1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
65                                           const Twine &Name,
66                                           llvm::Value *ArraySize,
67                                           bool CastToDefaultAddrSpace) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getQuantity());
70   llvm::Value *V = Alloca;
71   // Alloca always returns a pointer in alloca address space, which may
72   // be different from the type defined by the language. For example,
73   // in C++ the auto variables are in the default address space. Therefore
74   // cast alloca to the default address space when necessary.
75   if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) {
76     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
77     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
78     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
79     // otherwise alloca is inserted at the current insertion point of the
80     // builder.
81     if (!ArraySize)
82       Builder.SetInsertPoint(AllocaInsertPt);
83     V = getTargetHooks().performAddrSpaceCast(
84         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
85         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
86   }
87 
88   return Address(V, Align);
89 }
90 
91 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
92 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
93 /// insertion point of the builder.
94 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
95                                                     const Twine &Name,
96                                                     llvm::Value *ArraySize) {
97   if (ArraySize)
98     return Builder.CreateAlloca(Ty, ArraySize, Name);
99   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
100                               ArraySize, Name, AllocaInsertPt);
101 }
102 
103 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
104 /// default alignment of the corresponding LLVM type, which is *not*
105 /// guaranteed to be related in any way to the expected alignment of
106 /// an AST type that might have been lowered to Ty.
107 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
108                                                       const Twine &Name) {
109   CharUnits Align =
110     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
111   return CreateTempAlloca(Ty, Align, Name);
112 }
113 
114 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
115   assert(isa<llvm::AllocaInst>(Var.getPointer()));
116   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
117   Store->setAlignment(Var.getAlignment().getQuantity());
118   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
119   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
120 }
121 
122 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
123   CharUnits Align = getContext().getTypeAlignInChars(Ty);
124   return CreateTempAlloca(ConvertType(Ty), Align, Name);
125 }
126 
127 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
128                                        bool CastToDefaultAddrSpace) {
129   // FIXME: Should we prefer the preferred type alignment here?
130   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name,
131                        CastToDefaultAddrSpace);
132 }
133 
134 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
135                                        const Twine &Name,
136                                        bool CastToDefaultAddrSpace) {
137   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr,
138                           CastToDefaultAddrSpace);
139 }
140 
141 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
142 /// expression and compare the result against zero, returning an Int1Ty value.
143 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
144   PGO.setCurrentStmt(E);
145   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
146     llvm::Value *MemPtr = EmitScalarExpr(E);
147     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
148   }
149 
150   QualType BoolTy = getContext().BoolTy;
151   SourceLocation Loc = E->getExprLoc();
152   if (!E->getType()->isAnyComplexType())
153     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
154 
155   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
156                                        Loc);
157 }
158 
159 /// EmitIgnoredExpr - Emit code to compute the specified expression,
160 /// ignoring the result.
161 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
162   if (E->isRValue())
163     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
164 
165   // Just emit it as an l-value and drop the result.
166   EmitLValue(E);
167 }
168 
169 /// EmitAnyExpr - Emit code to compute the specified expression which
170 /// can have any type.  The result is returned as an RValue struct.
171 /// If this is an aggregate expression, AggSlot indicates where the
172 /// result should be returned.
173 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
174                                     AggValueSlot aggSlot,
175                                     bool ignoreResult) {
176   switch (getEvaluationKind(E->getType())) {
177   case TEK_Scalar:
178     return RValue::get(EmitScalarExpr(E, ignoreResult));
179   case TEK_Complex:
180     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
181   case TEK_Aggregate:
182     if (!ignoreResult && aggSlot.isIgnored())
183       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
184     EmitAggExpr(E, aggSlot);
185     return aggSlot.asRValue();
186   }
187   llvm_unreachable("bad evaluation kind");
188 }
189 
190 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
191 /// always be accessible even if no aggregate location is provided.
192 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
193   AggValueSlot AggSlot = AggValueSlot::ignored();
194 
195   if (hasAggregateEvaluationKind(E->getType()))
196     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
197   return EmitAnyExpr(E, AggSlot);
198 }
199 
200 /// EmitAnyExprToMem - Evaluate an expression into a given memory
201 /// location.
202 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
203                                        Address Location,
204                                        Qualifiers Quals,
205                                        bool IsInit) {
206   // FIXME: This function should take an LValue as an argument.
207   switch (getEvaluationKind(E->getType())) {
208   case TEK_Complex:
209     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
210                               /*isInit*/ false);
211     return;
212 
213   case TEK_Aggregate: {
214     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
215                                          AggValueSlot::IsDestructed_t(IsInit),
216                                          AggValueSlot::DoesNotNeedGCBarriers,
217                                          AggValueSlot::IsAliased_t(!IsInit)));
218     return;
219   }
220 
221   case TEK_Scalar: {
222     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
223     LValue LV = MakeAddrLValue(Location, E->getType());
224     EmitStoreThroughLValue(RV, LV);
225     return;
226   }
227   }
228   llvm_unreachable("bad evaluation kind");
229 }
230 
231 static void
232 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
233                      const Expr *E, Address ReferenceTemporary) {
234   // Objective-C++ ARC:
235   //   If we are binding a reference to a temporary that has ownership, we
236   //   need to perform retain/release operations on the temporary.
237   //
238   // FIXME: This should be looking at E, not M.
239   if (auto Lifetime = M->getType().getObjCLifetime()) {
240     switch (Lifetime) {
241     case Qualifiers::OCL_None:
242     case Qualifiers::OCL_ExplicitNone:
243       // Carry on to normal cleanup handling.
244       break;
245 
246     case Qualifiers::OCL_Autoreleasing:
247       // Nothing to do; cleaned up by an autorelease pool.
248       return;
249 
250     case Qualifiers::OCL_Strong:
251     case Qualifiers::OCL_Weak:
252       switch (StorageDuration Duration = M->getStorageDuration()) {
253       case SD_Static:
254         // Note: we intentionally do not register a cleanup to release
255         // the object on program termination.
256         return;
257 
258       case SD_Thread:
259         // FIXME: We should probably register a cleanup in this case.
260         return;
261 
262       case SD_Automatic:
263       case SD_FullExpression:
264         CodeGenFunction::Destroyer *Destroy;
265         CleanupKind CleanupKind;
266         if (Lifetime == Qualifiers::OCL_Strong) {
267           const ValueDecl *VD = M->getExtendingDecl();
268           bool Precise =
269               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
270           CleanupKind = CGF.getARCCleanupKind();
271           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
272                             : &CodeGenFunction::destroyARCStrongImprecise;
273         } else {
274           // __weak objects always get EH cleanups; otherwise, exceptions
275           // could cause really nasty crashes instead of mere leaks.
276           CleanupKind = NormalAndEHCleanup;
277           Destroy = &CodeGenFunction::destroyARCWeak;
278         }
279         if (Duration == SD_FullExpression)
280           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
281                           M->getType(), *Destroy,
282                           CleanupKind & EHCleanup);
283         else
284           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
285                                           M->getType(),
286                                           *Destroy, CleanupKind & EHCleanup);
287         return;
288 
289       case SD_Dynamic:
290         llvm_unreachable("temporary cannot have dynamic storage duration");
291       }
292       llvm_unreachable("unknown storage duration");
293     }
294   }
295 
296   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
297   if (const RecordType *RT =
298           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
299     // Get the destructor for the reference temporary.
300     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
301     if (!ClassDecl->hasTrivialDestructor())
302       ReferenceTemporaryDtor = ClassDecl->getDestructor();
303   }
304 
305   if (!ReferenceTemporaryDtor)
306     return;
307 
308   // Call the destructor for the temporary.
309   switch (M->getStorageDuration()) {
310   case SD_Static:
311   case SD_Thread: {
312     llvm::Constant *CleanupFn;
313     llvm::Constant *CleanupArg;
314     if (E->getType()->isArrayType()) {
315       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
316           ReferenceTemporary, E->getType(),
317           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
318           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
319       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
320     } else {
321       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
322                                                StructorType::Complete);
323       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
324     }
325     CGF.CGM.getCXXABI().registerGlobalDtor(
326         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
327     break;
328   }
329 
330   case SD_FullExpression:
331     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
332                     CodeGenFunction::destroyCXXObject,
333                     CGF.getLangOpts().Exceptions);
334     break;
335 
336   case SD_Automatic:
337     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
338                                     ReferenceTemporary, E->getType(),
339                                     CodeGenFunction::destroyCXXObject,
340                                     CGF.getLangOpts().Exceptions);
341     break;
342 
343   case SD_Dynamic:
344     llvm_unreachable("temporary cannot have dynamic storage duration");
345   }
346 }
347 
348 static Address createReferenceTemporary(CodeGenFunction &CGF,
349                                         const MaterializeTemporaryExpr *M,
350                                         const Expr *Inner) {
351   auto &TCG = CGF.getTargetHooks();
352   switch (M->getStorageDuration()) {
353   case SD_FullExpression:
354   case SD_Automatic: {
355     // If we have a constant temporary array or record try to promote it into a
356     // constant global under the same rules a normal constant would've been
357     // promoted. This is easier on the optimizer and generally emits fewer
358     // instructions.
359     QualType Ty = Inner->getType();
360     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
361         (Ty->isArrayType() || Ty->isRecordType()) &&
362         CGF.CGM.isTypeConstant(Ty, true))
363       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
364         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
365           auto AS = AddrSpace.getValue();
366           auto *GV = new llvm::GlobalVariable(
367               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
368               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
369               llvm::GlobalValue::NotThreadLocal,
370               CGF.getContext().getTargetAddressSpace(AS));
371           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
372           GV->setAlignment(alignment.getQuantity());
373           llvm::Constant *C = GV;
374           if (AS != LangAS::Default)
375             C = TCG.performAddrSpaceCast(
376                 CGF.CGM, GV, AS, LangAS::Default,
377                 GV->getValueType()->getPointerTo(
378                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
379           // FIXME: Should we put the new global into a COMDAT?
380           return Address(C, alignment);
381         }
382       }
383     return CGF.CreateMemTemp(Ty, "ref.tmp");
384   }
385   case SD_Thread:
386   case SD_Static:
387     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
388 
389   case SD_Dynamic:
390     llvm_unreachable("temporary can't have dynamic storage duration");
391   }
392   llvm_unreachable("unknown storage duration");
393 }
394 
395 LValue CodeGenFunction::
396 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
397   const Expr *E = M->GetTemporaryExpr();
398 
399     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
400     // as that will cause the lifetime adjustment to be lost for ARC
401   auto ownership = M->getType().getObjCLifetime();
402   if (ownership != Qualifiers::OCL_None &&
403       ownership != Qualifiers::OCL_ExplicitNone) {
404     Address Object = createReferenceTemporary(*this, M, E);
405     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
406       Object = Address(llvm::ConstantExpr::getBitCast(Var,
407                            ConvertTypeForMem(E->getType())
408                              ->getPointerTo(Object.getAddressSpace())),
409                        Object.getAlignment());
410 
411       // createReferenceTemporary will promote the temporary to a global with a
412       // constant initializer if it can.  It can only do this to a value of
413       // ARC-manageable type if the value is global and therefore "immune" to
414       // ref-counting operations.  Therefore we have no need to emit either a
415       // dynamic initialization or a cleanup and we can just return the address
416       // of the temporary.
417       if (Var->hasInitializer())
418         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
419 
420       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
421     }
422     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
423                                        AlignmentSource::Decl);
424 
425     switch (getEvaluationKind(E->getType())) {
426     default: llvm_unreachable("expected scalar or aggregate expression");
427     case TEK_Scalar:
428       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
429       break;
430     case TEK_Aggregate: {
431       EmitAggExpr(E, AggValueSlot::forAddr(Object,
432                                            E->getType().getQualifiers(),
433                                            AggValueSlot::IsDestructed,
434                                            AggValueSlot::DoesNotNeedGCBarriers,
435                                            AggValueSlot::IsNotAliased));
436       break;
437     }
438     }
439 
440     pushTemporaryCleanup(*this, M, E, Object);
441     return RefTempDst;
442   }
443 
444   SmallVector<const Expr *, 2> CommaLHSs;
445   SmallVector<SubobjectAdjustment, 2> Adjustments;
446   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
447 
448   for (const auto &Ignored : CommaLHSs)
449     EmitIgnoredExpr(Ignored);
450 
451   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
452     if (opaque->getType()->isRecordType()) {
453       assert(Adjustments.empty());
454       return EmitOpaqueValueLValue(opaque);
455     }
456   }
457 
458   // Create and initialize the reference temporary.
459   Address Object = createReferenceTemporary(*this, M, E);
460   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
461           Object.getPointer()->stripPointerCasts())) {
462     Object = Address(llvm::ConstantExpr::getBitCast(
463                          cast<llvm::Constant>(Object.getPointer()),
464                          ConvertTypeForMem(E->getType())->getPointerTo()),
465                      Object.getAlignment());
466     // If the temporary is a global and has a constant initializer or is a
467     // constant temporary that we promoted to a global, we may have already
468     // initialized it.
469     if (!Var->hasInitializer()) {
470       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
471       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
472     }
473   } else {
474     switch (M->getStorageDuration()) {
475     case SD_Automatic:
476     case SD_FullExpression:
477       if (auto *Size = EmitLifetimeStart(
478               CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
479               Object.getPointer())) {
480         if (M->getStorageDuration() == SD_Automatic)
481           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
482                                                     Object, Size);
483         else
484           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
485                                                Size);
486       }
487       break;
488     default:
489       break;
490     }
491     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
492   }
493   pushTemporaryCleanup(*this, M, E, Object);
494 
495   // Perform derived-to-base casts and/or field accesses, to get from the
496   // temporary object we created (and, potentially, for which we extended
497   // the lifetime) to the subobject we're binding the reference to.
498   for (unsigned I = Adjustments.size(); I != 0; --I) {
499     SubobjectAdjustment &Adjustment = Adjustments[I-1];
500     switch (Adjustment.Kind) {
501     case SubobjectAdjustment::DerivedToBaseAdjustment:
502       Object =
503           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
504                                 Adjustment.DerivedToBase.BasePath->path_begin(),
505                                 Adjustment.DerivedToBase.BasePath->path_end(),
506                                 /*NullCheckValue=*/ false, E->getExprLoc());
507       break;
508 
509     case SubobjectAdjustment::FieldAdjustment: {
510       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
511       LV = EmitLValueForField(LV, Adjustment.Field);
512       assert(LV.isSimple() &&
513              "materialized temporary field is not a simple lvalue");
514       Object = LV.getAddress();
515       break;
516     }
517 
518     case SubobjectAdjustment::MemberPointerAdjustment: {
519       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
520       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
521                                                Adjustment.Ptr.MPT);
522       break;
523     }
524     }
525   }
526 
527   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
528 }
529 
530 RValue
531 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
532   // Emit the expression as an lvalue.
533   LValue LV = EmitLValue(E);
534   assert(LV.isSimple());
535   llvm::Value *Value = LV.getPointer();
536 
537   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
538     // C++11 [dcl.ref]p5 (as amended by core issue 453):
539     //   If a glvalue to which a reference is directly bound designates neither
540     //   an existing object or function of an appropriate type nor a region of
541     //   storage of suitable size and alignment to contain an object of the
542     //   reference's type, the behavior is undefined.
543     QualType Ty = E->getType();
544     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
545   }
546 
547   return RValue::get(Value);
548 }
549 
550 
551 /// getAccessedFieldNo - Given an encoded value and a result number, return the
552 /// input field number being accessed.
553 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
554                                              const llvm::Constant *Elts) {
555   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
556       ->getZExtValue();
557 }
558 
559 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
560 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
561                                     llvm::Value *High) {
562   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
563   llvm::Value *K47 = Builder.getInt64(47);
564   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
565   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
566   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
567   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
568   return Builder.CreateMul(B1, KMul);
569 }
570 
571 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
572   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
573          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
574 }
575 
576 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
577   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
578   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
579          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
580           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
581           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
582 }
583 
584 bool CodeGenFunction::sanitizePerformTypeCheck() const {
585   return SanOpts.has(SanitizerKind::Null) |
586          SanOpts.has(SanitizerKind::Alignment) |
587          SanOpts.has(SanitizerKind::ObjectSize) |
588          SanOpts.has(SanitizerKind::Vptr);
589 }
590 
591 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
592                                     llvm::Value *Ptr, QualType Ty,
593                                     CharUnits Alignment,
594                                     SanitizerSet SkippedChecks) {
595   if (!sanitizePerformTypeCheck())
596     return;
597 
598   // Don't check pointers outside the default address space. The null check
599   // isn't correct, the object-size check isn't supported by LLVM, and we can't
600   // communicate the addresses to the runtime handler for the vptr check.
601   if (Ptr->getType()->getPointerAddressSpace())
602     return;
603 
604   // Don't check pointers to volatile data. The behavior here is implementation-
605   // defined.
606   if (Ty.isVolatileQualified())
607     return;
608 
609   SanitizerScope SanScope(this);
610 
611   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
612   llvm::BasicBlock *Done = nullptr;
613 
614   // Quickly determine whether we have a pointer to an alloca. It's possible
615   // to skip null checks, and some alignment checks, for these pointers. This
616   // can reduce compile-time significantly.
617   auto PtrToAlloca =
618       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
619 
620   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
621   llvm::Value *IsNonNull = nullptr;
622   bool IsGuaranteedNonNull =
623       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
624   bool AllowNullPointers = isNullPointerAllowed(TCK);
625   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
626       !IsGuaranteedNonNull) {
627     // The glvalue must not be an empty glvalue.
628     IsNonNull = Builder.CreateIsNotNull(Ptr);
629 
630     // The IR builder can constant-fold the null check if the pointer points to
631     // a constant.
632     IsGuaranteedNonNull = IsNonNull == True;
633 
634     // Skip the null check if the pointer is known to be non-null.
635     if (!IsGuaranteedNonNull) {
636       if (AllowNullPointers) {
637         // When performing pointer casts, it's OK if the value is null.
638         // Skip the remaining checks in that case.
639         Done = createBasicBlock("null");
640         llvm::BasicBlock *Rest = createBasicBlock("not.null");
641         Builder.CreateCondBr(IsNonNull, Rest, Done);
642         EmitBlock(Rest);
643       } else {
644         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
645       }
646     }
647   }
648 
649   if (SanOpts.has(SanitizerKind::ObjectSize) &&
650       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
651       !Ty->isIncompleteType()) {
652     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
653 
654     // The glvalue must refer to a large enough storage region.
655     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
656     //        to check this.
657     // FIXME: Get object address space
658     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
659     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
660     llvm::Value *Min = Builder.getFalse();
661     llvm::Value *NullIsUnknown = Builder.getFalse();
662     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
663     llvm::Value *LargeEnough = Builder.CreateICmpUGE(
664         Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}),
665         llvm::ConstantInt::get(IntPtrTy, Size));
666     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
667   }
668 
669   uint64_t AlignVal = 0;
670   llvm::Value *PtrAsInt = nullptr;
671 
672   if (SanOpts.has(SanitizerKind::Alignment) &&
673       !SkippedChecks.has(SanitizerKind::Alignment)) {
674     AlignVal = Alignment.getQuantity();
675     if (!Ty->isIncompleteType() && !AlignVal)
676       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
677 
678     // The glvalue must be suitably aligned.
679     if (AlignVal > 1 &&
680         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
681       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
682       llvm::Value *Align = Builder.CreateAnd(
683           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
684       llvm::Value *Aligned =
685           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
686       if (Aligned != True)
687         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
688     }
689   }
690 
691   if (Checks.size() > 0) {
692     // Make sure we're not losing information. Alignment needs to be a power of
693     // 2
694     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
695     llvm::Constant *StaticData[] = {
696         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
697         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
698         llvm::ConstantInt::get(Int8Ty, TCK)};
699     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
700               PtrAsInt ? PtrAsInt : Ptr);
701   }
702 
703   // If possible, check that the vptr indicates that there is a subobject of
704   // type Ty at offset zero within this object.
705   //
706   // C++11 [basic.life]p5,6:
707   //   [For storage which does not refer to an object within its lifetime]
708   //   The program has undefined behavior if:
709   //    -- the [pointer or glvalue] is used to access a non-static data member
710   //       or call a non-static member function
711   if (SanOpts.has(SanitizerKind::Vptr) &&
712       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
713     // Ensure that the pointer is non-null before loading it. If there is no
714     // compile-time guarantee, reuse the run-time null check or emit a new one.
715     if (!IsGuaranteedNonNull) {
716       if (!IsNonNull)
717         IsNonNull = Builder.CreateIsNotNull(Ptr);
718       if (!Done)
719         Done = createBasicBlock("vptr.null");
720       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
721       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
722       EmitBlock(VptrNotNull);
723     }
724 
725     // Compute a hash of the mangled name of the type.
726     //
727     // FIXME: This is not guaranteed to be deterministic! Move to a
728     //        fingerprinting mechanism once LLVM provides one. For the time
729     //        being the implementation happens to be deterministic.
730     SmallString<64> MangledName;
731     llvm::raw_svector_ostream Out(MangledName);
732     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
733                                                      Out);
734 
735     // Blacklist based on the mangled type.
736     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
737             SanitizerKind::Vptr, Out.str())) {
738       llvm::hash_code TypeHash = hash_value(Out.str());
739 
740       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
741       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
742       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
743       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
744       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
745       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
746 
747       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
748       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
749 
750       // Look the hash up in our cache.
751       const int CacheSize = 128;
752       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
753       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
754                                                      "__ubsan_vptr_type_cache");
755       llvm::Value *Slot = Builder.CreateAnd(Hash,
756                                             llvm::ConstantInt::get(IntPtrTy,
757                                                                    CacheSize-1));
758       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
759       llvm::Value *CacheVal =
760         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
761                                   getPointerAlign());
762 
763       // If the hash isn't in the cache, call a runtime handler to perform the
764       // hard work of checking whether the vptr is for an object of the right
765       // type. This will either fill in the cache and return, or produce a
766       // diagnostic.
767       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
768       llvm::Constant *StaticData[] = {
769         EmitCheckSourceLocation(Loc),
770         EmitCheckTypeDescriptor(Ty),
771         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
772         llvm::ConstantInt::get(Int8Ty, TCK)
773       };
774       llvm::Value *DynamicData[] = { Ptr, Hash };
775       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
776                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
777                 DynamicData);
778     }
779   }
780 
781   if (Done) {
782     Builder.CreateBr(Done);
783     EmitBlock(Done);
784   }
785 }
786 
787 /// Determine whether this expression refers to a flexible array member in a
788 /// struct. We disable array bounds checks for such members.
789 static bool isFlexibleArrayMemberExpr(const Expr *E) {
790   // For compatibility with existing code, we treat arrays of length 0 or
791   // 1 as flexible array members.
792   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
793   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
794     if (CAT->getSize().ugt(1))
795       return false;
796   } else if (!isa<IncompleteArrayType>(AT))
797     return false;
798 
799   E = E->IgnoreParens();
800 
801   // A flexible array member must be the last member in the class.
802   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
803     // FIXME: If the base type of the member expr is not FD->getParent(),
804     // this should not be treated as a flexible array member access.
805     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
806       RecordDecl::field_iterator FI(
807           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
808       return ++FI == FD->getParent()->field_end();
809     }
810   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
811     return IRE->getDecl()->getNextIvar() == nullptr;
812   }
813 
814   return false;
815 }
816 
817 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
818                                                    QualType EltTy) {
819   ASTContext &C = getContext();
820   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
821   if (!EltSize)
822     return nullptr;
823 
824   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
825   if (!ArrayDeclRef)
826     return nullptr;
827 
828   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
829   if (!ParamDecl)
830     return nullptr;
831 
832   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
833   if (!POSAttr)
834     return nullptr;
835 
836   // Don't load the size if it's a lower bound.
837   int POSType = POSAttr->getType();
838   if (POSType != 0 && POSType != 1)
839     return nullptr;
840 
841   // Find the implicit size parameter.
842   auto PassedSizeIt = SizeArguments.find(ParamDecl);
843   if (PassedSizeIt == SizeArguments.end())
844     return nullptr;
845 
846   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
847   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
848   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
849   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
850                                               C.getSizeType(), E->getExprLoc());
851   llvm::Value *SizeOfElement =
852       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
853   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
854 }
855 
856 /// If Base is known to point to the start of an array, return the length of
857 /// that array. Return 0 if the length cannot be determined.
858 static llvm::Value *getArrayIndexingBound(
859     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
860   // For the vector indexing extension, the bound is the number of elements.
861   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
862     IndexedType = Base->getType();
863     return CGF.Builder.getInt32(VT->getNumElements());
864   }
865 
866   Base = Base->IgnoreParens();
867 
868   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
869     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
870         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
871       IndexedType = CE->getSubExpr()->getType();
872       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
873       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
874         return CGF.Builder.getInt(CAT->getSize());
875       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
876         return CGF.getVLASize(VAT).NumElts;
877       // Ignore pass_object_size here. It's not applicable on decayed pointers.
878     }
879   }
880 
881   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
882   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
883     IndexedType = Base->getType();
884     return POS;
885   }
886 
887   return nullptr;
888 }
889 
890 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
891                                       llvm::Value *Index, QualType IndexType,
892                                       bool Accessed) {
893   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
894          "should not be called unless adding bounds checks");
895   SanitizerScope SanScope(this);
896 
897   QualType IndexedType;
898   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
899   if (!Bound)
900     return;
901 
902   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
903   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
904   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
905 
906   llvm::Constant *StaticData[] = {
907     EmitCheckSourceLocation(E->getExprLoc()),
908     EmitCheckTypeDescriptor(IndexedType),
909     EmitCheckTypeDescriptor(IndexType)
910   };
911   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
912                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
913   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
914             SanitizerHandler::OutOfBounds, StaticData, Index);
915 }
916 
917 
918 CodeGenFunction::ComplexPairTy CodeGenFunction::
919 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
920                          bool isInc, bool isPre) {
921   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
922 
923   llvm::Value *NextVal;
924   if (isa<llvm::IntegerType>(InVal.first->getType())) {
925     uint64_t AmountVal = isInc ? 1 : -1;
926     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
927 
928     // Add the inc/dec to the real part.
929     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
930   } else {
931     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
932     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
933     if (!isInc)
934       FVal.changeSign();
935     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
936 
937     // Add the inc/dec to the real part.
938     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
939   }
940 
941   ComplexPairTy IncVal(NextVal, InVal.second);
942 
943   // Store the updated result through the lvalue.
944   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
945 
946   // If this is a postinc, return the value read from memory, otherwise use the
947   // updated value.
948   return isPre ? IncVal : InVal;
949 }
950 
951 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
952                                              CodeGenFunction *CGF) {
953   // Bind VLAs in the cast type.
954   if (CGF && E->getType()->isVariablyModifiedType())
955     CGF->EmitVariablyModifiedType(E->getType());
956 
957   if (CGDebugInfo *DI = getModuleDebugInfo())
958     DI->EmitExplicitCastType(E->getType());
959 }
960 
961 //===----------------------------------------------------------------------===//
962 //                         LValue Expression Emission
963 //===----------------------------------------------------------------------===//
964 
965 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
966 /// derive a more accurate bound on the alignment of the pointer.
967 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
968                                                   LValueBaseInfo *BaseInfo,
969                                                   TBAAAccessInfo *TBAAInfo) {
970   // We allow this with ObjC object pointers because of fragile ABIs.
971   assert(E->getType()->isPointerType() ||
972          E->getType()->isObjCObjectPointerType());
973   E = E->IgnoreParens();
974 
975   // Casts:
976   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
977     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
978       CGM.EmitExplicitCastExprType(ECE, this);
979 
980     switch (CE->getCastKind()) {
981     // Non-converting casts (but not C's implicit conversion from void*).
982     case CK_BitCast:
983     case CK_NoOp:
984     case CK_AddressSpaceConversion:
985       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
986         if (PtrTy->getPointeeType()->isVoidType())
987           break;
988 
989         LValueBaseInfo InnerBaseInfo;
990         TBAAAccessInfo InnerTBAAInfo;
991         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
992                                                 &InnerBaseInfo,
993                                                 &InnerTBAAInfo);
994         if (BaseInfo) *BaseInfo = InnerBaseInfo;
995         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
996 
997         if (isa<ExplicitCastExpr>(CE)) {
998           LValueBaseInfo TargetTypeBaseInfo;
999           TBAAAccessInfo TargetTypeTBAAInfo;
1000           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1001                                                            &TargetTypeBaseInfo,
1002                                                            &TargetTypeTBAAInfo);
1003           if (TBAAInfo)
1004             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1005                                                  TargetTypeTBAAInfo);
1006           // If the source l-value is opaque, honor the alignment of the
1007           // casted-to type.
1008           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1009             if (BaseInfo)
1010               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1011             Addr = Address(Addr.getPointer(), Align);
1012           }
1013         }
1014 
1015         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1016             CE->getCastKind() == CK_BitCast) {
1017           if (auto PT = E->getType()->getAs<PointerType>())
1018             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1019                                       /*MayBeNull=*/true,
1020                                       CodeGenFunction::CFITCK_UnrelatedCast,
1021                                       CE->getLocStart());
1022         }
1023         return CE->getCastKind() != CK_AddressSpaceConversion
1024                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1025                    : Builder.CreateAddrSpaceCast(Addr,
1026                                                  ConvertType(E->getType()));
1027       }
1028       break;
1029 
1030     // Array-to-pointer decay.
1031     case CK_ArrayToPointerDecay:
1032       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1033 
1034     // Derived-to-base conversions.
1035     case CK_UncheckedDerivedToBase:
1036     case CK_DerivedToBase: {
1037       // TODO: Support accesses to members of base classes in TBAA. For now, we
1038       // conservatively pretend that the complete object is of the base class
1039       // type.
1040       if (TBAAInfo)
1041         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1042       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1043       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1044       return GetAddressOfBaseClass(Addr, Derived,
1045                                    CE->path_begin(), CE->path_end(),
1046                                    ShouldNullCheckClassCastValue(CE),
1047                                    CE->getExprLoc());
1048     }
1049 
1050     // TODO: Is there any reason to treat base-to-derived conversions
1051     // specially?
1052     default:
1053       break;
1054     }
1055   }
1056 
1057   // Unary &.
1058   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1059     if (UO->getOpcode() == UO_AddrOf) {
1060       LValue LV = EmitLValue(UO->getSubExpr());
1061       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1062       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1063       return LV.getAddress();
1064     }
1065   }
1066 
1067   // TODO: conditional operators, comma.
1068 
1069   // Otherwise, use the alignment of the type.
1070   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1071                                                    TBAAInfo);
1072   return Address(EmitScalarExpr(E), Align);
1073 }
1074 
1075 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1076   if (Ty->isVoidType())
1077     return RValue::get(nullptr);
1078 
1079   switch (getEvaluationKind(Ty)) {
1080   case TEK_Complex: {
1081     llvm::Type *EltTy =
1082       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1083     llvm::Value *U = llvm::UndefValue::get(EltTy);
1084     return RValue::getComplex(std::make_pair(U, U));
1085   }
1086 
1087   // If this is a use of an undefined aggregate type, the aggregate must have an
1088   // identifiable address.  Just because the contents of the value are undefined
1089   // doesn't mean that the address can't be taken and compared.
1090   case TEK_Aggregate: {
1091     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1092     return RValue::getAggregate(DestPtr);
1093   }
1094 
1095   case TEK_Scalar:
1096     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1097   }
1098   llvm_unreachable("bad evaluation kind");
1099 }
1100 
1101 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1102                                               const char *Name) {
1103   ErrorUnsupported(E, Name);
1104   return GetUndefRValue(E->getType());
1105 }
1106 
1107 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1108                                               const char *Name) {
1109   ErrorUnsupported(E, Name);
1110   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1111   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1112                         E->getType());
1113 }
1114 
1115 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1116   const Expr *Base = Obj;
1117   while (!isa<CXXThisExpr>(Base)) {
1118     // The result of a dynamic_cast can be null.
1119     if (isa<CXXDynamicCastExpr>(Base))
1120       return false;
1121 
1122     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1123       Base = CE->getSubExpr();
1124     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1125       Base = PE->getSubExpr();
1126     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1127       if (UO->getOpcode() == UO_Extension)
1128         Base = UO->getSubExpr();
1129       else
1130         return false;
1131     } else {
1132       return false;
1133     }
1134   }
1135   return true;
1136 }
1137 
1138 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1139   LValue LV;
1140   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1141     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1142   else
1143     LV = EmitLValue(E);
1144   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1145     SanitizerSet SkippedChecks;
1146     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1147       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1148       if (IsBaseCXXThis)
1149         SkippedChecks.set(SanitizerKind::Alignment, true);
1150       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1151         SkippedChecks.set(SanitizerKind::Null, true);
1152     }
1153     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1154                   E->getType(), LV.getAlignment(), SkippedChecks);
1155   }
1156   return LV;
1157 }
1158 
1159 /// EmitLValue - Emit code to compute a designator that specifies the location
1160 /// of the expression.
1161 ///
1162 /// This can return one of two things: a simple address or a bitfield reference.
1163 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1164 /// an LLVM pointer type.
1165 ///
1166 /// If this returns a bitfield reference, nothing about the pointee type of the
1167 /// LLVM value is known: For example, it may not be a pointer to an integer.
1168 ///
1169 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1170 /// this method guarantees that the returned pointer type will point to an LLVM
1171 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1172 /// length type, this is not possible.
1173 ///
1174 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1175   ApplyDebugLocation DL(*this, E);
1176   switch (E->getStmtClass()) {
1177   default: return EmitUnsupportedLValue(E, "l-value expression");
1178 
1179   case Expr::ObjCPropertyRefExprClass:
1180     llvm_unreachable("cannot emit a property reference directly");
1181 
1182   case Expr::ObjCSelectorExprClass:
1183     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1184   case Expr::ObjCIsaExprClass:
1185     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1186   case Expr::BinaryOperatorClass:
1187     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1188   case Expr::CompoundAssignOperatorClass: {
1189     QualType Ty = E->getType();
1190     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1191       Ty = AT->getValueType();
1192     if (!Ty->isAnyComplexType())
1193       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1194     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1195   }
1196   case Expr::CallExprClass:
1197   case Expr::CXXMemberCallExprClass:
1198   case Expr::CXXOperatorCallExprClass:
1199   case Expr::UserDefinedLiteralClass:
1200     return EmitCallExprLValue(cast<CallExpr>(E));
1201   case Expr::VAArgExprClass:
1202     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1203   case Expr::DeclRefExprClass:
1204     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1205   case Expr::ParenExprClass:
1206     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1207   case Expr::GenericSelectionExprClass:
1208     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1209   case Expr::PredefinedExprClass:
1210     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1211   case Expr::StringLiteralClass:
1212     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1213   case Expr::ObjCEncodeExprClass:
1214     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1215   case Expr::PseudoObjectExprClass:
1216     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1217   case Expr::InitListExprClass:
1218     return EmitInitListLValue(cast<InitListExpr>(E));
1219   case Expr::CXXTemporaryObjectExprClass:
1220   case Expr::CXXConstructExprClass:
1221     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1222   case Expr::CXXBindTemporaryExprClass:
1223     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1224   case Expr::CXXUuidofExprClass:
1225     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1226   case Expr::LambdaExprClass:
1227     return EmitLambdaLValue(cast<LambdaExpr>(E));
1228 
1229   case Expr::ExprWithCleanupsClass: {
1230     const auto *cleanups = cast<ExprWithCleanups>(E);
1231     enterFullExpression(cleanups);
1232     RunCleanupsScope Scope(*this);
1233     LValue LV = EmitLValue(cleanups->getSubExpr());
1234     if (LV.isSimple()) {
1235       // Defend against branches out of gnu statement expressions surrounded by
1236       // cleanups.
1237       llvm::Value *V = LV.getPointer();
1238       Scope.ForceCleanup({&V});
1239       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1240                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1241     }
1242     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1243     // bitfield lvalue or some other non-simple lvalue?
1244     return LV;
1245   }
1246 
1247   case Expr::CXXDefaultArgExprClass:
1248     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1249   case Expr::CXXDefaultInitExprClass: {
1250     CXXDefaultInitExprScope Scope(*this);
1251     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1252   }
1253   case Expr::CXXTypeidExprClass:
1254     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1255 
1256   case Expr::ObjCMessageExprClass:
1257     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1258   case Expr::ObjCIvarRefExprClass:
1259     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1260   case Expr::StmtExprClass:
1261     return EmitStmtExprLValue(cast<StmtExpr>(E));
1262   case Expr::UnaryOperatorClass:
1263     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1264   case Expr::ArraySubscriptExprClass:
1265     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1266   case Expr::OMPArraySectionExprClass:
1267     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1268   case Expr::ExtVectorElementExprClass:
1269     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1270   case Expr::MemberExprClass:
1271     return EmitMemberExpr(cast<MemberExpr>(E));
1272   case Expr::CompoundLiteralExprClass:
1273     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1274   case Expr::ConditionalOperatorClass:
1275     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1276   case Expr::BinaryConditionalOperatorClass:
1277     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1278   case Expr::ChooseExprClass:
1279     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1280   case Expr::OpaqueValueExprClass:
1281     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1282   case Expr::SubstNonTypeTemplateParmExprClass:
1283     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1284   case Expr::ImplicitCastExprClass:
1285   case Expr::CStyleCastExprClass:
1286   case Expr::CXXFunctionalCastExprClass:
1287   case Expr::CXXStaticCastExprClass:
1288   case Expr::CXXDynamicCastExprClass:
1289   case Expr::CXXReinterpretCastExprClass:
1290   case Expr::CXXConstCastExprClass:
1291   case Expr::ObjCBridgedCastExprClass:
1292     return EmitCastLValue(cast<CastExpr>(E));
1293 
1294   case Expr::MaterializeTemporaryExprClass:
1295     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1296 
1297   case Expr::CoawaitExprClass:
1298     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1299   case Expr::CoyieldExprClass:
1300     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1301   }
1302 }
1303 
1304 /// Given an object of the given canonical type, can we safely copy a
1305 /// value out of it based on its initializer?
1306 static bool isConstantEmittableObjectType(QualType type) {
1307   assert(type.isCanonical());
1308   assert(!type->isReferenceType());
1309 
1310   // Must be const-qualified but non-volatile.
1311   Qualifiers qs = type.getLocalQualifiers();
1312   if (!qs.hasConst() || qs.hasVolatile()) return false;
1313 
1314   // Otherwise, all object types satisfy this except C++ classes with
1315   // mutable subobjects or non-trivial copy/destroy behavior.
1316   if (const auto *RT = dyn_cast<RecordType>(type))
1317     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1318       if (RD->hasMutableFields() || !RD->isTrivial())
1319         return false;
1320 
1321   return true;
1322 }
1323 
1324 /// Can we constant-emit a load of a reference to a variable of the
1325 /// given type?  This is different from predicates like
1326 /// Decl::isUsableInConstantExpressions because we do want it to apply
1327 /// in situations that don't necessarily satisfy the language's rules
1328 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1329 /// to do this with const float variables even if those variables
1330 /// aren't marked 'constexpr'.
1331 enum ConstantEmissionKind {
1332   CEK_None,
1333   CEK_AsReferenceOnly,
1334   CEK_AsValueOrReference,
1335   CEK_AsValueOnly
1336 };
1337 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1338   type = type.getCanonicalType();
1339   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1340     if (isConstantEmittableObjectType(ref->getPointeeType()))
1341       return CEK_AsValueOrReference;
1342     return CEK_AsReferenceOnly;
1343   }
1344   if (isConstantEmittableObjectType(type))
1345     return CEK_AsValueOnly;
1346   return CEK_None;
1347 }
1348 
1349 /// Try to emit a reference to the given value without producing it as
1350 /// an l-value.  This is actually more than an optimization: we can't
1351 /// produce an l-value for variables that we never actually captured
1352 /// in a block or lambda, which means const int variables or constexpr
1353 /// literals or similar.
1354 CodeGenFunction::ConstantEmission
1355 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1356   ValueDecl *value = refExpr->getDecl();
1357 
1358   // The value needs to be an enum constant or a constant variable.
1359   ConstantEmissionKind CEK;
1360   if (isa<ParmVarDecl>(value)) {
1361     CEK = CEK_None;
1362   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1363     CEK = checkVarTypeForConstantEmission(var->getType());
1364   } else if (isa<EnumConstantDecl>(value)) {
1365     CEK = CEK_AsValueOnly;
1366   } else {
1367     CEK = CEK_None;
1368   }
1369   if (CEK == CEK_None) return ConstantEmission();
1370 
1371   Expr::EvalResult result;
1372   bool resultIsReference;
1373   QualType resultType;
1374 
1375   // It's best to evaluate all the way as an r-value if that's permitted.
1376   if (CEK != CEK_AsReferenceOnly &&
1377       refExpr->EvaluateAsRValue(result, getContext())) {
1378     resultIsReference = false;
1379     resultType = refExpr->getType();
1380 
1381   // Otherwise, try to evaluate as an l-value.
1382   } else if (CEK != CEK_AsValueOnly &&
1383              refExpr->EvaluateAsLValue(result, getContext())) {
1384     resultIsReference = true;
1385     resultType = value->getType();
1386 
1387   // Failure.
1388   } else {
1389     return ConstantEmission();
1390   }
1391 
1392   // In any case, if the initializer has side-effects, abandon ship.
1393   if (result.HasSideEffects)
1394     return ConstantEmission();
1395 
1396   // Emit as a constant.
1397   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1398                                                result.Val, resultType);
1399 
1400   // Make sure we emit a debug reference to the global variable.
1401   // This should probably fire even for
1402   if (isa<VarDecl>(value)) {
1403     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1404       EmitDeclRefExprDbgValue(refExpr, result.Val);
1405   } else {
1406     assert(isa<EnumConstantDecl>(value));
1407     EmitDeclRefExprDbgValue(refExpr, result.Val);
1408   }
1409 
1410   // If we emitted a reference constant, we need to dereference that.
1411   if (resultIsReference)
1412     return ConstantEmission::forReference(C);
1413 
1414   return ConstantEmission::forValue(C);
1415 }
1416 
1417 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1418                                                         const MemberExpr *ME) {
1419   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1420     // Try to emit static variable member expressions as DREs.
1421     return DeclRefExpr::Create(
1422         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1423         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1424         ME->getType(), ME->getValueKind());
1425   }
1426   return nullptr;
1427 }
1428 
1429 CodeGenFunction::ConstantEmission
1430 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1431   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1432     return tryEmitAsConstant(DRE);
1433   return ConstantEmission();
1434 }
1435 
1436 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1437                                                SourceLocation Loc) {
1438   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1439                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1440                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1441 }
1442 
1443 static bool hasBooleanRepresentation(QualType Ty) {
1444   if (Ty->isBooleanType())
1445     return true;
1446 
1447   if (const EnumType *ET = Ty->getAs<EnumType>())
1448     return ET->getDecl()->getIntegerType()->isBooleanType();
1449 
1450   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1451     return hasBooleanRepresentation(AT->getValueType());
1452 
1453   return false;
1454 }
1455 
1456 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1457                             llvm::APInt &Min, llvm::APInt &End,
1458                             bool StrictEnums, bool IsBool) {
1459   const EnumType *ET = Ty->getAs<EnumType>();
1460   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1461                                 ET && !ET->getDecl()->isFixed();
1462   if (!IsBool && !IsRegularCPlusPlusEnum)
1463     return false;
1464 
1465   if (IsBool) {
1466     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1467     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1468   } else {
1469     const EnumDecl *ED = ET->getDecl();
1470     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1471     unsigned Bitwidth = LTy->getScalarSizeInBits();
1472     unsigned NumNegativeBits = ED->getNumNegativeBits();
1473     unsigned NumPositiveBits = ED->getNumPositiveBits();
1474 
1475     if (NumNegativeBits) {
1476       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1477       assert(NumBits <= Bitwidth);
1478       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1479       Min = -End;
1480     } else {
1481       assert(NumPositiveBits <= Bitwidth);
1482       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1483       Min = llvm::APInt(Bitwidth, 0);
1484     }
1485   }
1486   return true;
1487 }
1488 
1489 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1490   llvm::APInt Min, End;
1491   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1492                        hasBooleanRepresentation(Ty)))
1493     return nullptr;
1494 
1495   llvm::MDBuilder MDHelper(getLLVMContext());
1496   return MDHelper.createRange(Min, End);
1497 }
1498 
1499 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1500                                            SourceLocation Loc) {
1501   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1502   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1503   if (!HasBoolCheck && !HasEnumCheck)
1504     return false;
1505 
1506   bool IsBool = hasBooleanRepresentation(Ty) ||
1507                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1508   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1509   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1510   if (!NeedsBoolCheck && !NeedsEnumCheck)
1511     return false;
1512 
1513   // Single-bit booleans don't need to be checked. Special-case this to avoid
1514   // a bit width mismatch when handling bitfield values. This is handled by
1515   // EmitFromMemory for the non-bitfield case.
1516   if (IsBool &&
1517       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1518     return false;
1519 
1520   llvm::APInt Min, End;
1521   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1522     return true;
1523 
1524   auto &Ctx = getLLVMContext();
1525   SanitizerScope SanScope(this);
1526   llvm::Value *Check;
1527   --End;
1528   if (!Min) {
1529     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1530   } else {
1531     llvm::Value *Upper =
1532         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1533     llvm::Value *Lower =
1534         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1535     Check = Builder.CreateAnd(Upper, Lower);
1536   }
1537   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1538                                   EmitCheckTypeDescriptor(Ty)};
1539   SanitizerMask Kind =
1540       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1541   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1542             StaticArgs, EmitCheckValue(Value));
1543   return true;
1544 }
1545 
1546 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1547                                                QualType Ty,
1548                                                SourceLocation Loc,
1549                                                LValueBaseInfo BaseInfo,
1550                                                TBAAAccessInfo TBAAInfo,
1551                                                bool isNontemporal) {
1552   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1553     // For better performance, handle vector loads differently.
1554     if (Ty->isVectorType()) {
1555       const llvm::Type *EltTy = Addr.getElementType();
1556 
1557       const auto *VTy = cast<llvm::VectorType>(EltTy);
1558 
1559       // Handle vectors of size 3 like size 4 for better performance.
1560       if (VTy->getNumElements() == 3) {
1561 
1562         // Bitcast to vec4 type.
1563         llvm::VectorType *vec4Ty =
1564             llvm::VectorType::get(VTy->getElementType(), 4);
1565         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1566         // Now load value.
1567         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1568 
1569         // Shuffle vector to get vec3.
1570         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1571                                         {0, 1, 2}, "extractVec");
1572         return EmitFromMemory(V, Ty);
1573       }
1574     }
1575   }
1576 
1577   // Atomic operations have to be done on integral types.
1578   LValue AtomicLValue =
1579       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1580   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1581     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1582   }
1583 
1584   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1585   if (isNontemporal) {
1586     llvm::MDNode *Node = llvm::MDNode::get(
1587         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1588     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1589   }
1590 
1591   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1592 
1593   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1594     // In order to prevent the optimizer from throwing away the check, don't
1595     // attach range metadata to the load.
1596   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1597     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1598       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1599 
1600   return EmitFromMemory(Load, Ty);
1601 }
1602 
1603 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1604   // Bool has a different representation in memory than in registers.
1605   if (hasBooleanRepresentation(Ty)) {
1606     // This should really always be an i1, but sometimes it's already
1607     // an i8, and it's awkward to track those cases down.
1608     if (Value->getType()->isIntegerTy(1))
1609       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1610     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1611            "wrong value rep of bool");
1612   }
1613 
1614   return Value;
1615 }
1616 
1617 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1618   // Bool has a different representation in memory than in registers.
1619   if (hasBooleanRepresentation(Ty)) {
1620     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1621            "wrong value rep of bool");
1622     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1623   }
1624 
1625   return Value;
1626 }
1627 
1628 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1629                                         bool Volatile, QualType Ty,
1630                                         LValueBaseInfo BaseInfo,
1631                                         TBAAAccessInfo TBAAInfo,
1632                                         bool isInit, bool isNontemporal) {
1633   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1634     // Handle vectors differently to get better performance.
1635     if (Ty->isVectorType()) {
1636       llvm::Type *SrcTy = Value->getType();
1637       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1638       // Handle vec3 special.
1639       if (VecTy && VecTy->getNumElements() == 3) {
1640         // Our source is a vec3, do a shuffle vector to make it a vec4.
1641         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1642                                   Builder.getInt32(2),
1643                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1644         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1645         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1646                                             MaskV, "extractVec");
1647         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1648       }
1649       if (Addr.getElementType() != SrcTy) {
1650         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1651       }
1652     }
1653   }
1654 
1655   Value = EmitToMemory(Value, Ty);
1656 
1657   LValue AtomicLValue =
1658       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1659   if (Ty->isAtomicType() ||
1660       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1661     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1662     return;
1663   }
1664 
1665   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1666   if (isNontemporal) {
1667     llvm::MDNode *Node =
1668         llvm::MDNode::get(Store->getContext(),
1669                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1670     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1671   }
1672 
1673   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1674 }
1675 
1676 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1677                                         bool isInit) {
1678   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1679                     lvalue.getType(), lvalue.getBaseInfo(),
1680                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1681 }
1682 
1683 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1684 /// method emits the address of the lvalue, then loads the result as an rvalue,
1685 /// returning the rvalue.
1686 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1687   if (LV.isObjCWeak()) {
1688     // load of a __weak object.
1689     Address AddrWeakObj = LV.getAddress();
1690     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1691                                                              AddrWeakObj));
1692   }
1693   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1694     // In MRC mode, we do a load+autorelease.
1695     if (!getLangOpts().ObjCAutoRefCount) {
1696       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1697     }
1698 
1699     // In ARC mode, we load retained and then consume the value.
1700     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1701     Object = EmitObjCConsumeObject(LV.getType(), Object);
1702     return RValue::get(Object);
1703   }
1704 
1705   if (LV.isSimple()) {
1706     assert(!LV.getType()->isFunctionType());
1707 
1708     // Everything needs a load.
1709     return RValue::get(EmitLoadOfScalar(LV, Loc));
1710   }
1711 
1712   if (LV.isVectorElt()) {
1713     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1714                                               LV.isVolatileQualified());
1715     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1716                                                     "vecext"));
1717   }
1718 
1719   // If this is a reference to a subset of the elements of a vector, either
1720   // shuffle the input or extract/insert them as appropriate.
1721   if (LV.isExtVectorElt())
1722     return EmitLoadOfExtVectorElementLValue(LV);
1723 
1724   // Global Register variables always invoke intrinsics
1725   if (LV.isGlobalReg())
1726     return EmitLoadOfGlobalRegLValue(LV);
1727 
1728   assert(LV.isBitField() && "Unknown LValue type!");
1729   return EmitLoadOfBitfieldLValue(LV, Loc);
1730 }
1731 
1732 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1733                                                  SourceLocation Loc) {
1734   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1735 
1736   // Get the output type.
1737   llvm::Type *ResLTy = ConvertType(LV.getType());
1738 
1739   Address Ptr = LV.getBitFieldAddress();
1740   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1741 
1742   if (Info.IsSigned) {
1743     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1744     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1745     if (HighBits)
1746       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1747     if (Info.Offset + HighBits)
1748       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1749   } else {
1750     if (Info.Offset)
1751       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1752     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1753       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1754                                                               Info.Size),
1755                               "bf.clear");
1756   }
1757   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1758   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1759   return RValue::get(Val);
1760 }
1761 
1762 // If this is a reference to a subset of the elements of a vector, create an
1763 // appropriate shufflevector.
1764 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1765   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1766                                         LV.isVolatileQualified());
1767 
1768   const llvm::Constant *Elts = LV.getExtVectorElts();
1769 
1770   // If the result of the expression is a non-vector type, we must be extracting
1771   // a single element.  Just codegen as an extractelement.
1772   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1773   if (!ExprVT) {
1774     unsigned InIdx = getAccessedFieldNo(0, Elts);
1775     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1776     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1777   }
1778 
1779   // Always use shuffle vector to try to retain the original program structure
1780   unsigned NumResultElts = ExprVT->getNumElements();
1781 
1782   SmallVector<llvm::Constant*, 4> Mask;
1783   for (unsigned i = 0; i != NumResultElts; ++i)
1784     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1785 
1786   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1787   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1788                                     MaskV);
1789   return RValue::get(Vec);
1790 }
1791 
1792 /// @brief Generates lvalue for partial ext_vector access.
1793 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1794   Address VectorAddress = LV.getExtVectorAddress();
1795   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1796   QualType EQT = ExprVT->getElementType();
1797   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1798 
1799   Address CastToPointerElement =
1800     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1801                                  "conv.ptr.element");
1802 
1803   const llvm::Constant *Elts = LV.getExtVectorElts();
1804   unsigned ix = getAccessedFieldNo(0, Elts);
1805 
1806   Address VectorBasePtrPlusIx =
1807     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1808                                    getContext().getTypeSizeInChars(EQT),
1809                                    "vector.elt");
1810 
1811   return VectorBasePtrPlusIx;
1812 }
1813 
1814 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1815 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1816   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1817          "Bad type for register variable");
1818   llvm::MDNode *RegName = cast<llvm::MDNode>(
1819       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1820 
1821   // We accept integer and pointer types only
1822   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1823   llvm::Type *Ty = OrigTy;
1824   if (OrigTy->isPointerTy())
1825     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1826   llvm::Type *Types[] = { Ty };
1827 
1828   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1829   llvm::Value *Call = Builder.CreateCall(
1830       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1831   if (OrigTy->isPointerTy())
1832     Call = Builder.CreateIntToPtr(Call, OrigTy);
1833   return RValue::get(Call);
1834 }
1835 
1836 
1837 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1838 /// lvalue, where both are guaranteed to the have the same type, and that type
1839 /// is 'Ty'.
1840 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1841                                              bool isInit) {
1842   if (!Dst.isSimple()) {
1843     if (Dst.isVectorElt()) {
1844       // Read/modify/write the vector, inserting the new element.
1845       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1846                                             Dst.isVolatileQualified());
1847       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1848                                         Dst.getVectorIdx(), "vecins");
1849       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1850                           Dst.isVolatileQualified());
1851       return;
1852     }
1853 
1854     // If this is an update of extended vector elements, insert them as
1855     // appropriate.
1856     if (Dst.isExtVectorElt())
1857       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1858 
1859     if (Dst.isGlobalReg())
1860       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1861 
1862     assert(Dst.isBitField() && "Unknown LValue type");
1863     return EmitStoreThroughBitfieldLValue(Src, Dst);
1864   }
1865 
1866   // There's special magic for assigning into an ARC-qualified l-value.
1867   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1868     switch (Lifetime) {
1869     case Qualifiers::OCL_None:
1870       llvm_unreachable("present but none");
1871 
1872     case Qualifiers::OCL_ExplicitNone:
1873       // nothing special
1874       break;
1875 
1876     case Qualifiers::OCL_Strong:
1877       if (isInit) {
1878         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1879         break;
1880       }
1881       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1882       return;
1883 
1884     case Qualifiers::OCL_Weak:
1885       if (isInit)
1886         // Initialize and then skip the primitive store.
1887         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1888       else
1889         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1890       return;
1891 
1892     case Qualifiers::OCL_Autoreleasing:
1893       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1894                                                      Src.getScalarVal()));
1895       // fall into the normal path
1896       break;
1897     }
1898   }
1899 
1900   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1901     // load of a __weak object.
1902     Address LvalueDst = Dst.getAddress();
1903     llvm::Value *src = Src.getScalarVal();
1904      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1905     return;
1906   }
1907 
1908   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1909     // load of a __strong object.
1910     Address LvalueDst = Dst.getAddress();
1911     llvm::Value *src = Src.getScalarVal();
1912     if (Dst.isObjCIvar()) {
1913       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1914       llvm::Type *ResultType = IntPtrTy;
1915       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1916       llvm::Value *RHS = dst.getPointer();
1917       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1918       llvm::Value *LHS =
1919         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1920                                "sub.ptr.lhs.cast");
1921       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1922       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1923                                               BytesBetween);
1924     } else if (Dst.isGlobalObjCRef()) {
1925       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1926                                                 Dst.isThreadLocalRef());
1927     }
1928     else
1929       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1930     return;
1931   }
1932 
1933   assert(Src.isScalar() && "Can't emit an agg store with this method");
1934   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1935 }
1936 
1937 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1938                                                      llvm::Value **Result) {
1939   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1940   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1941   Address Ptr = Dst.getBitFieldAddress();
1942 
1943   // Get the source value, truncated to the width of the bit-field.
1944   llvm::Value *SrcVal = Src.getScalarVal();
1945 
1946   // Cast the source to the storage type and shift it into place.
1947   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1948                                  /*IsSigned=*/false);
1949   llvm::Value *MaskedVal = SrcVal;
1950 
1951   // See if there are other bits in the bitfield's storage we'll need to load
1952   // and mask together with source before storing.
1953   if (Info.StorageSize != Info.Size) {
1954     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1955     llvm::Value *Val =
1956       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1957 
1958     // Mask the source value as needed.
1959     if (!hasBooleanRepresentation(Dst.getType()))
1960       SrcVal = Builder.CreateAnd(SrcVal,
1961                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1962                                                             Info.Size),
1963                                  "bf.value");
1964     MaskedVal = SrcVal;
1965     if (Info.Offset)
1966       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1967 
1968     // Mask out the original value.
1969     Val = Builder.CreateAnd(Val,
1970                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1971                                                      Info.Offset,
1972                                                      Info.Offset + Info.Size),
1973                             "bf.clear");
1974 
1975     // Or together the unchanged values and the source value.
1976     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1977   } else {
1978     assert(Info.Offset == 0);
1979   }
1980 
1981   // Write the new value back out.
1982   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1983 
1984   // Return the new value of the bit-field, if requested.
1985   if (Result) {
1986     llvm::Value *ResultVal = MaskedVal;
1987 
1988     // Sign extend the value if needed.
1989     if (Info.IsSigned) {
1990       assert(Info.Size <= Info.StorageSize);
1991       unsigned HighBits = Info.StorageSize - Info.Size;
1992       if (HighBits) {
1993         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1994         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1995       }
1996     }
1997 
1998     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1999                                       "bf.result.cast");
2000     *Result = EmitFromMemory(ResultVal, Dst.getType());
2001   }
2002 }
2003 
2004 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2005                                                                LValue Dst) {
2006   // This access turns into a read/modify/write of the vector.  Load the input
2007   // value now.
2008   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2009                                         Dst.isVolatileQualified());
2010   const llvm::Constant *Elts = Dst.getExtVectorElts();
2011 
2012   llvm::Value *SrcVal = Src.getScalarVal();
2013 
2014   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2015     unsigned NumSrcElts = VTy->getNumElements();
2016     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2017     if (NumDstElts == NumSrcElts) {
2018       // Use shuffle vector is the src and destination are the same number of
2019       // elements and restore the vector mask since it is on the side it will be
2020       // stored.
2021       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2022       for (unsigned i = 0; i != NumSrcElts; ++i)
2023         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2024 
2025       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2026       Vec = Builder.CreateShuffleVector(SrcVal,
2027                                         llvm::UndefValue::get(Vec->getType()),
2028                                         MaskV);
2029     } else if (NumDstElts > NumSrcElts) {
2030       // Extended the source vector to the same length and then shuffle it
2031       // into the destination.
2032       // FIXME: since we're shuffling with undef, can we just use the indices
2033       //        into that?  This could be simpler.
2034       SmallVector<llvm::Constant*, 4> ExtMask;
2035       for (unsigned i = 0; i != NumSrcElts; ++i)
2036         ExtMask.push_back(Builder.getInt32(i));
2037       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2038       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2039       llvm::Value *ExtSrcVal =
2040         Builder.CreateShuffleVector(SrcVal,
2041                                     llvm::UndefValue::get(SrcVal->getType()),
2042                                     ExtMaskV);
2043       // build identity
2044       SmallVector<llvm::Constant*, 4> Mask;
2045       for (unsigned i = 0; i != NumDstElts; ++i)
2046         Mask.push_back(Builder.getInt32(i));
2047 
2048       // When the vector size is odd and .odd or .hi is used, the last element
2049       // of the Elts constant array will be one past the size of the vector.
2050       // Ignore the last element here, if it is greater than the mask size.
2051       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2052         NumSrcElts--;
2053 
2054       // modify when what gets shuffled in
2055       for (unsigned i = 0; i != NumSrcElts; ++i)
2056         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2057       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2058       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2059     } else {
2060       // We should never shorten the vector
2061       llvm_unreachable("unexpected shorten vector length");
2062     }
2063   } else {
2064     // If the Src is a scalar (not a vector) it must be updating one element.
2065     unsigned InIdx = getAccessedFieldNo(0, Elts);
2066     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2067     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2068   }
2069 
2070   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2071                       Dst.isVolatileQualified());
2072 }
2073 
2074 /// @brief Store of global named registers are always calls to intrinsics.
2075 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2076   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2077          "Bad type for register variable");
2078   llvm::MDNode *RegName = cast<llvm::MDNode>(
2079       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2080   assert(RegName && "Register LValue is not metadata");
2081 
2082   // We accept integer and pointer types only
2083   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2084   llvm::Type *Ty = OrigTy;
2085   if (OrigTy->isPointerTy())
2086     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2087   llvm::Type *Types[] = { Ty };
2088 
2089   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2090   llvm::Value *Value = Src.getScalarVal();
2091   if (OrigTy->isPointerTy())
2092     Value = Builder.CreatePtrToInt(Value, Ty);
2093   Builder.CreateCall(
2094       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2095 }
2096 
2097 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2098 // generating write-barries API. It is currently a global, ivar,
2099 // or neither.
2100 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2101                                  LValue &LV,
2102                                  bool IsMemberAccess=false) {
2103   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2104     return;
2105 
2106   if (isa<ObjCIvarRefExpr>(E)) {
2107     QualType ExpTy = E->getType();
2108     if (IsMemberAccess && ExpTy->isPointerType()) {
2109       // If ivar is a structure pointer, assigning to field of
2110       // this struct follows gcc's behavior and makes it a non-ivar
2111       // writer-barrier conservatively.
2112       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2113       if (ExpTy->isRecordType()) {
2114         LV.setObjCIvar(false);
2115         return;
2116       }
2117     }
2118     LV.setObjCIvar(true);
2119     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2120     LV.setBaseIvarExp(Exp->getBase());
2121     LV.setObjCArray(E->getType()->isArrayType());
2122     return;
2123   }
2124 
2125   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2126     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2127       if (VD->hasGlobalStorage()) {
2128         LV.setGlobalObjCRef(true);
2129         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2130       }
2131     }
2132     LV.setObjCArray(E->getType()->isArrayType());
2133     return;
2134   }
2135 
2136   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2137     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2138     return;
2139   }
2140 
2141   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2142     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2143     if (LV.isObjCIvar()) {
2144       // If cast is to a structure pointer, follow gcc's behavior and make it
2145       // a non-ivar write-barrier.
2146       QualType ExpTy = E->getType();
2147       if (ExpTy->isPointerType())
2148         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2149       if (ExpTy->isRecordType())
2150         LV.setObjCIvar(false);
2151     }
2152     return;
2153   }
2154 
2155   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2156     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2157     return;
2158   }
2159 
2160   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2161     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2162     return;
2163   }
2164 
2165   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2166     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2167     return;
2168   }
2169 
2170   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2171     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2172     return;
2173   }
2174 
2175   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2176     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2177     if (LV.isObjCIvar() && !LV.isObjCArray())
2178       // Using array syntax to assigning to what an ivar points to is not
2179       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2180       LV.setObjCIvar(false);
2181     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2182       // Using array syntax to assigning to what global points to is not
2183       // same as assigning to the global itself. {id *G;} G[i] = 0;
2184       LV.setGlobalObjCRef(false);
2185     return;
2186   }
2187 
2188   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2189     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2190     // We don't know if member is an 'ivar', but this flag is looked at
2191     // only in the context of LV.isObjCIvar().
2192     LV.setObjCArray(E->getType()->isArrayType());
2193     return;
2194   }
2195 }
2196 
2197 static llvm::Value *
2198 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2199                                 llvm::Value *V, llvm::Type *IRType,
2200                                 StringRef Name = StringRef()) {
2201   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2202   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2203 }
2204 
2205 static LValue EmitThreadPrivateVarDeclLValue(
2206     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2207     llvm::Type *RealVarTy, SourceLocation Loc) {
2208   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2209   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2210   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2211 }
2212 
2213 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF,
2214                                                const VarDecl *VD, QualType T) {
2215   for (const auto *D : VD->redecls()) {
2216     if (!VD->hasAttrs())
2217       continue;
2218     if (const auto *Attr = D->getAttr<OMPDeclareTargetDeclAttr>())
2219       if (Attr->getMapType() == OMPDeclareTargetDeclAttr::MT_Link) {
2220         QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2221         Address Addr =
2222             CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(CGF, VD);
2223         return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2224       }
2225   }
2226   return Address::invalid();
2227 }
2228 
2229 Address
2230 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2231                                      LValueBaseInfo *PointeeBaseInfo,
2232                                      TBAAAccessInfo *PointeeTBAAInfo) {
2233   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2234                                             RefLVal.isVolatile());
2235   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2236 
2237   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2238                                             PointeeBaseInfo, PointeeTBAAInfo,
2239                                             /* forPointeeType= */ true);
2240   return Address(Load, Align);
2241 }
2242 
2243 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2244   LValueBaseInfo PointeeBaseInfo;
2245   TBAAAccessInfo PointeeTBAAInfo;
2246   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2247                                             &PointeeTBAAInfo);
2248   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2249                         PointeeBaseInfo, PointeeTBAAInfo);
2250 }
2251 
2252 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2253                                            const PointerType *PtrTy,
2254                                            LValueBaseInfo *BaseInfo,
2255                                            TBAAAccessInfo *TBAAInfo) {
2256   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2257   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2258                                                BaseInfo, TBAAInfo,
2259                                                /*forPointeeType=*/true));
2260 }
2261 
2262 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2263                                                 const PointerType *PtrTy) {
2264   LValueBaseInfo BaseInfo;
2265   TBAAAccessInfo TBAAInfo;
2266   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2267   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2268 }
2269 
2270 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2271                                       const Expr *E, const VarDecl *VD) {
2272   QualType T = E->getType();
2273 
2274   // If it's thread_local, emit a call to its wrapper function instead.
2275   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2276       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2277     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2278   // Check if the variable is marked as declare target with link clause in
2279   // device codegen.
2280   if (CGF.getLangOpts().OpenMPIsDevice) {
2281     Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T);
2282     if (Addr.isValid())
2283       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2284   }
2285 
2286   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2287   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2288   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2289   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2290   Address Addr(V, Alignment);
2291   // Emit reference to the private copy of the variable if it is an OpenMP
2292   // threadprivate variable.
2293   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2294       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2295     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2296                                           E->getExprLoc());
2297   }
2298   LValue LV = VD->getType()->isReferenceType() ?
2299       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2300                                     AlignmentSource::Decl) :
2301       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2302   setObjCGCLValueClass(CGF.getContext(), E, LV);
2303   return LV;
2304 }
2305 
2306 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2307                                                const FunctionDecl *FD) {
2308   if (FD->hasAttr<WeakRefAttr>()) {
2309     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2310     return aliasee.getPointer();
2311   }
2312 
2313   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2314   if (!FD->hasPrototype()) {
2315     if (const FunctionProtoType *Proto =
2316             FD->getType()->getAs<FunctionProtoType>()) {
2317       // Ugly case: for a K&R-style definition, the type of the definition
2318       // isn't the same as the type of a use.  Correct for this with a
2319       // bitcast.
2320       QualType NoProtoType =
2321           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2322       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2323       V = llvm::ConstantExpr::getBitCast(V,
2324                                       CGM.getTypes().ConvertType(NoProtoType));
2325     }
2326   }
2327   return V;
2328 }
2329 
2330 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2331                                      const Expr *E, const FunctionDecl *FD) {
2332   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2333   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2334   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2335                             AlignmentSource::Decl);
2336 }
2337 
2338 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2339                                       llvm::Value *ThisValue) {
2340   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2341   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2342   return CGF.EmitLValueForField(LV, FD);
2343 }
2344 
2345 /// Named Registers are named metadata pointing to the register name
2346 /// which will be read from/written to as an argument to the intrinsic
2347 /// @llvm.read/write_register.
2348 /// So far, only the name is being passed down, but other options such as
2349 /// register type, allocation type or even optimization options could be
2350 /// passed down via the metadata node.
2351 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2352   SmallString<64> Name("llvm.named.register.");
2353   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2354   assert(Asm->getLabel().size() < 64-Name.size() &&
2355       "Register name too big");
2356   Name.append(Asm->getLabel());
2357   llvm::NamedMDNode *M =
2358     CGM.getModule().getOrInsertNamedMetadata(Name);
2359   if (M->getNumOperands() == 0) {
2360     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2361                                               Asm->getLabel());
2362     llvm::Metadata *Ops[] = {Str};
2363     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2364   }
2365 
2366   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2367 
2368   llvm::Value *Ptr =
2369     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2370   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2371 }
2372 
2373 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2374   const NamedDecl *ND = E->getDecl();
2375   QualType T = E->getType();
2376 
2377   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2378     // Global Named registers access via intrinsics only
2379     if (VD->getStorageClass() == SC_Register &&
2380         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2381       return EmitGlobalNamedRegister(VD, CGM);
2382 
2383     // A DeclRefExpr for a reference initialized by a constant expression can
2384     // appear without being odr-used. Directly emit the constant initializer.
2385     const Expr *Init = VD->getAnyInitializer(VD);
2386     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2387         VD->isUsableInConstantExpressions(getContext()) &&
2388         VD->checkInitIsICE() &&
2389         // Do not emit if it is private OpenMP variable.
2390         !(E->refersToEnclosingVariableOrCapture() &&
2391           ((CapturedStmtInfo &&
2392             (LocalDeclMap.count(VD->getCanonicalDecl()) ||
2393              CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
2394            LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
2395            isa<BlockDecl>(CurCodeDecl)))) {
2396       llvm::Constant *Val =
2397         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2398                                             *VD->evaluateValue(),
2399                                             VD->getType());
2400       assert(Val && "failed to emit reference constant expression");
2401       // FIXME: Eventually we will want to emit vector element references.
2402 
2403       // Should we be using the alignment of the constant pointer we emitted?
2404       CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
2405                                                     /* BaseInfo= */ nullptr,
2406                                                     /* TBAAInfo= */ nullptr,
2407                                                     /* forPointeeType= */ true);
2408       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2409     }
2410 
2411     // Check for captured variables.
2412     if (E->refersToEnclosingVariableOrCapture()) {
2413       VD = VD->getCanonicalDecl();
2414       if (auto *FD = LambdaCaptureFields.lookup(VD))
2415         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2416       else if (CapturedStmtInfo) {
2417         auto I = LocalDeclMap.find(VD);
2418         if (I != LocalDeclMap.end()) {
2419           if (VD->getType()->isReferenceType())
2420             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2421                                              AlignmentSource::Decl);
2422           return MakeAddrLValue(I->second, T);
2423         }
2424         LValue CapLVal =
2425             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2426                                     CapturedStmtInfo->getContextValue());
2427         return MakeAddrLValue(
2428             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2429             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2430             CapLVal.getTBAAInfo());
2431       }
2432 
2433       assert(isa<BlockDecl>(CurCodeDecl));
2434       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2435       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2436     }
2437   }
2438 
2439   // FIXME: We should be able to assert this for FunctionDecls as well!
2440   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2441   // those with a valid source location.
2442   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2443           !E->getLocation().isValid()) &&
2444          "Should not use decl without marking it used!");
2445 
2446   if (ND->hasAttr<WeakRefAttr>()) {
2447     const auto *VD = cast<ValueDecl>(ND);
2448     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2449     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2450   }
2451 
2452   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2453     // Check if this is a global variable.
2454     if (VD->hasLinkage() || VD->isStaticDataMember())
2455       return EmitGlobalVarDeclLValue(*this, E, VD);
2456 
2457     Address addr = Address::invalid();
2458 
2459     // The variable should generally be present in the local decl map.
2460     auto iter = LocalDeclMap.find(VD);
2461     if (iter != LocalDeclMap.end()) {
2462       addr = iter->second;
2463 
2464     // Otherwise, it might be static local we haven't emitted yet for
2465     // some reason; most likely, because it's in an outer function.
2466     } else if (VD->isStaticLocal()) {
2467       addr = Address(CGM.getOrCreateStaticVarDecl(
2468           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2469                      getContext().getDeclAlign(VD));
2470 
2471     // No other cases for now.
2472     } else {
2473       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2474     }
2475 
2476 
2477     // Check for OpenMP threadprivate variables.
2478     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2479         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2480       return EmitThreadPrivateVarDeclLValue(
2481           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2482           E->getExprLoc());
2483     }
2484 
2485     // Drill into block byref variables.
2486     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2487     if (isBlockByref) {
2488       addr = emitBlockByrefAddress(addr, VD);
2489     }
2490 
2491     // Drill into reference types.
2492     LValue LV = VD->getType()->isReferenceType() ?
2493         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2494         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2495 
2496     bool isLocalStorage = VD->hasLocalStorage();
2497 
2498     bool NonGCable = isLocalStorage &&
2499                      !VD->getType()->isReferenceType() &&
2500                      !isBlockByref;
2501     if (NonGCable) {
2502       LV.getQuals().removeObjCGCAttr();
2503       LV.setNonGC(true);
2504     }
2505 
2506     bool isImpreciseLifetime =
2507       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2508     if (isImpreciseLifetime)
2509       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2510     setObjCGCLValueClass(getContext(), E, LV);
2511     return LV;
2512   }
2513 
2514   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2515     return EmitFunctionDeclLValue(*this, E, FD);
2516 
2517   // FIXME: While we're emitting a binding from an enclosing scope, all other
2518   // DeclRefExprs we see should be implicitly treated as if they also refer to
2519   // an enclosing scope.
2520   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2521     return EmitLValue(BD->getBinding());
2522 
2523   llvm_unreachable("Unhandled DeclRefExpr");
2524 }
2525 
2526 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2527   // __extension__ doesn't affect lvalue-ness.
2528   if (E->getOpcode() == UO_Extension)
2529     return EmitLValue(E->getSubExpr());
2530 
2531   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2532   switch (E->getOpcode()) {
2533   default: llvm_unreachable("Unknown unary operator lvalue!");
2534   case UO_Deref: {
2535     QualType T = E->getSubExpr()->getType()->getPointeeType();
2536     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2537 
2538     LValueBaseInfo BaseInfo;
2539     TBAAAccessInfo TBAAInfo;
2540     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2541                                             &TBAAInfo);
2542     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2543     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2544 
2545     // We should not generate __weak write barrier on indirect reference
2546     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2547     // But, we continue to generate __strong write barrier on indirect write
2548     // into a pointer to object.
2549     if (getLangOpts().ObjC1 &&
2550         getLangOpts().getGC() != LangOptions::NonGC &&
2551         LV.isObjCWeak())
2552       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2553     return LV;
2554   }
2555   case UO_Real:
2556   case UO_Imag: {
2557     LValue LV = EmitLValue(E->getSubExpr());
2558     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2559 
2560     // __real is valid on scalars.  This is a faster way of testing that.
2561     // __imag can only produce an rvalue on scalars.
2562     if (E->getOpcode() == UO_Real &&
2563         !LV.getAddress().getElementType()->isStructTy()) {
2564       assert(E->getSubExpr()->getType()->isArithmeticType());
2565       return LV;
2566     }
2567 
2568     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2569 
2570     Address Component =
2571       (E->getOpcode() == UO_Real
2572          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2573          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2574     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2575                                    CGM.getTBAAInfoForSubobject(LV, T));
2576     ElemLV.getQuals().addQualifiers(LV.getQuals());
2577     return ElemLV;
2578   }
2579   case UO_PreInc:
2580   case UO_PreDec: {
2581     LValue LV = EmitLValue(E->getSubExpr());
2582     bool isInc = E->getOpcode() == UO_PreInc;
2583 
2584     if (E->getType()->isAnyComplexType())
2585       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2586     else
2587       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2588     return LV;
2589   }
2590   }
2591 }
2592 
2593 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2594   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2595                         E->getType(), AlignmentSource::Decl);
2596 }
2597 
2598 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2599   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2600                         E->getType(), AlignmentSource::Decl);
2601 }
2602 
2603 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2604   auto SL = E->getFunctionName();
2605   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2606   StringRef FnName = CurFn->getName();
2607   if (FnName.startswith("\01"))
2608     FnName = FnName.substr(1);
2609   StringRef NameItems[] = {
2610       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2611   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2612   if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) {
2613     std::string Name = SL->getString();
2614     if (!Name.empty()) {
2615       unsigned Discriminator =
2616           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2617       if (Discriminator)
2618         Name += "_" + Twine(Discriminator + 1).str();
2619       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2620       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2621     } else {
2622       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2623       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2624     }
2625   }
2626   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2627   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2628 }
2629 
2630 /// Emit a type description suitable for use by a runtime sanitizer library. The
2631 /// format of a type descriptor is
2632 ///
2633 /// \code
2634 ///   { i16 TypeKind, i16 TypeInfo }
2635 /// \endcode
2636 ///
2637 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2638 /// integer, 1 for a floating point value, and -1 for anything else.
2639 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2640   // Only emit each type's descriptor once.
2641   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2642     return C;
2643 
2644   uint16_t TypeKind = -1;
2645   uint16_t TypeInfo = 0;
2646 
2647   if (T->isIntegerType()) {
2648     TypeKind = 0;
2649     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2650                (T->isSignedIntegerType() ? 1 : 0);
2651   } else if (T->isFloatingType()) {
2652     TypeKind = 1;
2653     TypeInfo = getContext().getTypeSize(T);
2654   }
2655 
2656   // Format the type name as if for a diagnostic, including quotes and
2657   // optionally an 'aka'.
2658   SmallString<32> Buffer;
2659   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2660                                     (intptr_t)T.getAsOpaquePtr(),
2661                                     StringRef(), StringRef(), None, Buffer,
2662                                     None);
2663 
2664   llvm::Constant *Components[] = {
2665     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2666     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2667   };
2668   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2669 
2670   auto *GV = new llvm::GlobalVariable(
2671       CGM.getModule(), Descriptor->getType(),
2672       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2673   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2674   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2675 
2676   // Remember the descriptor for this type.
2677   CGM.setTypeDescriptorInMap(T, GV);
2678 
2679   return GV;
2680 }
2681 
2682 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2683   llvm::Type *TargetTy = IntPtrTy;
2684 
2685   if (V->getType() == TargetTy)
2686     return V;
2687 
2688   // Floating-point types which fit into intptr_t are bitcast to integers
2689   // and then passed directly (after zero-extension, if necessary).
2690   if (V->getType()->isFloatingPointTy()) {
2691     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2692     if (Bits <= TargetTy->getIntegerBitWidth())
2693       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2694                                                          Bits));
2695   }
2696 
2697   // Integers which fit in intptr_t are zero-extended and passed directly.
2698   if (V->getType()->isIntegerTy() &&
2699       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2700     return Builder.CreateZExt(V, TargetTy);
2701 
2702   // Pointers are passed directly, everything else is passed by address.
2703   if (!V->getType()->isPointerTy()) {
2704     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2705     Builder.CreateStore(V, Ptr);
2706     V = Ptr.getPointer();
2707   }
2708   return Builder.CreatePtrToInt(V, TargetTy);
2709 }
2710 
2711 /// \brief Emit a representation of a SourceLocation for passing to a handler
2712 /// in a sanitizer runtime library. The format for this data is:
2713 /// \code
2714 ///   struct SourceLocation {
2715 ///     const char *Filename;
2716 ///     int32_t Line, Column;
2717 ///   };
2718 /// \endcode
2719 /// For an invalid SourceLocation, the Filename pointer is null.
2720 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2721   llvm::Constant *Filename;
2722   int Line, Column;
2723 
2724   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2725   if (PLoc.isValid()) {
2726     StringRef FilenameString = PLoc.getFilename();
2727 
2728     int PathComponentsToStrip =
2729         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2730     if (PathComponentsToStrip < 0) {
2731       assert(PathComponentsToStrip != INT_MIN);
2732       int PathComponentsToKeep = -PathComponentsToStrip;
2733       auto I = llvm::sys::path::rbegin(FilenameString);
2734       auto E = llvm::sys::path::rend(FilenameString);
2735       while (I != E && --PathComponentsToKeep)
2736         ++I;
2737 
2738       FilenameString = FilenameString.substr(I - E);
2739     } else if (PathComponentsToStrip > 0) {
2740       auto I = llvm::sys::path::begin(FilenameString);
2741       auto E = llvm::sys::path::end(FilenameString);
2742       while (I != E && PathComponentsToStrip--)
2743         ++I;
2744 
2745       if (I != E)
2746         FilenameString =
2747             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2748       else
2749         FilenameString = llvm::sys::path::filename(FilenameString);
2750     }
2751 
2752     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2753     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2754                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2755     Filename = FilenameGV.getPointer();
2756     Line = PLoc.getLine();
2757     Column = PLoc.getColumn();
2758   } else {
2759     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2760     Line = Column = 0;
2761   }
2762 
2763   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2764                             Builder.getInt32(Column)};
2765 
2766   return llvm::ConstantStruct::getAnon(Data);
2767 }
2768 
2769 namespace {
2770 /// \brief Specify under what conditions this check can be recovered
2771 enum class CheckRecoverableKind {
2772   /// Always terminate program execution if this check fails.
2773   Unrecoverable,
2774   /// Check supports recovering, runtime has both fatal (noreturn) and
2775   /// non-fatal handlers for this check.
2776   Recoverable,
2777   /// Runtime conditionally aborts, always need to support recovery.
2778   AlwaysRecoverable
2779 };
2780 }
2781 
2782 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2783   assert(llvm::countPopulation(Kind) == 1);
2784   switch (Kind) {
2785   case SanitizerKind::Vptr:
2786     return CheckRecoverableKind::AlwaysRecoverable;
2787   case SanitizerKind::Return:
2788   case SanitizerKind::Unreachable:
2789     return CheckRecoverableKind::Unrecoverable;
2790   default:
2791     return CheckRecoverableKind::Recoverable;
2792   }
2793 }
2794 
2795 namespace {
2796 struct SanitizerHandlerInfo {
2797   char const *const Name;
2798   unsigned Version;
2799 };
2800 }
2801 
2802 const SanitizerHandlerInfo SanitizerHandlers[] = {
2803 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2804     LIST_SANITIZER_CHECKS
2805 #undef SANITIZER_CHECK
2806 };
2807 
2808 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2809                                  llvm::FunctionType *FnType,
2810                                  ArrayRef<llvm::Value *> FnArgs,
2811                                  SanitizerHandler CheckHandler,
2812                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2813                                  llvm::BasicBlock *ContBB) {
2814   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2815   bool NeedsAbortSuffix =
2816       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2817   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2818   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2819   const StringRef CheckName = CheckInfo.Name;
2820   std::string FnName = "__ubsan_handle_" + CheckName.str();
2821   if (CheckInfo.Version && !MinimalRuntime)
2822     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2823   if (MinimalRuntime)
2824     FnName += "_minimal";
2825   if (NeedsAbortSuffix)
2826     FnName += "_abort";
2827   bool MayReturn =
2828       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2829 
2830   llvm::AttrBuilder B;
2831   if (!MayReturn) {
2832     B.addAttribute(llvm::Attribute::NoReturn)
2833         .addAttribute(llvm::Attribute::NoUnwind);
2834   }
2835   B.addAttribute(llvm::Attribute::UWTable);
2836 
2837   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2838       FnType, FnName,
2839       llvm::AttributeList::get(CGF.getLLVMContext(),
2840                                llvm::AttributeList::FunctionIndex, B),
2841       /*Local=*/true);
2842   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2843   if (!MayReturn) {
2844     HandlerCall->setDoesNotReturn();
2845     CGF.Builder.CreateUnreachable();
2846   } else {
2847     CGF.Builder.CreateBr(ContBB);
2848   }
2849 }
2850 
2851 void CodeGenFunction::EmitCheck(
2852     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2853     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2854     ArrayRef<llvm::Value *> DynamicArgs) {
2855   assert(IsSanitizerScope);
2856   assert(Checked.size() > 0);
2857   assert(CheckHandler >= 0 &&
2858          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
2859   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2860 
2861   llvm::Value *FatalCond = nullptr;
2862   llvm::Value *RecoverableCond = nullptr;
2863   llvm::Value *TrapCond = nullptr;
2864   for (int i = 0, n = Checked.size(); i < n; ++i) {
2865     llvm::Value *Check = Checked[i].first;
2866     // -fsanitize-trap= overrides -fsanitize-recover=.
2867     llvm::Value *&Cond =
2868         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2869             ? TrapCond
2870             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2871                   ? RecoverableCond
2872                   : FatalCond;
2873     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2874   }
2875 
2876   if (TrapCond)
2877     EmitTrapCheck(TrapCond);
2878   if (!FatalCond && !RecoverableCond)
2879     return;
2880 
2881   llvm::Value *JointCond;
2882   if (FatalCond && RecoverableCond)
2883     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2884   else
2885     JointCond = FatalCond ? FatalCond : RecoverableCond;
2886   assert(JointCond);
2887 
2888   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2889   assert(SanOpts.has(Checked[0].second));
2890 #ifndef NDEBUG
2891   for (int i = 1, n = Checked.size(); i < n; ++i) {
2892     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2893            "All recoverable kinds in a single check must be same!");
2894     assert(SanOpts.has(Checked[i].second));
2895   }
2896 #endif
2897 
2898   llvm::BasicBlock *Cont = createBasicBlock("cont");
2899   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2900   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2901   // Give hint that we very much don't expect to execute the handler
2902   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2903   llvm::MDBuilder MDHelper(getLLVMContext());
2904   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2905   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2906   EmitBlock(Handlers);
2907 
2908   // Handler functions take an i8* pointing to the (handler-specific) static
2909   // information block, followed by a sequence of intptr_t arguments
2910   // representing operand values.
2911   SmallVector<llvm::Value *, 4> Args;
2912   SmallVector<llvm::Type *, 4> ArgTypes;
2913   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2914     Args.reserve(DynamicArgs.size() + 1);
2915     ArgTypes.reserve(DynamicArgs.size() + 1);
2916 
2917     // Emit handler arguments and create handler function type.
2918     if (!StaticArgs.empty()) {
2919       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2920       auto *InfoPtr =
2921           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2922                                    llvm::GlobalVariable::PrivateLinkage, Info);
2923       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2924       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2925       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2926       ArgTypes.push_back(Int8PtrTy);
2927     }
2928 
2929     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2930       Args.push_back(EmitCheckValue(DynamicArgs[i]));
2931       ArgTypes.push_back(IntPtrTy);
2932     }
2933   }
2934 
2935   llvm::FunctionType *FnType =
2936     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2937 
2938   if (!FatalCond || !RecoverableCond) {
2939     // Simple case: we need to generate a single handler call, either
2940     // fatal, or non-fatal.
2941     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
2942                          (FatalCond != nullptr), Cont);
2943   } else {
2944     // Emit two handler calls: first one for set of unrecoverable checks,
2945     // another one for recoverable.
2946     llvm::BasicBlock *NonFatalHandlerBB =
2947         createBasicBlock("non_fatal." + CheckName);
2948     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2949     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2950     EmitBlock(FatalHandlerBB);
2951     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
2952                          NonFatalHandlerBB);
2953     EmitBlock(NonFatalHandlerBB);
2954     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
2955                          Cont);
2956   }
2957 
2958   EmitBlock(Cont);
2959 }
2960 
2961 void CodeGenFunction::EmitCfiSlowPathCheck(
2962     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2963     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2964   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2965 
2966   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2967   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2968 
2969   llvm::MDBuilder MDHelper(getLLVMContext());
2970   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2971   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2972 
2973   EmitBlock(CheckBB);
2974 
2975   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
2976 
2977   llvm::CallInst *CheckCall;
2978   if (WithDiag) {
2979     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2980     auto *InfoPtr =
2981         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2982                                  llvm::GlobalVariable::PrivateLinkage, Info);
2983     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2984     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2985 
2986     llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction(
2987         "__cfi_slowpath_diag",
2988         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
2989                                 false));
2990     CheckCall = Builder.CreateCall(
2991         SlowPathDiagFn,
2992         {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
2993   } else {
2994     llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2995         "__cfi_slowpath",
2996         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
2997     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2998   }
2999 
3000   CheckCall->setDoesNotThrow();
3001 
3002   EmitBlock(Cont);
3003 }
3004 
3005 // Emit a stub for __cfi_check function so that the linker knows about this
3006 // symbol in LTO mode.
3007 void CodeGenFunction::EmitCfiCheckStub() {
3008   llvm::Module *M = &CGM.getModule();
3009   auto &Ctx = M->getContext();
3010   llvm::Function *F = llvm::Function::Create(
3011       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3012       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3013   CGM.setDSOLocal(F);
3014   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3015   // FIXME: consider emitting an intrinsic call like
3016   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3017   // which can be lowered in CrossDSOCFI pass to the actual contents of
3018   // __cfi_check. This would allow inlining of __cfi_check calls.
3019   llvm::CallInst::Create(
3020       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3021   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3022 }
3023 
3024 // This function is basically a switch over the CFI failure kind, which is
3025 // extracted from CFICheckFailData (1st function argument). Each case is either
3026 // llvm.trap or a call to one of the two runtime handlers, based on
3027 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3028 // failure kind) traps, but this should really never happen.  CFICheckFailData
3029 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3030 // check kind; in this case __cfi_check_fail traps as well.
3031 void CodeGenFunction::EmitCfiCheckFail() {
3032   SanitizerScope SanScope(this);
3033   FunctionArgList Args;
3034   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3035                             ImplicitParamDecl::Other);
3036   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3037                             ImplicitParamDecl::Other);
3038   Args.push_back(&ArgData);
3039   Args.push_back(&ArgAddr);
3040 
3041   const CGFunctionInfo &FI =
3042     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3043 
3044   llvm::Function *F = llvm::Function::Create(
3045       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3046       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3047   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3048 
3049   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3050                 SourceLocation());
3051 
3052   llvm::Value *Data =
3053       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3054                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3055   llvm::Value *Addr =
3056       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3057                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3058 
3059   // Data == nullptr means the calling module has trap behaviour for this check.
3060   llvm::Value *DataIsNotNullPtr =
3061       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3062   EmitTrapCheck(DataIsNotNullPtr);
3063 
3064   llvm::StructType *SourceLocationTy =
3065       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3066   llvm::StructType *CfiCheckFailDataTy =
3067       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3068 
3069   llvm::Value *V = Builder.CreateConstGEP2_32(
3070       CfiCheckFailDataTy,
3071       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3072       0);
3073   Address CheckKindAddr(V, getIntAlign());
3074   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3075 
3076   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3077       CGM.getLLVMContext(),
3078       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3079   llvm::Value *ValidVtable = Builder.CreateZExt(
3080       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3081                          {Addr, AllVtables}),
3082       IntPtrTy);
3083 
3084   const std::pair<int, SanitizerMask> CheckKinds[] = {
3085       {CFITCK_VCall, SanitizerKind::CFIVCall},
3086       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3087       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3088       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3089       {CFITCK_ICall, SanitizerKind::CFIICall}};
3090 
3091   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3092   for (auto CheckKindMaskPair : CheckKinds) {
3093     int Kind = CheckKindMaskPair.first;
3094     SanitizerMask Mask = CheckKindMaskPair.second;
3095     llvm::Value *Cond =
3096         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3097     if (CGM.getLangOpts().Sanitize.has(Mask))
3098       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3099                 {Data, Addr, ValidVtable});
3100     else
3101       EmitTrapCheck(Cond);
3102   }
3103 
3104   FinishFunction();
3105   // The only reference to this function will be created during LTO link.
3106   // Make sure it survives until then.
3107   CGM.addUsedGlobal(F);
3108 }
3109 
3110 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3111   if (SanOpts.has(SanitizerKind::Unreachable)) {
3112     SanitizerScope SanScope(this);
3113     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3114                              SanitizerKind::Unreachable),
3115               SanitizerHandler::BuiltinUnreachable,
3116               EmitCheckSourceLocation(Loc), None);
3117   }
3118   Builder.CreateUnreachable();
3119 }
3120 
3121 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3122   llvm::BasicBlock *Cont = createBasicBlock("cont");
3123 
3124   // If we're optimizing, collapse all calls to trap down to just one per
3125   // function to save on code size.
3126   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3127     TrapBB = createBasicBlock("trap");
3128     Builder.CreateCondBr(Checked, Cont, TrapBB);
3129     EmitBlock(TrapBB);
3130     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3131     TrapCall->setDoesNotReturn();
3132     TrapCall->setDoesNotThrow();
3133     Builder.CreateUnreachable();
3134   } else {
3135     Builder.CreateCondBr(Checked, Cont, TrapBB);
3136   }
3137 
3138   EmitBlock(Cont);
3139 }
3140 
3141 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3142   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3143 
3144   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3145     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3146                                   CGM.getCodeGenOpts().TrapFuncName);
3147     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3148   }
3149 
3150   return TrapCall;
3151 }
3152 
3153 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3154                                                  LValueBaseInfo *BaseInfo,
3155                                                  TBAAAccessInfo *TBAAInfo) {
3156   assert(E->getType()->isArrayType() &&
3157          "Array to pointer decay must have array source type!");
3158 
3159   // Expressions of array type can't be bitfields or vector elements.
3160   LValue LV = EmitLValue(E);
3161   Address Addr = LV.getAddress();
3162 
3163   // If the array type was an incomplete type, we need to make sure
3164   // the decay ends up being the right type.
3165   llvm::Type *NewTy = ConvertType(E->getType());
3166   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3167 
3168   // Note that VLA pointers are always decayed, so we don't need to do
3169   // anything here.
3170   if (!E->getType()->isVariableArrayType()) {
3171     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3172            "Expected pointer to array");
3173     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3174   }
3175 
3176   // The result of this decay conversion points to an array element within the
3177   // base lvalue. However, since TBAA currently does not support representing
3178   // accesses to elements of member arrays, we conservatively represent accesses
3179   // to the pointee object as if it had no any base lvalue specified.
3180   // TODO: Support TBAA for member arrays.
3181   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3182   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3183   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3184 
3185   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3186 }
3187 
3188 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3189 /// array to pointer, return the array subexpression.
3190 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3191   // If this isn't just an array->pointer decay, bail out.
3192   const auto *CE = dyn_cast<CastExpr>(E);
3193   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3194     return nullptr;
3195 
3196   // If this is a decay from variable width array, bail out.
3197   const Expr *SubExpr = CE->getSubExpr();
3198   if (SubExpr->getType()->isVariableArrayType())
3199     return nullptr;
3200 
3201   return SubExpr;
3202 }
3203 
3204 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3205                                           llvm::Value *ptr,
3206                                           ArrayRef<llvm::Value*> indices,
3207                                           bool inbounds,
3208                                           bool signedIndices,
3209                                           SourceLocation loc,
3210                                     const llvm::Twine &name = "arrayidx") {
3211   if (inbounds) {
3212     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3213                                       CodeGenFunction::NotSubtraction, loc,
3214                                       name);
3215   } else {
3216     return CGF.Builder.CreateGEP(ptr, indices, name);
3217   }
3218 }
3219 
3220 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3221                                       llvm::Value *idx,
3222                                       CharUnits eltSize) {
3223   // If we have a constant index, we can use the exact offset of the
3224   // element we're accessing.
3225   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3226     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3227     return arrayAlign.alignmentAtOffset(offset);
3228 
3229   // Otherwise, use the worst-case alignment for any element.
3230   } else {
3231     return arrayAlign.alignmentOfArrayElement(eltSize);
3232   }
3233 }
3234 
3235 static QualType getFixedSizeElementType(const ASTContext &ctx,
3236                                         const VariableArrayType *vla) {
3237   QualType eltType;
3238   do {
3239     eltType = vla->getElementType();
3240   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3241   return eltType;
3242 }
3243 
3244 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3245                                      ArrayRef<llvm::Value *> indices,
3246                                      QualType eltType, bool inbounds,
3247                                      bool signedIndices, SourceLocation loc,
3248                                      const llvm::Twine &name = "arrayidx") {
3249   // All the indices except that last must be zero.
3250 #ifndef NDEBUG
3251   for (auto idx : indices.drop_back())
3252     assert(isa<llvm::ConstantInt>(idx) &&
3253            cast<llvm::ConstantInt>(idx)->isZero());
3254 #endif
3255 
3256   // Determine the element size of the statically-sized base.  This is
3257   // the thing that the indices are expressed in terms of.
3258   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3259     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3260   }
3261 
3262   // We can use that to compute the best alignment of the element.
3263   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3264   CharUnits eltAlign =
3265     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3266 
3267   llvm::Value *eltPtr = emitArraySubscriptGEP(
3268       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3269   return Address(eltPtr, eltAlign);
3270 }
3271 
3272 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3273                                                bool Accessed) {
3274   // The index must always be an integer, which is not an aggregate.  Emit it
3275   // in lexical order (this complexity is, sadly, required by C++17).
3276   llvm::Value *IdxPre =
3277       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3278   bool SignedIndices = false;
3279   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3280     auto *Idx = IdxPre;
3281     if (E->getLHS() != E->getIdx()) {
3282       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3283       Idx = EmitScalarExpr(E->getIdx());
3284     }
3285 
3286     QualType IdxTy = E->getIdx()->getType();
3287     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3288     SignedIndices |= IdxSigned;
3289 
3290     if (SanOpts.has(SanitizerKind::ArrayBounds))
3291       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3292 
3293     // Extend or truncate the index type to 32 or 64-bits.
3294     if (Promote && Idx->getType() != IntPtrTy)
3295       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3296 
3297     return Idx;
3298   };
3299   IdxPre = nullptr;
3300 
3301   // If the base is a vector type, then we are forming a vector element lvalue
3302   // with this subscript.
3303   if (E->getBase()->getType()->isVectorType() &&
3304       !isa<ExtVectorElementExpr>(E->getBase())) {
3305     // Emit the vector as an lvalue to get its address.
3306     LValue LHS = EmitLValue(E->getBase());
3307     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3308     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3309     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3310                                  LHS.getBaseInfo(), TBAAAccessInfo());
3311   }
3312 
3313   // All the other cases basically behave like simple offsetting.
3314 
3315   // Handle the extvector case we ignored above.
3316   if (isa<ExtVectorElementExpr>(E->getBase())) {
3317     LValue LV = EmitLValue(E->getBase());
3318     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3319     Address Addr = EmitExtVectorElementLValue(LV);
3320 
3321     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3322     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3323                                  SignedIndices, E->getExprLoc());
3324     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3325                           CGM.getTBAAInfoForSubobject(LV, EltType));
3326   }
3327 
3328   LValueBaseInfo EltBaseInfo;
3329   TBAAAccessInfo EltTBAAInfo;
3330   Address Addr = Address::invalid();
3331   if (const VariableArrayType *vla =
3332            getContext().getAsVariableArrayType(E->getType())) {
3333     // The base must be a pointer, which is not an aggregate.  Emit
3334     // it.  It needs to be emitted first in case it's what captures
3335     // the VLA bounds.
3336     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3337     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3338 
3339     // The element count here is the total number of non-VLA elements.
3340     llvm::Value *numElements = getVLASize(vla).NumElts;
3341 
3342     // Effectively, the multiply by the VLA size is part of the GEP.
3343     // GEP indexes are signed, and scaling an index isn't permitted to
3344     // signed-overflow, so we use the same semantics for our explicit
3345     // multiply.  We suppress this if overflow is not undefined behavior.
3346     if (getLangOpts().isSignedOverflowDefined()) {
3347       Idx = Builder.CreateMul(Idx, numElements);
3348     } else {
3349       Idx = Builder.CreateNSWMul(Idx, numElements);
3350     }
3351 
3352     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3353                                  !getLangOpts().isSignedOverflowDefined(),
3354                                  SignedIndices, E->getExprLoc());
3355 
3356   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3357     // Indexing over an interface, as in "NSString *P; P[4];"
3358 
3359     // Emit the base pointer.
3360     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3361     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3362 
3363     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3364     llvm::Value *InterfaceSizeVal =
3365         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3366 
3367     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3368 
3369     // We don't necessarily build correct LLVM struct types for ObjC
3370     // interfaces, so we can't rely on GEP to do this scaling
3371     // correctly, so we need to cast to i8*.  FIXME: is this actually
3372     // true?  A lot of other things in the fragile ABI would break...
3373     llvm::Type *OrigBaseTy = Addr.getType();
3374     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3375 
3376     // Do the GEP.
3377     CharUnits EltAlign =
3378       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3379     llvm::Value *EltPtr =
3380         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3381                               SignedIndices, E->getExprLoc());
3382     Addr = Address(EltPtr, EltAlign);
3383 
3384     // Cast back.
3385     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3386   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3387     // If this is A[i] where A is an array, the frontend will have decayed the
3388     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3389     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3390     // "gep x, i" here.  Emit one "gep A, 0, i".
3391     assert(Array->getType()->isArrayType() &&
3392            "Array to pointer decay must have array source type!");
3393     LValue ArrayLV;
3394     // For simple multidimensional array indexing, set the 'accessed' flag for
3395     // better bounds-checking of the base expression.
3396     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3397       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3398     else
3399       ArrayLV = EmitLValue(Array);
3400     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3401 
3402     // Propagate the alignment from the array itself to the result.
3403     Addr = emitArraySubscriptGEP(
3404         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3405         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3406         E->getExprLoc());
3407     EltBaseInfo = ArrayLV.getBaseInfo();
3408     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3409   } else {
3410     // The base must be a pointer; emit it with an estimate of its alignment.
3411     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3412     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3413     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3414                                  !getLangOpts().isSignedOverflowDefined(),
3415                                  SignedIndices, E->getExprLoc());
3416   }
3417 
3418   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3419 
3420   if (getLangOpts().ObjC1 &&
3421       getLangOpts().getGC() != LangOptions::NonGC) {
3422     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3423     setObjCGCLValueClass(getContext(), E, LV);
3424   }
3425   return LV;
3426 }
3427 
3428 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3429                                        LValueBaseInfo &BaseInfo,
3430                                        TBAAAccessInfo &TBAAInfo,
3431                                        QualType BaseTy, QualType ElTy,
3432                                        bool IsLowerBound) {
3433   LValue BaseLVal;
3434   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3435     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3436     if (BaseTy->isArrayType()) {
3437       Address Addr = BaseLVal.getAddress();
3438       BaseInfo = BaseLVal.getBaseInfo();
3439 
3440       // If the array type was an incomplete type, we need to make sure
3441       // the decay ends up being the right type.
3442       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3443       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3444 
3445       // Note that VLA pointers are always decayed, so we don't need to do
3446       // anything here.
3447       if (!BaseTy->isVariableArrayType()) {
3448         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3449                "Expected pointer to array");
3450         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3451                                            "arraydecay");
3452       }
3453 
3454       return CGF.Builder.CreateElementBitCast(Addr,
3455                                               CGF.ConvertTypeForMem(ElTy));
3456     }
3457     LValueBaseInfo TypeBaseInfo;
3458     TBAAAccessInfo TypeTBAAInfo;
3459     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3460                                                   &TypeTBAAInfo);
3461     BaseInfo.mergeForCast(TypeBaseInfo);
3462     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3463     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3464   }
3465   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3466 }
3467 
3468 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3469                                                 bool IsLowerBound) {
3470   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3471   QualType ResultExprTy;
3472   if (auto *AT = getContext().getAsArrayType(BaseTy))
3473     ResultExprTy = AT->getElementType();
3474   else
3475     ResultExprTy = BaseTy->getPointeeType();
3476   llvm::Value *Idx = nullptr;
3477   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3478     // Requesting lower bound or upper bound, but without provided length and
3479     // without ':' symbol for the default length -> length = 1.
3480     // Idx = LowerBound ?: 0;
3481     if (auto *LowerBound = E->getLowerBound()) {
3482       Idx = Builder.CreateIntCast(
3483           EmitScalarExpr(LowerBound), IntPtrTy,
3484           LowerBound->getType()->hasSignedIntegerRepresentation());
3485     } else
3486       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3487   } else {
3488     // Try to emit length or lower bound as constant. If this is possible, 1
3489     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3490     // IR (LB + Len) - 1.
3491     auto &C = CGM.getContext();
3492     auto *Length = E->getLength();
3493     llvm::APSInt ConstLength;
3494     if (Length) {
3495       // Idx = LowerBound + Length - 1;
3496       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3497         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3498         Length = nullptr;
3499       }
3500       auto *LowerBound = E->getLowerBound();
3501       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3502       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3503         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3504         LowerBound = nullptr;
3505       }
3506       if (!Length)
3507         --ConstLength;
3508       else if (!LowerBound)
3509         --ConstLowerBound;
3510 
3511       if (Length || LowerBound) {
3512         auto *LowerBoundVal =
3513             LowerBound
3514                 ? Builder.CreateIntCast(
3515                       EmitScalarExpr(LowerBound), IntPtrTy,
3516                       LowerBound->getType()->hasSignedIntegerRepresentation())
3517                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3518         auto *LengthVal =
3519             Length
3520                 ? Builder.CreateIntCast(
3521                       EmitScalarExpr(Length), IntPtrTy,
3522                       Length->getType()->hasSignedIntegerRepresentation())
3523                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3524         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3525                                 /*HasNUW=*/false,
3526                                 !getLangOpts().isSignedOverflowDefined());
3527         if (Length && LowerBound) {
3528           Idx = Builder.CreateSub(
3529               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3530               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3531         }
3532       } else
3533         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3534     } else {
3535       // Idx = ArraySize - 1;
3536       QualType ArrayTy = BaseTy->isPointerType()
3537                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3538                              : BaseTy;
3539       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3540         Length = VAT->getSizeExpr();
3541         if (Length->isIntegerConstantExpr(ConstLength, C))
3542           Length = nullptr;
3543       } else {
3544         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3545         ConstLength = CAT->getSize();
3546       }
3547       if (Length) {
3548         auto *LengthVal = Builder.CreateIntCast(
3549             EmitScalarExpr(Length), IntPtrTy,
3550             Length->getType()->hasSignedIntegerRepresentation());
3551         Idx = Builder.CreateSub(
3552             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3553             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3554       } else {
3555         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3556         --ConstLength;
3557         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3558       }
3559     }
3560   }
3561   assert(Idx);
3562 
3563   Address EltPtr = Address::invalid();
3564   LValueBaseInfo BaseInfo;
3565   TBAAAccessInfo TBAAInfo;
3566   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3567     // The base must be a pointer, which is not an aggregate.  Emit
3568     // it.  It needs to be emitted first in case it's what captures
3569     // the VLA bounds.
3570     Address Base =
3571         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3572                                 BaseTy, VLA->getElementType(), IsLowerBound);
3573     // The element count here is the total number of non-VLA elements.
3574     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3575 
3576     // Effectively, the multiply by the VLA size is part of the GEP.
3577     // GEP indexes are signed, and scaling an index isn't permitted to
3578     // signed-overflow, so we use the same semantics for our explicit
3579     // multiply.  We suppress this if overflow is not undefined behavior.
3580     if (getLangOpts().isSignedOverflowDefined())
3581       Idx = Builder.CreateMul(Idx, NumElements);
3582     else
3583       Idx = Builder.CreateNSWMul(Idx, NumElements);
3584     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3585                                    !getLangOpts().isSignedOverflowDefined(),
3586                                    /*SignedIndices=*/false, E->getExprLoc());
3587   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3588     // If this is A[i] where A is an array, the frontend will have decayed the
3589     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3590     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3591     // "gep x, i" here.  Emit one "gep A, 0, i".
3592     assert(Array->getType()->isArrayType() &&
3593            "Array to pointer decay must have array source type!");
3594     LValue ArrayLV;
3595     // For simple multidimensional array indexing, set the 'accessed' flag for
3596     // better bounds-checking of the base expression.
3597     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3598       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3599     else
3600       ArrayLV = EmitLValue(Array);
3601 
3602     // Propagate the alignment from the array itself to the result.
3603     EltPtr = emitArraySubscriptGEP(
3604         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3605         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3606         /*SignedIndices=*/false, E->getExprLoc());
3607     BaseInfo = ArrayLV.getBaseInfo();
3608     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3609   } else {
3610     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3611                                            TBAAInfo, BaseTy, ResultExprTy,
3612                                            IsLowerBound);
3613     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3614                                    !getLangOpts().isSignedOverflowDefined(),
3615                                    /*SignedIndices=*/false, E->getExprLoc());
3616   }
3617 
3618   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3619 }
3620 
3621 LValue CodeGenFunction::
3622 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3623   // Emit the base vector as an l-value.
3624   LValue Base;
3625 
3626   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3627   if (E->isArrow()) {
3628     // If it is a pointer to a vector, emit the address and form an lvalue with
3629     // it.
3630     LValueBaseInfo BaseInfo;
3631     TBAAAccessInfo TBAAInfo;
3632     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3633     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3634     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3635     Base.getQuals().removeObjCGCAttr();
3636   } else if (E->getBase()->isGLValue()) {
3637     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3638     // emit the base as an lvalue.
3639     assert(E->getBase()->getType()->isVectorType());
3640     Base = EmitLValue(E->getBase());
3641   } else {
3642     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3643     assert(E->getBase()->getType()->isVectorType() &&
3644            "Result must be a vector");
3645     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3646 
3647     // Store the vector to memory (because LValue wants an address).
3648     Address VecMem = CreateMemTemp(E->getBase()->getType());
3649     Builder.CreateStore(Vec, VecMem);
3650     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3651                           AlignmentSource::Decl);
3652   }
3653 
3654   QualType type =
3655     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3656 
3657   // Encode the element access list into a vector of unsigned indices.
3658   SmallVector<uint32_t, 4> Indices;
3659   E->getEncodedElementAccess(Indices);
3660 
3661   if (Base.isSimple()) {
3662     llvm::Constant *CV =
3663         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3664     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3665                                     Base.getBaseInfo(), TBAAAccessInfo());
3666   }
3667   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3668 
3669   llvm::Constant *BaseElts = Base.getExtVectorElts();
3670   SmallVector<llvm::Constant *, 4> CElts;
3671 
3672   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3673     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3674   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3675   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3676                                   Base.getBaseInfo(), TBAAAccessInfo());
3677 }
3678 
3679 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3680   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3681     EmitIgnoredExpr(E->getBase());
3682     return EmitDeclRefLValue(DRE);
3683   }
3684 
3685   Expr *BaseExpr = E->getBase();
3686   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3687   LValue BaseLV;
3688   if (E->isArrow()) {
3689     LValueBaseInfo BaseInfo;
3690     TBAAAccessInfo TBAAInfo;
3691     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3692     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3693     SanitizerSet SkippedChecks;
3694     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3695     if (IsBaseCXXThis)
3696       SkippedChecks.set(SanitizerKind::Alignment, true);
3697     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3698       SkippedChecks.set(SanitizerKind::Null, true);
3699     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3700                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3701     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3702   } else
3703     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3704 
3705   NamedDecl *ND = E->getMemberDecl();
3706   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3707     LValue LV = EmitLValueForField(BaseLV, Field);
3708     setObjCGCLValueClass(getContext(), E, LV);
3709     return LV;
3710   }
3711 
3712   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3713     return EmitFunctionDeclLValue(*this, E, FD);
3714 
3715   llvm_unreachable("Unhandled member declaration!");
3716 }
3717 
3718 /// Given that we are currently emitting a lambda, emit an l-value for
3719 /// one of its members.
3720 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3721   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3722   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3723   QualType LambdaTagType =
3724     getContext().getTagDeclType(Field->getParent());
3725   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3726   return EmitLValueForField(LambdaLV, Field);
3727 }
3728 
3729 /// Drill down to the storage of a field without walking into
3730 /// reference types.
3731 ///
3732 /// The resulting address doesn't necessarily have the right type.
3733 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3734                                       const FieldDecl *field) {
3735   const RecordDecl *rec = field->getParent();
3736 
3737   unsigned idx =
3738     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3739 
3740   CharUnits offset;
3741   // Adjust the alignment down to the given offset.
3742   // As a special case, if the LLVM field index is 0, we know that this
3743   // is zero.
3744   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3745                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3746          "LLVM field at index zero had non-zero offset?");
3747   if (idx != 0) {
3748     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3749     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3750     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3751   }
3752 
3753   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3754 }
3755 
3756 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3757   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3758   if (!RD)
3759     return false;
3760 
3761   if (RD->isDynamicClass())
3762     return true;
3763 
3764   for (const auto &Base : RD->bases())
3765     if (hasAnyVptr(Base.getType(), Context))
3766       return true;
3767 
3768   for (const FieldDecl *Field : RD->fields())
3769     if (hasAnyVptr(Field->getType(), Context))
3770       return true;
3771 
3772   return false;
3773 }
3774 
3775 LValue CodeGenFunction::EmitLValueForField(LValue base,
3776                                            const FieldDecl *field) {
3777   LValueBaseInfo BaseInfo = base.getBaseInfo();
3778 
3779   if (field->isBitField()) {
3780     const CGRecordLayout &RL =
3781       CGM.getTypes().getCGRecordLayout(field->getParent());
3782     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3783     Address Addr = base.getAddress();
3784     unsigned Idx = RL.getLLVMFieldNo(field);
3785     if (Idx != 0)
3786       // For structs, we GEP to the field that the record layout suggests.
3787       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3788                                      field->getName());
3789     // Get the access type.
3790     llvm::Type *FieldIntTy =
3791       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3792     if (Addr.getElementType() != FieldIntTy)
3793       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3794 
3795     QualType fieldType =
3796       field->getType().withCVRQualifiers(base.getVRQualifiers());
3797     // TODO: Support TBAA for bit fields.
3798     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
3799     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3800                                 TBAAAccessInfo());
3801   }
3802 
3803   // Fields of may-alias structures are may-alias themselves.
3804   // FIXME: this should get propagated down through anonymous structs
3805   // and unions.
3806   QualType FieldType = field->getType();
3807   const RecordDecl *rec = field->getParent();
3808   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3809   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
3810   TBAAAccessInfo FieldTBAAInfo;
3811   if (base.getTBAAInfo().isMayAlias() ||
3812           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
3813     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3814   } else if (rec->isUnion()) {
3815     // TODO: Support TBAA for unions.
3816     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3817   } else {
3818     // If no base type been assigned for the base access, then try to generate
3819     // one for this base lvalue.
3820     FieldTBAAInfo = base.getTBAAInfo();
3821     if (!FieldTBAAInfo.BaseType) {
3822         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3823         assert(!FieldTBAAInfo.Offset &&
3824                "Nonzero offset for an access with no base type!");
3825     }
3826 
3827     // Adjust offset to be relative to the base type.
3828     const ASTRecordLayout &Layout =
3829         getContext().getASTRecordLayout(field->getParent());
3830     unsigned CharWidth = getContext().getCharWidth();
3831     if (FieldTBAAInfo.BaseType)
3832       FieldTBAAInfo.Offset +=
3833           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3834 
3835     // Update the final access type and size.
3836     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3837     FieldTBAAInfo.Size =
3838         getContext().getTypeSizeInChars(FieldType).getQuantity();
3839   }
3840 
3841   Address addr = base.getAddress();
3842   unsigned RecordCVR = base.getVRQualifiers();
3843   if (rec->isUnion()) {
3844     // For unions, there is no pointer adjustment.
3845     assert(!FieldType->isReferenceType() && "union has reference member");
3846     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3847         hasAnyVptr(FieldType, getContext()))
3848       // Because unions can easily skip invariant.barriers, we need to add
3849       // a barrier every time CXXRecord field with vptr is referenced.
3850       addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()),
3851                      addr.getAlignment());
3852   } else {
3853     // For structs, we GEP to the field that the record layout suggests.
3854     addr = emitAddrOfFieldStorage(*this, addr, field);
3855 
3856     // If this is a reference field, load the reference right now.
3857     if (FieldType->isReferenceType()) {
3858       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
3859                                       FieldTBAAInfo);
3860       if (RecordCVR & Qualifiers::Volatile)
3861         RefLVal.getQuals().setVolatile(true);
3862       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
3863 
3864       // Qualifiers on the struct don't apply to the referencee.
3865       RecordCVR = 0;
3866       FieldType = FieldType->getPointeeType();
3867     }
3868   }
3869 
3870   // Make sure that the address is pointing to the right type.  This is critical
3871   // for both unions and structs.  A union needs a bitcast, a struct element
3872   // will need a bitcast if the LLVM type laid out doesn't match the desired
3873   // type.
3874   addr = Builder.CreateElementBitCast(
3875       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
3876 
3877   if (field->hasAttr<AnnotateAttr>())
3878     addr = EmitFieldAnnotations(field, addr);
3879 
3880   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
3881   LV.getQuals().addCVRQualifiers(RecordCVR);
3882 
3883   // __weak attribute on a field is ignored.
3884   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3885     LV.getQuals().removeObjCGCAttr();
3886 
3887   return LV;
3888 }
3889 
3890 LValue
3891 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3892                                                   const FieldDecl *Field) {
3893   QualType FieldType = Field->getType();
3894 
3895   if (!FieldType->isReferenceType())
3896     return EmitLValueForField(Base, Field);
3897 
3898   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3899 
3900   // Make sure that the address is pointing to the right type.
3901   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3902   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3903 
3904   // TODO: Generate TBAA information that describes this access as a structure
3905   // member access and not just an access to an object of the field's type. This
3906   // should be similar to what we do in EmitLValueForField().
3907   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3908   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
3909   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
3910   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
3911                         CGM.getTBAAInfoForSubobject(Base, FieldType));
3912 }
3913 
3914 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3915   if (E->isFileScope()) {
3916     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3917     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3918   }
3919   if (E->getType()->isVariablyModifiedType())
3920     // make sure to emit the VLA size.
3921     EmitVariablyModifiedType(E->getType());
3922 
3923   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3924   const Expr *InitExpr = E->getInitializer();
3925   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3926 
3927   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3928                    /*Init*/ true);
3929 
3930   return Result;
3931 }
3932 
3933 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3934   if (!E->isGLValue())
3935     // Initializing an aggregate temporary in C++11: T{...}.
3936     return EmitAggExprToLValue(E);
3937 
3938   // An lvalue initializer list must be initializing a reference.
3939   assert(E->isTransparent() && "non-transparent glvalue init list");
3940   return EmitLValue(E->getInit(0));
3941 }
3942 
3943 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3944 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3945 /// LValue is returned and the current block has been terminated.
3946 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3947                                                     const Expr *Operand) {
3948   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3949     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3950     return None;
3951   }
3952 
3953   return CGF.EmitLValue(Operand);
3954 }
3955 
3956 LValue CodeGenFunction::
3957 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3958   if (!expr->isGLValue()) {
3959     // ?: here should be an aggregate.
3960     assert(hasAggregateEvaluationKind(expr->getType()) &&
3961            "Unexpected conditional operator!");
3962     return EmitAggExprToLValue(expr);
3963   }
3964 
3965   OpaqueValueMapping binding(*this, expr);
3966 
3967   const Expr *condExpr = expr->getCond();
3968   bool CondExprBool;
3969   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3970     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3971     if (!CondExprBool) std::swap(live, dead);
3972 
3973     if (!ContainsLabel(dead)) {
3974       // If the true case is live, we need to track its region.
3975       if (CondExprBool)
3976         incrementProfileCounter(expr);
3977       return EmitLValue(live);
3978     }
3979   }
3980 
3981   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3982   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3983   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3984 
3985   ConditionalEvaluation eval(*this);
3986   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3987 
3988   // Any temporaries created here are conditional.
3989   EmitBlock(lhsBlock);
3990   incrementProfileCounter(expr);
3991   eval.begin(*this);
3992   Optional<LValue> lhs =
3993       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3994   eval.end(*this);
3995 
3996   if (lhs && !lhs->isSimple())
3997     return EmitUnsupportedLValue(expr, "conditional operator");
3998 
3999   lhsBlock = Builder.GetInsertBlock();
4000   if (lhs)
4001     Builder.CreateBr(contBlock);
4002 
4003   // Any temporaries created here are conditional.
4004   EmitBlock(rhsBlock);
4005   eval.begin(*this);
4006   Optional<LValue> rhs =
4007       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4008   eval.end(*this);
4009   if (rhs && !rhs->isSimple())
4010     return EmitUnsupportedLValue(expr, "conditional operator");
4011   rhsBlock = Builder.GetInsertBlock();
4012 
4013   EmitBlock(contBlock);
4014 
4015   if (lhs && rhs) {
4016     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4017                                            2, "cond-lvalue");
4018     phi->addIncoming(lhs->getPointer(), lhsBlock);
4019     phi->addIncoming(rhs->getPointer(), rhsBlock);
4020     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4021     AlignmentSource alignSource =
4022       std::max(lhs->getBaseInfo().getAlignmentSource(),
4023                rhs->getBaseInfo().getAlignmentSource());
4024     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4025         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4026     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4027                           TBAAInfo);
4028   } else {
4029     assert((lhs || rhs) &&
4030            "both operands of glvalue conditional are throw-expressions?");
4031     return lhs ? *lhs : *rhs;
4032   }
4033 }
4034 
4035 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4036 /// type. If the cast is to a reference, we can have the usual lvalue result,
4037 /// otherwise if a cast is needed by the code generator in an lvalue context,
4038 /// then it must mean that we need the address of an aggregate in order to
4039 /// access one of its members.  This can happen for all the reasons that casts
4040 /// are permitted with aggregate result, including noop aggregate casts, and
4041 /// cast from scalar to union.
4042 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4043   switch (E->getCastKind()) {
4044   case CK_ToVoid:
4045   case CK_BitCast:
4046   case CK_ArrayToPointerDecay:
4047   case CK_FunctionToPointerDecay:
4048   case CK_NullToMemberPointer:
4049   case CK_NullToPointer:
4050   case CK_IntegralToPointer:
4051   case CK_PointerToIntegral:
4052   case CK_PointerToBoolean:
4053   case CK_VectorSplat:
4054   case CK_IntegralCast:
4055   case CK_BooleanToSignedIntegral:
4056   case CK_IntegralToBoolean:
4057   case CK_IntegralToFloating:
4058   case CK_FloatingToIntegral:
4059   case CK_FloatingToBoolean:
4060   case CK_FloatingCast:
4061   case CK_FloatingRealToComplex:
4062   case CK_FloatingComplexToReal:
4063   case CK_FloatingComplexToBoolean:
4064   case CK_FloatingComplexCast:
4065   case CK_FloatingComplexToIntegralComplex:
4066   case CK_IntegralRealToComplex:
4067   case CK_IntegralComplexToReal:
4068   case CK_IntegralComplexToBoolean:
4069   case CK_IntegralComplexCast:
4070   case CK_IntegralComplexToFloatingComplex:
4071   case CK_DerivedToBaseMemberPointer:
4072   case CK_BaseToDerivedMemberPointer:
4073   case CK_MemberPointerToBoolean:
4074   case CK_ReinterpretMemberPointer:
4075   case CK_AnyPointerToBlockPointerCast:
4076   case CK_ARCProduceObject:
4077   case CK_ARCConsumeObject:
4078   case CK_ARCReclaimReturnedObject:
4079   case CK_ARCExtendBlockObject:
4080   case CK_CopyAndAutoreleaseBlockObject:
4081   case CK_AddressSpaceConversion:
4082   case CK_IntToOCLSampler:
4083     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4084 
4085   case CK_Dependent:
4086     llvm_unreachable("dependent cast kind in IR gen!");
4087 
4088   case CK_BuiltinFnToFnPtr:
4089     llvm_unreachable("builtin functions are handled elsewhere");
4090 
4091   // These are never l-values; just use the aggregate emission code.
4092   case CK_NonAtomicToAtomic:
4093   case CK_AtomicToNonAtomic:
4094     return EmitAggExprToLValue(E);
4095 
4096   case CK_Dynamic: {
4097     LValue LV = EmitLValue(E->getSubExpr());
4098     Address V = LV.getAddress();
4099     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4100     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4101   }
4102 
4103   case CK_ConstructorConversion:
4104   case CK_UserDefinedConversion:
4105   case CK_CPointerToObjCPointerCast:
4106   case CK_BlockPointerToObjCPointerCast:
4107   case CK_NoOp:
4108   case CK_LValueToRValue:
4109     return EmitLValue(E->getSubExpr());
4110 
4111   case CK_UncheckedDerivedToBase:
4112   case CK_DerivedToBase: {
4113     const RecordType *DerivedClassTy =
4114       E->getSubExpr()->getType()->getAs<RecordType>();
4115     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4116 
4117     LValue LV = EmitLValue(E->getSubExpr());
4118     Address This = LV.getAddress();
4119 
4120     // Perform the derived-to-base conversion
4121     Address Base = GetAddressOfBaseClass(
4122         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4123         /*NullCheckValue=*/false, E->getExprLoc());
4124 
4125     // TODO: Support accesses to members of base classes in TBAA. For now, we
4126     // conservatively pretend that the complete object is of the base class
4127     // type.
4128     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4129                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4130   }
4131   case CK_ToUnion:
4132     return EmitAggExprToLValue(E);
4133   case CK_BaseToDerived: {
4134     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4135     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4136 
4137     LValue LV = EmitLValue(E->getSubExpr());
4138 
4139     // Perform the base-to-derived conversion
4140     Address Derived =
4141       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4142                                E->path_begin(), E->path_end(),
4143                                /*NullCheckValue=*/false);
4144 
4145     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4146     // performed and the object is not of the derived type.
4147     if (sanitizePerformTypeCheck())
4148       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4149                     Derived.getPointer(), E->getType());
4150 
4151     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4152       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4153                                 /*MayBeNull=*/false,
4154                                 CFITCK_DerivedCast, E->getLocStart());
4155 
4156     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4157                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4158   }
4159   case CK_LValueBitCast: {
4160     // This must be a reinterpret_cast (or c-style equivalent).
4161     const auto *CE = cast<ExplicitCastExpr>(E);
4162 
4163     CGM.EmitExplicitCastExprType(CE, this);
4164     LValue LV = EmitLValue(E->getSubExpr());
4165     Address V = Builder.CreateBitCast(LV.getAddress(),
4166                                       ConvertType(CE->getTypeAsWritten()));
4167 
4168     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4169       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4170                                 /*MayBeNull=*/false,
4171                                 CFITCK_UnrelatedCast, E->getLocStart());
4172 
4173     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4174                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4175   }
4176   case CK_ObjCObjectLValueCast: {
4177     LValue LV = EmitLValue(E->getSubExpr());
4178     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4179                                              ConvertType(E->getType()));
4180     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4181                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4182   }
4183   case CK_ZeroToOCLQueue:
4184     llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid");
4185   case CK_ZeroToOCLEvent:
4186     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
4187   }
4188 
4189   llvm_unreachable("Unhandled lvalue cast kind?");
4190 }
4191 
4192 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4193   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4194   return getOrCreateOpaqueLValueMapping(e);
4195 }
4196 
4197 LValue
4198 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4199   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4200 
4201   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4202       it = OpaqueLValues.find(e);
4203 
4204   if (it != OpaqueLValues.end())
4205     return it->second;
4206 
4207   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4208   return EmitLValue(e->getSourceExpr());
4209 }
4210 
4211 RValue
4212 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4213   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4214 
4215   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4216       it = OpaqueRValues.find(e);
4217 
4218   if (it != OpaqueRValues.end())
4219     return it->second;
4220 
4221   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4222   return EmitAnyExpr(e->getSourceExpr());
4223 }
4224 
4225 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4226                                            const FieldDecl *FD,
4227                                            SourceLocation Loc) {
4228   QualType FT = FD->getType();
4229   LValue FieldLV = EmitLValueForField(LV, FD);
4230   switch (getEvaluationKind(FT)) {
4231   case TEK_Complex:
4232     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4233   case TEK_Aggregate:
4234     return FieldLV.asAggregateRValue();
4235   case TEK_Scalar:
4236     // This routine is used to load fields one-by-one to perform a copy, so
4237     // don't load reference fields.
4238     if (FD->getType()->isReferenceType())
4239       return RValue::get(FieldLV.getPointer());
4240     return EmitLoadOfLValue(FieldLV, Loc);
4241   }
4242   llvm_unreachable("bad evaluation kind");
4243 }
4244 
4245 //===--------------------------------------------------------------------===//
4246 //                             Expression Emission
4247 //===--------------------------------------------------------------------===//
4248 
4249 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4250                                      ReturnValueSlot ReturnValue) {
4251   // Builtins never have block type.
4252   if (E->getCallee()->getType()->isBlockPointerType())
4253     return EmitBlockCallExpr(E, ReturnValue);
4254 
4255   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4256     return EmitCXXMemberCallExpr(CE, ReturnValue);
4257 
4258   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4259     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4260 
4261   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4262     if (const CXXMethodDecl *MD =
4263           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4264       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4265 
4266   CGCallee callee = EmitCallee(E->getCallee());
4267 
4268   if (callee.isBuiltin()) {
4269     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4270                            E, ReturnValue);
4271   }
4272 
4273   if (callee.isPseudoDestructor()) {
4274     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4275   }
4276 
4277   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4278 }
4279 
4280 /// Emit a CallExpr without considering whether it might be a subclass.
4281 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4282                                            ReturnValueSlot ReturnValue) {
4283   CGCallee Callee = EmitCallee(E->getCallee());
4284   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4285 }
4286 
4287 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4288   if (auto builtinID = FD->getBuiltinID()) {
4289     return CGCallee::forBuiltin(builtinID, FD);
4290   }
4291 
4292   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4293   return CGCallee::forDirect(calleePtr, FD);
4294 }
4295 
4296 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4297   E = E->IgnoreParens();
4298 
4299   // Look through function-to-pointer decay.
4300   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4301     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4302         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4303       return EmitCallee(ICE->getSubExpr());
4304     }
4305 
4306   // Resolve direct calls.
4307   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4308     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4309       return EmitDirectCallee(*this, FD);
4310     }
4311   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4312     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4313       EmitIgnoredExpr(ME->getBase());
4314       return EmitDirectCallee(*this, FD);
4315     }
4316 
4317   // Look through template substitutions.
4318   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4319     return EmitCallee(NTTP->getReplacement());
4320 
4321   // Treat pseudo-destructor calls differently.
4322   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4323     return CGCallee::forPseudoDestructor(PDE);
4324   }
4325 
4326   // Otherwise, we have an indirect reference.
4327   llvm::Value *calleePtr;
4328   QualType functionType;
4329   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4330     calleePtr = EmitScalarExpr(E);
4331     functionType = ptrType->getPointeeType();
4332   } else {
4333     functionType = E->getType();
4334     calleePtr = EmitLValue(E).getPointer();
4335   }
4336   assert(functionType->isFunctionType());
4337   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
4338                           E->getReferencedDeclOfCallee());
4339   CGCallee callee(calleeInfo, calleePtr);
4340   return callee;
4341 }
4342 
4343 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4344   // Comma expressions just emit their LHS then their RHS as an l-value.
4345   if (E->getOpcode() == BO_Comma) {
4346     EmitIgnoredExpr(E->getLHS());
4347     EnsureInsertPoint();
4348     return EmitLValue(E->getRHS());
4349   }
4350 
4351   if (E->getOpcode() == BO_PtrMemD ||
4352       E->getOpcode() == BO_PtrMemI)
4353     return EmitPointerToDataMemberBinaryExpr(E);
4354 
4355   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4356 
4357   // Note that in all of these cases, __block variables need the RHS
4358   // evaluated first just in case the variable gets moved by the RHS.
4359 
4360   switch (getEvaluationKind(E->getType())) {
4361   case TEK_Scalar: {
4362     switch (E->getLHS()->getType().getObjCLifetime()) {
4363     case Qualifiers::OCL_Strong:
4364       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4365 
4366     case Qualifiers::OCL_Autoreleasing:
4367       return EmitARCStoreAutoreleasing(E).first;
4368 
4369     // No reason to do any of these differently.
4370     case Qualifiers::OCL_None:
4371     case Qualifiers::OCL_ExplicitNone:
4372     case Qualifiers::OCL_Weak:
4373       break;
4374     }
4375 
4376     RValue RV = EmitAnyExpr(E->getRHS());
4377     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4378     if (RV.isScalar())
4379       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4380     EmitStoreThroughLValue(RV, LV);
4381     return LV;
4382   }
4383 
4384   case TEK_Complex:
4385     return EmitComplexAssignmentLValue(E);
4386 
4387   case TEK_Aggregate:
4388     return EmitAggExprToLValue(E);
4389   }
4390   llvm_unreachable("bad evaluation kind");
4391 }
4392 
4393 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4394   RValue RV = EmitCallExpr(E);
4395 
4396   if (!RV.isScalar())
4397     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4398                           AlignmentSource::Decl);
4399 
4400   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4401          "Can't have a scalar return unless the return type is a "
4402          "reference type!");
4403 
4404   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4405 }
4406 
4407 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4408   // FIXME: This shouldn't require another copy.
4409   return EmitAggExprToLValue(E);
4410 }
4411 
4412 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4413   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4414          && "binding l-value to type which needs a temporary");
4415   AggValueSlot Slot = CreateAggTemp(E->getType());
4416   EmitCXXConstructExpr(E, Slot);
4417   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4418 }
4419 
4420 LValue
4421 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4422   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4423 }
4424 
4425 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4426   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4427                                       ConvertType(E->getType()));
4428 }
4429 
4430 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4431   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4432                         AlignmentSource::Decl);
4433 }
4434 
4435 LValue
4436 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4437   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4438   Slot.setExternallyDestructed();
4439   EmitAggExpr(E->getSubExpr(), Slot);
4440   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4441   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4442 }
4443 
4444 LValue
4445 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
4446   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4447   EmitLambdaExpr(E, Slot);
4448   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4449 }
4450 
4451 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4452   RValue RV = EmitObjCMessageExpr(E);
4453 
4454   if (!RV.isScalar())
4455     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4456                           AlignmentSource::Decl);
4457 
4458   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4459          "Can't have a scalar return unless the return type is a "
4460          "reference type!");
4461 
4462   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4463 }
4464 
4465 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4466   Address V =
4467     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4468   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4469 }
4470 
4471 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4472                                              const ObjCIvarDecl *Ivar) {
4473   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4474 }
4475 
4476 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4477                                           llvm::Value *BaseValue,
4478                                           const ObjCIvarDecl *Ivar,
4479                                           unsigned CVRQualifiers) {
4480   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4481                                                    Ivar, CVRQualifiers);
4482 }
4483 
4484 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4485   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4486   llvm::Value *BaseValue = nullptr;
4487   const Expr *BaseExpr = E->getBase();
4488   Qualifiers BaseQuals;
4489   QualType ObjectTy;
4490   if (E->isArrow()) {
4491     BaseValue = EmitScalarExpr(BaseExpr);
4492     ObjectTy = BaseExpr->getType()->getPointeeType();
4493     BaseQuals = ObjectTy.getQualifiers();
4494   } else {
4495     LValue BaseLV = EmitLValue(BaseExpr);
4496     BaseValue = BaseLV.getPointer();
4497     ObjectTy = BaseExpr->getType();
4498     BaseQuals = ObjectTy.getQualifiers();
4499   }
4500 
4501   LValue LV =
4502     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4503                       BaseQuals.getCVRQualifiers());
4504   setObjCGCLValueClass(getContext(), E, LV);
4505   return LV;
4506 }
4507 
4508 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4509   // Can only get l-value for message expression returning aggregate type
4510   RValue RV = EmitAnyExprToTemp(E);
4511   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4512                         AlignmentSource::Decl);
4513 }
4514 
4515 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4516                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4517                                  llvm::Value *Chain) {
4518   // Get the actual function type. The callee type will always be a pointer to
4519   // function type or a block pointer type.
4520   assert(CalleeType->isFunctionPointerType() &&
4521          "Call must have function pointer type!");
4522 
4523   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4524 
4525   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4526     // We can only guarantee that a function is called from the correct
4527     // context/function based on the appropriate target attributes,
4528     // so only check in the case where we have both always_inline and target
4529     // since otherwise we could be making a conditional call after a check for
4530     // the proper cpu features (and it won't cause code generation issues due to
4531     // function based code generation).
4532     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4533         TargetDecl->hasAttr<TargetAttr>())
4534       checkTargetFeatures(E, FD);
4535 
4536   CalleeType = getContext().getCanonicalType(CalleeType);
4537 
4538   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4539 
4540   CGCallee Callee = OrigCallee;
4541 
4542   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4543       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4544     if (llvm::Constant *PrefixSig =
4545             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4546       SanitizerScope SanScope(this);
4547       // Remove any (C++17) exception specifications, to allow calling e.g. a
4548       // noexcept function through a non-noexcept pointer.
4549       auto ProtoTy =
4550         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4551       llvm::Constant *FTRTTIConst =
4552           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4553       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4554       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4555           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4556 
4557       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4558 
4559       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4560           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4561       llvm::Value *CalleeSigPtr =
4562           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4563       llvm::Value *CalleeSig =
4564           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4565       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4566 
4567       llvm::BasicBlock *Cont = createBasicBlock("cont");
4568       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4569       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4570 
4571       EmitBlock(TypeCheck);
4572       llvm::Value *CalleeRTTIPtr =
4573           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4574       llvm::Value *CalleeRTTIEncoded =
4575           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4576       llvm::Value *CalleeRTTI =
4577           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4578       llvm::Value *CalleeRTTIMatch =
4579           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4580       llvm::Constant *StaticData[] = {
4581         EmitCheckSourceLocation(E->getLocStart()),
4582         EmitCheckTypeDescriptor(CalleeType)
4583       };
4584       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4585                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4586 
4587       Builder.CreateBr(Cont);
4588       EmitBlock(Cont);
4589     }
4590   }
4591 
4592   const auto *FnType = cast<FunctionType>(PointeeType);
4593 
4594   // If we are checking indirect calls and this call is indirect, check that the
4595   // function pointer is a member of the bit set for the function type.
4596   if (SanOpts.has(SanitizerKind::CFIICall) &&
4597       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4598     SanitizerScope SanScope(this);
4599     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4600 
4601     llvm::Metadata *MD;
4602     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4603       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4604     else
4605       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4606 
4607     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4608 
4609     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4610     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4611     llvm::Value *TypeTest = Builder.CreateCall(
4612         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4613 
4614     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4615     llvm::Constant *StaticData[] = {
4616         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4617         EmitCheckSourceLocation(E->getLocStart()),
4618         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4619     };
4620     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4621       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4622                            CastedCallee, StaticData);
4623     } else {
4624       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4625                 SanitizerHandler::CFICheckFail, StaticData,
4626                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4627     }
4628   }
4629 
4630   CallArgList Args;
4631   if (Chain)
4632     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4633              CGM.getContext().VoidPtrTy);
4634 
4635   // C++17 requires that we evaluate arguments to a call using assignment syntax
4636   // right-to-left, and that we evaluate arguments to certain other operators
4637   // left-to-right. Note that we allow this to override the order dictated by
4638   // the calling convention on the MS ABI, which means that parameter
4639   // destruction order is not necessarily reverse construction order.
4640   // FIXME: Revisit this based on C++ committee response to unimplementability.
4641   EvaluationOrder Order = EvaluationOrder::Default;
4642   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4643     if (OCE->isAssignmentOp())
4644       Order = EvaluationOrder::ForceRightToLeft;
4645     else {
4646       switch (OCE->getOperator()) {
4647       case OO_LessLess:
4648       case OO_GreaterGreater:
4649       case OO_AmpAmp:
4650       case OO_PipePipe:
4651       case OO_Comma:
4652       case OO_ArrowStar:
4653         Order = EvaluationOrder::ForceLeftToRight;
4654         break;
4655       default:
4656         break;
4657       }
4658     }
4659   }
4660 
4661   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4662                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4663 
4664   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4665       Args, FnType, /*isChainCall=*/Chain);
4666 
4667   // C99 6.5.2.2p6:
4668   //   If the expression that denotes the called function has a type
4669   //   that does not include a prototype, [the default argument
4670   //   promotions are performed]. If the number of arguments does not
4671   //   equal the number of parameters, the behavior is undefined. If
4672   //   the function is defined with a type that includes a prototype,
4673   //   and either the prototype ends with an ellipsis (, ...) or the
4674   //   types of the arguments after promotion are not compatible with
4675   //   the types of the parameters, the behavior is undefined. If the
4676   //   function is defined with a type that does not include a
4677   //   prototype, and the types of the arguments after promotion are
4678   //   not compatible with those of the parameters after promotion,
4679   //   the behavior is undefined [except in some trivial cases].
4680   // That is, in the general case, we should assume that a call
4681   // through an unprototyped function type works like a *non-variadic*
4682   // call.  The way we make this work is to cast to the exact type
4683   // of the promoted arguments.
4684   //
4685   // Chain calls use this same code path to add the invisible chain parameter
4686   // to the function type.
4687   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4688     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4689     CalleeTy = CalleeTy->getPointerTo();
4690 
4691     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4692     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4693     Callee.setFunctionPointer(CalleePtr);
4694   }
4695 
4696   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc());
4697 }
4698 
4699 LValue CodeGenFunction::
4700 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4701   Address BaseAddr = Address::invalid();
4702   if (E->getOpcode() == BO_PtrMemI) {
4703     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4704   } else {
4705     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4706   }
4707 
4708   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4709 
4710   const MemberPointerType *MPT
4711     = E->getRHS()->getType()->getAs<MemberPointerType>();
4712 
4713   LValueBaseInfo BaseInfo;
4714   TBAAAccessInfo TBAAInfo;
4715   Address MemberAddr =
4716     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4717                                     &TBAAInfo);
4718 
4719   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4720 }
4721 
4722 /// Given the address of a temporary variable, produce an r-value of
4723 /// its type.
4724 RValue CodeGenFunction::convertTempToRValue(Address addr,
4725                                             QualType type,
4726                                             SourceLocation loc) {
4727   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4728   switch (getEvaluationKind(type)) {
4729   case TEK_Complex:
4730     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4731   case TEK_Aggregate:
4732     return lvalue.asAggregateRValue();
4733   case TEK_Scalar:
4734     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4735   }
4736   llvm_unreachable("bad evaluation kind");
4737 }
4738 
4739 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4740   assert(Val->getType()->isFPOrFPVectorTy());
4741   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4742     return;
4743 
4744   llvm::MDBuilder MDHelper(getLLVMContext());
4745   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4746 
4747   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4748 }
4749 
4750 namespace {
4751   struct LValueOrRValue {
4752     LValue LV;
4753     RValue RV;
4754   };
4755 }
4756 
4757 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4758                                            const PseudoObjectExpr *E,
4759                                            bool forLValue,
4760                                            AggValueSlot slot) {
4761   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4762 
4763   // Find the result expression, if any.
4764   const Expr *resultExpr = E->getResultExpr();
4765   LValueOrRValue result;
4766 
4767   for (PseudoObjectExpr::const_semantics_iterator
4768          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4769     const Expr *semantic = *i;
4770 
4771     // If this semantic expression is an opaque value, bind it
4772     // to the result of its source expression.
4773     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4774       // Skip unique OVEs.
4775       if (ov->isUnique()) {
4776         assert(ov != resultExpr &&
4777                "A unique OVE cannot be used as the result expression");
4778         continue;
4779       }
4780 
4781       // If this is the result expression, we may need to evaluate
4782       // directly into the slot.
4783       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4784       OVMA opaqueData;
4785       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4786           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4787         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4788         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4789                                        AlignmentSource::Decl);
4790         opaqueData = OVMA::bind(CGF, ov, LV);
4791         result.RV = slot.asRValue();
4792 
4793       // Otherwise, emit as normal.
4794       } else {
4795         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4796 
4797         // If this is the result, also evaluate the result now.
4798         if (ov == resultExpr) {
4799           if (forLValue)
4800             result.LV = CGF.EmitLValue(ov);
4801           else
4802             result.RV = CGF.EmitAnyExpr(ov, slot);
4803         }
4804       }
4805 
4806       opaques.push_back(opaqueData);
4807 
4808     // Otherwise, if the expression is the result, evaluate it
4809     // and remember the result.
4810     } else if (semantic == resultExpr) {
4811       if (forLValue)
4812         result.LV = CGF.EmitLValue(semantic);
4813       else
4814         result.RV = CGF.EmitAnyExpr(semantic, slot);
4815 
4816     // Otherwise, evaluate the expression in an ignored context.
4817     } else {
4818       CGF.EmitIgnoredExpr(semantic);
4819     }
4820   }
4821 
4822   // Unbind all the opaques now.
4823   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4824     opaques[i].unbind(CGF);
4825 
4826   return result;
4827 }
4828 
4829 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4830                                                AggValueSlot slot) {
4831   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4832 }
4833 
4834 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4835   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4836 }
4837