1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "llvm/ADT/Hashing.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/Support/ConvertUTF.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/Path.h"
40 #include "llvm/Transforms/Utils/SanitizerStats.h"
41 
42 #include <string>
43 
44 using namespace clang;
45 using namespace CodeGen;
46 
47 //===--------------------------------------------------------------------===//
48 //                        Miscellaneous Helper Methods
49 //===--------------------------------------------------------------------===//
50 
51 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
52   unsigned addressSpace =
53       cast<llvm::PointerType>(value->getType())->getAddressSpace();
54 
55   llvm::PointerType *destType = Int8PtrTy;
56   if (addressSpace)
57     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
58 
59   if (value->getType() == destType) return value;
60   return Builder.CreateBitCast(value, destType);
61 }
62 
63 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
64 /// block.
65 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
66                                                      CharUnits Align,
67                                                      const Twine &Name,
68                                                      llvm::Value *ArraySize) {
69   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
70   Alloca->setAlignment(Align.getAsAlign());
71   return Address(Alloca, Align);
72 }
73 
74 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
75 /// block. The alloca is casted to default address space if necessary.
76 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
77                                           const Twine &Name,
78                                           llvm::Value *ArraySize,
79                                           Address *AllocaAddr) {
80   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
81   if (AllocaAddr)
82     *AllocaAddr = Alloca;
83   llvm::Value *V = Alloca.getPointer();
84   // Alloca always returns a pointer in alloca address space, which may
85   // be different from the type defined by the language. For example,
86   // in C++ the auto variables are in the default address space. Therefore
87   // cast alloca to the default address space when necessary.
88   if (getASTAllocaAddressSpace() != LangAS::Default) {
89     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
90     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
91     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
92     // otherwise alloca is inserted at the current insertion point of the
93     // builder.
94     if (!ArraySize)
95       Builder.SetInsertPoint(AllocaInsertPt);
96     V = getTargetHooks().performAddrSpaceCast(
97         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
98         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
99   }
100 
101   return Address(V, Align);
102 }
103 
104 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
105 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
106 /// insertion point of the builder.
107 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
108                                                     const Twine &Name,
109                                                     llvm::Value *ArraySize) {
110   if (ArraySize)
111     return Builder.CreateAlloca(Ty, ArraySize, Name);
112   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
113                               ArraySize, Name, AllocaInsertPt);
114 }
115 
116 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
117 /// default alignment of the corresponding LLVM type, which is *not*
118 /// guaranteed to be related in any way to the expected alignment of
119 /// an AST type that might have been lowered to Ty.
120 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
121                                                       const Twine &Name) {
122   CharUnits Align =
123     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
124   return CreateTempAlloca(Ty, Align, Name);
125 }
126 
127 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
128   auto *Alloca = Var.getPointer();
129   assert(isa<llvm::AllocaInst>(Alloca) ||
130          (isa<llvm::AddrSpaceCastInst>(Alloca) &&
131           isa<llvm::AllocaInst>(
132               cast<llvm::AddrSpaceCastInst>(Alloca)->getPointerOperand())));
133 
134   auto *Store = new llvm::StoreInst(Init, Alloca, /*volatile*/ false,
135                                     Var.getAlignment().getAsAlign());
136   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
137   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
138 }
139 
140 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
141   CharUnits Align = getContext().getTypeAlignInChars(Ty);
142   return CreateTempAlloca(ConvertType(Ty), Align, Name);
143 }
144 
145 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
146                                        Address *Alloca) {
147   // FIXME: Should we prefer the preferred type alignment here?
148   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
149 }
150 
151 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
152                                        const Twine &Name, Address *Alloca) {
153   Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
154                                     /*ArraySize=*/nullptr, Alloca);
155 
156   if (Ty->isConstantMatrixType()) {
157     auto *ArrayTy = cast<llvm::ArrayType>(Result.getType()->getElementType());
158     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
159                                                 ArrayTy->getNumElements());
160 
161     Result = Address(
162         Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()),
163         Result.getAlignment());
164   }
165   return Result;
166 }
167 
168 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
169                                                   const Twine &Name) {
170   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
171 }
172 
173 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
174                                                   const Twine &Name) {
175   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
176                                   Name);
177 }
178 
179 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
180 /// expression and compare the result against zero, returning an Int1Ty value.
181 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
182   PGO.setCurrentStmt(E);
183   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
184     llvm::Value *MemPtr = EmitScalarExpr(E);
185     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
186   }
187 
188   QualType BoolTy = getContext().BoolTy;
189   SourceLocation Loc = E->getExprLoc();
190   if (!E->getType()->isAnyComplexType())
191     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
192 
193   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
194                                        Loc);
195 }
196 
197 /// EmitIgnoredExpr - Emit code to compute the specified expression,
198 /// ignoring the result.
199 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
200   if (E->isRValue())
201     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
202 
203   // Just emit it as an l-value and drop the result.
204   EmitLValue(E);
205 }
206 
207 /// EmitAnyExpr - Emit code to compute the specified expression which
208 /// can have any type.  The result is returned as an RValue struct.
209 /// If this is an aggregate expression, AggSlot indicates where the
210 /// result should be returned.
211 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
212                                     AggValueSlot aggSlot,
213                                     bool ignoreResult) {
214   switch (getEvaluationKind(E->getType())) {
215   case TEK_Scalar:
216     return RValue::get(EmitScalarExpr(E, ignoreResult));
217   case TEK_Complex:
218     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
219   case TEK_Aggregate:
220     if (!ignoreResult && aggSlot.isIgnored())
221       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
222     EmitAggExpr(E, aggSlot);
223     return aggSlot.asRValue();
224   }
225   llvm_unreachable("bad evaluation kind");
226 }
227 
228 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
229 /// always be accessible even if no aggregate location is provided.
230 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
231   AggValueSlot AggSlot = AggValueSlot::ignored();
232 
233   if (hasAggregateEvaluationKind(E->getType()))
234     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
235   return EmitAnyExpr(E, AggSlot);
236 }
237 
238 /// EmitAnyExprToMem - Evaluate an expression into a given memory
239 /// location.
240 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
241                                        Address Location,
242                                        Qualifiers Quals,
243                                        bool IsInit) {
244   // FIXME: This function should take an LValue as an argument.
245   switch (getEvaluationKind(E->getType())) {
246   case TEK_Complex:
247     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
248                               /*isInit*/ false);
249     return;
250 
251   case TEK_Aggregate: {
252     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
253                                          AggValueSlot::IsDestructed_t(IsInit),
254                                          AggValueSlot::DoesNotNeedGCBarriers,
255                                          AggValueSlot::IsAliased_t(!IsInit),
256                                          AggValueSlot::MayOverlap));
257     return;
258   }
259 
260   case TEK_Scalar: {
261     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
262     LValue LV = MakeAddrLValue(Location, E->getType());
263     EmitStoreThroughLValue(RV, LV);
264     return;
265   }
266   }
267   llvm_unreachable("bad evaluation kind");
268 }
269 
270 static void
271 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
272                      const Expr *E, Address ReferenceTemporary) {
273   // Objective-C++ ARC:
274   //   If we are binding a reference to a temporary that has ownership, we
275   //   need to perform retain/release operations on the temporary.
276   //
277   // FIXME: This should be looking at E, not M.
278   if (auto Lifetime = M->getType().getObjCLifetime()) {
279     switch (Lifetime) {
280     case Qualifiers::OCL_None:
281     case Qualifiers::OCL_ExplicitNone:
282       // Carry on to normal cleanup handling.
283       break;
284 
285     case Qualifiers::OCL_Autoreleasing:
286       // Nothing to do; cleaned up by an autorelease pool.
287       return;
288 
289     case Qualifiers::OCL_Strong:
290     case Qualifiers::OCL_Weak:
291       switch (StorageDuration Duration = M->getStorageDuration()) {
292       case SD_Static:
293         // Note: we intentionally do not register a cleanup to release
294         // the object on program termination.
295         return;
296 
297       case SD_Thread:
298         // FIXME: We should probably register a cleanup in this case.
299         return;
300 
301       case SD_Automatic:
302       case SD_FullExpression:
303         CodeGenFunction::Destroyer *Destroy;
304         CleanupKind CleanupKind;
305         if (Lifetime == Qualifiers::OCL_Strong) {
306           const ValueDecl *VD = M->getExtendingDecl();
307           bool Precise =
308               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
309           CleanupKind = CGF.getARCCleanupKind();
310           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
311                             : &CodeGenFunction::destroyARCStrongImprecise;
312         } else {
313           // __weak objects always get EH cleanups; otherwise, exceptions
314           // could cause really nasty crashes instead of mere leaks.
315           CleanupKind = NormalAndEHCleanup;
316           Destroy = &CodeGenFunction::destroyARCWeak;
317         }
318         if (Duration == SD_FullExpression)
319           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
320                           M->getType(), *Destroy,
321                           CleanupKind & EHCleanup);
322         else
323           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
324                                           M->getType(),
325                                           *Destroy, CleanupKind & EHCleanup);
326         return;
327 
328       case SD_Dynamic:
329         llvm_unreachable("temporary cannot have dynamic storage duration");
330       }
331       llvm_unreachable("unknown storage duration");
332     }
333   }
334 
335   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
336   if (const RecordType *RT =
337           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
338     // Get the destructor for the reference temporary.
339     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
340     if (!ClassDecl->hasTrivialDestructor())
341       ReferenceTemporaryDtor = ClassDecl->getDestructor();
342   }
343 
344   if (!ReferenceTemporaryDtor)
345     return;
346 
347   // Call the destructor for the temporary.
348   switch (M->getStorageDuration()) {
349   case SD_Static:
350   case SD_Thread: {
351     llvm::FunctionCallee CleanupFn;
352     llvm::Constant *CleanupArg;
353     if (E->getType()->isArrayType()) {
354       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
355           ReferenceTemporary, E->getType(),
356           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
357           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
358       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
359     } else {
360       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
361           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
362       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
363     }
364     CGF.CGM.getCXXABI().registerGlobalDtor(
365         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
366     break;
367   }
368 
369   case SD_FullExpression:
370     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
371                     CodeGenFunction::destroyCXXObject,
372                     CGF.getLangOpts().Exceptions);
373     break;
374 
375   case SD_Automatic:
376     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
377                                     ReferenceTemporary, E->getType(),
378                                     CodeGenFunction::destroyCXXObject,
379                                     CGF.getLangOpts().Exceptions);
380     break;
381 
382   case SD_Dynamic:
383     llvm_unreachable("temporary cannot have dynamic storage duration");
384   }
385 }
386 
387 static Address createReferenceTemporary(CodeGenFunction &CGF,
388                                         const MaterializeTemporaryExpr *M,
389                                         const Expr *Inner,
390                                         Address *Alloca = nullptr) {
391   auto &TCG = CGF.getTargetHooks();
392   switch (M->getStorageDuration()) {
393   case SD_FullExpression:
394   case SD_Automatic: {
395     // If we have a constant temporary array or record try to promote it into a
396     // constant global under the same rules a normal constant would've been
397     // promoted. This is easier on the optimizer and generally emits fewer
398     // instructions.
399     QualType Ty = Inner->getType();
400     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
401         (Ty->isArrayType() || Ty->isRecordType()) &&
402         CGF.CGM.isTypeConstant(Ty, true))
403       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
404         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
405           auto AS = AddrSpace.getValue();
406           auto *GV = new llvm::GlobalVariable(
407               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
408               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
409               llvm::GlobalValue::NotThreadLocal,
410               CGF.getContext().getTargetAddressSpace(AS));
411           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
412           GV->setAlignment(alignment.getAsAlign());
413           llvm::Constant *C = GV;
414           if (AS != LangAS::Default)
415             C = TCG.performAddrSpaceCast(
416                 CGF.CGM, GV, AS, LangAS::Default,
417                 GV->getValueType()->getPointerTo(
418                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
419           // FIXME: Should we put the new global into a COMDAT?
420           return Address(C, alignment);
421         }
422       }
423     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
424   }
425   case SD_Thread:
426   case SD_Static:
427     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
428 
429   case SD_Dynamic:
430     llvm_unreachable("temporary can't have dynamic storage duration");
431   }
432   llvm_unreachable("unknown storage duration");
433 }
434 
435 /// Helper method to check if the underlying ABI is AAPCS
436 static bool isAAPCS(const TargetInfo &TargetInfo) {
437   return TargetInfo.getABI().startswith("aapcs");
438 }
439 
440 LValue CodeGenFunction::
441 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
442   const Expr *E = M->getSubExpr();
443 
444   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
445           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
446          "Reference should never be pseudo-strong!");
447 
448   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
449   // as that will cause the lifetime adjustment to be lost for ARC
450   auto ownership = M->getType().getObjCLifetime();
451   if (ownership != Qualifiers::OCL_None &&
452       ownership != Qualifiers::OCL_ExplicitNone) {
453     Address Object = createReferenceTemporary(*this, M, E);
454     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
455       Object = Address(llvm::ConstantExpr::getBitCast(Var,
456                            ConvertTypeForMem(E->getType())
457                              ->getPointerTo(Object.getAddressSpace())),
458                        Object.getAlignment());
459 
460       // createReferenceTemporary will promote the temporary to a global with a
461       // constant initializer if it can.  It can only do this to a value of
462       // ARC-manageable type if the value is global and therefore "immune" to
463       // ref-counting operations.  Therefore we have no need to emit either a
464       // dynamic initialization or a cleanup and we can just return the address
465       // of the temporary.
466       if (Var->hasInitializer())
467         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
468 
469       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
470     }
471     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
472                                        AlignmentSource::Decl);
473 
474     switch (getEvaluationKind(E->getType())) {
475     default: llvm_unreachable("expected scalar or aggregate expression");
476     case TEK_Scalar:
477       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
478       break;
479     case TEK_Aggregate: {
480       EmitAggExpr(E, AggValueSlot::forAddr(Object,
481                                            E->getType().getQualifiers(),
482                                            AggValueSlot::IsDestructed,
483                                            AggValueSlot::DoesNotNeedGCBarriers,
484                                            AggValueSlot::IsNotAliased,
485                                            AggValueSlot::DoesNotOverlap));
486       break;
487     }
488     }
489 
490     pushTemporaryCleanup(*this, M, E, Object);
491     return RefTempDst;
492   }
493 
494   SmallVector<const Expr *, 2> CommaLHSs;
495   SmallVector<SubobjectAdjustment, 2> Adjustments;
496   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
497 
498   for (const auto &Ignored : CommaLHSs)
499     EmitIgnoredExpr(Ignored);
500 
501   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
502     if (opaque->getType()->isRecordType()) {
503       assert(Adjustments.empty());
504       return EmitOpaqueValueLValue(opaque);
505     }
506   }
507 
508   // Create and initialize the reference temporary.
509   Address Alloca = Address::invalid();
510   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
511   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
512           Object.getPointer()->stripPointerCasts())) {
513     Object = Address(llvm::ConstantExpr::getBitCast(
514                          cast<llvm::Constant>(Object.getPointer()),
515                          ConvertTypeForMem(E->getType())->getPointerTo()),
516                      Object.getAlignment());
517     // If the temporary is a global and has a constant initializer or is a
518     // constant temporary that we promoted to a global, we may have already
519     // initialized it.
520     if (!Var->hasInitializer()) {
521       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
522       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
523     }
524   } else {
525     switch (M->getStorageDuration()) {
526     case SD_Automatic:
527       if (auto *Size = EmitLifetimeStart(
528               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
529               Alloca.getPointer())) {
530         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
531                                                   Alloca, Size);
532       }
533       break;
534 
535     case SD_FullExpression: {
536       if (!ShouldEmitLifetimeMarkers)
537         break;
538 
539       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
540       // marker. Instead, start the lifetime of a conditional temporary earlier
541       // so that it's unconditional. Don't do this with sanitizers which need
542       // more precise lifetime marks.
543       ConditionalEvaluation *OldConditional = nullptr;
544       CGBuilderTy::InsertPoint OldIP;
545       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
546           !SanOpts.has(SanitizerKind::HWAddress) &&
547           !SanOpts.has(SanitizerKind::Memory) &&
548           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
549         OldConditional = OutermostConditional;
550         OutermostConditional = nullptr;
551 
552         OldIP = Builder.saveIP();
553         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
554         Builder.restoreIP(CGBuilderTy::InsertPoint(
555             Block, llvm::BasicBlock::iterator(Block->back())));
556       }
557 
558       if (auto *Size = EmitLifetimeStart(
559               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
560               Alloca.getPointer())) {
561         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
562                                              Size);
563       }
564 
565       if (OldConditional) {
566         OutermostConditional = OldConditional;
567         Builder.restoreIP(OldIP);
568       }
569       break;
570     }
571 
572     default:
573       break;
574     }
575     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
576   }
577   pushTemporaryCleanup(*this, M, E, Object);
578 
579   // Perform derived-to-base casts and/or field accesses, to get from the
580   // temporary object we created (and, potentially, for which we extended
581   // the lifetime) to the subobject we're binding the reference to.
582   for (unsigned I = Adjustments.size(); I != 0; --I) {
583     SubobjectAdjustment &Adjustment = Adjustments[I-1];
584     switch (Adjustment.Kind) {
585     case SubobjectAdjustment::DerivedToBaseAdjustment:
586       Object =
587           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
588                                 Adjustment.DerivedToBase.BasePath->path_begin(),
589                                 Adjustment.DerivedToBase.BasePath->path_end(),
590                                 /*NullCheckValue=*/ false, E->getExprLoc());
591       break;
592 
593     case SubobjectAdjustment::FieldAdjustment: {
594       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
595       LV = EmitLValueForField(LV, Adjustment.Field);
596       assert(LV.isSimple() &&
597              "materialized temporary field is not a simple lvalue");
598       Object = LV.getAddress(*this);
599       break;
600     }
601 
602     case SubobjectAdjustment::MemberPointerAdjustment: {
603       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
604       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
605                                                Adjustment.Ptr.MPT);
606       break;
607     }
608     }
609   }
610 
611   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
612 }
613 
614 RValue
615 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
616   // Emit the expression as an lvalue.
617   LValue LV = EmitLValue(E);
618   assert(LV.isSimple());
619   llvm::Value *Value = LV.getPointer(*this);
620 
621   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
622     // C++11 [dcl.ref]p5 (as amended by core issue 453):
623     //   If a glvalue to which a reference is directly bound designates neither
624     //   an existing object or function of an appropriate type nor a region of
625     //   storage of suitable size and alignment to contain an object of the
626     //   reference's type, the behavior is undefined.
627     QualType Ty = E->getType();
628     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
629   }
630 
631   return RValue::get(Value);
632 }
633 
634 
635 /// getAccessedFieldNo - Given an encoded value and a result number, return the
636 /// input field number being accessed.
637 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
638                                              const llvm::Constant *Elts) {
639   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
640       ->getZExtValue();
641 }
642 
643 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
644 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
645                                     llvm::Value *High) {
646   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
647   llvm::Value *K47 = Builder.getInt64(47);
648   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
649   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
650   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
651   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
652   return Builder.CreateMul(B1, KMul);
653 }
654 
655 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
656   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
657          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
658 }
659 
660 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
661   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
662   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
663          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
664           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
665           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
666 }
667 
668 bool CodeGenFunction::sanitizePerformTypeCheck() const {
669   return SanOpts.has(SanitizerKind::Null) |
670          SanOpts.has(SanitizerKind::Alignment) |
671          SanOpts.has(SanitizerKind::ObjectSize) |
672          SanOpts.has(SanitizerKind::Vptr);
673 }
674 
675 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
676                                     llvm::Value *Ptr, QualType Ty,
677                                     CharUnits Alignment,
678                                     SanitizerSet SkippedChecks,
679                                     llvm::Value *ArraySize) {
680   if (!sanitizePerformTypeCheck())
681     return;
682 
683   // Don't check pointers outside the default address space. The null check
684   // isn't correct, the object-size check isn't supported by LLVM, and we can't
685   // communicate the addresses to the runtime handler for the vptr check.
686   if (Ptr->getType()->getPointerAddressSpace())
687     return;
688 
689   // Don't check pointers to volatile data. The behavior here is implementation-
690   // defined.
691   if (Ty.isVolatileQualified())
692     return;
693 
694   SanitizerScope SanScope(this);
695 
696   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
697   llvm::BasicBlock *Done = nullptr;
698 
699   // Quickly determine whether we have a pointer to an alloca. It's possible
700   // to skip null checks, and some alignment checks, for these pointers. This
701   // can reduce compile-time significantly.
702   auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
703 
704   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
705   llvm::Value *IsNonNull = nullptr;
706   bool IsGuaranteedNonNull =
707       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
708   bool AllowNullPointers = isNullPointerAllowed(TCK);
709   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
710       !IsGuaranteedNonNull) {
711     // The glvalue must not be an empty glvalue.
712     IsNonNull = Builder.CreateIsNotNull(Ptr);
713 
714     // The IR builder can constant-fold the null check if the pointer points to
715     // a constant.
716     IsGuaranteedNonNull = IsNonNull == True;
717 
718     // Skip the null check if the pointer is known to be non-null.
719     if (!IsGuaranteedNonNull) {
720       if (AllowNullPointers) {
721         // When performing pointer casts, it's OK if the value is null.
722         // Skip the remaining checks in that case.
723         Done = createBasicBlock("null");
724         llvm::BasicBlock *Rest = createBasicBlock("not.null");
725         Builder.CreateCondBr(IsNonNull, Rest, Done);
726         EmitBlock(Rest);
727       } else {
728         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
729       }
730     }
731   }
732 
733   if (SanOpts.has(SanitizerKind::ObjectSize) &&
734       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
735       !Ty->isIncompleteType()) {
736     uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
737     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
738     if (ArraySize)
739       Size = Builder.CreateMul(Size, ArraySize);
740 
741     // Degenerate case: new X[0] does not need an objectsize check.
742     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
743     if (!ConstantSize || !ConstantSize->isNullValue()) {
744       // The glvalue must refer to a large enough storage region.
745       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
746       //        to check this.
747       // FIXME: Get object address space
748       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
749       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
750       llvm::Value *Min = Builder.getFalse();
751       llvm::Value *NullIsUnknown = Builder.getFalse();
752       llvm::Value *Dynamic = Builder.getFalse();
753       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
754       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
755           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
756       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
757     }
758   }
759 
760   uint64_t AlignVal = 0;
761   llvm::Value *PtrAsInt = nullptr;
762 
763   if (SanOpts.has(SanitizerKind::Alignment) &&
764       !SkippedChecks.has(SanitizerKind::Alignment)) {
765     AlignVal = Alignment.getQuantity();
766     if (!Ty->isIncompleteType() && !AlignVal)
767       AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
768                                              /*ForPointeeType=*/true)
769                      .getQuantity();
770 
771     // The glvalue must be suitably aligned.
772     if (AlignVal > 1 &&
773         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
774       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
775       llvm::Value *Align = Builder.CreateAnd(
776           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
777       llvm::Value *Aligned =
778           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
779       if (Aligned != True)
780         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
781     }
782   }
783 
784   if (Checks.size() > 0) {
785     // Make sure we're not losing information. Alignment needs to be a power of
786     // 2
787     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
788     llvm::Constant *StaticData[] = {
789         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
790         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
791         llvm::ConstantInt::get(Int8Ty, TCK)};
792     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
793               PtrAsInt ? PtrAsInt : Ptr);
794   }
795 
796   // If possible, check that the vptr indicates that there is a subobject of
797   // type Ty at offset zero within this object.
798   //
799   // C++11 [basic.life]p5,6:
800   //   [For storage which does not refer to an object within its lifetime]
801   //   The program has undefined behavior if:
802   //    -- the [pointer or glvalue] is used to access a non-static data member
803   //       or call a non-static member function
804   if (SanOpts.has(SanitizerKind::Vptr) &&
805       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
806     // Ensure that the pointer is non-null before loading it. If there is no
807     // compile-time guarantee, reuse the run-time null check or emit a new one.
808     if (!IsGuaranteedNonNull) {
809       if (!IsNonNull)
810         IsNonNull = Builder.CreateIsNotNull(Ptr);
811       if (!Done)
812         Done = createBasicBlock("vptr.null");
813       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
814       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
815       EmitBlock(VptrNotNull);
816     }
817 
818     // Compute a hash of the mangled name of the type.
819     //
820     // FIXME: This is not guaranteed to be deterministic! Move to a
821     //        fingerprinting mechanism once LLVM provides one. For the time
822     //        being the implementation happens to be deterministic.
823     SmallString<64> MangledName;
824     llvm::raw_svector_ostream Out(MangledName);
825     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
826                                                      Out);
827 
828     // Blacklist based on the mangled type.
829     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
830             SanitizerKind::Vptr, Out.str())) {
831       llvm::hash_code TypeHash = hash_value(Out.str());
832 
833       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
834       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
835       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
836       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
837       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
838       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
839 
840       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
841       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
842 
843       // Look the hash up in our cache.
844       const int CacheSize = 128;
845       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
846       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
847                                                      "__ubsan_vptr_type_cache");
848       llvm::Value *Slot = Builder.CreateAnd(Hash,
849                                             llvm::ConstantInt::get(IntPtrTy,
850                                                                    CacheSize-1));
851       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
852       llvm::Value *CacheVal =
853         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
854                                   getPointerAlign());
855 
856       // If the hash isn't in the cache, call a runtime handler to perform the
857       // hard work of checking whether the vptr is for an object of the right
858       // type. This will either fill in the cache and return, or produce a
859       // diagnostic.
860       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
861       llvm::Constant *StaticData[] = {
862         EmitCheckSourceLocation(Loc),
863         EmitCheckTypeDescriptor(Ty),
864         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
865         llvm::ConstantInt::get(Int8Ty, TCK)
866       };
867       llvm::Value *DynamicData[] = { Ptr, Hash };
868       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
869                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
870                 DynamicData);
871     }
872   }
873 
874   if (Done) {
875     Builder.CreateBr(Done);
876     EmitBlock(Done);
877   }
878 }
879 
880 /// Determine whether this expression refers to a flexible array member in a
881 /// struct. We disable array bounds checks for such members.
882 static bool isFlexibleArrayMemberExpr(const Expr *E) {
883   // For compatibility with existing code, we treat arrays of length 0 or
884   // 1 as flexible array members.
885   // FIXME: This is inconsistent with the warning code in SemaChecking. Unify
886   // the two mechanisms.
887   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
888   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
889     // FIXME: Sema doesn't treat [1] as a flexible array member if the bound
890     // was produced by macro expansion.
891     if (CAT->getSize().ugt(1))
892       return false;
893   } else if (!isa<IncompleteArrayType>(AT))
894     return false;
895 
896   E = E->IgnoreParens();
897 
898   // A flexible array member must be the last member in the class.
899   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
900     // FIXME: If the base type of the member expr is not FD->getParent(),
901     // this should not be treated as a flexible array member access.
902     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
903       // FIXME: Sema doesn't treat a T[1] union member as a flexible array
904       // member, only a T[0] or T[] member gets that treatment.
905       if (FD->getParent()->isUnion())
906         return true;
907       RecordDecl::field_iterator FI(
908           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
909       return ++FI == FD->getParent()->field_end();
910     }
911   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
912     return IRE->getDecl()->getNextIvar() == nullptr;
913   }
914 
915   return false;
916 }
917 
918 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
919                                                    QualType EltTy) {
920   ASTContext &C = getContext();
921   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
922   if (!EltSize)
923     return nullptr;
924 
925   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
926   if (!ArrayDeclRef)
927     return nullptr;
928 
929   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
930   if (!ParamDecl)
931     return nullptr;
932 
933   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
934   if (!POSAttr)
935     return nullptr;
936 
937   // Don't load the size if it's a lower bound.
938   int POSType = POSAttr->getType();
939   if (POSType != 0 && POSType != 1)
940     return nullptr;
941 
942   // Find the implicit size parameter.
943   auto PassedSizeIt = SizeArguments.find(ParamDecl);
944   if (PassedSizeIt == SizeArguments.end())
945     return nullptr;
946 
947   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
948   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
949   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
950   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
951                                               C.getSizeType(), E->getExprLoc());
952   llvm::Value *SizeOfElement =
953       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
954   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
955 }
956 
957 /// If Base is known to point to the start of an array, return the length of
958 /// that array. Return 0 if the length cannot be determined.
959 static llvm::Value *getArrayIndexingBound(
960     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
961   // For the vector indexing extension, the bound is the number of elements.
962   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
963     IndexedType = Base->getType();
964     return CGF.Builder.getInt32(VT->getNumElements());
965   }
966 
967   Base = Base->IgnoreParens();
968 
969   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
970     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
971         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
972       IndexedType = CE->getSubExpr()->getType();
973       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
974       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
975         return CGF.Builder.getInt(CAT->getSize());
976       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
977         return CGF.getVLASize(VAT).NumElts;
978       // Ignore pass_object_size here. It's not applicable on decayed pointers.
979     }
980   }
981 
982   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
983   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
984     IndexedType = Base->getType();
985     return POS;
986   }
987 
988   return nullptr;
989 }
990 
991 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
992                                       llvm::Value *Index, QualType IndexType,
993                                       bool Accessed) {
994   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
995          "should not be called unless adding bounds checks");
996   SanitizerScope SanScope(this);
997 
998   QualType IndexedType;
999   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
1000   if (!Bound)
1001     return;
1002 
1003   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
1004   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1005   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1006 
1007   llvm::Constant *StaticData[] = {
1008     EmitCheckSourceLocation(E->getExprLoc()),
1009     EmitCheckTypeDescriptor(IndexedType),
1010     EmitCheckTypeDescriptor(IndexType)
1011   };
1012   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1013                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
1014   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1015             SanitizerHandler::OutOfBounds, StaticData, Index);
1016 }
1017 
1018 
1019 CodeGenFunction::ComplexPairTy CodeGenFunction::
1020 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1021                          bool isInc, bool isPre) {
1022   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1023 
1024   llvm::Value *NextVal;
1025   if (isa<llvm::IntegerType>(InVal.first->getType())) {
1026     uint64_t AmountVal = isInc ? 1 : -1;
1027     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1028 
1029     // Add the inc/dec to the real part.
1030     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1031   } else {
1032     QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1033     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1034     if (!isInc)
1035       FVal.changeSign();
1036     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1037 
1038     // Add the inc/dec to the real part.
1039     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1040   }
1041 
1042   ComplexPairTy IncVal(NextVal, InVal.second);
1043 
1044   // Store the updated result through the lvalue.
1045   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1046   if (getLangOpts().OpenMP)
1047     CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1048                                                               E->getSubExpr());
1049 
1050   // If this is a postinc, return the value read from memory, otherwise use the
1051   // updated value.
1052   return isPre ? IncVal : InVal;
1053 }
1054 
1055 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1056                                              CodeGenFunction *CGF) {
1057   // Bind VLAs in the cast type.
1058   if (CGF && E->getType()->isVariablyModifiedType())
1059     CGF->EmitVariablyModifiedType(E->getType());
1060 
1061   if (CGDebugInfo *DI = getModuleDebugInfo())
1062     DI->EmitExplicitCastType(E->getType());
1063 }
1064 
1065 //===----------------------------------------------------------------------===//
1066 //                         LValue Expression Emission
1067 //===----------------------------------------------------------------------===//
1068 
1069 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1070 /// derive a more accurate bound on the alignment of the pointer.
1071 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1072                                                   LValueBaseInfo *BaseInfo,
1073                                                   TBAAAccessInfo *TBAAInfo) {
1074   // We allow this with ObjC object pointers because of fragile ABIs.
1075   assert(E->getType()->isPointerType() ||
1076          E->getType()->isObjCObjectPointerType());
1077   E = E->IgnoreParens();
1078 
1079   // Casts:
1080   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1081     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1082       CGM.EmitExplicitCastExprType(ECE, this);
1083 
1084     switch (CE->getCastKind()) {
1085     // Non-converting casts (but not C's implicit conversion from void*).
1086     case CK_BitCast:
1087     case CK_NoOp:
1088     case CK_AddressSpaceConversion:
1089       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1090         if (PtrTy->getPointeeType()->isVoidType())
1091           break;
1092 
1093         LValueBaseInfo InnerBaseInfo;
1094         TBAAAccessInfo InnerTBAAInfo;
1095         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1096                                                 &InnerBaseInfo,
1097                                                 &InnerTBAAInfo);
1098         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1099         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1100 
1101         if (isa<ExplicitCastExpr>(CE)) {
1102           LValueBaseInfo TargetTypeBaseInfo;
1103           TBAAAccessInfo TargetTypeTBAAInfo;
1104           CharUnits Align = CGM.getNaturalPointeeTypeAlignment(
1105               E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1106           if (TBAAInfo)
1107             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1108                                                  TargetTypeTBAAInfo);
1109           // If the source l-value is opaque, honor the alignment of the
1110           // casted-to type.
1111           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1112             if (BaseInfo)
1113               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1114             Addr = Address(Addr.getPointer(), Align);
1115           }
1116         }
1117 
1118         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1119             CE->getCastKind() == CK_BitCast) {
1120           if (auto PT = E->getType()->getAs<PointerType>())
1121             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1122                                       /*MayBeNull=*/true,
1123                                       CodeGenFunction::CFITCK_UnrelatedCast,
1124                                       CE->getBeginLoc());
1125         }
1126         return CE->getCastKind() != CK_AddressSpaceConversion
1127                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1128                    : Builder.CreateAddrSpaceCast(Addr,
1129                                                  ConvertType(E->getType()));
1130       }
1131       break;
1132 
1133     // Array-to-pointer decay.
1134     case CK_ArrayToPointerDecay:
1135       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1136 
1137     // Derived-to-base conversions.
1138     case CK_UncheckedDerivedToBase:
1139     case CK_DerivedToBase: {
1140       // TODO: Support accesses to members of base classes in TBAA. For now, we
1141       // conservatively pretend that the complete object is of the base class
1142       // type.
1143       if (TBAAInfo)
1144         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1145       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1146       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1147       return GetAddressOfBaseClass(Addr, Derived,
1148                                    CE->path_begin(), CE->path_end(),
1149                                    ShouldNullCheckClassCastValue(CE),
1150                                    CE->getExprLoc());
1151     }
1152 
1153     // TODO: Is there any reason to treat base-to-derived conversions
1154     // specially?
1155     default:
1156       break;
1157     }
1158   }
1159 
1160   // Unary &.
1161   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1162     if (UO->getOpcode() == UO_AddrOf) {
1163       LValue LV = EmitLValue(UO->getSubExpr());
1164       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1165       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1166       return LV.getAddress(*this);
1167     }
1168   }
1169 
1170   // TODO: conditional operators, comma.
1171 
1172   // Otherwise, use the alignment of the type.
1173   CharUnits Align =
1174       CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1175   return Address(EmitScalarExpr(E), Align);
1176 }
1177 
1178 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1179   if (Ty->isVoidType())
1180     return RValue::get(nullptr);
1181 
1182   switch (getEvaluationKind(Ty)) {
1183   case TEK_Complex: {
1184     llvm::Type *EltTy =
1185       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1186     llvm::Value *U = llvm::UndefValue::get(EltTy);
1187     return RValue::getComplex(std::make_pair(U, U));
1188   }
1189 
1190   // If this is a use of an undefined aggregate type, the aggregate must have an
1191   // identifiable address.  Just because the contents of the value are undefined
1192   // doesn't mean that the address can't be taken and compared.
1193   case TEK_Aggregate: {
1194     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1195     return RValue::getAggregate(DestPtr);
1196   }
1197 
1198   case TEK_Scalar:
1199     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1200   }
1201   llvm_unreachable("bad evaluation kind");
1202 }
1203 
1204 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1205                                               const char *Name) {
1206   ErrorUnsupported(E, Name);
1207   return GetUndefRValue(E->getType());
1208 }
1209 
1210 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1211                                               const char *Name) {
1212   ErrorUnsupported(E, Name);
1213   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1214   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1215                         E->getType());
1216 }
1217 
1218 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1219   const Expr *Base = Obj;
1220   while (!isa<CXXThisExpr>(Base)) {
1221     // The result of a dynamic_cast can be null.
1222     if (isa<CXXDynamicCastExpr>(Base))
1223       return false;
1224 
1225     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1226       Base = CE->getSubExpr();
1227     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1228       Base = PE->getSubExpr();
1229     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1230       if (UO->getOpcode() == UO_Extension)
1231         Base = UO->getSubExpr();
1232       else
1233         return false;
1234     } else {
1235       return false;
1236     }
1237   }
1238   return true;
1239 }
1240 
1241 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1242   LValue LV;
1243   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1244     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1245   else
1246     LV = EmitLValue(E);
1247   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1248     SanitizerSet SkippedChecks;
1249     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1250       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1251       if (IsBaseCXXThis)
1252         SkippedChecks.set(SanitizerKind::Alignment, true);
1253       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1254         SkippedChecks.set(SanitizerKind::Null, true);
1255     }
1256     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1257                   LV.getAlignment(), SkippedChecks);
1258   }
1259   return LV;
1260 }
1261 
1262 /// EmitLValue - Emit code to compute a designator that specifies the location
1263 /// of the expression.
1264 ///
1265 /// This can return one of two things: a simple address or a bitfield reference.
1266 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1267 /// an LLVM pointer type.
1268 ///
1269 /// If this returns a bitfield reference, nothing about the pointee type of the
1270 /// LLVM value is known: For example, it may not be a pointer to an integer.
1271 ///
1272 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1273 /// this method guarantees that the returned pointer type will point to an LLVM
1274 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1275 /// length type, this is not possible.
1276 ///
1277 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1278   ApplyDebugLocation DL(*this, E);
1279   switch (E->getStmtClass()) {
1280   default: return EmitUnsupportedLValue(E, "l-value expression");
1281 
1282   case Expr::ObjCPropertyRefExprClass:
1283     llvm_unreachable("cannot emit a property reference directly");
1284 
1285   case Expr::ObjCSelectorExprClass:
1286     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1287   case Expr::ObjCIsaExprClass:
1288     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1289   case Expr::BinaryOperatorClass:
1290     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1291   case Expr::CompoundAssignOperatorClass: {
1292     QualType Ty = E->getType();
1293     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1294       Ty = AT->getValueType();
1295     if (!Ty->isAnyComplexType())
1296       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1297     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1298   }
1299   case Expr::CallExprClass:
1300   case Expr::CXXMemberCallExprClass:
1301   case Expr::CXXOperatorCallExprClass:
1302   case Expr::UserDefinedLiteralClass:
1303     return EmitCallExprLValue(cast<CallExpr>(E));
1304   case Expr::CXXRewrittenBinaryOperatorClass:
1305     return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm());
1306   case Expr::VAArgExprClass:
1307     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1308   case Expr::DeclRefExprClass:
1309     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1310   case Expr::ConstantExprClass: {
1311     const ConstantExpr *CE = cast<ConstantExpr>(E);
1312     if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1313       QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1314                              ->getCallReturnType(getContext());
1315       return MakeNaturalAlignAddrLValue(Result, RetType);
1316     }
1317     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1318   }
1319   case Expr::ParenExprClass:
1320     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1321   case Expr::GenericSelectionExprClass:
1322     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1323   case Expr::PredefinedExprClass:
1324     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1325   case Expr::StringLiteralClass:
1326     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1327   case Expr::ObjCEncodeExprClass:
1328     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1329   case Expr::PseudoObjectExprClass:
1330     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1331   case Expr::InitListExprClass:
1332     return EmitInitListLValue(cast<InitListExpr>(E));
1333   case Expr::CXXTemporaryObjectExprClass:
1334   case Expr::CXXConstructExprClass:
1335     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1336   case Expr::CXXBindTemporaryExprClass:
1337     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1338   case Expr::CXXUuidofExprClass:
1339     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1340   case Expr::LambdaExprClass:
1341     return EmitAggExprToLValue(E);
1342 
1343   case Expr::ExprWithCleanupsClass: {
1344     const auto *cleanups = cast<ExprWithCleanups>(E);
1345     RunCleanupsScope Scope(*this);
1346     LValue LV = EmitLValue(cleanups->getSubExpr());
1347     if (LV.isSimple()) {
1348       // Defend against branches out of gnu statement expressions surrounded by
1349       // cleanups.
1350       llvm::Value *V = LV.getPointer(*this);
1351       Scope.ForceCleanup({&V});
1352       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1353                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1354     }
1355     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1356     // bitfield lvalue or some other non-simple lvalue?
1357     return LV;
1358   }
1359 
1360   case Expr::CXXDefaultArgExprClass: {
1361     auto *DAE = cast<CXXDefaultArgExpr>(E);
1362     CXXDefaultArgExprScope Scope(*this, DAE);
1363     return EmitLValue(DAE->getExpr());
1364   }
1365   case Expr::CXXDefaultInitExprClass: {
1366     auto *DIE = cast<CXXDefaultInitExpr>(E);
1367     CXXDefaultInitExprScope Scope(*this, DIE);
1368     return EmitLValue(DIE->getExpr());
1369   }
1370   case Expr::CXXTypeidExprClass:
1371     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1372 
1373   case Expr::ObjCMessageExprClass:
1374     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1375   case Expr::ObjCIvarRefExprClass:
1376     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1377   case Expr::StmtExprClass:
1378     return EmitStmtExprLValue(cast<StmtExpr>(E));
1379   case Expr::UnaryOperatorClass:
1380     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1381   case Expr::ArraySubscriptExprClass:
1382     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1383   case Expr::MatrixSubscriptExprClass:
1384     return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1385   case Expr::OMPArraySectionExprClass:
1386     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1387   case Expr::ExtVectorElementExprClass:
1388     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1389   case Expr::MemberExprClass:
1390     return EmitMemberExpr(cast<MemberExpr>(E));
1391   case Expr::CompoundLiteralExprClass:
1392     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1393   case Expr::ConditionalOperatorClass:
1394     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1395   case Expr::BinaryConditionalOperatorClass:
1396     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1397   case Expr::ChooseExprClass:
1398     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1399   case Expr::OpaqueValueExprClass:
1400     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1401   case Expr::SubstNonTypeTemplateParmExprClass:
1402     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1403   case Expr::ImplicitCastExprClass:
1404   case Expr::CStyleCastExprClass:
1405   case Expr::CXXFunctionalCastExprClass:
1406   case Expr::CXXStaticCastExprClass:
1407   case Expr::CXXDynamicCastExprClass:
1408   case Expr::CXXReinterpretCastExprClass:
1409   case Expr::CXXConstCastExprClass:
1410   case Expr::CXXAddrspaceCastExprClass:
1411   case Expr::ObjCBridgedCastExprClass:
1412     return EmitCastLValue(cast<CastExpr>(E));
1413 
1414   case Expr::MaterializeTemporaryExprClass:
1415     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1416 
1417   case Expr::CoawaitExprClass:
1418     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1419   case Expr::CoyieldExprClass:
1420     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1421   }
1422 }
1423 
1424 /// Given an object of the given canonical type, can we safely copy a
1425 /// value out of it based on its initializer?
1426 static bool isConstantEmittableObjectType(QualType type) {
1427   assert(type.isCanonical());
1428   assert(!type->isReferenceType());
1429 
1430   // Must be const-qualified but non-volatile.
1431   Qualifiers qs = type.getLocalQualifiers();
1432   if (!qs.hasConst() || qs.hasVolatile()) return false;
1433 
1434   // Otherwise, all object types satisfy this except C++ classes with
1435   // mutable subobjects or non-trivial copy/destroy behavior.
1436   if (const auto *RT = dyn_cast<RecordType>(type))
1437     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1438       if (RD->hasMutableFields() || !RD->isTrivial())
1439         return false;
1440 
1441   return true;
1442 }
1443 
1444 /// Can we constant-emit a load of a reference to a variable of the
1445 /// given type?  This is different from predicates like
1446 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1447 /// in situations that don't necessarily satisfy the language's rules
1448 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1449 /// to do this with const float variables even if those variables
1450 /// aren't marked 'constexpr'.
1451 enum ConstantEmissionKind {
1452   CEK_None,
1453   CEK_AsReferenceOnly,
1454   CEK_AsValueOrReference,
1455   CEK_AsValueOnly
1456 };
1457 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1458   type = type.getCanonicalType();
1459   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1460     if (isConstantEmittableObjectType(ref->getPointeeType()))
1461       return CEK_AsValueOrReference;
1462     return CEK_AsReferenceOnly;
1463   }
1464   if (isConstantEmittableObjectType(type))
1465     return CEK_AsValueOnly;
1466   return CEK_None;
1467 }
1468 
1469 /// Try to emit a reference to the given value without producing it as
1470 /// an l-value.  This is just an optimization, but it avoids us needing
1471 /// to emit global copies of variables if they're named without triggering
1472 /// a formal use in a context where we can't emit a direct reference to them,
1473 /// for instance if a block or lambda or a member of a local class uses a
1474 /// const int variable or constexpr variable from an enclosing function.
1475 CodeGenFunction::ConstantEmission
1476 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1477   ValueDecl *value = refExpr->getDecl();
1478 
1479   // The value needs to be an enum constant or a constant variable.
1480   ConstantEmissionKind CEK;
1481   if (isa<ParmVarDecl>(value)) {
1482     CEK = CEK_None;
1483   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1484     CEK = checkVarTypeForConstantEmission(var->getType());
1485   } else if (isa<EnumConstantDecl>(value)) {
1486     CEK = CEK_AsValueOnly;
1487   } else {
1488     CEK = CEK_None;
1489   }
1490   if (CEK == CEK_None) return ConstantEmission();
1491 
1492   Expr::EvalResult result;
1493   bool resultIsReference;
1494   QualType resultType;
1495 
1496   // It's best to evaluate all the way as an r-value if that's permitted.
1497   if (CEK != CEK_AsReferenceOnly &&
1498       refExpr->EvaluateAsRValue(result, getContext())) {
1499     resultIsReference = false;
1500     resultType = refExpr->getType();
1501 
1502   // Otherwise, try to evaluate as an l-value.
1503   } else if (CEK != CEK_AsValueOnly &&
1504              refExpr->EvaluateAsLValue(result, getContext())) {
1505     resultIsReference = true;
1506     resultType = value->getType();
1507 
1508   // Failure.
1509   } else {
1510     return ConstantEmission();
1511   }
1512 
1513   // In any case, if the initializer has side-effects, abandon ship.
1514   if (result.HasSideEffects)
1515     return ConstantEmission();
1516 
1517   // Emit as a constant.
1518   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1519                                                result.Val, resultType);
1520 
1521   // Make sure we emit a debug reference to the global variable.
1522   // This should probably fire even for
1523   if (isa<VarDecl>(value)) {
1524     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1525       EmitDeclRefExprDbgValue(refExpr, result.Val);
1526   } else {
1527     assert(isa<EnumConstantDecl>(value));
1528     EmitDeclRefExprDbgValue(refExpr, result.Val);
1529   }
1530 
1531   // If we emitted a reference constant, we need to dereference that.
1532   if (resultIsReference)
1533     return ConstantEmission::forReference(C);
1534 
1535   return ConstantEmission::forValue(C);
1536 }
1537 
1538 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1539                                                         const MemberExpr *ME) {
1540   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1541     // Try to emit static variable member expressions as DREs.
1542     return DeclRefExpr::Create(
1543         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1544         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1545         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1546   }
1547   return nullptr;
1548 }
1549 
1550 CodeGenFunction::ConstantEmission
1551 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1552   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1553     return tryEmitAsConstant(DRE);
1554   return ConstantEmission();
1555 }
1556 
1557 llvm::Value *CodeGenFunction::emitScalarConstant(
1558     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1559   assert(Constant && "not a constant");
1560   if (Constant.isReference())
1561     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1562                             E->getExprLoc())
1563         .getScalarVal();
1564   return Constant.getValue();
1565 }
1566 
1567 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1568                                                SourceLocation Loc) {
1569   return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1570                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1571                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1572 }
1573 
1574 static bool hasBooleanRepresentation(QualType Ty) {
1575   if (Ty->isBooleanType())
1576     return true;
1577 
1578   if (const EnumType *ET = Ty->getAs<EnumType>())
1579     return ET->getDecl()->getIntegerType()->isBooleanType();
1580 
1581   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1582     return hasBooleanRepresentation(AT->getValueType());
1583 
1584   return false;
1585 }
1586 
1587 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1588                             llvm::APInt &Min, llvm::APInt &End,
1589                             bool StrictEnums, bool IsBool) {
1590   const EnumType *ET = Ty->getAs<EnumType>();
1591   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1592                                 ET && !ET->getDecl()->isFixed();
1593   if (!IsBool && !IsRegularCPlusPlusEnum)
1594     return false;
1595 
1596   if (IsBool) {
1597     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1598     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1599   } else {
1600     const EnumDecl *ED = ET->getDecl();
1601     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1602     unsigned Bitwidth = LTy->getScalarSizeInBits();
1603     unsigned NumNegativeBits = ED->getNumNegativeBits();
1604     unsigned NumPositiveBits = ED->getNumPositiveBits();
1605 
1606     if (NumNegativeBits) {
1607       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1608       assert(NumBits <= Bitwidth);
1609       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1610       Min = -End;
1611     } else {
1612       assert(NumPositiveBits <= Bitwidth);
1613       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1614       Min = llvm::APInt(Bitwidth, 0);
1615     }
1616   }
1617   return true;
1618 }
1619 
1620 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1621   llvm::APInt Min, End;
1622   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1623                        hasBooleanRepresentation(Ty)))
1624     return nullptr;
1625 
1626   llvm::MDBuilder MDHelper(getLLVMContext());
1627   return MDHelper.createRange(Min, End);
1628 }
1629 
1630 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1631                                            SourceLocation Loc) {
1632   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1633   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1634   if (!HasBoolCheck && !HasEnumCheck)
1635     return false;
1636 
1637   bool IsBool = hasBooleanRepresentation(Ty) ||
1638                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1639   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1640   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1641   if (!NeedsBoolCheck && !NeedsEnumCheck)
1642     return false;
1643 
1644   // Single-bit booleans don't need to be checked. Special-case this to avoid
1645   // a bit width mismatch when handling bitfield values. This is handled by
1646   // EmitFromMemory for the non-bitfield case.
1647   if (IsBool &&
1648       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1649     return false;
1650 
1651   llvm::APInt Min, End;
1652   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1653     return true;
1654 
1655   auto &Ctx = getLLVMContext();
1656   SanitizerScope SanScope(this);
1657   llvm::Value *Check;
1658   --End;
1659   if (!Min) {
1660     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1661   } else {
1662     llvm::Value *Upper =
1663         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1664     llvm::Value *Lower =
1665         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1666     Check = Builder.CreateAnd(Upper, Lower);
1667   }
1668   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1669                                   EmitCheckTypeDescriptor(Ty)};
1670   SanitizerMask Kind =
1671       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1672   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1673             StaticArgs, EmitCheckValue(Value));
1674   return true;
1675 }
1676 
1677 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1678                                                QualType Ty,
1679                                                SourceLocation Loc,
1680                                                LValueBaseInfo BaseInfo,
1681                                                TBAAAccessInfo TBAAInfo,
1682                                                bool isNontemporal) {
1683   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1684     // For better performance, handle vector loads differently.
1685     if (Ty->isVectorType()) {
1686       const llvm::Type *EltTy = Addr.getElementType();
1687 
1688       const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1689 
1690       // Handle vectors of size 3 like size 4 for better performance.
1691       if (VTy->getNumElements() == 3) {
1692 
1693         // Bitcast to vec4 type.
1694         auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4);
1695         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1696         // Now load value.
1697         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1698 
1699         // Shuffle vector to get vec3.
1700         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1701                                         ArrayRef<int>{0, 1, 2}, "extractVec");
1702         return EmitFromMemory(V, Ty);
1703       }
1704     }
1705   }
1706 
1707   // Atomic operations have to be done on integral types.
1708   LValue AtomicLValue =
1709       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1710   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1711     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1712   }
1713 
1714   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1715   if (isNontemporal) {
1716     llvm::MDNode *Node = llvm::MDNode::get(
1717         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1718     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1719   }
1720 
1721   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1722 
1723   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1724     // In order to prevent the optimizer from throwing away the check, don't
1725     // attach range metadata to the load.
1726   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1727     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1728       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1729 
1730   return EmitFromMemory(Load, Ty);
1731 }
1732 
1733 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1734   // Bool has a different representation in memory than in registers.
1735   if (hasBooleanRepresentation(Ty)) {
1736     // This should really always be an i1, but sometimes it's already
1737     // an i8, and it's awkward to track those cases down.
1738     if (Value->getType()->isIntegerTy(1))
1739       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1740     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1741            "wrong value rep of bool");
1742   }
1743 
1744   return Value;
1745 }
1746 
1747 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1748   // Bool has a different representation in memory than in registers.
1749   if (hasBooleanRepresentation(Ty)) {
1750     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1751            "wrong value rep of bool");
1752     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1753   }
1754 
1755   return Value;
1756 }
1757 
1758 // Convert the pointer of \p Addr to a pointer to a vector (the value type of
1759 // MatrixType), if it points to a array (the memory type of MatrixType).
1760 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
1761                                          bool IsVector = true) {
1762   auto *ArrayTy = dyn_cast<llvm::ArrayType>(
1763       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1764   if (ArrayTy && IsVector) {
1765     auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
1766                                                 ArrayTy->getNumElements());
1767 
1768     return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy));
1769   }
1770   auto *VectorTy = dyn_cast<llvm::VectorType>(
1771       cast<llvm::PointerType>(Addr.getPointer()->getType())->getElementType());
1772   if (VectorTy && !IsVector) {
1773     auto *ArrayTy = llvm::ArrayType::get(
1774         VectorTy->getElementType(),
1775         cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
1776 
1777     return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy));
1778   }
1779 
1780   return Addr;
1781 }
1782 
1783 // Emit a store of a matrix LValue. This may require casting the original
1784 // pointer to memory address (ArrayType) to a pointer to the value type
1785 // (VectorType).
1786 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
1787                                     bool isInit, CodeGenFunction &CGF) {
1788   Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
1789                                            value->getType()->isVectorTy());
1790   CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
1791                         lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
1792                         lvalue.isNontemporal());
1793 }
1794 
1795 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1796                                         bool Volatile, QualType Ty,
1797                                         LValueBaseInfo BaseInfo,
1798                                         TBAAAccessInfo TBAAInfo,
1799                                         bool isInit, bool isNontemporal) {
1800   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1801     // Handle vectors differently to get better performance.
1802     if (Ty->isVectorType()) {
1803       llvm::Type *SrcTy = Value->getType();
1804       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1805       // Handle vec3 special.
1806       if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
1807         // Our source is a vec3, do a shuffle vector to make it a vec4.
1808         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1809                                             ArrayRef<int>{0, 1, 2, -1},
1810                                             "extractVec");
1811         SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
1812       }
1813       if (Addr.getElementType() != SrcTy) {
1814         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1815       }
1816     }
1817   }
1818 
1819   Value = EmitToMemory(Value, Ty);
1820 
1821   LValue AtomicLValue =
1822       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1823   if (Ty->isAtomicType() ||
1824       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1825     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1826     return;
1827   }
1828 
1829   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1830   if (isNontemporal) {
1831     llvm::MDNode *Node =
1832         llvm::MDNode::get(Store->getContext(),
1833                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1834     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1835   }
1836 
1837   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1838 }
1839 
1840 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1841                                         bool isInit) {
1842   if (lvalue.getType()->isConstantMatrixType()) {
1843     EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
1844     return;
1845   }
1846 
1847   EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
1848                     lvalue.getType(), lvalue.getBaseInfo(),
1849                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1850 }
1851 
1852 // Emit a load of a LValue of matrix type. This may require casting the pointer
1853 // to memory address (ArrayType) to a pointer to the value type (VectorType).
1854 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
1855                                      CodeGenFunction &CGF) {
1856   assert(LV.getType()->isConstantMatrixType());
1857   Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
1858   LV.setAddress(Addr);
1859   return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
1860 }
1861 
1862 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1863 /// method emits the address of the lvalue, then loads the result as an rvalue,
1864 /// returning the rvalue.
1865 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1866   if (LV.isObjCWeak()) {
1867     // load of a __weak object.
1868     Address AddrWeakObj = LV.getAddress(*this);
1869     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1870                                                              AddrWeakObj));
1871   }
1872   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1873     // In MRC mode, we do a load+autorelease.
1874     if (!getLangOpts().ObjCAutoRefCount) {
1875       return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
1876     }
1877 
1878     // In ARC mode, we load retained and then consume the value.
1879     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
1880     Object = EmitObjCConsumeObject(LV.getType(), Object);
1881     return RValue::get(Object);
1882   }
1883 
1884   if (LV.isSimple()) {
1885     assert(!LV.getType()->isFunctionType());
1886 
1887     if (LV.getType()->isConstantMatrixType())
1888       return EmitLoadOfMatrixLValue(LV, Loc, *this);
1889 
1890     // Everything needs a load.
1891     return RValue::get(EmitLoadOfScalar(LV, Loc));
1892   }
1893 
1894   if (LV.isVectorElt()) {
1895     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1896                                               LV.isVolatileQualified());
1897     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1898                                                     "vecext"));
1899   }
1900 
1901   // If this is a reference to a subset of the elements of a vector, either
1902   // shuffle the input or extract/insert them as appropriate.
1903   if (LV.isExtVectorElt()) {
1904     return EmitLoadOfExtVectorElementLValue(LV);
1905   }
1906 
1907   // Global Register variables always invoke intrinsics
1908   if (LV.isGlobalReg())
1909     return EmitLoadOfGlobalRegLValue(LV);
1910 
1911   if (LV.isMatrixElt()) {
1912     llvm::LoadInst *Load =
1913         Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
1914     return RValue::get(
1915         Builder.CreateExtractElement(Load, LV.getMatrixIdx(), "matrixext"));
1916   }
1917 
1918   assert(LV.isBitField() && "Unknown LValue type!");
1919   return EmitLoadOfBitfieldLValue(LV, Loc);
1920 }
1921 
1922 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1923                                                  SourceLocation Loc) {
1924   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1925 
1926   // Get the output type.
1927   llvm::Type *ResLTy = ConvertType(LV.getType());
1928 
1929   Address Ptr = LV.getBitFieldAddress();
1930   llvm::Value *Val =
1931       Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1932 
1933   bool UseVolatile = LV.isVolatileQualified() &&
1934                      Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
1935   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
1936   const unsigned StorageSize =
1937       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
1938   if (Info.IsSigned) {
1939     assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
1940     unsigned HighBits = StorageSize - Offset - Info.Size;
1941     if (HighBits)
1942       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1943     if (Offset + HighBits)
1944       Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
1945   } else {
1946     if (Offset)
1947       Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
1948     if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
1949       Val = Builder.CreateAnd(
1950           Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
1951   }
1952   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1953   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1954   return RValue::get(Val);
1955 }
1956 
1957 // If this is a reference to a subset of the elements of a vector, create an
1958 // appropriate shufflevector.
1959 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1960   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1961                                         LV.isVolatileQualified());
1962 
1963   const llvm::Constant *Elts = LV.getExtVectorElts();
1964 
1965   // If the result of the expression is a non-vector type, we must be extracting
1966   // a single element.  Just codegen as an extractelement.
1967   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1968   if (!ExprVT) {
1969     unsigned InIdx = getAccessedFieldNo(0, Elts);
1970     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1971     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1972   }
1973 
1974   // Always use shuffle vector to try to retain the original program structure
1975   unsigned NumResultElts = ExprVT->getNumElements();
1976 
1977   SmallVector<int, 4> Mask;
1978   for (unsigned i = 0; i != NumResultElts; ++i)
1979     Mask.push_back(getAccessedFieldNo(i, Elts));
1980 
1981   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1982                                     Mask);
1983   return RValue::get(Vec);
1984 }
1985 
1986 /// Generates lvalue for partial ext_vector access.
1987 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1988   Address VectorAddress = LV.getExtVectorAddress();
1989   QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
1990   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1991 
1992   Address CastToPointerElement =
1993     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1994                                  "conv.ptr.element");
1995 
1996   const llvm::Constant *Elts = LV.getExtVectorElts();
1997   unsigned ix = getAccessedFieldNo(0, Elts);
1998 
1999   Address VectorBasePtrPlusIx =
2000     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2001                                    "vector.elt");
2002 
2003   return VectorBasePtrPlusIx;
2004 }
2005 
2006 /// Load of global gamed gegisters are always calls to intrinsics.
2007 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2008   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2009          "Bad type for register variable");
2010   llvm::MDNode *RegName = cast<llvm::MDNode>(
2011       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2012 
2013   // We accept integer and pointer types only
2014   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2015   llvm::Type *Ty = OrigTy;
2016   if (OrigTy->isPointerTy())
2017     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2018   llvm::Type *Types[] = { Ty };
2019 
2020   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2021   llvm::Value *Call = Builder.CreateCall(
2022       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2023   if (OrigTy->isPointerTy())
2024     Call = Builder.CreateIntToPtr(Call, OrigTy);
2025   return RValue::get(Call);
2026 }
2027 
2028 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2029 /// lvalue, where both are guaranteed to the have the same type, and that type
2030 /// is 'Ty'.
2031 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2032                                              bool isInit) {
2033   if (!Dst.isSimple()) {
2034     if (Dst.isVectorElt()) {
2035       // Read/modify/write the vector, inserting the new element.
2036       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2037                                             Dst.isVolatileQualified());
2038       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2039                                         Dst.getVectorIdx(), "vecins");
2040       Builder.CreateStore(Vec, Dst.getVectorAddress(),
2041                           Dst.isVolatileQualified());
2042       return;
2043     }
2044 
2045     // If this is an update of extended vector elements, insert them as
2046     // appropriate.
2047     if (Dst.isExtVectorElt())
2048       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2049 
2050     if (Dst.isGlobalReg())
2051       return EmitStoreThroughGlobalRegLValue(Src, Dst);
2052 
2053     if (Dst.isMatrixElt()) {
2054       llvm::Value *Vec = Builder.CreateLoad(Dst.getMatrixAddress());
2055       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2056                                         Dst.getMatrixIdx(), "matins");
2057       Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2058                           Dst.isVolatileQualified());
2059       return;
2060     }
2061 
2062     assert(Dst.isBitField() && "Unknown LValue type");
2063     return EmitStoreThroughBitfieldLValue(Src, Dst);
2064   }
2065 
2066   // There's special magic for assigning into an ARC-qualified l-value.
2067   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2068     switch (Lifetime) {
2069     case Qualifiers::OCL_None:
2070       llvm_unreachable("present but none");
2071 
2072     case Qualifiers::OCL_ExplicitNone:
2073       // nothing special
2074       break;
2075 
2076     case Qualifiers::OCL_Strong:
2077       if (isInit) {
2078         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2079         break;
2080       }
2081       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2082       return;
2083 
2084     case Qualifiers::OCL_Weak:
2085       if (isInit)
2086         // Initialize and then skip the primitive store.
2087         EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2088       else
2089         EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2090                          /*ignore*/ true);
2091       return;
2092 
2093     case Qualifiers::OCL_Autoreleasing:
2094       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2095                                                      Src.getScalarVal()));
2096       // fall into the normal path
2097       break;
2098     }
2099   }
2100 
2101   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2102     // load of a __weak object.
2103     Address LvalueDst = Dst.getAddress(*this);
2104     llvm::Value *src = Src.getScalarVal();
2105      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2106     return;
2107   }
2108 
2109   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2110     // load of a __strong object.
2111     Address LvalueDst = Dst.getAddress(*this);
2112     llvm::Value *src = Src.getScalarVal();
2113     if (Dst.isObjCIvar()) {
2114       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2115       llvm::Type *ResultType = IntPtrTy;
2116       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2117       llvm::Value *RHS = dst.getPointer();
2118       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2119       llvm::Value *LHS =
2120         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2121                                "sub.ptr.lhs.cast");
2122       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2123       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2124                                               BytesBetween);
2125     } else if (Dst.isGlobalObjCRef()) {
2126       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2127                                                 Dst.isThreadLocalRef());
2128     }
2129     else
2130       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2131     return;
2132   }
2133 
2134   assert(Src.isScalar() && "Can't emit an agg store with this method");
2135   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2136 }
2137 
2138 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2139                                                      llvm::Value **Result) {
2140   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2141   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2142   Address Ptr = Dst.getBitFieldAddress();
2143 
2144   // Get the source value, truncated to the width of the bit-field.
2145   llvm::Value *SrcVal = Src.getScalarVal();
2146 
2147   // Cast the source to the storage type and shift it into place.
2148   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2149                                  /*isSigned=*/false);
2150   llvm::Value *MaskedVal = SrcVal;
2151 
2152   const bool UseVolatile = CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
2153                            Dst.isVolatileQualified() &&
2154                            Info.VolatileStorageSize != 0 &&
2155                            isAAPCS(CGM.getTarget());
2156   const unsigned StorageSize =
2157       UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2158   const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2159   // See if there are other bits in the bitfield's storage we'll need to load
2160   // and mask together with source before storing.
2161   if (StorageSize != Info.Size) {
2162     assert(StorageSize > Info.Size && "Invalid bitfield size.");
2163     llvm::Value *Val =
2164         Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2165 
2166     // Mask the source value as needed.
2167     if (!hasBooleanRepresentation(Dst.getType()))
2168       SrcVal = Builder.CreateAnd(
2169           SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2170           "bf.value");
2171     MaskedVal = SrcVal;
2172     if (Offset)
2173       SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2174 
2175     // Mask out the original value.
2176     Val = Builder.CreateAnd(
2177         Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2178         "bf.clear");
2179 
2180     // Or together the unchanged values and the source value.
2181     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2182   } else {
2183     assert(Offset == 0);
2184     // According to the AACPS:
2185     // When a volatile bit-field is written, and its container does not overlap
2186     // with any non-bit-field member, its container must be read exactly once
2187     // and written exactly once using the access width appropriate to the type
2188     // of the container. The two accesses are not atomic.
2189     if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2190         CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2191       Builder.CreateLoad(Ptr, true, "bf.load");
2192   }
2193 
2194   // Write the new value back out.
2195   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2196 
2197   // Return the new value of the bit-field, if requested.
2198   if (Result) {
2199     llvm::Value *ResultVal = MaskedVal;
2200 
2201     // Sign extend the value if needed.
2202     if (Info.IsSigned) {
2203       assert(Info.Size <= StorageSize);
2204       unsigned HighBits = StorageSize - Info.Size;
2205       if (HighBits) {
2206         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2207         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2208       }
2209     }
2210 
2211     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2212                                       "bf.result.cast");
2213     *Result = EmitFromMemory(ResultVal, Dst.getType());
2214   }
2215 }
2216 
2217 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2218                                                                LValue Dst) {
2219   // This access turns into a read/modify/write of the vector.  Load the input
2220   // value now.
2221   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2222                                         Dst.isVolatileQualified());
2223   const llvm::Constant *Elts = Dst.getExtVectorElts();
2224 
2225   llvm::Value *SrcVal = Src.getScalarVal();
2226 
2227   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2228     unsigned NumSrcElts = VTy->getNumElements();
2229     unsigned NumDstElts =
2230         cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2231     if (NumDstElts == NumSrcElts) {
2232       // Use shuffle vector is the src and destination are the same number of
2233       // elements and restore the vector mask since it is on the side it will be
2234       // stored.
2235       SmallVector<int, 4> Mask(NumDstElts);
2236       for (unsigned i = 0; i != NumSrcElts; ++i)
2237         Mask[getAccessedFieldNo(i, Elts)] = i;
2238 
2239       Vec = Builder.CreateShuffleVector(
2240           SrcVal, llvm::UndefValue::get(Vec->getType()), Mask);
2241     } else if (NumDstElts > NumSrcElts) {
2242       // Extended the source vector to the same length and then shuffle it
2243       // into the destination.
2244       // FIXME: since we're shuffling with undef, can we just use the indices
2245       //        into that?  This could be simpler.
2246       SmallVector<int, 4> ExtMask;
2247       for (unsigned i = 0; i != NumSrcElts; ++i)
2248         ExtMask.push_back(i);
2249       ExtMask.resize(NumDstElts, -1);
2250       llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(
2251           SrcVal, llvm::UndefValue::get(SrcVal->getType()), ExtMask);
2252       // build identity
2253       SmallVector<int, 4> Mask;
2254       for (unsigned i = 0; i != NumDstElts; ++i)
2255         Mask.push_back(i);
2256 
2257       // When the vector size is odd and .odd or .hi is used, the last element
2258       // of the Elts constant array will be one past the size of the vector.
2259       // Ignore the last element here, if it is greater than the mask size.
2260       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2261         NumSrcElts--;
2262 
2263       // modify when what gets shuffled in
2264       for (unsigned i = 0; i != NumSrcElts; ++i)
2265         Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2266       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2267     } else {
2268       // We should never shorten the vector
2269       llvm_unreachable("unexpected shorten vector length");
2270     }
2271   } else {
2272     // If the Src is a scalar (not a vector) it must be updating one element.
2273     unsigned InIdx = getAccessedFieldNo(0, Elts);
2274     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2275     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2276   }
2277 
2278   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2279                       Dst.isVolatileQualified());
2280 }
2281 
2282 /// Store of global named registers are always calls to intrinsics.
2283 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2284   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2285          "Bad type for register variable");
2286   llvm::MDNode *RegName = cast<llvm::MDNode>(
2287       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2288   assert(RegName && "Register LValue is not metadata");
2289 
2290   // We accept integer and pointer types only
2291   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2292   llvm::Type *Ty = OrigTy;
2293   if (OrigTy->isPointerTy())
2294     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2295   llvm::Type *Types[] = { Ty };
2296 
2297   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2298   llvm::Value *Value = Src.getScalarVal();
2299   if (OrigTy->isPointerTy())
2300     Value = Builder.CreatePtrToInt(Value, Ty);
2301   Builder.CreateCall(
2302       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2303 }
2304 
2305 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2306 // generating write-barries API. It is currently a global, ivar,
2307 // or neither.
2308 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2309                                  LValue &LV,
2310                                  bool IsMemberAccess=false) {
2311   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2312     return;
2313 
2314   if (isa<ObjCIvarRefExpr>(E)) {
2315     QualType ExpTy = E->getType();
2316     if (IsMemberAccess && ExpTy->isPointerType()) {
2317       // If ivar is a structure pointer, assigning to field of
2318       // this struct follows gcc's behavior and makes it a non-ivar
2319       // writer-barrier conservatively.
2320       ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2321       if (ExpTy->isRecordType()) {
2322         LV.setObjCIvar(false);
2323         return;
2324       }
2325     }
2326     LV.setObjCIvar(true);
2327     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2328     LV.setBaseIvarExp(Exp->getBase());
2329     LV.setObjCArray(E->getType()->isArrayType());
2330     return;
2331   }
2332 
2333   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2334     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2335       if (VD->hasGlobalStorage()) {
2336         LV.setGlobalObjCRef(true);
2337         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2338       }
2339     }
2340     LV.setObjCArray(E->getType()->isArrayType());
2341     return;
2342   }
2343 
2344   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2345     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2346     return;
2347   }
2348 
2349   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2350     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2351     if (LV.isObjCIvar()) {
2352       // If cast is to a structure pointer, follow gcc's behavior and make it
2353       // a non-ivar write-barrier.
2354       QualType ExpTy = E->getType();
2355       if (ExpTy->isPointerType())
2356         ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2357       if (ExpTy->isRecordType())
2358         LV.setObjCIvar(false);
2359     }
2360     return;
2361   }
2362 
2363   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2364     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2365     return;
2366   }
2367 
2368   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2369     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2370     return;
2371   }
2372 
2373   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2374     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2375     return;
2376   }
2377 
2378   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2379     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2380     return;
2381   }
2382 
2383   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2384     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2385     if (LV.isObjCIvar() && !LV.isObjCArray())
2386       // Using array syntax to assigning to what an ivar points to is not
2387       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2388       LV.setObjCIvar(false);
2389     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2390       // Using array syntax to assigning to what global points to is not
2391       // same as assigning to the global itself. {id *G;} G[i] = 0;
2392       LV.setGlobalObjCRef(false);
2393     return;
2394   }
2395 
2396   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2397     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2398     // We don't know if member is an 'ivar', but this flag is looked at
2399     // only in the context of LV.isObjCIvar().
2400     LV.setObjCArray(E->getType()->isArrayType());
2401     return;
2402   }
2403 }
2404 
2405 static llvm::Value *
2406 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2407                                 llvm::Value *V, llvm::Type *IRType,
2408                                 StringRef Name = StringRef()) {
2409   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2410   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2411 }
2412 
2413 static LValue EmitThreadPrivateVarDeclLValue(
2414     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2415     llvm::Type *RealVarTy, SourceLocation Loc) {
2416   if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2417     Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2418         CGF, VD, Addr, Loc);
2419   else
2420     Addr =
2421         CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2422 
2423   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2424   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2425 }
2426 
2427 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2428                                            const VarDecl *VD, QualType T) {
2429   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2430       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2431   // Return an invalid address if variable is MT_To and unified
2432   // memory is not enabled. For all other cases: MT_Link and
2433   // MT_To with unified memory, return a valid address.
2434   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2435                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2436     return Address::invalid();
2437   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2438           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2439            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2440          "Expected link clause OR to clause with unified memory enabled.");
2441   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2442   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2443   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2444 }
2445 
2446 Address
2447 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2448                                      LValueBaseInfo *PointeeBaseInfo,
2449                                      TBAAAccessInfo *PointeeTBAAInfo) {
2450   llvm::LoadInst *Load =
2451       Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2452   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2453 
2454   CharUnits Align = CGM.getNaturalTypeAlignment(
2455       RefLVal.getType()->getPointeeType(), PointeeBaseInfo, PointeeTBAAInfo,
2456       /* forPointeeType= */ true);
2457   return Address(Load, Align);
2458 }
2459 
2460 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2461   LValueBaseInfo PointeeBaseInfo;
2462   TBAAAccessInfo PointeeTBAAInfo;
2463   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2464                                             &PointeeTBAAInfo);
2465   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2466                         PointeeBaseInfo, PointeeTBAAInfo);
2467 }
2468 
2469 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2470                                            const PointerType *PtrTy,
2471                                            LValueBaseInfo *BaseInfo,
2472                                            TBAAAccessInfo *TBAAInfo) {
2473   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2474   return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(),
2475                                                    BaseInfo, TBAAInfo,
2476                                                    /*forPointeeType=*/true));
2477 }
2478 
2479 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2480                                                 const PointerType *PtrTy) {
2481   LValueBaseInfo BaseInfo;
2482   TBAAAccessInfo TBAAInfo;
2483   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2484   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2485 }
2486 
2487 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2488                                       const Expr *E, const VarDecl *VD) {
2489   QualType T = E->getType();
2490 
2491   // If it's thread_local, emit a call to its wrapper function instead.
2492   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2493       CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2494     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2495   // Check if the variable is marked as declare target with link clause in
2496   // device codegen.
2497   if (CGF.getLangOpts().OpenMPIsDevice) {
2498     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2499     if (Addr.isValid())
2500       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2501   }
2502 
2503   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2504   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2505   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2506   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2507   Address Addr(V, Alignment);
2508   // Emit reference to the private copy of the variable if it is an OpenMP
2509   // threadprivate variable.
2510   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2511       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2512     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2513                                           E->getExprLoc());
2514   }
2515   LValue LV = VD->getType()->isReferenceType() ?
2516       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2517                                     AlignmentSource::Decl) :
2518       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2519   setObjCGCLValueClass(CGF.getContext(), E, LV);
2520   return LV;
2521 }
2522 
2523 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2524                                                GlobalDecl GD) {
2525   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2526   if (FD->hasAttr<WeakRefAttr>()) {
2527     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2528     return aliasee.getPointer();
2529   }
2530 
2531   llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2532   if (!FD->hasPrototype()) {
2533     if (const FunctionProtoType *Proto =
2534             FD->getType()->getAs<FunctionProtoType>()) {
2535       // Ugly case: for a K&R-style definition, the type of the definition
2536       // isn't the same as the type of a use.  Correct for this with a
2537       // bitcast.
2538       QualType NoProtoType =
2539           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2540       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2541       V = llvm::ConstantExpr::getBitCast(V,
2542                                       CGM.getTypes().ConvertType(NoProtoType));
2543     }
2544   }
2545   return V;
2546 }
2547 
2548 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2549                                      GlobalDecl GD) {
2550   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2551   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2552   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2553   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2554                             AlignmentSource::Decl);
2555 }
2556 
2557 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2558                                       llvm::Value *ThisValue) {
2559   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2560   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2561   return CGF.EmitLValueForField(LV, FD);
2562 }
2563 
2564 /// Named Registers are named metadata pointing to the register name
2565 /// which will be read from/written to as an argument to the intrinsic
2566 /// @llvm.read/write_register.
2567 /// So far, only the name is being passed down, but other options such as
2568 /// register type, allocation type or even optimization options could be
2569 /// passed down via the metadata node.
2570 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2571   SmallString<64> Name("llvm.named.register.");
2572   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2573   assert(Asm->getLabel().size() < 64-Name.size() &&
2574       "Register name too big");
2575   Name.append(Asm->getLabel());
2576   llvm::NamedMDNode *M =
2577     CGM.getModule().getOrInsertNamedMetadata(Name);
2578   if (M->getNumOperands() == 0) {
2579     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2580                                               Asm->getLabel());
2581     llvm::Metadata *Ops[] = {Str};
2582     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2583   }
2584 
2585   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2586 
2587   llvm::Value *Ptr =
2588     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2589   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2590 }
2591 
2592 /// Determine whether we can emit a reference to \p VD from the current
2593 /// context, despite not necessarily having seen an odr-use of the variable in
2594 /// this context.
2595 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2596                                                const DeclRefExpr *E,
2597                                                const VarDecl *VD,
2598                                                bool IsConstant) {
2599   // For a variable declared in an enclosing scope, do not emit a spurious
2600   // reference even if we have a capture, as that will emit an unwarranted
2601   // reference to our capture state, and will likely generate worse code than
2602   // emitting a local copy.
2603   if (E->refersToEnclosingVariableOrCapture())
2604     return false;
2605 
2606   // For a local declaration declared in this function, we can always reference
2607   // it even if we don't have an odr-use.
2608   if (VD->hasLocalStorage()) {
2609     return VD->getDeclContext() ==
2610            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2611   }
2612 
2613   // For a global declaration, we can emit a reference to it if we know
2614   // for sure that we are able to emit a definition of it.
2615   VD = VD->getDefinition(CGF.getContext());
2616   if (!VD)
2617     return false;
2618 
2619   // Don't emit a spurious reference if it might be to a variable that only
2620   // exists on a different device / target.
2621   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2622   // cross-target reference.
2623   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2624       CGF.getLangOpts().OpenCL) {
2625     return false;
2626   }
2627 
2628   // We can emit a spurious reference only if the linkage implies that we'll
2629   // be emitting a non-interposable symbol that will be retained until link
2630   // time.
2631   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2632   case llvm::GlobalValue::ExternalLinkage:
2633   case llvm::GlobalValue::LinkOnceODRLinkage:
2634   case llvm::GlobalValue::WeakODRLinkage:
2635   case llvm::GlobalValue::InternalLinkage:
2636   case llvm::GlobalValue::PrivateLinkage:
2637     return true;
2638   default:
2639     return false;
2640   }
2641 }
2642 
2643 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2644   const NamedDecl *ND = E->getDecl();
2645   QualType T = E->getType();
2646 
2647   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2648          "should not emit an unevaluated operand");
2649 
2650   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2651     // Global Named registers access via intrinsics only
2652     if (VD->getStorageClass() == SC_Register &&
2653         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2654       return EmitGlobalNamedRegister(VD, CGM);
2655 
2656     // If this DeclRefExpr does not constitute an odr-use of the variable,
2657     // we're not permitted to emit a reference to it in general, and it might
2658     // not be captured if capture would be necessary for a use. Emit the
2659     // constant value directly instead.
2660     if (E->isNonOdrUse() == NOUR_Constant &&
2661         (VD->getType()->isReferenceType() ||
2662          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2663       VD->getAnyInitializer(VD);
2664       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2665           E->getLocation(), *VD->evaluateValue(), VD->getType());
2666       assert(Val && "failed to emit constant expression");
2667 
2668       Address Addr = Address::invalid();
2669       if (!VD->getType()->isReferenceType()) {
2670         // Spill the constant value to a global.
2671         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2672                                            getContext().getDeclAlign(VD));
2673         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2674         auto *PTy = llvm::PointerType::get(
2675             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2676         if (PTy != Addr.getType())
2677           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2678       } else {
2679         // Should we be using the alignment of the constant pointer we emitted?
2680         CharUnits Alignment =
2681             CGM.getNaturalTypeAlignment(E->getType(),
2682                                         /* BaseInfo= */ nullptr,
2683                                         /* TBAAInfo= */ nullptr,
2684                                         /* forPointeeType= */ true);
2685         Addr = Address(Val, Alignment);
2686       }
2687       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2688     }
2689 
2690     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2691 
2692     // Check for captured variables.
2693     if (E->refersToEnclosingVariableOrCapture()) {
2694       VD = VD->getCanonicalDecl();
2695       if (auto *FD = LambdaCaptureFields.lookup(VD))
2696         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2697       if (CapturedStmtInfo) {
2698         auto I = LocalDeclMap.find(VD);
2699         if (I != LocalDeclMap.end()) {
2700           LValue CapLVal;
2701           if (VD->getType()->isReferenceType())
2702             CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
2703                                                 AlignmentSource::Decl);
2704           else
2705             CapLVal = MakeAddrLValue(I->second, T);
2706           // Mark lvalue as nontemporal if the variable is marked as nontemporal
2707           // in simd context.
2708           if (getLangOpts().OpenMP &&
2709               CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2710             CapLVal.setNontemporal(/*Value=*/true);
2711           return CapLVal;
2712         }
2713         LValue CapLVal =
2714             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2715                                     CapturedStmtInfo->getContextValue());
2716         CapLVal = MakeAddrLValue(
2717             Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)),
2718             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2719             CapLVal.getTBAAInfo());
2720         // Mark lvalue as nontemporal if the variable is marked as nontemporal
2721         // in simd context.
2722         if (getLangOpts().OpenMP &&
2723             CGM.getOpenMPRuntime().isNontemporalDecl(VD))
2724           CapLVal.setNontemporal(/*Value=*/true);
2725         return CapLVal;
2726       }
2727 
2728       assert(isa<BlockDecl>(CurCodeDecl));
2729       Address addr = GetAddrOfBlockDecl(VD);
2730       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2731     }
2732   }
2733 
2734   // FIXME: We should be able to assert this for FunctionDecls as well!
2735   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2736   // those with a valid source location.
2737   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2738           !E->getLocation().isValid()) &&
2739          "Should not use decl without marking it used!");
2740 
2741   if (ND->hasAttr<WeakRefAttr>()) {
2742     const auto *VD = cast<ValueDecl>(ND);
2743     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2744     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2745   }
2746 
2747   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2748     // Check if this is a global variable.
2749     if (VD->hasLinkage() || VD->isStaticDataMember())
2750       return EmitGlobalVarDeclLValue(*this, E, VD);
2751 
2752     Address addr = Address::invalid();
2753 
2754     // The variable should generally be present in the local decl map.
2755     auto iter = LocalDeclMap.find(VD);
2756     if (iter != LocalDeclMap.end()) {
2757       addr = iter->second;
2758 
2759     // Otherwise, it might be static local we haven't emitted yet for
2760     // some reason; most likely, because it's in an outer function.
2761     } else if (VD->isStaticLocal()) {
2762       addr = Address(CGM.getOrCreateStaticVarDecl(
2763           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2764                      getContext().getDeclAlign(VD));
2765 
2766     // No other cases for now.
2767     } else {
2768       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2769     }
2770 
2771 
2772     // Check for OpenMP threadprivate variables.
2773     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2774         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2775       return EmitThreadPrivateVarDeclLValue(
2776           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2777           E->getExprLoc());
2778     }
2779 
2780     // Drill into block byref variables.
2781     bool isBlockByref = VD->isEscapingByref();
2782     if (isBlockByref) {
2783       addr = emitBlockByrefAddress(addr, VD);
2784     }
2785 
2786     // Drill into reference types.
2787     LValue LV = VD->getType()->isReferenceType() ?
2788         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2789         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2790 
2791     bool isLocalStorage = VD->hasLocalStorage();
2792 
2793     bool NonGCable = isLocalStorage &&
2794                      !VD->getType()->isReferenceType() &&
2795                      !isBlockByref;
2796     if (NonGCable) {
2797       LV.getQuals().removeObjCGCAttr();
2798       LV.setNonGC(true);
2799     }
2800 
2801     bool isImpreciseLifetime =
2802       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2803     if (isImpreciseLifetime)
2804       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2805     setObjCGCLValueClass(getContext(), E, LV);
2806     return LV;
2807   }
2808 
2809   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2810     return EmitFunctionDeclLValue(*this, E, FD);
2811 
2812   // FIXME: While we're emitting a binding from an enclosing scope, all other
2813   // DeclRefExprs we see should be implicitly treated as if they also refer to
2814   // an enclosing scope.
2815   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2816     return EmitLValue(BD->getBinding());
2817 
2818   // We can form DeclRefExprs naming GUID declarations when reconstituting
2819   // non-type template parameters into expressions.
2820   if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
2821     return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
2822                           AlignmentSource::Decl);
2823 
2824   llvm_unreachable("Unhandled DeclRefExpr");
2825 }
2826 
2827 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2828   // __extension__ doesn't affect lvalue-ness.
2829   if (E->getOpcode() == UO_Extension)
2830     return EmitLValue(E->getSubExpr());
2831 
2832   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2833   switch (E->getOpcode()) {
2834   default: llvm_unreachable("Unknown unary operator lvalue!");
2835   case UO_Deref: {
2836     QualType T = E->getSubExpr()->getType()->getPointeeType();
2837     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2838 
2839     LValueBaseInfo BaseInfo;
2840     TBAAAccessInfo TBAAInfo;
2841     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2842                                             &TBAAInfo);
2843     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2844     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2845 
2846     // We should not generate __weak write barrier on indirect reference
2847     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2848     // But, we continue to generate __strong write barrier on indirect write
2849     // into a pointer to object.
2850     if (getLangOpts().ObjC &&
2851         getLangOpts().getGC() != LangOptions::NonGC &&
2852         LV.isObjCWeak())
2853       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2854     return LV;
2855   }
2856   case UO_Real:
2857   case UO_Imag: {
2858     LValue LV = EmitLValue(E->getSubExpr());
2859     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2860 
2861     // __real is valid on scalars.  This is a faster way of testing that.
2862     // __imag can only produce an rvalue on scalars.
2863     if (E->getOpcode() == UO_Real &&
2864         !LV.getAddress(*this).getElementType()->isStructTy()) {
2865       assert(E->getSubExpr()->getType()->isArithmeticType());
2866       return LV;
2867     }
2868 
2869     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2870 
2871     Address Component =
2872         (E->getOpcode() == UO_Real
2873              ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
2874              : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
2875     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2876                                    CGM.getTBAAInfoForSubobject(LV, T));
2877     ElemLV.getQuals().addQualifiers(LV.getQuals());
2878     return ElemLV;
2879   }
2880   case UO_PreInc:
2881   case UO_PreDec: {
2882     LValue LV = EmitLValue(E->getSubExpr());
2883     bool isInc = E->getOpcode() == UO_PreInc;
2884 
2885     if (E->getType()->isAnyComplexType())
2886       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2887     else
2888       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2889     return LV;
2890   }
2891   }
2892 }
2893 
2894 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2895   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2896                         E->getType(), AlignmentSource::Decl);
2897 }
2898 
2899 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2900   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2901                         E->getType(), AlignmentSource::Decl);
2902 }
2903 
2904 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2905   auto SL = E->getFunctionName();
2906   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2907   StringRef FnName = CurFn->getName();
2908   if (FnName.startswith("\01"))
2909     FnName = FnName.substr(1);
2910   StringRef NameItems[] = {
2911       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2912   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2913   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2914     std::string Name = std::string(SL->getString());
2915     if (!Name.empty()) {
2916       unsigned Discriminator =
2917           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2918       if (Discriminator)
2919         Name += "_" + Twine(Discriminator + 1).str();
2920       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2921       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2922     } else {
2923       auto C =
2924           CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
2925       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2926     }
2927   }
2928   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2929   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2930 }
2931 
2932 /// Emit a type description suitable for use by a runtime sanitizer library. The
2933 /// format of a type descriptor is
2934 ///
2935 /// \code
2936 ///   { i16 TypeKind, i16 TypeInfo }
2937 /// \endcode
2938 ///
2939 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2940 /// integer, 1 for a floating point value, and -1 for anything else.
2941 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2942   // Only emit each type's descriptor once.
2943   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2944     return C;
2945 
2946   uint16_t TypeKind = -1;
2947   uint16_t TypeInfo = 0;
2948 
2949   if (T->isIntegerType()) {
2950     TypeKind = 0;
2951     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2952                (T->isSignedIntegerType() ? 1 : 0);
2953   } else if (T->isFloatingType()) {
2954     TypeKind = 1;
2955     TypeInfo = getContext().getTypeSize(T);
2956   }
2957 
2958   // Format the type name as if for a diagnostic, including quotes and
2959   // optionally an 'aka'.
2960   SmallString<32> Buffer;
2961   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2962                                     (intptr_t)T.getAsOpaquePtr(),
2963                                     StringRef(), StringRef(), None, Buffer,
2964                                     None);
2965 
2966   llvm::Constant *Components[] = {
2967     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2968     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2969   };
2970   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2971 
2972   auto *GV = new llvm::GlobalVariable(
2973       CGM.getModule(), Descriptor->getType(),
2974       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2975   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2976   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2977 
2978   // Remember the descriptor for this type.
2979   CGM.setTypeDescriptorInMap(T, GV);
2980 
2981   return GV;
2982 }
2983 
2984 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2985   llvm::Type *TargetTy = IntPtrTy;
2986 
2987   if (V->getType() == TargetTy)
2988     return V;
2989 
2990   // Floating-point types which fit into intptr_t are bitcast to integers
2991   // and then passed directly (after zero-extension, if necessary).
2992   if (V->getType()->isFloatingPointTy()) {
2993     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2994     if (Bits <= TargetTy->getIntegerBitWidth())
2995       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2996                                                          Bits));
2997   }
2998 
2999   // Integers which fit in intptr_t are zero-extended and passed directly.
3000   if (V->getType()->isIntegerTy() &&
3001       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3002     return Builder.CreateZExt(V, TargetTy);
3003 
3004   // Pointers are passed directly, everything else is passed by address.
3005   if (!V->getType()->isPointerTy()) {
3006     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3007     Builder.CreateStore(V, Ptr);
3008     V = Ptr.getPointer();
3009   }
3010   return Builder.CreatePtrToInt(V, TargetTy);
3011 }
3012 
3013 /// Emit a representation of a SourceLocation for passing to a handler
3014 /// in a sanitizer runtime library. The format for this data is:
3015 /// \code
3016 ///   struct SourceLocation {
3017 ///     const char *Filename;
3018 ///     int32_t Line, Column;
3019 ///   };
3020 /// \endcode
3021 /// For an invalid SourceLocation, the Filename pointer is null.
3022 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3023   llvm::Constant *Filename;
3024   int Line, Column;
3025 
3026   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3027   if (PLoc.isValid()) {
3028     StringRef FilenameString = PLoc.getFilename();
3029 
3030     int PathComponentsToStrip =
3031         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3032     if (PathComponentsToStrip < 0) {
3033       assert(PathComponentsToStrip != INT_MIN);
3034       int PathComponentsToKeep = -PathComponentsToStrip;
3035       auto I = llvm::sys::path::rbegin(FilenameString);
3036       auto E = llvm::sys::path::rend(FilenameString);
3037       while (I != E && --PathComponentsToKeep)
3038         ++I;
3039 
3040       FilenameString = FilenameString.substr(I - E);
3041     } else if (PathComponentsToStrip > 0) {
3042       auto I = llvm::sys::path::begin(FilenameString);
3043       auto E = llvm::sys::path::end(FilenameString);
3044       while (I != E && PathComponentsToStrip--)
3045         ++I;
3046 
3047       if (I != E)
3048         FilenameString =
3049             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3050       else
3051         FilenameString = llvm::sys::path::filename(FilenameString);
3052     }
3053 
3054     auto FilenameGV =
3055         CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3056     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3057                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
3058     Filename = FilenameGV.getPointer();
3059     Line = PLoc.getLine();
3060     Column = PLoc.getColumn();
3061   } else {
3062     Filename = llvm::Constant::getNullValue(Int8PtrTy);
3063     Line = Column = 0;
3064   }
3065 
3066   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3067                             Builder.getInt32(Column)};
3068 
3069   return llvm::ConstantStruct::getAnon(Data);
3070 }
3071 
3072 namespace {
3073 /// Specify under what conditions this check can be recovered
3074 enum class CheckRecoverableKind {
3075   /// Always terminate program execution if this check fails.
3076   Unrecoverable,
3077   /// Check supports recovering, runtime has both fatal (noreturn) and
3078   /// non-fatal handlers for this check.
3079   Recoverable,
3080   /// Runtime conditionally aborts, always need to support recovery.
3081   AlwaysRecoverable
3082 };
3083 }
3084 
3085 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3086   assert(Kind.countPopulation() == 1);
3087   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
3088     return CheckRecoverableKind::AlwaysRecoverable;
3089   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3090     return CheckRecoverableKind::Unrecoverable;
3091   else
3092     return CheckRecoverableKind::Recoverable;
3093 }
3094 
3095 namespace {
3096 struct SanitizerHandlerInfo {
3097   char const *const Name;
3098   unsigned Version;
3099 };
3100 }
3101 
3102 const SanitizerHandlerInfo SanitizerHandlers[] = {
3103 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3104     LIST_SANITIZER_CHECKS
3105 #undef SANITIZER_CHECK
3106 };
3107 
3108 static void emitCheckHandlerCall(CodeGenFunction &CGF,
3109                                  llvm::FunctionType *FnType,
3110                                  ArrayRef<llvm::Value *> FnArgs,
3111                                  SanitizerHandler CheckHandler,
3112                                  CheckRecoverableKind RecoverKind, bool IsFatal,
3113                                  llvm::BasicBlock *ContBB) {
3114   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3115   Optional<ApplyDebugLocation> DL;
3116   if (!CGF.Builder.getCurrentDebugLocation()) {
3117     // Ensure that the call has at least an artificial debug location.
3118     DL.emplace(CGF, SourceLocation());
3119   }
3120   bool NeedsAbortSuffix =
3121       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3122   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3123   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3124   const StringRef CheckName = CheckInfo.Name;
3125   std::string FnName = "__ubsan_handle_" + CheckName.str();
3126   if (CheckInfo.Version && !MinimalRuntime)
3127     FnName += "_v" + llvm::utostr(CheckInfo.Version);
3128   if (MinimalRuntime)
3129     FnName += "_minimal";
3130   if (NeedsAbortSuffix)
3131     FnName += "_abort";
3132   bool MayReturn =
3133       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3134 
3135   llvm::AttrBuilder B;
3136   if (!MayReturn) {
3137     B.addAttribute(llvm::Attribute::NoReturn)
3138         .addAttribute(llvm::Attribute::NoUnwind);
3139   }
3140   B.addAttribute(llvm::Attribute::UWTable);
3141 
3142   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3143       FnType, FnName,
3144       llvm::AttributeList::get(CGF.getLLVMContext(),
3145                                llvm::AttributeList::FunctionIndex, B),
3146       /*Local=*/true);
3147   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3148   if (!MayReturn) {
3149     HandlerCall->setDoesNotReturn();
3150     CGF.Builder.CreateUnreachable();
3151   } else {
3152     CGF.Builder.CreateBr(ContBB);
3153   }
3154 }
3155 
3156 void CodeGenFunction::EmitCheck(
3157     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3158     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3159     ArrayRef<llvm::Value *> DynamicArgs) {
3160   assert(IsSanitizerScope);
3161   assert(Checked.size() > 0);
3162   assert(CheckHandler >= 0 &&
3163          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3164   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3165 
3166   llvm::Value *FatalCond = nullptr;
3167   llvm::Value *RecoverableCond = nullptr;
3168   llvm::Value *TrapCond = nullptr;
3169   for (int i = 0, n = Checked.size(); i < n; ++i) {
3170     llvm::Value *Check = Checked[i].first;
3171     // -fsanitize-trap= overrides -fsanitize-recover=.
3172     llvm::Value *&Cond =
3173         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3174             ? TrapCond
3175             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3176                   ? RecoverableCond
3177                   : FatalCond;
3178     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3179   }
3180 
3181   if (TrapCond)
3182     EmitTrapCheck(TrapCond);
3183   if (!FatalCond && !RecoverableCond)
3184     return;
3185 
3186   llvm::Value *JointCond;
3187   if (FatalCond && RecoverableCond)
3188     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3189   else
3190     JointCond = FatalCond ? FatalCond : RecoverableCond;
3191   assert(JointCond);
3192 
3193   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3194   assert(SanOpts.has(Checked[0].second));
3195 #ifndef NDEBUG
3196   for (int i = 1, n = Checked.size(); i < n; ++i) {
3197     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3198            "All recoverable kinds in a single check must be same!");
3199     assert(SanOpts.has(Checked[i].second));
3200   }
3201 #endif
3202 
3203   llvm::BasicBlock *Cont = createBasicBlock("cont");
3204   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3205   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3206   // Give hint that we very much don't expect to execute the handler
3207   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3208   llvm::MDBuilder MDHelper(getLLVMContext());
3209   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3210   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3211   EmitBlock(Handlers);
3212 
3213   // Handler functions take an i8* pointing to the (handler-specific) static
3214   // information block, followed by a sequence of intptr_t arguments
3215   // representing operand values.
3216   SmallVector<llvm::Value *, 4> Args;
3217   SmallVector<llvm::Type *, 4> ArgTypes;
3218   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3219     Args.reserve(DynamicArgs.size() + 1);
3220     ArgTypes.reserve(DynamicArgs.size() + 1);
3221 
3222     // Emit handler arguments and create handler function type.
3223     if (!StaticArgs.empty()) {
3224       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3225       auto *InfoPtr =
3226           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3227                                    llvm::GlobalVariable::PrivateLinkage, Info);
3228       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3229       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3230       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3231       ArgTypes.push_back(Int8PtrTy);
3232     }
3233 
3234     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3235       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3236       ArgTypes.push_back(IntPtrTy);
3237     }
3238   }
3239 
3240   llvm::FunctionType *FnType =
3241     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3242 
3243   if (!FatalCond || !RecoverableCond) {
3244     // Simple case: we need to generate a single handler call, either
3245     // fatal, or non-fatal.
3246     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3247                          (FatalCond != nullptr), Cont);
3248   } else {
3249     // Emit two handler calls: first one for set of unrecoverable checks,
3250     // another one for recoverable.
3251     llvm::BasicBlock *NonFatalHandlerBB =
3252         createBasicBlock("non_fatal." + CheckName);
3253     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3254     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3255     EmitBlock(FatalHandlerBB);
3256     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3257                          NonFatalHandlerBB);
3258     EmitBlock(NonFatalHandlerBB);
3259     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3260                          Cont);
3261   }
3262 
3263   EmitBlock(Cont);
3264 }
3265 
3266 void CodeGenFunction::EmitCfiSlowPathCheck(
3267     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3268     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3269   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3270 
3271   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3272   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3273 
3274   llvm::MDBuilder MDHelper(getLLVMContext());
3275   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3276   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3277 
3278   EmitBlock(CheckBB);
3279 
3280   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3281 
3282   llvm::CallInst *CheckCall;
3283   llvm::FunctionCallee SlowPathFn;
3284   if (WithDiag) {
3285     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3286     auto *InfoPtr =
3287         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3288                                  llvm::GlobalVariable::PrivateLinkage, Info);
3289     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3290     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3291 
3292     SlowPathFn = CGM.getModule().getOrInsertFunction(
3293         "__cfi_slowpath_diag",
3294         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3295                                 false));
3296     CheckCall = Builder.CreateCall(
3297         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3298   } else {
3299     SlowPathFn = CGM.getModule().getOrInsertFunction(
3300         "__cfi_slowpath",
3301         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3302     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3303   }
3304 
3305   CGM.setDSOLocal(
3306       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3307   CheckCall->setDoesNotThrow();
3308 
3309   EmitBlock(Cont);
3310 }
3311 
3312 // Emit a stub for __cfi_check function so that the linker knows about this
3313 // symbol in LTO mode.
3314 void CodeGenFunction::EmitCfiCheckStub() {
3315   llvm::Module *M = &CGM.getModule();
3316   auto &Ctx = M->getContext();
3317   llvm::Function *F = llvm::Function::Create(
3318       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3319       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3320   CGM.setDSOLocal(F);
3321   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3322   // FIXME: consider emitting an intrinsic call like
3323   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3324   // which can be lowered in CrossDSOCFI pass to the actual contents of
3325   // __cfi_check. This would allow inlining of __cfi_check calls.
3326   llvm::CallInst::Create(
3327       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3328   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3329 }
3330 
3331 // This function is basically a switch over the CFI failure kind, which is
3332 // extracted from CFICheckFailData (1st function argument). Each case is either
3333 // llvm.trap or a call to one of the two runtime handlers, based on
3334 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3335 // failure kind) traps, but this should really never happen.  CFICheckFailData
3336 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3337 // check kind; in this case __cfi_check_fail traps as well.
3338 void CodeGenFunction::EmitCfiCheckFail() {
3339   SanitizerScope SanScope(this);
3340   FunctionArgList Args;
3341   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3342                             ImplicitParamDecl::Other);
3343   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3344                             ImplicitParamDecl::Other);
3345   Args.push_back(&ArgData);
3346   Args.push_back(&ArgAddr);
3347 
3348   const CGFunctionInfo &FI =
3349     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3350 
3351   llvm::Function *F = llvm::Function::Create(
3352       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3353       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3354 
3355   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F);
3356   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3357   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3358 
3359   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3360                 SourceLocation());
3361 
3362   // This function should not be affected by blacklist. This function does
3363   // not have a source location, but "src:*" would still apply. Revert any
3364   // changes to SanOpts made in StartFunction.
3365   SanOpts = CGM.getLangOpts().Sanitize;
3366 
3367   llvm::Value *Data =
3368       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3369                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3370   llvm::Value *Addr =
3371       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3372                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3373 
3374   // Data == nullptr means the calling module has trap behaviour for this check.
3375   llvm::Value *DataIsNotNullPtr =
3376       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3377   EmitTrapCheck(DataIsNotNullPtr);
3378 
3379   llvm::StructType *SourceLocationTy =
3380       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3381   llvm::StructType *CfiCheckFailDataTy =
3382       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3383 
3384   llvm::Value *V = Builder.CreateConstGEP2_32(
3385       CfiCheckFailDataTy,
3386       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3387       0);
3388   Address CheckKindAddr(V, getIntAlign());
3389   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3390 
3391   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3392       CGM.getLLVMContext(),
3393       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3394   llvm::Value *ValidVtable = Builder.CreateZExt(
3395       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3396                          {Addr, AllVtables}),
3397       IntPtrTy);
3398 
3399   const std::pair<int, SanitizerMask> CheckKinds[] = {
3400       {CFITCK_VCall, SanitizerKind::CFIVCall},
3401       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3402       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3403       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3404       {CFITCK_ICall, SanitizerKind::CFIICall}};
3405 
3406   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3407   for (auto CheckKindMaskPair : CheckKinds) {
3408     int Kind = CheckKindMaskPair.first;
3409     SanitizerMask Mask = CheckKindMaskPair.second;
3410     llvm::Value *Cond =
3411         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3412     if (CGM.getLangOpts().Sanitize.has(Mask))
3413       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3414                 {Data, Addr, ValidVtable});
3415     else
3416       EmitTrapCheck(Cond);
3417   }
3418 
3419   FinishFunction();
3420   // The only reference to this function will be created during LTO link.
3421   // Make sure it survives until then.
3422   CGM.addUsedGlobal(F);
3423 }
3424 
3425 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3426   if (SanOpts.has(SanitizerKind::Unreachable)) {
3427     SanitizerScope SanScope(this);
3428     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3429                              SanitizerKind::Unreachable),
3430               SanitizerHandler::BuiltinUnreachable,
3431               EmitCheckSourceLocation(Loc), None);
3432   }
3433   Builder.CreateUnreachable();
3434 }
3435 
3436 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3437   llvm::BasicBlock *Cont = createBasicBlock("cont");
3438 
3439   // If we're optimizing, collapse all calls to trap down to just one per
3440   // function to save on code size.
3441   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3442     TrapBB = createBasicBlock("trap");
3443     Builder.CreateCondBr(Checked, Cont, TrapBB);
3444     EmitBlock(TrapBB);
3445     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3446     TrapCall->setDoesNotReturn();
3447     TrapCall->setDoesNotThrow();
3448     Builder.CreateUnreachable();
3449   } else {
3450     Builder.CreateCondBr(Checked, Cont, TrapBB);
3451   }
3452 
3453   EmitBlock(Cont);
3454 }
3455 
3456 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3457   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3458 
3459   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3460     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3461                                   CGM.getCodeGenOpts().TrapFuncName);
3462     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3463   }
3464 
3465   return TrapCall;
3466 }
3467 
3468 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3469                                                  LValueBaseInfo *BaseInfo,
3470                                                  TBAAAccessInfo *TBAAInfo) {
3471   assert(E->getType()->isArrayType() &&
3472          "Array to pointer decay must have array source type!");
3473 
3474   // Expressions of array type can't be bitfields or vector elements.
3475   LValue LV = EmitLValue(E);
3476   Address Addr = LV.getAddress(*this);
3477 
3478   // If the array type was an incomplete type, we need to make sure
3479   // the decay ends up being the right type.
3480   llvm::Type *NewTy = ConvertType(E->getType());
3481   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3482 
3483   // Note that VLA pointers are always decayed, so we don't need to do
3484   // anything here.
3485   if (!E->getType()->isVariableArrayType()) {
3486     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3487            "Expected pointer to array");
3488     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3489   }
3490 
3491   // The result of this decay conversion points to an array element within the
3492   // base lvalue. However, since TBAA currently does not support representing
3493   // accesses to elements of member arrays, we conservatively represent accesses
3494   // to the pointee object as if it had no any base lvalue specified.
3495   // TODO: Support TBAA for member arrays.
3496   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3497   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3498   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3499 
3500   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3501 }
3502 
3503 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3504 /// array to pointer, return the array subexpression.
3505 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3506   // If this isn't just an array->pointer decay, bail out.
3507   const auto *CE = dyn_cast<CastExpr>(E);
3508   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3509     return nullptr;
3510 
3511   // If this is a decay from variable width array, bail out.
3512   const Expr *SubExpr = CE->getSubExpr();
3513   if (SubExpr->getType()->isVariableArrayType())
3514     return nullptr;
3515 
3516   return SubExpr;
3517 }
3518 
3519 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3520                                           llvm::Value *ptr,
3521                                           ArrayRef<llvm::Value*> indices,
3522                                           bool inbounds,
3523                                           bool signedIndices,
3524                                           SourceLocation loc,
3525                                     const llvm::Twine &name = "arrayidx") {
3526   if (inbounds) {
3527     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3528                                       CodeGenFunction::NotSubtraction, loc,
3529                                       name);
3530   } else {
3531     return CGF.Builder.CreateGEP(ptr, indices, name);
3532   }
3533 }
3534 
3535 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3536                                       llvm::Value *idx,
3537                                       CharUnits eltSize) {
3538   // If we have a constant index, we can use the exact offset of the
3539   // element we're accessing.
3540   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3541     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3542     return arrayAlign.alignmentAtOffset(offset);
3543 
3544   // Otherwise, use the worst-case alignment for any element.
3545   } else {
3546     return arrayAlign.alignmentOfArrayElement(eltSize);
3547   }
3548 }
3549 
3550 static QualType getFixedSizeElementType(const ASTContext &ctx,
3551                                         const VariableArrayType *vla) {
3552   QualType eltType;
3553   do {
3554     eltType = vla->getElementType();
3555   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3556   return eltType;
3557 }
3558 
3559 /// Given an array base, check whether its member access belongs to a record
3560 /// with preserve_access_index attribute or not.
3561 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3562   if (!ArrayBase || !CGF.getDebugInfo())
3563     return false;
3564 
3565   // Only support base as either a MemberExpr or DeclRefExpr.
3566   // DeclRefExpr to cover cases like:
3567   //    struct s { int a; int b[10]; };
3568   //    struct s *p;
3569   //    p[1].a
3570   // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3571   // p->b[5] is a MemberExpr example.
3572   const Expr *E = ArrayBase->IgnoreImpCasts();
3573   if (const auto *ME = dyn_cast<MemberExpr>(E))
3574     return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3575 
3576   if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3577     const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3578     if (!VarDef)
3579       return false;
3580 
3581     const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3582     if (!PtrT)
3583       return false;
3584 
3585     const auto *PointeeT = PtrT->getPointeeType()
3586                              ->getUnqualifiedDesugaredType();
3587     if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
3588       return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3589     return false;
3590   }
3591 
3592   return false;
3593 }
3594 
3595 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3596                                      ArrayRef<llvm::Value *> indices,
3597                                      QualType eltType, bool inbounds,
3598                                      bool signedIndices, SourceLocation loc,
3599                                      QualType *arrayType = nullptr,
3600                                      const Expr *Base = nullptr,
3601                                      const llvm::Twine &name = "arrayidx") {
3602   // All the indices except that last must be zero.
3603 #ifndef NDEBUG
3604   for (auto idx : indices.drop_back())
3605     assert(isa<llvm::ConstantInt>(idx) &&
3606            cast<llvm::ConstantInt>(idx)->isZero());
3607 #endif
3608 
3609   // Determine the element size of the statically-sized base.  This is
3610   // the thing that the indices are expressed in terms of.
3611   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3612     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3613   }
3614 
3615   // We can use that to compute the best alignment of the element.
3616   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3617   CharUnits eltAlign =
3618     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3619 
3620   llvm::Value *eltPtr;
3621   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3622   if (!LastIndex ||
3623       (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
3624     eltPtr = emitArraySubscriptGEP(
3625         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3626         loc, name);
3627   } else {
3628     // Remember the original array subscript for bpf target
3629     unsigned idx = LastIndex->getZExtValue();
3630     llvm::DIType *DbgInfo = nullptr;
3631     if (arrayType)
3632       DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
3633     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
3634                                                         addr.getPointer(),
3635                                                         indices.size() - 1,
3636                                                         idx, DbgInfo);
3637   }
3638 
3639   return Address(eltPtr, eltAlign);
3640 }
3641 
3642 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3643                                                bool Accessed) {
3644   // The index must always be an integer, which is not an aggregate.  Emit it
3645   // in lexical order (this complexity is, sadly, required by C++17).
3646   llvm::Value *IdxPre =
3647       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3648   bool SignedIndices = false;
3649   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3650     auto *Idx = IdxPre;
3651     if (E->getLHS() != E->getIdx()) {
3652       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3653       Idx = EmitScalarExpr(E->getIdx());
3654     }
3655 
3656     QualType IdxTy = E->getIdx()->getType();
3657     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3658     SignedIndices |= IdxSigned;
3659 
3660     if (SanOpts.has(SanitizerKind::ArrayBounds))
3661       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3662 
3663     // Extend or truncate the index type to 32 or 64-bits.
3664     if (Promote && Idx->getType() != IntPtrTy)
3665       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3666 
3667     return Idx;
3668   };
3669   IdxPre = nullptr;
3670 
3671   // If the base is a vector type, then we are forming a vector element lvalue
3672   // with this subscript.
3673   if (E->getBase()->getType()->isVectorType() &&
3674       !isa<ExtVectorElementExpr>(E->getBase())) {
3675     // Emit the vector as an lvalue to get its address.
3676     LValue LHS = EmitLValue(E->getBase());
3677     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3678     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3679     return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
3680                                  E->getBase()->getType(), LHS.getBaseInfo(),
3681                                  TBAAAccessInfo());
3682   }
3683 
3684   // All the other cases basically behave like simple offsetting.
3685 
3686   // Handle the extvector case we ignored above.
3687   if (isa<ExtVectorElementExpr>(E->getBase())) {
3688     LValue LV = EmitLValue(E->getBase());
3689     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3690     Address Addr = EmitExtVectorElementLValue(LV);
3691 
3692     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3693     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3694                                  SignedIndices, E->getExprLoc());
3695     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3696                           CGM.getTBAAInfoForSubobject(LV, EltType));
3697   }
3698 
3699   LValueBaseInfo EltBaseInfo;
3700   TBAAAccessInfo EltTBAAInfo;
3701   Address Addr = Address::invalid();
3702   if (const VariableArrayType *vla =
3703            getContext().getAsVariableArrayType(E->getType())) {
3704     // The base must be a pointer, which is not an aggregate.  Emit
3705     // it.  It needs to be emitted first in case it's what captures
3706     // the VLA bounds.
3707     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3708     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3709 
3710     // The element count here is the total number of non-VLA elements.
3711     llvm::Value *numElements = getVLASize(vla).NumElts;
3712 
3713     // Effectively, the multiply by the VLA size is part of the GEP.
3714     // GEP indexes are signed, and scaling an index isn't permitted to
3715     // signed-overflow, so we use the same semantics for our explicit
3716     // multiply.  We suppress this if overflow is not undefined behavior.
3717     if (getLangOpts().isSignedOverflowDefined()) {
3718       Idx = Builder.CreateMul(Idx, numElements);
3719     } else {
3720       Idx = Builder.CreateNSWMul(Idx, numElements);
3721     }
3722 
3723     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3724                                  !getLangOpts().isSignedOverflowDefined(),
3725                                  SignedIndices, E->getExprLoc());
3726 
3727   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3728     // Indexing over an interface, as in "NSString *P; P[4];"
3729 
3730     // Emit the base pointer.
3731     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3732     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3733 
3734     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3735     llvm::Value *InterfaceSizeVal =
3736         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3737 
3738     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3739 
3740     // We don't necessarily build correct LLVM struct types for ObjC
3741     // interfaces, so we can't rely on GEP to do this scaling
3742     // correctly, so we need to cast to i8*.  FIXME: is this actually
3743     // true?  A lot of other things in the fragile ABI would break...
3744     llvm::Type *OrigBaseTy = Addr.getType();
3745     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3746 
3747     // Do the GEP.
3748     CharUnits EltAlign =
3749       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3750     llvm::Value *EltPtr =
3751         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3752                               SignedIndices, E->getExprLoc());
3753     Addr = Address(EltPtr, EltAlign);
3754 
3755     // Cast back.
3756     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3757   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3758     // If this is A[i] where A is an array, the frontend will have decayed the
3759     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3760     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3761     // "gep x, i" here.  Emit one "gep A, 0, i".
3762     assert(Array->getType()->isArrayType() &&
3763            "Array to pointer decay must have array source type!");
3764     LValue ArrayLV;
3765     // For simple multidimensional array indexing, set the 'accessed' flag for
3766     // better bounds-checking of the base expression.
3767     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3768       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3769     else
3770       ArrayLV = EmitLValue(Array);
3771     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3772 
3773     // Propagate the alignment from the array itself to the result.
3774     QualType arrayType = Array->getType();
3775     Addr = emitArraySubscriptGEP(
3776         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3777         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3778         E->getExprLoc(), &arrayType, E->getBase());
3779     EltBaseInfo = ArrayLV.getBaseInfo();
3780     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3781   } else {
3782     // The base must be a pointer; emit it with an estimate of its alignment.
3783     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3784     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3785     QualType ptrType = E->getBase()->getType();
3786     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3787                                  !getLangOpts().isSignedOverflowDefined(),
3788                                  SignedIndices, E->getExprLoc(), &ptrType,
3789                                  E->getBase());
3790   }
3791 
3792   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3793 
3794   if (getLangOpts().ObjC &&
3795       getLangOpts().getGC() != LangOptions::NonGC) {
3796     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3797     setObjCGCLValueClass(getContext(), E, LV);
3798   }
3799   return LV;
3800 }
3801 
3802 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
3803   assert(
3804       !E->isIncomplete() &&
3805       "incomplete matrix subscript expressions should be rejected during Sema");
3806   LValue Base = EmitLValue(E->getBase());
3807   llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
3808   llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
3809   llvm::Value *NumRows = Builder.getIntN(
3810       RowIdx->getType()->getScalarSizeInBits(),
3811       E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
3812   llvm::Value *FinalIdx =
3813       Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
3814   return LValue::MakeMatrixElt(
3815       MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
3816       E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
3817 }
3818 
3819 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3820                                        LValueBaseInfo &BaseInfo,
3821                                        TBAAAccessInfo &TBAAInfo,
3822                                        QualType BaseTy, QualType ElTy,
3823                                        bool IsLowerBound) {
3824   LValue BaseLVal;
3825   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3826     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3827     if (BaseTy->isArrayType()) {
3828       Address Addr = BaseLVal.getAddress(CGF);
3829       BaseInfo = BaseLVal.getBaseInfo();
3830 
3831       // If the array type was an incomplete type, we need to make sure
3832       // the decay ends up being the right type.
3833       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3834       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3835 
3836       // Note that VLA pointers are always decayed, so we don't need to do
3837       // anything here.
3838       if (!BaseTy->isVariableArrayType()) {
3839         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3840                "Expected pointer to array");
3841         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3842       }
3843 
3844       return CGF.Builder.CreateElementBitCast(Addr,
3845                                               CGF.ConvertTypeForMem(ElTy));
3846     }
3847     LValueBaseInfo TypeBaseInfo;
3848     TBAAAccessInfo TypeTBAAInfo;
3849     CharUnits Align =
3850         CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
3851     BaseInfo.mergeForCast(TypeBaseInfo);
3852     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3853     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align);
3854   }
3855   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3856 }
3857 
3858 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3859                                                 bool IsLowerBound) {
3860   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3861   QualType ResultExprTy;
3862   if (auto *AT = getContext().getAsArrayType(BaseTy))
3863     ResultExprTy = AT->getElementType();
3864   else
3865     ResultExprTy = BaseTy->getPointeeType();
3866   llvm::Value *Idx = nullptr;
3867   if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
3868     // Requesting lower bound or upper bound, but without provided length and
3869     // without ':' symbol for the default length -> length = 1.
3870     // Idx = LowerBound ?: 0;
3871     if (auto *LowerBound = E->getLowerBound()) {
3872       Idx = Builder.CreateIntCast(
3873           EmitScalarExpr(LowerBound), IntPtrTy,
3874           LowerBound->getType()->hasSignedIntegerRepresentation());
3875     } else
3876       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3877   } else {
3878     // Try to emit length or lower bound as constant. If this is possible, 1
3879     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3880     // IR (LB + Len) - 1.
3881     auto &C = CGM.getContext();
3882     auto *Length = E->getLength();
3883     llvm::APSInt ConstLength;
3884     if (Length) {
3885       // Idx = LowerBound + Length - 1;
3886       if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
3887         ConstLength = CL->zextOrTrunc(PointerWidthInBits);
3888         Length = nullptr;
3889       }
3890       auto *LowerBound = E->getLowerBound();
3891       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3892       if (LowerBound) {
3893         if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) {
3894           ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
3895           LowerBound = nullptr;
3896         }
3897       }
3898       if (!Length)
3899         --ConstLength;
3900       else if (!LowerBound)
3901         --ConstLowerBound;
3902 
3903       if (Length || LowerBound) {
3904         auto *LowerBoundVal =
3905             LowerBound
3906                 ? Builder.CreateIntCast(
3907                       EmitScalarExpr(LowerBound), IntPtrTy,
3908                       LowerBound->getType()->hasSignedIntegerRepresentation())
3909                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3910         auto *LengthVal =
3911             Length
3912                 ? Builder.CreateIntCast(
3913                       EmitScalarExpr(Length), IntPtrTy,
3914                       Length->getType()->hasSignedIntegerRepresentation())
3915                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3916         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3917                                 /*HasNUW=*/false,
3918                                 !getLangOpts().isSignedOverflowDefined());
3919         if (Length && LowerBound) {
3920           Idx = Builder.CreateSub(
3921               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3922               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3923         }
3924       } else
3925         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3926     } else {
3927       // Idx = ArraySize - 1;
3928       QualType ArrayTy = BaseTy->isPointerType()
3929                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3930                              : BaseTy;
3931       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3932         Length = VAT->getSizeExpr();
3933         if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
3934           ConstLength = *L;
3935           Length = nullptr;
3936         }
3937       } else {
3938         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3939         ConstLength = CAT->getSize();
3940       }
3941       if (Length) {
3942         auto *LengthVal = Builder.CreateIntCast(
3943             EmitScalarExpr(Length), IntPtrTy,
3944             Length->getType()->hasSignedIntegerRepresentation());
3945         Idx = Builder.CreateSub(
3946             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3947             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3948       } else {
3949         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3950         --ConstLength;
3951         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3952       }
3953     }
3954   }
3955   assert(Idx);
3956 
3957   Address EltPtr = Address::invalid();
3958   LValueBaseInfo BaseInfo;
3959   TBAAAccessInfo TBAAInfo;
3960   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3961     // The base must be a pointer, which is not an aggregate.  Emit
3962     // it.  It needs to be emitted first in case it's what captures
3963     // the VLA bounds.
3964     Address Base =
3965         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3966                                 BaseTy, VLA->getElementType(), IsLowerBound);
3967     // The element count here is the total number of non-VLA elements.
3968     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3969 
3970     // Effectively, the multiply by the VLA size is part of the GEP.
3971     // GEP indexes are signed, and scaling an index isn't permitted to
3972     // signed-overflow, so we use the same semantics for our explicit
3973     // multiply.  We suppress this if overflow is not undefined behavior.
3974     if (getLangOpts().isSignedOverflowDefined())
3975       Idx = Builder.CreateMul(Idx, NumElements);
3976     else
3977       Idx = Builder.CreateNSWMul(Idx, NumElements);
3978     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3979                                    !getLangOpts().isSignedOverflowDefined(),
3980                                    /*signedIndices=*/false, E->getExprLoc());
3981   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3982     // If this is A[i] where A is an array, the frontend will have decayed the
3983     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3984     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3985     // "gep x, i" here.  Emit one "gep A, 0, i".
3986     assert(Array->getType()->isArrayType() &&
3987            "Array to pointer decay must have array source type!");
3988     LValue ArrayLV;
3989     // For simple multidimensional array indexing, set the 'accessed' flag for
3990     // better bounds-checking of the base expression.
3991     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3992       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3993     else
3994       ArrayLV = EmitLValue(Array);
3995 
3996     // Propagate the alignment from the array itself to the result.
3997     EltPtr = emitArraySubscriptGEP(
3998         *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
3999         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4000         /*signedIndices=*/false, E->getExprLoc());
4001     BaseInfo = ArrayLV.getBaseInfo();
4002     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4003   } else {
4004     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4005                                            TBAAInfo, BaseTy, ResultExprTy,
4006                                            IsLowerBound);
4007     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4008                                    !getLangOpts().isSignedOverflowDefined(),
4009                                    /*signedIndices=*/false, E->getExprLoc());
4010   }
4011 
4012   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4013 }
4014 
4015 LValue CodeGenFunction::
4016 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4017   // Emit the base vector as an l-value.
4018   LValue Base;
4019 
4020   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4021   if (E->isArrow()) {
4022     // If it is a pointer to a vector, emit the address and form an lvalue with
4023     // it.
4024     LValueBaseInfo BaseInfo;
4025     TBAAAccessInfo TBAAInfo;
4026     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4027     const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4028     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4029     Base.getQuals().removeObjCGCAttr();
4030   } else if (E->getBase()->isGLValue()) {
4031     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4032     // emit the base as an lvalue.
4033     assert(E->getBase()->getType()->isVectorType());
4034     Base = EmitLValue(E->getBase());
4035   } else {
4036     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4037     assert(E->getBase()->getType()->isVectorType() &&
4038            "Result must be a vector");
4039     llvm::Value *Vec = EmitScalarExpr(E->getBase());
4040 
4041     // Store the vector to memory (because LValue wants an address).
4042     Address VecMem = CreateMemTemp(E->getBase()->getType());
4043     Builder.CreateStore(Vec, VecMem);
4044     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4045                           AlignmentSource::Decl);
4046   }
4047 
4048   QualType type =
4049     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4050 
4051   // Encode the element access list into a vector of unsigned indices.
4052   SmallVector<uint32_t, 4> Indices;
4053   E->getEncodedElementAccess(Indices);
4054 
4055   if (Base.isSimple()) {
4056     llvm::Constant *CV =
4057         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4058     return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4059                                     Base.getBaseInfo(), TBAAAccessInfo());
4060   }
4061   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4062 
4063   llvm::Constant *BaseElts = Base.getExtVectorElts();
4064   SmallVector<llvm::Constant *, 4> CElts;
4065 
4066   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4067     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4068   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4069   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4070                                   Base.getBaseInfo(), TBAAAccessInfo());
4071 }
4072 
4073 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4074   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4075     EmitIgnoredExpr(E->getBase());
4076     return EmitDeclRefLValue(DRE);
4077   }
4078 
4079   Expr *BaseExpr = E->getBase();
4080   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4081   LValue BaseLV;
4082   if (E->isArrow()) {
4083     LValueBaseInfo BaseInfo;
4084     TBAAAccessInfo TBAAInfo;
4085     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4086     QualType PtrTy = BaseExpr->getType()->getPointeeType();
4087     SanitizerSet SkippedChecks;
4088     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4089     if (IsBaseCXXThis)
4090       SkippedChecks.set(SanitizerKind::Alignment, true);
4091     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4092       SkippedChecks.set(SanitizerKind::Null, true);
4093     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4094                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4095     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4096   } else
4097     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4098 
4099   NamedDecl *ND = E->getMemberDecl();
4100   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4101     LValue LV = EmitLValueForField(BaseLV, Field);
4102     setObjCGCLValueClass(getContext(), E, LV);
4103     if (getLangOpts().OpenMP) {
4104       // If the member was explicitly marked as nontemporal, mark it as
4105       // nontemporal. If the base lvalue is marked as nontemporal, mark access
4106       // to children as nontemporal too.
4107       if ((IsWrappedCXXThis(BaseExpr) &&
4108            CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4109           BaseLV.isNontemporal())
4110         LV.setNontemporal(/*Value=*/true);
4111     }
4112     return LV;
4113   }
4114 
4115   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4116     return EmitFunctionDeclLValue(*this, E, FD);
4117 
4118   llvm_unreachable("Unhandled member declaration!");
4119 }
4120 
4121 /// Given that we are currently emitting a lambda, emit an l-value for
4122 /// one of its members.
4123 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4124   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
4125   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
4126   QualType LambdaTagType =
4127     getContext().getTagDeclType(Field->getParent());
4128   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
4129   return EmitLValueForField(LambdaLV, Field);
4130 }
4131 
4132 /// Get the field index in the debug info. The debug info structure/union
4133 /// will ignore the unnamed bitfields.
4134 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4135                                              unsigned FieldIndex) {
4136   unsigned I = 0, Skipped = 0;
4137 
4138   for (auto F : Rec->getDefinition()->fields()) {
4139     if (I == FieldIndex)
4140       break;
4141     if (F->isUnnamedBitfield())
4142       Skipped++;
4143     I++;
4144   }
4145 
4146   return FieldIndex - Skipped;
4147 }
4148 
4149 /// Get the address of a zero-sized field within a record. The resulting
4150 /// address doesn't necessarily have the right type.
4151 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4152                                        const FieldDecl *Field) {
4153   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4154       CGF.getContext().getFieldOffset(Field));
4155   if (Offset.isZero())
4156     return Base;
4157   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
4158   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4159 }
4160 
4161 /// Drill down to the storage of a field without walking into
4162 /// reference types.
4163 ///
4164 /// The resulting address doesn't necessarily have the right type.
4165 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4166                                       const FieldDecl *field) {
4167   if (field->isZeroSize(CGF.getContext()))
4168     return emitAddrOfZeroSizeField(CGF, base, field);
4169 
4170   const RecordDecl *rec = field->getParent();
4171 
4172   unsigned idx =
4173     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4174 
4175   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4176 }
4177 
4178 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4179                                         Address addr, const FieldDecl *field) {
4180   const RecordDecl *rec = field->getParent();
4181   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4182       base.getType(), rec->getLocation());
4183 
4184   unsigned idx =
4185       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4186 
4187   return CGF.Builder.CreatePreserveStructAccessIndex(
4188       addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4189 }
4190 
4191 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4192   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4193   if (!RD)
4194     return false;
4195 
4196   if (RD->isDynamicClass())
4197     return true;
4198 
4199   for (const auto &Base : RD->bases())
4200     if (hasAnyVptr(Base.getType(), Context))
4201       return true;
4202 
4203   for (const FieldDecl *Field : RD->fields())
4204     if (hasAnyVptr(Field->getType(), Context))
4205       return true;
4206 
4207   return false;
4208 }
4209 
4210 LValue CodeGenFunction::EmitLValueForField(LValue base,
4211                                            const FieldDecl *field) {
4212   LValueBaseInfo BaseInfo = base.getBaseInfo();
4213 
4214   if (field->isBitField()) {
4215     const CGRecordLayout &RL =
4216         CGM.getTypes().getCGRecordLayout(field->getParent());
4217     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4218     const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4219                              CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4220                              Info.VolatileStorageSize != 0 &&
4221                              field->getType()
4222                                  .withCVRQualifiers(base.getVRQualifiers())
4223                                  .isVolatileQualified();
4224     Address Addr = base.getAddress(*this);
4225     unsigned Idx = RL.getLLVMFieldNo(field);
4226     const RecordDecl *rec = field->getParent();
4227     if (!UseVolatile) {
4228       if (!IsInPreservedAIRegion &&
4229           (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4230         if (Idx != 0)
4231           // For structs, we GEP to the field that the record layout suggests.
4232           Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4233       } else {
4234         llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4235             getContext().getRecordType(rec), rec->getLocation());
4236         Addr = Builder.CreatePreserveStructAccessIndex(
4237             Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4238             DbgInfo);
4239       }
4240     }
4241     const unsigned SS =
4242         UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4243     // Get the access type.
4244     llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4245     if (Addr.getElementType() != FieldIntTy)
4246       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
4247     if (UseVolatile) {
4248       const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4249       if (VolatileOffset)
4250         Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4251     }
4252 
4253     QualType fieldType =
4254         field->getType().withCVRQualifiers(base.getVRQualifiers());
4255     // TODO: Support TBAA for bit fields.
4256     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4257     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4258                                 TBAAAccessInfo());
4259   }
4260 
4261   // Fields of may-alias structures are may-alias themselves.
4262   // FIXME: this should get propagated down through anonymous structs
4263   // and unions.
4264   QualType FieldType = field->getType();
4265   const RecordDecl *rec = field->getParent();
4266   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4267   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4268   TBAAAccessInfo FieldTBAAInfo;
4269   if (base.getTBAAInfo().isMayAlias() ||
4270           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4271     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4272   } else if (rec->isUnion()) {
4273     // TODO: Support TBAA for unions.
4274     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4275   } else {
4276     // If no base type been assigned for the base access, then try to generate
4277     // one for this base lvalue.
4278     FieldTBAAInfo = base.getTBAAInfo();
4279     if (!FieldTBAAInfo.BaseType) {
4280         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4281         assert(!FieldTBAAInfo.Offset &&
4282                "Nonzero offset for an access with no base type!");
4283     }
4284 
4285     // Adjust offset to be relative to the base type.
4286     const ASTRecordLayout &Layout =
4287         getContext().getASTRecordLayout(field->getParent());
4288     unsigned CharWidth = getContext().getCharWidth();
4289     if (FieldTBAAInfo.BaseType)
4290       FieldTBAAInfo.Offset +=
4291           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4292 
4293     // Update the final access type and size.
4294     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4295     FieldTBAAInfo.Size =
4296         getContext().getTypeSizeInChars(FieldType).getQuantity();
4297   }
4298 
4299   Address addr = base.getAddress(*this);
4300   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4301     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4302         ClassDef->isDynamicClass()) {
4303       // Getting to any field of dynamic object requires stripping dynamic
4304       // information provided by invariant.group.  This is because accessing
4305       // fields may leak the real address of dynamic object, which could result
4306       // in miscompilation when leaked pointer would be compared.
4307       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4308       addr = Address(stripped, addr.getAlignment());
4309     }
4310   }
4311 
4312   unsigned RecordCVR = base.getVRQualifiers();
4313   if (rec->isUnion()) {
4314     // For unions, there is no pointer adjustment.
4315     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4316         hasAnyVptr(FieldType, getContext()))
4317       // Because unions can easily skip invariant.barriers, we need to add
4318       // a barrier every time CXXRecord field with vptr is referenced.
4319       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4320                      addr.getAlignment());
4321 
4322     if (IsInPreservedAIRegion ||
4323         (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4324       // Remember the original union field index
4325       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4326           rec->getLocation());
4327       addr = Address(
4328           Builder.CreatePreserveUnionAccessIndex(
4329               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4330           addr.getAlignment());
4331     }
4332 
4333     if (FieldType->isReferenceType())
4334       addr = Builder.CreateElementBitCast(
4335           addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4336   } else {
4337     if (!IsInPreservedAIRegion &&
4338         (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4339       // For structs, we GEP to the field that the record layout suggests.
4340       addr = emitAddrOfFieldStorage(*this, addr, field);
4341     else
4342       // Remember the original struct field index
4343       addr = emitPreserveStructAccess(*this, base, addr, field);
4344   }
4345 
4346   // If this is a reference field, load the reference right now.
4347   if (FieldType->isReferenceType()) {
4348     LValue RefLVal =
4349         MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4350     if (RecordCVR & Qualifiers::Volatile)
4351       RefLVal.getQuals().addVolatile();
4352     addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4353 
4354     // Qualifiers on the struct don't apply to the referencee.
4355     RecordCVR = 0;
4356     FieldType = FieldType->getPointeeType();
4357   }
4358 
4359   // Make sure that the address is pointing to the right type.  This is critical
4360   // for both unions and structs.  A union needs a bitcast, a struct element
4361   // will need a bitcast if the LLVM type laid out doesn't match the desired
4362   // type.
4363   addr = Builder.CreateElementBitCast(
4364       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4365 
4366   if (field->hasAttr<AnnotateAttr>())
4367     addr = EmitFieldAnnotations(field, addr);
4368 
4369   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4370   LV.getQuals().addCVRQualifiers(RecordCVR);
4371 
4372   // __weak attribute on a field is ignored.
4373   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4374     LV.getQuals().removeObjCGCAttr();
4375 
4376   return LV;
4377 }
4378 
4379 LValue
4380 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4381                                                   const FieldDecl *Field) {
4382   QualType FieldType = Field->getType();
4383 
4384   if (!FieldType->isReferenceType())
4385     return EmitLValueForField(Base, Field);
4386 
4387   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4388 
4389   // Make sure that the address is pointing to the right type.
4390   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4391   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4392 
4393   // TODO: Generate TBAA information that describes this access as a structure
4394   // member access and not just an access to an object of the field's type. This
4395   // should be similar to what we do in EmitLValueForField().
4396   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4397   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4398   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4399   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4400                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4401 }
4402 
4403 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4404   if (E->isFileScope()) {
4405     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4406     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4407   }
4408   if (E->getType()->isVariablyModifiedType())
4409     // make sure to emit the VLA size.
4410     EmitVariablyModifiedType(E->getType());
4411 
4412   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4413   const Expr *InitExpr = E->getInitializer();
4414   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4415 
4416   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4417                    /*Init*/ true);
4418 
4419   // Block-scope compound literals are destroyed at the end of the enclosing
4420   // scope in C.
4421   if (!getLangOpts().CPlusPlus)
4422     if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4423       pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4424                                   E->getType(), getDestroyer(DtorKind),
4425                                   DtorKind & EHCleanup);
4426 
4427   return Result;
4428 }
4429 
4430 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4431   if (!E->isGLValue())
4432     // Initializing an aggregate temporary in C++11: T{...}.
4433     return EmitAggExprToLValue(E);
4434 
4435   // An lvalue initializer list must be initializing a reference.
4436   assert(E->isTransparent() && "non-transparent glvalue init list");
4437   return EmitLValue(E->getInit(0));
4438 }
4439 
4440 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4441 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4442 /// LValue is returned and the current block has been terminated.
4443 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4444                                                     const Expr *Operand) {
4445   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4446     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4447     return None;
4448   }
4449 
4450   return CGF.EmitLValue(Operand);
4451 }
4452 
4453 LValue CodeGenFunction::
4454 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4455   if (!expr->isGLValue()) {
4456     // ?: here should be an aggregate.
4457     assert(hasAggregateEvaluationKind(expr->getType()) &&
4458            "Unexpected conditional operator!");
4459     return EmitAggExprToLValue(expr);
4460   }
4461 
4462   OpaqueValueMapping binding(*this, expr);
4463 
4464   const Expr *condExpr = expr->getCond();
4465   bool CondExprBool;
4466   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4467     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4468     if (!CondExprBool) std::swap(live, dead);
4469 
4470     if (!ContainsLabel(dead)) {
4471       // If the true case is live, we need to track its region.
4472       if (CondExprBool)
4473         incrementProfileCounter(expr);
4474       // If a throw expression we emit it and return an undefined lvalue
4475       // because it can't be used.
4476       if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) {
4477         EmitCXXThrowExpr(ThrowExpr);
4478         llvm::Type *Ty =
4479             llvm::PointerType::getUnqual(ConvertType(dead->getType()));
4480         return MakeAddrLValue(
4481             Address(llvm::UndefValue::get(Ty), CharUnits::One()),
4482             dead->getType());
4483       }
4484       return EmitLValue(live);
4485     }
4486   }
4487 
4488   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4489   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4490   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4491 
4492   ConditionalEvaluation eval(*this);
4493   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4494 
4495   // Any temporaries created here are conditional.
4496   EmitBlock(lhsBlock);
4497   incrementProfileCounter(expr);
4498   eval.begin(*this);
4499   Optional<LValue> lhs =
4500       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4501   eval.end(*this);
4502 
4503   if (lhs && !lhs->isSimple())
4504     return EmitUnsupportedLValue(expr, "conditional operator");
4505 
4506   lhsBlock = Builder.GetInsertBlock();
4507   if (lhs)
4508     Builder.CreateBr(contBlock);
4509 
4510   // Any temporaries created here are conditional.
4511   EmitBlock(rhsBlock);
4512   eval.begin(*this);
4513   Optional<LValue> rhs =
4514       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4515   eval.end(*this);
4516   if (rhs && !rhs->isSimple())
4517     return EmitUnsupportedLValue(expr, "conditional operator");
4518   rhsBlock = Builder.GetInsertBlock();
4519 
4520   EmitBlock(contBlock);
4521 
4522   if (lhs && rhs) {
4523     llvm::PHINode *phi =
4524         Builder.CreatePHI(lhs->getPointer(*this)->getType(), 2, "cond-lvalue");
4525     phi->addIncoming(lhs->getPointer(*this), lhsBlock);
4526     phi->addIncoming(rhs->getPointer(*this), rhsBlock);
4527     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4528     AlignmentSource alignSource =
4529       std::max(lhs->getBaseInfo().getAlignmentSource(),
4530                rhs->getBaseInfo().getAlignmentSource());
4531     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4532         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4533     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4534                           TBAAInfo);
4535   } else {
4536     assert((lhs || rhs) &&
4537            "both operands of glvalue conditional are throw-expressions?");
4538     return lhs ? *lhs : *rhs;
4539   }
4540 }
4541 
4542 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4543 /// type. If the cast is to a reference, we can have the usual lvalue result,
4544 /// otherwise if a cast is needed by the code generator in an lvalue context,
4545 /// then it must mean that we need the address of an aggregate in order to
4546 /// access one of its members.  This can happen for all the reasons that casts
4547 /// are permitted with aggregate result, including noop aggregate casts, and
4548 /// cast from scalar to union.
4549 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4550   switch (E->getCastKind()) {
4551   case CK_ToVoid:
4552   case CK_BitCast:
4553   case CK_LValueToRValueBitCast:
4554   case CK_ArrayToPointerDecay:
4555   case CK_FunctionToPointerDecay:
4556   case CK_NullToMemberPointer:
4557   case CK_NullToPointer:
4558   case CK_IntegralToPointer:
4559   case CK_PointerToIntegral:
4560   case CK_PointerToBoolean:
4561   case CK_VectorSplat:
4562   case CK_IntegralCast:
4563   case CK_BooleanToSignedIntegral:
4564   case CK_IntegralToBoolean:
4565   case CK_IntegralToFloating:
4566   case CK_FloatingToIntegral:
4567   case CK_FloatingToBoolean:
4568   case CK_FloatingCast:
4569   case CK_FloatingRealToComplex:
4570   case CK_FloatingComplexToReal:
4571   case CK_FloatingComplexToBoolean:
4572   case CK_FloatingComplexCast:
4573   case CK_FloatingComplexToIntegralComplex:
4574   case CK_IntegralRealToComplex:
4575   case CK_IntegralComplexToReal:
4576   case CK_IntegralComplexToBoolean:
4577   case CK_IntegralComplexCast:
4578   case CK_IntegralComplexToFloatingComplex:
4579   case CK_DerivedToBaseMemberPointer:
4580   case CK_BaseToDerivedMemberPointer:
4581   case CK_MemberPointerToBoolean:
4582   case CK_ReinterpretMemberPointer:
4583   case CK_AnyPointerToBlockPointerCast:
4584   case CK_ARCProduceObject:
4585   case CK_ARCConsumeObject:
4586   case CK_ARCReclaimReturnedObject:
4587   case CK_ARCExtendBlockObject:
4588   case CK_CopyAndAutoreleaseBlockObject:
4589   case CK_IntToOCLSampler:
4590   case CK_FixedPointCast:
4591   case CK_FixedPointToBoolean:
4592   case CK_FixedPointToIntegral:
4593   case CK_IntegralToFixedPoint:
4594     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4595 
4596   case CK_Dependent:
4597     llvm_unreachable("dependent cast kind in IR gen!");
4598 
4599   case CK_BuiltinFnToFnPtr:
4600     llvm_unreachable("builtin functions are handled elsewhere");
4601 
4602   // These are never l-values; just use the aggregate emission code.
4603   case CK_NonAtomicToAtomic:
4604   case CK_AtomicToNonAtomic:
4605     return EmitAggExprToLValue(E);
4606 
4607   case CK_Dynamic: {
4608     LValue LV = EmitLValue(E->getSubExpr());
4609     Address V = LV.getAddress(*this);
4610     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4611     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4612   }
4613 
4614   case CK_ConstructorConversion:
4615   case CK_UserDefinedConversion:
4616   case CK_CPointerToObjCPointerCast:
4617   case CK_BlockPointerToObjCPointerCast:
4618   case CK_NoOp:
4619   case CK_LValueToRValue:
4620     return EmitLValue(E->getSubExpr());
4621 
4622   case CK_UncheckedDerivedToBase:
4623   case CK_DerivedToBase: {
4624     const auto *DerivedClassTy =
4625         E->getSubExpr()->getType()->castAs<RecordType>();
4626     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4627 
4628     LValue LV = EmitLValue(E->getSubExpr());
4629     Address This = LV.getAddress(*this);
4630 
4631     // Perform the derived-to-base conversion
4632     Address Base = GetAddressOfBaseClass(
4633         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4634         /*NullCheckValue=*/false, E->getExprLoc());
4635 
4636     // TODO: Support accesses to members of base classes in TBAA. For now, we
4637     // conservatively pretend that the complete object is of the base class
4638     // type.
4639     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4640                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4641   }
4642   case CK_ToUnion:
4643     return EmitAggExprToLValue(E);
4644   case CK_BaseToDerived: {
4645     const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
4646     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4647 
4648     LValue LV = EmitLValue(E->getSubExpr());
4649 
4650     // Perform the base-to-derived conversion
4651     Address Derived = GetAddressOfDerivedClass(
4652         LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
4653         /*NullCheckValue=*/false);
4654 
4655     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4656     // performed and the object is not of the derived type.
4657     if (sanitizePerformTypeCheck())
4658       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4659                     Derived.getPointer(), E->getType());
4660 
4661     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4662       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4663                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4664                                 E->getBeginLoc());
4665 
4666     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4667                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4668   }
4669   case CK_LValueBitCast: {
4670     // This must be a reinterpret_cast (or c-style equivalent).
4671     const auto *CE = cast<ExplicitCastExpr>(E);
4672 
4673     CGM.EmitExplicitCastExprType(CE, this);
4674     LValue LV = EmitLValue(E->getSubExpr());
4675     Address V = Builder.CreateBitCast(LV.getAddress(*this),
4676                                       ConvertType(CE->getTypeAsWritten()));
4677 
4678     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4679       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4680                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4681                                 E->getBeginLoc());
4682 
4683     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4684                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4685   }
4686   case CK_AddressSpaceConversion: {
4687     LValue LV = EmitLValue(E->getSubExpr());
4688     QualType DestTy = getContext().getPointerType(E->getType());
4689     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4690         *this, LV.getPointer(*this),
4691         E->getSubExpr()->getType().getAddressSpace(),
4692         E->getType().getAddressSpace(), ConvertType(DestTy));
4693     return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()),
4694                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4695   }
4696   case CK_ObjCObjectLValueCast: {
4697     LValue LV = EmitLValue(E->getSubExpr());
4698     Address V = Builder.CreateElementBitCast(LV.getAddress(*this),
4699                                              ConvertType(E->getType()));
4700     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4701                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4702   }
4703   case CK_ZeroToOCLOpaqueType:
4704     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4705   }
4706 
4707   llvm_unreachable("Unhandled lvalue cast kind?");
4708 }
4709 
4710 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4711   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4712   return getOrCreateOpaqueLValueMapping(e);
4713 }
4714 
4715 LValue
4716 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4717   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4718 
4719   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4720       it = OpaqueLValues.find(e);
4721 
4722   if (it != OpaqueLValues.end())
4723     return it->second;
4724 
4725   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4726   return EmitLValue(e->getSourceExpr());
4727 }
4728 
4729 RValue
4730 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4731   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4732 
4733   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4734       it = OpaqueRValues.find(e);
4735 
4736   if (it != OpaqueRValues.end())
4737     return it->second;
4738 
4739   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4740   return EmitAnyExpr(e->getSourceExpr());
4741 }
4742 
4743 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4744                                            const FieldDecl *FD,
4745                                            SourceLocation Loc) {
4746   QualType FT = FD->getType();
4747   LValue FieldLV = EmitLValueForField(LV, FD);
4748   switch (getEvaluationKind(FT)) {
4749   case TEK_Complex:
4750     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4751   case TEK_Aggregate:
4752     return FieldLV.asAggregateRValue(*this);
4753   case TEK_Scalar:
4754     // This routine is used to load fields one-by-one to perform a copy, so
4755     // don't load reference fields.
4756     if (FD->getType()->isReferenceType())
4757       return RValue::get(FieldLV.getPointer(*this));
4758     // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
4759     // primitive load.
4760     if (FieldLV.isBitField())
4761       return EmitLoadOfLValue(FieldLV, Loc);
4762     return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
4763   }
4764   llvm_unreachable("bad evaluation kind");
4765 }
4766 
4767 //===--------------------------------------------------------------------===//
4768 //                             Expression Emission
4769 //===--------------------------------------------------------------------===//
4770 
4771 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4772                                      ReturnValueSlot ReturnValue) {
4773   // Builtins never have block type.
4774   if (E->getCallee()->getType()->isBlockPointerType())
4775     return EmitBlockCallExpr(E, ReturnValue);
4776 
4777   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4778     return EmitCXXMemberCallExpr(CE, ReturnValue);
4779 
4780   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4781     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4782 
4783   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4784     if (const CXXMethodDecl *MD =
4785           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4786       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4787 
4788   CGCallee callee = EmitCallee(E->getCallee());
4789 
4790   if (callee.isBuiltin()) {
4791     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4792                            E, ReturnValue);
4793   }
4794 
4795   if (callee.isPseudoDestructor()) {
4796     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4797   }
4798 
4799   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4800 }
4801 
4802 /// Emit a CallExpr without considering whether it might be a subclass.
4803 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4804                                            ReturnValueSlot ReturnValue) {
4805   CGCallee Callee = EmitCallee(E->getCallee());
4806   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4807 }
4808 
4809 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
4810   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4811 
4812   if (auto builtinID = FD->getBuiltinID()) {
4813     // Replaceable builtin provide their own implementation of a builtin. Unless
4814     // we are in the builtin implementation itself, don't call the actual
4815     // builtin. If we are in the builtin implementation, avoid trivial infinite
4816     // recursion.
4817     if (!FD->isInlineBuiltinDeclaration() ||
4818         CGF.CurFn->getName() == FD->getName())
4819       return CGCallee::forBuiltin(builtinID, FD);
4820   }
4821 
4822   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
4823   return CGCallee::forDirect(calleePtr, GD);
4824 }
4825 
4826 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4827   E = E->IgnoreParens();
4828 
4829   // Look through function-to-pointer decay.
4830   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4831     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4832         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4833       return EmitCallee(ICE->getSubExpr());
4834     }
4835 
4836   // Resolve direct calls.
4837   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4838     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4839       return EmitDirectCallee(*this, FD);
4840     }
4841   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4842     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4843       EmitIgnoredExpr(ME->getBase());
4844       return EmitDirectCallee(*this, FD);
4845     }
4846 
4847   // Look through template substitutions.
4848   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4849     return EmitCallee(NTTP->getReplacement());
4850 
4851   // Treat pseudo-destructor calls differently.
4852   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4853     return CGCallee::forPseudoDestructor(PDE);
4854   }
4855 
4856   // Otherwise, we have an indirect reference.
4857   llvm::Value *calleePtr;
4858   QualType functionType;
4859   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4860     calleePtr = EmitScalarExpr(E);
4861     functionType = ptrType->getPointeeType();
4862   } else {
4863     functionType = E->getType();
4864     calleePtr = EmitLValue(E).getPointer(*this);
4865   }
4866   assert(functionType->isFunctionType());
4867 
4868   GlobalDecl GD;
4869   if (const auto *VD =
4870           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4871     GD = GlobalDecl(VD);
4872 
4873   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4874   CGCallee callee(calleeInfo, calleePtr);
4875   return callee;
4876 }
4877 
4878 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4879   // Comma expressions just emit their LHS then their RHS as an l-value.
4880   if (E->getOpcode() == BO_Comma) {
4881     EmitIgnoredExpr(E->getLHS());
4882     EnsureInsertPoint();
4883     return EmitLValue(E->getRHS());
4884   }
4885 
4886   if (E->getOpcode() == BO_PtrMemD ||
4887       E->getOpcode() == BO_PtrMemI)
4888     return EmitPointerToDataMemberBinaryExpr(E);
4889 
4890   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4891 
4892   // Note that in all of these cases, __block variables need the RHS
4893   // evaluated first just in case the variable gets moved by the RHS.
4894 
4895   switch (getEvaluationKind(E->getType())) {
4896   case TEK_Scalar: {
4897     switch (E->getLHS()->getType().getObjCLifetime()) {
4898     case Qualifiers::OCL_Strong:
4899       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4900 
4901     case Qualifiers::OCL_Autoreleasing:
4902       return EmitARCStoreAutoreleasing(E).first;
4903 
4904     // No reason to do any of these differently.
4905     case Qualifiers::OCL_None:
4906     case Qualifiers::OCL_ExplicitNone:
4907     case Qualifiers::OCL_Weak:
4908       break;
4909     }
4910 
4911     RValue RV = EmitAnyExpr(E->getRHS());
4912     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4913     if (RV.isScalar())
4914       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4915     EmitStoreThroughLValue(RV, LV);
4916     if (getLangOpts().OpenMP)
4917       CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
4918                                                                 E->getLHS());
4919     return LV;
4920   }
4921 
4922   case TEK_Complex:
4923     return EmitComplexAssignmentLValue(E);
4924 
4925   case TEK_Aggregate:
4926     return EmitAggExprToLValue(E);
4927   }
4928   llvm_unreachable("bad evaluation kind");
4929 }
4930 
4931 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4932   RValue RV = EmitCallExpr(E);
4933 
4934   if (!RV.isScalar())
4935     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4936                           AlignmentSource::Decl);
4937 
4938   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4939          "Can't have a scalar return unless the return type is a "
4940          "reference type!");
4941 
4942   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4943 }
4944 
4945 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4946   // FIXME: This shouldn't require another copy.
4947   return EmitAggExprToLValue(E);
4948 }
4949 
4950 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4951   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4952          && "binding l-value to type which needs a temporary");
4953   AggValueSlot Slot = CreateAggTemp(E->getType());
4954   EmitCXXConstructExpr(E, Slot);
4955   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4956 }
4957 
4958 LValue
4959 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4960   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4961 }
4962 
4963 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4964   return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()),
4965                                       ConvertType(E->getType()));
4966 }
4967 
4968 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4969   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4970                         AlignmentSource::Decl);
4971 }
4972 
4973 LValue
4974 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4975   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4976   Slot.setExternallyDestructed();
4977   EmitAggExpr(E->getSubExpr(), Slot);
4978   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4979   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4980 }
4981 
4982 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4983   RValue RV = EmitObjCMessageExpr(E);
4984 
4985   if (!RV.isScalar())
4986     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4987                           AlignmentSource::Decl);
4988 
4989   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4990          "Can't have a scalar return unless the return type is a "
4991          "reference type!");
4992 
4993   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4994 }
4995 
4996 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4997   Address V =
4998     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4999   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5000 }
5001 
5002 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5003                                              const ObjCIvarDecl *Ivar) {
5004   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5005 }
5006 
5007 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5008                                           llvm::Value *BaseValue,
5009                                           const ObjCIvarDecl *Ivar,
5010                                           unsigned CVRQualifiers) {
5011   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5012                                                    Ivar, CVRQualifiers);
5013 }
5014 
5015 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5016   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5017   llvm::Value *BaseValue = nullptr;
5018   const Expr *BaseExpr = E->getBase();
5019   Qualifiers BaseQuals;
5020   QualType ObjectTy;
5021   if (E->isArrow()) {
5022     BaseValue = EmitScalarExpr(BaseExpr);
5023     ObjectTy = BaseExpr->getType()->getPointeeType();
5024     BaseQuals = ObjectTy.getQualifiers();
5025   } else {
5026     LValue BaseLV = EmitLValue(BaseExpr);
5027     BaseValue = BaseLV.getPointer(*this);
5028     ObjectTy = BaseExpr->getType();
5029     BaseQuals = ObjectTy.getQualifiers();
5030   }
5031 
5032   LValue LV =
5033     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5034                       BaseQuals.getCVRQualifiers());
5035   setObjCGCLValueClass(getContext(), E, LV);
5036   return LV;
5037 }
5038 
5039 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5040   // Can only get l-value for message expression returning aggregate type
5041   RValue RV = EmitAnyExprToTemp(E);
5042   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5043                         AlignmentSource::Decl);
5044 }
5045 
5046 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5047                                  const CallExpr *E, ReturnValueSlot ReturnValue,
5048                                  llvm::Value *Chain) {
5049   // Get the actual function type. The callee type will always be a pointer to
5050   // function type or a block pointer type.
5051   assert(CalleeType->isFunctionPointerType() &&
5052          "Call must have function pointer type!");
5053 
5054   const Decl *TargetDecl =
5055       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5056 
5057   CalleeType = getContext().getCanonicalType(CalleeType);
5058 
5059   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5060 
5061   CGCallee Callee = OrigCallee;
5062 
5063   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
5064       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5065     if (llvm::Constant *PrefixSig =
5066             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5067       SanitizerScope SanScope(this);
5068       // Remove any (C++17) exception specifications, to allow calling e.g. a
5069       // noexcept function through a non-noexcept pointer.
5070       auto ProtoTy =
5071         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
5072       llvm::Constant *FTRTTIConst =
5073           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
5074       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
5075       llvm::StructType *PrefixStructTy = llvm::StructType::get(
5076           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
5077 
5078       llvm::Value *CalleePtr = Callee.getFunctionPointer();
5079 
5080       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
5081           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
5082       llvm::Value *CalleeSigPtr =
5083           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
5084       llvm::Value *CalleeSig =
5085           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
5086       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5087 
5088       llvm::BasicBlock *Cont = createBasicBlock("cont");
5089       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5090       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5091 
5092       EmitBlock(TypeCheck);
5093       llvm::Value *CalleeRTTIPtr =
5094           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
5095       llvm::Value *CalleeRTTIEncoded =
5096           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
5097       llvm::Value *CalleeRTTI =
5098           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
5099       llvm::Value *CalleeRTTIMatch =
5100           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
5101       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5102                                       EmitCheckTypeDescriptor(CalleeType)};
5103       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
5104                 SanitizerHandler::FunctionTypeMismatch, StaticData,
5105                 {CalleePtr, CalleeRTTI, FTRTTIConst});
5106 
5107       Builder.CreateBr(Cont);
5108       EmitBlock(Cont);
5109     }
5110   }
5111 
5112   const auto *FnType = cast<FunctionType>(PointeeType);
5113 
5114   // If we are checking indirect calls and this call is indirect, check that the
5115   // function pointer is a member of the bit set for the function type.
5116   if (SanOpts.has(SanitizerKind::CFIICall) &&
5117       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5118     SanitizerScope SanScope(this);
5119     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5120 
5121     llvm::Metadata *MD;
5122     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5123       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5124     else
5125       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5126 
5127     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5128 
5129     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5130     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
5131     llvm::Value *TypeTest = Builder.CreateCall(
5132         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
5133 
5134     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5135     llvm::Constant *StaticData[] = {
5136         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5137         EmitCheckSourceLocation(E->getBeginLoc()),
5138         EmitCheckTypeDescriptor(QualType(FnType, 0)),
5139     };
5140     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5141       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5142                            CastedCallee, StaticData);
5143     } else {
5144       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5145                 SanitizerHandler::CFICheckFail, StaticData,
5146                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
5147     }
5148   }
5149 
5150   CallArgList Args;
5151   if (Chain)
5152     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
5153              CGM.getContext().VoidPtrTy);
5154 
5155   // C++17 requires that we evaluate arguments to a call using assignment syntax
5156   // right-to-left, and that we evaluate arguments to certain other operators
5157   // left-to-right. Note that we allow this to override the order dictated by
5158   // the calling convention on the MS ABI, which means that parameter
5159   // destruction order is not necessarily reverse construction order.
5160   // FIXME: Revisit this based on C++ committee response to unimplementability.
5161   EvaluationOrder Order = EvaluationOrder::Default;
5162   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5163     if (OCE->isAssignmentOp())
5164       Order = EvaluationOrder::ForceRightToLeft;
5165     else {
5166       switch (OCE->getOperator()) {
5167       case OO_LessLess:
5168       case OO_GreaterGreater:
5169       case OO_AmpAmp:
5170       case OO_PipePipe:
5171       case OO_Comma:
5172       case OO_ArrowStar:
5173         Order = EvaluationOrder::ForceLeftToRight;
5174         break;
5175       default:
5176         break;
5177       }
5178     }
5179   }
5180 
5181   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5182                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5183 
5184   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5185       Args, FnType, /*ChainCall=*/Chain);
5186 
5187   // C99 6.5.2.2p6:
5188   //   If the expression that denotes the called function has a type
5189   //   that does not include a prototype, [the default argument
5190   //   promotions are performed]. If the number of arguments does not
5191   //   equal the number of parameters, the behavior is undefined. If
5192   //   the function is defined with a type that includes a prototype,
5193   //   and either the prototype ends with an ellipsis (, ...) or the
5194   //   types of the arguments after promotion are not compatible with
5195   //   the types of the parameters, the behavior is undefined. If the
5196   //   function is defined with a type that does not include a
5197   //   prototype, and the types of the arguments after promotion are
5198   //   not compatible with those of the parameters after promotion,
5199   //   the behavior is undefined [except in some trivial cases].
5200   // That is, in the general case, we should assume that a call
5201   // through an unprototyped function type works like a *non-variadic*
5202   // call.  The way we make this work is to cast to the exact type
5203   // of the promoted arguments.
5204   //
5205   // Chain calls use this same code path to add the invisible chain parameter
5206   // to the function type.
5207   if (isa<FunctionNoProtoType>(FnType) || Chain) {
5208     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5209     int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5210     CalleeTy = CalleeTy->getPointerTo(AS);
5211 
5212     llvm::Value *CalleePtr = Callee.getFunctionPointer();
5213     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5214     Callee.setFunctionPointer(CalleePtr);
5215   }
5216 
5217   llvm::CallBase *CallOrInvoke = nullptr;
5218   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5219                          E->getExprLoc());
5220 
5221   // Generate function declaration DISuprogram in order to be used
5222   // in debug info about call sites.
5223   if (CGDebugInfo *DI = getDebugInfo()) {
5224     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
5225       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
5226                                   CalleeDecl);
5227   }
5228 
5229   return Call;
5230 }
5231 
5232 LValue CodeGenFunction::
5233 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5234   Address BaseAddr = Address::invalid();
5235   if (E->getOpcode() == BO_PtrMemI) {
5236     BaseAddr = EmitPointerWithAlignment(E->getLHS());
5237   } else {
5238     BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5239   }
5240 
5241   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5242   const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5243 
5244   LValueBaseInfo BaseInfo;
5245   TBAAAccessInfo TBAAInfo;
5246   Address MemberAddr =
5247     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5248                                     &TBAAInfo);
5249 
5250   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5251 }
5252 
5253 /// Given the address of a temporary variable, produce an r-value of
5254 /// its type.
5255 RValue CodeGenFunction::convertTempToRValue(Address addr,
5256                                             QualType type,
5257                                             SourceLocation loc) {
5258   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5259   switch (getEvaluationKind(type)) {
5260   case TEK_Complex:
5261     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5262   case TEK_Aggregate:
5263     return lvalue.asAggregateRValue(*this);
5264   case TEK_Scalar:
5265     return RValue::get(EmitLoadOfScalar(lvalue, loc));
5266   }
5267   llvm_unreachable("bad evaluation kind");
5268 }
5269 
5270 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5271   assert(Val->getType()->isFPOrFPVectorTy());
5272   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5273     return;
5274 
5275   llvm::MDBuilder MDHelper(getLLVMContext());
5276   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5277 
5278   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5279 }
5280 
5281 namespace {
5282   struct LValueOrRValue {
5283     LValue LV;
5284     RValue RV;
5285   };
5286 }
5287 
5288 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
5289                                            const PseudoObjectExpr *E,
5290                                            bool forLValue,
5291                                            AggValueSlot slot) {
5292   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5293 
5294   // Find the result expression, if any.
5295   const Expr *resultExpr = E->getResultExpr();
5296   LValueOrRValue result;
5297 
5298   for (PseudoObjectExpr::const_semantics_iterator
5299          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5300     const Expr *semantic = *i;
5301 
5302     // If this semantic expression is an opaque value, bind it
5303     // to the result of its source expression.
5304     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5305       // Skip unique OVEs.
5306       if (ov->isUnique()) {
5307         assert(ov != resultExpr &&
5308                "A unique OVE cannot be used as the result expression");
5309         continue;
5310       }
5311 
5312       // If this is the result expression, we may need to evaluate
5313       // directly into the slot.
5314       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5315       OVMA opaqueData;
5316       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5317           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5318         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5319         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5320                                        AlignmentSource::Decl);
5321         opaqueData = OVMA::bind(CGF, ov, LV);
5322         result.RV = slot.asRValue();
5323 
5324       // Otherwise, emit as normal.
5325       } else {
5326         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5327 
5328         // If this is the result, also evaluate the result now.
5329         if (ov == resultExpr) {
5330           if (forLValue)
5331             result.LV = CGF.EmitLValue(ov);
5332           else
5333             result.RV = CGF.EmitAnyExpr(ov, slot);
5334         }
5335       }
5336 
5337       opaques.push_back(opaqueData);
5338 
5339     // Otherwise, if the expression is the result, evaluate it
5340     // and remember the result.
5341     } else if (semantic == resultExpr) {
5342       if (forLValue)
5343         result.LV = CGF.EmitLValue(semantic);
5344       else
5345         result.RV = CGF.EmitAnyExpr(semantic, slot);
5346 
5347     // Otherwise, evaluate the expression in an ignored context.
5348     } else {
5349       CGF.EmitIgnoredExpr(semantic);
5350     }
5351   }
5352 
5353   // Unbind all the opaques now.
5354   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5355     opaques[i].unbind(CGF);
5356 
5357   return result;
5358 }
5359 
5360 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5361                                                AggValueSlot slot) {
5362   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5363 }
5364 
5365 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5366   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5367 }
5368