1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/ADT/Hashing.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/Support/ConvertUTF.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Path.h"
38 #include "llvm/Transforms/Utils/SanitizerStats.h"
39 
40 #include <string>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 
45 //===--------------------------------------------------------------------===//
46 //                        Miscellaneous Helper Methods
47 //===--------------------------------------------------------------------===//
48 
49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
50   unsigned addressSpace =
51     cast<llvm::PointerType>(value->getType())->getAddressSpace();
52 
53   llvm::PointerType *destType = Int8PtrTy;
54   if (addressSpace)
55     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
56 
57   if (value->getType() == destType) return value;
58   return Builder.CreateBitCast(value, destType);
59 }
60 
61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
62 /// block.
63 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
64                                           const Twine &Name) {
65   auto Alloca = CreateTempAlloca(Ty, Name);
66   Alloca->setAlignment(Align.getQuantity());
67   return Address(Alloca, Align);
68 }
69 
70 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
71 /// block.
72 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
73                                                     const Twine &Name) {
74   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
75 }
76 
77 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
78 /// default alignment of the corresponding LLVM type, which is *not*
79 /// guaranteed to be related in any way to the expected alignment of
80 /// an AST type that might have been lowered to Ty.
81 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
82                                                       const Twine &Name) {
83   CharUnits Align =
84     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
85   return CreateTempAlloca(Ty, Align, Name);
86 }
87 
88 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
89   assert(isa<llvm::AllocaInst>(Var.getPointer()));
90   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
91   Store->setAlignment(Var.getAlignment().getQuantity());
92   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
93   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
94 }
95 
96 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
97   CharUnits Align = getContext().getTypeAlignInChars(Ty);
98   return CreateTempAlloca(ConvertType(Ty), Align, Name);
99 }
100 
101 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) {
102   // FIXME: Should we prefer the preferred type alignment here?
103   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name);
104 }
105 
106 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
107                                        const Twine &Name) {
108   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name);
109 }
110 
111 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
112 /// expression and compare the result against zero, returning an Int1Ty value.
113 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
114   PGO.setCurrentStmt(E);
115   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
116     llvm::Value *MemPtr = EmitScalarExpr(E);
117     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
118   }
119 
120   QualType BoolTy = getContext().BoolTy;
121   SourceLocation Loc = E->getExprLoc();
122   if (!E->getType()->isAnyComplexType())
123     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
124 
125   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
126                                        Loc);
127 }
128 
129 /// EmitIgnoredExpr - Emit code to compute the specified expression,
130 /// ignoring the result.
131 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
132   if (E->isRValue())
133     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
134 
135   // Just emit it as an l-value and drop the result.
136   EmitLValue(E);
137 }
138 
139 /// EmitAnyExpr - Emit code to compute the specified expression which
140 /// can have any type.  The result is returned as an RValue struct.
141 /// If this is an aggregate expression, AggSlot indicates where the
142 /// result should be returned.
143 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
144                                     AggValueSlot aggSlot,
145                                     bool ignoreResult) {
146   switch (getEvaluationKind(E->getType())) {
147   case TEK_Scalar:
148     return RValue::get(EmitScalarExpr(E, ignoreResult));
149   case TEK_Complex:
150     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
151   case TEK_Aggregate:
152     if (!ignoreResult && aggSlot.isIgnored())
153       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
154     EmitAggExpr(E, aggSlot);
155     return aggSlot.asRValue();
156   }
157   llvm_unreachable("bad evaluation kind");
158 }
159 
160 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
161 /// always be accessible even if no aggregate location is provided.
162 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
163   AggValueSlot AggSlot = AggValueSlot::ignored();
164 
165   if (hasAggregateEvaluationKind(E->getType()))
166     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
167   return EmitAnyExpr(E, AggSlot);
168 }
169 
170 /// EmitAnyExprToMem - Evaluate an expression into a given memory
171 /// location.
172 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
173                                        Address Location,
174                                        Qualifiers Quals,
175                                        bool IsInit) {
176   // FIXME: This function should take an LValue as an argument.
177   switch (getEvaluationKind(E->getType())) {
178   case TEK_Complex:
179     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
180                               /*isInit*/ false);
181     return;
182 
183   case TEK_Aggregate: {
184     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
185                                          AggValueSlot::IsDestructed_t(IsInit),
186                                          AggValueSlot::DoesNotNeedGCBarriers,
187                                          AggValueSlot::IsAliased_t(!IsInit)));
188     return;
189   }
190 
191   case TEK_Scalar: {
192     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
193     LValue LV = MakeAddrLValue(Location, E->getType());
194     EmitStoreThroughLValue(RV, LV);
195     return;
196   }
197   }
198   llvm_unreachable("bad evaluation kind");
199 }
200 
201 static void
202 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
203                      const Expr *E, Address ReferenceTemporary) {
204   // Objective-C++ ARC:
205   //   If we are binding a reference to a temporary that has ownership, we
206   //   need to perform retain/release operations on the temporary.
207   //
208   // FIXME: This should be looking at E, not M.
209   if (auto Lifetime = M->getType().getObjCLifetime()) {
210     switch (Lifetime) {
211     case Qualifiers::OCL_None:
212     case Qualifiers::OCL_ExplicitNone:
213       // Carry on to normal cleanup handling.
214       break;
215 
216     case Qualifiers::OCL_Autoreleasing:
217       // Nothing to do; cleaned up by an autorelease pool.
218       return;
219 
220     case Qualifiers::OCL_Strong:
221     case Qualifiers::OCL_Weak:
222       switch (StorageDuration Duration = M->getStorageDuration()) {
223       case SD_Static:
224         // Note: we intentionally do not register a cleanup to release
225         // the object on program termination.
226         return;
227 
228       case SD_Thread:
229         // FIXME: We should probably register a cleanup in this case.
230         return;
231 
232       case SD_Automatic:
233       case SD_FullExpression:
234         CodeGenFunction::Destroyer *Destroy;
235         CleanupKind CleanupKind;
236         if (Lifetime == Qualifiers::OCL_Strong) {
237           const ValueDecl *VD = M->getExtendingDecl();
238           bool Precise =
239               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
240           CleanupKind = CGF.getARCCleanupKind();
241           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
242                             : &CodeGenFunction::destroyARCStrongImprecise;
243         } else {
244           // __weak objects always get EH cleanups; otherwise, exceptions
245           // could cause really nasty crashes instead of mere leaks.
246           CleanupKind = NormalAndEHCleanup;
247           Destroy = &CodeGenFunction::destroyARCWeak;
248         }
249         if (Duration == SD_FullExpression)
250           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
251                           M->getType(), *Destroy,
252                           CleanupKind & EHCleanup);
253         else
254           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
255                                           M->getType(),
256                                           *Destroy, CleanupKind & EHCleanup);
257         return;
258 
259       case SD_Dynamic:
260         llvm_unreachable("temporary cannot have dynamic storage duration");
261       }
262       llvm_unreachable("unknown storage duration");
263     }
264   }
265 
266   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
267   if (const RecordType *RT =
268           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
269     // Get the destructor for the reference temporary.
270     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
271     if (!ClassDecl->hasTrivialDestructor())
272       ReferenceTemporaryDtor = ClassDecl->getDestructor();
273   }
274 
275   if (!ReferenceTemporaryDtor)
276     return;
277 
278   // Call the destructor for the temporary.
279   switch (M->getStorageDuration()) {
280   case SD_Static:
281   case SD_Thread: {
282     llvm::Constant *CleanupFn;
283     llvm::Constant *CleanupArg;
284     if (E->getType()->isArrayType()) {
285       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
286           ReferenceTemporary, E->getType(),
287           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
288           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
289       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
290     } else {
291       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
292                                                StructorType::Complete);
293       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
294     }
295     CGF.CGM.getCXXABI().registerGlobalDtor(
296         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
297     break;
298   }
299 
300   case SD_FullExpression:
301     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
302                     CodeGenFunction::destroyCXXObject,
303                     CGF.getLangOpts().Exceptions);
304     break;
305 
306   case SD_Automatic:
307     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
308                                     ReferenceTemporary, E->getType(),
309                                     CodeGenFunction::destroyCXXObject,
310                                     CGF.getLangOpts().Exceptions);
311     break;
312 
313   case SD_Dynamic:
314     llvm_unreachable("temporary cannot have dynamic storage duration");
315   }
316 }
317 
318 static Address
319 createReferenceTemporary(CodeGenFunction &CGF,
320                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
321   switch (M->getStorageDuration()) {
322   case SD_FullExpression:
323   case SD_Automatic: {
324     // If we have a constant temporary array or record try to promote it into a
325     // constant global under the same rules a normal constant would've been
326     // promoted. This is easier on the optimizer and generally emits fewer
327     // instructions.
328     QualType Ty = Inner->getType();
329     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
330         (Ty->isArrayType() || Ty->isRecordType()) &&
331         CGF.CGM.isTypeConstant(Ty, true))
332       if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
333         auto *GV = new llvm::GlobalVariable(
334             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
335             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp");
336         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
337         GV->setAlignment(alignment.getQuantity());
338         // FIXME: Should we put the new global into a COMDAT?
339         return Address(GV, alignment);
340       }
341     return CGF.CreateMemTemp(Ty, "ref.tmp");
342   }
343   case SD_Thread:
344   case SD_Static:
345     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
346 
347   case SD_Dynamic:
348     llvm_unreachable("temporary can't have dynamic storage duration");
349   }
350   llvm_unreachable("unknown storage duration");
351 }
352 
353 LValue CodeGenFunction::
354 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
355   const Expr *E = M->GetTemporaryExpr();
356 
357     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
358     // as that will cause the lifetime adjustment to be lost for ARC
359   auto ownership = M->getType().getObjCLifetime();
360   if (ownership != Qualifiers::OCL_None &&
361       ownership != Qualifiers::OCL_ExplicitNone) {
362     Address Object = createReferenceTemporary(*this, M, E);
363     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
364       Object = Address(llvm::ConstantExpr::getBitCast(Var,
365                            ConvertTypeForMem(E->getType())
366                              ->getPointerTo(Object.getAddressSpace())),
367                        Object.getAlignment());
368 
369       // createReferenceTemporary will promote the temporary to a global with a
370       // constant initializer if it can.  It can only do this to a value of
371       // ARC-manageable type if the value is global and therefore "immune" to
372       // ref-counting operations.  Therefore we have no need to emit either a
373       // dynamic initialization or a cleanup and we can just return the address
374       // of the temporary.
375       if (Var->hasInitializer())
376         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
377 
378       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
379     }
380     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
381                                        AlignmentSource::Decl);
382 
383     switch (getEvaluationKind(E->getType())) {
384     default: llvm_unreachable("expected scalar or aggregate expression");
385     case TEK_Scalar:
386       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
387       break;
388     case TEK_Aggregate: {
389       EmitAggExpr(E, AggValueSlot::forAddr(Object,
390                                            E->getType().getQualifiers(),
391                                            AggValueSlot::IsDestructed,
392                                            AggValueSlot::DoesNotNeedGCBarriers,
393                                            AggValueSlot::IsNotAliased));
394       break;
395     }
396     }
397 
398     pushTemporaryCleanup(*this, M, E, Object);
399     return RefTempDst;
400   }
401 
402   SmallVector<const Expr *, 2> CommaLHSs;
403   SmallVector<SubobjectAdjustment, 2> Adjustments;
404   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
405 
406   for (const auto &Ignored : CommaLHSs)
407     EmitIgnoredExpr(Ignored);
408 
409   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
410     if (opaque->getType()->isRecordType()) {
411       assert(Adjustments.empty());
412       return EmitOpaqueValueLValue(opaque);
413     }
414   }
415 
416   // Create and initialize the reference temporary.
417   Address Object = createReferenceTemporary(*this, M, E);
418   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
419     Object = Address(llvm::ConstantExpr::getBitCast(
420         Var, ConvertTypeForMem(E->getType())->getPointerTo()),
421                      Object.getAlignment());
422     // If the temporary is a global and has a constant initializer or is a
423     // constant temporary that we promoted to a global, we may have already
424     // initialized it.
425     if (!Var->hasInitializer()) {
426       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
427       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
428     }
429   } else {
430     switch (M->getStorageDuration()) {
431     case SD_Automatic:
432     case SD_FullExpression:
433       if (auto *Size = EmitLifetimeStart(
434               CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
435               Object.getPointer())) {
436         if (M->getStorageDuration() == SD_Automatic)
437           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
438                                                     Object, Size);
439         else
440           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
441                                                Size);
442       }
443       break;
444     default:
445       break;
446     }
447     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
448   }
449   pushTemporaryCleanup(*this, M, E, Object);
450 
451   // Perform derived-to-base casts and/or field accesses, to get from the
452   // temporary object we created (and, potentially, for which we extended
453   // the lifetime) to the subobject we're binding the reference to.
454   for (unsigned I = Adjustments.size(); I != 0; --I) {
455     SubobjectAdjustment &Adjustment = Adjustments[I-1];
456     switch (Adjustment.Kind) {
457     case SubobjectAdjustment::DerivedToBaseAdjustment:
458       Object =
459           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
460                                 Adjustment.DerivedToBase.BasePath->path_begin(),
461                                 Adjustment.DerivedToBase.BasePath->path_end(),
462                                 /*NullCheckValue=*/ false, E->getExprLoc());
463       break;
464 
465     case SubobjectAdjustment::FieldAdjustment: {
466       LValue LV = MakeAddrLValue(Object, E->getType(),
467                                  AlignmentSource::Decl);
468       LV = EmitLValueForField(LV, Adjustment.Field);
469       assert(LV.isSimple() &&
470              "materialized temporary field is not a simple lvalue");
471       Object = LV.getAddress();
472       break;
473     }
474 
475     case SubobjectAdjustment::MemberPointerAdjustment: {
476       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
477       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
478                                                Adjustment.Ptr.MPT);
479       break;
480     }
481     }
482   }
483 
484   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
485 }
486 
487 RValue
488 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
489   // Emit the expression as an lvalue.
490   LValue LV = EmitLValue(E);
491   assert(LV.isSimple());
492   llvm::Value *Value = LV.getPointer();
493 
494   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
495     // C++11 [dcl.ref]p5 (as amended by core issue 453):
496     //   If a glvalue to which a reference is directly bound designates neither
497     //   an existing object or function of an appropriate type nor a region of
498     //   storage of suitable size and alignment to contain an object of the
499     //   reference's type, the behavior is undefined.
500     QualType Ty = E->getType();
501     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
502   }
503 
504   return RValue::get(Value);
505 }
506 
507 
508 /// getAccessedFieldNo - Given an encoded value and a result number, return the
509 /// input field number being accessed.
510 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
511                                              const llvm::Constant *Elts) {
512   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
513       ->getZExtValue();
514 }
515 
516 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
517 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
518                                     llvm::Value *High) {
519   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
520   llvm::Value *K47 = Builder.getInt64(47);
521   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
522   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
523   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
524   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
525   return Builder.CreateMul(B1, KMul);
526 }
527 
528 bool CodeGenFunction::sanitizePerformTypeCheck() const {
529   return SanOpts.has(SanitizerKind::Null) |
530          SanOpts.has(SanitizerKind::Alignment) |
531          SanOpts.has(SanitizerKind::ObjectSize) |
532          SanOpts.has(SanitizerKind::Vptr);
533 }
534 
535 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
536                                     llvm::Value *Ptr, QualType Ty,
537                                     CharUnits Alignment,
538                                     SanitizerSet SkippedChecks) {
539   if (!sanitizePerformTypeCheck())
540     return;
541 
542   // Don't check pointers outside the default address space. The null check
543   // isn't correct, the object-size check isn't supported by LLVM, and we can't
544   // communicate the addresses to the runtime handler for the vptr check.
545   if (Ptr->getType()->getPointerAddressSpace())
546     return;
547 
548   SanitizerScope SanScope(this);
549 
550   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
551   llvm::BasicBlock *Done = nullptr;
552 
553   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
554                            TCK == TCK_UpcastToVirtualBase;
555   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
556       !SkippedChecks.has(SanitizerKind::Null)) {
557     // The glvalue must not be an empty glvalue.
558     llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr);
559 
560     if (AllowNullPointers) {
561       // When performing pointer casts, it's OK if the value is null.
562       // Skip the remaining checks in that case.
563       Done = createBasicBlock("null");
564       llvm::BasicBlock *Rest = createBasicBlock("not.null");
565       Builder.CreateCondBr(IsNonNull, Rest, Done);
566       EmitBlock(Rest);
567     } else {
568       Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
569     }
570   }
571 
572   if (SanOpts.has(SanitizerKind::ObjectSize) &&
573       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
574       !Ty->isIncompleteType()) {
575     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
576 
577     // The glvalue must refer to a large enough storage region.
578     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
579     //        to check this.
580     // FIXME: Get object address space
581     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
582     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
583     llvm::Value *Min = Builder.getFalse();
584     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
585     llvm::Value *LargeEnough =
586         Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}),
587                               llvm::ConstantInt::get(IntPtrTy, Size));
588     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
589   }
590 
591   uint64_t AlignVal = 0;
592 
593   if (SanOpts.has(SanitizerKind::Alignment) &&
594       !SkippedChecks.has(SanitizerKind::Alignment)) {
595     AlignVal = Alignment.getQuantity();
596     if (!Ty->isIncompleteType() && !AlignVal)
597       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
598 
599     // The glvalue must be suitably aligned.
600     if (AlignVal) {
601       llvm::Value *Align =
602           Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
603                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
604       llvm::Value *Aligned =
605         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
606       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
607     }
608   }
609 
610   if (Checks.size() > 0) {
611     // Make sure we're not losing information. Alignment needs to be a power of
612     // 2
613     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
614     llvm::Constant *StaticData[] = {
615         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
616         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
617         llvm::ConstantInt::get(Int8Ty, TCK)};
618     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr);
619   }
620 
621   // If possible, check that the vptr indicates that there is a subobject of
622   // type Ty at offset zero within this object.
623   //
624   // C++11 [basic.life]p5,6:
625   //   [For storage which does not refer to an object within its lifetime]
626   //   The program has undefined behavior if:
627   //    -- the [pointer or glvalue] is used to access a non-static data member
628   //       or call a non-static member function
629   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
630   if (SanOpts.has(SanitizerKind::Vptr) &&
631       !SkippedChecks.has(SanitizerKind::Vptr) &&
632       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
633        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
634        TCK == TCK_UpcastToVirtualBase) &&
635       RD && RD->hasDefinition() && RD->isDynamicClass()) {
636     // Compute a hash of the mangled name of the type.
637     //
638     // FIXME: This is not guaranteed to be deterministic! Move to a
639     //        fingerprinting mechanism once LLVM provides one. For the time
640     //        being the implementation happens to be deterministic.
641     SmallString<64> MangledName;
642     llvm::raw_svector_ostream Out(MangledName);
643     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
644                                                      Out);
645 
646     // Blacklist based on the mangled type.
647     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
648             Out.str())) {
649       llvm::hash_code TypeHash = hash_value(Out.str());
650 
651       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
652       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
653       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
654       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
655       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
656       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
657 
658       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
659       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
660 
661       // Look the hash up in our cache.
662       const int CacheSize = 128;
663       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
664       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
665                                                      "__ubsan_vptr_type_cache");
666       llvm::Value *Slot = Builder.CreateAnd(Hash,
667                                             llvm::ConstantInt::get(IntPtrTy,
668                                                                    CacheSize-1));
669       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
670       llvm::Value *CacheVal =
671         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
672                                   getPointerAlign());
673 
674       // If the hash isn't in the cache, call a runtime handler to perform the
675       // hard work of checking whether the vptr is for an object of the right
676       // type. This will either fill in the cache and return, or produce a
677       // diagnostic.
678       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
679       llvm::Constant *StaticData[] = {
680         EmitCheckSourceLocation(Loc),
681         EmitCheckTypeDescriptor(Ty),
682         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
683         llvm::ConstantInt::get(Int8Ty, TCK)
684       };
685       llvm::Value *DynamicData[] = { Ptr, Hash };
686       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
687                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
688                 DynamicData);
689     }
690   }
691 
692   if (Done) {
693     Builder.CreateBr(Done);
694     EmitBlock(Done);
695   }
696 }
697 
698 /// Determine whether this expression refers to a flexible array member in a
699 /// struct. We disable array bounds checks for such members.
700 static bool isFlexibleArrayMemberExpr(const Expr *E) {
701   // For compatibility with existing code, we treat arrays of length 0 or
702   // 1 as flexible array members.
703   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
704   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
705     if (CAT->getSize().ugt(1))
706       return false;
707   } else if (!isa<IncompleteArrayType>(AT))
708     return false;
709 
710   E = E->IgnoreParens();
711 
712   // A flexible array member must be the last member in the class.
713   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
714     // FIXME: If the base type of the member expr is not FD->getParent(),
715     // this should not be treated as a flexible array member access.
716     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
717       RecordDecl::field_iterator FI(
718           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
719       return ++FI == FD->getParent()->field_end();
720     }
721   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
722     return IRE->getDecl()->getNextIvar() == nullptr;
723   }
724 
725   return false;
726 }
727 
728 /// If Base is known to point to the start of an array, return the length of
729 /// that array. Return 0 if the length cannot be determined.
730 static llvm::Value *getArrayIndexingBound(
731     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
732   // For the vector indexing extension, the bound is the number of elements.
733   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
734     IndexedType = Base->getType();
735     return CGF.Builder.getInt32(VT->getNumElements());
736   }
737 
738   Base = Base->IgnoreParens();
739 
740   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
741     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
742         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
743       IndexedType = CE->getSubExpr()->getType();
744       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
745       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
746         return CGF.Builder.getInt(CAT->getSize());
747       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
748         return CGF.getVLASize(VAT).first;
749     }
750   }
751 
752   return nullptr;
753 }
754 
755 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
756                                       llvm::Value *Index, QualType IndexType,
757                                       bool Accessed) {
758   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
759          "should not be called unless adding bounds checks");
760   SanitizerScope SanScope(this);
761 
762   QualType IndexedType;
763   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
764   if (!Bound)
765     return;
766 
767   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
768   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
769   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
770 
771   llvm::Constant *StaticData[] = {
772     EmitCheckSourceLocation(E->getExprLoc()),
773     EmitCheckTypeDescriptor(IndexedType),
774     EmitCheckTypeDescriptor(IndexType)
775   };
776   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
777                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
778   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
779             SanitizerHandler::OutOfBounds, StaticData, Index);
780 }
781 
782 
783 CodeGenFunction::ComplexPairTy CodeGenFunction::
784 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
785                          bool isInc, bool isPre) {
786   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
787 
788   llvm::Value *NextVal;
789   if (isa<llvm::IntegerType>(InVal.first->getType())) {
790     uint64_t AmountVal = isInc ? 1 : -1;
791     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
792 
793     // Add the inc/dec to the real part.
794     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
795   } else {
796     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
797     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
798     if (!isInc)
799       FVal.changeSign();
800     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
801 
802     // Add the inc/dec to the real part.
803     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
804   }
805 
806   ComplexPairTy IncVal(NextVal, InVal.second);
807 
808   // Store the updated result through the lvalue.
809   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
810 
811   // If this is a postinc, return the value read from memory, otherwise use the
812   // updated value.
813   return isPre ? IncVal : InVal;
814 }
815 
816 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
817                                              CodeGenFunction *CGF) {
818   // Bind VLAs in the cast type.
819   if (CGF && E->getType()->isVariablyModifiedType())
820     CGF->EmitVariablyModifiedType(E->getType());
821 
822   if (CGDebugInfo *DI = getModuleDebugInfo())
823     DI->EmitExplicitCastType(E->getType());
824 }
825 
826 //===----------------------------------------------------------------------===//
827 //                         LValue Expression Emission
828 //===----------------------------------------------------------------------===//
829 
830 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
831 /// derive a more accurate bound on the alignment of the pointer.
832 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
833                                                   AlignmentSource  *Source) {
834   // We allow this with ObjC object pointers because of fragile ABIs.
835   assert(E->getType()->isPointerType() ||
836          E->getType()->isObjCObjectPointerType());
837   E = E->IgnoreParens();
838 
839   // Casts:
840   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
841     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
842       CGM.EmitExplicitCastExprType(ECE, this);
843 
844     switch (CE->getCastKind()) {
845     // Non-converting casts (but not C's implicit conversion from void*).
846     case CK_BitCast:
847     case CK_NoOp:
848       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
849         if (PtrTy->getPointeeType()->isVoidType())
850           break;
851 
852         AlignmentSource InnerSource;
853         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource);
854         if (Source) *Source = InnerSource;
855 
856         // If this is an explicit bitcast, and the source l-value is
857         // opaque, honor the alignment of the casted-to type.
858         if (isa<ExplicitCastExpr>(CE) &&
859             InnerSource != AlignmentSource::Decl) {
860           Addr = Address(Addr.getPointer(),
861                          getNaturalPointeeTypeAlignment(E->getType(), Source));
862         }
863 
864         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
865             CE->getCastKind() == CK_BitCast) {
866           if (auto PT = E->getType()->getAs<PointerType>())
867             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
868                                       /*MayBeNull=*/true,
869                                       CodeGenFunction::CFITCK_UnrelatedCast,
870                                       CE->getLocStart());
871         }
872 
873         return Builder.CreateBitCast(Addr, ConvertType(E->getType()));
874       }
875       break;
876 
877     // Array-to-pointer decay.
878     case CK_ArrayToPointerDecay:
879       return EmitArrayToPointerDecay(CE->getSubExpr(), Source);
880 
881     // Derived-to-base conversions.
882     case CK_UncheckedDerivedToBase:
883     case CK_DerivedToBase: {
884       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source);
885       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
886       return GetAddressOfBaseClass(Addr, Derived,
887                                    CE->path_begin(), CE->path_end(),
888                                    ShouldNullCheckClassCastValue(CE),
889                                    CE->getExprLoc());
890     }
891 
892     // TODO: Is there any reason to treat base-to-derived conversions
893     // specially?
894     default:
895       break;
896     }
897   }
898 
899   // Unary &.
900   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
901     if (UO->getOpcode() == UO_AddrOf) {
902       LValue LV = EmitLValue(UO->getSubExpr());
903       if (Source) *Source = LV.getAlignmentSource();
904       return LV.getAddress();
905     }
906   }
907 
908   // TODO: conditional operators, comma.
909 
910   // Otherwise, use the alignment of the type.
911   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source);
912   return Address(EmitScalarExpr(E), Align);
913 }
914 
915 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
916   if (Ty->isVoidType())
917     return RValue::get(nullptr);
918 
919   switch (getEvaluationKind(Ty)) {
920   case TEK_Complex: {
921     llvm::Type *EltTy =
922       ConvertType(Ty->castAs<ComplexType>()->getElementType());
923     llvm::Value *U = llvm::UndefValue::get(EltTy);
924     return RValue::getComplex(std::make_pair(U, U));
925   }
926 
927   // If this is a use of an undefined aggregate type, the aggregate must have an
928   // identifiable address.  Just because the contents of the value are undefined
929   // doesn't mean that the address can't be taken and compared.
930   case TEK_Aggregate: {
931     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
932     return RValue::getAggregate(DestPtr);
933   }
934 
935   case TEK_Scalar:
936     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
937   }
938   llvm_unreachable("bad evaluation kind");
939 }
940 
941 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
942                                               const char *Name) {
943   ErrorUnsupported(E, Name);
944   return GetUndefRValue(E->getType());
945 }
946 
947 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
948                                               const char *Name) {
949   ErrorUnsupported(E, Name);
950   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
951   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
952                         E->getType());
953 }
954 
955 bool CodeGenFunction::IsDeclRefOrWrappedCXXThis(const Expr *Obj) {
956   if (isa<DeclRefExpr>(Obj))
957     return true;
958 
959   const Expr *Base = Obj;
960   while (!isa<CXXThisExpr>(Base)) {
961     // The result of a dynamic_cast can be null.
962     if (isa<CXXDynamicCastExpr>(Base))
963       return false;
964 
965     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
966       Base = CE->getSubExpr();
967     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
968       Base = PE->getSubExpr();
969     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
970       if (UO->getOpcode() == UO_Extension)
971         Base = UO->getSubExpr();
972       else
973         return false;
974     } else {
975       return false;
976     }
977   }
978   return true;
979 }
980 
981 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
982   LValue LV;
983   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
984     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
985   else
986     LV = EmitLValue(E);
987   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
988     SanitizerSet SkippedChecks;
989     if (const auto *ME = dyn_cast<MemberExpr>(E))
990       if (IsDeclRefOrWrappedCXXThis(ME->getBase()))
991         SkippedChecks.set(SanitizerKind::Null, true);
992     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
993                   E->getType(), LV.getAlignment(), SkippedChecks);
994   }
995   return LV;
996 }
997 
998 /// EmitLValue - Emit code to compute a designator that specifies the location
999 /// of the expression.
1000 ///
1001 /// This can return one of two things: a simple address or a bitfield reference.
1002 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1003 /// an LLVM pointer type.
1004 ///
1005 /// If this returns a bitfield reference, nothing about the pointee type of the
1006 /// LLVM value is known: For example, it may not be a pointer to an integer.
1007 ///
1008 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1009 /// this method guarantees that the returned pointer type will point to an LLVM
1010 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1011 /// length type, this is not possible.
1012 ///
1013 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1014   ApplyDebugLocation DL(*this, E);
1015   switch (E->getStmtClass()) {
1016   default: return EmitUnsupportedLValue(E, "l-value expression");
1017 
1018   case Expr::ObjCPropertyRefExprClass:
1019     llvm_unreachable("cannot emit a property reference directly");
1020 
1021   case Expr::ObjCSelectorExprClass:
1022     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1023   case Expr::ObjCIsaExprClass:
1024     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1025   case Expr::BinaryOperatorClass:
1026     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1027   case Expr::CompoundAssignOperatorClass: {
1028     QualType Ty = E->getType();
1029     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1030       Ty = AT->getValueType();
1031     if (!Ty->isAnyComplexType())
1032       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1033     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1034   }
1035   case Expr::CallExprClass:
1036   case Expr::CXXMemberCallExprClass:
1037   case Expr::CXXOperatorCallExprClass:
1038   case Expr::UserDefinedLiteralClass:
1039     return EmitCallExprLValue(cast<CallExpr>(E));
1040   case Expr::VAArgExprClass:
1041     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1042   case Expr::DeclRefExprClass:
1043     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1044   case Expr::ParenExprClass:
1045     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1046   case Expr::GenericSelectionExprClass:
1047     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1048   case Expr::PredefinedExprClass:
1049     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1050   case Expr::StringLiteralClass:
1051     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1052   case Expr::ObjCEncodeExprClass:
1053     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1054   case Expr::PseudoObjectExprClass:
1055     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1056   case Expr::InitListExprClass:
1057     return EmitInitListLValue(cast<InitListExpr>(E));
1058   case Expr::CXXTemporaryObjectExprClass:
1059   case Expr::CXXConstructExprClass:
1060     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1061   case Expr::CXXBindTemporaryExprClass:
1062     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1063   case Expr::CXXUuidofExprClass:
1064     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1065   case Expr::LambdaExprClass:
1066     return EmitLambdaLValue(cast<LambdaExpr>(E));
1067 
1068   case Expr::ExprWithCleanupsClass: {
1069     const auto *cleanups = cast<ExprWithCleanups>(E);
1070     enterFullExpression(cleanups);
1071     RunCleanupsScope Scope(*this);
1072     return EmitLValue(cleanups->getSubExpr());
1073   }
1074 
1075   case Expr::CXXDefaultArgExprClass:
1076     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1077   case Expr::CXXDefaultInitExprClass: {
1078     CXXDefaultInitExprScope Scope(*this);
1079     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1080   }
1081   case Expr::CXXTypeidExprClass:
1082     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1083 
1084   case Expr::ObjCMessageExprClass:
1085     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1086   case Expr::ObjCIvarRefExprClass:
1087     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1088   case Expr::StmtExprClass:
1089     return EmitStmtExprLValue(cast<StmtExpr>(E));
1090   case Expr::UnaryOperatorClass:
1091     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1092   case Expr::ArraySubscriptExprClass:
1093     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1094   case Expr::OMPArraySectionExprClass:
1095     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1096   case Expr::ExtVectorElementExprClass:
1097     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1098   case Expr::MemberExprClass:
1099     return EmitMemberExpr(cast<MemberExpr>(E));
1100   case Expr::CompoundLiteralExprClass:
1101     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1102   case Expr::ConditionalOperatorClass:
1103     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1104   case Expr::BinaryConditionalOperatorClass:
1105     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1106   case Expr::ChooseExprClass:
1107     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1108   case Expr::OpaqueValueExprClass:
1109     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1110   case Expr::SubstNonTypeTemplateParmExprClass:
1111     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1112   case Expr::ImplicitCastExprClass:
1113   case Expr::CStyleCastExprClass:
1114   case Expr::CXXFunctionalCastExprClass:
1115   case Expr::CXXStaticCastExprClass:
1116   case Expr::CXXDynamicCastExprClass:
1117   case Expr::CXXReinterpretCastExprClass:
1118   case Expr::CXXConstCastExprClass:
1119   case Expr::ObjCBridgedCastExprClass:
1120     return EmitCastLValue(cast<CastExpr>(E));
1121 
1122   case Expr::MaterializeTemporaryExprClass:
1123     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1124   }
1125 }
1126 
1127 /// Given an object of the given canonical type, can we safely copy a
1128 /// value out of it based on its initializer?
1129 static bool isConstantEmittableObjectType(QualType type) {
1130   assert(type.isCanonical());
1131   assert(!type->isReferenceType());
1132 
1133   // Must be const-qualified but non-volatile.
1134   Qualifiers qs = type.getLocalQualifiers();
1135   if (!qs.hasConst() || qs.hasVolatile()) return false;
1136 
1137   // Otherwise, all object types satisfy this except C++ classes with
1138   // mutable subobjects or non-trivial copy/destroy behavior.
1139   if (const auto *RT = dyn_cast<RecordType>(type))
1140     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1141       if (RD->hasMutableFields() || !RD->isTrivial())
1142         return false;
1143 
1144   return true;
1145 }
1146 
1147 /// Can we constant-emit a load of a reference to a variable of the
1148 /// given type?  This is different from predicates like
1149 /// Decl::isUsableInConstantExpressions because we do want it to apply
1150 /// in situations that don't necessarily satisfy the language's rules
1151 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1152 /// to do this with const float variables even if those variables
1153 /// aren't marked 'constexpr'.
1154 enum ConstantEmissionKind {
1155   CEK_None,
1156   CEK_AsReferenceOnly,
1157   CEK_AsValueOrReference,
1158   CEK_AsValueOnly
1159 };
1160 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1161   type = type.getCanonicalType();
1162   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1163     if (isConstantEmittableObjectType(ref->getPointeeType()))
1164       return CEK_AsValueOrReference;
1165     return CEK_AsReferenceOnly;
1166   }
1167   if (isConstantEmittableObjectType(type))
1168     return CEK_AsValueOnly;
1169   return CEK_None;
1170 }
1171 
1172 /// Try to emit a reference to the given value without producing it as
1173 /// an l-value.  This is actually more than an optimization: we can't
1174 /// produce an l-value for variables that we never actually captured
1175 /// in a block or lambda, which means const int variables or constexpr
1176 /// literals or similar.
1177 CodeGenFunction::ConstantEmission
1178 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1179   ValueDecl *value = refExpr->getDecl();
1180 
1181   // The value needs to be an enum constant or a constant variable.
1182   ConstantEmissionKind CEK;
1183   if (isa<ParmVarDecl>(value)) {
1184     CEK = CEK_None;
1185   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1186     CEK = checkVarTypeForConstantEmission(var->getType());
1187   } else if (isa<EnumConstantDecl>(value)) {
1188     CEK = CEK_AsValueOnly;
1189   } else {
1190     CEK = CEK_None;
1191   }
1192   if (CEK == CEK_None) return ConstantEmission();
1193 
1194   Expr::EvalResult result;
1195   bool resultIsReference;
1196   QualType resultType;
1197 
1198   // It's best to evaluate all the way as an r-value if that's permitted.
1199   if (CEK != CEK_AsReferenceOnly &&
1200       refExpr->EvaluateAsRValue(result, getContext())) {
1201     resultIsReference = false;
1202     resultType = refExpr->getType();
1203 
1204   // Otherwise, try to evaluate as an l-value.
1205   } else if (CEK != CEK_AsValueOnly &&
1206              refExpr->EvaluateAsLValue(result, getContext())) {
1207     resultIsReference = true;
1208     resultType = value->getType();
1209 
1210   // Failure.
1211   } else {
1212     return ConstantEmission();
1213   }
1214 
1215   // In any case, if the initializer has side-effects, abandon ship.
1216   if (result.HasSideEffects)
1217     return ConstantEmission();
1218 
1219   // Emit as a constant.
1220   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1221 
1222   // Make sure we emit a debug reference to the global variable.
1223   // This should probably fire even for
1224   if (isa<VarDecl>(value)) {
1225     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1226       EmitDeclRefExprDbgValue(refExpr, result.Val);
1227   } else {
1228     assert(isa<EnumConstantDecl>(value));
1229     EmitDeclRefExprDbgValue(refExpr, result.Val);
1230   }
1231 
1232   // If we emitted a reference constant, we need to dereference that.
1233   if (resultIsReference)
1234     return ConstantEmission::forReference(C);
1235 
1236   return ConstantEmission::forValue(C);
1237 }
1238 
1239 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1240                                                SourceLocation Loc) {
1241   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1242                           lvalue.getType(), Loc, lvalue.getAlignmentSource(),
1243                           lvalue.getTBAAInfo(),
1244                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
1245                           lvalue.isNontemporal());
1246 }
1247 
1248 static bool hasBooleanRepresentation(QualType Ty) {
1249   if (Ty->isBooleanType())
1250     return true;
1251 
1252   if (const EnumType *ET = Ty->getAs<EnumType>())
1253     return ET->getDecl()->getIntegerType()->isBooleanType();
1254 
1255   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1256     return hasBooleanRepresentation(AT->getValueType());
1257 
1258   return false;
1259 }
1260 
1261 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1262                             llvm::APInt &Min, llvm::APInt &End,
1263                             bool StrictEnums, bool IsBool) {
1264   const EnumType *ET = Ty->getAs<EnumType>();
1265   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1266                                 ET && !ET->getDecl()->isFixed();
1267   if (!IsBool && !IsRegularCPlusPlusEnum)
1268     return false;
1269 
1270   if (IsBool) {
1271     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1272     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1273   } else {
1274     const EnumDecl *ED = ET->getDecl();
1275     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1276     unsigned Bitwidth = LTy->getScalarSizeInBits();
1277     unsigned NumNegativeBits = ED->getNumNegativeBits();
1278     unsigned NumPositiveBits = ED->getNumPositiveBits();
1279 
1280     if (NumNegativeBits) {
1281       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1282       assert(NumBits <= Bitwidth);
1283       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1284       Min = -End;
1285     } else {
1286       assert(NumPositiveBits <= Bitwidth);
1287       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1288       Min = llvm::APInt(Bitwidth, 0);
1289     }
1290   }
1291   return true;
1292 }
1293 
1294 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1295   llvm::APInt Min, End;
1296   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1297                        hasBooleanRepresentation(Ty)))
1298     return nullptr;
1299 
1300   llvm::MDBuilder MDHelper(getLLVMContext());
1301   return MDHelper.createRange(Min, End);
1302 }
1303 
1304 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1305                                            SourceLocation Loc) {
1306   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1307   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1308   if (!HasBoolCheck && !HasEnumCheck)
1309     return false;
1310 
1311   bool IsBool = hasBooleanRepresentation(Ty) ||
1312                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1313   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1314   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1315   if (!NeedsBoolCheck && !NeedsEnumCheck)
1316     return false;
1317 
1318   llvm::APInt Min, End;
1319   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1320     return true;
1321 
1322   SanitizerScope SanScope(this);
1323   llvm::Value *Check;
1324   --End;
1325   if (!Min) {
1326     Check = Builder.CreateICmpULE(
1327         Value, llvm::ConstantInt::get(getLLVMContext(), End));
1328   } else {
1329     llvm::Value *Upper = Builder.CreateICmpSLE(
1330         Value, llvm::ConstantInt::get(getLLVMContext(), End));
1331     llvm::Value *Lower = Builder.CreateICmpSGE(
1332         Value, llvm::ConstantInt::get(getLLVMContext(), Min));
1333     Check = Builder.CreateAnd(Upper, Lower);
1334   }
1335   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1336                                   EmitCheckTypeDescriptor(Ty)};
1337   SanitizerMask Kind =
1338       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1339   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1340             StaticArgs, EmitCheckValue(Value));
1341   return true;
1342 }
1343 
1344 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1345                                                QualType Ty,
1346                                                SourceLocation Loc,
1347                                                AlignmentSource AlignSource,
1348                                                llvm::MDNode *TBAAInfo,
1349                                                QualType TBAABaseType,
1350                                                uint64_t TBAAOffset,
1351                                                bool isNontemporal) {
1352   // For better performance, handle vector loads differently.
1353   if (Ty->isVectorType()) {
1354     const llvm::Type *EltTy = Addr.getElementType();
1355 
1356     const auto *VTy = cast<llvm::VectorType>(EltTy);
1357 
1358     // Handle vectors of size 3 like size 4 for better performance.
1359     if (VTy->getNumElements() == 3) {
1360 
1361       // Bitcast to vec4 type.
1362       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1363                                                          4);
1364       Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1365       // Now load value.
1366       llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1367 
1368       // Shuffle vector to get vec3.
1369       V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1370                                       {0, 1, 2}, "extractVec");
1371       return EmitFromMemory(V, Ty);
1372     }
1373   }
1374 
1375   // Atomic operations have to be done on integral types.
1376   LValue AtomicLValue =
1377       LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
1378   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1379     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1380   }
1381 
1382   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1383   if (isNontemporal) {
1384     llvm::MDNode *Node = llvm::MDNode::get(
1385         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1386     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1387   }
1388   if (TBAAInfo) {
1389     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1390                                                       TBAAOffset);
1391     if (TBAAPath)
1392       CGM.DecorateInstructionWithTBAA(Load, TBAAPath,
1393                                       false /*ConvertTypeToTag*/);
1394   }
1395 
1396   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1397     // In order to prevent the optimizer from throwing away the check, don't
1398     // attach range metadata to the load.
1399   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1400     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1401       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1402 
1403   return EmitFromMemory(Load, Ty);
1404 }
1405 
1406 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1407   // Bool has a different representation in memory than in registers.
1408   if (hasBooleanRepresentation(Ty)) {
1409     // This should really always be an i1, but sometimes it's already
1410     // an i8, and it's awkward to track those cases down.
1411     if (Value->getType()->isIntegerTy(1))
1412       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1413     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1414            "wrong value rep of bool");
1415   }
1416 
1417   return Value;
1418 }
1419 
1420 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1421   // Bool has a different representation in memory than in registers.
1422   if (hasBooleanRepresentation(Ty)) {
1423     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1424            "wrong value rep of bool");
1425     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1426   }
1427 
1428   return Value;
1429 }
1430 
1431 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1432                                         bool Volatile, QualType Ty,
1433                                         AlignmentSource AlignSource,
1434                                         llvm::MDNode *TBAAInfo,
1435                                         bool isInit, QualType TBAABaseType,
1436                                         uint64_t TBAAOffset,
1437                                         bool isNontemporal) {
1438 
1439   // Handle vectors differently to get better performance.
1440   if (Ty->isVectorType()) {
1441     llvm::Type *SrcTy = Value->getType();
1442     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1443     // Handle vec3 special.
1444     if (VecTy->getNumElements() == 3) {
1445       // Our source is a vec3, do a shuffle vector to make it a vec4.
1446       llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1447                                 Builder.getInt32(2),
1448                                 llvm::UndefValue::get(Builder.getInt32Ty())};
1449       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1450       Value = Builder.CreateShuffleVector(Value,
1451                                           llvm::UndefValue::get(VecTy),
1452                                           MaskV, "extractVec");
1453       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1454     }
1455     if (Addr.getElementType() != SrcTy) {
1456       Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1457     }
1458   }
1459 
1460   Value = EmitToMemory(Value, Ty);
1461 
1462   LValue AtomicLValue =
1463       LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
1464   if (Ty->isAtomicType() ||
1465       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1466     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1467     return;
1468   }
1469 
1470   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1471   if (isNontemporal) {
1472     llvm::MDNode *Node =
1473         llvm::MDNode::get(Store->getContext(),
1474                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1475     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1476   }
1477   if (TBAAInfo) {
1478     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1479                                                       TBAAOffset);
1480     if (TBAAPath)
1481       CGM.DecorateInstructionWithTBAA(Store, TBAAPath,
1482                                       false /*ConvertTypeToTag*/);
1483   }
1484 }
1485 
1486 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1487                                         bool isInit) {
1488   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1489                     lvalue.getType(), lvalue.getAlignmentSource(),
1490                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1491                     lvalue.getTBAAOffset(), lvalue.isNontemporal());
1492 }
1493 
1494 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1495 /// method emits the address of the lvalue, then loads the result as an rvalue,
1496 /// returning the rvalue.
1497 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1498   if (LV.isObjCWeak()) {
1499     // load of a __weak object.
1500     Address AddrWeakObj = LV.getAddress();
1501     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1502                                                              AddrWeakObj));
1503   }
1504   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1505     // In MRC mode, we do a load+autorelease.
1506     if (!getLangOpts().ObjCAutoRefCount) {
1507       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1508     }
1509 
1510     // In ARC mode, we load retained and then consume the value.
1511     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1512     Object = EmitObjCConsumeObject(LV.getType(), Object);
1513     return RValue::get(Object);
1514   }
1515 
1516   if (LV.isSimple()) {
1517     assert(!LV.getType()->isFunctionType());
1518 
1519     // Everything needs a load.
1520     return RValue::get(EmitLoadOfScalar(LV, Loc));
1521   }
1522 
1523   if (LV.isVectorElt()) {
1524     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1525                                               LV.isVolatileQualified());
1526     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1527                                                     "vecext"));
1528   }
1529 
1530   // If this is a reference to a subset of the elements of a vector, either
1531   // shuffle the input or extract/insert them as appropriate.
1532   if (LV.isExtVectorElt())
1533     return EmitLoadOfExtVectorElementLValue(LV);
1534 
1535   // Global Register variables always invoke intrinsics
1536   if (LV.isGlobalReg())
1537     return EmitLoadOfGlobalRegLValue(LV);
1538 
1539   assert(LV.isBitField() && "Unknown LValue type!");
1540   return EmitLoadOfBitfieldLValue(LV);
1541 }
1542 
1543 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1544   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1545 
1546   // Get the output type.
1547   llvm::Type *ResLTy = ConvertType(LV.getType());
1548 
1549   Address Ptr = LV.getBitFieldAddress();
1550   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1551 
1552   if (Info.IsSigned) {
1553     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1554     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1555     if (HighBits)
1556       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1557     if (Info.Offset + HighBits)
1558       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1559   } else {
1560     if (Info.Offset)
1561       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1562     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1563       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1564                                                               Info.Size),
1565                               "bf.clear");
1566   }
1567   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1568 
1569   return RValue::get(Val);
1570 }
1571 
1572 // If this is a reference to a subset of the elements of a vector, create an
1573 // appropriate shufflevector.
1574 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1575   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1576                                         LV.isVolatileQualified());
1577 
1578   const llvm::Constant *Elts = LV.getExtVectorElts();
1579 
1580   // If the result of the expression is a non-vector type, we must be extracting
1581   // a single element.  Just codegen as an extractelement.
1582   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1583   if (!ExprVT) {
1584     unsigned InIdx = getAccessedFieldNo(0, Elts);
1585     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1586     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1587   }
1588 
1589   // Always use shuffle vector to try to retain the original program structure
1590   unsigned NumResultElts = ExprVT->getNumElements();
1591 
1592   SmallVector<llvm::Constant*, 4> Mask;
1593   for (unsigned i = 0; i != NumResultElts; ++i)
1594     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1595 
1596   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1597   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1598                                     MaskV);
1599   return RValue::get(Vec);
1600 }
1601 
1602 /// @brief Generates lvalue for partial ext_vector access.
1603 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1604   Address VectorAddress = LV.getExtVectorAddress();
1605   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1606   QualType EQT = ExprVT->getElementType();
1607   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1608 
1609   Address CastToPointerElement =
1610     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1611                                  "conv.ptr.element");
1612 
1613   const llvm::Constant *Elts = LV.getExtVectorElts();
1614   unsigned ix = getAccessedFieldNo(0, Elts);
1615 
1616   Address VectorBasePtrPlusIx =
1617     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1618                                    getContext().getTypeSizeInChars(EQT),
1619                                    "vector.elt");
1620 
1621   return VectorBasePtrPlusIx;
1622 }
1623 
1624 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1625 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1626   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1627          "Bad type for register variable");
1628   llvm::MDNode *RegName = cast<llvm::MDNode>(
1629       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1630 
1631   // We accept integer and pointer types only
1632   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1633   llvm::Type *Ty = OrigTy;
1634   if (OrigTy->isPointerTy())
1635     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1636   llvm::Type *Types[] = { Ty };
1637 
1638   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1639   llvm::Value *Call = Builder.CreateCall(
1640       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1641   if (OrigTy->isPointerTy())
1642     Call = Builder.CreateIntToPtr(Call, OrigTy);
1643   return RValue::get(Call);
1644 }
1645 
1646 
1647 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1648 /// lvalue, where both are guaranteed to the have the same type, and that type
1649 /// is 'Ty'.
1650 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1651                                              bool isInit) {
1652   if (!Dst.isSimple()) {
1653     if (Dst.isVectorElt()) {
1654       // Read/modify/write the vector, inserting the new element.
1655       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1656                                             Dst.isVolatileQualified());
1657       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1658                                         Dst.getVectorIdx(), "vecins");
1659       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1660                           Dst.isVolatileQualified());
1661       return;
1662     }
1663 
1664     // If this is an update of extended vector elements, insert them as
1665     // appropriate.
1666     if (Dst.isExtVectorElt())
1667       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1668 
1669     if (Dst.isGlobalReg())
1670       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1671 
1672     assert(Dst.isBitField() && "Unknown LValue type");
1673     return EmitStoreThroughBitfieldLValue(Src, Dst);
1674   }
1675 
1676   // There's special magic for assigning into an ARC-qualified l-value.
1677   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1678     switch (Lifetime) {
1679     case Qualifiers::OCL_None:
1680       llvm_unreachable("present but none");
1681 
1682     case Qualifiers::OCL_ExplicitNone:
1683       // nothing special
1684       break;
1685 
1686     case Qualifiers::OCL_Strong:
1687       if (isInit) {
1688         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1689         break;
1690       }
1691       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1692       return;
1693 
1694     case Qualifiers::OCL_Weak:
1695       if (isInit)
1696         // Initialize and then skip the primitive store.
1697         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1698       else
1699         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1700       return;
1701 
1702     case Qualifiers::OCL_Autoreleasing:
1703       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1704                                                      Src.getScalarVal()));
1705       // fall into the normal path
1706       break;
1707     }
1708   }
1709 
1710   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1711     // load of a __weak object.
1712     Address LvalueDst = Dst.getAddress();
1713     llvm::Value *src = Src.getScalarVal();
1714      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1715     return;
1716   }
1717 
1718   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1719     // load of a __strong object.
1720     Address LvalueDst = Dst.getAddress();
1721     llvm::Value *src = Src.getScalarVal();
1722     if (Dst.isObjCIvar()) {
1723       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1724       llvm::Type *ResultType = IntPtrTy;
1725       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1726       llvm::Value *RHS = dst.getPointer();
1727       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1728       llvm::Value *LHS =
1729         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1730                                "sub.ptr.lhs.cast");
1731       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1732       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1733                                               BytesBetween);
1734     } else if (Dst.isGlobalObjCRef()) {
1735       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1736                                                 Dst.isThreadLocalRef());
1737     }
1738     else
1739       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1740     return;
1741   }
1742 
1743   assert(Src.isScalar() && "Can't emit an agg store with this method");
1744   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1745 }
1746 
1747 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1748                                                      llvm::Value **Result) {
1749   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1750   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1751   Address Ptr = Dst.getBitFieldAddress();
1752 
1753   // Get the source value, truncated to the width of the bit-field.
1754   llvm::Value *SrcVal = Src.getScalarVal();
1755 
1756   // Cast the source to the storage type and shift it into place.
1757   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1758                                  /*IsSigned=*/false);
1759   llvm::Value *MaskedVal = SrcVal;
1760 
1761   // See if there are other bits in the bitfield's storage we'll need to load
1762   // and mask together with source before storing.
1763   if (Info.StorageSize != Info.Size) {
1764     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1765     llvm::Value *Val =
1766       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1767 
1768     // Mask the source value as needed.
1769     if (!hasBooleanRepresentation(Dst.getType()))
1770       SrcVal = Builder.CreateAnd(SrcVal,
1771                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1772                                                             Info.Size),
1773                                  "bf.value");
1774     MaskedVal = SrcVal;
1775     if (Info.Offset)
1776       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1777 
1778     // Mask out the original value.
1779     Val = Builder.CreateAnd(Val,
1780                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1781                                                      Info.Offset,
1782                                                      Info.Offset + Info.Size),
1783                             "bf.clear");
1784 
1785     // Or together the unchanged values and the source value.
1786     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1787   } else {
1788     assert(Info.Offset == 0);
1789   }
1790 
1791   // Write the new value back out.
1792   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1793 
1794   // Return the new value of the bit-field, if requested.
1795   if (Result) {
1796     llvm::Value *ResultVal = MaskedVal;
1797 
1798     // Sign extend the value if needed.
1799     if (Info.IsSigned) {
1800       assert(Info.Size <= Info.StorageSize);
1801       unsigned HighBits = Info.StorageSize - Info.Size;
1802       if (HighBits) {
1803         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1804         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1805       }
1806     }
1807 
1808     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1809                                       "bf.result.cast");
1810     *Result = EmitFromMemory(ResultVal, Dst.getType());
1811   }
1812 }
1813 
1814 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1815                                                                LValue Dst) {
1816   // This access turns into a read/modify/write of the vector.  Load the input
1817   // value now.
1818   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1819                                         Dst.isVolatileQualified());
1820   const llvm::Constant *Elts = Dst.getExtVectorElts();
1821 
1822   llvm::Value *SrcVal = Src.getScalarVal();
1823 
1824   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1825     unsigned NumSrcElts = VTy->getNumElements();
1826     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
1827     if (NumDstElts == NumSrcElts) {
1828       // Use shuffle vector is the src and destination are the same number of
1829       // elements and restore the vector mask since it is on the side it will be
1830       // stored.
1831       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1832       for (unsigned i = 0; i != NumSrcElts; ++i)
1833         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1834 
1835       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1836       Vec = Builder.CreateShuffleVector(SrcVal,
1837                                         llvm::UndefValue::get(Vec->getType()),
1838                                         MaskV);
1839     } else if (NumDstElts > NumSrcElts) {
1840       // Extended the source vector to the same length and then shuffle it
1841       // into the destination.
1842       // FIXME: since we're shuffling with undef, can we just use the indices
1843       //        into that?  This could be simpler.
1844       SmallVector<llvm::Constant*, 4> ExtMask;
1845       for (unsigned i = 0; i != NumSrcElts; ++i)
1846         ExtMask.push_back(Builder.getInt32(i));
1847       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1848       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1849       llvm::Value *ExtSrcVal =
1850         Builder.CreateShuffleVector(SrcVal,
1851                                     llvm::UndefValue::get(SrcVal->getType()),
1852                                     ExtMaskV);
1853       // build identity
1854       SmallVector<llvm::Constant*, 4> Mask;
1855       for (unsigned i = 0; i != NumDstElts; ++i)
1856         Mask.push_back(Builder.getInt32(i));
1857 
1858       // When the vector size is odd and .odd or .hi is used, the last element
1859       // of the Elts constant array will be one past the size of the vector.
1860       // Ignore the last element here, if it is greater than the mask size.
1861       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1862         NumSrcElts--;
1863 
1864       // modify when what gets shuffled in
1865       for (unsigned i = 0; i != NumSrcElts; ++i)
1866         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1867       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1868       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1869     } else {
1870       // We should never shorten the vector
1871       llvm_unreachable("unexpected shorten vector length");
1872     }
1873   } else {
1874     // If the Src is a scalar (not a vector) it must be updating one element.
1875     unsigned InIdx = getAccessedFieldNo(0, Elts);
1876     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1877     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1878   }
1879 
1880   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
1881                       Dst.isVolatileQualified());
1882 }
1883 
1884 /// @brief Store of global named registers are always calls to intrinsics.
1885 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1886   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1887          "Bad type for register variable");
1888   llvm::MDNode *RegName = cast<llvm::MDNode>(
1889       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
1890   assert(RegName && "Register LValue is not metadata");
1891 
1892   // We accept integer and pointer types only
1893   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1894   llvm::Type *Ty = OrigTy;
1895   if (OrigTy->isPointerTy())
1896     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1897   llvm::Type *Types[] = { Ty };
1898 
1899   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1900   llvm::Value *Value = Src.getScalarVal();
1901   if (OrigTy->isPointerTy())
1902     Value = Builder.CreatePtrToInt(Value, Ty);
1903   Builder.CreateCall(
1904       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
1905 }
1906 
1907 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1908 // generating write-barries API. It is currently a global, ivar,
1909 // or neither.
1910 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1911                                  LValue &LV,
1912                                  bool IsMemberAccess=false) {
1913   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1914     return;
1915 
1916   if (isa<ObjCIvarRefExpr>(E)) {
1917     QualType ExpTy = E->getType();
1918     if (IsMemberAccess && ExpTy->isPointerType()) {
1919       // If ivar is a structure pointer, assigning to field of
1920       // this struct follows gcc's behavior and makes it a non-ivar
1921       // writer-barrier conservatively.
1922       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1923       if (ExpTy->isRecordType()) {
1924         LV.setObjCIvar(false);
1925         return;
1926       }
1927     }
1928     LV.setObjCIvar(true);
1929     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1930     LV.setBaseIvarExp(Exp->getBase());
1931     LV.setObjCArray(E->getType()->isArrayType());
1932     return;
1933   }
1934 
1935   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1936     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1937       if (VD->hasGlobalStorage()) {
1938         LV.setGlobalObjCRef(true);
1939         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1940       }
1941     }
1942     LV.setObjCArray(E->getType()->isArrayType());
1943     return;
1944   }
1945 
1946   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1947     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1948     return;
1949   }
1950 
1951   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1952     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1953     if (LV.isObjCIvar()) {
1954       // If cast is to a structure pointer, follow gcc's behavior and make it
1955       // a non-ivar write-barrier.
1956       QualType ExpTy = E->getType();
1957       if (ExpTy->isPointerType())
1958         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1959       if (ExpTy->isRecordType())
1960         LV.setObjCIvar(false);
1961     }
1962     return;
1963   }
1964 
1965   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1966     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1967     return;
1968   }
1969 
1970   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1971     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1972     return;
1973   }
1974 
1975   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1976     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1977     return;
1978   }
1979 
1980   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1981     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1982     return;
1983   }
1984 
1985   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1986     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1987     if (LV.isObjCIvar() && !LV.isObjCArray())
1988       // Using array syntax to assigning to what an ivar points to is not
1989       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1990       LV.setObjCIvar(false);
1991     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1992       // Using array syntax to assigning to what global points to is not
1993       // same as assigning to the global itself. {id *G;} G[i] = 0;
1994       LV.setGlobalObjCRef(false);
1995     return;
1996   }
1997 
1998   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1999     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2000     // We don't know if member is an 'ivar', but this flag is looked at
2001     // only in the context of LV.isObjCIvar().
2002     LV.setObjCArray(E->getType()->isArrayType());
2003     return;
2004   }
2005 }
2006 
2007 static llvm::Value *
2008 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2009                                 llvm::Value *V, llvm::Type *IRType,
2010                                 StringRef Name = StringRef()) {
2011   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2012   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2013 }
2014 
2015 static LValue EmitThreadPrivateVarDeclLValue(
2016     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2017     llvm::Type *RealVarTy, SourceLocation Loc) {
2018   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2019   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2020   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2021 }
2022 
2023 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
2024                                              const ReferenceType *RefTy,
2025                                              AlignmentSource *Source) {
2026   llvm::Value *Ptr = Builder.CreateLoad(Addr);
2027   return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
2028                                               Source, /*forPointee*/ true));
2029 
2030 }
2031 
2032 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
2033                                                   const ReferenceType *RefTy) {
2034   AlignmentSource Source;
2035   Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source);
2036   return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source);
2037 }
2038 
2039 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2040                                            const PointerType *PtrTy,
2041                                            AlignmentSource *Source) {
2042   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2043   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), Source,
2044                                                /*forPointeeType=*/true));
2045 }
2046 
2047 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2048                                                 const PointerType *PtrTy) {
2049   AlignmentSource Source;
2050   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &Source);
2051   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), Source);
2052 }
2053 
2054 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2055                                       const Expr *E, const VarDecl *VD) {
2056   QualType T = E->getType();
2057 
2058   // If it's thread_local, emit a call to its wrapper function instead.
2059   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2060       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2061     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2062 
2063   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2064   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2065   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2066   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2067   Address Addr(V, Alignment);
2068   LValue LV;
2069   // Emit reference to the private copy of the variable if it is an OpenMP
2070   // threadprivate variable.
2071   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
2072     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2073                                           E->getExprLoc());
2074   if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2075     LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
2076   } else {
2077     LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2078   }
2079   setObjCGCLValueClass(CGF.getContext(), E, LV);
2080   return LV;
2081 }
2082 
2083 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2084                                                const FunctionDecl *FD) {
2085   if (FD->hasAttr<WeakRefAttr>()) {
2086     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2087     return aliasee.getPointer();
2088   }
2089 
2090   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2091   if (!FD->hasPrototype()) {
2092     if (const FunctionProtoType *Proto =
2093             FD->getType()->getAs<FunctionProtoType>()) {
2094       // Ugly case: for a K&R-style definition, the type of the definition
2095       // isn't the same as the type of a use.  Correct for this with a
2096       // bitcast.
2097       QualType NoProtoType =
2098           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2099       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2100       V = llvm::ConstantExpr::getBitCast(V,
2101                                       CGM.getTypes().ConvertType(NoProtoType));
2102     }
2103   }
2104   return V;
2105 }
2106 
2107 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2108                                      const Expr *E, const FunctionDecl *FD) {
2109   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2110   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2111   return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl);
2112 }
2113 
2114 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2115                                       llvm::Value *ThisValue) {
2116   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2117   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2118   return CGF.EmitLValueForField(LV, FD);
2119 }
2120 
2121 /// Named Registers are named metadata pointing to the register name
2122 /// which will be read from/written to as an argument to the intrinsic
2123 /// @llvm.read/write_register.
2124 /// So far, only the name is being passed down, but other options such as
2125 /// register type, allocation type or even optimization options could be
2126 /// passed down via the metadata node.
2127 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2128   SmallString<64> Name("llvm.named.register.");
2129   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2130   assert(Asm->getLabel().size() < 64-Name.size() &&
2131       "Register name too big");
2132   Name.append(Asm->getLabel());
2133   llvm::NamedMDNode *M =
2134     CGM.getModule().getOrInsertNamedMetadata(Name);
2135   if (M->getNumOperands() == 0) {
2136     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2137                                               Asm->getLabel());
2138     llvm::Metadata *Ops[] = {Str};
2139     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2140   }
2141 
2142   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2143 
2144   llvm::Value *Ptr =
2145     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2146   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2147 }
2148 
2149 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2150   const NamedDecl *ND = E->getDecl();
2151   QualType T = E->getType();
2152 
2153   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2154     // Global Named registers access via intrinsics only
2155     if (VD->getStorageClass() == SC_Register &&
2156         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2157       return EmitGlobalNamedRegister(VD, CGM);
2158 
2159     // A DeclRefExpr for a reference initialized by a constant expression can
2160     // appear without being odr-used. Directly emit the constant initializer.
2161     const Expr *Init = VD->getAnyInitializer(VD);
2162     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2163         VD->isUsableInConstantExpressions(getContext()) &&
2164         VD->checkInitIsICE() &&
2165         // Do not emit if it is private OpenMP variable.
2166         !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
2167           LocalDeclMap.count(VD))) {
2168       llvm::Constant *Val =
2169         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
2170       assert(Val && "failed to emit reference constant expression");
2171       // FIXME: Eventually we will want to emit vector element references.
2172 
2173       // Should we be using the alignment of the constant pointer we emitted?
2174       CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
2175                                                     /*pointee*/ true);
2176 
2177       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2178     }
2179 
2180     // Check for captured variables.
2181     if (E->refersToEnclosingVariableOrCapture()) {
2182       if (auto *FD = LambdaCaptureFields.lookup(VD))
2183         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2184       else if (CapturedStmtInfo) {
2185         auto I = LocalDeclMap.find(VD);
2186         if (I != LocalDeclMap.end()) {
2187           if (auto RefTy = VD->getType()->getAs<ReferenceType>())
2188             return EmitLoadOfReferenceLValue(I->second, RefTy);
2189           return MakeAddrLValue(I->second, T);
2190         }
2191         LValue CapLVal =
2192             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2193                                     CapturedStmtInfo->getContextValue());
2194         return MakeAddrLValue(
2195             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2196             CapLVal.getType(), AlignmentSource::Decl);
2197       }
2198 
2199       assert(isa<BlockDecl>(CurCodeDecl));
2200       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2201       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2202     }
2203   }
2204 
2205   // FIXME: We should be able to assert this for FunctionDecls as well!
2206   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2207   // those with a valid source location.
2208   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2209           !E->getLocation().isValid()) &&
2210          "Should not use decl without marking it used!");
2211 
2212   if (ND->hasAttr<WeakRefAttr>()) {
2213     const auto *VD = cast<ValueDecl>(ND);
2214     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2215     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2216   }
2217 
2218   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2219     // Check if this is a global variable.
2220     if (VD->hasLinkage() || VD->isStaticDataMember())
2221       return EmitGlobalVarDeclLValue(*this, E, VD);
2222 
2223     Address addr = Address::invalid();
2224 
2225     // The variable should generally be present in the local decl map.
2226     auto iter = LocalDeclMap.find(VD);
2227     if (iter != LocalDeclMap.end()) {
2228       addr = iter->second;
2229 
2230     // Otherwise, it might be static local we haven't emitted yet for
2231     // some reason; most likely, because it's in an outer function.
2232     } else if (VD->isStaticLocal()) {
2233       addr = Address(CGM.getOrCreateStaticVarDecl(
2234           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2235                      getContext().getDeclAlign(VD));
2236 
2237     // No other cases for now.
2238     } else {
2239       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2240     }
2241 
2242 
2243     // Check for OpenMP threadprivate variables.
2244     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2245       return EmitThreadPrivateVarDeclLValue(
2246           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2247           E->getExprLoc());
2248     }
2249 
2250     // Drill into block byref variables.
2251     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2252     if (isBlockByref) {
2253       addr = emitBlockByrefAddress(addr, VD);
2254     }
2255 
2256     // Drill into reference types.
2257     LValue LV;
2258     if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2259       LV = EmitLoadOfReferenceLValue(addr, RefTy);
2260     } else {
2261       LV = MakeAddrLValue(addr, T, AlignmentSource::Decl);
2262     }
2263 
2264     bool isLocalStorage = VD->hasLocalStorage();
2265 
2266     bool NonGCable = isLocalStorage &&
2267                      !VD->getType()->isReferenceType() &&
2268                      !isBlockByref;
2269     if (NonGCable) {
2270       LV.getQuals().removeObjCGCAttr();
2271       LV.setNonGC(true);
2272     }
2273 
2274     bool isImpreciseLifetime =
2275       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2276     if (isImpreciseLifetime)
2277       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2278     setObjCGCLValueClass(getContext(), E, LV);
2279     return LV;
2280   }
2281 
2282   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2283     return EmitFunctionDeclLValue(*this, E, FD);
2284 
2285   // FIXME: While we're emitting a binding from an enclosing scope, all other
2286   // DeclRefExprs we see should be implicitly treated as if they also refer to
2287   // an enclosing scope.
2288   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2289     return EmitLValue(BD->getBinding());
2290 
2291   llvm_unreachable("Unhandled DeclRefExpr");
2292 }
2293 
2294 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2295   // __extension__ doesn't affect lvalue-ness.
2296   if (E->getOpcode() == UO_Extension)
2297     return EmitLValue(E->getSubExpr());
2298 
2299   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2300   switch (E->getOpcode()) {
2301   default: llvm_unreachable("Unknown unary operator lvalue!");
2302   case UO_Deref: {
2303     QualType T = E->getSubExpr()->getType()->getPointeeType();
2304     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2305 
2306     AlignmentSource AlignSource;
2307     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource);
2308     LValue LV = MakeAddrLValue(Addr, T, AlignSource);
2309     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2310 
2311     // We should not generate __weak write barrier on indirect reference
2312     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2313     // But, we continue to generate __strong write barrier on indirect write
2314     // into a pointer to object.
2315     if (getLangOpts().ObjC1 &&
2316         getLangOpts().getGC() != LangOptions::NonGC &&
2317         LV.isObjCWeak())
2318       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2319     return LV;
2320   }
2321   case UO_Real:
2322   case UO_Imag: {
2323     LValue LV = EmitLValue(E->getSubExpr());
2324     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2325 
2326     // __real is valid on scalars.  This is a faster way of testing that.
2327     // __imag can only produce an rvalue on scalars.
2328     if (E->getOpcode() == UO_Real &&
2329         !LV.getAddress().getElementType()->isStructTy()) {
2330       assert(E->getSubExpr()->getType()->isArithmeticType());
2331       return LV;
2332     }
2333 
2334     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2335 
2336     Address Component =
2337       (E->getOpcode() == UO_Real
2338          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2339          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2340     LValue ElemLV = MakeAddrLValue(Component, T, LV.getAlignmentSource());
2341     ElemLV.getQuals().addQualifiers(LV.getQuals());
2342     return ElemLV;
2343   }
2344   case UO_PreInc:
2345   case UO_PreDec: {
2346     LValue LV = EmitLValue(E->getSubExpr());
2347     bool isInc = E->getOpcode() == UO_PreInc;
2348 
2349     if (E->getType()->isAnyComplexType())
2350       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2351     else
2352       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2353     return LV;
2354   }
2355   }
2356 }
2357 
2358 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2359   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2360                         E->getType(), AlignmentSource::Decl);
2361 }
2362 
2363 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2364   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2365                         E->getType(), AlignmentSource::Decl);
2366 }
2367 
2368 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2369   auto SL = E->getFunctionName();
2370   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2371   StringRef FnName = CurFn->getName();
2372   if (FnName.startswith("\01"))
2373     FnName = FnName.substr(1);
2374   StringRef NameItems[] = {
2375       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2376   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2377   if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) {
2378     std::string Name = SL->getString();
2379     if (!Name.empty()) {
2380       unsigned Discriminator =
2381           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2382       if (Discriminator)
2383         Name += "_" + Twine(Discriminator + 1).str();
2384       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2385       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2386     } else {
2387       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2388       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2389     }
2390   }
2391   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2392   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2393 }
2394 
2395 /// Emit a type description suitable for use by a runtime sanitizer library. The
2396 /// format of a type descriptor is
2397 ///
2398 /// \code
2399 ///   { i16 TypeKind, i16 TypeInfo }
2400 /// \endcode
2401 ///
2402 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2403 /// integer, 1 for a floating point value, and -1 for anything else.
2404 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2405   // Only emit each type's descriptor once.
2406   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2407     return C;
2408 
2409   uint16_t TypeKind = -1;
2410   uint16_t TypeInfo = 0;
2411 
2412   if (T->isIntegerType()) {
2413     TypeKind = 0;
2414     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2415                (T->isSignedIntegerType() ? 1 : 0);
2416   } else if (T->isFloatingType()) {
2417     TypeKind = 1;
2418     TypeInfo = getContext().getTypeSize(T);
2419   }
2420 
2421   // Format the type name as if for a diagnostic, including quotes and
2422   // optionally an 'aka'.
2423   SmallString<32> Buffer;
2424   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2425                                     (intptr_t)T.getAsOpaquePtr(),
2426                                     StringRef(), StringRef(), None, Buffer,
2427                                     None);
2428 
2429   llvm::Constant *Components[] = {
2430     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2431     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2432   };
2433   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2434 
2435   auto *GV = new llvm::GlobalVariable(
2436       CGM.getModule(), Descriptor->getType(),
2437       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2438   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2439   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2440 
2441   // Remember the descriptor for this type.
2442   CGM.setTypeDescriptorInMap(T, GV);
2443 
2444   return GV;
2445 }
2446 
2447 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2448   llvm::Type *TargetTy = IntPtrTy;
2449 
2450   // Floating-point types which fit into intptr_t are bitcast to integers
2451   // and then passed directly (after zero-extension, if necessary).
2452   if (V->getType()->isFloatingPointTy()) {
2453     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2454     if (Bits <= TargetTy->getIntegerBitWidth())
2455       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2456                                                          Bits));
2457   }
2458 
2459   // Integers which fit in intptr_t are zero-extended and passed directly.
2460   if (V->getType()->isIntegerTy() &&
2461       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2462     return Builder.CreateZExt(V, TargetTy);
2463 
2464   // Pointers are passed directly, everything else is passed by address.
2465   if (!V->getType()->isPointerTy()) {
2466     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2467     Builder.CreateStore(V, Ptr);
2468     V = Ptr.getPointer();
2469   }
2470   return Builder.CreatePtrToInt(V, TargetTy);
2471 }
2472 
2473 /// \brief Emit a representation of a SourceLocation for passing to a handler
2474 /// in a sanitizer runtime library. The format for this data is:
2475 /// \code
2476 ///   struct SourceLocation {
2477 ///     const char *Filename;
2478 ///     int32_t Line, Column;
2479 ///   };
2480 /// \endcode
2481 /// For an invalid SourceLocation, the Filename pointer is null.
2482 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2483   llvm::Constant *Filename;
2484   int Line, Column;
2485 
2486   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2487   if (PLoc.isValid()) {
2488     StringRef FilenameString = PLoc.getFilename();
2489 
2490     int PathComponentsToStrip =
2491         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2492     if (PathComponentsToStrip < 0) {
2493       assert(PathComponentsToStrip != INT_MIN);
2494       int PathComponentsToKeep = -PathComponentsToStrip;
2495       auto I = llvm::sys::path::rbegin(FilenameString);
2496       auto E = llvm::sys::path::rend(FilenameString);
2497       while (I != E && --PathComponentsToKeep)
2498         ++I;
2499 
2500       FilenameString = FilenameString.substr(I - E);
2501     } else if (PathComponentsToStrip > 0) {
2502       auto I = llvm::sys::path::begin(FilenameString);
2503       auto E = llvm::sys::path::end(FilenameString);
2504       while (I != E && PathComponentsToStrip--)
2505         ++I;
2506 
2507       if (I != E)
2508         FilenameString =
2509             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2510       else
2511         FilenameString = llvm::sys::path::filename(FilenameString);
2512     }
2513 
2514     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2515     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2516                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2517     Filename = FilenameGV.getPointer();
2518     Line = PLoc.getLine();
2519     Column = PLoc.getColumn();
2520   } else {
2521     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2522     Line = Column = 0;
2523   }
2524 
2525   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2526                             Builder.getInt32(Column)};
2527 
2528   return llvm::ConstantStruct::getAnon(Data);
2529 }
2530 
2531 namespace {
2532 /// \brief Specify under what conditions this check can be recovered
2533 enum class CheckRecoverableKind {
2534   /// Always terminate program execution if this check fails.
2535   Unrecoverable,
2536   /// Check supports recovering, runtime has both fatal (noreturn) and
2537   /// non-fatal handlers for this check.
2538   Recoverable,
2539   /// Runtime conditionally aborts, always need to support recovery.
2540   AlwaysRecoverable
2541 };
2542 }
2543 
2544 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2545   assert(llvm::countPopulation(Kind) == 1);
2546   switch (Kind) {
2547   case SanitizerKind::Vptr:
2548     return CheckRecoverableKind::AlwaysRecoverable;
2549   case SanitizerKind::Return:
2550   case SanitizerKind::Unreachable:
2551     return CheckRecoverableKind::Unrecoverable;
2552   default:
2553     return CheckRecoverableKind::Recoverable;
2554   }
2555 }
2556 
2557 namespace {
2558 struct SanitizerHandlerInfo {
2559   char const *const Name;
2560   unsigned Version;
2561 };
2562 }
2563 
2564 const SanitizerHandlerInfo SanitizerHandlers[] = {
2565 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2566     LIST_SANITIZER_CHECKS
2567 #undef SANITIZER_CHECK
2568 };
2569 
2570 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2571                                  llvm::FunctionType *FnType,
2572                                  ArrayRef<llvm::Value *> FnArgs,
2573                                  SanitizerHandler CheckHandler,
2574                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2575                                  llvm::BasicBlock *ContBB) {
2576   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2577   bool NeedsAbortSuffix =
2578       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2579   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2580   const StringRef CheckName = CheckInfo.Name;
2581   std::string FnName =
2582       ("__ubsan_handle_" + CheckName +
2583        (CheckInfo.Version ? "_v" + llvm::utostr(CheckInfo.Version) : "") +
2584        (NeedsAbortSuffix ? "_abort" : ""))
2585           .str();
2586   bool MayReturn =
2587       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2588 
2589   llvm::AttrBuilder B;
2590   if (!MayReturn) {
2591     B.addAttribute(llvm::Attribute::NoReturn)
2592         .addAttribute(llvm::Attribute::NoUnwind);
2593   }
2594   B.addAttribute(llvm::Attribute::UWTable);
2595 
2596   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2597       FnType, FnName,
2598       llvm::AttributeSet::get(CGF.getLLVMContext(),
2599                               llvm::AttributeSet::FunctionIndex, B),
2600       /*Local=*/true);
2601   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2602   if (!MayReturn) {
2603     HandlerCall->setDoesNotReturn();
2604     CGF.Builder.CreateUnreachable();
2605   } else {
2606     CGF.Builder.CreateBr(ContBB);
2607   }
2608 }
2609 
2610 void CodeGenFunction::EmitCheck(
2611     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2612     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2613     ArrayRef<llvm::Value *> DynamicArgs) {
2614   assert(IsSanitizerScope);
2615   assert(Checked.size() > 0);
2616   assert(CheckHandler >= 0 &&
2617          CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers));
2618   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2619 
2620   llvm::Value *FatalCond = nullptr;
2621   llvm::Value *RecoverableCond = nullptr;
2622   llvm::Value *TrapCond = nullptr;
2623   for (int i = 0, n = Checked.size(); i < n; ++i) {
2624     llvm::Value *Check = Checked[i].first;
2625     // -fsanitize-trap= overrides -fsanitize-recover=.
2626     llvm::Value *&Cond =
2627         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2628             ? TrapCond
2629             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2630                   ? RecoverableCond
2631                   : FatalCond;
2632     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2633   }
2634 
2635   if (TrapCond)
2636     EmitTrapCheck(TrapCond);
2637   if (!FatalCond && !RecoverableCond)
2638     return;
2639 
2640   llvm::Value *JointCond;
2641   if (FatalCond && RecoverableCond)
2642     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2643   else
2644     JointCond = FatalCond ? FatalCond : RecoverableCond;
2645   assert(JointCond);
2646 
2647   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2648   assert(SanOpts.has(Checked[0].second));
2649 #ifndef NDEBUG
2650   for (int i = 1, n = Checked.size(); i < n; ++i) {
2651     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2652            "All recoverable kinds in a single check must be same!");
2653     assert(SanOpts.has(Checked[i].second));
2654   }
2655 #endif
2656 
2657   llvm::BasicBlock *Cont = createBasicBlock("cont");
2658   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2659   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2660   // Give hint that we very much don't expect to execute the handler
2661   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2662   llvm::MDBuilder MDHelper(getLLVMContext());
2663   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2664   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2665   EmitBlock(Handlers);
2666 
2667   // Handler functions take an i8* pointing to the (handler-specific) static
2668   // information block, followed by a sequence of intptr_t arguments
2669   // representing operand values.
2670   SmallVector<llvm::Value *, 4> Args;
2671   SmallVector<llvm::Type *, 4> ArgTypes;
2672   Args.reserve(DynamicArgs.size() + 1);
2673   ArgTypes.reserve(DynamicArgs.size() + 1);
2674 
2675   // Emit handler arguments and create handler function type.
2676   if (!StaticArgs.empty()) {
2677     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2678     auto *InfoPtr =
2679         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2680                                  llvm::GlobalVariable::PrivateLinkage, Info);
2681     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2682     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2683     Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2684     ArgTypes.push_back(Int8PtrTy);
2685   }
2686 
2687   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2688     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2689     ArgTypes.push_back(IntPtrTy);
2690   }
2691 
2692   llvm::FunctionType *FnType =
2693     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2694 
2695   if (!FatalCond || !RecoverableCond) {
2696     // Simple case: we need to generate a single handler call, either
2697     // fatal, or non-fatal.
2698     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
2699                          (FatalCond != nullptr), Cont);
2700   } else {
2701     // Emit two handler calls: first one for set of unrecoverable checks,
2702     // another one for recoverable.
2703     llvm::BasicBlock *NonFatalHandlerBB =
2704         createBasicBlock("non_fatal." + CheckName);
2705     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2706     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2707     EmitBlock(FatalHandlerBB);
2708     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
2709                          NonFatalHandlerBB);
2710     EmitBlock(NonFatalHandlerBB);
2711     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
2712                          Cont);
2713   }
2714 
2715   EmitBlock(Cont);
2716 }
2717 
2718 void CodeGenFunction::EmitCfiSlowPathCheck(
2719     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2720     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2721   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2722 
2723   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2724   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2725 
2726   llvm::MDBuilder MDHelper(getLLVMContext());
2727   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2728   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2729 
2730   EmitBlock(CheckBB);
2731 
2732   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
2733 
2734   llvm::CallInst *CheckCall;
2735   if (WithDiag) {
2736     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2737     auto *InfoPtr =
2738         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2739                                  llvm::GlobalVariable::PrivateLinkage, Info);
2740     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2741     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2742 
2743     llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction(
2744         "__cfi_slowpath_diag",
2745         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
2746                                 false));
2747     CheckCall = Builder.CreateCall(
2748         SlowPathDiagFn,
2749         {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
2750   } else {
2751     llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2752         "__cfi_slowpath",
2753         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
2754     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2755   }
2756 
2757   CheckCall->setDoesNotThrow();
2758 
2759   EmitBlock(Cont);
2760 }
2761 
2762 // This function is basically a switch over the CFI failure kind, which is
2763 // extracted from CFICheckFailData (1st function argument). Each case is either
2764 // llvm.trap or a call to one of the two runtime handlers, based on
2765 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
2766 // failure kind) traps, but this should really never happen.  CFICheckFailData
2767 // can be nullptr if the calling module has -fsanitize-trap behavior for this
2768 // check kind; in this case __cfi_check_fail traps as well.
2769 void CodeGenFunction::EmitCfiCheckFail() {
2770   SanitizerScope SanScope(this);
2771   FunctionArgList Args;
2772   ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr,
2773                             getContext().VoidPtrTy);
2774   ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr,
2775                             getContext().VoidPtrTy);
2776   Args.push_back(&ArgData);
2777   Args.push_back(&ArgAddr);
2778 
2779   const CGFunctionInfo &FI =
2780     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
2781 
2782   llvm::Function *F = llvm::Function::Create(
2783       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
2784       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
2785   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
2786 
2787   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
2788                 SourceLocation());
2789 
2790   llvm::Value *Data =
2791       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
2792                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
2793   llvm::Value *Addr =
2794       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
2795                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
2796 
2797   // Data == nullptr means the calling module has trap behaviour for this check.
2798   llvm::Value *DataIsNotNullPtr =
2799       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
2800   EmitTrapCheck(DataIsNotNullPtr);
2801 
2802   llvm::StructType *SourceLocationTy =
2803       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty, nullptr);
2804   llvm::StructType *CfiCheckFailDataTy =
2805       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy, nullptr);
2806 
2807   llvm::Value *V = Builder.CreateConstGEP2_32(
2808       CfiCheckFailDataTy,
2809       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
2810       0);
2811   Address CheckKindAddr(V, getIntAlign());
2812   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
2813 
2814   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2815       CGM.getLLVMContext(),
2816       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2817   llvm::Value *ValidVtable = Builder.CreateZExt(
2818       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2819                          {Addr, AllVtables}),
2820       IntPtrTy);
2821 
2822   const std::pair<int, SanitizerMask> CheckKinds[] = {
2823       {CFITCK_VCall, SanitizerKind::CFIVCall},
2824       {CFITCK_NVCall, SanitizerKind::CFINVCall},
2825       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
2826       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
2827       {CFITCK_ICall, SanitizerKind::CFIICall}};
2828 
2829   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
2830   for (auto CheckKindMaskPair : CheckKinds) {
2831     int Kind = CheckKindMaskPair.first;
2832     SanitizerMask Mask = CheckKindMaskPair.second;
2833     llvm::Value *Cond =
2834         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
2835     if (CGM.getLangOpts().Sanitize.has(Mask))
2836       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
2837                 {Data, Addr, ValidVtable});
2838     else
2839       EmitTrapCheck(Cond);
2840   }
2841 
2842   FinishFunction();
2843   // The only reference to this function will be created during LTO link.
2844   // Make sure it survives until then.
2845   CGM.addUsedGlobal(F);
2846 }
2847 
2848 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2849   llvm::BasicBlock *Cont = createBasicBlock("cont");
2850 
2851   // If we're optimizing, collapse all calls to trap down to just one per
2852   // function to save on code size.
2853   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2854     TrapBB = createBasicBlock("trap");
2855     Builder.CreateCondBr(Checked, Cont, TrapBB);
2856     EmitBlock(TrapBB);
2857     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2858     TrapCall->setDoesNotReturn();
2859     TrapCall->setDoesNotThrow();
2860     Builder.CreateUnreachable();
2861   } else {
2862     Builder.CreateCondBr(Checked, Cont, TrapBB);
2863   }
2864 
2865   EmitBlock(Cont);
2866 }
2867 
2868 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
2869   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
2870 
2871   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
2872     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
2873                                   CGM.getCodeGenOpts().TrapFuncName);
2874     TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex, A);
2875   }
2876 
2877   return TrapCall;
2878 }
2879 
2880 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
2881                                                  AlignmentSource *AlignSource) {
2882   assert(E->getType()->isArrayType() &&
2883          "Array to pointer decay must have array source type!");
2884 
2885   // Expressions of array type can't be bitfields or vector elements.
2886   LValue LV = EmitLValue(E);
2887   Address Addr = LV.getAddress();
2888   if (AlignSource) *AlignSource = LV.getAlignmentSource();
2889 
2890   // If the array type was an incomplete type, we need to make sure
2891   // the decay ends up being the right type.
2892   llvm::Type *NewTy = ConvertType(E->getType());
2893   Addr = Builder.CreateElementBitCast(Addr, NewTy);
2894 
2895   // Note that VLA pointers are always decayed, so we don't need to do
2896   // anything here.
2897   if (!E->getType()->isVariableArrayType()) {
2898     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
2899            "Expected pointer to array");
2900     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
2901   }
2902 
2903   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
2904   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
2905 }
2906 
2907 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2908 /// array to pointer, return the array subexpression.
2909 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2910   // If this isn't just an array->pointer decay, bail out.
2911   const auto *CE = dyn_cast<CastExpr>(E);
2912   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2913     return nullptr;
2914 
2915   // If this is a decay from variable width array, bail out.
2916   const Expr *SubExpr = CE->getSubExpr();
2917   if (SubExpr->getType()->isVariableArrayType())
2918     return nullptr;
2919 
2920   return SubExpr;
2921 }
2922 
2923 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
2924                                           llvm::Value *ptr,
2925                                           ArrayRef<llvm::Value*> indices,
2926                                           bool inbounds,
2927                                     const llvm::Twine &name = "arrayidx") {
2928   if (inbounds) {
2929     return CGF.Builder.CreateInBoundsGEP(ptr, indices, name);
2930   } else {
2931     return CGF.Builder.CreateGEP(ptr, indices, name);
2932   }
2933 }
2934 
2935 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
2936                                       llvm::Value *idx,
2937                                       CharUnits eltSize) {
2938   // If we have a constant index, we can use the exact offset of the
2939   // element we're accessing.
2940   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
2941     CharUnits offset = constantIdx->getZExtValue() * eltSize;
2942     return arrayAlign.alignmentAtOffset(offset);
2943 
2944   // Otherwise, use the worst-case alignment for any element.
2945   } else {
2946     return arrayAlign.alignmentOfArrayElement(eltSize);
2947   }
2948 }
2949 
2950 static QualType getFixedSizeElementType(const ASTContext &ctx,
2951                                         const VariableArrayType *vla) {
2952   QualType eltType;
2953   do {
2954     eltType = vla->getElementType();
2955   } while ((vla = ctx.getAsVariableArrayType(eltType)));
2956   return eltType;
2957 }
2958 
2959 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
2960                                      ArrayRef<llvm::Value*> indices,
2961                                      QualType eltType, bool inbounds,
2962                                      const llvm::Twine &name = "arrayidx") {
2963   // All the indices except that last must be zero.
2964 #ifndef NDEBUG
2965   for (auto idx : indices.drop_back())
2966     assert(isa<llvm::ConstantInt>(idx) &&
2967            cast<llvm::ConstantInt>(idx)->isZero());
2968 #endif
2969 
2970   // Determine the element size of the statically-sized base.  This is
2971   // the thing that the indices are expressed in terms of.
2972   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
2973     eltType = getFixedSizeElementType(CGF.getContext(), vla);
2974   }
2975 
2976   // We can use that to compute the best alignment of the element.
2977   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2978   CharUnits eltAlign =
2979     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
2980 
2981   llvm::Value *eltPtr =
2982     emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name);
2983   return Address(eltPtr, eltAlign);
2984 }
2985 
2986 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2987                                                bool Accessed) {
2988   // The index must always be an integer, which is not an aggregate.  Emit it
2989   // in lexical order (this complexity is, sadly, required by C++17).
2990   llvm::Value *IdxPre =
2991       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
2992   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
2993     auto *Idx = IdxPre;
2994     if (E->getLHS() != E->getIdx()) {
2995       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
2996       Idx = EmitScalarExpr(E->getIdx());
2997     }
2998 
2999     QualType IdxTy = E->getIdx()->getType();
3000     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3001 
3002     if (SanOpts.has(SanitizerKind::ArrayBounds))
3003       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3004 
3005     // Extend or truncate the index type to 32 or 64-bits.
3006     if (Promote && Idx->getType() != IntPtrTy)
3007       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3008 
3009     return Idx;
3010   };
3011   IdxPre = nullptr;
3012 
3013   // If the base is a vector type, then we are forming a vector element lvalue
3014   // with this subscript.
3015   if (E->getBase()->getType()->isVectorType() &&
3016       !isa<ExtVectorElementExpr>(E->getBase())) {
3017     // Emit the vector as an lvalue to get its address.
3018     LValue LHS = EmitLValue(E->getBase());
3019     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3020     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3021     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
3022                                  E->getBase()->getType(),
3023                                  LHS.getAlignmentSource());
3024   }
3025 
3026   // All the other cases basically behave like simple offsetting.
3027 
3028   // Handle the extvector case we ignored above.
3029   if (isa<ExtVectorElementExpr>(E->getBase())) {
3030     LValue LV = EmitLValue(E->getBase());
3031     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3032     Address Addr = EmitExtVectorElementLValue(LV);
3033 
3034     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3035     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true);
3036     return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource());
3037   }
3038 
3039   AlignmentSource AlignSource;
3040   Address Addr = Address::invalid();
3041   if (const VariableArrayType *vla =
3042            getContext().getAsVariableArrayType(E->getType())) {
3043     // The base must be a pointer, which is not an aggregate.  Emit
3044     // it.  It needs to be emitted first in case it's what captures
3045     // the VLA bounds.
3046     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
3047     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3048 
3049     // The element count here is the total number of non-VLA elements.
3050     llvm::Value *numElements = getVLASize(vla).first;
3051 
3052     // Effectively, the multiply by the VLA size is part of the GEP.
3053     // GEP indexes are signed, and scaling an index isn't permitted to
3054     // signed-overflow, so we use the same semantics for our explicit
3055     // multiply.  We suppress this if overflow is not undefined behavior.
3056     if (getLangOpts().isSignedOverflowDefined()) {
3057       Idx = Builder.CreateMul(Idx, numElements);
3058     } else {
3059       Idx = Builder.CreateNSWMul(Idx, numElements);
3060     }
3061 
3062     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3063                                  !getLangOpts().isSignedOverflowDefined());
3064 
3065   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3066     // Indexing over an interface, as in "NSString *P; P[4];"
3067 
3068     // Emit the base pointer.
3069     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
3070     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3071 
3072     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3073     llvm::Value *InterfaceSizeVal =
3074         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3075 
3076     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3077 
3078     // We don't necessarily build correct LLVM struct types for ObjC
3079     // interfaces, so we can't rely on GEP to do this scaling
3080     // correctly, so we need to cast to i8*.  FIXME: is this actually
3081     // true?  A lot of other things in the fragile ABI would break...
3082     llvm::Type *OrigBaseTy = Addr.getType();
3083     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3084 
3085     // Do the GEP.
3086     CharUnits EltAlign =
3087       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3088     llvm::Value *EltPtr =
3089       emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false);
3090     Addr = Address(EltPtr, EltAlign);
3091 
3092     // Cast back.
3093     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3094   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3095     // If this is A[i] where A is an array, the frontend will have decayed the
3096     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3097     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3098     // "gep x, i" here.  Emit one "gep A, 0, i".
3099     assert(Array->getType()->isArrayType() &&
3100            "Array to pointer decay must have array source type!");
3101     LValue ArrayLV;
3102     // For simple multidimensional array indexing, set the 'accessed' flag for
3103     // better bounds-checking of the base expression.
3104     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3105       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3106     else
3107       ArrayLV = EmitLValue(Array);
3108     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3109 
3110     // Propagate the alignment from the array itself to the result.
3111     Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(),
3112                                  {CGM.getSize(CharUnits::Zero()), Idx},
3113                                  E->getType(),
3114                                  !getLangOpts().isSignedOverflowDefined());
3115     AlignSource = ArrayLV.getAlignmentSource();
3116   } else {
3117     // The base must be a pointer; emit it with an estimate of its alignment.
3118     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
3119     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3120     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3121                                  !getLangOpts().isSignedOverflowDefined());
3122   }
3123 
3124   LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource);
3125 
3126   // TODO: Preserve/extend path TBAA metadata?
3127 
3128   if (getLangOpts().ObjC1 &&
3129       getLangOpts().getGC() != LangOptions::NonGC) {
3130     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3131     setObjCGCLValueClass(getContext(), E, LV);
3132   }
3133   return LV;
3134 }
3135 
3136 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3137                                        AlignmentSource &AlignSource,
3138                                        QualType BaseTy, QualType ElTy,
3139                                        bool IsLowerBound) {
3140   LValue BaseLVal;
3141   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3142     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3143     if (BaseTy->isArrayType()) {
3144       Address Addr = BaseLVal.getAddress();
3145       AlignSource = BaseLVal.getAlignmentSource();
3146 
3147       // If the array type was an incomplete type, we need to make sure
3148       // the decay ends up being the right type.
3149       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3150       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3151 
3152       // Note that VLA pointers are always decayed, so we don't need to do
3153       // anything here.
3154       if (!BaseTy->isVariableArrayType()) {
3155         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3156                "Expected pointer to array");
3157         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3158                                            "arraydecay");
3159       }
3160 
3161       return CGF.Builder.CreateElementBitCast(Addr,
3162                                               CGF.ConvertTypeForMem(ElTy));
3163     }
3164     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &AlignSource);
3165     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3166   }
3167   return CGF.EmitPointerWithAlignment(Base, &AlignSource);
3168 }
3169 
3170 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3171                                                 bool IsLowerBound) {
3172   QualType BaseTy;
3173   if (auto *ASE =
3174           dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
3175     BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE);
3176   else
3177     BaseTy = E->getBase()->getType();
3178   QualType ResultExprTy;
3179   if (auto *AT = getContext().getAsArrayType(BaseTy))
3180     ResultExprTy = AT->getElementType();
3181   else
3182     ResultExprTy = BaseTy->getPointeeType();
3183   llvm::Value *Idx = nullptr;
3184   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3185     // Requesting lower bound or upper bound, but without provided length and
3186     // without ':' symbol for the default length -> length = 1.
3187     // Idx = LowerBound ?: 0;
3188     if (auto *LowerBound = E->getLowerBound()) {
3189       Idx = Builder.CreateIntCast(
3190           EmitScalarExpr(LowerBound), IntPtrTy,
3191           LowerBound->getType()->hasSignedIntegerRepresentation());
3192     } else
3193       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3194   } else {
3195     // Try to emit length or lower bound as constant. If this is possible, 1
3196     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3197     // IR (LB + Len) - 1.
3198     auto &C = CGM.getContext();
3199     auto *Length = E->getLength();
3200     llvm::APSInt ConstLength;
3201     if (Length) {
3202       // Idx = LowerBound + Length - 1;
3203       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3204         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3205         Length = nullptr;
3206       }
3207       auto *LowerBound = E->getLowerBound();
3208       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3209       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3210         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3211         LowerBound = nullptr;
3212       }
3213       if (!Length)
3214         --ConstLength;
3215       else if (!LowerBound)
3216         --ConstLowerBound;
3217 
3218       if (Length || LowerBound) {
3219         auto *LowerBoundVal =
3220             LowerBound
3221                 ? Builder.CreateIntCast(
3222                       EmitScalarExpr(LowerBound), IntPtrTy,
3223                       LowerBound->getType()->hasSignedIntegerRepresentation())
3224                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3225         auto *LengthVal =
3226             Length
3227                 ? Builder.CreateIntCast(
3228                       EmitScalarExpr(Length), IntPtrTy,
3229                       Length->getType()->hasSignedIntegerRepresentation())
3230                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3231         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3232                                 /*HasNUW=*/false,
3233                                 !getLangOpts().isSignedOverflowDefined());
3234         if (Length && LowerBound) {
3235           Idx = Builder.CreateSub(
3236               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3237               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3238         }
3239       } else
3240         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3241     } else {
3242       // Idx = ArraySize - 1;
3243       QualType ArrayTy = BaseTy->isPointerType()
3244                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3245                              : BaseTy;
3246       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3247         Length = VAT->getSizeExpr();
3248         if (Length->isIntegerConstantExpr(ConstLength, C))
3249           Length = nullptr;
3250       } else {
3251         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3252         ConstLength = CAT->getSize();
3253       }
3254       if (Length) {
3255         auto *LengthVal = Builder.CreateIntCast(
3256             EmitScalarExpr(Length), IntPtrTy,
3257             Length->getType()->hasSignedIntegerRepresentation());
3258         Idx = Builder.CreateSub(
3259             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3260             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3261       } else {
3262         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3263         --ConstLength;
3264         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3265       }
3266     }
3267   }
3268   assert(Idx);
3269 
3270   Address EltPtr = Address::invalid();
3271   AlignmentSource AlignSource;
3272   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3273     // The base must be a pointer, which is not an aggregate.  Emit
3274     // it.  It needs to be emitted first in case it's what captures
3275     // the VLA bounds.
3276     Address Base =
3277         emitOMPArraySectionBase(*this, E->getBase(), AlignSource, BaseTy,
3278                                 VLA->getElementType(), IsLowerBound);
3279     // The element count here is the total number of non-VLA elements.
3280     llvm::Value *NumElements = getVLASize(VLA).first;
3281 
3282     // Effectively, the multiply by the VLA size is part of the GEP.
3283     // GEP indexes are signed, and scaling an index isn't permitted to
3284     // signed-overflow, so we use the same semantics for our explicit
3285     // multiply.  We suppress this if overflow is not undefined behavior.
3286     if (getLangOpts().isSignedOverflowDefined())
3287       Idx = Builder.CreateMul(Idx, NumElements);
3288     else
3289       Idx = Builder.CreateNSWMul(Idx, NumElements);
3290     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3291                                    !getLangOpts().isSignedOverflowDefined());
3292   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3293     // If this is A[i] where A is an array, the frontend will have decayed the
3294     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3295     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3296     // "gep x, i" here.  Emit one "gep A, 0, i".
3297     assert(Array->getType()->isArrayType() &&
3298            "Array to pointer decay must have array source type!");
3299     LValue ArrayLV;
3300     // For simple multidimensional array indexing, set the 'accessed' flag for
3301     // better bounds-checking of the base expression.
3302     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3303       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3304     else
3305       ArrayLV = EmitLValue(Array);
3306 
3307     // Propagate the alignment from the array itself to the result.
3308     EltPtr = emitArraySubscriptGEP(
3309         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3310         ResultExprTy, !getLangOpts().isSignedOverflowDefined());
3311     AlignSource = ArrayLV.getAlignmentSource();
3312   } else {
3313     Address Base = emitOMPArraySectionBase(*this, E->getBase(), AlignSource,
3314                                            BaseTy, ResultExprTy, IsLowerBound);
3315     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3316                                    !getLangOpts().isSignedOverflowDefined());
3317   }
3318 
3319   return MakeAddrLValue(EltPtr, ResultExprTy, AlignSource);
3320 }
3321 
3322 LValue CodeGenFunction::
3323 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3324   // Emit the base vector as an l-value.
3325   LValue Base;
3326 
3327   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3328   if (E->isArrow()) {
3329     // If it is a pointer to a vector, emit the address and form an lvalue with
3330     // it.
3331     AlignmentSource AlignSource;
3332     Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
3333     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3334     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource);
3335     Base.getQuals().removeObjCGCAttr();
3336   } else if (E->getBase()->isGLValue()) {
3337     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3338     // emit the base as an lvalue.
3339     assert(E->getBase()->getType()->isVectorType());
3340     Base = EmitLValue(E->getBase());
3341   } else {
3342     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3343     assert(E->getBase()->getType()->isVectorType() &&
3344            "Result must be a vector");
3345     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3346 
3347     // Store the vector to memory (because LValue wants an address).
3348     Address VecMem = CreateMemTemp(E->getBase()->getType());
3349     Builder.CreateStore(Vec, VecMem);
3350     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3351                           AlignmentSource::Decl);
3352   }
3353 
3354   QualType type =
3355     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3356 
3357   // Encode the element access list into a vector of unsigned indices.
3358   SmallVector<uint32_t, 4> Indices;
3359   E->getEncodedElementAccess(Indices);
3360 
3361   if (Base.isSimple()) {
3362     llvm::Constant *CV =
3363         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3364     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3365                                     Base.getAlignmentSource());
3366   }
3367   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3368 
3369   llvm::Constant *BaseElts = Base.getExtVectorElts();
3370   SmallVector<llvm::Constant *, 4> CElts;
3371 
3372   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3373     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3374   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3375   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3376                                   Base.getAlignmentSource());
3377 }
3378 
3379 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3380   Expr *BaseExpr = E->getBase();
3381 
3382   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3383   LValue BaseLV;
3384   if (E->isArrow()) {
3385     AlignmentSource AlignSource;
3386     Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource);
3387     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3388     SanitizerSet SkippedChecks;
3389     if (IsDeclRefOrWrappedCXXThis(BaseExpr))
3390       SkippedChecks.set(SanitizerKind::Null, true);
3391     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3392                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3393     BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource);
3394   } else
3395     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3396 
3397   NamedDecl *ND = E->getMemberDecl();
3398   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3399     LValue LV = EmitLValueForField(BaseLV, Field);
3400     setObjCGCLValueClass(getContext(), E, LV);
3401     return LV;
3402   }
3403 
3404   if (auto *VD = dyn_cast<VarDecl>(ND))
3405     return EmitGlobalVarDeclLValue(*this, E, VD);
3406 
3407   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3408     return EmitFunctionDeclLValue(*this, E, FD);
3409 
3410   llvm_unreachable("Unhandled member declaration!");
3411 }
3412 
3413 /// Given that we are currently emitting a lambda, emit an l-value for
3414 /// one of its members.
3415 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3416   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3417   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3418   QualType LambdaTagType =
3419     getContext().getTagDeclType(Field->getParent());
3420   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3421   return EmitLValueForField(LambdaLV, Field);
3422 }
3423 
3424 /// Drill down to the storage of a field without walking into
3425 /// reference types.
3426 ///
3427 /// The resulting address doesn't necessarily have the right type.
3428 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3429                                       const FieldDecl *field) {
3430   const RecordDecl *rec = field->getParent();
3431 
3432   unsigned idx =
3433     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3434 
3435   CharUnits offset;
3436   // Adjust the alignment down to the given offset.
3437   // As a special case, if the LLVM field index is 0, we know that this
3438   // is zero.
3439   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3440                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3441          "LLVM field at index zero had non-zero offset?");
3442   if (idx != 0) {
3443     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3444     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3445     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3446   }
3447 
3448   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3449 }
3450 
3451 LValue CodeGenFunction::EmitLValueForField(LValue base,
3452                                            const FieldDecl *field) {
3453   AlignmentSource fieldAlignSource =
3454     getFieldAlignmentSource(base.getAlignmentSource());
3455 
3456   if (field->isBitField()) {
3457     const CGRecordLayout &RL =
3458       CGM.getTypes().getCGRecordLayout(field->getParent());
3459     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3460     Address Addr = base.getAddress();
3461     unsigned Idx = RL.getLLVMFieldNo(field);
3462     if (Idx != 0)
3463       // For structs, we GEP to the field that the record layout suggests.
3464       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3465                                      field->getName());
3466     // Get the access type.
3467     llvm::Type *FieldIntTy =
3468       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3469     if (Addr.getElementType() != FieldIntTy)
3470       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3471 
3472     QualType fieldType =
3473       field->getType().withCVRQualifiers(base.getVRQualifiers());
3474     return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource);
3475   }
3476 
3477   const RecordDecl *rec = field->getParent();
3478   QualType type = field->getType();
3479 
3480   bool mayAlias = rec->hasAttr<MayAliasAttr>();
3481 
3482   Address addr = base.getAddress();
3483   unsigned cvr = base.getVRQualifiers();
3484   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
3485   if (rec->isUnion()) {
3486     // For unions, there is no pointer adjustment.
3487     assert(!type->isReferenceType() && "union has reference member");
3488     // TODO: handle path-aware TBAA for union.
3489     TBAAPath = false;
3490   } else {
3491     // For structs, we GEP to the field that the record layout suggests.
3492     addr = emitAddrOfFieldStorage(*this, addr, field);
3493 
3494     // If this is a reference field, load the reference right now.
3495     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
3496       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
3497       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
3498 
3499       // Loading the reference will disable path-aware TBAA.
3500       TBAAPath = false;
3501       if (CGM.shouldUseTBAA()) {
3502         llvm::MDNode *tbaa;
3503         if (mayAlias)
3504           tbaa = CGM.getTBAAInfo(getContext().CharTy);
3505         else
3506           tbaa = CGM.getTBAAInfo(type);
3507         if (tbaa)
3508           CGM.DecorateInstructionWithTBAA(load, tbaa);
3509       }
3510 
3511       mayAlias = false;
3512       type = refType->getPointeeType();
3513 
3514       CharUnits alignment =
3515         getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true);
3516       addr = Address(load, alignment);
3517 
3518       // Qualifiers on the struct don't apply to the referencee, and
3519       // we'll pick up CVR from the actual type later, so reset these
3520       // additional qualifiers now.
3521       cvr = 0;
3522     }
3523   }
3524 
3525   // Make sure that the address is pointing to the right type.  This is critical
3526   // for both unions and structs.  A union needs a bitcast, a struct element
3527   // will need a bitcast if the LLVM type laid out doesn't match the desired
3528   // type.
3529   addr = Builder.CreateElementBitCast(addr,
3530                                       CGM.getTypes().ConvertTypeForMem(type),
3531                                       field->getName());
3532 
3533   if (field->hasAttr<AnnotateAttr>())
3534     addr = EmitFieldAnnotations(field, addr);
3535 
3536   LValue LV = MakeAddrLValue(addr, type, fieldAlignSource);
3537   LV.getQuals().addCVRQualifiers(cvr);
3538   if (TBAAPath) {
3539     const ASTRecordLayout &Layout =
3540         getContext().getASTRecordLayout(field->getParent());
3541     // Set the base type to be the base type of the base LValue and
3542     // update offset to be relative to the base type.
3543     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
3544     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
3545                      Layout.getFieldOffset(field->getFieldIndex()) /
3546                                            getContext().getCharWidth());
3547   }
3548 
3549   // __weak attribute on a field is ignored.
3550   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3551     LV.getQuals().removeObjCGCAttr();
3552 
3553   // Fields of may_alias structs act like 'char' for TBAA purposes.
3554   // FIXME: this should get propagated down through anonymous structs
3555   // and unions.
3556   if (mayAlias && LV.getTBAAInfo())
3557     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
3558 
3559   return LV;
3560 }
3561 
3562 LValue
3563 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3564                                                   const FieldDecl *Field) {
3565   QualType FieldType = Field->getType();
3566 
3567   if (!FieldType->isReferenceType())
3568     return EmitLValueForField(Base, Field);
3569 
3570   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3571 
3572   // Make sure that the address is pointing to the right type.
3573   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3574   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3575 
3576   // TODO: access-path TBAA?
3577   auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource());
3578   return MakeAddrLValue(V, FieldType, FieldAlignSource);
3579 }
3580 
3581 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3582   if (E->isFileScope()) {
3583     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3584     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3585   }
3586   if (E->getType()->isVariablyModifiedType())
3587     // make sure to emit the VLA size.
3588     EmitVariablyModifiedType(E->getType());
3589 
3590   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3591   const Expr *InitExpr = E->getInitializer();
3592   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3593 
3594   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3595                    /*Init*/ true);
3596 
3597   return Result;
3598 }
3599 
3600 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3601   if (!E->isGLValue())
3602     // Initializing an aggregate temporary in C++11: T{...}.
3603     return EmitAggExprToLValue(E);
3604 
3605   // An lvalue initializer list must be initializing a reference.
3606   assert(E->isTransparent() && "non-transparent glvalue init list");
3607   return EmitLValue(E->getInit(0));
3608 }
3609 
3610 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3611 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3612 /// LValue is returned and the current block has been terminated.
3613 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3614                                                     const Expr *Operand) {
3615   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3616     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3617     return None;
3618   }
3619 
3620   return CGF.EmitLValue(Operand);
3621 }
3622 
3623 LValue CodeGenFunction::
3624 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3625   if (!expr->isGLValue()) {
3626     // ?: here should be an aggregate.
3627     assert(hasAggregateEvaluationKind(expr->getType()) &&
3628            "Unexpected conditional operator!");
3629     return EmitAggExprToLValue(expr);
3630   }
3631 
3632   OpaqueValueMapping binding(*this, expr);
3633 
3634   const Expr *condExpr = expr->getCond();
3635   bool CondExprBool;
3636   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3637     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3638     if (!CondExprBool) std::swap(live, dead);
3639 
3640     if (!ContainsLabel(dead)) {
3641       // If the true case is live, we need to track its region.
3642       if (CondExprBool)
3643         incrementProfileCounter(expr);
3644       return EmitLValue(live);
3645     }
3646   }
3647 
3648   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3649   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3650   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3651 
3652   ConditionalEvaluation eval(*this);
3653   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3654 
3655   // Any temporaries created here are conditional.
3656   EmitBlock(lhsBlock);
3657   incrementProfileCounter(expr);
3658   eval.begin(*this);
3659   Optional<LValue> lhs =
3660       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3661   eval.end(*this);
3662 
3663   if (lhs && !lhs->isSimple())
3664     return EmitUnsupportedLValue(expr, "conditional operator");
3665 
3666   lhsBlock = Builder.GetInsertBlock();
3667   if (lhs)
3668     Builder.CreateBr(contBlock);
3669 
3670   // Any temporaries created here are conditional.
3671   EmitBlock(rhsBlock);
3672   eval.begin(*this);
3673   Optional<LValue> rhs =
3674       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3675   eval.end(*this);
3676   if (rhs && !rhs->isSimple())
3677     return EmitUnsupportedLValue(expr, "conditional operator");
3678   rhsBlock = Builder.GetInsertBlock();
3679 
3680   EmitBlock(contBlock);
3681 
3682   if (lhs && rhs) {
3683     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3684                                            2, "cond-lvalue");
3685     phi->addIncoming(lhs->getPointer(), lhsBlock);
3686     phi->addIncoming(rhs->getPointer(), rhsBlock);
3687     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3688     AlignmentSource alignSource =
3689       std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource());
3690     return MakeAddrLValue(result, expr->getType(), alignSource);
3691   } else {
3692     assert((lhs || rhs) &&
3693            "both operands of glvalue conditional are throw-expressions?");
3694     return lhs ? *lhs : *rhs;
3695   }
3696 }
3697 
3698 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3699 /// type. If the cast is to a reference, we can have the usual lvalue result,
3700 /// otherwise if a cast is needed by the code generator in an lvalue context,
3701 /// then it must mean that we need the address of an aggregate in order to
3702 /// access one of its members.  This can happen for all the reasons that casts
3703 /// are permitted with aggregate result, including noop aggregate casts, and
3704 /// cast from scalar to union.
3705 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3706   switch (E->getCastKind()) {
3707   case CK_ToVoid:
3708   case CK_BitCast:
3709   case CK_ArrayToPointerDecay:
3710   case CK_FunctionToPointerDecay:
3711   case CK_NullToMemberPointer:
3712   case CK_NullToPointer:
3713   case CK_IntegralToPointer:
3714   case CK_PointerToIntegral:
3715   case CK_PointerToBoolean:
3716   case CK_VectorSplat:
3717   case CK_IntegralCast:
3718   case CK_BooleanToSignedIntegral:
3719   case CK_IntegralToBoolean:
3720   case CK_IntegralToFloating:
3721   case CK_FloatingToIntegral:
3722   case CK_FloatingToBoolean:
3723   case CK_FloatingCast:
3724   case CK_FloatingRealToComplex:
3725   case CK_FloatingComplexToReal:
3726   case CK_FloatingComplexToBoolean:
3727   case CK_FloatingComplexCast:
3728   case CK_FloatingComplexToIntegralComplex:
3729   case CK_IntegralRealToComplex:
3730   case CK_IntegralComplexToReal:
3731   case CK_IntegralComplexToBoolean:
3732   case CK_IntegralComplexCast:
3733   case CK_IntegralComplexToFloatingComplex:
3734   case CK_DerivedToBaseMemberPointer:
3735   case CK_BaseToDerivedMemberPointer:
3736   case CK_MemberPointerToBoolean:
3737   case CK_ReinterpretMemberPointer:
3738   case CK_AnyPointerToBlockPointerCast:
3739   case CK_ARCProduceObject:
3740   case CK_ARCConsumeObject:
3741   case CK_ARCReclaimReturnedObject:
3742   case CK_ARCExtendBlockObject:
3743   case CK_CopyAndAutoreleaseBlockObject:
3744   case CK_AddressSpaceConversion:
3745   case CK_IntToOCLSampler:
3746     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
3747 
3748   case CK_Dependent:
3749     llvm_unreachable("dependent cast kind in IR gen!");
3750 
3751   case CK_BuiltinFnToFnPtr:
3752     llvm_unreachable("builtin functions are handled elsewhere");
3753 
3754   // These are never l-values; just use the aggregate emission code.
3755   case CK_NonAtomicToAtomic:
3756   case CK_AtomicToNonAtomic:
3757     return EmitAggExprToLValue(E);
3758 
3759   case CK_Dynamic: {
3760     LValue LV = EmitLValue(E->getSubExpr());
3761     Address V = LV.getAddress();
3762     const auto *DCE = cast<CXXDynamicCastExpr>(E);
3763     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
3764   }
3765 
3766   case CK_ConstructorConversion:
3767   case CK_UserDefinedConversion:
3768   case CK_CPointerToObjCPointerCast:
3769   case CK_BlockPointerToObjCPointerCast:
3770   case CK_NoOp:
3771   case CK_LValueToRValue:
3772     return EmitLValue(E->getSubExpr());
3773 
3774   case CK_UncheckedDerivedToBase:
3775   case CK_DerivedToBase: {
3776     const RecordType *DerivedClassTy =
3777       E->getSubExpr()->getType()->getAs<RecordType>();
3778     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3779 
3780     LValue LV = EmitLValue(E->getSubExpr());
3781     Address This = LV.getAddress();
3782 
3783     // Perform the derived-to-base conversion
3784     Address Base = GetAddressOfBaseClass(
3785         This, DerivedClassDecl, E->path_begin(), E->path_end(),
3786         /*NullCheckValue=*/false, E->getExprLoc());
3787 
3788     return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource());
3789   }
3790   case CK_ToUnion:
3791     return EmitAggExprToLValue(E);
3792   case CK_BaseToDerived: {
3793     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
3794     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3795 
3796     LValue LV = EmitLValue(E->getSubExpr());
3797 
3798     // Perform the base-to-derived conversion
3799     Address Derived =
3800       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
3801                                E->path_begin(), E->path_end(),
3802                                /*NullCheckValue=*/false);
3803 
3804     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
3805     // performed and the object is not of the derived type.
3806     if (sanitizePerformTypeCheck())
3807       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
3808                     Derived.getPointer(), E->getType());
3809 
3810     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
3811       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
3812                                 /*MayBeNull=*/false,
3813                                 CFITCK_DerivedCast, E->getLocStart());
3814 
3815     return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource());
3816   }
3817   case CK_LValueBitCast: {
3818     // This must be a reinterpret_cast (or c-style equivalent).
3819     const auto *CE = cast<ExplicitCastExpr>(E);
3820 
3821     CGM.EmitExplicitCastExprType(CE, this);
3822     LValue LV = EmitLValue(E->getSubExpr());
3823     Address V = Builder.CreateBitCast(LV.getAddress(),
3824                                       ConvertType(CE->getTypeAsWritten()));
3825 
3826     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
3827       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
3828                                 /*MayBeNull=*/false,
3829                                 CFITCK_UnrelatedCast, E->getLocStart());
3830 
3831     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3832   }
3833   case CK_ObjCObjectLValueCast: {
3834     LValue LV = EmitLValue(E->getSubExpr());
3835     Address V = Builder.CreateElementBitCast(LV.getAddress(),
3836                                              ConvertType(E->getType()));
3837     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3838   }
3839   case CK_ZeroToOCLQueue:
3840     llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid");
3841   case CK_ZeroToOCLEvent:
3842     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
3843   }
3844 
3845   llvm_unreachable("Unhandled lvalue cast kind?");
3846 }
3847 
3848 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
3849   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
3850   return getOpaqueLValueMapping(e);
3851 }
3852 
3853 RValue CodeGenFunction::EmitRValueForField(LValue LV,
3854                                            const FieldDecl *FD,
3855                                            SourceLocation Loc) {
3856   QualType FT = FD->getType();
3857   LValue FieldLV = EmitLValueForField(LV, FD);
3858   switch (getEvaluationKind(FT)) {
3859   case TEK_Complex:
3860     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
3861   case TEK_Aggregate:
3862     return FieldLV.asAggregateRValue();
3863   case TEK_Scalar:
3864     // This routine is used to load fields one-by-one to perform a copy, so
3865     // don't load reference fields.
3866     if (FD->getType()->isReferenceType())
3867       return RValue::get(FieldLV.getPointer());
3868     return EmitLoadOfLValue(FieldLV, Loc);
3869   }
3870   llvm_unreachable("bad evaluation kind");
3871 }
3872 
3873 //===--------------------------------------------------------------------===//
3874 //                             Expression Emission
3875 //===--------------------------------------------------------------------===//
3876 
3877 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
3878                                      ReturnValueSlot ReturnValue) {
3879   // Builtins never have block type.
3880   if (E->getCallee()->getType()->isBlockPointerType())
3881     return EmitBlockCallExpr(E, ReturnValue);
3882 
3883   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
3884     return EmitCXXMemberCallExpr(CE, ReturnValue);
3885 
3886   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
3887     return EmitCUDAKernelCallExpr(CE, ReturnValue);
3888 
3889   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
3890     if (const CXXMethodDecl *MD =
3891           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
3892       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
3893 
3894   CGCallee callee = EmitCallee(E->getCallee());
3895 
3896   if (callee.isBuiltin()) {
3897     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
3898                            E, ReturnValue);
3899   }
3900 
3901   if (callee.isPseudoDestructor()) {
3902     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
3903   }
3904 
3905   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
3906 }
3907 
3908 /// Emit a CallExpr without considering whether it might be a subclass.
3909 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
3910                                            ReturnValueSlot ReturnValue) {
3911   CGCallee Callee = EmitCallee(E->getCallee());
3912   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
3913 }
3914 
3915 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
3916   if (auto builtinID = FD->getBuiltinID()) {
3917     return CGCallee::forBuiltin(builtinID, FD);
3918   }
3919 
3920   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
3921   return CGCallee::forDirect(calleePtr, FD);
3922 }
3923 
3924 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
3925   E = E->IgnoreParens();
3926 
3927   // Look through function-to-pointer decay.
3928   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
3929     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
3930         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
3931       return EmitCallee(ICE->getSubExpr());
3932     }
3933 
3934   // Resolve direct calls.
3935   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
3936     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
3937       return EmitDirectCallee(*this, FD);
3938     }
3939   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
3940     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
3941       EmitIgnoredExpr(ME->getBase());
3942       return EmitDirectCallee(*this, FD);
3943     }
3944 
3945   // Look through template substitutions.
3946   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
3947     return EmitCallee(NTTP->getReplacement());
3948 
3949   // Treat pseudo-destructor calls differently.
3950   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
3951     return CGCallee::forPseudoDestructor(PDE);
3952   }
3953 
3954   // Otherwise, we have an indirect reference.
3955   llvm::Value *calleePtr;
3956   QualType functionType;
3957   if (auto ptrType = E->getType()->getAs<PointerType>()) {
3958     calleePtr = EmitScalarExpr(E);
3959     functionType = ptrType->getPointeeType();
3960   } else {
3961     functionType = E->getType();
3962     calleePtr = EmitLValue(E).getPointer();
3963   }
3964   assert(functionType->isFunctionType());
3965   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
3966                           E->getReferencedDeclOfCallee());
3967   CGCallee callee(calleeInfo, calleePtr);
3968   return callee;
3969 }
3970 
3971 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3972   // Comma expressions just emit their LHS then their RHS as an l-value.
3973   if (E->getOpcode() == BO_Comma) {
3974     EmitIgnoredExpr(E->getLHS());
3975     EnsureInsertPoint();
3976     return EmitLValue(E->getRHS());
3977   }
3978 
3979   if (E->getOpcode() == BO_PtrMemD ||
3980       E->getOpcode() == BO_PtrMemI)
3981     return EmitPointerToDataMemberBinaryExpr(E);
3982 
3983   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3984 
3985   // Note that in all of these cases, __block variables need the RHS
3986   // evaluated first just in case the variable gets moved by the RHS.
3987 
3988   switch (getEvaluationKind(E->getType())) {
3989   case TEK_Scalar: {
3990     switch (E->getLHS()->getType().getObjCLifetime()) {
3991     case Qualifiers::OCL_Strong:
3992       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3993 
3994     case Qualifiers::OCL_Autoreleasing:
3995       return EmitARCStoreAutoreleasing(E).first;
3996 
3997     // No reason to do any of these differently.
3998     case Qualifiers::OCL_None:
3999     case Qualifiers::OCL_ExplicitNone:
4000     case Qualifiers::OCL_Weak:
4001       break;
4002     }
4003 
4004     RValue RV = EmitAnyExpr(E->getRHS());
4005     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4006     EmitStoreThroughLValue(RV, LV);
4007     return LV;
4008   }
4009 
4010   case TEK_Complex:
4011     return EmitComplexAssignmentLValue(E);
4012 
4013   case TEK_Aggregate:
4014     return EmitAggExprToLValue(E);
4015   }
4016   llvm_unreachable("bad evaluation kind");
4017 }
4018 
4019 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4020   RValue RV = EmitCallExpr(E);
4021 
4022   if (!RV.isScalar())
4023     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4024                           AlignmentSource::Decl);
4025 
4026   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4027          "Can't have a scalar return unless the return type is a "
4028          "reference type!");
4029 
4030   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4031 }
4032 
4033 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4034   // FIXME: This shouldn't require another copy.
4035   return EmitAggExprToLValue(E);
4036 }
4037 
4038 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4039   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4040          && "binding l-value to type which needs a temporary");
4041   AggValueSlot Slot = CreateAggTemp(E->getType());
4042   EmitCXXConstructExpr(E, Slot);
4043   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4044                         AlignmentSource::Decl);
4045 }
4046 
4047 LValue
4048 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4049   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4050 }
4051 
4052 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4053   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4054                                       ConvertType(E->getType()));
4055 }
4056 
4057 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4058   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4059                         AlignmentSource::Decl);
4060 }
4061 
4062 LValue
4063 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4064   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4065   Slot.setExternallyDestructed();
4066   EmitAggExpr(E->getSubExpr(), Slot);
4067   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4068   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4069                         AlignmentSource::Decl);
4070 }
4071 
4072 LValue
4073 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
4074   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4075   EmitLambdaExpr(E, Slot);
4076   return MakeAddrLValue(Slot.getAddress(), E->getType(),
4077                         AlignmentSource::Decl);
4078 }
4079 
4080 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4081   RValue RV = EmitObjCMessageExpr(E);
4082 
4083   if (!RV.isScalar())
4084     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4085                           AlignmentSource::Decl);
4086 
4087   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4088          "Can't have a scalar return unless the return type is a "
4089          "reference type!");
4090 
4091   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4092 }
4093 
4094 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4095   Address V =
4096     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4097   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4098 }
4099 
4100 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4101                                              const ObjCIvarDecl *Ivar) {
4102   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4103 }
4104 
4105 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4106                                           llvm::Value *BaseValue,
4107                                           const ObjCIvarDecl *Ivar,
4108                                           unsigned CVRQualifiers) {
4109   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4110                                                    Ivar, CVRQualifiers);
4111 }
4112 
4113 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4114   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4115   llvm::Value *BaseValue = nullptr;
4116   const Expr *BaseExpr = E->getBase();
4117   Qualifiers BaseQuals;
4118   QualType ObjectTy;
4119   if (E->isArrow()) {
4120     BaseValue = EmitScalarExpr(BaseExpr);
4121     ObjectTy = BaseExpr->getType()->getPointeeType();
4122     BaseQuals = ObjectTy.getQualifiers();
4123   } else {
4124     LValue BaseLV = EmitLValue(BaseExpr);
4125     BaseValue = BaseLV.getPointer();
4126     ObjectTy = BaseExpr->getType();
4127     BaseQuals = ObjectTy.getQualifiers();
4128   }
4129 
4130   LValue LV =
4131     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4132                       BaseQuals.getCVRQualifiers());
4133   setObjCGCLValueClass(getContext(), E, LV);
4134   return LV;
4135 }
4136 
4137 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4138   // Can only get l-value for message expression returning aggregate type
4139   RValue RV = EmitAnyExprToTemp(E);
4140   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4141                         AlignmentSource::Decl);
4142 }
4143 
4144 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4145                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4146                                  llvm::Value *Chain) {
4147   // Get the actual function type. The callee type will always be a pointer to
4148   // function type or a block pointer type.
4149   assert(CalleeType->isFunctionPointerType() &&
4150          "Call must have function pointer type!");
4151 
4152   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4153 
4154   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4155     // We can only guarantee that a function is called from the correct
4156     // context/function based on the appropriate target attributes,
4157     // so only check in the case where we have both always_inline and target
4158     // since otherwise we could be making a conditional call after a check for
4159     // the proper cpu features (and it won't cause code generation issues due to
4160     // function based code generation).
4161     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4162         TargetDecl->hasAttr<TargetAttr>())
4163       checkTargetFeatures(E, FD);
4164 
4165   CalleeType = getContext().getCanonicalType(CalleeType);
4166 
4167   const auto *FnType =
4168       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
4169 
4170   CGCallee Callee = OrigCallee;
4171 
4172   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4173       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4174     if (llvm::Constant *PrefixSig =
4175             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4176       SanitizerScope SanScope(this);
4177       llvm::Constant *FTRTTIConst =
4178           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
4179       llvm::Type *PrefixStructTyElems[] = {
4180         PrefixSig->getType(),
4181         FTRTTIConst->getType()
4182       };
4183       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4184           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4185 
4186       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4187 
4188       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4189           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4190       llvm::Value *CalleeSigPtr =
4191           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4192       llvm::Value *CalleeSig =
4193           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4194       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4195 
4196       llvm::BasicBlock *Cont = createBasicBlock("cont");
4197       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4198       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4199 
4200       EmitBlock(TypeCheck);
4201       llvm::Value *CalleeRTTIPtr =
4202           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4203       llvm::Value *CalleeRTTI =
4204           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4205       llvm::Value *CalleeRTTIMatch =
4206           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4207       llvm::Constant *StaticData[] = {
4208         EmitCheckSourceLocation(E->getLocStart()),
4209         EmitCheckTypeDescriptor(CalleeType)
4210       };
4211       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4212                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4213 
4214       Builder.CreateBr(Cont);
4215       EmitBlock(Cont);
4216     }
4217   }
4218 
4219   // If we are checking indirect calls and this call is indirect, check that the
4220   // function pointer is a member of the bit set for the function type.
4221   if (SanOpts.has(SanitizerKind::CFIICall) &&
4222       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4223     SanitizerScope SanScope(this);
4224     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4225 
4226     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4227     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4228 
4229     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4230     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4231     llvm::Value *TypeTest = Builder.CreateCall(
4232         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4233 
4234     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4235     llvm::Constant *StaticData[] = {
4236         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4237         EmitCheckSourceLocation(E->getLocStart()),
4238         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4239     };
4240     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4241       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4242                            CastedCallee, StaticData);
4243     } else {
4244       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4245                 SanitizerHandler::CFICheckFail, StaticData,
4246                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4247     }
4248   }
4249 
4250   CallArgList Args;
4251   if (Chain)
4252     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4253              CGM.getContext().VoidPtrTy);
4254 
4255   // C++17 requires that we evaluate arguments to a call using assignment syntax
4256   // right-to-left, and that we evaluate arguments to certain other operators
4257   // left-to-right. Note that we allow this to override the order dictated by
4258   // the calling convention on the MS ABI, which means that parameter
4259   // destruction order is not necessarily reverse construction order.
4260   // FIXME: Revisit this based on C++ committee response to unimplementability.
4261   EvaluationOrder Order = EvaluationOrder::Default;
4262   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4263     if (OCE->isAssignmentOp())
4264       Order = EvaluationOrder::ForceRightToLeft;
4265     else {
4266       switch (OCE->getOperator()) {
4267       case OO_LessLess:
4268       case OO_GreaterGreater:
4269       case OO_AmpAmp:
4270       case OO_PipePipe:
4271       case OO_Comma:
4272       case OO_ArrowStar:
4273         Order = EvaluationOrder::ForceLeftToRight;
4274         break;
4275       default:
4276         break;
4277       }
4278     }
4279   }
4280 
4281   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4282                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4283 
4284   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4285       Args, FnType, /*isChainCall=*/Chain);
4286 
4287   // C99 6.5.2.2p6:
4288   //   If the expression that denotes the called function has a type
4289   //   that does not include a prototype, [the default argument
4290   //   promotions are performed]. If the number of arguments does not
4291   //   equal the number of parameters, the behavior is undefined. If
4292   //   the function is defined with a type that includes a prototype,
4293   //   and either the prototype ends with an ellipsis (, ...) or the
4294   //   types of the arguments after promotion are not compatible with
4295   //   the types of the parameters, the behavior is undefined. If the
4296   //   function is defined with a type that does not include a
4297   //   prototype, and the types of the arguments after promotion are
4298   //   not compatible with those of the parameters after promotion,
4299   //   the behavior is undefined [except in some trivial cases].
4300   // That is, in the general case, we should assume that a call
4301   // through an unprototyped function type works like a *non-variadic*
4302   // call.  The way we make this work is to cast to the exact type
4303   // of the promoted arguments.
4304   //
4305   // Chain calls use this same code path to add the invisible chain parameter
4306   // to the function type.
4307   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4308     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4309     CalleeTy = CalleeTy->getPointerTo();
4310 
4311     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4312     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4313     Callee.setFunctionPointer(CalleePtr);
4314   }
4315 
4316   return EmitCall(FnInfo, Callee, ReturnValue, Args);
4317 }
4318 
4319 LValue CodeGenFunction::
4320 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4321   Address BaseAddr = Address::invalid();
4322   if (E->getOpcode() == BO_PtrMemI) {
4323     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4324   } else {
4325     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4326   }
4327 
4328   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4329 
4330   const MemberPointerType *MPT
4331     = E->getRHS()->getType()->getAs<MemberPointerType>();
4332 
4333   AlignmentSource AlignSource;
4334   Address MemberAddr =
4335     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT,
4336                                     &AlignSource);
4337 
4338   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource);
4339 }
4340 
4341 /// Given the address of a temporary variable, produce an r-value of
4342 /// its type.
4343 RValue CodeGenFunction::convertTempToRValue(Address addr,
4344                                             QualType type,
4345                                             SourceLocation loc) {
4346   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4347   switch (getEvaluationKind(type)) {
4348   case TEK_Complex:
4349     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4350   case TEK_Aggregate:
4351     return lvalue.asAggregateRValue();
4352   case TEK_Scalar:
4353     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4354   }
4355   llvm_unreachable("bad evaluation kind");
4356 }
4357 
4358 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4359   assert(Val->getType()->isFPOrFPVectorTy());
4360   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4361     return;
4362 
4363   llvm::MDBuilder MDHelper(getLLVMContext());
4364   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4365 
4366   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4367 }
4368 
4369 namespace {
4370   struct LValueOrRValue {
4371     LValue LV;
4372     RValue RV;
4373   };
4374 }
4375 
4376 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4377                                            const PseudoObjectExpr *E,
4378                                            bool forLValue,
4379                                            AggValueSlot slot) {
4380   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4381 
4382   // Find the result expression, if any.
4383   const Expr *resultExpr = E->getResultExpr();
4384   LValueOrRValue result;
4385 
4386   for (PseudoObjectExpr::const_semantics_iterator
4387          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4388     const Expr *semantic = *i;
4389 
4390     // If this semantic expression is an opaque value, bind it
4391     // to the result of its source expression.
4392     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4393 
4394       // If this is the result expression, we may need to evaluate
4395       // directly into the slot.
4396       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4397       OVMA opaqueData;
4398       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4399           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4400         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4401 
4402         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4403                                        AlignmentSource::Decl);
4404         opaqueData = OVMA::bind(CGF, ov, LV);
4405         result.RV = slot.asRValue();
4406 
4407       // Otherwise, emit as normal.
4408       } else {
4409         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4410 
4411         // If this is the result, also evaluate the result now.
4412         if (ov == resultExpr) {
4413           if (forLValue)
4414             result.LV = CGF.EmitLValue(ov);
4415           else
4416             result.RV = CGF.EmitAnyExpr(ov, slot);
4417         }
4418       }
4419 
4420       opaques.push_back(opaqueData);
4421 
4422     // Otherwise, if the expression is the result, evaluate it
4423     // and remember the result.
4424     } else if (semantic == resultExpr) {
4425       if (forLValue)
4426         result.LV = CGF.EmitLValue(semantic);
4427       else
4428         result.RV = CGF.EmitAnyExpr(semantic, slot);
4429 
4430     // Otherwise, evaluate the expression in an ignored context.
4431     } else {
4432       CGF.EmitIgnoredExpr(semantic);
4433     }
4434   }
4435 
4436   // Unbind all the opaques now.
4437   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4438     opaques[i].unbind(CGF);
4439 
4440   return result;
4441 }
4442 
4443 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4444                                                AggValueSlot slot) {
4445   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4446 }
4447 
4448 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4449   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4450 }
4451