1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/ADT/Hashing.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/Support/ConvertUTF.h"
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 //===--------------------------------------------------------------------===//
37 //                        Miscellaneous Helper Methods
38 //===--------------------------------------------------------------------===//
39 
40 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
41   unsigned addressSpace =
42     cast<llvm::PointerType>(value->getType())->getAddressSpace();
43 
44   llvm::PointerType *destType = Int8PtrTy;
45   if (addressSpace)
46     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
47 
48   if (value->getType() == destType) return value;
49   return Builder.CreateBitCast(value, destType);
50 }
51 
52 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
53 /// block.
54 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
55                                                     const Twine &Name) {
56   if (!Builder.isNamePreserving())
57     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
58   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
59 }
60 
61 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
62                                      llvm::Value *Init) {
63   auto *Store = new llvm::StoreInst(Init, Var);
64   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
65   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
66 }
67 
68 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
69                                                 const Twine &Name) {
70   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
71   // FIXME: Should we prefer the preferred type alignment here?
72   CharUnits Align = getContext().getTypeAlignInChars(Ty);
73   Alloc->setAlignment(Align.getQuantity());
74   return Alloc;
75 }
76 
77 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
78                                                  const Twine &Name) {
79   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
80   // FIXME: Should we prefer the preferred type alignment here?
81   CharUnits Align = getContext().getTypeAlignInChars(Ty);
82   Alloc->setAlignment(Align.getQuantity());
83   return Alloc;
84 }
85 
86 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
87 /// expression and compare the result against zero, returning an Int1Ty value.
88 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
89   PGO.setCurrentStmt(E);
90   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
91     llvm::Value *MemPtr = EmitScalarExpr(E);
92     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
93   }
94 
95   QualType BoolTy = getContext().BoolTy;
96   if (!E->getType()->isAnyComplexType())
97     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
98 
99   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
100 }
101 
102 /// EmitIgnoredExpr - Emit code to compute the specified expression,
103 /// ignoring the result.
104 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
105   if (E->isRValue())
106     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
107 
108   // Just emit it as an l-value and drop the result.
109   EmitLValue(E);
110 }
111 
112 /// EmitAnyExpr - Emit code to compute the specified expression which
113 /// can have any type.  The result is returned as an RValue struct.
114 /// If this is an aggregate expression, AggSlot indicates where the
115 /// result should be returned.
116 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
117                                     AggValueSlot aggSlot,
118                                     bool ignoreResult) {
119   switch (getEvaluationKind(E->getType())) {
120   case TEK_Scalar:
121     return RValue::get(EmitScalarExpr(E, ignoreResult));
122   case TEK_Complex:
123     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
124   case TEK_Aggregate:
125     if (!ignoreResult && aggSlot.isIgnored())
126       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
127     EmitAggExpr(E, aggSlot);
128     return aggSlot.asRValue();
129   }
130   llvm_unreachable("bad evaluation kind");
131 }
132 
133 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
134 /// always be accessible even if no aggregate location is provided.
135 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
136   AggValueSlot AggSlot = AggValueSlot::ignored();
137 
138   if (hasAggregateEvaluationKind(E->getType()))
139     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
140   return EmitAnyExpr(E, AggSlot);
141 }
142 
143 /// EmitAnyExprToMem - Evaluate an expression into a given memory
144 /// location.
145 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
146                                        llvm::Value *Location,
147                                        Qualifiers Quals,
148                                        bool IsInit) {
149   // FIXME: This function should take an LValue as an argument.
150   switch (getEvaluationKind(E->getType())) {
151   case TEK_Complex:
152     EmitComplexExprIntoLValue(E,
153                          MakeNaturalAlignAddrLValue(Location, E->getType()),
154                               /*isInit*/ false);
155     return;
156 
157   case TEK_Aggregate: {
158     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
159     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
160                                          AggValueSlot::IsDestructed_t(IsInit),
161                                          AggValueSlot::DoesNotNeedGCBarriers,
162                                          AggValueSlot::IsAliased_t(!IsInit)));
163     return;
164   }
165 
166   case TEK_Scalar: {
167     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
168     LValue LV = MakeAddrLValue(Location, E->getType());
169     EmitStoreThroughLValue(RV, LV);
170     return;
171   }
172   }
173   llvm_unreachable("bad evaluation kind");
174 }
175 
176 static void
177 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
178                      const Expr *E, llvm::Value *ReferenceTemporary) {
179   // Objective-C++ ARC:
180   //   If we are binding a reference to a temporary that has ownership, we
181   //   need to perform retain/release operations on the temporary.
182   //
183   // FIXME: This should be looking at E, not M.
184   if (CGF.getLangOpts().ObjCAutoRefCount &&
185       M->getType()->isObjCLifetimeType()) {
186     QualType ObjCARCReferenceLifetimeType = M->getType();
187     switch (Qualifiers::ObjCLifetime Lifetime =
188                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
189     case Qualifiers::OCL_None:
190     case Qualifiers::OCL_ExplicitNone:
191       // Carry on to normal cleanup handling.
192       break;
193 
194     case Qualifiers::OCL_Autoreleasing:
195       // Nothing to do; cleaned up by an autorelease pool.
196       return;
197 
198     case Qualifiers::OCL_Strong:
199     case Qualifiers::OCL_Weak:
200       switch (StorageDuration Duration = M->getStorageDuration()) {
201       case SD_Static:
202         // Note: we intentionally do not register a cleanup to release
203         // the object on program termination.
204         return;
205 
206       case SD_Thread:
207         // FIXME: We should probably register a cleanup in this case.
208         return;
209 
210       case SD_Automatic:
211       case SD_FullExpression:
212         assert(!ObjCARCReferenceLifetimeType->isArrayType());
213         CodeGenFunction::Destroyer *Destroy;
214         CleanupKind CleanupKind;
215         if (Lifetime == Qualifiers::OCL_Strong) {
216           const ValueDecl *VD = M->getExtendingDecl();
217           bool Precise =
218               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
219           CleanupKind = CGF.getARCCleanupKind();
220           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
221                             : &CodeGenFunction::destroyARCStrongImprecise;
222         } else {
223           // __weak objects always get EH cleanups; otherwise, exceptions
224           // could cause really nasty crashes instead of mere leaks.
225           CleanupKind = NormalAndEHCleanup;
226           Destroy = &CodeGenFunction::destroyARCWeak;
227         }
228         if (Duration == SD_FullExpression)
229           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
230                           ObjCARCReferenceLifetimeType, *Destroy,
231                           CleanupKind & EHCleanup);
232         else
233           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
234                                           ObjCARCReferenceLifetimeType,
235                                           *Destroy, CleanupKind & EHCleanup);
236         return;
237 
238       case SD_Dynamic:
239         llvm_unreachable("temporary cannot have dynamic storage duration");
240       }
241       llvm_unreachable("unknown storage duration");
242     }
243   }
244 
245   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
246   if (const RecordType *RT =
247           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
248     // Get the destructor for the reference temporary.
249     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
250     if (!ClassDecl->hasTrivialDestructor())
251       ReferenceTemporaryDtor = ClassDecl->getDestructor();
252   }
253 
254   if (!ReferenceTemporaryDtor)
255     return;
256 
257   // Call the destructor for the temporary.
258   switch (M->getStorageDuration()) {
259   case SD_Static:
260   case SD_Thread: {
261     llvm::Constant *CleanupFn;
262     llvm::Constant *CleanupArg;
263     if (E->getType()->isArrayType()) {
264       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
265           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
266           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
267           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
268       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
269     } else {
270       CleanupFn =
271         CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
272       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
273     }
274     CGF.CGM.getCXXABI().registerGlobalDtor(
275         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
276     break;
277   }
278 
279   case SD_FullExpression:
280     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
281                     CodeGenFunction::destroyCXXObject,
282                     CGF.getLangOpts().Exceptions);
283     break;
284 
285   case SD_Automatic:
286     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
287                                     ReferenceTemporary, E->getType(),
288                                     CodeGenFunction::destroyCXXObject,
289                                     CGF.getLangOpts().Exceptions);
290     break;
291 
292   case SD_Dynamic:
293     llvm_unreachable("temporary cannot have dynamic storage duration");
294   }
295 }
296 
297 static llvm::Value *
298 createReferenceTemporary(CodeGenFunction &CGF,
299                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
300   switch (M->getStorageDuration()) {
301   case SD_FullExpression:
302   case SD_Automatic:
303     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
304 
305   case SD_Thread:
306   case SD_Static:
307     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
308 
309   case SD_Dynamic:
310     llvm_unreachable("temporary can't have dynamic storage duration");
311   }
312   llvm_unreachable("unknown storage duration");
313 }
314 
315 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
316                                            const MaterializeTemporaryExpr *M) {
317   const Expr *E = M->GetTemporaryExpr();
318 
319   if (getLangOpts().ObjCAutoRefCount &&
320       M->getType()->isObjCLifetimeType() &&
321       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
322       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
323     // FIXME: Fold this into the general case below.
324     llvm::Value *Object = createReferenceTemporary(*this, M, E);
325     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
326 
327     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
328       // We should not have emitted the initializer for this temporary as a
329       // constant.
330       assert(!Var->hasInitializer());
331       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
332     }
333 
334     EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
335 
336     pushTemporaryCleanup(*this, M, E, Object);
337     return RefTempDst;
338   }
339 
340   SmallVector<const Expr *, 2> CommaLHSs;
341   SmallVector<SubobjectAdjustment, 2> Adjustments;
342   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
343 
344   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
345     EmitIgnoredExpr(CommaLHSs[I]);
346 
347   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
348     if (opaque->getType()->isRecordType()) {
349       assert(Adjustments.empty());
350       return EmitOpaqueValueLValue(opaque);
351     }
352   }
353 
354   // Create and initialize the reference temporary.
355   llvm::Value *Object = createReferenceTemporary(*this, M, E);
356   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
357     // If the temporary is a global and has a constant initializer, we may
358     // have already initialized it.
359     if (!Var->hasInitializer()) {
360       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
361       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
362     }
363   } else {
364     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
365   }
366   pushTemporaryCleanup(*this, M, E, Object);
367 
368   // Perform derived-to-base casts and/or field accesses, to get from the
369   // temporary object we created (and, potentially, for which we extended
370   // the lifetime) to the subobject we're binding the reference to.
371   for (unsigned I = Adjustments.size(); I != 0; --I) {
372     SubobjectAdjustment &Adjustment = Adjustments[I-1];
373     switch (Adjustment.Kind) {
374     case SubobjectAdjustment::DerivedToBaseAdjustment:
375       Object =
376           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
377                                 Adjustment.DerivedToBase.BasePath->path_begin(),
378                                 Adjustment.DerivedToBase.BasePath->path_end(),
379                                 /*NullCheckValue=*/ false);
380       break;
381 
382     case SubobjectAdjustment::FieldAdjustment: {
383       LValue LV = MakeAddrLValue(Object, E->getType());
384       LV = EmitLValueForField(LV, Adjustment.Field);
385       assert(LV.isSimple() &&
386              "materialized temporary field is not a simple lvalue");
387       Object = LV.getAddress();
388       break;
389     }
390 
391     case SubobjectAdjustment::MemberPointerAdjustment: {
392       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
393       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
394           *this, E, Object, Ptr, Adjustment.Ptr.MPT);
395       break;
396     }
397     }
398   }
399 
400   return MakeAddrLValue(Object, M->getType());
401 }
402 
403 RValue
404 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
405   // Emit the expression as an lvalue.
406   LValue LV = EmitLValue(E);
407   assert(LV.isSimple());
408   llvm::Value *Value = LV.getAddress();
409 
410   if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) {
411     // C++11 [dcl.ref]p5 (as amended by core issue 453):
412     //   If a glvalue to which a reference is directly bound designates neither
413     //   an existing object or function of an appropriate type nor a region of
414     //   storage of suitable size and alignment to contain an object of the
415     //   reference's type, the behavior is undefined.
416     QualType Ty = E->getType();
417     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
418   }
419 
420   return RValue::get(Value);
421 }
422 
423 
424 /// getAccessedFieldNo - Given an encoded value and a result number, return the
425 /// input field number being accessed.
426 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
427                                              const llvm::Constant *Elts) {
428   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
429       ->getZExtValue();
430 }
431 
432 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
433 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
434                                     llvm::Value *High) {
435   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
436   llvm::Value *K47 = Builder.getInt64(47);
437   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
438   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
439   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
440   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
441   return Builder.CreateMul(B1, KMul);
442 }
443 
444 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
445                                     llvm::Value *Address,
446                                     QualType Ty, CharUnits Alignment) {
447   if (!SanitizePerformTypeCheck)
448     return;
449 
450   // Don't check pointers outside the default address space. The null check
451   // isn't correct, the object-size check isn't supported by LLVM, and we can't
452   // communicate the addresses to the runtime handler for the vptr check.
453   if (Address->getType()->getPointerAddressSpace())
454     return;
455 
456   llvm::Value *Cond = nullptr;
457   llvm::BasicBlock *Done = nullptr;
458 
459   if (SanOpts->Null) {
460     // The glvalue must not be an empty glvalue.
461     Cond = Builder.CreateICmpNE(
462         Address, llvm::Constant::getNullValue(Address->getType()));
463 
464     if (TCK == TCK_DowncastPointer) {
465       // When performing a pointer downcast, it's OK if the value is null.
466       // Skip the remaining checks in that case.
467       Done = createBasicBlock("null");
468       llvm::BasicBlock *Rest = createBasicBlock("not.null");
469       Builder.CreateCondBr(Cond, Rest, Done);
470       EmitBlock(Rest);
471       Cond = nullptr;
472     }
473   }
474 
475   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
476     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
477 
478     // The glvalue must refer to a large enough storage region.
479     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
480     //        to check this.
481     // FIXME: Get object address space
482     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
483     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
484     llvm::Value *Min = Builder.getFalse();
485     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
486     llvm::Value *LargeEnough =
487         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
488                               llvm::ConstantInt::get(IntPtrTy, Size));
489     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
490   }
491 
492   uint64_t AlignVal = 0;
493 
494   if (SanOpts->Alignment) {
495     AlignVal = Alignment.getQuantity();
496     if (!Ty->isIncompleteType() && !AlignVal)
497       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
498 
499     // The glvalue must be suitably aligned.
500     if (AlignVal) {
501       llvm::Value *Align =
502           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
503                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
504       llvm::Value *Aligned =
505         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
506       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
507     }
508   }
509 
510   if (Cond) {
511     llvm::Constant *StaticData[] = {
512       EmitCheckSourceLocation(Loc),
513       EmitCheckTypeDescriptor(Ty),
514       llvm::ConstantInt::get(SizeTy, AlignVal),
515       llvm::ConstantInt::get(Int8Ty, TCK)
516     };
517     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
518   }
519 
520   // If possible, check that the vptr indicates that there is a subobject of
521   // type Ty at offset zero within this object.
522   //
523   // C++11 [basic.life]p5,6:
524   //   [For storage which does not refer to an object within its lifetime]
525   //   The program has undefined behavior if:
526   //    -- the [pointer or glvalue] is used to access a non-static data member
527   //       or call a non-static member function
528   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
529   if (SanOpts->Vptr &&
530       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
531        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
532       RD && RD->hasDefinition() && RD->isDynamicClass()) {
533     // Compute a hash of the mangled name of the type.
534     //
535     // FIXME: This is not guaranteed to be deterministic! Move to a
536     //        fingerprinting mechanism once LLVM provides one. For the time
537     //        being the implementation happens to be deterministic.
538     SmallString<64> MangledName;
539     llvm::raw_svector_ostream Out(MangledName);
540     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
541                                                      Out);
542     llvm::hash_code TypeHash = hash_value(Out.str());
543 
544     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
545     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
546     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
547     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
548     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
549     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
550 
551     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
552     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
553 
554     // Look the hash up in our cache.
555     const int CacheSize = 128;
556     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
557     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
558                                                    "__ubsan_vptr_type_cache");
559     llvm::Value *Slot = Builder.CreateAnd(Hash,
560                                           llvm::ConstantInt::get(IntPtrTy,
561                                                                  CacheSize-1));
562     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
563     llvm::Value *CacheVal =
564       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
565 
566     // If the hash isn't in the cache, call a runtime handler to perform the
567     // hard work of checking whether the vptr is for an object of the right
568     // type. This will either fill in the cache and return, or produce a
569     // diagnostic.
570     llvm::Constant *StaticData[] = {
571       EmitCheckSourceLocation(Loc),
572       EmitCheckTypeDescriptor(Ty),
573       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
574       llvm::ConstantInt::get(Int8Ty, TCK)
575     };
576     llvm::Value *DynamicData[] = { Address, Hash };
577     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
578               "dynamic_type_cache_miss", StaticData, DynamicData,
579               CRK_AlwaysRecoverable);
580   }
581 
582   if (Done) {
583     Builder.CreateBr(Done);
584     EmitBlock(Done);
585   }
586 }
587 
588 /// Determine whether this expression refers to a flexible array member in a
589 /// struct. We disable array bounds checks for such members.
590 static bool isFlexibleArrayMemberExpr(const Expr *E) {
591   // For compatibility with existing code, we treat arrays of length 0 or
592   // 1 as flexible array members.
593   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
594   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
595     if (CAT->getSize().ugt(1))
596       return false;
597   } else if (!isa<IncompleteArrayType>(AT))
598     return false;
599 
600   E = E->IgnoreParens();
601 
602   // A flexible array member must be the last member in the class.
603   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
604     // FIXME: If the base type of the member expr is not FD->getParent(),
605     // this should not be treated as a flexible array member access.
606     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
607       RecordDecl::field_iterator FI(
608           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
609       return ++FI == FD->getParent()->field_end();
610     }
611   }
612 
613   return false;
614 }
615 
616 /// If Base is known to point to the start of an array, return the length of
617 /// that array. Return 0 if the length cannot be determined.
618 static llvm::Value *getArrayIndexingBound(
619     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
620   // For the vector indexing extension, the bound is the number of elements.
621   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
622     IndexedType = Base->getType();
623     return CGF.Builder.getInt32(VT->getNumElements());
624   }
625 
626   Base = Base->IgnoreParens();
627 
628   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
629     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
630         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
631       IndexedType = CE->getSubExpr()->getType();
632       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
633       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
634         return CGF.Builder.getInt(CAT->getSize());
635       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
636         return CGF.getVLASize(VAT).first;
637     }
638   }
639 
640   return nullptr;
641 }
642 
643 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
644                                       llvm::Value *Index, QualType IndexType,
645                                       bool Accessed) {
646   assert(SanOpts->ArrayBounds &&
647          "should not be called unless adding bounds checks");
648 
649   QualType IndexedType;
650   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
651   if (!Bound)
652     return;
653 
654   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
655   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
656   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
657 
658   llvm::Constant *StaticData[] = {
659     EmitCheckSourceLocation(E->getExprLoc()),
660     EmitCheckTypeDescriptor(IndexedType),
661     EmitCheckTypeDescriptor(IndexType)
662   };
663   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
664                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
665   EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
666 }
667 
668 
669 CodeGenFunction::ComplexPairTy CodeGenFunction::
670 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
671                          bool isInc, bool isPre) {
672   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
673 
674   llvm::Value *NextVal;
675   if (isa<llvm::IntegerType>(InVal.first->getType())) {
676     uint64_t AmountVal = isInc ? 1 : -1;
677     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
678 
679     // Add the inc/dec to the real part.
680     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
681   } else {
682     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
683     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
684     if (!isInc)
685       FVal.changeSign();
686     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
687 
688     // Add the inc/dec to the real part.
689     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
690   }
691 
692   ComplexPairTy IncVal(NextVal, InVal.second);
693 
694   // Store the updated result through the lvalue.
695   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
696 
697   // If this is a postinc, return the value read from memory, otherwise use the
698   // updated value.
699   return isPre ? IncVal : InVal;
700 }
701 
702 
703 //===----------------------------------------------------------------------===//
704 //                         LValue Expression Emission
705 //===----------------------------------------------------------------------===//
706 
707 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
708   if (Ty->isVoidType())
709     return RValue::get(nullptr);
710 
711   switch (getEvaluationKind(Ty)) {
712   case TEK_Complex: {
713     llvm::Type *EltTy =
714       ConvertType(Ty->castAs<ComplexType>()->getElementType());
715     llvm::Value *U = llvm::UndefValue::get(EltTy);
716     return RValue::getComplex(std::make_pair(U, U));
717   }
718 
719   // If this is a use of an undefined aggregate type, the aggregate must have an
720   // identifiable address.  Just because the contents of the value are undefined
721   // doesn't mean that the address can't be taken and compared.
722   case TEK_Aggregate: {
723     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
724     return RValue::getAggregate(DestPtr);
725   }
726 
727   case TEK_Scalar:
728     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
729   }
730   llvm_unreachable("bad evaluation kind");
731 }
732 
733 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
734                                               const char *Name) {
735   ErrorUnsupported(E, Name);
736   return GetUndefRValue(E->getType());
737 }
738 
739 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
740                                               const char *Name) {
741   ErrorUnsupported(E, Name);
742   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
743   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
744 }
745 
746 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
747   LValue LV;
748   if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E))
749     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
750   else
751     LV = EmitLValue(E);
752   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
753     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
754                   E->getType(), LV.getAlignment());
755   return LV;
756 }
757 
758 /// EmitLValue - Emit code to compute a designator that specifies the location
759 /// of the expression.
760 ///
761 /// This can return one of two things: a simple address or a bitfield reference.
762 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
763 /// an LLVM pointer type.
764 ///
765 /// If this returns a bitfield reference, nothing about the pointee type of the
766 /// LLVM value is known: For example, it may not be a pointer to an integer.
767 ///
768 /// If this returns a normal address, and if the lvalue's C type is fixed size,
769 /// this method guarantees that the returned pointer type will point to an LLVM
770 /// type of the same size of the lvalue's type.  If the lvalue has a variable
771 /// length type, this is not possible.
772 ///
773 LValue CodeGenFunction::EmitLValue(const Expr *E) {
774   switch (E->getStmtClass()) {
775   default: return EmitUnsupportedLValue(E, "l-value expression");
776 
777   case Expr::ObjCPropertyRefExprClass:
778     llvm_unreachable("cannot emit a property reference directly");
779 
780   case Expr::ObjCSelectorExprClass:
781     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
782   case Expr::ObjCIsaExprClass:
783     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
784   case Expr::BinaryOperatorClass:
785     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
786   case Expr::CompoundAssignOperatorClass:
787     if (!E->getType()->isAnyComplexType())
788       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
789     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
790   case Expr::CallExprClass:
791   case Expr::CXXMemberCallExprClass:
792   case Expr::CXXOperatorCallExprClass:
793   case Expr::UserDefinedLiteralClass:
794     return EmitCallExprLValue(cast<CallExpr>(E));
795   case Expr::VAArgExprClass:
796     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
797   case Expr::DeclRefExprClass:
798     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
799   case Expr::ParenExprClass:
800     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
801   case Expr::GenericSelectionExprClass:
802     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
803   case Expr::PredefinedExprClass:
804     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
805   case Expr::StringLiteralClass:
806     return EmitStringLiteralLValue(cast<StringLiteral>(E));
807   case Expr::ObjCEncodeExprClass:
808     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
809   case Expr::PseudoObjectExprClass:
810     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
811   case Expr::InitListExprClass:
812     return EmitInitListLValue(cast<InitListExpr>(E));
813   case Expr::CXXTemporaryObjectExprClass:
814   case Expr::CXXConstructExprClass:
815     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
816   case Expr::CXXBindTemporaryExprClass:
817     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
818   case Expr::CXXUuidofExprClass:
819     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
820   case Expr::LambdaExprClass:
821     return EmitLambdaLValue(cast<LambdaExpr>(E));
822 
823   case Expr::ExprWithCleanupsClass: {
824     const auto *cleanups = cast<ExprWithCleanups>(E);
825     enterFullExpression(cleanups);
826     RunCleanupsScope Scope(*this);
827     return EmitLValue(cleanups->getSubExpr());
828   }
829 
830   case Expr::CXXDefaultArgExprClass:
831     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
832   case Expr::CXXDefaultInitExprClass: {
833     CXXDefaultInitExprScope Scope(*this);
834     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
835   }
836   case Expr::CXXTypeidExprClass:
837     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
838 
839   case Expr::ObjCMessageExprClass:
840     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
841   case Expr::ObjCIvarRefExprClass:
842     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
843   case Expr::StmtExprClass:
844     return EmitStmtExprLValue(cast<StmtExpr>(E));
845   case Expr::UnaryOperatorClass:
846     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
847   case Expr::ArraySubscriptExprClass:
848     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
849   case Expr::ExtVectorElementExprClass:
850     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
851   case Expr::MemberExprClass:
852     return EmitMemberExpr(cast<MemberExpr>(E));
853   case Expr::CompoundLiteralExprClass:
854     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
855   case Expr::ConditionalOperatorClass:
856     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
857   case Expr::BinaryConditionalOperatorClass:
858     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
859   case Expr::ChooseExprClass:
860     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
861   case Expr::OpaqueValueExprClass:
862     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
863   case Expr::SubstNonTypeTemplateParmExprClass:
864     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
865   case Expr::ImplicitCastExprClass:
866   case Expr::CStyleCastExprClass:
867   case Expr::CXXFunctionalCastExprClass:
868   case Expr::CXXStaticCastExprClass:
869   case Expr::CXXDynamicCastExprClass:
870   case Expr::CXXReinterpretCastExprClass:
871   case Expr::CXXConstCastExprClass:
872   case Expr::ObjCBridgedCastExprClass:
873     return EmitCastLValue(cast<CastExpr>(E));
874 
875   case Expr::MaterializeTemporaryExprClass:
876     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
877   }
878 }
879 
880 /// Given an object of the given canonical type, can we safely copy a
881 /// value out of it based on its initializer?
882 static bool isConstantEmittableObjectType(QualType type) {
883   assert(type.isCanonical());
884   assert(!type->isReferenceType());
885 
886   // Must be const-qualified but non-volatile.
887   Qualifiers qs = type.getLocalQualifiers();
888   if (!qs.hasConst() || qs.hasVolatile()) return false;
889 
890   // Otherwise, all object types satisfy this except C++ classes with
891   // mutable subobjects or non-trivial copy/destroy behavior.
892   if (const auto *RT = dyn_cast<RecordType>(type))
893     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
894       if (RD->hasMutableFields() || !RD->isTrivial())
895         return false;
896 
897   return true;
898 }
899 
900 /// Can we constant-emit a load of a reference to a variable of the
901 /// given type?  This is different from predicates like
902 /// Decl::isUsableInConstantExpressions because we do want it to apply
903 /// in situations that don't necessarily satisfy the language's rules
904 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
905 /// to do this with const float variables even if those variables
906 /// aren't marked 'constexpr'.
907 enum ConstantEmissionKind {
908   CEK_None,
909   CEK_AsReferenceOnly,
910   CEK_AsValueOrReference,
911   CEK_AsValueOnly
912 };
913 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
914   type = type.getCanonicalType();
915   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
916     if (isConstantEmittableObjectType(ref->getPointeeType()))
917       return CEK_AsValueOrReference;
918     return CEK_AsReferenceOnly;
919   }
920   if (isConstantEmittableObjectType(type))
921     return CEK_AsValueOnly;
922   return CEK_None;
923 }
924 
925 /// Try to emit a reference to the given value without producing it as
926 /// an l-value.  This is actually more than an optimization: we can't
927 /// produce an l-value for variables that we never actually captured
928 /// in a block or lambda, which means const int variables or constexpr
929 /// literals or similar.
930 CodeGenFunction::ConstantEmission
931 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
932   ValueDecl *value = refExpr->getDecl();
933 
934   // The value needs to be an enum constant or a constant variable.
935   ConstantEmissionKind CEK;
936   if (isa<ParmVarDecl>(value)) {
937     CEK = CEK_None;
938   } else if (auto *var = dyn_cast<VarDecl>(value)) {
939     CEK = checkVarTypeForConstantEmission(var->getType());
940   } else if (isa<EnumConstantDecl>(value)) {
941     CEK = CEK_AsValueOnly;
942   } else {
943     CEK = CEK_None;
944   }
945   if (CEK == CEK_None) return ConstantEmission();
946 
947   Expr::EvalResult result;
948   bool resultIsReference;
949   QualType resultType;
950 
951   // It's best to evaluate all the way as an r-value if that's permitted.
952   if (CEK != CEK_AsReferenceOnly &&
953       refExpr->EvaluateAsRValue(result, getContext())) {
954     resultIsReference = false;
955     resultType = refExpr->getType();
956 
957   // Otherwise, try to evaluate as an l-value.
958   } else if (CEK != CEK_AsValueOnly &&
959              refExpr->EvaluateAsLValue(result, getContext())) {
960     resultIsReference = true;
961     resultType = value->getType();
962 
963   // Failure.
964   } else {
965     return ConstantEmission();
966   }
967 
968   // In any case, if the initializer has side-effects, abandon ship.
969   if (result.HasSideEffects)
970     return ConstantEmission();
971 
972   // Emit as a constant.
973   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
974 
975   // Make sure we emit a debug reference to the global variable.
976   // This should probably fire even for
977   if (isa<VarDecl>(value)) {
978     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
979       EmitDeclRefExprDbgValue(refExpr, C);
980   } else {
981     assert(isa<EnumConstantDecl>(value));
982     EmitDeclRefExprDbgValue(refExpr, C);
983   }
984 
985   // If we emitted a reference constant, we need to dereference that.
986   if (resultIsReference)
987     return ConstantEmission::forReference(C);
988 
989   return ConstantEmission::forValue(C);
990 }
991 
992 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
993                                                SourceLocation Loc) {
994   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
995                           lvalue.getAlignment().getQuantity(),
996                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
997                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
998 }
999 
1000 static bool hasBooleanRepresentation(QualType Ty) {
1001   if (Ty->isBooleanType())
1002     return true;
1003 
1004   if (const EnumType *ET = Ty->getAs<EnumType>())
1005     return ET->getDecl()->getIntegerType()->isBooleanType();
1006 
1007   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1008     return hasBooleanRepresentation(AT->getValueType());
1009 
1010   return false;
1011 }
1012 
1013 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1014                             llvm::APInt &Min, llvm::APInt &End,
1015                             bool StrictEnums) {
1016   const EnumType *ET = Ty->getAs<EnumType>();
1017   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1018                                 ET && !ET->getDecl()->isFixed();
1019   bool IsBool = hasBooleanRepresentation(Ty);
1020   if (!IsBool && !IsRegularCPlusPlusEnum)
1021     return false;
1022 
1023   if (IsBool) {
1024     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1025     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1026   } else {
1027     const EnumDecl *ED = ET->getDecl();
1028     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1029     unsigned Bitwidth = LTy->getScalarSizeInBits();
1030     unsigned NumNegativeBits = ED->getNumNegativeBits();
1031     unsigned NumPositiveBits = ED->getNumPositiveBits();
1032 
1033     if (NumNegativeBits) {
1034       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1035       assert(NumBits <= Bitwidth);
1036       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1037       Min = -End;
1038     } else {
1039       assert(NumPositiveBits <= Bitwidth);
1040       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1041       Min = llvm::APInt(Bitwidth, 0);
1042     }
1043   }
1044   return true;
1045 }
1046 
1047 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1048   llvm::APInt Min, End;
1049   if (!getRangeForType(*this, Ty, Min, End,
1050                        CGM.getCodeGenOpts().StrictEnums))
1051     return nullptr;
1052 
1053   llvm::MDBuilder MDHelper(getLLVMContext());
1054   return MDHelper.createRange(Min, End);
1055 }
1056 
1057 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1058                                                unsigned Alignment, QualType Ty,
1059                                                SourceLocation Loc,
1060                                                llvm::MDNode *TBAAInfo,
1061                                                QualType TBAABaseType,
1062                                                uint64_t TBAAOffset) {
1063   // For better performance, handle vector loads differently.
1064   if (Ty->isVectorType()) {
1065     llvm::Value *V;
1066     const llvm::Type *EltTy =
1067     cast<llvm::PointerType>(Addr->getType())->getElementType();
1068 
1069     const auto *VTy = cast<llvm::VectorType>(EltTy);
1070 
1071     // Handle vectors of size 3, like size 4 for better performance.
1072     if (VTy->getNumElements() == 3) {
1073 
1074       // Bitcast to vec4 type.
1075       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1076                                                          4);
1077       llvm::PointerType *ptVec4Ty =
1078       llvm::PointerType::get(vec4Ty,
1079                              (cast<llvm::PointerType>(
1080                                       Addr->getType()))->getAddressSpace());
1081       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1082                                                 "castToVec4");
1083       // Now load value.
1084       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1085 
1086       // Shuffle vector to get vec3.
1087       llvm::Constant *Mask[] = {
1088         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1089         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1090         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1091       };
1092 
1093       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1094       V = Builder.CreateShuffleVector(LoadVal,
1095                                       llvm::UndefValue::get(vec4Ty),
1096                                       MaskV, "extractVec");
1097       return EmitFromMemory(V, Ty);
1098     }
1099   }
1100 
1101   // Atomic operations have to be done on integral types.
1102   if (Ty->isAtomicType()) {
1103     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1104                                      CharUnits::fromQuantity(Alignment),
1105                                      getContext(), TBAAInfo);
1106     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1107   }
1108 
1109   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1110   if (Volatile)
1111     Load->setVolatile(true);
1112   if (Alignment)
1113     Load->setAlignment(Alignment);
1114   if (TBAAInfo) {
1115     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1116                                                       TBAAOffset);
1117     if (TBAAPath)
1118       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1119   }
1120 
1121   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1122       (SanOpts->Enum && Ty->getAs<EnumType>())) {
1123     llvm::APInt Min, End;
1124     if (getRangeForType(*this, Ty, Min, End, true)) {
1125       --End;
1126       llvm::Value *Check;
1127       if (!Min)
1128         Check = Builder.CreateICmpULE(
1129           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1130       else {
1131         llvm::Value *Upper = Builder.CreateICmpSLE(
1132           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1133         llvm::Value *Lower = Builder.CreateICmpSGE(
1134           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1135         Check = Builder.CreateAnd(Upper, Lower);
1136       }
1137       llvm::Constant *StaticArgs[] = {
1138         EmitCheckSourceLocation(Loc),
1139         EmitCheckTypeDescriptor(Ty)
1140       };
1141       EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load),
1142                 CRK_Recoverable);
1143     }
1144   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1145     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1146       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1147 
1148   return EmitFromMemory(Load, Ty);
1149 }
1150 
1151 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1152   // Bool has a different representation in memory than in registers.
1153   if (hasBooleanRepresentation(Ty)) {
1154     // This should really always be an i1, but sometimes it's already
1155     // an i8, and it's awkward to track those cases down.
1156     if (Value->getType()->isIntegerTy(1))
1157       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1158     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1159            "wrong value rep of bool");
1160   }
1161 
1162   return Value;
1163 }
1164 
1165 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1166   // Bool has a different representation in memory than in registers.
1167   if (hasBooleanRepresentation(Ty)) {
1168     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1169            "wrong value rep of bool");
1170     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1171   }
1172 
1173   return Value;
1174 }
1175 
1176 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1177                                         bool Volatile, unsigned Alignment,
1178                                         QualType Ty, llvm::MDNode *TBAAInfo,
1179                                         bool isInit, QualType TBAABaseType,
1180                                         uint64_t TBAAOffset) {
1181 
1182   // Handle vectors differently to get better performance.
1183   if (Ty->isVectorType()) {
1184     llvm::Type *SrcTy = Value->getType();
1185     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1186     // Handle vec3 special.
1187     if (VecTy->getNumElements() == 3) {
1188       llvm::LLVMContext &VMContext = getLLVMContext();
1189 
1190       // Our source is a vec3, do a shuffle vector to make it a vec4.
1191       SmallVector<llvm::Constant*, 4> Mask;
1192       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1193                                             0));
1194       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1195                                             1));
1196       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1197                                             2));
1198       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1199 
1200       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1201       Value = Builder.CreateShuffleVector(Value,
1202                                           llvm::UndefValue::get(VecTy),
1203                                           MaskV, "extractVec");
1204       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1205     }
1206     auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
1207     if (DstPtr->getElementType() != SrcTy) {
1208       llvm::Type *MemTy =
1209       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1210       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1211     }
1212   }
1213 
1214   Value = EmitToMemory(Value, Ty);
1215 
1216   if (Ty->isAtomicType()) {
1217     EmitAtomicStore(RValue::get(Value),
1218                     LValue::MakeAddr(Addr, Ty,
1219                                      CharUnits::fromQuantity(Alignment),
1220                                      getContext(), TBAAInfo),
1221                     isInit);
1222     return;
1223   }
1224 
1225   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1226   if (Alignment)
1227     Store->setAlignment(Alignment);
1228   if (TBAAInfo) {
1229     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1230                                                       TBAAOffset);
1231     if (TBAAPath)
1232       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1233   }
1234 }
1235 
1236 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1237                                         bool isInit) {
1238   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1239                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1240                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1241                     lvalue.getTBAAOffset());
1242 }
1243 
1244 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1245 /// method emits the address of the lvalue, then loads the result as an rvalue,
1246 /// returning the rvalue.
1247 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1248   if (LV.isObjCWeak()) {
1249     // load of a __weak object.
1250     llvm::Value *AddrWeakObj = LV.getAddress();
1251     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1252                                                              AddrWeakObj));
1253   }
1254   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1255     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1256     Object = EmitObjCConsumeObject(LV.getType(), Object);
1257     return RValue::get(Object);
1258   }
1259 
1260   if (LV.isSimple()) {
1261     assert(!LV.getType()->isFunctionType());
1262 
1263     // Everything needs a load.
1264     return RValue::get(EmitLoadOfScalar(LV, Loc));
1265   }
1266 
1267   if (LV.isVectorElt()) {
1268     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1269                                               LV.isVolatileQualified());
1270     Load->setAlignment(LV.getAlignment().getQuantity());
1271     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1272                                                     "vecext"));
1273   }
1274 
1275   // If this is a reference to a subset of the elements of a vector, either
1276   // shuffle the input or extract/insert them as appropriate.
1277   if (LV.isExtVectorElt())
1278     return EmitLoadOfExtVectorElementLValue(LV);
1279 
1280   // Global Register variables always invoke intrinsics
1281   if (LV.isGlobalReg())
1282     return EmitLoadOfGlobalRegLValue(LV);
1283 
1284   assert(LV.isBitField() && "Unknown LValue type!");
1285   return EmitLoadOfBitfieldLValue(LV);
1286 }
1287 
1288 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1289   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1290 
1291   // Get the output type.
1292   llvm::Type *ResLTy = ConvertType(LV.getType());
1293 
1294   llvm::Value *Ptr = LV.getBitFieldAddr();
1295   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1296                                         "bf.load");
1297   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1298 
1299   if (Info.IsSigned) {
1300     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1301     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1302     if (HighBits)
1303       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1304     if (Info.Offset + HighBits)
1305       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1306   } else {
1307     if (Info.Offset)
1308       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1309     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1310       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1311                                                               Info.Size),
1312                               "bf.clear");
1313   }
1314   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1315 
1316   return RValue::get(Val);
1317 }
1318 
1319 // If this is a reference to a subset of the elements of a vector, create an
1320 // appropriate shufflevector.
1321 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1322   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1323                                             LV.isVolatileQualified());
1324   Load->setAlignment(LV.getAlignment().getQuantity());
1325   llvm::Value *Vec = Load;
1326 
1327   const llvm::Constant *Elts = LV.getExtVectorElts();
1328 
1329   // If the result of the expression is a non-vector type, we must be extracting
1330   // a single element.  Just codegen as an extractelement.
1331   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1332   if (!ExprVT) {
1333     unsigned InIdx = getAccessedFieldNo(0, Elts);
1334     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1335     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1336   }
1337 
1338   // Always use shuffle vector to try to retain the original program structure
1339   unsigned NumResultElts = ExprVT->getNumElements();
1340 
1341   SmallVector<llvm::Constant*, 4> Mask;
1342   for (unsigned i = 0; i != NumResultElts; ++i)
1343     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1344 
1345   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1346   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1347                                     MaskV);
1348   return RValue::get(Vec);
1349 }
1350 
1351 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1352 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1353   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1354          "Bad type for register variable");
1355   llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(LV.getGlobalReg());
1356   assert(RegName && "Register LValue is not metadata");
1357 
1358   // We accept integer and pointer types only
1359   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1360   llvm::Type *Ty = OrigTy;
1361   if (OrigTy->isPointerTy())
1362     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1363   llvm::Type *Types[] = { Ty };
1364 
1365   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1366   llvm::Value *Call = Builder.CreateCall(F, RegName);
1367   if (OrigTy->isPointerTy())
1368     Call = Builder.CreateIntToPtr(Call, OrigTy);
1369   return RValue::get(Call);
1370 }
1371 
1372 
1373 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1374 /// lvalue, where both are guaranteed to the have the same type, and that type
1375 /// is 'Ty'.
1376 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1377                                              bool isInit) {
1378   if (!Dst.isSimple()) {
1379     if (Dst.isVectorElt()) {
1380       // Read/modify/write the vector, inserting the new element.
1381       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1382                                                 Dst.isVolatileQualified());
1383       Load->setAlignment(Dst.getAlignment().getQuantity());
1384       llvm::Value *Vec = Load;
1385       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1386                                         Dst.getVectorIdx(), "vecins");
1387       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1388                                                    Dst.isVolatileQualified());
1389       Store->setAlignment(Dst.getAlignment().getQuantity());
1390       return;
1391     }
1392 
1393     // If this is an update of extended vector elements, insert them as
1394     // appropriate.
1395     if (Dst.isExtVectorElt())
1396       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1397 
1398     if (Dst.isGlobalReg())
1399       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1400 
1401     assert(Dst.isBitField() && "Unknown LValue type");
1402     return EmitStoreThroughBitfieldLValue(Src, Dst);
1403   }
1404 
1405   // There's special magic for assigning into an ARC-qualified l-value.
1406   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1407     switch (Lifetime) {
1408     case Qualifiers::OCL_None:
1409       llvm_unreachable("present but none");
1410 
1411     case Qualifiers::OCL_ExplicitNone:
1412       // nothing special
1413       break;
1414 
1415     case Qualifiers::OCL_Strong:
1416       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1417       return;
1418 
1419     case Qualifiers::OCL_Weak:
1420       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1421       return;
1422 
1423     case Qualifiers::OCL_Autoreleasing:
1424       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1425                                                      Src.getScalarVal()));
1426       // fall into the normal path
1427       break;
1428     }
1429   }
1430 
1431   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1432     // load of a __weak object.
1433     llvm::Value *LvalueDst = Dst.getAddress();
1434     llvm::Value *src = Src.getScalarVal();
1435      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1436     return;
1437   }
1438 
1439   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1440     // load of a __strong object.
1441     llvm::Value *LvalueDst = Dst.getAddress();
1442     llvm::Value *src = Src.getScalarVal();
1443     if (Dst.isObjCIvar()) {
1444       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1445       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1446       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1447       llvm::Value *dst = RHS;
1448       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1449       llvm::Value *LHS =
1450         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1451       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1452       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1453                                               BytesBetween);
1454     } else if (Dst.isGlobalObjCRef()) {
1455       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1456                                                 Dst.isThreadLocalRef());
1457     }
1458     else
1459       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1460     return;
1461   }
1462 
1463   assert(Src.isScalar() && "Can't emit an agg store with this method");
1464   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1465 }
1466 
1467 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1468                                                      llvm::Value **Result) {
1469   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1470   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1471   llvm::Value *Ptr = Dst.getBitFieldAddr();
1472 
1473   // Get the source value, truncated to the width of the bit-field.
1474   llvm::Value *SrcVal = Src.getScalarVal();
1475 
1476   // Cast the source to the storage type and shift it into place.
1477   SrcVal = Builder.CreateIntCast(SrcVal,
1478                                  Ptr->getType()->getPointerElementType(),
1479                                  /*IsSigned=*/false);
1480   llvm::Value *MaskedVal = SrcVal;
1481 
1482   // See if there are other bits in the bitfield's storage we'll need to load
1483   // and mask together with source before storing.
1484   if (Info.StorageSize != Info.Size) {
1485     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1486     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1487                                           "bf.load");
1488     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1489 
1490     // Mask the source value as needed.
1491     if (!hasBooleanRepresentation(Dst.getType()))
1492       SrcVal = Builder.CreateAnd(SrcVal,
1493                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1494                                                             Info.Size),
1495                                  "bf.value");
1496     MaskedVal = SrcVal;
1497     if (Info.Offset)
1498       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1499 
1500     // Mask out the original value.
1501     Val = Builder.CreateAnd(Val,
1502                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1503                                                      Info.Offset,
1504                                                      Info.Offset + Info.Size),
1505                             "bf.clear");
1506 
1507     // Or together the unchanged values and the source value.
1508     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1509   } else {
1510     assert(Info.Offset == 0);
1511   }
1512 
1513   // Write the new value back out.
1514   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1515                                                Dst.isVolatileQualified());
1516   Store->setAlignment(Info.StorageAlignment);
1517 
1518   // Return the new value of the bit-field, if requested.
1519   if (Result) {
1520     llvm::Value *ResultVal = MaskedVal;
1521 
1522     // Sign extend the value if needed.
1523     if (Info.IsSigned) {
1524       assert(Info.Size <= Info.StorageSize);
1525       unsigned HighBits = Info.StorageSize - Info.Size;
1526       if (HighBits) {
1527         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1528         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1529       }
1530     }
1531 
1532     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1533                                       "bf.result.cast");
1534     *Result = EmitFromMemory(ResultVal, Dst.getType());
1535   }
1536 }
1537 
1538 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1539                                                                LValue Dst) {
1540   // This access turns into a read/modify/write of the vector.  Load the input
1541   // value now.
1542   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1543                                             Dst.isVolatileQualified());
1544   Load->setAlignment(Dst.getAlignment().getQuantity());
1545   llvm::Value *Vec = Load;
1546   const llvm::Constant *Elts = Dst.getExtVectorElts();
1547 
1548   llvm::Value *SrcVal = Src.getScalarVal();
1549 
1550   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1551     unsigned NumSrcElts = VTy->getNumElements();
1552     unsigned NumDstElts =
1553        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1554     if (NumDstElts == NumSrcElts) {
1555       // Use shuffle vector is the src and destination are the same number of
1556       // elements and restore the vector mask since it is on the side it will be
1557       // stored.
1558       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1559       for (unsigned i = 0; i != NumSrcElts; ++i)
1560         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1561 
1562       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1563       Vec = Builder.CreateShuffleVector(SrcVal,
1564                                         llvm::UndefValue::get(Vec->getType()),
1565                                         MaskV);
1566     } else if (NumDstElts > NumSrcElts) {
1567       // Extended the source vector to the same length and then shuffle it
1568       // into the destination.
1569       // FIXME: since we're shuffling with undef, can we just use the indices
1570       //        into that?  This could be simpler.
1571       SmallVector<llvm::Constant*, 4> ExtMask;
1572       for (unsigned i = 0; i != NumSrcElts; ++i)
1573         ExtMask.push_back(Builder.getInt32(i));
1574       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1575       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1576       llvm::Value *ExtSrcVal =
1577         Builder.CreateShuffleVector(SrcVal,
1578                                     llvm::UndefValue::get(SrcVal->getType()),
1579                                     ExtMaskV);
1580       // build identity
1581       SmallVector<llvm::Constant*, 4> Mask;
1582       for (unsigned i = 0; i != NumDstElts; ++i)
1583         Mask.push_back(Builder.getInt32(i));
1584 
1585       // When the vector size is odd and .odd or .hi is used, the last element
1586       // of the Elts constant array will be one past the size of the vector.
1587       // Ignore the last element here, if it is greater than the mask size.
1588       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1589         NumSrcElts--;
1590 
1591       // modify when what gets shuffled in
1592       for (unsigned i = 0; i != NumSrcElts; ++i)
1593         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1594       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1595       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1596     } else {
1597       // We should never shorten the vector
1598       llvm_unreachable("unexpected shorten vector length");
1599     }
1600   } else {
1601     // If the Src is a scalar (not a vector) it must be updating one element.
1602     unsigned InIdx = getAccessedFieldNo(0, Elts);
1603     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1604     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1605   }
1606 
1607   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1608                                                Dst.isVolatileQualified());
1609   Store->setAlignment(Dst.getAlignment().getQuantity());
1610 }
1611 
1612 /// @brief Store of global named registers are always calls to intrinsics.
1613 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1614   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1615          "Bad type for register variable");
1616   llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(Dst.getGlobalReg());
1617   assert(RegName && "Register LValue is not metadata");
1618 
1619   // We accept integer and pointer types only
1620   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1621   llvm::Type *Ty = OrigTy;
1622   if (OrigTy->isPointerTy())
1623     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1624   llvm::Type *Types[] = { Ty };
1625 
1626   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1627   llvm::Value *Value = Src.getScalarVal();
1628   if (OrigTy->isPointerTy())
1629     Value = Builder.CreatePtrToInt(Value, Ty);
1630   Builder.CreateCall2(F, RegName, Value);
1631 }
1632 
1633 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1634 // generating write-barries API. It is currently a global, ivar,
1635 // or neither.
1636 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1637                                  LValue &LV,
1638                                  bool IsMemberAccess=false) {
1639   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1640     return;
1641 
1642   if (isa<ObjCIvarRefExpr>(E)) {
1643     QualType ExpTy = E->getType();
1644     if (IsMemberAccess && ExpTy->isPointerType()) {
1645       // If ivar is a structure pointer, assigning to field of
1646       // this struct follows gcc's behavior and makes it a non-ivar
1647       // writer-barrier conservatively.
1648       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1649       if (ExpTy->isRecordType()) {
1650         LV.setObjCIvar(false);
1651         return;
1652       }
1653     }
1654     LV.setObjCIvar(true);
1655     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1656     LV.setBaseIvarExp(Exp->getBase());
1657     LV.setObjCArray(E->getType()->isArrayType());
1658     return;
1659   }
1660 
1661   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1662     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1663       if (VD->hasGlobalStorage()) {
1664         LV.setGlobalObjCRef(true);
1665         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1666       }
1667     }
1668     LV.setObjCArray(E->getType()->isArrayType());
1669     return;
1670   }
1671 
1672   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1673     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1674     return;
1675   }
1676 
1677   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1678     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1679     if (LV.isObjCIvar()) {
1680       // If cast is to a structure pointer, follow gcc's behavior and make it
1681       // a non-ivar write-barrier.
1682       QualType ExpTy = E->getType();
1683       if (ExpTy->isPointerType())
1684         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1685       if (ExpTy->isRecordType())
1686         LV.setObjCIvar(false);
1687     }
1688     return;
1689   }
1690 
1691   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1692     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1693     return;
1694   }
1695 
1696   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1697     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1698     return;
1699   }
1700 
1701   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1702     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1703     return;
1704   }
1705 
1706   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1707     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1708     return;
1709   }
1710 
1711   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1712     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1713     if (LV.isObjCIvar() && !LV.isObjCArray())
1714       // Using array syntax to assigning to what an ivar points to is not
1715       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1716       LV.setObjCIvar(false);
1717     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1718       // Using array syntax to assigning to what global points to is not
1719       // same as assigning to the global itself. {id *G;} G[i] = 0;
1720       LV.setGlobalObjCRef(false);
1721     return;
1722   }
1723 
1724   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1725     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1726     // We don't know if member is an 'ivar', but this flag is looked at
1727     // only in the context of LV.isObjCIvar().
1728     LV.setObjCArray(E->getType()->isArrayType());
1729     return;
1730   }
1731 }
1732 
1733 static llvm::Value *
1734 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1735                                 llvm::Value *V, llvm::Type *IRType,
1736                                 StringRef Name = StringRef()) {
1737   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1738   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1739 }
1740 
1741 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1742                                       const Expr *E, const VarDecl *VD) {
1743   QualType T = E->getType();
1744 
1745   // If it's thread_local, emit a call to its wrapper function instead.
1746   if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1747     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1748 
1749   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1750   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1751   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1752   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1753   LValue LV;
1754   if (VD->getType()->isReferenceType()) {
1755     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1756     LI->setAlignment(Alignment.getQuantity());
1757     V = LI;
1758     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1759   } else {
1760     LV = CGF.MakeAddrLValue(V, T, Alignment);
1761   }
1762   setObjCGCLValueClass(CGF.getContext(), E, LV);
1763   return LV;
1764 }
1765 
1766 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1767                                      const Expr *E, const FunctionDecl *FD) {
1768   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1769   if (!FD->hasPrototype()) {
1770     if (const FunctionProtoType *Proto =
1771             FD->getType()->getAs<FunctionProtoType>()) {
1772       // Ugly case: for a K&R-style definition, the type of the definition
1773       // isn't the same as the type of a use.  Correct for this with a
1774       // bitcast.
1775       QualType NoProtoType =
1776           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1777       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1778       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1779     }
1780   }
1781   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1782   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1783 }
1784 
1785 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1786                                       llvm::Value *ThisValue) {
1787   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1788   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1789   return CGF.EmitLValueForField(LV, FD);
1790 }
1791 
1792 /// Named Registers are named metadata pointing to the register name
1793 /// which will be read from/written to as an argument to the intrinsic
1794 /// @llvm.read/write_register.
1795 /// So far, only the name is being passed down, but other options such as
1796 /// register type, allocation type or even optimization options could be
1797 /// passed down via the metadata node.
1798 static LValue EmitGlobalNamedRegister(const VarDecl *VD,
1799                                       CodeGenModule &CGM,
1800                                       CharUnits Alignment) {
1801   SmallString<64> Name("llvm.named.register.");
1802   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
1803   assert(Asm->getLabel().size() < 64-Name.size() &&
1804       "Register name too big");
1805   Name.append(Asm->getLabel());
1806   llvm::NamedMDNode *M =
1807     CGM.getModule().getOrInsertNamedMetadata(Name);
1808   if (M->getNumOperands() == 0) {
1809     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
1810                                               Asm->getLabel());
1811     llvm::Value *Ops[] = { Str };
1812     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
1813   }
1814   return LValue::MakeGlobalReg(M->getOperand(0), VD->getType(), Alignment);
1815 }
1816 
1817 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1818   const NamedDecl *ND = E->getDecl();
1819   CharUnits Alignment = getContext().getDeclAlign(ND);
1820   QualType T = E->getType();
1821 
1822   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1823     // Global Named registers access via intrinsics only
1824     if (VD->getStorageClass() == SC_Register &&
1825         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
1826       return EmitGlobalNamedRegister(VD, CGM, Alignment);
1827 
1828     // A DeclRefExpr for a reference initialized by a constant expression can
1829     // appear without being odr-used. Directly emit the constant initializer.
1830     const Expr *Init = VD->getAnyInitializer(VD);
1831     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1832         VD->isUsableInConstantExpressions(getContext()) &&
1833         VD->checkInitIsICE()) {
1834       llvm::Constant *Val =
1835         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1836       assert(Val && "failed to emit reference constant expression");
1837       // FIXME: Eventually we will want to emit vector element references.
1838       return MakeAddrLValue(Val, T, Alignment);
1839     }
1840   }
1841 
1842   // FIXME: We should be able to assert this for FunctionDecls as well!
1843   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1844   // those with a valid source location.
1845   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1846           !E->getLocation().isValid()) &&
1847          "Should not use decl without marking it used!");
1848 
1849   if (ND->hasAttr<WeakRefAttr>()) {
1850     const auto *VD = cast<ValueDecl>(ND);
1851     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1852     return MakeAddrLValue(Aliasee, T, Alignment);
1853   }
1854 
1855   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1856     // Check if this is a global variable.
1857     if (VD->hasLinkage() || VD->isStaticDataMember())
1858       return EmitGlobalVarDeclLValue(*this, E, VD);
1859 
1860     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1861 
1862     llvm::Value *V = LocalDeclMap.lookup(VD);
1863     if (!V && VD->isStaticLocal())
1864       V = CGM.getStaticLocalDeclAddress(VD);
1865 
1866     // Use special handling for lambdas.
1867     if (!V) {
1868       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1869         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1870       } else if (CapturedStmtInfo) {
1871         if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1872           return EmitCapturedFieldLValue(*this, FD,
1873                                          CapturedStmtInfo->getContextValue());
1874       }
1875 
1876       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1877       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1878                             T, Alignment);
1879     }
1880 
1881     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1882 
1883     if (isBlockVariable)
1884       V = BuildBlockByrefAddress(V, VD);
1885 
1886     LValue LV;
1887     if (VD->getType()->isReferenceType()) {
1888       llvm::LoadInst *LI = Builder.CreateLoad(V);
1889       LI->setAlignment(Alignment.getQuantity());
1890       V = LI;
1891       LV = MakeNaturalAlignAddrLValue(V, T);
1892     } else {
1893       LV = MakeAddrLValue(V, T, Alignment);
1894     }
1895 
1896     bool isLocalStorage = VD->hasLocalStorage();
1897 
1898     bool NonGCable = isLocalStorage &&
1899                      !VD->getType()->isReferenceType() &&
1900                      !isBlockVariable;
1901     if (NonGCable) {
1902       LV.getQuals().removeObjCGCAttr();
1903       LV.setNonGC(true);
1904     }
1905 
1906     bool isImpreciseLifetime =
1907       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1908     if (isImpreciseLifetime)
1909       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1910     setObjCGCLValueClass(getContext(), E, LV);
1911     return LV;
1912   }
1913 
1914   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1915     return EmitFunctionDeclLValue(*this, E, FD);
1916 
1917   llvm_unreachable("Unhandled DeclRefExpr");
1918 }
1919 
1920 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1921   // __extension__ doesn't affect lvalue-ness.
1922   if (E->getOpcode() == UO_Extension)
1923     return EmitLValue(E->getSubExpr());
1924 
1925   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1926   switch (E->getOpcode()) {
1927   default: llvm_unreachable("Unknown unary operator lvalue!");
1928   case UO_Deref: {
1929     QualType T = E->getSubExpr()->getType()->getPointeeType();
1930     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1931 
1932     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1933     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1934 
1935     // We should not generate __weak write barrier on indirect reference
1936     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1937     // But, we continue to generate __strong write barrier on indirect write
1938     // into a pointer to object.
1939     if (getLangOpts().ObjC1 &&
1940         getLangOpts().getGC() != LangOptions::NonGC &&
1941         LV.isObjCWeak())
1942       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1943     return LV;
1944   }
1945   case UO_Real:
1946   case UO_Imag: {
1947     LValue LV = EmitLValue(E->getSubExpr());
1948     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1949     llvm::Value *Addr = LV.getAddress();
1950 
1951     // __real is valid on scalars.  This is a faster way of testing that.
1952     // __imag can only produce an rvalue on scalars.
1953     if (E->getOpcode() == UO_Real &&
1954         !cast<llvm::PointerType>(Addr->getType())
1955            ->getElementType()->isStructTy()) {
1956       assert(E->getSubExpr()->getType()->isArithmeticType());
1957       return LV;
1958     }
1959 
1960     assert(E->getSubExpr()->getType()->isAnyComplexType());
1961 
1962     unsigned Idx = E->getOpcode() == UO_Imag;
1963     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1964                                                   Idx, "idx"),
1965                           ExprTy);
1966   }
1967   case UO_PreInc:
1968   case UO_PreDec: {
1969     LValue LV = EmitLValue(E->getSubExpr());
1970     bool isInc = E->getOpcode() == UO_PreInc;
1971 
1972     if (E->getType()->isAnyComplexType())
1973       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1974     else
1975       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1976     return LV;
1977   }
1978   }
1979 }
1980 
1981 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1982   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1983                         E->getType());
1984 }
1985 
1986 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1987   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1988                         E->getType());
1989 }
1990 
1991 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1992                                     SmallString<32>& Target) {
1993   Target.resize(CharByteWidth * (Source.size() + 1));
1994   char *ResultPtr = &Target[0];
1995   const UTF8 *ErrorPtr;
1996   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
1997   (void)success;
1998   assert(success);
1999   Target.resize(ResultPtr - &Target[0]);
2000 }
2001 
2002 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2003   switch (E->getIdentType()) {
2004   default:
2005     return EmitUnsupportedLValue(E, "predefined expression");
2006 
2007   case PredefinedExpr::Func:
2008   case PredefinedExpr::Function:
2009   case PredefinedExpr::LFunction:
2010   case PredefinedExpr::FuncDName:
2011   case PredefinedExpr::FuncSig:
2012   case PredefinedExpr::PrettyFunction: {
2013     PredefinedExpr::IdentType IdentType = E->getIdentType();
2014     std::string GVName;
2015 
2016     // FIXME: We should use the string literal mangling for the Microsoft C++
2017     // ABI so that strings get merged.
2018     switch (IdentType) {
2019     default: llvm_unreachable("Invalid type");
2020     case PredefinedExpr::Func:           GVName = "__func__."; break;
2021     case PredefinedExpr::Function:       GVName = "__FUNCTION__."; break;
2022     case PredefinedExpr::FuncDName:      GVName = "__FUNCDNAME__."; break;
2023     case PredefinedExpr::FuncSig:        GVName = "__FUNCSIG__."; break;
2024     case PredefinedExpr::LFunction:      GVName = "L__FUNCTION__."; break;
2025     case PredefinedExpr::PrettyFunction: GVName = "__PRETTY_FUNCTION__."; break;
2026     }
2027 
2028     StringRef FnName = CurFn->getName();
2029     if (FnName.startswith("\01"))
2030       FnName = FnName.substr(1);
2031     GVName += FnName;
2032 
2033     // If this is outside of a function use the top level decl.
2034     const Decl *CurDecl = CurCodeDecl;
2035     if (!CurDecl || isa<VarDecl>(CurDecl))
2036       CurDecl = getContext().getTranslationUnitDecl();
2037 
2038     const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
2039     std::string FunctionName;
2040     if (isa<BlockDecl>(CurDecl)) {
2041       // Blocks use the mangled function name.
2042       // FIXME: ComputeName should handle blocks.
2043       FunctionName = FnName.str();
2044     } else if (isa<CapturedDecl>(CurDecl)) {
2045       // For a captured statement, the function name is its enclosing
2046       // function name not the one compiler generated.
2047       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2048     } else {
2049       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2050       assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
2051                  FunctionName.size() &&
2052              "Computed __func__ length differs from type!");
2053     }
2054 
2055     llvm::Constant *C;
2056     if (ElemType->isWideCharType()) {
2057       SmallString<32> RawChars;
2058       ConvertUTF8ToWideString(
2059           getContext().getTypeSizeInChars(ElemType).getQuantity(), FunctionName,
2060           RawChars);
2061       StringLiteral *SL = StringLiteral::Create(
2062           getContext(), RawChars, StringLiteral::Wide,
2063           /*Pascal = */ false, E->getType(), E->getLocation());
2064       C = CGM.GetAddrOfConstantStringFromLiteral(SL);
2065     } else {
2066       C = CGM.GetAddrOfConstantCString(FunctionName, GVName.c_str(), 1);
2067     }
2068     return MakeAddrLValue(C, E->getType());
2069   }
2070   }
2071 }
2072 
2073 /// Emit a type description suitable for use by a runtime sanitizer library. The
2074 /// format of a type descriptor is
2075 ///
2076 /// \code
2077 ///   { i16 TypeKind, i16 TypeInfo }
2078 /// \endcode
2079 ///
2080 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2081 /// integer, 1 for a floating point value, and -1 for anything else.
2082 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2083   // Only emit each type's descriptor once.
2084   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2085     return C;
2086 
2087   uint16_t TypeKind = -1;
2088   uint16_t TypeInfo = 0;
2089 
2090   if (T->isIntegerType()) {
2091     TypeKind = 0;
2092     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2093                (T->isSignedIntegerType() ? 1 : 0);
2094   } else if (T->isFloatingType()) {
2095     TypeKind = 1;
2096     TypeInfo = getContext().getTypeSize(T);
2097   }
2098 
2099   // Format the type name as if for a diagnostic, including quotes and
2100   // optionally an 'aka'.
2101   SmallString<32> Buffer;
2102   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2103                                     (intptr_t)T.getAsOpaquePtr(),
2104                                     StringRef(), StringRef(), None, Buffer,
2105                                     ArrayRef<intptr_t>());
2106 
2107   llvm::Constant *Components[] = {
2108     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2109     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2110   };
2111   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2112 
2113   auto *GV = new llvm::GlobalVariable(
2114       CGM.getModule(), Descriptor->getType(),
2115       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2116   GV->setUnnamedAddr(true);
2117 
2118   // Remember the descriptor for this type.
2119   CGM.setTypeDescriptorInMap(T, GV);
2120 
2121   return GV;
2122 }
2123 
2124 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2125   llvm::Type *TargetTy = IntPtrTy;
2126 
2127   // Floating-point types which fit into intptr_t are bitcast to integers
2128   // and then passed directly (after zero-extension, if necessary).
2129   if (V->getType()->isFloatingPointTy()) {
2130     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2131     if (Bits <= TargetTy->getIntegerBitWidth())
2132       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2133                                                          Bits));
2134   }
2135 
2136   // Integers which fit in intptr_t are zero-extended and passed directly.
2137   if (V->getType()->isIntegerTy() &&
2138       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2139     return Builder.CreateZExt(V, TargetTy);
2140 
2141   // Pointers are passed directly, everything else is passed by address.
2142   if (!V->getType()->isPointerTy()) {
2143     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2144     Builder.CreateStore(V, Ptr);
2145     V = Ptr;
2146   }
2147   return Builder.CreatePtrToInt(V, TargetTy);
2148 }
2149 
2150 /// \brief Emit a representation of a SourceLocation for passing to a handler
2151 /// in a sanitizer runtime library. The format for this data is:
2152 /// \code
2153 ///   struct SourceLocation {
2154 ///     const char *Filename;
2155 ///     int32_t Line, Column;
2156 ///   };
2157 /// \endcode
2158 /// For an invalid SourceLocation, the Filename pointer is null.
2159 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2160   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2161 
2162   llvm::Constant *Data[] = {
2163     PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src")
2164                    : llvm::Constant::getNullValue(Int8PtrTy),
2165     Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0),
2166     Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0)
2167   };
2168 
2169   return llvm::ConstantStruct::getAnon(Data);
2170 }
2171 
2172 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2173                                 ArrayRef<llvm::Constant *> StaticArgs,
2174                                 ArrayRef<llvm::Value *> DynamicArgs,
2175                                 CheckRecoverableKind RecoverKind) {
2176   assert(SanOpts != &SanitizerOptions::Disabled);
2177 
2178   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2179     assert (RecoverKind != CRK_AlwaysRecoverable &&
2180             "Runtime call required for AlwaysRecoverable kind!");
2181     return EmitTrapCheck(Checked);
2182   }
2183 
2184   llvm::BasicBlock *Cont = createBasicBlock("cont");
2185 
2186   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2187 
2188   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2189 
2190   // Give hint that we very much don't expect to execute the handler
2191   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2192   llvm::MDBuilder MDHelper(getLLVMContext());
2193   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2194   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2195 
2196   EmitBlock(Handler);
2197 
2198   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2199   auto *InfoPtr =
2200       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2201                                llvm::GlobalVariable::PrivateLinkage, Info);
2202   InfoPtr->setUnnamedAddr(true);
2203 
2204   SmallVector<llvm::Value *, 4> Args;
2205   SmallVector<llvm::Type *, 4> ArgTypes;
2206   Args.reserve(DynamicArgs.size() + 1);
2207   ArgTypes.reserve(DynamicArgs.size() + 1);
2208 
2209   // Handler functions take an i8* pointing to the (handler-specific) static
2210   // information block, followed by a sequence of intptr_t arguments
2211   // representing operand values.
2212   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2213   ArgTypes.push_back(Int8PtrTy);
2214   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2215     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2216     ArgTypes.push_back(IntPtrTy);
2217   }
2218 
2219   bool Recover = RecoverKind == CRK_AlwaysRecoverable ||
2220                  (RecoverKind == CRK_Recoverable &&
2221                   CGM.getCodeGenOpts().SanitizeRecover);
2222 
2223   llvm::FunctionType *FnType =
2224     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2225   llvm::AttrBuilder B;
2226   if (!Recover) {
2227     B.addAttribute(llvm::Attribute::NoReturn)
2228      .addAttribute(llvm::Attribute::NoUnwind);
2229   }
2230   B.addAttribute(llvm::Attribute::UWTable);
2231 
2232   // Checks that have two variants use a suffix to differentiate them
2233   bool NeedsAbortSuffix = RecoverKind != CRK_Unrecoverable &&
2234                           !CGM.getCodeGenOpts().SanitizeRecover;
2235   std::string FunctionName = ("__ubsan_handle_" + CheckName +
2236                               (NeedsAbortSuffix? "_abort" : "")).str();
2237   llvm::Value *Fn = CGM.CreateRuntimeFunction(
2238       FnType, FunctionName,
2239       llvm::AttributeSet::get(getLLVMContext(),
2240                               llvm::AttributeSet::FunctionIndex, B));
2241   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2242   if (Recover) {
2243     Builder.CreateBr(Cont);
2244   } else {
2245     HandlerCall->setDoesNotReturn();
2246     Builder.CreateUnreachable();
2247   }
2248 
2249   EmitBlock(Cont);
2250 }
2251 
2252 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2253   llvm::BasicBlock *Cont = createBasicBlock("cont");
2254 
2255   // If we're optimizing, collapse all calls to trap down to just one per
2256   // function to save on code size.
2257   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2258     TrapBB = createBasicBlock("trap");
2259     Builder.CreateCondBr(Checked, Cont, TrapBB);
2260     EmitBlock(TrapBB);
2261     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2262     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2263     TrapCall->setDoesNotReturn();
2264     TrapCall->setDoesNotThrow();
2265     Builder.CreateUnreachable();
2266   } else {
2267     Builder.CreateCondBr(Checked, Cont, TrapBB);
2268   }
2269 
2270   EmitBlock(Cont);
2271 }
2272 
2273 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2274 /// array to pointer, return the array subexpression.
2275 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2276   // If this isn't just an array->pointer decay, bail out.
2277   const auto *CE = dyn_cast<CastExpr>(E);
2278   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2279     return nullptr;
2280 
2281   // If this is a decay from variable width array, bail out.
2282   const Expr *SubExpr = CE->getSubExpr();
2283   if (SubExpr->getType()->isVariableArrayType())
2284     return nullptr;
2285 
2286   return SubExpr;
2287 }
2288 
2289 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2290                                                bool Accessed) {
2291   // The index must always be an integer, which is not an aggregate.  Emit it.
2292   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2293   QualType IdxTy  = E->getIdx()->getType();
2294   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2295 
2296   if (SanOpts->ArrayBounds)
2297     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2298 
2299   // If the base is a vector type, then we are forming a vector element lvalue
2300   // with this subscript.
2301   if (E->getBase()->getType()->isVectorType()) {
2302     // Emit the vector as an lvalue to get its address.
2303     LValue LHS = EmitLValue(E->getBase());
2304     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2305     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2306                                  E->getBase()->getType(), LHS.getAlignment());
2307   }
2308 
2309   // Extend or truncate the index type to 32 or 64-bits.
2310   if (Idx->getType() != IntPtrTy)
2311     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2312 
2313   // We know that the pointer points to a type of the correct size, unless the
2314   // size is a VLA or Objective-C interface.
2315   llvm::Value *Address = nullptr;
2316   CharUnits ArrayAlignment;
2317   if (const VariableArrayType *vla =
2318         getContext().getAsVariableArrayType(E->getType())) {
2319     // The base must be a pointer, which is not an aggregate.  Emit
2320     // it.  It needs to be emitted first in case it's what captures
2321     // the VLA bounds.
2322     Address = EmitScalarExpr(E->getBase());
2323 
2324     // The element count here is the total number of non-VLA elements.
2325     llvm::Value *numElements = getVLASize(vla).first;
2326 
2327     // Effectively, the multiply by the VLA size is part of the GEP.
2328     // GEP indexes are signed, and scaling an index isn't permitted to
2329     // signed-overflow, so we use the same semantics for our explicit
2330     // multiply.  We suppress this if overflow is not undefined behavior.
2331     if (getLangOpts().isSignedOverflowDefined()) {
2332       Idx = Builder.CreateMul(Idx, numElements);
2333       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2334     } else {
2335       Idx = Builder.CreateNSWMul(Idx, numElements);
2336       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2337     }
2338   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2339     // Indexing over an interface, as in "NSString *P; P[4];"
2340     llvm::Value *InterfaceSize =
2341       llvm::ConstantInt::get(Idx->getType(),
2342           getContext().getTypeSizeInChars(OIT).getQuantity());
2343 
2344     Idx = Builder.CreateMul(Idx, InterfaceSize);
2345 
2346     // The base must be a pointer, which is not an aggregate.  Emit it.
2347     llvm::Value *Base = EmitScalarExpr(E->getBase());
2348     Address = EmitCastToVoidPtr(Base);
2349     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2350     Address = Builder.CreateBitCast(Address, Base->getType());
2351   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2352     // If this is A[i] where A is an array, the frontend will have decayed the
2353     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2354     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2355     // "gep x, i" here.  Emit one "gep A, 0, i".
2356     assert(Array->getType()->isArrayType() &&
2357            "Array to pointer decay must have array source type!");
2358     LValue ArrayLV;
2359     // For simple multidimensional array indexing, set the 'accessed' flag for
2360     // better bounds-checking of the base expression.
2361     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2362       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2363     else
2364       ArrayLV = EmitLValue(Array);
2365     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2366     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2367     llvm::Value *Args[] = { Zero, Idx };
2368 
2369     // Propagate the alignment from the array itself to the result.
2370     ArrayAlignment = ArrayLV.getAlignment();
2371 
2372     if (getLangOpts().isSignedOverflowDefined())
2373       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2374     else
2375       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2376   } else {
2377     // The base must be a pointer, which is not an aggregate.  Emit it.
2378     llvm::Value *Base = EmitScalarExpr(E->getBase());
2379     if (getLangOpts().isSignedOverflowDefined())
2380       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2381     else
2382       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2383   }
2384 
2385   QualType T = E->getBase()->getType()->getPointeeType();
2386   assert(!T.isNull() &&
2387          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2388 
2389 
2390   // Limit the alignment to that of the result type.
2391   LValue LV;
2392   if (!ArrayAlignment.isZero()) {
2393     CharUnits Align = getContext().getTypeAlignInChars(T);
2394     ArrayAlignment = std::min(Align, ArrayAlignment);
2395     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2396   } else {
2397     LV = MakeNaturalAlignAddrLValue(Address, T);
2398   }
2399 
2400   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2401 
2402   if (getLangOpts().ObjC1 &&
2403       getLangOpts().getGC() != LangOptions::NonGC) {
2404     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2405     setObjCGCLValueClass(getContext(), E, LV);
2406   }
2407   return LV;
2408 }
2409 
2410 static
2411 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2412                                        SmallVectorImpl<unsigned> &Elts) {
2413   SmallVector<llvm::Constant*, 4> CElts;
2414   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2415     CElts.push_back(Builder.getInt32(Elts[i]));
2416 
2417   return llvm::ConstantVector::get(CElts);
2418 }
2419 
2420 LValue CodeGenFunction::
2421 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2422   // Emit the base vector as an l-value.
2423   LValue Base;
2424 
2425   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2426   if (E->isArrow()) {
2427     // If it is a pointer to a vector, emit the address and form an lvalue with
2428     // it.
2429     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2430     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2431     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2432     Base.getQuals().removeObjCGCAttr();
2433   } else if (E->getBase()->isGLValue()) {
2434     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2435     // emit the base as an lvalue.
2436     assert(E->getBase()->getType()->isVectorType());
2437     Base = EmitLValue(E->getBase());
2438   } else {
2439     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2440     assert(E->getBase()->getType()->isVectorType() &&
2441            "Result must be a vector");
2442     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2443 
2444     // Store the vector to memory (because LValue wants an address).
2445     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2446     Builder.CreateStore(Vec, VecMem);
2447     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2448   }
2449 
2450   QualType type =
2451     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2452 
2453   // Encode the element access list into a vector of unsigned indices.
2454   SmallVector<unsigned, 4> Indices;
2455   E->getEncodedElementAccess(Indices);
2456 
2457   if (Base.isSimple()) {
2458     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2459     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2460                                     Base.getAlignment());
2461   }
2462   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2463 
2464   llvm::Constant *BaseElts = Base.getExtVectorElts();
2465   SmallVector<llvm::Constant *, 4> CElts;
2466 
2467   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2468     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2469   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2470   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2471                                   Base.getAlignment());
2472 }
2473 
2474 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2475   Expr *BaseExpr = E->getBase();
2476 
2477   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2478   LValue BaseLV;
2479   if (E->isArrow()) {
2480     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2481     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2482     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2483     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2484   } else
2485     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2486 
2487   NamedDecl *ND = E->getMemberDecl();
2488   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
2489     LValue LV = EmitLValueForField(BaseLV, Field);
2490     setObjCGCLValueClass(getContext(), E, LV);
2491     return LV;
2492   }
2493 
2494   if (auto *VD = dyn_cast<VarDecl>(ND))
2495     return EmitGlobalVarDeclLValue(*this, E, VD);
2496 
2497   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2498     return EmitFunctionDeclLValue(*this, E, FD);
2499 
2500   llvm_unreachable("Unhandled member declaration!");
2501 }
2502 
2503 /// Given that we are currently emitting a lambda, emit an l-value for
2504 /// one of its members.
2505 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2506   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2507   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2508   QualType LambdaTagType =
2509     getContext().getTagDeclType(Field->getParent());
2510   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2511   return EmitLValueForField(LambdaLV, Field);
2512 }
2513 
2514 LValue CodeGenFunction::EmitLValueForField(LValue base,
2515                                            const FieldDecl *field) {
2516   if (field->isBitField()) {
2517     const CGRecordLayout &RL =
2518       CGM.getTypes().getCGRecordLayout(field->getParent());
2519     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2520     llvm::Value *Addr = base.getAddress();
2521     unsigned Idx = RL.getLLVMFieldNo(field);
2522     if (Idx != 0)
2523       // For structs, we GEP to the field that the record layout suggests.
2524       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2525     // Get the access type.
2526     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2527       getLLVMContext(), Info.StorageSize,
2528       CGM.getContext().getTargetAddressSpace(base.getType()));
2529     if (Addr->getType() != PtrTy)
2530       Addr = Builder.CreateBitCast(Addr, PtrTy);
2531 
2532     QualType fieldType =
2533       field->getType().withCVRQualifiers(base.getVRQualifiers());
2534     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2535   }
2536 
2537   const RecordDecl *rec = field->getParent();
2538   QualType type = field->getType();
2539   CharUnits alignment = getContext().getDeclAlign(field);
2540 
2541   // FIXME: It should be impossible to have an LValue without alignment for a
2542   // complete type.
2543   if (!base.getAlignment().isZero())
2544     alignment = std::min(alignment, base.getAlignment());
2545 
2546   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2547 
2548   llvm::Value *addr = base.getAddress();
2549   unsigned cvr = base.getVRQualifiers();
2550   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2551   if (rec->isUnion()) {
2552     // For unions, there is no pointer adjustment.
2553     assert(!type->isReferenceType() && "union has reference member");
2554     // TODO: handle path-aware TBAA for union.
2555     TBAAPath = false;
2556   } else {
2557     // For structs, we GEP to the field that the record layout suggests.
2558     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2559     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2560 
2561     // If this is a reference field, load the reference right now.
2562     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2563       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2564       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2565       load->setAlignment(alignment.getQuantity());
2566 
2567       // Loading the reference will disable path-aware TBAA.
2568       TBAAPath = false;
2569       if (CGM.shouldUseTBAA()) {
2570         llvm::MDNode *tbaa;
2571         if (mayAlias)
2572           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2573         else
2574           tbaa = CGM.getTBAAInfo(type);
2575         if (tbaa)
2576           CGM.DecorateInstruction(load, tbaa);
2577       }
2578 
2579       addr = load;
2580       mayAlias = false;
2581       type = refType->getPointeeType();
2582       if (type->isIncompleteType())
2583         alignment = CharUnits();
2584       else
2585         alignment = getContext().getTypeAlignInChars(type);
2586       cvr = 0; // qualifiers don't recursively apply to referencee
2587     }
2588   }
2589 
2590   // Make sure that the address is pointing to the right type.  This is critical
2591   // for both unions and structs.  A union needs a bitcast, a struct element
2592   // will need a bitcast if the LLVM type laid out doesn't match the desired
2593   // type.
2594   addr = EmitBitCastOfLValueToProperType(*this, addr,
2595                                          CGM.getTypes().ConvertTypeForMem(type),
2596                                          field->getName());
2597 
2598   if (field->hasAttr<AnnotateAttr>())
2599     addr = EmitFieldAnnotations(field, addr);
2600 
2601   LValue LV = MakeAddrLValue(addr, type, alignment);
2602   LV.getQuals().addCVRQualifiers(cvr);
2603   if (TBAAPath) {
2604     const ASTRecordLayout &Layout =
2605         getContext().getASTRecordLayout(field->getParent());
2606     // Set the base type to be the base type of the base LValue and
2607     // update offset to be relative to the base type.
2608     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2609     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2610                      Layout.getFieldOffset(field->getFieldIndex()) /
2611                                            getContext().getCharWidth());
2612   }
2613 
2614   // __weak attribute on a field is ignored.
2615   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2616     LV.getQuals().removeObjCGCAttr();
2617 
2618   // Fields of may_alias structs act like 'char' for TBAA purposes.
2619   // FIXME: this should get propagated down through anonymous structs
2620   // and unions.
2621   if (mayAlias && LV.getTBAAInfo())
2622     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2623 
2624   return LV;
2625 }
2626 
2627 LValue
2628 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2629                                                   const FieldDecl *Field) {
2630   QualType FieldType = Field->getType();
2631 
2632   if (!FieldType->isReferenceType())
2633     return EmitLValueForField(Base, Field);
2634 
2635   const CGRecordLayout &RL =
2636     CGM.getTypes().getCGRecordLayout(Field->getParent());
2637   unsigned idx = RL.getLLVMFieldNo(Field);
2638   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2639   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2640 
2641   // Make sure that the address is pointing to the right type.  This is critical
2642   // for both unions and structs.  A union needs a bitcast, a struct element
2643   // will need a bitcast if the LLVM type laid out doesn't match the desired
2644   // type.
2645   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2646   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2647 
2648   CharUnits Alignment = getContext().getDeclAlign(Field);
2649 
2650   // FIXME: It should be impossible to have an LValue without alignment for a
2651   // complete type.
2652   if (!Base.getAlignment().isZero())
2653     Alignment = std::min(Alignment, Base.getAlignment());
2654 
2655   return MakeAddrLValue(V, FieldType, Alignment);
2656 }
2657 
2658 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2659   if (E->isFileScope()) {
2660     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2661     return MakeAddrLValue(GlobalPtr, E->getType());
2662   }
2663   if (E->getType()->isVariablyModifiedType())
2664     // make sure to emit the VLA size.
2665     EmitVariablyModifiedType(E->getType());
2666 
2667   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2668   const Expr *InitExpr = E->getInitializer();
2669   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2670 
2671   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2672                    /*Init*/ true);
2673 
2674   return Result;
2675 }
2676 
2677 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2678   if (!E->isGLValue())
2679     // Initializing an aggregate temporary in C++11: T{...}.
2680     return EmitAggExprToLValue(E);
2681 
2682   // An lvalue initializer list must be initializing a reference.
2683   assert(E->getNumInits() == 1 && "reference init with multiple values");
2684   return EmitLValue(E->getInit(0));
2685 }
2686 
2687 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
2688 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
2689 /// LValue is returned and the current block has been terminated.
2690 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
2691                                                     const Expr *Operand) {
2692   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
2693     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
2694     return None;
2695   }
2696 
2697   return CGF.EmitLValue(Operand);
2698 }
2699 
2700 LValue CodeGenFunction::
2701 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2702   if (!expr->isGLValue()) {
2703     // ?: here should be an aggregate.
2704     assert(hasAggregateEvaluationKind(expr->getType()) &&
2705            "Unexpected conditional operator!");
2706     return EmitAggExprToLValue(expr);
2707   }
2708 
2709   OpaqueValueMapping binding(*this, expr);
2710   RegionCounter Cnt = getPGORegionCounter(expr);
2711 
2712   const Expr *condExpr = expr->getCond();
2713   bool CondExprBool;
2714   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2715     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2716     if (!CondExprBool) std::swap(live, dead);
2717 
2718     if (!ContainsLabel(dead)) {
2719       // If the true case is live, we need to track its region.
2720       if (CondExprBool)
2721         Cnt.beginRegion(Builder);
2722       return EmitLValue(live);
2723     }
2724   }
2725 
2726   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2727   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2728   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2729 
2730   ConditionalEvaluation eval(*this);
2731   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
2732 
2733   // Any temporaries created here are conditional.
2734   EmitBlock(lhsBlock);
2735   Cnt.beginRegion(Builder);
2736   eval.begin(*this);
2737   Optional<LValue> lhs =
2738       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
2739   eval.end(*this);
2740 
2741   if (lhs && !lhs->isSimple())
2742     return EmitUnsupportedLValue(expr, "conditional operator");
2743 
2744   lhsBlock = Builder.GetInsertBlock();
2745   if (lhs)
2746     Builder.CreateBr(contBlock);
2747 
2748   // Any temporaries created here are conditional.
2749   EmitBlock(rhsBlock);
2750   eval.begin(*this);
2751   Optional<LValue> rhs =
2752       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
2753   eval.end(*this);
2754   if (rhs && !rhs->isSimple())
2755     return EmitUnsupportedLValue(expr, "conditional operator");
2756   rhsBlock = Builder.GetInsertBlock();
2757 
2758   EmitBlock(contBlock);
2759 
2760   if (lhs && rhs) {
2761     llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
2762                                            2, "cond-lvalue");
2763     phi->addIncoming(lhs->getAddress(), lhsBlock);
2764     phi->addIncoming(rhs->getAddress(), rhsBlock);
2765     return MakeAddrLValue(phi, expr->getType());
2766   } else {
2767     assert((lhs || rhs) &&
2768            "both operands of glvalue conditional are throw-expressions?");
2769     return lhs ? *lhs : *rhs;
2770   }
2771 }
2772 
2773 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2774 /// type. If the cast is to a reference, we can have the usual lvalue result,
2775 /// otherwise if a cast is needed by the code generator in an lvalue context,
2776 /// then it must mean that we need the address of an aggregate in order to
2777 /// access one of its members.  This can happen for all the reasons that casts
2778 /// are permitted with aggregate result, including noop aggregate casts, and
2779 /// cast from scalar to union.
2780 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2781   switch (E->getCastKind()) {
2782   case CK_ToVoid:
2783   case CK_BitCast:
2784   case CK_ArrayToPointerDecay:
2785   case CK_FunctionToPointerDecay:
2786   case CK_NullToMemberPointer:
2787   case CK_NullToPointer:
2788   case CK_IntegralToPointer:
2789   case CK_PointerToIntegral:
2790   case CK_PointerToBoolean:
2791   case CK_VectorSplat:
2792   case CK_IntegralCast:
2793   case CK_IntegralToBoolean:
2794   case CK_IntegralToFloating:
2795   case CK_FloatingToIntegral:
2796   case CK_FloatingToBoolean:
2797   case CK_FloatingCast:
2798   case CK_FloatingRealToComplex:
2799   case CK_FloatingComplexToReal:
2800   case CK_FloatingComplexToBoolean:
2801   case CK_FloatingComplexCast:
2802   case CK_FloatingComplexToIntegralComplex:
2803   case CK_IntegralRealToComplex:
2804   case CK_IntegralComplexToReal:
2805   case CK_IntegralComplexToBoolean:
2806   case CK_IntegralComplexCast:
2807   case CK_IntegralComplexToFloatingComplex:
2808   case CK_DerivedToBaseMemberPointer:
2809   case CK_BaseToDerivedMemberPointer:
2810   case CK_MemberPointerToBoolean:
2811   case CK_ReinterpretMemberPointer:
2812   case CK_AnyPointerToBlockPointerCast:
2813   case CK_ARCProduceObject:
2814   case CK_ARCConsumeObject:
2815   case CK_ARCReclaimReturnedObject:
2816   case CK_ARCExtendBlockObject:
2817   case CK_CopyAndAutoreleaseBlockObject:
2818   case CK_AddressSpaceConversion:
2819     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2820 
2821   case CK_Dependent:
2822     llvm_unreachable("dependent cast kind in IR gen!");
2823 
2824   case CK_BuiltinFnToFnPtr:
2825     llvm_unreachable("builtin functions are handled elsewhere");
2826 
2827   // These are never l-values; just use the aggregate emission code.
2828   case CK_NonAtomicToAtomic:
2829   case CK_AtomicToNonAtomic:
2830     return EmitAggExprToLValue(E);
2831 
2832   case CK_Dynamic: {
2833     LValue LV = EmitLValue(E->getSubExpr());
2834     llvm::Value *V = LV.getAddress();
2835     const auto *DCE = cast<CXXDynamicCastExpr>(E);
2836     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2837   }
2838 
2839   case CK_ConstructorConversion:
2840   case CK_UserDefinedConversion:
2841   case CK_CPointerToObjCPointerCast:
2842   case CK_BlockPointerToObjCPointerCast:
2843   case CK_NoOp:
2844   case CK_LValueToRValue:
2845     return EmitLValue(E->getSubExpr());
2846 
2847   case CK_UncheckedDerivedToBase:
2848   case CK_DerivedToBase: {
2849     const RecordType *DerivedClassTy =
2850       E->getSubExpr()->getType()->getAs<RecordType>();
2851     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2852 
2853     LValue LV = EmitLValue(E->getSubExpr());
2854     llvm::Value *This = LV.getAddress();
2855 
2856     // Perform the derived-to-base conversion
2857     llvm::Value *Base =
2858       GetAddressOfBaseClass(This, DerivedClassDecl,
2859                             E->path_begin(), E->path_end(),
2860                             /*NullCheckValue=*/false);
2861 
2862     return MakeAddrLValue(Base, E->getType());
2863   }
2864   case CK_ToUnion:
2865     return EmitAggExprToLValue(E);
2866   case CK_BaseToDerived: {
2867     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2868     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2869 
2870     LValue LV = EmitLValue(E->getSubExpr());
2871 
2872     // Perform the base-to-derived conversion
2873     llvm::Value *Derived =
2874       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2875                                E->path_begin(), E->path_end(),
2876                                /*NullCheckValue=*/false);
2877 
2878     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2879     // performed and the object is not of the derived type.
2880     if (SanitizePerformTypeCheck)
2881       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2882                     Derived, E->getType());
2883 
2884     return MakeAddrLValue(Derived, E->getType());
2885   }
2886   case CK_LValueBitCast: {
2887     // This must be a reinterpret_cast (or c-style equivalent).
2888     const auto *CE = cast<ExplicitCastExpr>(E);
2889 
2890     LValue LV = EmitLValue(E->getSubExpr());
2891     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2892                                            ConvertType(CE->getTypeAsWritten()));
2893     return MakeAddrLValue(V, E->getType());
2894   }
2895   case CK_ObjCObjectLValueCast: {
2896     LValue LV = EmitLValue(E->getSubExpr());
2897     QualType ToType = getContext().getLValueReferenceType(E->getType());
2898     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2899                                            ConvertType(ToType));
2900     return MakeAddrLValue(V, E->getType());
2901   }
2902   case CK_ZeroToOCLEvent:
2903     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2904   }
2905 
2906   llvm_unreachable("Unhandled lvalue cast kind?");
2907 }
2908 
2909 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2910   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2911   return getOpaqueLValueMapping(e);
2912 }
2913 
2914 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2915                                            const FieldDecl *FD,
2916                                            SourceLocation Loc) {
2917   QualType FT = FD->getType();
2918   LValue FieldLV = EmitLValueForField(LV, FD);
2919   switch (getEvaluationKind(FT)) {
2920   case TEK_Complex:
2921     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
2922   case TEK_Aggregate:
2923     return FieldLV.asAggregateRValue();
2924   case TEK_Scalar:
2925     return EmitLoadOfLValue(FieldLV, Loc);
2926   }
2927   llvm_unreachable("bad evaluation kind");
2928 }
2929 
2930 //===--------------------------------------------------------------------===//
2931 //                             Expression Emission
2932 //===--------------------------------------------------------------------===//
2933 
2934 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2935                                      ReturnValueSlot ReturnValue) {
2936   if (CGDebugInfo *DI = getDebugInfo()) {
2937     SourceLocation Loc = E->getLocStart();
2938     // Force column info to be generated so we can differentiate
2939     // multiple call sites on the same line in the debug info.
2940     // FIXME: This is insufficient. Two calls coming from the same macro
2941     // expansion will still get the same line/column and break debug info. It's
2942     // possible that LLVM can be fixed to not rely on this uniqueness, at which
2943     // point this workaround can be removed.
2944     const FunctionDecl* Callee = E->getDirectCallee();
2945     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2946     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2947   }
2948 
2949   // Builtins never have block type.
2950   if (E->getCallee()->getType()->isBlockPointerType())
2951     return EmitBlockCallExpr(E, ReturnValue);
2952 
2953   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
2954     return EmitCXXMemberCallExpr(CE, ReturnValue);
2955 
2956   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
2957     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2958 
2959   const Decl *TargetDecl = E->getCalleeDecl();
2960   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2961     if (unsigned builtinID = FD->getBuiltinID())
2962       return EmitBuiltinExpr(FD, builtinID, E);
2963   }
2964 
2965   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
2966     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2967       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2968 
2969   if (const auto *PseudoDtor =
2970           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2971     QualType DestroyedType = PseudoDtor->getDestroyedType();
2972     if (getLangOpts().ObjCAutoRefCount &&
2973         DestroyedType->isObjCLifetimeType() &&
2974         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2975          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2976       // Automatic Reference Counting:
2977       //   If the pseudo-expression names a retainable object with weak or
2978       //   strong lifetime, the object shall be released.
2979       Expr *BaseExpr = PseudoDtor->getBase();
2980       llvm::Value *BaseValue = nullptr;
2981       Qualifiers BaseQuals;
2982 
2983       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2984       if (PseudoDtor->isArrow()) {
2985         BaseValue = EmitScalarExpr(BaseExpr);
2986         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2987         BaseQuals = PTy->getPointeeType().getQualifiers();
2988       } else {
2989         LValue BaseLV = EmitLValue(BaseExpr);
2990         BaseValue = BaseLV.getAddress();
2991         QualType BaseTy = BaseExpr->getType();
2992         BaseQuals = BaseTy.getQualifiers();
2993       }
2994 
2995       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2996       case Qualifiers::OCL_None:
2997       case Qualifiers::OCL_ExplicitNone:
2998       case Qualifiers::OCL_Autoreleasing:
2999         break;
3000 
3001       case Qualifiers::OCL_Strong:
3002         EmitARCRelease(Builder.CreateLoad(BaseValue,
3003                           PseudoDtor->getDestroyedType().isVolatileQualified()),
3004                        ARCPreciseLifetime);
3005         break;
3006 
3007       case Qualifiers::OCL_Weak:
3008         EmitARCDestroyWeak(BaseValue);
3009         break;
3010       }
3011     } else {
3012       // C++ [expr.pseudo]p1:
3013       //   The result shall only be used as the operand for the function call
3014       //   operator (), and the result of such a call has type void. The only
3015       //   effect is the evaluation of the postfix-expression before the dot or
3016       //   arrow.
3017       EmitScalarExpr(E->getCallee());
3018     }
3019 
3020     return RValue::get(nullptr);
3021   }
3022 
3023   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3024   return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(),
3025                   ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl);
3026 }
3027 
3028 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3029   // Comma expressions just emit their LHS then their RHS as an l-value.
3030   if (E->getOpcode() == BO_Comma) {
3031     EmitIgnoredExpr(E->getLHS());
3032     EnsureInsertPoint();
3033     return EmitLValue(E->getRHS());
3034   }
3035 
3036   if (E->getOpcode() == BO_PtrMemD ||
3037       E->getOpcode() == BO_PtrMemI)
3038     return EmitPointerToDataMemberBinaryExpr(E);
3039 
3040   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3041 
3042   // Note that in all of these cases, __block variables need the RHS
3043   // evaluated first just in case the variable gets moved by the RHS.
3044 
3045   switch (getEvaluationKind(E->getType())) {
3046   case TEK_Scalar: {
3047     switch (E->getLHS()->getType().getObjCLifetime()) {
3048     case Qualifiers::OCL_Strong:
3049       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3050 
3051     case Qualifiers::OCL_Autoreleasing:
3052       return EmitARCStoreAutoreleasing(E).first;
3053 
3054     // No reason to do any of these differently.
3055     case Qualifiers::OCL_None:
3056     case Qualifiers::OCL_ExplicitNone:
3057     case Qualifiers::OCL_Weak:
3058       break;
3059     }
3060 
3061     RValue RV = EmitAnyExpr(E->getRHS());
3062     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3063     EmitStoreThroughLValue(RV, LV);
3064     return LV;
3065   }
3066 
3067   case TEK_Complex:
3068     return EmitComplexAssignmentLValue(E);
3069 
3070   case TEK_Aggregate:
3071     return EmitAggExprToLValue(E);
3072   }
3073   llvm_unreachable("bad evaluation kind");
3074 }
3075 
3076 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3077   RValue RV = EmitCallExpr(E);
3078 
3079   if (!RV.isScalar())
3080     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3081 
3082   assert(E->getCallReturnType()->isReferenceType() &&
3083          "Can't have a scalar return unless the return type is a "
3084          "reference type!");
3085 
3086   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3087 }
3088 
3089 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3090   // FIXME: This shouldn't require another copy.
3091   return EmitAggExprToLValue(E);
3092 }
3093 
3094 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3095   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3096          && "binding l-value to type which needs a temporary");
3097   AggValueSlot Slot = CreateAggTemp(E->getType());
3098   EmitCXXConstructExpr(E, Slot);
3099   return MakeAddrLValue(Slot.getAddr(), E->getType());
3100 }
3101 
3102 LValue
3103 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3104   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3105 }
3106 
3107 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3108   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3109                                ConvertType(E->getType())->getPointerTo());
3110 }
3111 
3112 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3113   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3114 }
3115 
3116 LValue
3117 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3118   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3119   Slot.setExternallyDestructed();
3120   EmitAggExpr(E->getSubExpr(), Slot);
3121   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3122   return MakeAddrLValue(Slot.getAddr(), E->getType());
3123 }
3124 
3125 LValue
3126 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3127   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3128   EmitLambdaExpr(E, Slot);
3129   return MakeAddrLValue(Slot.getAddr(), E->getType());
3130 }
3131 
3132 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3133   RValue RV = EmitObjCMessageExpr(E);
3134 
3135   if (!RV.isScalar())
3136     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3137 
3138   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3139          "Can't have a scalar return unless the return type is a "
3140          "reference type!");
3141 
3142   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3143 }
3144 
3145 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3146   llvm::Value *V =
3147     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3148   return MakeAddrLValue(V, E->getType());
3149 }
3150 
3151 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3152                                              const ObjCIvarDecl *Ivar) {
3153   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3154 }
3155 
3156 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3157                                           llvm::Value *BaseValue,
3158                                           const ObjCIvarDecl *Ivar,
3159                                           unsigned CVRQualifiers) {
3160   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3161                                                    Ivar, CVRQualifiers);
3162 }
3163 
3164 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3165   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3166   llvm::Value *BaseValue = nullptr;
3167   const Expr *BaseExpr = E->getBase();
3168   Qualifiers BaseQuals;
3169   QualType ObjectTy;
3170   if (E->isArrow()) {
3171     BaseValue = EmitScalarExpr(BaseExpr);
3172     ObjectTy = BaseExpr->getType()->getPointeeType();
3173     BaseQuals = ObjectTy.getQualifiers();
3174   } else {
3175     LValue BaseLV = EmitLValue(BaseExpr);
3176     // FIXME: this isn't right for bitfields.
3177     BaseValue = BaseLV.getAddress();
3178     ObjectTy = BaseExpr->getType();
3179     BaseQuals = ObjectTy.getQualifiers();
3180   }
3181 
3182   LValue LV =
3183     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3184                       BaseQuals.getCVRQualifiers());
3185   setObjCGCLValueClass(getContext(), E, LV);
3186   return LV;
3187 }
3188 
3189 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3190   // Can only get l-value for message expression returning aggregate type
3191   RValue RV = EmitAnyExprToTemp(E);
3192   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3193 }
3194 
3195 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3196                                  SourceLocation CallLoc,
3197                                  ReturnValueSlot ReturnValue,
3198                                  CallExpr::const_arg_iterator ArgBeg,
3199                                  CallExpr::const_arg_iterator ArgEnd,
3200                                  const Decl *TargetDecl) {
3201   // Get the actual function type. The callee type will always be a pointer to
3202   // function type or a block pointer type.
3203   assert(CalleeType->isFunctionPointerType() &&
3204          "Call must have function pointer type!");
3205 
3206   CalleeType = getContext().getCanonicalType(CalleeType);
3207 
3208   const auto *FnType =
3209       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3210 
3211   // Force column info to differentiate multiple inlined call sites on
3212   // the same line, analoguous to EmitCallExpr.
3213   // FIXME: This is insufficient. Two calls coming from the same macro expansion
3214   // will still get the same line/column and break debug info. It's possible
3215   // that LLVM can be fixed to not rely on this uniqueness, at which point this
3216   // workaround can be removed.
3217   bool ForceColumnInfo = false;
3218   if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3219     ForceColumnInfo = FD->isInlineSpecified();
3220 
3221   if (getLangOpts().CPlusPlus && SanOpts->Function &&
3222       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3223     if (llvm::Constant *PrefixSig =
3224             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3225       llvm::Constant *FTRTTIConst =
3226           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3227       llvm::Type *PrefixStructTyElems[] = {
3228         PrefixSig->getType(),
3229         FTRTTIConst->getType()
3230       };
3231       llvm::StructType *PrefixStructTy = llvm::StructType::get(
3232           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3233 
3234       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3235           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3236       llvm::Value *CalleeSigPtr =
3237           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
3238       llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3239       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3240 
3241       llvm::BasicBlock *Cont = createBasicBlock("cont");
3242       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3243       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3244 
3245       EmitBlock(TypeCheck);
3246       llvm::Value *CalleeRTTIPtr =
3247           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
3248       llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3249       llvm::Value *CalleeRTTIMatch =
3250           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3251       llvm::Constant *StaticData[] = {
3252         EmitCheckSourceLocation(CallLoc),
3253         EmitCheckTypeDescriptor(CalleeType)
3254       };
3255       EmitCheck(CalleeRTTIMatch,
3256                 "function_type_mismatch",
3257                 StaticData,
3258                 Callee,
3259                 CRK_Recoverable);
3260 
3261       Builder.CreateBr(Cont);
3262       EmitBlock(Cont);
3263     }
3264   }
3265 
3266   CallArgList Args;
3267   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
3268                ForceColumnInfo);
3269 
3270   const CGFunctionInfo &FnInfo =
3271     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3272 
3273   // C99 6.5.2.2p6:
3274   //   If the expression that denotes the called function has a type
3275   //   that does not include a prototype, [the default argument
3276   //   promotions are performed]. If the number of arguments does not
3277   //   equal the number of parameters, the behavior is undefined. If
3278   //   the function is defined with a type that includes a prototype,
3279   //   and either the prototype ends with an ellipsis (, ...) or the
3280   //   types of the arguments after promotion are not compatible with
3281   //   the types of the parameters, the behavior is undefined. If the
3282   //   function is defined with a type that does not include a
3283   //   prototype, and the types of the arguments after promotion are
3284   //   not compatible with those of the parameters after promotion,
3285   //   the behavior is undefined [except in some trivial cases].
3286   // That is, in the general case, we should assume that a call
3287   // through an unprototyped function type works like a *non-variadic*
3288   // call.  The way we make this work is to cast to the exact type
3289   // of the promoted arguments.
3290   if (isa<FunctionNoProtoType>(FnType)) {
3291     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3292     CalleeTy = CalleeTy->getPointerTo();
3293     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3294   }
3295 
3296   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3297 }
3298 
3299 LValue CodeGenFunction::
3300 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3301   llvm::Value *BaseV;
3302   if (E->getOpcode() == BO_PtrMemI)
3303     BaseV = EmitScalarExpr(E->getLHS());
3304   else
3305     BaseV = EmitLValue(E->getLHS()).getAddress();
3306 
3307   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3308 
3309   const MemberPointerType *MPT
3310     = E->getRHS()->getType()->getAs<MemberPointerType>();
3311 
3312   llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
3313       *this, E, BaseV, OffsetV, MPT);
3314 
3315   return MakeAddrLValue(AddV, MPT->getPointeeType());
3316 }
3317 
3318 /// Given the address of a temporary variable, produce an r-value of
3319 /// its type.
3320 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3321                                             QualType type,
3322                                             SourceLocation loc) {
3323   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3324   switch (getEvaluationKind(type)) {
3325   case TEK_Complex:
3326     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3327   case TEK_Aggregate:
3328     return lvalue.asAggregateRValue();
3329   case TEK_Scalar:
3330     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3331   }
3332   llvm_unreachable("bad evaluation kind");
3333 }
3334 
3335 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3336   assert(Val->getType()->isFPOrFPVectorTy());
3337   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3338     return;
3339 
3340   llvm::MDBuilder MDHelper(getLLVMContext());
3341   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3342 
3343   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3344 }
3345 
3346 namespace {
3347   struct LValueOrRValue {
3348     LValue LV;
3349     RValue RV;
3350   };
3351 }
3352 
3353 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3354                                            const PseudoObjectExpr *E,
3355                                            bool forLValue,
3356                                            AggValueSlot slot) {
3357   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3358 
3359   // Find the result expression, if any.
3360   const Expr *resultExpr = E->getResultExpr();
3361   LValueOrRValue result;
3362 
3363   for (PseudoObjectExpr::const_semantics_iterator
3364          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3365     const Expr *semantic = *i;
3366 
3367     // If this semantic expression is an opaque value, bind it
3368     // to the result of its source expression.
3369     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3370 
3371       // If this is the result expression, we may need to evaluate
3372       // directly into the slot.
3373       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3374       OVMA opaqueData;
3375       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3376           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3377         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3378 
3379         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3380         opaqueData = OVMA::bind(CGF, ov, LV);
3381         result.RV = slot.asRValue();
3382 
3383       // Otherwise, emit as normal.
3384       } else {
3385         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3386 
3387         // If this is the result, also evaluate the result now.
3388         if (ov == resultExpr) {
3389           if (forLValue)
3390             result.LV = CGF.EmitLValue(ov);
3391           else
3392             result.RV = CGF.EmitAnyExpr(ov, slot);
3393         }
3394       }
3395 
3396       opaques.push_back(opaqueData);
3397 
3398     // Otherwise, if the expression is the result, evaluate it
3399     // and remember the result.
3400     } else if (semantic == resultExpr) {
3401       if (forLValue)
3402         result.LV = CGF.EmitLValue(semantic);
3403       else
3404         result.RV = CGF.EmitAnyExpr(semantic, slot);
3405 
3406     // Otherwise, evaluate the expression in an ignored context.
3407     } else {
3408       CGF.EmitIgnoredExpr(semantic);
3409     }
3410   }
3411 
3412   // Unbind all the opaques now.
3413   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3414     opaques[i].unbind(CGF);
3415 
3416   return result;
3417 }
3418 
3419 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3420                                                AggValueSlot slot) {
3421   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3422 }
3423 
3424 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3425   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3426 }
3427