287 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2288 if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To) 2289 return Address::invalid(); 2290 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause"); 2291 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2292 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2293 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2294 } 2295 2296 Address 2297 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2298 LValueBaseInfo *PointeeBaseInfo, 2299 TBAAAccessInfo *PointeeTBAAInfo) { 2300 llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), 2301 RefLVal.isVolatile()); 2302 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2303 2304 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2305 PointeeBaseInfo, PointeeTBAAInfo, 2306 /* forPointeeType= */ true); 2307 return Address(Load, Align); 2308 } 2309 2310 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2311 LValueBaseInfo PointeeBaseInfo; 2312 TBAAAccessInfo PointeeTBAAInfo; 2313 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2314 &PointeeTBAAInfo); 2315 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2316 PointeeBaseInfo, PointeeTBAAInfo); 2317 } 2318 2319 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2320 const PointerType *PtrTy, 2321 LValueBaseInfo *BaseInfo, 2322 TBAAAccessInfo *TBAAInfo) { 2323 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2324 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2325 BaseInfo, TBAAInfo, 2326 /*forPointeeType=*/true)); 2327 } 2328 2329 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2330 const PointerType *PtrTy) { 2331 LValueBaseInfo BaseInfo; 2332 TBAAAccessInfo TBAAInfo; 2333 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2334 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2335 } 2336 2337 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2338 const Expr *E, const VarDecl *VD) { 2339 QualType T = E->getType(); 2340 2341 // If it's thread_local, emit a call to its wrapper function instead. 2342 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2343 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2344 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2345 // Check if the variable is marked as declare target with link clause in 2346 // device codegen. 2347 if (CGF.getLangOpts().OpenMPIsDevice) { 2348 Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T); 2349 if (Addr.isValid()) 2350 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2351 } 2352 2353 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2354 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2355 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2356 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2357 Address Addr(V, Alignment); 2358 // Emit reference to the private copy of the variable if it is an OpenMP 2359 // threadprivate variable. 2360 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2361 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2362 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2363 E->getExprLoc()); 2364 } 2365 LValue LV = VD->getType()->isReferenceType() ? 2366 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2367 AlignmentSource::Decl) : 2368 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2369 setObjCGCLValueClass(CGF.getContext(), E, LV); 2370 return LV; 2371 } 2372 2373 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2374 const FunctionDecl *FD) { 2375 if (FD->hasAttr<WeakRefAttr>()) { 2376 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2377 return aliasee.getPointer(); 2378 } 2379 2380 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2381 if (!FD->hasPrototype()) { 2382 if (const FunctionProtoType *Proto = 2383 FD->getType()->getAs<FunctionProtoType>()) { 2384 // Ugly case: for a K&R-style definition, the type of the definition 2385 // isn't the same as the type of a use. Correct for this with a 2386 // bitcast. 2387 QualType NoProtoType = 2388 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2389 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2390 V = llvm::ConstantExpr::getBitCast(V, 2391 CGM.getTypes().ConvertType(NoProtoType)); 2392 } 2393 } 2394 return V; 2395 } 2396 2397 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2398 const Expr *E, const FunctionDecl *FD) { 2399 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2400 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2401 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2402 AlignmentSource::Decl); 2403 } 2404 2405 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2406 llvm::Value *ThisValue) { 2407 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2408 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2409 return CGF.EmitLValueForField(LV, FD); 2410 } 2411 2412 /// Named Registers are named metadata pointing to the register name 2413 /// which will be read from/written to as an argument to the intrinsic 2414 /// @llvm.read/write_register. 2415 /// So far, only the name is being passed down, but other options such as 2416 /// register type, allocation type or even optimization options could be 2417 /// passed down via the metadata node. 2418 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2419 SmallString<64> Name("llvm.named.register."); 2420 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2421 assert(Asm->getLabel().size() < 64-Name.size() && 2422 "Register name too big"); 2423 Name.append(Asm->getLabel()); 2424 llvm::NamedMDNode *M = 2425 CGM.getModule().getOrInsertNamedMetadata(Name); 2426 if (M->getNumOperands() == 0) { 2427 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2428 Asm->getLabel()); 2429 llvm::Metadata *Ops[] = {Str}; 2430 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2431 } 2432 2433 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2434 2435 llvm::Value *Ptr = 2436 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2437 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2438 } 2439 2440 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2441 const NamedDecl *ND = E->getDecl(); 2442 QualType T = E->getType(); 2443 2444 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2445 // Global Named registers access via intrinsics only 2446 if (VD->getStorageClass() == SC_Register && 2447 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2448 return EmitGlobalNamedRegister(VD, CGM); 2449 2450 // A DeclRefExpr for a reference initialized by a constant expression can 2451 // appear without being odr-used. Directly emit the constant initializer. 2452 const Expr *Init = VD->getAnyInitializer(VD); 2453 const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl); 2454 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2455 VD->isUsableInConstantExpressions(getContext()) && 2456 VD->checkInitIsICE() && 2457 // Do not emit if it is private OpenMP variable. 2458 !(E->refersToEnclosingVariableOrCapture() && 2459 ((CapturedStmtInfo && 2460 (LocalDeclMap.count(VD->getCanonicalDecl()) || 2461 CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || 2462 LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || 2463 (BD && BD->capturesVariable(VD))))) { 2464 llvm::Constant *Val = 2465 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2466 *VD->evaluateValue(), 2467 VD->getType()); 2468 assert(Val && "failed to emit reference constant expression"); 2469 // FIXME: Eventually we will want to emit vector element references. 2470 2471 // Should we be using the alignment of the constant pointer we emitted? 2472 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), 2473 /* BaseInfo= */ nullptr, 2474 /* TBAAInfo= */ nullptr, 2475 /* forPointeeType= */ true); 2476 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2477 } 2478 2479 // Check for captured variables. 2480 if (E->refersToEnclosingVariableOrCapture()) { 2481 VD = VD->getCanonicalDecl(); 2482 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2483 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2484 else if (CapturedStmtInfo) { 2485 auto I = LocalDeclMap.find(VD); 2486 if (I != LocalDeclMap.end()) { 2487 if (VD->getType()->isReferenceType()) 2488 return EmitLoadOfReferenceLValue(I->second, VD->getType(), 2489 AlignmentSource::Decl); 2490 return MakeAddrLValue(I->second, T); 2491 } 2492 LValue CapLVal = 2493 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2494 CapturedStmtInfo->getContextValue()); 2495 return MakeAddrLValue( 2496 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2497 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2498 CapLVal.getTBAAInfo()); 2499 } 2500 2501 assert(isa<BlockDecl>(CurCodeDecl)); 2502 Address addr = GetAddrOfBlockDecl(VD); 2503 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2504 } 2505 } 2506 2507 // FIXME: We should be able to assert this for FunctionDecls as well! 2508 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2509 // those with a valid source location. 2510 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2511 !E->getLocation().isValid()) && 2512 "Should not use decl without marking it used!"); 2513 2514 if (ND->hasAttr<WeakRefAttr>()) { 2515 const auto *VD = cast<ValueDecl>(ND); 2516 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2517 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2518 } 2519 2520 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2521 // Check if this is a global variable. 2522 if (VD->hasLinkage() || VD->isStaticDataMember()) 2523 return EmitGlobalVarDeclLValue(*this, E, VD); 2524 2525 Address addr = Address::invalid(); 2526 2527 // The variable should generally be present in the local decl map. 2528 auto iter = LocalDeclMap.find(VD); 2529 if (iter != LocalDeclMap.end()) { 2530 addr = iter->second; 2531 2532 // Otherwise, it might be static local we haven't emitted yet for 2533 // some reason; most likely, because it's in an outer function. 2534 } else if (VD->isStaticLocal()) { 2535 addr = Address(CGM.getOrCreateStaticVarDecl( 2536 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2537 getContext().getDeclAlign(VD)); 2538 2539 // No other cases for now. 2540 } else { 2541 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2542 } 2543 2544 2545 // Check for OpenMP threadprivate variables. 2546 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2547 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2548 return EmitThreadPrivateVarDeclLValue( 2549 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2550 E->getExprLoc()); 2551 } 2552 2553 // Drill into block byref variables. 2554 bool isBlockByref = VD->isEscapingByref(); 2555 if (isBlockByref) { 2556 addr = emitBlockByrefAddress(addr, VD); 2557 } 2558 2559 // Drill into reference types. 2560 LValue LV = VD->getType()->isReferenceType() ? 2561 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2562 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2563 2564 bool isLocalStorage = VD->hasLocalStorage(); 2565 2566 bool NonGCable = isLocalStorage && 2567 !VD->getType()->isReferenceType() && 2568 !isBlockByref; 2569 if (NonGCable) { 2570 LV.getQuals().removeObjCGCAttr(); 2571 LV.setNonGC(true); 2572 } 2573 2574 bool isImpreciseLifetime = 2575 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2576 if (isImpreciseLifetime) 2577 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2578 setObjCGCLValueClass(getContext(), E, LV); 2579 return LV; 2580 } 2581 2582 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2583 return EmitFunctionDeclLValue(*this, E, FD); 2584 2585 // FIXME: While we're emitting a binding from an enclosing scope, all other 2586 // DeclRefExprs we see should be implicitly treated as if they also refer to 2587 // an enclosing scope. 2588 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2589 return EmitLValue(BD->getBinding()); 2590 2591 llvm_unreachable("Unhandled DeclRefExpr"); 2592 } 2593 2594 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2595 // __extension__ doesn't affect lvalue-ness. 2596 if (E->getOpcode() == UO_Extension) 2597 return EmitLValue(E->getSubExpr()); 2598 2599 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2600 switch (E->getOpcode()) { 2601 default: llvm_unreachable("Unknown unary operator lvalue!"); 2602 case UO_Deref: { 2603 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2604 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2605 2606 LValueBaseInfo BaseInfo; 2607 TBAAAccessInfo TBAAInfo; 2608 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2609 &TBAAInfo); 2610 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2611 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2612 2613 // We should not generate __weak write barrier on indirect reference 2614 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2615 // But, we continue to generate __strong write barrier on indirect write 2616 // into a pointer to object. 2617 if (getLangOpts().ObjC && 2618 getLangOpts().getGC() != LangOptions::NonGC && 2619 LV.isObjCWeak()) 2620 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2621 return LV; 2622 } 2623 case UO_Real: 2624 case UO_Imag: { 2625 LValue LV = EmitLValue(E->getSubExpr()); 2626 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2627 2628 // __real is valid on scalars. This is a faster way of testing that. 2629 // __imag can only produce an rvalue on scalars. 2630 if (E->getOpcode() == UO_Real && 2631 !LV.getAddress().getElementType()->isStructTy()) { 2632 assert(E->getSubExpr()->getType()->isArithmeticType()); 2633 return LV; 2634 } 2635 2636 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2637 2638 Address Component = 2639 (E->getOpcode() == UO_Real 2640 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2641 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2642 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2643 CGM.getTBAAInfoForSubobject(LV, T)); 2644 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2645 return ElemLV; 2646 } 2647 case UO_PreInc: 2648 case UO_PreDec: { 2649 LValue LV = EmitLValue(E->getSubExpr()); 2650 bool isInc = E->getOpcode() == UO_PreInc; 2651 2652 if (E->getType()->isAnyComplexType()) 2653 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2654 else 2655 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2656 return LV; 2657 } 2658 } 2659 } 2660 2661 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2662 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2663 E->getType(), AlignmentSource::Decl); 2664 } 2665 2666 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2667 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2668 E->getType(), AlignmentSource::Decl); 2669 } 2670 2671 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2672 auto SL = E->getFunctionName(); 2673 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2674 StringRef FnName = CurFn->getName(); 2675 if (FnName.startswith("\01")) 2676 FnName = FnName.substr(1); 2677 StringRef NameItems[] = { 2678 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2679 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2680 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2681 std::string Name = SL->getString(); 2682 if (!Name.empty()) { 2683 unsigned Discriminator = 2684 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2685 if (Discriminator) 2686 Name += "_" + Twine(Discriminator + 1).str(); 2687 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2688 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2689 } else { 2690 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2691 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2692 } 2693 } 2694 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2695 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2696 } 2697 2698 /// Emit a type description suitable for use by a runtime sanitizer library. The 2699 /// format of a type descriptor is 2700 /// 2701 /// \code 2702 /// { i16 TypeKind, i16 TypeInfo } 2703 /// \endcode 2704 /// 2705 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2706 /// integer, 1 for a floating point value, and -1 for anything else. 2707 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2708 // Only emit each type's descriptor once. 2709 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2710 return C; 2711 2712 uint16_t TypeKind = -1; 2713 uint16_t TypeInfo = 0; 2714 2715 if (T->isIntegerType()) { 2716 TypeKind = 0; 2717 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2718 (T->isSignedIntegerType() ? 1 : 0); 2719 } else if (T->isFloatingType()) { 2720 TypeKind = 1; 2721 TypeInfo = getContext().getTypeSize(T); 2722 } 2723 2724 // Format the type name as if for a diagnostic, including quotes and 2725 // optionally an 'aka'. 2726 SmallString<32> Buffer; 2727 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2728 (intptr_t)T.getAsOpaquePtr(), 2729 StringRef(), StringRef(), None, Buffer, 2730 None); 2731 2732 llvm::Constant *Components[] = { 2733 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2734 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2735 }; 2736 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2737 2738 auto *GV = new llvm::GlobalVariable( 2739 CGM.getModule(), Descriptor->getType(), 2740 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2741 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2742 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2743 2744 // Remember the descriptor for this type. 2745 CGM.setTypeDescriptorInMap(T, GV); 2746 2747 return GV; 2748 } 2749 2750 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2751 llvm::Type *TargetTy = IntPtrTy; 2752 2753 if (V->getType() == TargetTy) 2754 return V; 2755 2756 // Floating-point types which fit into intptr_t are bitcast to integers 2757 // and then passed directly (after zero-extension, if necessary). 2758 if (V->getType()->isFloatingPointTy()) { 2759 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2760 if (Bits <= TargetTy->getIntegerBitWidth()) 2761 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2762 Bits)); 2763 } 2764 2765 // Integers which fit in intptr_t are zero-extended and passed directly. 2766 if (V->getType()->isIntegerTy() && 2767 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2768 return Builder.CreateZExt(V, TargetTy); 2769 2770 // Pointers are passed directly, everything else is passed by address. 2771 if (!V->getType()->isPointerTy()) { 2772 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2773 Builder.CreateStore(V, Ptr); 2774 V = Ptr.getPointer(); 2775 } 2776 return Builder.CreatePtrToInt(V, TargetTy); 2777 } 2778 2779 /// Emit a representation of a SourceLocation for passing to a handler 2780 /// in a sanitizer runtime library. The format for this data is: 2781 /// \code 2782 /// struct SourceLocation { 2783 /// const char *Filename; 2784 /// int32_t Line, Column; 2785 /// }; 2786 /// \endcode 2787 /// For an invalid SourceLocation, the Filename pointer is null. 2788 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2789 llvm::Constant *Filename; 2790 int Line, Column; 2791 2792 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2793 if (PLoc.isValid()) { 2794 StringRef FilenameString = PLoc.getFilename(); 2795 2796 int PathComponentsToStrip = 2797 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2798 if (PathComponentsToStrip < 0) { 2799 assert(PathComponentsToStrip != INT_MIN); 2800 int PathComponentsToKeep = -PathComponentsToStrip; 2801 auto I = llvm::sys::path::rbegin(FilenameString); 2802 auto E = llvm::sys::path::rend(FilenameString); 2803 while (I != E && --PathComponentsToKeep) 2804 ++I; 2805 2806 FilenameString = FilenameString.substr(I - E); 2807 } else if (PathComponentsToStrip > 0) { 2808 auto I = llvm::sys::path::begin(FilenameString); 2809 auto E = llvm::sys::path::end(FilenameString); 2810 while (I != E && PathComponentsToStrip--) 2811 ++I; 2812 2813 if (I != E) 2814 FilenameString = 2815 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2816 else 2817 FilenameString = llvm::sys::path::filename(FilenameString); 2818 } 2819 2820 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2821 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2822 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2823 Filename = FilenameGV.getPointer(); 2824 Line = PLoc.getLine(); 2825 Column = PLoc.getColumn(); 2826 } else { 2827 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2828 Line = Column = 0; 2829 } 2830 2831 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2832 Builder.getInt32(Column)}; 2833 2834 return llvm::ConstantStruct::getAnon(Data); 2835 } 2836 2837 namespace { 2838 /// Specify under what conditions this check can be recovered 2839 enum class CheckRecoverableKind { 2840 /// Always terminate program execution if this check fails. 2841 Unrecoverable, 2842 /// Check supports recovering, runtime has both fatal (noreturn) and 2843 /// non-fatal handlers for this check. 2844 Recoverable, 2845 /// Runtime conditionally aborts, always need to support recovery. 2846 AlwaysRecoverable 2847 }; 2848 } 2849 2850 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2851 assert(llvm::countPopulation(Kind) == 1); 2852 switch (Kind) { 2853 case SanitizerKind::Vptr: 2854 return CheckRecoverableKind::AlwaysRecoverable; 2855 case SanitizerKind::Return: 2856 case SanitizerKind::Unreachable: 2857 return CheckRecoverableKind::Unrecoverable; 2858 default: 2859 return CheckRecoverableKind::Recoverable; 2860 } 2861 } 2862 2863 namespace { 2864 struct SanitizerHandlerInfo { 2865 char const *const Name; 2866 unsigned Version; 2867 }; 2868 } 2869 2870 const SanitizerHandlerInfo SanitizerHandlers[] = { 2871 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2872 LIST_SANITIZER_CHECKS 2873 #undef SANITIZER_CHECK 2874 }; 2875 2876 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2877 llvm::FunctionType *FnType, 2878 ArrayRef<llvm::Value *> FnArgs, 2879 SanitizerHandler CheckHandler, 2880 CheckRecoverableKind RecoverKind, bool IsFatal, 2881 llvm::BasicBlock *ContBB) { 2882 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2883 Optional<ApplyDebugLocation> DL; 2884 if (!CGF.Builder.getCurrentDebugLocation()) { 2885 // Ensure that the call has at least an artificial debug location. 2886 DL.emplace(CGF, SourceLocation()); 2887 } 2888 bool NeedsAbortSuffix = 2889 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2890 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2891 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2892 const StringRef CheckName = CheckInfo.Name; 2893 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2894 if (CheckInfo.Version && !MinimalRuntime) 2895 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2896 if (MinimalRuntime) 2897 FnName += "_minimal"; 2898 if (NeedsAbortSuffix) 2899 FnName += "_abort"; 2900 bool MayReturn = 2901 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2902 2903 llvm::AttrBuilder B; 2904 if (!MayReturn) { 2905 B.addAttribute(llvm::Attribute::NoReturn) 2906 .addAttribute(llvm::Attribute::NoUnwind); 2907 } 2908 B.addAttribute(llvm::Attribute::UWTable); 2909 2910 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2911 FnType, FnName, 2912 llvm::AttributeList::get(CGF.getLLVMContext(), 2913 llvm::AttributeList::FunctionIndex, B), 2914 /*Local=*/true); 2915 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2916 if (!MayReturn) { 2917 HandlerCall->setDoesNotReturn(); 2918 CGF.Builder.CreateUnreachable(); 2919 } else { 2920 CGF.Builder.CreateBr(ContBB); 2921 } 2922 } 2923 2924 void CodeGenFunction::EmitCheck( 2925 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2926 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2927 ArrayRef<llvm::Value *> DynamicArgs) { 2928 assert(IsSanitizerScope); 2929 assert(Checked.size() > 0); 2930 assert(CheckHandler >= 0 && 2931 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 2932 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2933 2934 llvm::Value *FatalCond = nullptr; 2935 llvm::Value *RecoverableCond = nullptr; 2936 llvm::Value *TrapCond = nullptr; 2937 for (int i = 0, n = Checked.size(); i < n; ++i) { 2938 llvm::Value *Check = Checked[i].first; 2939 // -fsanitize-trap= overrides -fsanitize-recover=. 2940 llvm::Value *&Cond = 2941 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2942 ? TrapCond 2943 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2944 ? RecoverableCond 2945 : FatalCond; 2946 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2947 } 2948 2949 if (TrapCond) 2950 EmitTrapCheck(TrapCond); 2951 if (!FatalCond && !RecoverableCond) 2952 return; 2953 2954 llvm::Value *JointCond; 2955 if (FatalCond && RecoverableCond) 2956 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2957 else 2958 JointCond = FatalCond ? FatalCond : RecoverableCond; 2959 assert(JointCond); 2960 2961 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2962 assert(SanOpts.has(Checked[0].second)); 2963 #ifndef NDEBUG 2964 for (int i = 1, n = Checked.size(); i < n; ++i) { 2965 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2966 "All recoverable kinds in a single check must be same!"); 2967 assert(SanOpts.has(Checked[i].second)); 2968 } 2969 #endif 2970 2971 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2972 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2973 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2974 // Give hint that we very much don't expect to execute the handler 2975 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2976 llvm::MDBuilder MDHelper(getLLVMContext()); 2977 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2978 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2979 EmitBlock(Handlers); 2980 2981 // Handler functions take an i8* pointing to the (handler-specific) static 2982 // information block, followed by a sequence of intptr_t arguments 2983 // representing operand values. 2984 SmallVector<llvm::Value *, 4> Args; 2985 SmallVector<llvm::Type *, 4> ArgTypes; 2986 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2987 Args.reserve(DynamicArgs.size() + 1); 2988 ArgTypes.reserve(DynamicArgs.size() + 1); 2989 2990 // Emit handler arguments and create handler function type. 2991 if (!StaticArgs.empty()) { 2992 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2993 auto *InfoPtr = 2994 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2995 llvm::GlobalVariable::PrivateLinkage, Info); 2996 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2997 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2998 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2999 ArgTypes.push_back(Int8PtrTy); 3000 } 3001 3002 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3003 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3004 ArgTypes.push_back(IntPtrTy); 3005 } 3006 } 3007 3008 llvm::FunctionType *FnType = 3009 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3010 3011 if (!FatalCond || !RecoverableCond) { 3012 // Simple case: we need to generate a single handler call, either 3013 // fatal, or non-fatal. 3014 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3015 (FatalCond != nullptr), Cont); 3016 } else { 3017 // Emit two handler calls: first one for set of unrecoverable checks, 3018 // another one for recoverable. 3019 llvm::BasicBlock *NonFatalHandlerBB = 3020 createBasicBlock("non_fatal." + CheckName); 3021 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3022 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3023 EmitBlock(FatalHandlerBB); 3024 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3025 NonFatalHandlerBB); 3026 EmitBlock(NonFatalHandlerBB); 3027 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3028 Cont); 3029 } 3030 3031 EmitBlock(Cont); 3032 } 3033 3034 void CodeGenFunction::EmitCfiSlowPathCheck( 3035 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3036 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3037 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3038 3039 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3040 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3041 3042 llvm::MDBuilder MDHelper(getLLVMContext()); 3043 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3044 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3045 3046 EmitBlock(CheckBB); 3047 3048 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3049 3050 llvm::CallInst *CheckCall; 3051 llvm::Constant *SlowPathFn; 3052 if (WithDiag) { 3053 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3054 auto *InfoPtr = 3055 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3056 llvm::GlobalVariable::PrivateLinkage, Info); 3057 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3058 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3059 3060 SlowPathFn = CGM.getModule().getOrInsertFunction( 3061 "__cfi_slowpath_diag", 3062 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3063 false)); 3064 CheckCall = Builder.CreateCall( 3065 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3066 } else { 3067 SlowPathFn = CGM.getModule().getOrInsertFunction( 3068 "__cfi_slowpath", 3069 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3070 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3071 } 3072 3073 CGM.setDSOLocal(cast<llvm::GlobalValue>(SlowPathFn->stripPointerCasts())); 3074 CheckCall->setDoesNotThrow(); 3075 3076 EmitBlock(Cont); 3077 } 3078 3079 // Emit a stub for __cfi_check function so that the linker knows about this 3080 // symbol in LTO mode. 3081 void CodeGenFunction::EmitCfiCheckStub() { 3082 llvm::Module *M = &CGM.getModule(); 3083 auto &Ctx = M->getContext(); 3084 llvm::Function *F = llvm::Function::Create( 3085 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3086 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3087 CGM.setDSOLocal(F); 3088 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3089 // FIXME: consider emitting an intrinsic call like 3090 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3091 // which can be lowered in CrossDSOCFI pass to the actual contents of 3092 // __cfi_check. This would allow inlining of __cfi_check calls. 3093 llvm::CallInst::Create( 3094 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3095 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3096 } 3097 3098 // This function is basically a switch over the CFI failure kind, which is 3099 // extracted from CFICheckFailData (1st function argument). Each case is either 3100 // llvm.trap or a call to one of the two runtime handlers, based on 3101 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3102 // failure kind) traps, but this should really never happen. CFICheckFailData 3103 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3104 // check kind; in this case __cfi_check_fail traps as well. 3105 void CodeGenFunction::EmitCfiCheckFail() { 3106 SanitizerScope SanScope(this); 3107 FunctionArgList Args; 3108 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3109 ImplicitParamDecl::Other); 3110 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3111 ImplicitParamDecl::Other); 3112 Args.push_back(&ArgData); 3113 Args.push_back(&ArgAddr); 3114 3115 const CGFunctionInfo &FI = 3116 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3117 3118 llvm::Function *F = llvm::Function::Create( 3119 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3120 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3121 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3122 3123 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3124 SourceLocation()); 3125 3126 // This function should not be affected by blacklist. This function does 3127 // not have a source location, but "src:*" would still apply. Revert any 3128 // changes to SanOpts made in StartFunction. 3129 SanOpts = CGM.getLangOpts().Sanitize; 3130 3131 llvm::Value *Data = 3132 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3133 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3134 llvm::Value *Addr = 3135 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3136 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3137 3138 // Data == nullptr means the calling module has trap behaviour for this check. 3139 llvm::Value *DataIsNotNullPtr = 3140 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3141 EmitTrapCheck(DataIsNotNullPtr); 3142 3143 llvm::StructType *SourceLocationTy = 3144 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3145 llvm::StructType *CfiCheckFailDataTy = 3146 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3147 3148 llvm::Value *V = Builder.CreateConstGEP2_32( 3149 CfiCheckFailDataTy, 3150 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3151 0); 3152 Address CheckKindAddr(V, getIntAlign()); 3153 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3154 3155 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3156 CGM.getLLVMContext(), 3157 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3158 llvm::Value *ValidVtable = Builder.CreateZExt( 3159 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3160 {Addr, AllVtables}), 3161 IntPtrTy); 3162 3163 const std::pair<int, SanitizerMask> CheckKinds[] = { 3164 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3165 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3166 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3167 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3168 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3169 3170 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3171 for (auto CheckKindMaskPair : CheckKinds) { 3172 int Kind = CheckKindMaskPair.first; 3173 SanitizerMask Mask = CheckKindMaskPair.second; 3174 llvm::Value *Cond = 3175 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3176 if (CGM.getLangOpts().Sanitize.has(Mask)) 3177 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3178 {Data, Addr, ValidVtable}); 3179 else 3180 EmitTrapCheck(Cond); 3181 } 3182 3183 FinishFunction(); 3184 // The only reference to this function will be created during LTO link. 3185 // Make sure it survives until then. 3186 CGM.addUsedGlobal(F); 3187 } 3188 3189 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3190 if (SanOpts.has(SanitizerKind::Unreachable)) { 3191 SanitizerScope SanScope(this); 3192 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3193 SanitizerKind::Unreachable), 3194 SanitizerHandler::BuiltinUnreachable, 3195 EmitCheckSourceLocation(Loc), None); 3196 } 3197 Builder.CreateUnreachable(); 3198 } 3199 3200 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3201 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3202 3203 // If we're optimizing, collapse all calls to trap down to just one per 3204 // function to save on code size. 3205 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3206 TrapBB = createBasicBlock("trap"); 3207 Builder.CreateCondBr(Checked, Cont, TrapBB); 3208 EmitBlock(TrapBB); 3209 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3210 TrapCall->setDoesNotReturn(); 3211 TrapCall->setDoesNotThrow(); 3212 Builder.CreateUnreachable(); 3213 } else { 3214 Builder.CreateCondBr(Checked, Cont, TrapBB); 3215 } 3216 3217 EmitBlock(Cont); 3218 } 3219 3220 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3221 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3222 3223 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3224 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3225 CGM.getCodeGenOpts().TrapFuncName); 3226 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3227 } 3228 3229 return TrapCall; 3230 } 3231 3232 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3233 LValueBaseInfo *BaseInfo, 3234 TBAAAccessInfo *TBAAInfo) { 3235 assert(E->getType()->isArrayType() && 3236 "Array to pointer decay must have array source type!"); 3237 3238 // Expressions of array type can't be bitfields or vector elements. 3239 LValue LV = EmitLValue(E); 3240 Address Addr = LV.getAddress(); 3241 3242 // If the array type was an incomplete type, we need to make sure 3243 // the decay ends up being the right type. 3244 llvm::Type *NewTy = ConvertType(E->getType()); 3245 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3246 3247 // Note that VLA pointers are always decayed, so we don't need to do 3248 // anything here. 3249 if (!E->getType()->isVariableArrayType()) { 3250 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3251 "Expected pointer to array"); 3252 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3253 } 3254 3255 // The result of this decay conversion points to an array element within the 3256 // base lvalue. However, since TBAA currently does not support representing 3257 // accesses to elements of member arrays, we conservatively represent accesses 3258 // to the pointee object as if it had no any base lvalue specified. 3259 // TODO: Support TBAA for member arrays. 3260 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3261 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3262 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3263 3264 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3265 } 3266 3267 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3268 /// array to pointer, return the array subexpression. 3269 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3270 // If this isn't just an array->pointer decay, bail out. 3271 const auto *CE = dyn_cast<CastExpr>(E); 3272 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3273 return nullptr; 3274 3275 // If this is a decay from variable width array, bail out. 3276 const Expr *SubExpr = CE->getSubExpr(); 3277 if (SubExpr->getType()->isVariableArrayType()) 3278 return nullptr; 3279 3280 return SubExpr; 3281 } 3282 3283 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3284 llvm::Value *ptr, 3285 ArrayRef<llvm::Value*> indices, 3286 bool inbounds, 3287 bool signedIndices, 3288 SourceLocation loc, 3289 const llvm::Twine &name = "arrayidx") { 3290 if (inbounds) { 3291 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3292 CodeGenFunction::NotSubtraction, loc, 3293 name); 3294 } else { 3295 return CGF.Builder.CreateGEP(ptr, indices, name); 3296 } 3297 } 3298 3299 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3300 llvm::Value *idx, 3301 CharUnits eltSize) { 3302 // If we have a constant index, we can use the exact offset of the 3303 // element we're accessing. 3304 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3305 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3306 return arrayAlign.alignmentAtOffset(offset); 3307 3308 // Otherwise, use the worst-case alignment for any element. 3309 } else { 3310 return arrayAlign.alignmentOfArrayElement(eltSize); 3311 } 3312 } 3313 3314 static QualType getFixedSizeElementType(const ASTContext &ctx, 3315 const VariableArrayType *vla) { 3316 QualType eltType; 3317 do { 3318 eltType = vla->getElementType(); 3319 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3320 return eltType; 3321 } 3322 3323 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3324 ArrayRef<llvm::Value *> indices, 3325 QualType eltType, bool inbounds, 3326 bool signedIndices, SourceLocation loc, 3327 const llvm::Twine &name = "arrayidx") { 3328 // All the indices except that last must be zero. 3329 #ifndef NDEBUG 3330 for (auto idx : indices.drop_back()) 3331 assert(isa<llvm::ConstantInt>(idx) && 3332 cast<llvm::ConstantInt>(idx)->isZero()); 3333 #endif 3334 3335 // Determine the element size of the statically-sized base. This is 3336 // the thing that the indices are expressed in terms of. 3337 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3338 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3339 } 3340 3341 // We can use that to compute the best alignment of the element. 3342 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3343 CharUnits eltAlign = 3344 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3345 3346 llvm::Value *eltPtr = emitArraySubscriptGEP( 3347 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3348 return Address(eltPtr, eltAlign); 3349 } 3350 3351 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3352 bool Accessed) { 3353 // The index must always be an integer, which is not an aggregate. Emit it 3354 // in lexical order (this complexity is, sadly, required by C++17). 3355 llvm::Value *IdxPre = 3356 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3357 bool SignedIndices = false; 3358 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3359 auto *Idx = IdxPre; 3360 if (E->getLHS() != E->getIdx()) { 3361 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3362 Idx = EmitScalarExpr(E->getIdx()); 3363 } 3364 3365 QualType IdxTy = E->getIdx()->getType(); 3366 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3367 SignedIndices |= IdxSigned; 3368 3369 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3370 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3371 3372 // Extend or truncate the index type to 32 or 64-bits. 3373 if (Promote && Idx->getType() != IntPtrTy) 3374 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3375 3376 return Idx; 3377 }; 3378 IdxPre = nullptr; 3379 3380 // If the base is a vector type, then we are forming a vector element lvalue 3381 // with this subscript. 3382 if (E->getBase()->getType()->isVectorType() && 3383 !isa<ExtVectorElementExpr>(E->getBase())) { 3384 // Emit the vector as an lvalue to get its address. 3385 LValue LHS = EmitLValue(E->getBase()); 3386 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3387 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3388 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3389 LHS.getBaseInfo(), TBAAAccessInfo()); 3390 } 3391 3392 // All the other cases basically behave like simple offsetting. 3393 3394 // Handle the extvector case we ignored above. 3395 if (isa<ExtVectorElementExpr>(E->getBase())) { 3396 LValue LV = EmitLValue(E->getBase()); 3397 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3398 Address Addr = EmitExtVectorElementLValue(LV); 3399 3400 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3401 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3402 SignedIndices, E->getExprLoc()); 3403 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3404 CGM.getTBAAInfoForSubobject(LV, EltType)); 3405 } 3406 3407 LValueBaseInfo EltBaseInfo; 3408 TBAAAccessInfo EltTBAAInfo; 3409 Address Addr = Address::invalid(); 3410 if (const VariableArrayType *vla = 3411 getContext().getAsVariableArrayType(E->getType())) { 3412 // The base must be a pointer, which is not an aggregate. Emit 3413 // it. It needs to be emitted first in case it's what captures 3414 // the VLA bounds. 3415 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3416 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3417 3418 // The element count here is the total number of non-VLA elements. 3419 llvm::Value *numElements = getVLASize(vla).NumElts; 3420 3421 // Effectively, the multiply by the VLA size is part of the GEP. 3422 // GEP indexes are signed, and scaling an index isn't permitted to 3423 // signed-overflow, so we use the same semantics for our explicit 3424 // multiply. We suppress this if overflow is not undefined behavior. 3425 if (getLangOpts().isSignedOverflowDefined()) { 3426 Idx = Builder.CreateMul(Idx, numElements); 3427 } else { 3428 Idx = Builder.CreateNSWMul(Idx, numElements); 3429 } 3430 3431 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3432 !getLangOpts().isSignedOverflowDefined(), 3433 SignedIndices, E->getExprLoc()); 3434 3435 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3436 // Indexing over an interface, as in "NSString *P; P[4];" 3437 3438 // Emit the base pointer. 3439 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3440 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3441 3442 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3443 llvm::Value *InterfaceSizeVal = 3444 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3445 3446 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3447 3448 // We don't necessarily build correct LLVM struct types for ObjC 3449 // interfaces, so we can't rely on GEP to do this scaling 3450 // correctly, so we need to cast to i8*. FIXME: is this actually 3451 // true? A lot of other things in the fragile ABI would break... 3452 llvm::Type *OrigBaseTy = Addr.getType(); 3453 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3454 3455 // Do the GEP. 3456 CharUnits EltAlign = 3457 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3458 llvm::Value *EltPtr = 3459 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3460 SignedIndices, E->getExprLoc()); 3461 Addr = Address(EltPtr, EltAlign); 3462 3463 // Cast back. 3464 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3465 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3466 // If this is A[i] where A is an array, the frontend will have decayed the 3467 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3468 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3469 // "gep x, i" here. Emit one "gep A, 0, i". 3470 assert(Array->getType()->isArrayType() && 3471 "Array to pointer decay must have array source type!"); 3472 LValue ArrayLV; 3473 // For simple multidimensional array indexing, set the 'accessed' flag for 3474 // better bounds-checking of the base expression. 3475 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3476 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3477 else 3478 ArrayLV = EmitLValue(Array); 3479 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3480 3481 // Propagate the alignment from the array itself to the result. 3482 Addr = emitArraySubscriptGEP( 3483 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3484 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3485 E->getExprLoc()); 3486 EltBaseInfo = ArrayLV.getBaseInfo(); 3487 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3488 } else { 3489 // The base must be a pointer; emit it with an estimate of its alignment. 3490 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3491 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3492 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3493 !getLangOpts().isSignedOverflowDefined(), 3494 SignedIndices, E->getExprLoc()); 3495 } 3496 3497 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3498 3499 if (getLangOpts().ObjC && 3500 getLangOpts().getGC() != LangOptions::NonGC) { 3501 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3502 setObjCGCLValueClass(getContext(), E, LV); 3503 } 3504 return LV; 3505 } 3506 3507 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3508 LValueBaseInfo &BaseInfo, 3509 TBAAAccessInfo &TBAAInfo, 3510 QualType BaseTy, QualType ElTy, 3511 bool IsLowerBound) { 3512 LValue BaseLVal; 3513 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3514 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3515 if (BaseTy->isArrayType()) { 3516 Address Addr = BaseLVal.getAddress(); 3517 BaseInfo = BaseLVal.getBaseInfo(); 3518 3519 // If the array type was an incomplete type, we need to make sure 3520 // the decay ends up being the right type. 3521 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3522 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3523 3524 // Note that VLA pointers are always decayed, so we don't need to do 3525 // anything here. 3526 if (!BaseTy->isVariableArrayType()) { 3527 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3528 "Expected pointer to array"); 3529 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3530 "arraydecay"); 3531 } 3532 3533 return CGF.Builder.CreateElementBitCast(Addr, 3534 CGF.ConvertTypeForMem(ElTy)); 3535 } 3536 LValueBaseInfo TypeBaseInfo; 3537 TBAAAccessInfo TypeTBAAInfo; 3538 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3539 &TypeTBAAInfo); 3540 BaseInfo.mergeForCast(TypeBaseInfo); 3541 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3542 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3543 } 3544 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3545 } 3546 3547 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3548 bool IsLowerBound) { 3549 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3550 QualType ResultExprTy; 3551 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3552 ResultExprTy = AT->getElementType(); 3553 else 3554 ResultExprTy = BaseTy->getPointeeType(); 3555 llvm::Value *Idx = nullptr; 3556 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3557 // Requesting lower bound or upper bound, but without provided length and 3558 // without ':' symbol for the default length -> length = 1. 3559 // Idx = LowerBound ?: 0; 3560 if (auto *LowerBound = E->getLowerBound()) { 3561 Idx = Builder.CreateIntCast( 3562 EmitScalarExpr(LowerBound), IntPtrTy, 3563 LowerBound->getType()->hasSignedIntegerRepresentation()); 3564 } else 3565 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3566 } else { 3567 // Try to emit length or lower bound as constant. If this is possible, 1 3568 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3569 // IR (LB + Len) - 1. 3570 auto &C = CGM.getContext(); 3571 auto *Length = E->getLength(); 3572 llvm::APSInt ConstLength; 3573 if (Length) { 3574 // Idx = LowerBound + Length - 1; 3575 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3576 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3577 Length = nullptr; 3578 } 3579 auto *LowerBound = E->getLowerBound(); 3580 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3581 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3582 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3583 LowerBound = nullptr; 3584 } 3585 if (!Length) 3586 --ConstLength; 3587 else if (!LowerBound) 3588 --ConstLowerBound; 3589 3590 if (Length || LowerBound) { 3591 auto *LowerBoundVal = 3592 LowerBound 3593 ? Builder.CreateIntCast( 3594 EmitScalarExpr(LowerBound), IntPtrTy, 3595 LowerBound->getType()->hasSignedIntegerRepresentation()) 3596 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3597 auto *LengthVal = 3598 Length 3599 ? Builder.CreateIntCast( 3600 EmitScalarExpr(Length), IntPtrTy, 3601 Length->getType()->hasSignedIntegerRepresentation()) 3602 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3603 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3604 /*HasNUW=*/false, 3605 !getLangOpts().isSignedOverflowDefined()); 3606 if (Length && LowerBound) { 3607 Idx = Builder.CreateSub( 3608 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3609 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3610 } 3611 } else 3612 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3613 } else { 3614 // Idx = ArraySize - 1; 3615 QualType ArrayTy = BaseTy->isPointerType() 3616 ? E->getBase()->IgnoreParenImpCasts()->getType() 3617 : BaseTy; 3618 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3619 Length = VAT->getSizeExpr(); 3620 if (Length->isIntegerConstantExpr(ConstLength, C)) 3621 Length = nullptr; 3622 } else { 3623 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3624 ConstLength = CAT->getSize(); 3625 } 3626 if (Length) { 3627 auto *LengthVal = Builder.CreateIntCast( 3628 EmitScalarExpr(Length), IntPtrTy, 3629 Length->getType()->hasSignedIntegerRepresentation()); 3630 Idx = Builder.CreateSub( 3631 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3632 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3633 } else { 3634 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3635 --ConstLength; 3636 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3637 } 3638 } 3639 } 3640 assert(Idx); 3641 3642 Address EltPtr = Address::invalid(); 3643 LValueBaseInfo BaseInfo; 3644 TBAAAccessInfo TBAAInfo; 3645 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3646 // The base must be a pointer, which is not an aggregate. Emit 3647 // it. It needs to be emitted first in case it's what captures 3648 // the VLA bounds. 3649 Address Base = 3650 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3651 BaseTy, VLA->getElementType(), IsLowerBound); 3652 // The element count here is the total number of non-VLA elements. 3653 llvm::Value *NumElements = getVLASize(VLA).NumElts; 3654 3655 // Effectively, the multiply by the VLA size is part of the GEP. 3656 // GEP indexes are signed, and scaling an index isn't permitted to 3657 // signed-overflow, so we use the same semantics for our explicit 3658 // multiply. We suppress this if overflow is not undefined behavior. 3659 if (getLangOpts().isSignedOverflowDefined()) 3660 Idx = Builder.CreateMul(Idx, NumElements); 3661 else 3662 Idx = Builder.CreateNSWMul(Idx, NumElements); 3663 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3664 !getLangOpts().isSignedOverflowDefined(), 3665 /*SignedIndices=*/false, E->getExprLoc()); 3666 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3667 // If this is A[i] where A is an array, the frontend will have decayed the 3668 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3669 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3670 // "gep x, i" here. Emit one "gep A, 0, i". 3671 assert(Array->getType()->isArrayType() && 3672 "Array to pointer decay must have array source type!"); 3673 LValue ArrayLV; 3674 // For simple multidimensional array indexing, set the 'accessed' flag for 3675 // better bounds-checking of the base expression. 3676 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3677 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3678 else 3679 ArrayLV = EmitLValue(Array); 3680 3681 // Propagate the alignment from the array itself to the result. 3682 EltPtr = emitArraySubscriptGEP( 3683 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3684 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3685 /*SignedIndices=*/false, E->getExprLoc()); 3686 BaseInfo = ArrayLV.getBaseInfo(); 3687 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3688 } else { 3689 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3690 TBAAInfo, BaseTy, ResultExprTy, 3691 IsLowerBound); 3692 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3693 !getLangOpts().isSignedOverflowDefined(), 3694 /*SignedIndices=*/false, E->getExprLoc()); 3695 } 3696 3697 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3698 } 3699 3700 LValue CodeGenFunction:: 3701 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3702 // Emit the base vector as an l-value. 3703 LValue Base; 3704 3705 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3706 if (E->isArrow()) { 3707 // If it is a pointer to a vector, emit the address and form an lvalue with 3708 // it. 3709 LValueBaseInfo BaseInfo; 3710 TBAAAccessInfo TBAAInfo; 3711 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3712 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3713 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3714 Base.getQuals().removeObjCGCAttr(); 3715 } else if (E->getBase()->isGLValue()) { 3716 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3717 // emit the base as an lvalue. 3718 assert(E->getBase()->getType()->isVectorType()); 3719 Base = EmitLValue(E->getBase()); 3720 } else { 3721 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3722 assert(E->getBase()->getType()->isVectorType() && 3723 "Result must be a vector"); 3724 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3725 3726 // Store the vector to memory (because LValue wants an address). 3727 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3728 Builder.CreateStore(Vec, VecMem); 3729 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3730 AlignmentSource::Decl); 3731 } 3732 3733 QualType type = 3734 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3735 3736 // Encode the element access list into a vector of unsigned indices. 3737 SmallVector<uint32_t, 4> Indices; 3738 E->getEncodedElementAccess(Indices); 3739 3740 if (Base.isSimple()) { 3741 llvm::Constant *CV = 3742 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3743 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3744 Base.getBaseInfo(), TBAAAccessInfo()); 3745 } 3746 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3747 3748 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3749 SmallVector<llvm::Constant *, 4> CElts; 3750 3751 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3752 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3753 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3754 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3755 Base.getBaseInfo(), TBAAAccessInfo()); 3756 } 3757 3758 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3759 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3760 EmitIgnoredExpr(E->getBase()); 3761 return EmitDeclRefLValue(DRE); 3762 } 3763 3764 Expr *BaseExpr = E->getBase(); 3765 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3766 LValue BaseLV; 3767 if (E->isArrow()) { 3768 LValueBaseInfo BaseInfo; 3769 TBAAAccessInfo TBAAInfo; 3770 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3771 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3772 SanitizerSet SkippedChecks; 3773 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3774 if (IsBaseCXXThis) 3775 SkippedChecks.set(SanitizerKind::Alignment, true); 3776 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3777 SkippedChecks.set(SanitizerKind::Null, true); 3778 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3779 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3780 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3781 } else 3782 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3783 3784 NamedDecl *ND = E->getMemberDecl(); 3785 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3786 LValue LV = EmitLValueForField(BaseLV, Field); 3787 setObjCGCLValueClass(getContext(), E, LV); 3788 return LV; 3789 } 3790 3791 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3792 return EmitFunctionDeclLValue(*this, E, FD); 3793 3794 llvm_unreachable("Unhandled member declaration!"); 3795 } 3796 3797 /// Given that we are currently emitting a lambda, emit an l-value for 3798 /// one of its members. 3799 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3800 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3801 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3802 QualType LambdaTagType = 3803 getContext().getTagDeclType(Field->getParent()); 3804 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3805 return EmitLValueForField(LambdaLV, Field); 3806 } 3807 3808 /// Drill down to the storage of a field without walking into 3809 /// reference types. 3810 /// 3811 /// The resulting address doesn't necessarily have the right type. 3812 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3813 const FieldDecl *field) { 3814 const RecordDecl *rec = field->getParent(); 3815 3816 unsigned idx = 3817 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3818 3819 CharUnits offset; 3820 // Adjust the alignment down to the given offset. 3821 // As a special case, if the LLVM field index is 0, we know that this 3822 // is zero. 3823 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3824 .getFieldOffset(field->getFieldIndex()) == 0) && 3825 "LLVM field at index zero had non-zero offset?"); 3826 if (idx != 0) { 3827 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3828 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3829 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3830 } 3831 3832 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3833 } 3834 3835 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3836 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3837 if (!RD) 3838 return false; 3839 3840 if (RD->isDynamicClass()) 3841 return true; 3842 3843 for (const auto &Base : RD->bases()) 3844 if (hasAnyVptr(Base.getType(), Context)) 3845 return true; 3846 3847 for (const FieldDecl *Field : RD->fields()) 3848 if (hasAnyVptr(Field->getType(), Context)) 3849 return true; 3850 3851 return false; 3852 } 3853 3854 LValue CodeGenFunction::EmitLValueForField(LValue base, 3855 const FieldDecl *field) { 3856 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3857 3858 if (field->isBitField()) { 3859 const CGRecordLayout &RL = 3860 CGM.getTypes().getCGRecordLayout(field->getParent()); 3861 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3862 Address Addr = base.getAddress(); 3863 unsigned Idx = RL.getLLVMFieldNo(field); 3864 if (Idx != 0) 3865 // For structs, we GEP to the field that the record layout suggests. 3866 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3867 field->getName()); 3868 // Get the access type. 3869 llvm::Type *FieldIntTy = 3870 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3871 if (Addr.getElementType() != FieldIntTy) 3872 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3873 3874 QualType fieldType = 3875 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3876 // TODO: Support TBAA for bit fields. 3877 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 3878 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 3879 TBAAAccessInfo()); 3880 } 3881 3882 // Fields of may-alias structures are may-alias themselves. 3883 // FIXME: this should get propagated down through anonymous structs 3884 // and unions. 3885 QualType FieldType = field->getType(); 3886 const RecordDecl *rec = field->getParent(); 3887 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 3888 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 3889 TBAAAccessInfo FieldTBAAInfo; 3890 if (base.getTBAAInfo().isMayAlias() || 3891 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 3892 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3893 } else if (rec->isUnion()) { 3894 // TODO: Support TBAA for unions. 3895 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3896 } else { 3897 // If no base type been assigned for the base access, then try to generate 3898 // one for this base lvalue. 3899 FieldTBAAInfo = base.getTBAAInfo(); 3900 if (!FieldTBAAInfo.BaseType) { 3901 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3902 assert(!FieldTBAAInfo.Offset && 3903 "Nonzero offset for an access with no base type!"); 3904 } 3905 3906 // Adjust offset to be relative to the base type. 3907 const ASTRecordLayout &Layout = 3908 getContext().getASTRecordLayout(field->getParent()); 3909 unsigned CharWidth = getContext().getCharWidth(); 3910 if (FieldTBAAInfo.BaseType) 3911 FieldTBAAInfo.Offset += 3912 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3913 3914 // Update the final access type and size. 3915 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 3916 FieldTBAAInfo.Size = 3917 getContext().getTypeSizeInChars(FieldType).getQuantity(); 3918 } 3919 3920 Address addr = base.getAddress(); 3921 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 3922 if (CGM.getCodeGenOpts().StrictVTablePointers && 3923 ClassDef->isDynamicClass()) { 3924 // Getting to any field of dynamic object requires stripping dynamic 3925 // information provided by invariant.group. This is because accessing 3926 // fields may leak the real address of dynamic object, which could result 3927 // in miscompilation when leaked pointer would be compared. 3928 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 3929 addr = Address(stripped, addr.getAlignment()); 3930 } 3931 } 3932 3933 unsigned RecordCVR = base.getVRQualifiers(); 3934 if (rec->isUnion()) { 3935 // For unions, there is no pointer adjustment. 3936 assert(!FieldType->isReferenceType() && "union has reference member"); 3937 if (CGM.getCodeGenOpts().StrictVTablePointers && 3938 hasAnyVptr(FieldType, getContext())) 3939 // Because unions can easily skip invariant.barriers, we need to add 3940 // a barrier every time CXXRecord field with vptr is referenced. 3941 addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()), 3942 addr.getAlignment()); 3943 } else { 3944 // For structs, we GEP to the field that the record layout suggests. 3945 addr = emitAddrOfFieldStorage(*this, addr, field); 3946 3947 // If this is a reference field, load the reference right now. 3948 if (FieldType->isReferenceType()) { 3949 LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo, 3950 FieldTBAAInfo); 3951 if (RecordCVR & Qualifiers::Volatile) 3952 RefLVal.getQuals().addVolatile(); 3953 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 3954 3955 // Qualifiers on the struct don't apply to the referencee. 3956 RecordCVR = 0; 3957 FieldType = FieldType->getPointeeType(); 3958 } 3959 } 3960 3961 // Make sure that the address is pointing to the right type. This is critical 3962 // for both unions and structs. A union needs a bitcast, a struct element 3963 // will need a bitcast if the LLVM type laid out doesn't match the desired 3964 // type. 3965 addr = Builder.CreateElementBitCast( 3966 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 3967 3968 if (field->hasAttr<AnnotateAttr>()) 3969 addr = EmitFieldAnnotations(field, addr); 3970 3971 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 3972 LV.getQuals().addCVRQualifiers(RecordCVR); 3973 3974 // __weak attribute on a field is ignored. 3975 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3976 LV.getQuals().removeObjCGCAttr(); 3977 3978 return LV; 3979 } 3980 3981 LValue 3982 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3983 const FieldDecl *Field) { 3984 QualType FieldType = Field->getType(); 3985 3986 if (!FieldType->isReferenceType()) 3987 return EmitLValueForField(Base, Field); 3988 3989 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3990 3991 // Make sure that the address is pointing to the right type. 3992 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3993 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3994 3995 // TODO: Generate TBAA information that describes this access as a structure 3996 // member access and not just an access to an object of the field's type. This 3997 // should be similar to what we do in EmitLValueForField(). 3998 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3999 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4000 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4001 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4002 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4003 } 4004 4005 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4006 if (E->isFileScope()) { 4007 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4008 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4009 } 4010 if (E->getType()->isVariablyModifiedType()) 4011 // make sure to emit the VLA size. 4012 EmitVariablyModifiedType(E->getType()); 4013 4014 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4015 const Expr *InitExpr = E->getInitializer(); 4016 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4017 4018 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4019 /*Init*/ true); 4020 4021 return Result; 4022 } 4023 4024 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4025 if (!E->isGLValue()) 4026 // Initializing an aggregate temporary in C++11: T{...}. 4027 return EmitAggExprToLValue(E); 4028 4029 // An lvalue initializer list must be initializing a reference. 4030 assert(E->isTransparent() && "non-transparent glvalue init list"); 4031 return EmitLValue(E->getInit(0)); 4032 } 4033 4034 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4035 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4036 /// LValue is returned and the current block has been terminated. 4037 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4038 const Expr *Operand) { 4039 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4040 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4041 return None; 4042 } 4043 4044 return CGF.EmitLValue(Operand); 4045 } 4046 4047 LValue CodeGenFunction:: 4048 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4049 if (!expr->isGLValue()) { 4050 // ?: here should be an aggregate. 4051 assert(hasAggregateEvaluationKind(expr->getType()) && 4052 "Unexpected conditional operator!"); 4053 return EmitAggExprToLValue(expr); 4054 } 4055 4056 OpaqueValueMapping binding(*this, expr); 4057 4058 const Expr *condExpr = expr->getCond(); 4059 bool CondExprBool; 4060 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4061 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4062 if (!CondExprBool) std::swap(live, dead); 4063 4064 if (!ContainsLabel(dead)) { 4065 // If the true case is live, we need to track its region. 4066 if (CondExprBool) 4067 incrementProfileCounter(expr); 4068 return EmitLValue(live); 4069 } 4070 } 4071 4072 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4073 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4074 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4075 4076 ConditionalEvaluation eval(*this); 4077 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4078 4079 // Any temporaries created here are conditional. 4080 EmitBlock(lhsBlock); 4081 incrementProfileCounter(expr); 4082 eval.begin(*this); 4083 Optional<LValue> lhs = 4084 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4085 eval.end(*this); 4086 4087 if (lhs && !lhs->isSimple()) 4088 return EmitUnsupportedLValue(expr, "conditional operator"); 4089 4090 lhsBlock = Builder.GetInsertBlock(); 4091 if (lhs) 4092 Builder.CreateBr(contBlock); 4093 4094 // Any temporaries created here are conditional. 4095 EmitBlock(rhsBlock); 4096 eval.begin(*this); 4097 Optional<LValue> rhs = 4098 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4099 eval.end(*this); 4100 if (rhs && !rhs->isSimple()) 4101 return EmitUnsupportedLValue(expr, "conditional operator"); 4102 rhsBlock = Builder.GetInsertBlock(); 4103 4104 EmitBlock(contBlock); 4105 4106 if (lhs && rhs) { 4107 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 4108 2, "cond-lvalue"); 4109 phi->addIncoming(lhs->getPointer(), lhsBlock); 4110 phi->addIncoming(rhs->getPointer(), rhsBlock); 4111 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 4112 AlignmentSource alignSource = 4113 std::max(lhs->getBaseInfo().getAlignmentSource(), 4114 rhs->getBaseInfo().getAlignmentSource()); 4115 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4116 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4117 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4118 TBAAInfo); 4119 } else { 4120 assert((lhs || rhs) && 4121 "both operands of glvalue conditional are throw-expressions?"); 4122 return lhs ? *lhs : *rhs; 4123 } 4124 } 4125 4126 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4127 /// type. If the cast is to a reference, we can have the usual lvalue result, 4128 /// otherwise if a cast is needed by the code generator in an lvalue context, 4129 /// then it must mean that we need the address of an aggregate in order to 4130 /// access one of its members. This can happen for all the reasons that casts 4131 /// are permitted with aggregate result, including noop aggregate casts, and 4132 /// cast from scalar to union. 4133 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4134 switch (E->getCastKind()) { 4135 case CK_ToVoid: 4136 case CK_BitCast: 4137 case CK_ArrayToPointerDecay: 4138 case CK_FunctionToPointerDecay: 4139 case CK_NullToMemberPointer: 4140 case CK_NullToPointer: 4141 case CK_IntegralToPointer: 4142 case CK_PointerToIntegral: 4143 case CK_PointerToBoolean: 4144 case CK_VectorSplat: 4145 case CK_IntegralCast: 4146 case CK_BooleanToSignedIntegral: 4147 case CK_IntegralToBoolean: 4148 case CK_IntegralToFloating: 4149 case CK_FloatingToIntegral: 4150 case CK_FloatingToBoolean: 4151 case CK_FloatingCast: 4152 case CK_FloatingRealToComplex: 4153 case CK_FloatingComplexToReal: 4154 case CK_FloatingComplexToBoolean: 4155 case CK_FloatingComplexCast: 4156 case CK_FloatingComplexToIntegralComplex: 4157 case CK_IntegralRealToComplex: 4158 case CK_IntegralComplexToReal: 4159 case CK_IntegralComplexToBoolean: 4160 case CK_IntegralComplexCast: 4161 case CK_IntegralComplexToFloatingComplex: 4162 case CK_DerivedToBaseMemberPointer: 4163 case CK_BaseToDerivedMemberPointer: 4164 case CK_MemberPointerToBoolean: 4165 case CK_ReinterpretMemberPointer: 4166 case CK_AnyPointerToBlockPointerCast: 4167 case CK_ARCProduceObject: 4168 case CK_ARCConsumeObject: 4169 case CK_ARCReclaimReturnedObject: 4170 case CK_ARCExtendBlockObject: 4171 case CK_CopyAndAutoreleaseBlockObject: 4172 case CK_IntToOCLSampler: 4173 case CK_FixedPointCast: 4174 case CK_FixedPointToBoolean: 4175 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4176 4177 case CK_Dependent: 4178 llvm_unreachable("dependent cast kind in IR gen!"); 4179 4180 case CK_BuiltinFnToFnPtr: 4181 llvm_unreachable("builtin functions are handled elsewhere"); 4182 4183 // These are never l-values; just use the aggregate emission code. 4184 case CK_NonAtomicToAtomic: 4185 case CK_AtomicToNonAtomic: 4186 return EmitAggExprToLValue(E); 4187 4188 case CK_Dynamic: { 4189 LValue LV = EmitLValue(E->getSubExpr()); 4190 Address V = LV.getAddress(); 4191 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4192 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4193 } 4194 4195 case CK_ConstructorConversion: 4196 case CK_UserDefinedConversion: 4197 case CK_CPointerToObjCPointerCast: 4198 case CK_BlockPointerToObjCPointerCast: 4199 case CK_NoOp: 4200 case CK_LValueToRValue: 4201 return EmitLValue(E->getSubExpr()); 4202 4203 case CK_UncheckedDerivedToBase: 4204 case CK_DerivedToBase: { 4205 const RecordType *DerivedClassTy = 4206 E->getSubExpr()->getType()->getAs<RecordType>(); 4207 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4208 4209 LValue LV = EmitLValue(E->getSubExpr()); 4210 Address This = LV.getAddress(); 4211 4212 // Perform the derived-to-base conversion 4213 Address Base = GetAddressOfBaseClass( 4214 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4215 /*NullCheckValue=*/false, E->getExprLoc()); 4216 4217 // TODO: Support accesses to members of base classes in TBAA. For now, we 4218 // conservatively pretend that the complete object is of the base class 4219 // type. 4220 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4221 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4222 } 4223 case CK_ToUnion: 4224 return EmitAggExprToLValue(E); 4225 case CK_BaseToDerived: { 4226 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4227 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4228 4229 LValue LV = EmitLValue(E->getSubExpr()); 4230 4231 // Perform the base-to-derived conversion 4232 Address Derived = 4233 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4234 E->path_begin(), E->path_end(), 4235 /*NullCheckValue=*/false); 4236 4237 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4238 // performed and the object is not of the derived type. 4239 if (sanitizePerformTypeCheck()) 4240 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4241 Derived.getPointer(), E->getType()); 4242 4243 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4244 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4245 /*MayBeNull=*/false, CFITCK_DerivedCast, 4246 E->getBeginLoc()); 4247 4248 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4249 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4250 } 4251 case CK_LValueBitCast: { 4252 // This must be a reinterpret_cast (or c-style equivalent). 4253 const auto *CE = cast<ExplicitCastExpr>(E); 4254 4255 CGM.EmitExplicitCastExprType(CE, this); 4256 LValue LV = EmitLValue(E->getSubExpr()); 4257 Address V = Builder.CreateBitCast(LV.getAddress(), 4258 ConvertType(CE->getTypeAsWritten())); 4259 4260 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4261 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4262 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4263 E->getBeginLoc()); 4264 4265 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4266 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4267 } 4268 case CK_AddressSpaceConversion: { 4269 LValue LV = EmitLValue(E->getSubExpr()); 4270 QualType DestTy = getContext().getPointerType(E->getType()); 4271 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4272 *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(), 4273 E->getType().getAddressSpace(), ConvertType(DestTy)); 4274 return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()), 4275 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4276 } 4277 case CK_ObjCObjectLValueCast: { 4278 LValue LV = EmitLValue(E->getSubExpr()); 4279 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4280 ConvertType(E->getType())); 4281 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4282 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4283 } 4284 case CK_ZeroToOCLOpaqueType: 4285 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4286 } 4287 4288 llvm_unreachable("Unhandled lvalue cast kind?"); 4289 } 4290 4291 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4292 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4293 return getOrCreateOpaqueLValueMapping(e); 4294 } 4295 4296 LValue 4297 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4298 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4299 4300 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4301 it = OpaqueLValues.find(e); 4302 4303 if (it != OpaqueLValues.end()) 4304 return it->second; 4305 4306 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4307 return EmitLValue(e->getSourceExpr()); 4308 } 4309 4310 RValue 4311 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4312 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4313 4314 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4315 it = OpaqueRValues.find(e); 4316 4317 if (it != OpaqueRValues.end()) 4318 return it->second; 4319 4320 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4321 return EmitAnyExpr(e->getSourceExpr()); 4322 } 4323 4324 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4325 const FieldDecl *FD, 4326 SourceLocation Loc) { 4327 QualType FT = FD->getType(); 4328 LValue FieldLV = EmitLValueForField(LV, FD); 4329 switch (getEvaluationKind(FT)) { 4330 case TEK_Complex: 4331 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4332 case TEK_Aggregate: 4333 return FieldLV.asAggregateRValue(); 4334 case TEK_Scalar: 4335 // This routine is used to load fields one-by-one to perform a copy, so 4336 // don't load reference fields. 4337 if (FD->getType()->isReferenceType()) 4338 return RValue::get(FieldLV.getPointer()); 4339 return EmitLoadOfLValue(FieldLV, Loc); 4340 } 4341 llvm_unreachable("bad evaluation kind"); 4342 } 4343 4344 //===--------------------------------------------------------------------===// 4345 // Expression Emission 4346 //===--------------------------------------------------------------------===// 4347 4348 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4349 ReturnValueSlot ReturnValue) { 4350 // Builtins never have block type. 4351 if (E->getCallee()->getType()->isBlockPointerType()) 4352 return EmitBlockCallExpr(E, ReturnValue); 4353 4354 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4355 return EmitCXXMemberCallExpr(CE, ReturnValue); 4356 4357 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4358 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4359 4360 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4361 if (const CXXMethodDecl *MD = 4362 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4363 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4364 4365 CGCallee callee = EmitCallee(E->getCallee()); 4366 4367 if (callee.isBuiltin()) { 4368 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4369 E, ReturnValue); 4370 } 4371 4372 if (callee.isPseudoDestructor()) { 4373 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4374 } 4375 4376 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4377 } 4378 4379 /// Emit a CallExpr without considering whether it might be a subclass. 4380 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4381 ReturnValueSlot ReturnValue) { 4382 CGCallee Callee = EmitCallee(E->getCallee()); 4383 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4384 } 4385 4386 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4387 if (auto builtinID = FD->getBuiltinID()) { 4388 return CGCallee::forBuiltin(builtinID, FD); 4389 } 4390 4391 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4392 return CGCallee::forDirect(calleePtr, GlobalDecl(FD)); 4393 } 4394 4395 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4396 E = E->IgnoreParens(); 4397 4398 // Look through function-to-pointer decay. 4399 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4400 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4401 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4402 return EmitCallee(ICE->getSubExpr()); 4403 } 4404 4405 // Resolve direct calls. 4406 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4407 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4408 return EmitDirectCallee(*this, FD); 4409 } 4410 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4411 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4412 EmitIgnoredExpr(ME->getBase()); 4413 return EmitDirectCallee(*this, FD); 4414 } 4415 4416 // Look through template substitutions. 4417 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4418 return EmitCallee(NTTP->getReplacement()); 4419 4420 // Treat pseudo-destructor calls differently. 4421 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4422 return CGCallee::forPseudoDestructor(PDE); 4423 } 4424 4425 // Otherwise, we have an indirect reference. 4426 llvm::Value *calleePtr; 4427 QualType functionType; 4428 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4429 calleePtr = EmitScalarExpr(E); 4430 functionType = ptrType->getPointeeType(); 4431 } else { 4432 functionType = E->getType(); 4433 calleePtr = EmitLValue(E).getPointer(); 4434 } 4435 assert(functionType->isFunctionType()); 4436 4437 GlobalDecl GD; 4438 if (const auto *VD = 4439 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4440 GD = GlobalDecl(VD); 4441 4442 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4443 CGCallee callee(calleeInfo, calleePtr); 4444 return callee; 4445 } 4446 4447 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4448 // Comma expressions just emit their LHS then their RHS as an l-value. 4449 if (E->getOpcode() == BO_Comma) { 4450 EmitIgnoredExpr(E->getLHS()); 4451 EnsureInsertPoint(); 4452 return EmitLValue(E->getRHS()); 4453 } 4454 4455 if (E->getOpcode() == BO_PtrMemD || 4456 E->getOpcode() == BO_PtrMemI) 4457 return EmitPointerToDataMemberBinaryExpr(E); 4458 4459 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4460 4461 // Note that in all of these cases, __block variables need the RHS 4462 // evaluated first just in case the variable gets moved by the RHS. 4463 4464 switch (getEvaluationKind(E->getType())) { 4465 case TEK_Scalar: { 4466 switch (E->getLHS()->getType().getObjCLifetime()) { 4467 case Qualifiers::OCL_Strong: 4468 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4469 4470 case Qualifiers::OCL_Autoreleasing: 4471 return EmitARCStoreAutoreleasing(E).first; 4472 4473 // No reason to do any of these differently. 4474 case Qualifiers::OCL_None: 4475 case Qualifiers::OCL_ExplicitNone: 4476 case Qualifiers::OCL_Weak: 4477 break; 4478 } 4479 4480 RValue RV = EmitAnyExpr(E->getRHS()); 4481 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4482 if (RV.isScalar()) 4483 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4484 EmitStoreThroughLValue(RV, LV); 4485 return LV; 4486 } 4487 4488 case TEK_Complex: 4489 return EmitComplexAssignmentLValue(E); 4490 4491 case TEK_Aggregate: 4492 return EmitAggExprToLValue(E); 4493 } 4494 llvm_unreachable("bad evaluation kind"); 4495 } 4496 4497 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4498 RValue RV = EmitCallExpr(E); 4499 4500 if (!RV.isScalar()) 4501 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4502 AlignmentSource::Decl); 4503 4504 assert(E->getCallReturnType(getContext())->isReferenceType() && 4505 "Can't have a scalar return unless the return type is a " 4506 "reference type!"); 4507 4508 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4509 } 4510 4511 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4512 // FIXME: This shouldn't require another copy. 4513 return EmitAggExprToLValue(E); 4514 } 4515 4516 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4517 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4518 && "binding l-value to type which needs a temporary"); 4519 AggValueSlot Slot = CreateAggTemp(E->getType()); 4520 EmitCXXConstructExpr(E, Slot); 4521 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4522 } 4523 4524 LValue 4525 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4526 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4527 } 4528 4529 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4530 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4531 ConvertType(E->getType())); 4532 } 4533 4534 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4535 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4536 AlignmentSource::Decl); 4537 } 4538 4539 LValue 4540 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4541 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4542 Slot.setExternallyDestructed(); 4543 EmitAggExpr(E->getSubExpr(), Slot); 4544 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4545 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4546 } 4547 4548 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4549 RValue RV = EmitObjCMessageExpr(E); 4550 4551 if (!RV.isScalar()) 4552 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4553 AlignmentSource::Decl); 4554 4555 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4556 "Can't have a scalar return unless the return type is a " 4557 "reference type!"); 4558 4559 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4560 } 4561 4562 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4563 Address V = 4564 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4565 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4566 } 4567 4568 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4569 const ObjCIvarDecl *Ivar) { 4570 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4571 } 4572 4573 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4574 llvm::Value *BaseValue, 4575 const ObjCIvarDecl *Ivar, 4576 unsigned CVRQualifiers) { 4577 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4578 Ivar, CVRQualifiers); 4579 } 4580 4581 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4582 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4583 llvm::Value *BaseValue = nullptr; 4584 const Expr *BaseExpr = E->getBase(); 4585 Qualifiers BaseQuals; 4586 QualType ObjectTy; 4587 if (E->isArrow()) { 4588 BaseValue = EmitScalarExpr(BaseExpr); 4589 ObjectTy = BaseExpr->getType()->getPointeeType(); 4590 BaseQuals = ObjectTy.getQualifiers(); 4591 } else { 4592 LValue BaseLV = EmitLValue(BaseExpr); 4593 BaseValue = BaseLV.getPointer(); 4594 ObjectTy = BaseExpr->getType(); 4595 BaseQuals = ObjectTy.getQualifiers(); 4596 } 4597 4598 LValue LV = 4599 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4600 BaseQuals.getCVRQualifiers()); 4601 setObjCGCLValueClass(getContext(), E, LV); 4602 return LV; 4603 } 4604 4605 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4606 // Can only get l-value for message expression returning aggregate type 4607 RValue RV = EmitAnyExprToTemp(E); 4608 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4609 AlignmentSource::Decl); 4610 } 4611 4612 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4613 const CallExpr *E, ReturnValueSlot ReturnValue, 4614 llvm::Value *Chain) { 4615 // Get the actual function type. The callee type will always be a pointer to 4616 // function type or a block pointer type. 4617 assert(CalleeType->isFunctionPointerType() && 4618 "Call must have function pointer type!"); 4619 4620 const Decl *TargetDecl = 4621 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 4622 4623 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4624 // We can only guarantee that a function is called from the correct 4625 // context/function based on the appropriate target attributes, 4626 // so only check in the case where we have both always_inline and target 4627 // since otherwise we could be making a conditional call after a check for 4628 // the proper cpu features (and it won't cause code generation issues due to 4629 // function based code generation). 4630 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4631 TargetDecl->hasAttr<TargetAttr>()) 4632 checkTargetFeatures(E, FD); 4633 4634 CalleeType = getContext().getCanonicalType(CalleeType); 4635 4636 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 4637 4638 CGCallee Callee = OrigCallee; 4639 4640 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4641 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4642 if (llvm::Constant *PrefixSig = 4643 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4644 SanitizerScope SanScope(this); 4645 // Remove any (C++17) exception specifications, to allow calling e.g. a 4646 // noexcept function through a non-noexcept pointer. 4647 auto ProtoTy = 4648 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 4649 llvm::Constant *FTRTTIConst = 4650 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 4651 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4652 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4653 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4654 4655 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4656 4657 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4658 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4659 llvm::Value *CalleeSigPtr = 4660 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4661 llvm::Value *CalleeSig = 4662 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4663 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4664 4665 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4666 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4667 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4668 4669 EmitBlock(TypeCheck); 4670 llvm::Value *CalleeRTTIPtr = 4671 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4672 llvm::Value *CalleeRTTIEncoded = 4673 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4674 llvm::Value *CalleeRTTI = 4675 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4676 llvm::Value *CalleeRTTIMatch = 4677 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4678 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 4679 EmitCheckTypeDescriptor(CalleeType)}; 4680 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4681 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4682 4683 Builder.CreateBr(Cont); 4684 EmitBlock(Cont); 4685 } 4686 } 4687 4688 const auto *FnType = cast<FunctionType>(PointeeType); 4689 4690 // If we are checking indirect calls and this call is indirect, check that the 4691 // function pointer is a member of the bit set for the function type. 4692 if (SanOpts.has(SanitizerKind::CFIICall) && 4693 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4694 SanitizerScope SanScope(this); 4695 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4696 4697 llvm::Metadata *MD; 4698 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4699 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4700 else 4701 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4702 4703 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4704 4705 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4706 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4707 llvm::Value *TypeTest = Builder.CreateCall( 4708 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4709 4710 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4711 llvm::Constant *StaticData[] = { 4712 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4713 EmitCheckSourceLocation(E->getBeginLoc()), 4714 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4715 }; 4716 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4717 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4718 CastedCallee, StaticData); 4719 } else { 4720 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4721 SanitizerHandler::CFICheckFail, StaticData, 4722 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4723 } 4724 } 4725 4726 CallArgList Args; 4727 if (Chain) 4728 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4729 CGM.getContext().VoidPtrTy); 4730 4731 // C++17 requires that we evaluate arguments to a call using assignment syntax 4732 // right-to-left, and that we evaluate arguments to certain other operators 4733 // left-to-right. Note that we allow this to override the order dictated by 4734 // the calling convention on the MS ABI, which means that parameter 4735 // destruction order is not necessarily reverse construction order. 4736 // FIXME: Revisit this based on C++ committee response to unimplementability. 4737 EvaluationOrder Order = EvaluationOrder::Default; 4738 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4739 if (OCE->isAssignmentOp()) 4740 Order = EvaluationOrder::ForceRightToLeft; 4741 else { 4742 switch (OCE->getOperator()) { 4743 case OO_LessLess: 4744 case OO_GreaterGreater: 4745 case OO_AmpAmp: 4746 case OO_PipePipe: 4747 case OO_Comma: 4748 case OO_ArrowStar: 4749 Order = EvaluationOrder::ForceLeftToRight; 4750 break; 4751 default: 4752 break; 4753 } 4754 } 4755 } 4756 4757 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4758 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4759 4760 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4761 Args, FnType, /*isChainCall=*/Chain); 4762 4763 // C99 6.5.2.2p6: 4764 // If the expression that denotes the called function has a type 4765 // that does not include a prototype, [the default argument 4766 // promotions are performed]. If the number of arguments does not 4767 // equal the number of parameters, the behavior is undefined. If 4768 // the function is defined with a type that includes a prototype, 4769 // and either the prototype ends with an ellipsis (, ...) or the 4770 // types of the arguments after promotion are not compatible with 4771 // the types of the parameters, the behavior is undefined. If the 4772 // function is defined with a type that does not include a 4773 // prototype, and the types of the arguments after promotion are 4774 // not compatible with those of the parameters after promotion, 4775 // the behavior is undefined [except in some trivial cases]. 4776 // That is, in the general case, we should assume that a call 4777 // through an unprototyped function type works like a *non-variadic* 4778 // call. The way we make this work is to cast to the exact type 4779 // of the promoted arguments. 4780 // 4781 // Chain calls use this same code path to add the invisible chain parameter 4782 // to the function type. 4783 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4784 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4785 CalleeTy = CalleeTy->getPointerTo(); 4786 4787 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4788 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4789 Callee.setFunctionPointer(CalleePtr); 4790 } 4791 4792 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc()); 4793 } 4794 4795 LValue CodeGenFunction:: 4796 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4797 Address BaseAddr = Address::invalid(); 4798 if (E->getOpcode() == BO_PtrMemI) { 4799 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4800 } else { 4801 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4802 } 4803 4804 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4805 4806 const MemberPointerType *MPT 4807 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4808 4809 LValueBaseInfo BaseInfo; 4810 TBAAAccessInfo TBAAInfo; 4811 Address MemberAddr = 4812 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4813 &TBAAInfo); 4814 4815 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4816 } 4817 4818 /// Given the address of a temporary variable, produce an r-value of 4819 /// its type. 4820 RValue CodeGenFunction::convertTempToRValue(Address addr, 4821 QualType type, 4822 SourceLocation loc) { 4823 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4824 switch (getEvaluationKind(type)) { 4825 case TEK_Complex: 4826 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4827 case TEK_Aggregate: 4828 return lvalue.asAggregateRValue(); 4829 case TEK_Scalar: 4830 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4831 } 4832 llvm_unreachable("bad evaluation kind"); 4833 } 4834 4835 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4836 assert(Val->getType()->isFPOrFPVectorTy()); 4837 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4838 return; 4839 4840 llvm::MDBuilder MDHelper(getLLVMContext()); 4841 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4842 4843 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4844 } 4845 4846 namespace { 4847 struct LValueOrRValue { 4848 LValue LV; 4849 RValue RV; 4850 }; 4851 } 4852 4853 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4854 const PseudoObjectExpr *E, 4855 bool forLValue, 4856 AggValueSlot slot) { 4857 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4858 4859 // Find the result expression, if any. 4860 const Expr *resultExpr = E->getResultExpr(); 4861 LValueOrRValue result; 4862 4863 for (PseudoObjectExpr::const_semantics_iterator 4864 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4865 const Expr *semantic = *i; 4866 4867 // If this semantic expression is an opaque value, bind it 4868 // to the result of its source expression. 4869 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4870 // Skip unique OVEs. 4871 if (ov->isUnique()) { 4872 assert(ov != resultExpr && 4873 "A unique OVE cannot be used as the result expression"); 4874 continue; 4875 } 4876 4877 // If this is the result expression, we may need to evaluate 4878 // directly into the slot. 4879 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4880 OVMA opaqueData; 4881 if (ov == resultExpr && ov->isRValue() && !forLValue && 4882 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4883 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4884 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4885 AlignmentSource::Decl); 4886 opaqueData = OVMA::bind(CGF, ov, LV); 4887 result.RV = slot.asRValue(); 4888 4889 // Otherwise, emit as normal. 4890 } else { 4891 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4892 4893 // If this is the result, also evaluate the result now. 4894 if (ov == resultExpr) { 4895 if (forLValue) 4896 result.LV = CGF.EmitLValue(ov); 4897 else 4898 result.RV = CGF.EmitAnyExpr(ov, slot); 4899 } 4900 } 4901 4902 opaques.push_back(opaqueData); 4903 4904 // Otherwise, if the expression is the result, evaluate it 4905 // and remember the result. 4906 } else if (semantic == resultExpr) { 4907 if (forLValue) 4908 result.LV = CGF.EmitLValue(semantic); 4909 else 4910 result.RV = CGF.EmitAnyExpr(semantic, slot); 4911 4912 // Otherwise, evaluate the expression in an ignored context. 4913 } else { 4914 CGF.EmitIgnoredExpr(semantic); 4915 } 4916 } 4917 4918 // Unbind all the opaques now. 4919 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4920 opaques[i].unbind(CGF); 4921 4922 return result; 4923 } 4924 4925 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4926 AggValueSlot slot) { 4927 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4928 } 4929 4930 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4931 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4932 } 4933