1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/Hashing.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/Support/ConvertUTF.h"
34 #include "llvm/Support/MathExtras.h"
35 
36 using namespace clang;
37 using namespace CodeGen;
38 
39 //===--------------------------------------------------------------------===//
40 //                        Miscellaneous Helper Methods
41 //===--------------------------------------------------------------------===//
42 
43 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
44   unsigned addressSpace =
45     cast<llvm::PointerType>(value->getType())->getAddressSpace();
46 
47   llvm::PointerType *destType = Int8PtrTy;
48   if (addressSpace)
49     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
50 
51   if (value->getType() == destType) return value;
52   return Builder.CreateBitCast(value, destType);
53 }
54 
55 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
56 /// block.
57 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
58                                                     const Twine &Name) {
59   if (!Builder.isNamePreserving())
60     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
61   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
62 }
63 
64 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
65                                      llvm::Value *Init) {
66   auto *Store = new llvm::StoreInst(Init, Var);
67   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
68   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
69 }
70 
71 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
72                                                 const Twine &Name) {
73   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
74   // FIXME: Should we prefer the preferred type alignment here?
75   CharUnits Align = getContext().getTypeAlignInChars(Ty);
76   Alloc->setAlignment(Align.getQuantity());
77   return Alloc;
78 }
79 
80 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
81                                                  const Twine &Name) {
82   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
83   // FIXME: Should we prefer the preferred type alignment here?
84   CharUnits Align = getContext().getTypeAlignInChars(Ty);
85   Alloc->setAlignment(Align.getQuantity());
86   return Alloc;
87 }
88 
89 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
90 /// expression and compare the result against zero, returning an Int1Ty value.
91 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
92   PGO.setCurrentStmt(E);
93   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
94     llvm::Value *MemPtr = EmitScalarExpr(E);
95     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
96   }
97 
98   QualType BoolTy = getContext().BoolTy;
99   SourceLocation Loc = E->getExprLoc();
100   if (!E->getType()->isAnyComplexType())
101     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
102 
103   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
104                                        Loc);
105 }
106 
107 /// EmitIgnoredExpr - Emit code to compute the specified expression,
108 /// ignoring the result.
109 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
110   if (E->isRValue())
111     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
112 
113   // Just emit it as an l-value and drop the result.
114   EmitLValue(E);
115 }
116 
117 /// EmitAnyExpr - Emit code to compute the specified expression which
118 /// can have any type.  The result is returned as an RValue struct.
119 /// If this is an aggregate expression, AggSlot indicates where the
120 /// result should be returned.
121 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
122                                     AggValueSlot aggSlot,
123                                     bool ignoreResult) {
124   switch (getEvaluationKind(E->getType())) {
125   case TEK_Scalar:
126     return RValue::get(EmitScalarExpr(E, ignoreResult));
127   case TEK_Complex:
128     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
129   case TEK_Aggregate:
130     if (!ignoreResult && aggSlot.isIgnored())
131       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
132     EmitAggExpr(E, aggSlot);
133     return aggSlot.asRValue();
134   }
135   llvm_unreachable("bad evaluation kind");
136 }
137 
138 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
139 /// always be accessible even if no aggregate location is provided.
140 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
141   AggValueSlot AggSlot = AggValueSlot::ignored();
142 
143   if (hasAggregateEvaluationKind(E->getType()))
144     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
145   return EmitAnyExpr(E, AggSlot);
146 }
147 
148 /// EmitAnyExprToMem - Evaluate an expression into a given memory
149 /// location.
150 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
151                                        llvm::Value *Location,
152                                        Qualifiers Quals,
153                                        bool IsInit) {
154   // FIXME: This function should take an LValue as an argument.
155   switch (getEvaluationKind(E->getType())) {
156   case TEK_Complex:
157     EmitComplexExprIntoLValue(E,
158                          MakeNaturalAlignAddrLValue(Location, E->getType()),
159                               /*isInit*/ false);
160     return;
161 
162   case TEK_Aggregate: {
163     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
164     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
165                                          AggValueSlot::IsDestructed_t(IsInit),
166                                          AggValueSlot::DoesNotNeedGCBarriers,
167                                          AggValueSlot::IsAliased_t(!IsInit)));
168     return;
169   }
170 
171   case TEK_Scalar: {
172     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
173     LValue LV = MakeAddrLValue(Location, E->getType());
174     EmitStoreThroughLValue(RV, LV);
175     return;
176   }
177   }
178   llvm_unreachable("bad evaluation kind");
179 }
180 
181 static void
182 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
183                      const Expr *E, llvm::Value *ReferenceTemporary) {
184   // Objective-C++ ARC:
185   //   If we are binding a reference to a temporary that has ownership, we
186   //   need to perform retain/release operations on the temporary.
187   //
188   // FIXME: This should be looking at E, not M.
189   if (CGF.getLangOpts().ObjCAutoRefCount &&
190       M->getType()->isObjCLifetimeType()) {
191     QualType ObjCARCReferenceLifetimeType = M->getType();
192     switch (Qualifiers::ObjCLifetime Lifetime =
193                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
194     case Qualifiers::OCL_None:
195     case Qualifiers::OCL_ExplicitNone:
196       // Carry on to normal cleanup handling.
197       break;
198 
199     case Qualifiers::OCL_Autoreleasing:
200       // Nothing to do; cleaned up by an autorelease pool.
201       return;
202 
203     case Qualifiers::OCL_Strong:
204     case Qualifiers::OCL_Weak:
205       switch (StorageDuration Duration = M->getStorageDuration()) {
206       case SD_Static:
207         // Note: we intentionally do not register a cleanup to release
208         // the object on program termination.
209         return;
210 
211       case SD_Thread:
212         // FIXME: We should probably register a cleanup in this case.
213         return;
214 
215       case SD_Automatic:
216       case SD_FullExpression:
217         CodeGenFunction::Destroyer *Destroy;
218         CleanupKind CleanupKind;
219         if (Lifetime == Qualifiers::OCL_Strong) {
220           const ValueDecl *VD = M->getExtendingDecl();
221           bool Precise =
222               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
223           CleanupKind = CGF.getARCCleanupKind();
224           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
225                             : &CodeGenFunction::destroyARCStrongImprecise;
226         } else {
227           // __weak objects always get EH cleanups; otherwise, exceptions
228           // could cause really nasty crashes instead of mere leaks.
229           CleanupKind = NormalAndEHCleanup;
230           Destroy = &CodeGenFunction::destroyARCWeak;
231         }
232         if (Duration == SD_FullExpression)
233           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
234                           ObjCARCReferenceLifetimeType, *Destroy,
235                           CleanupKind & EHCleanup);
236         else
237           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
238                                           ObjCARCReferenceLifetimeType,
239                                           *Destroy, CleanupKind & EHCleanup);
240         return;
241 
242       case SD_Dynamic:
243         llvm_unreachable("temporary cannot have dynamic storage duration");
244       }
245       llvm_unreachable("unknown storage duration");
246     }
247   }
248 
249   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
250   if (const RecordType *RT =
251           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
252     // Get the destructor for the reference temporary.
253     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
254     if (!ClassDecl->hasTrivialDestructor())
255       ReferenceTemporaryDtor = ClassDecl->getDestructor();
256   }
257 
258   if (!ReferenceTemporaryDtor)
259     return;
260 
261   // Call the destructor for the temporary.
262   switch (M->getStorageDuration()) {
263   case SD_Static:
264   case SD_Thread: {
265     llvm::Constant *CleanupFn;
266     llvm::Constant *CleanupArg;
267     if (E->getType()->isArrayType()) {
268       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
269           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
270           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
271           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
272       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
273     } else {
274       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
275                                                StructorType::Complete);
276       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
277     }
278     CGF.CGM.getCXXABI().registerGlobalDtor(
279         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
280     break;
281   }
282 
283   case SD_FullExpression:
284     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
285                     CodeGenFunction::destroyCXXObject,
286                     CGF.getLangOpts().Exceptions);
287     break;
288 
289   case SD_Automatic:
290     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
291                                     ReferenceTemporary, E->getType(),
292                                     CodeGenFunction::destroyCXXObject,
293                                     CGF.getLangOpts().Exceptions);
294     break;
295 
296   case SD_Dynamic:
297     llvm_unreachable("temporary cannot have dynamic storage duration");
298   }
299 }
300 
301 static llvm::Value *
302 createReferenceTemporary(CodeGenFunction &CGF,
303                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
304   switch (M->getStorageDuration()) {
305   case SD_FullExpression:
306   case SD_Automatic: {
307     // If we have a constant temporary array or record try to promote it into a
308     // constant global under the same rules a normal constant would've been
309     // promoted. This is easier on the optimizer and generally emits fewer
310     // instructions.
311     QualType Ty = Inner->getType();
312     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
313         (Ty->isArrayType() || Ty->isRecordType()) &&
314         CGF.CGM.isTypeConstant(Ty, true))
315       if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
316         auto *GV = new llvm::GlobalVariable(
317             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
318             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp");
319         GV->setAlignment(
320             CGF.getContext().getTypeAlignInChars(Ty).getQuantity());
321         // FIXME: Should we put the new global into a COMDAT?
322         return GV;
323       }
324     return CGF.CreateMemTemp(Ty, "ref.tmp");
325   }
326   case SD_Thread:
327   case SD_Static:
328     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
329 
330   case SD_Dynamic:
331     llvm_unreachable("temporary can't have dynamic storage duration");
332   }
333   llvm_unreachable("unknown storage duration");
334 }
335 
336 LValue CodeGenFunction::
337 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
338   const Expr *E = M->GetTemporaryExpr();
339 
340     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
341     // as that will cause the lifetime adjustment to be lost for ARC
342   if (getLangOpts().ObjCAutoRefCount &&
343       M->getType()->isObjCLifetimeType() &&
344       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
345       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
346     llvm::Value *Object = createReferenceTemporary(*this, M, E);
347     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
348       Object = llvm::ConstantExpr::getBitCast(
349           Var, ConvertTypeForMem(E->getType())->getPointerTo());
350       // We should not have emitted the initializer for this temporary as a
351       // constant.
352       assert(!Var->hasInitializer());
353       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
354     }
355     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
356 
357     switch (getEvaluationKind(E->getType())) {
358     default: llvm_unreachable("expected scalar or aggregate expression");
359     case TEK_Scalar:
360       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
361       break;
362     case TEK_Aggregate: {
363       CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
364       EmitAggExpr(E, AggValueSlot::forAddr(Object, Alignment,
365                                            E->getType().getQualifiers(),
366                                            AggValueSlot::IsDestructed,
367                                            AggValueSlot::DoesNotNeedGCBarriers,
368                                            AggValueSlot::IsNotAliased));
369       break;
370     }
371     }
372 
373     pushTemporaryCleanup(*this, M, E, Object);
374     return RefTempDst;
375   }
376 
377   SmallVector<const Expr *, 2> CommaLHSs;
378   SmallVector<SubobjectAdjustment, 2> Adjustments;
379   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
380 
381   for (const auto &Ignored : CommaLHSs)
382     EmitIgnoredExpr(Ignored);
383 
384   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
385     if (opaque->getType()->isRecordType()) {
386       assert(Adjustments.empty());
387       return EmitOpaqueValueLValue(opaque);
388     }
389   }
390 
391   // Create and initialize the reference temporary.
392   llvm::Value *Object = createReferenceTemporary(*this, M, E);
393   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
394     Object = llvm::ConstantExpr::getBitCast(
395         Var, ConvertTypeForMem(E->getType())->getPointerTo());
396     // If the temporary is a global and has a constant initializer or is a
397     // constant temporary that we promoted to a global, we may have already
398     // initialized it.
399     if (!Var->hasInitializer()) {
400       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
401       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
402     }
403   } else {
404     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
405   }
406   pushTemporaryCleanup(*this, M, E, Object);
407 
408   // Perform derived-to-base casts and/or field accesses, to get from the
409   // temporary object we created (and, potentially, for which we extended
410   // the lifetime) to the subobject we're binding the reference to.
411   for (unsigned I = Adjustments.size(); I != 0; --I) {
412     SubobjectAdjustment &Adjustment = Adjustments[I-1];
413     switch (Adjustment.Kind) {
414     case SubobjectAdjustment::DerivedToBaseAdjustment:
415       Object =
416           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
417                                 Adjustment.DerivedToBase.BasePath->path_begin(),
418                                 Adjustment.DerivedToBase.BasePath->path_end(),
419                                 /*NullCheckValue=*/ false, E->getExprLoc());
420       break;
421 
422     case SubobjectAdjustment::FieldAdjustment: {
423       LValue LV = MakeAddrLValue(Object, E->getType());
424       LV = EmitLValueForField(LV, Adjustment.Field);
425       assert(LV.isSimple() &&
426              "materialized temporary field is not a simple lvalue");
427       Object = LV.getAddress();
428       break;
429     }
430 
431     case SubobjectAdjustment::MemberPointerAdjustment: {
432       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
433       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
434           *this, E, Object, Ptr, Adjustment.Ptr.MPT);
435       break;
436     }
437     }
438   }
439 
440   return MakeAddrLValue(Object, M->getType());
441 }
442 
443 RValue
444 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
445   // Emit the expression as an lvalue.
446   LValue LV = EmitLValue(E);
447   assert(LV.isSimple());
448   llvm::Value *Value = LV.getAddress();
449 
450   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
451     // C++11 [dcl.ref]p5 (as amended by core issue 453):
452     //   If a glvalue to which a reference is directly bound designates neither
453     //   an existing object or function of an appropriate type nor a region of
454     //   storage of suitable size and alignment to contain an object of the
455     //   reference's type, the behavior is undefined.
456     QualType Ty = E->getType();
457     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
458   }
459 
460   return RValue::get(Value);
461 }
462 
463 
464 /// getAccessedFieldNo - Given an encoded value and a result number, return the
465 /// input field number being accessed.
466 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
467                                              const llvm::Constant *Elts) {
468   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
469       ->getZExtValue();
470 }
471 
472 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
473 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
474                                     llvm::Value *High) {
475   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
476   llvm::Value *K47 = Builder.getInt64(47);
477   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
478   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
479   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
480   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
481   return Builder.CreateMul(B1, KMul);
482 }
483 
484 bool CodeGenFunction::sanitizePerformTypeCheck() const {
485   return SanOpts.has(SanitizerKind::Null) |
486          SanOpts.has(SanitizerKind::Alignment) |
487          SanOpts.has(SanitizerKind::ObjectSize) |
488          SanOpts.has(SanitizerKind::Vptr);
489 }
490 
491 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
492                                     llvm::Value *Address, QualType Ty,
493                                     CharUnits Alignment, bool SkipNullCheck) {
494   if (!sanitizePerformTypeCheck())
495     return;
496 
497   // Don't check pointers outside the default address space. The null check
498   // isn't correct, the object-size check isn't supported by LLVM, and we can't
499   // communicate the addresses to the runtime handler for the vptr check.
500   if (Address->getType()->getPointerAddressSpace())
501     return;
502 
503   SanitizerScope SanScope(this);
504 
505   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
506   llvm::BasicBlock *Done = nullptr;
507 
508   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
509                            TCK == TCK_UpcastToVirtualBase;
510   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
511       !SkipNullCheck) {
512     // The glvalue must not be an empty glvalue.
513     llvm::Value *IsNonNull = Builder.CreateICmpNE(
514         Address, llvm::Constant::getNullValue(Address->getType()));
515 
516     if (AllowNullPointers) {
517       // When performing pointer casts, it's OK if the value is null.
518       // Skip the remaining checks in that case.
519       Done = createBasicBlock("null");
520       llvm::BasicBlock *Rest = createBasicBlock("not.null");
521       Builder.CreateCondBr(IsNonNull, Rest, Done);
522       EmitBlock(Rest);
523     } else {
524       Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
525     }
526   }
527 
528   if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
529     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
530 
531     // The glvalue must refer to a large enough storage region.
532     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
533     //        to check this.
534     // FIXME: Get object address space
535     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
536     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
537     llvm::Value *Min = Builder.getFalse();
538     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
539     llvm::Value *LargeEnough =
540         Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}),
541                               llvm::ConstantInt::get(IntPtrTy, Size));
542     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
543   }
544 
545   uint64_t AlignVal = 0;
546 
547   if (SanOpts.has(SanitizerKind::Alignment)) {
548     AlignVal = Alignment.getQuantity();
549     if (!Ty->isIncompleteType() && !AlignVal)
550       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
551 
552     // The glvalue must be suitably aligned.
553     if (AlignVal) {
554       llvm::Value *Align =
555           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
556                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
557       llvm::Value *Aligned =
558         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
559       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
560     }
561   }
562 
563   if (Checks.size() > 0) {
564     llvm::Constant *StaticData[] = {
565       EmitCheckSourceLocation(Loc),
566       EmitCheckTypeDescriptor(Ty),
567       llvm::ConstantInt::get(SizeTy, AlignVal),
568       llvm::ConstantInt::get(Int8Ty, TCK)
569     };
570     EmitCheck(Checks, "type_mismatch", StaticData, Address);
571   }
572 
573   // If possible, check that the vptr indicates that there is a subobject of
574   // type Ty at offset zero within this object.
575   //
576   // C++11 [basic.life]p5,6:
577   //   [For storage which does not refer to an object within its lifetime]
578   //   The program has undefined behavior if:
579   //    -- the [pointer or glvalue] is used to access a non-static data member
580   //       or call a non-static member function
581   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
582   if (SanOpts.has(SanitizerKind::Vptr) &&
583       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
584        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
585        TCK == TCK_UpcastToVirtualBase) &&
586       RD && RD->hasDefinition() && RD->isDynamicClass()) {
587     // Compute a hash of the mangled name of the type.
588     //
589     // FIXME: This is not guaranteed to be deterministic! Move to a
590     //        fingerprinting mechanism once LLVM provides one. For the time
591     //        being the implementation happens to be deterministic.
592     SmallString<64> MangledName;
593     llvm::raw_svector_ostream Out(MangledName);
594     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
595                                                      Out);
596 
597     // Blacklist based on the mangled type.
598     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
599             Out.str())) {
600       llvm::hash_code TypeHash = hash_value(Out.str());
601 
602       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
603       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
604       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
605       llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
606       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
607       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
608 
609       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
610       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
611 
612       // Look the hash up in our cache.
613       const int CacheSize = 128;
614       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
615       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
616                                                      "__ubsan_vptr_type_cache");
617       llvm::Value *Slot = Builder.CreateAnd(Hash,
618                                             llvm::ConstantInt::get(IntPtrTy,
619                                                                    CacheSize-1));
620       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
621       llvm::Value *CacheVal =
622         Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
623 
624       // If the hash isn't in the cache, call a runtime handler to perform the
625       // hard work of checking whether the vptr is for an object of the right
626       // type. This will either fill in the cache and return, or produce a
627       // diagnostic.
628       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
629       llvm::Constant *StaticData[] = {
630         EmitCheckSourceLocation(Loc),
631         EmitCheckTypeDescriptor(Ty),
632         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
633         llvm::ConstantInt::get(Int8Ty, TCK)
634       };
635       llvm::Value *DynamicData[] = { Address, Hash };
636       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
637                 "dynamic_type_cache_miss", StaticData, DynamicData);
638     }
639   }
640 
641   if (Done) {
642     Builder.CreateBr(Done);
643     EmitBlock(Done);
644   }
645 }
646 
647 /// Determine whether this expression refers to a flexible array member in a
648 /// struct. We disable array bounds checks for such members.
649 static bool isFlexibleArrayMemberExpr(const Expr *E) {
650   // For compatibility with existing code, we treat arrays of length 0 or
651   // 1 as flexible array members.
652   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
653   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
654     if (CAT->getSize().ugt(1))
655       return false;
656   } else if (!isa<IncompleteArrayType>(AT))
657     return false;
658 
659   E = E->IgnoreParens();
660 
661   // A flexible array member must be the last member in the class.
662   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
663     // FIXME: If the base type of the member expr is not FD->getParent(),
664     // this should not be treated as a flexible array member access.
665     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
666       RecordDecl::field_iterator FI(
667           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
668       return ++FI == FD->getParent()->field_end();
669     }
670   }
671 
672   return false;
673 }
674 
675 /// If Base is known to point to the start of an array, return the length of
676 /// that array. Return 0 if the length cannot be determined.
677 static llvm::Value *getArrayIndexingBound(
678     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
679   // For the vector indexing extension, the bound is the number of elements.
680   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
681     IndexedType = Base->getType();
682     return CGF.Builder.getInt32(VT->getNumElements());
683   }
684 
685   Base = Base->IgnoreParens();
686 
687   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
688     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
689         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
690       IndexedType = CE->getSubExpr()->getType();
691       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
692       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
693         return CGF.Builder.getInt(CAT->getSize());
694       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
695         return CGF.getVLASize(VAT).first;
696     }
697   }
698 
699   return nullptr;
700 }
701 
702 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
703                                       llvm::Value *Index, QualType IndexType,
704                                       bool Accessed) {
705   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
706          "should not be called unless adding bounds checks");
707   SanitizerScope SanScope(this);
708 
709   QualType IndexedType;
710   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
711   if (!Bound)
712     return;
713 
714   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
715   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
716   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
717 
718   llvm::Constant *StaticData[] = {
719     EmitCheckSourceLocation(E->getExprLoc()),
720     EmitCheckTypeDescriptor(IndexedType),
721     EmitCheckTypeDescriptor(IndexType)
722   };
723   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
724                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
725   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
726             StaticData, Index);
727 }
728 
729 
730 CodeGenFunction::ComplexPairTy CodeGenFunction::
731 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
732                          bool isInc, bool isPre) {
733   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
734 
735   llvm::Value *NextVal;
736   if (isa<llvm::IntegerType>(InVal.first->getType())) {
737     uint64_t AmountVal = isInc ? 1 : -1;
738     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
739 
740     // Add the inc/dec to the real part.
741     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
742   } else {
743     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
744     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
745     if (!isInc)
746       FVal.changeSign();
747     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
748 
749     // Add the inc/dec to the real part.
750     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
751   }
752 
753   ComplexPairTy IncVal(NextVal, InVal.second);
754 
755   // Store the updated result through the lvalue.
756   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
757 
758   // If this is a postinc, return the value read from memory, otherwise use the
759   // updated value.
760   return isPre ? IncVal : InVal;
761 }
762 
763 //===----------------------------------------------------------------------===//
764 //                         LValue Expression Emission
765 //===----------------------------------------------------------------------===//
766 
767 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
768   if (Ty->isVoidType())
769     return RValue::get(nullptr);
770 
771   switch (getEvaluationKind(Ty)) {
772   case TEK_Complex: {
773     llvm::Type *EltTy =
774       ConvertType(Ty->castAs<ComplexType>()->getElementType());
775     llvm::Value *U = llvm::UndefValue::get(EltTy);
776     return RValue::getComplex(std::make_pair(U, U));
777   }
778 
779   // If this is a use of an undefined aggregate type, the aggregate must have an
780   // identifiable address.  Just because the contents of the value are undefined
781   // doesn't mean that the address can't be taken and compared.
782   case TEK_Aggregate: {
783     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
784     return RValue::getAggregate(DestPtr);
785   }
786 
787   case TEK_Scalar:
788     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
789   }
790   llvm_unreachable("bad evaluation kind");
791 }
792 
793 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
794                                               const char *Name) {
795   ErrorUnsupported(E, Name);
796   return GetUndefRValue(E->getType());
797 }
798 
799 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
800                                               const char *Name) {
801   ErrorUnsupported(E, Name);
802   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
803   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
804 }
805 
806 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
807   LValue LV;
808   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
809     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
810   else
811     LV = EmitLValue(E);
812   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
813     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
814                   E->getType(), LV.getAlignment());
815   return LV;
816 }
817 
818 /// EmitLValue - Emit code to compute a designator that specifies the location
819 /// of the expression.
820 ///
821 /// This can return one of two things: a simple address or a bitfield reference.
822 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
823 /// an LLVM pointer type.
824 ///
825 /// If this returns a bitfield reference, nothing about the pointee type of the
826 /// LLVM value is known: For example, it may not be a pointer to an integer.
827 ///
828 /// If this returns a normal address, and if the lvalue's C type is fixed size,
829 /// this method guarantees that the returned pointer type will point to an LLVM
830 /// type of the same size of the lvalue's type.  If the lvalue has a variable
831 /// length type, this is not possible.
832 ///
833 LValue CodeGenFunction::EmitLValue(const Expr *E) {
834   ApplyDebugLocation DL(*this, E);
835   switch (E->getStmtClass()) {
836   default: return EmitUnsupportedLValue(E, "l-value expression");
837 
838   case Expr::ObjCPropertyRefExprClass:
839     llvm_unreachable("cannot emit a property reference directly");
840 
841   case Expr::ObjCSelectorExprClass:
842     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
843   case Expr::ObjCIsaExprClass:
844     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
845   case Expr::BinaryOperatorClass:
846     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
847   case Expr::CompoundAssignOperatorClass: {
848     QualType Ty = E->getType();
849     if (const AtomicType *AT = Ty->getAs<AtomicType>())
850       Ty = AT->getValueType();
851     if (!Ty->isAnyComplexType())
852       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
853     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
854   }
855   case Expr::CallExprClass:
856   case Expr::CXXMemberCallExprClass:
857   case Expr::CXXOperatorCallExprClass:
858   case Expr::UserDefinedLiteralClass:
859     return EmitCallExprLValue(cast<CallExpr>(E));
860   case Expr::VAArgExprClass:
861     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
862   case Expr::DeclRefExprClass:
863     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
864   case Expr::ParenExprClass:
865     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
866   case Expr::GenericSelectionExprClass:
867     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
868   case Expr::PredefinedExprClass:
869     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
870   case Expr::StringLiteralClass:
871     return EmitStringLiteralLValue(cast<StringLiteral>(E));
872   case Expr::ObjCEncodeExprClass:
873     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
874   case Expr::PseudoObjectExprClass:
875     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
876   case Expr::InitListExprClass:
877     return EmitInitListLValue(cast<InitListExpr>(E));
878   case Expr::CXXTemporaryObjectExprClass:
879   case Expr::CXXConstructExprClass:
880     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
881   case Expr::CXXBindTemporaryExprClass:
882     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
883   case Expr::CXXUuidofExprClass:
884     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
885   case Expr::LambdaExprClass:
886     return EmitLambdaLValue(cast<LambdaExpr>(E));
887 
888   case Expr::ExprWithCleanupsClass: {
889     const auto *cleanups = cast<ExprWithCleanups>(E);
890     enterFullExpression(cleanups);
891     RunCleanupsScope Scope(*this);
892     return EmitLValue(cleanups->getSubExpr());
893   }
894 
895   case Expr::CXXDefaultArgExprClass:
896     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
897   case Expr::CXXDefaultInitExprClass: {
898     CXXDefaultInitExprScope Scope(*this);
899     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
900   }
901   case Expr::CXXTypeidExprClass:
902     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
903 
904   case Expr::ObjCMessageExprClass:
905     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
906   case Expr::ObjCIvarRefExprClass:
907     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
908   case Expr::StmtExprClass:
909     return EmitStmtExprLValue(cast<StmtExpr>(E));
910   case Expr::UnaryOperatorClass:
911     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
912   case Expr::ArraySubscriptExprClass:
913     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
914   case Expr::ExtVectorElementExprClass:
915     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
916   case Expr::MemberExprClass:
917     return EmitMemberExpr(cast<MemberExpr>(E));
918   case Expr::CompoundLiteralExprClass:
919     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
920   case Expr::ConditionalOperatorClass:
921     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
922   case Expr::BinaryConditionalOperatorClass:
923     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
924   case Expr::ChooseExprClass:
925     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
926   case Expr::OpaqueValueExprClass:
927     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
928   case Expr::SubstNonTypeTemplateParmExprClass:
929     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
930   case Expr::ImplicitCastExprClass:
931   case Expr::CStyleCastExprClass:
932   case Expr::CXXFunctionalCastExprClass:
933   case Expr::CXXStaticCastExprClass:
934   case Expr::CXXDynamicCastExprClass:
935   case Expr::CXXReinterpretCastExprClass:
936   case Expr::CXXConstCastExprClass:
937   case Expr::ObjCBridgedCastExprClass:
938     return EmitCastLValue(cast<CastExpr>(E));
939 
940   case Expr::MaterializeTemporaryExprClass:
941     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
942   }
943 }
944 
945 /// Given an object of the given canonical type, can we safely copy a
946 /// value out of it based on its initializer?
947 static bool isConstantEmittableObjectType(QualType type) {
948   assert(type.isCanonical());
949   assert(!type->isReferenceType());
950 
951   // Must be const-qualified but non-volatile.
952   Qualifiers qs = type.getLocalQualifiers();
953   if (!qs.hasConst() || qs.hasVolatile()) return false;
954 
955   // Otherwise, all object types satisfy this except C++ classes with
956   // mutable subobjects or non-trivial copy/destroy behavior.
957   if (const auto *RT = dyn_cast<RecordType>(type))
958     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
959       if (RD->hasMutableFields() || !RD->isTrivial())
960         return false;
961 
962   return true;
963 }
964 
965 /// Can we constant-emit a load of a reference to a variable of the
966 /// given type?  This is different from predicates like
967 /// Decl::isUsableInConstantExpressions because we do want it to apply
968 /// in situations that don't necessarily satisfy the language's rules
969 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
970 /// to do this with const float variables even if those variables
971 /// aren't marked 'constexpr'.
972 enum ConstantEmissionKind {
973   CEK_None,
974   CEK_AsReferenceOnly,
975   CEK_AsValueOrReference,
976   CEK_AsValueOnly
977 };
978 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
979   type = type.getCanonicalType();
980   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
981     if (isConstantEmittableObjectType(ref->getPointeeType()))
982       return CEK_AsValueOrReference;
983     return CEK_AsReferenceOnly;
984   }
985   if (isConstantEmittableObjectType(type))
986     return CEK_AsValueOnly;
987   return CEK_None;
988 }
989 
990 /// Try to emit a reference to the given value without producing it as
991 /// an l-value.  This is actually more than an optimization: we can't
992 /// produce an l-value for variables that we never actually captured
993 /// in a block or lambda, which means const int variables or constexpr
994 /// literals or similar.
995 CodeGenFunction::ConstantEmission
996 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
997   ValueDecl *value = refExpr->getDecl();
998 
999   // The value needs to be an enum constant or a constant variable.
1000   ConstantEmissionKind CEK;
1001   if (isa<ParmVarDecl>(value)) {
1002     CEK = CEK_None;
1003   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1004     CEK = checkVarTypeForConstantEmission(var->getType());
1005   } else if (isa<EnumConstantDecl>(value)) {
1006     CEK = CEK_AsValueOnly;
1007   } else {
1008     CEK = CEK_None;
1009   }
1010   if (CEK == CEK_None) return ConstantEmission();
1011 
1012   Expr::EvalResult result;
1013   bool resultIsReference;
1014   QualType resultType;
1015 
1016   // It's best to evaluate all the way as an r-value if that's permitted.
1017   if (CEK != CEK_AsReferenceOnly &&
1018       refExpr->EvaluateAsRValue(result, getContext())) {
1019     resultIsReference = false;
1020     resultType = refExpr->getType();
1021 
1022   // Otherwise, try to evaluate as an l-value.
1023   } else if (CEK != CEK_AsValueOnly &&
1024              refExpr->EvaluateAsLValue(result, getContext())) {
1025     resultIsReference = true;
1026     resultType = value->getType();
1027 
1028   // Failure.
1029   } else {
1030     return ConstantEmission();
1031   }
1032 
1033   // In any case, if the initializer has side-effects, abandon ship.
1034   if (result.HasSideEffects)
1035     return ConstantEmission();
1036 
1037   // Emit as a constant.
1038   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1039 
1040   // Make sure we emit a debug reference to the global variable.
1041   // This should probably fire even for
1042   if (isa<VarDecl>(value)) {
1043     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1044       EmitDeclRefExprDbgValue(refExpr, C);
1045   } else {
1046     assert(isa<EnumConstantDecl>(value));
1047     EmitDeclRefExprDbgValue(refExpr, C);
1048   }
1049 
1050   // If we emitted a reference constant, we need to dereference that.
1051   if (resultIsReference)
1052     return ConstantEmission::forReference(C);
1053 
1054   return ConstantEmission::forValue(C);
1055 }
1056 
1057 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1058                                                SourceLocation Loc) {
1059   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1060                           lvalue.getAlignment().getQuantity(),
1061                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
1062                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
1063 }
1064 
1065 static bool hasBooleanRepresentation(QualType Ty) {
1066   if (Ty->isBooleanType())
1067     return true;
1068 
1069   if (const EnumType *ET = Ty->getAs<EnumType>())
1070     return ET->getDecl()->getIntegerType()->isBooleanType();
1071 
1072   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1073     return hasBooleanRepresentation(AT->getValueType());
1074 
1075   return false;
1076 }
1077 
1078 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1079                             llvm::APInt &Min, llvm::APInt &End,
1080                             bool StrictEnums) {
1081   const EnumType *ET = Ty->getAs<EnumType>();
1082   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1083                                 ET && !ET->getDecl()->isFixed();
1084   bool IsBool = hasBooleanRepresentation(Ty);
1085   if (!IsBool && !IsRegularCPlusPlusEnum)
1086     return false;
1087 
1088   if (IsBool) {
1089     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1090     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1091   } else {
1092     const EnumDecl *ED = ET->getDecl();
1093     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1094     unsigned Bitwidth = LTy->getScalarSizeInBits();
1095     unsigned NumNegativeBits = ED->getNumNegativeBits();
1096     unsigned NumPositiveBits = ED->getNumPositiveBits();
1097 
1098     if (NumNegativeBits) {
1099       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1100       assert(NumBits <= Bitwidth);
1101       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1102       Min = -End;
1103     } else {
1104       assert(NumPositiveBits <= Bitwidth);
1105       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1106       Min = llvm::APInt(Bitwidth, 0);
1107     }
1108   }
1109   return true;
1110 }
1111 
1112 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1113   llvm::APInt Min, End;
1114   if (!getRangeForType(*this, Ty, Min, End,
1115                        CGM.getCodeGenOpts().StrictEnums))
1116     return nullptr;
1117 
1118   llvm::MDBuilder MDHelper(getLLVMContext());
1119   return MDHelper.createRange(Min, End);
1120 }
1121 
1122 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1123                                                unsigned Alignment, QualType Ty,
1124                                                SourceLocation Loc,
1125                                                llvm::MDNode *TBAAInfo,
1126                                                QualType TBAABaseType,
1127                                                uint64_t TBAAOffset) {
1128   // For better performance, handle vector loads differently.
1129   if (Ty->isVectorType()) {
1130     llvm::Value *V;
1131     const llvm::Type *EltTy =
1132     cast<llvm::PointerType>(Addr->getType())->getElementType();
1133 
1134     const auto *VTy = cast<llvm::VectorType>(EltTy);
1135 
1136     // Handle vectors of size 3, like size 4 for better performance.
1137     if (VTy->getNumElements() == 3) {
1138 
1139       // Bitcast to vec4 type.
1140       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1141                                                          4);
1142       llvm::PointerType *ptVec4Ty =
1143       llvm::PointerType::get(vec4Ty,
1144                              (cast<llvm::PointerType>(
1145                                       Addr->getType()))->getAddressSpace());
1146       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1147                                                 "castToVec4");
1148       // Now load value.
1149       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1150 
1151       // Shuffle vector to get vec3.
1152       V = Builder.CreateShuffleVector(LoadVal, llvm::UndefValue::get(vec4Ty),
1153                                       {0, 1, 2}, "extractVec");
1154       return EmitFromMemory(V, Ty);
1155     }
1156   }
1157 
1158   // Atomic operations have to be done on integral types.
1159   if (Ty->isAtomicType() || typeIsSuitableForInlineAtomic(Ty, Volatile)) {
1160     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1161                                      CharUnits::fromQuantity(Alignment),
1162                                      getContext(), TBAAInfo);
1163     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1164   }
1165 
1166   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1167   if (Volatile)
1168     Load->setVolatile(true);
1169   if (Alignment)
1170     Load->setAlignment(Alignment);
1171   if (TBAAInfo) {
1172     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1173                                                       TBAAOffset);
1174     if (TBAAPath)
1175       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1176   }
1177 
1178   bool NeedsBoolCheck =
1179       SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
1180   bool NeedsEnumCheck =
1181       SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
1182   if (NeedsBoolCheck || NeedsEnumCheck) {
1183     SanitizerScope SanScope(this);
1184     llvm::APInt Min, End;
1185     if (getRangeForType(*this, Ty, Min, End, true)) {
1186       --End;
1187       llvm::Value *Check;
1188       if (!Min)
1189         Check = Builder.CreateICmpULE(
1190           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1191       else {
1192         llvm::Value *Upper = Builder.CreateICmpSLE(
1193           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1194         llvm::Value *Lower = Builder.CreateICmpSGE(
1195           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1196         Check = Builder.CreateAnd(Upper, Lower);
1197       }
1198       llvm::Constant *StaticArgs[] = {
1199         EmitCheckSourceLocation(Loc),
1200         EmitCheckTypeDescriptor(Ty)
1201       };
1202       SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1203       EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
1204                 EmitCheckValue(Load));
1205     }
1206   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1207     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1208       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1209 
1210   return EmitFromMemory(Load, Ty);
1211 }
1212 
1213 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1214   // Bool has a different representation in memory than in registers.
1215   if (hasBooleanRepresentation(Ty)) {
1216     // This should really always be an i1, but sometimes it's already
1217     // an i8, and it's awkward to track those cases down.
1218     if (Value->getType()->isIntegerTy(1))
1219       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1220     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1221            "wrong value rep of bool");
1222   }
1223 
1224   return Value;
1225 }
1226 
1227 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1228   // Bool has a different representation in memory than in registers.
1229   if (hasBooleanRepresentation(Ty)) {
1230     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1231            "wrong value rep of bool");
1232     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1233   }
1234 
1235   return Value;
1236 }
1237 
1238 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1239                                         bool Volatile, unsigned Alignment,
1240                                         QualType Ty, llvm::MDNode *TBAAInfo,
1241                                         bool isInit, QualType TBAABaseType,
1242                                         uint64_t TBAAOffset) {
1243 
1244   // Handle vectors differently to get better performance.
1245   if (Ty->isVectorType()) {
1246     llvm::Type *SrcTy = Value->getType();
1247     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1248     // Handle vec3 special.
1249     if (VecTy->getNumElements() == 3) {
1250       // Our source is a vec3, do a shuffle vector to make it a vec4.
1251       llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1252                                 Builder.getInt32(2),
1253                                 llvm::UndefValue::get(Builder.getInt32Ty())};
1254       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1255       Value = Builder.CreateShuffleVector(Value,
1256                                           llvm::UndefValue::get(VecTy),
1257                                           MaskV, "extractVec");
1258       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1259     }
1260     auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
1261     if (DstPtr->getElementType() != SrcTy) {
1262       llvm::Type *MemTy =
1263       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1264       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1265     }
1266   }
1267 
1268   Value = EmitToMemory(Value, Ty);
1269 
1270   if (Ty->isAtomicType() ||
1271       (!isInit && typeIsSuitableForInlineAtomic(Ty, Volatile))) {
1272     EmitAtomicStore(RValue::get(Value),
1273                     LValue::MakeAddr(Addr, Ty,
1274                                      CharUnits::fromQuantity(Alignment),
1275                                      getContext(), TBAAInfo),
1276                     isInit);
1277     return;
1278   }
1279 
1280   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1281   if (Alignment)
1282     Store->setAlignment(Alignment);
1283   if (TBAAInfo) {
1284     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1285                                                       TBAAOffset);
1286     if (TBAAPath)
1287       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1288   }
1289 }
1290 
1291 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1292                                         bool isInit) {
1293   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1294                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1295                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1296                     lvalue.getTBAAOffset());
1297 }
1298 
1299 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1300 /// method emits the address of the lvalue, then loads the result as an rvalue,
1301 /// returning the rvalue.
1302 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1303   if (LV.isObjCWeak()) {
1304     // load of a __weak object.
1305     llvm::Value *AddrWeakObj = LV.getAddress();
1306     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1307                                                              AddrWeakObj));
1308   }
1309   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1310     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1311     Object = EmitObjCConsumeObject(LV.getType(), Object);
1312     return RValue::get(Object);
1313   }
1314 
1315   if (LV.isSimple()) {
1316     assert(!LV.getType()->isFunctionType());
1317 
1318     // Everything needs a load.
1319     return RValue::get(EmitLoadOfScalar(LV, Loc));
1320   }
1321 
1322   if (LV.isVectorElt()) {
1323     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1324                                               LV.isVolatileQualified());
1325     Load->setAlignment(LV.getAlignment().getQuantity());
1326     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1327                                                     "vecext"));
1328   }
1329 
1330   // If this is a reference to a subset of the elements of a vector, either
1331   // shuffle the input or extract/insert them as appropriate.
1332   if (LV.isExtVectorElt())
1333     return EmitLoadOfExtVectorElementLValue(LV);
1334 
1335   // Global Register variables always invoke intrinsics
1336   if (LV.isGlobalReg())
1337     return EmitLoadOfGlobalRegLValue(LV);
1338 
1339   assert(LV.isBitField() && "Unknown LValue type!");
1340   return EmitLoadOfBitfieldLValue(LV);
1341 }
1342 
1343 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1344   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1345   CharUnits Align = LV.getAlignment().alignmentAtOffset(Info.StorageOffset);
1346 
1347   // Get the output type.
1348   llvm::Type *ResLTy = ConvertType(LV.getType());
1349 
1350   llvm::Value *Ptr = LV.getBitFieldAddr();
1351   llvm::Value *Val = Builder.CreateAlignedLoad(Ptr, Align.getQuantity(),
1352                                                LV.isVolatileQualified(),
1353                                                "bf.load");
1354 
1355   if (Info.IsSigned) {
1356     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1357     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1358     if (HighBits)
1359       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1360     if (Info.Offset + HighBits)
1361       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1362   } else {
1363     if (Info.Offset)
1364       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1365     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1366       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1367                                                               Info.Size),
1368                               "bf.clear");
1369   }
1370   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1371 
1372   return RValue::get(Val);
1373 }
1374 
1375 // If this is a reference to a subset of the elements of a vector, create an
1376 // appropriate shufflevector.
1377 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1378   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1379                                             LV.isVolatileQualified());
1380   Load->setAlignment(LV.getAlignment().getQuantity());
1381   llvm::Value *Vec = Load;
1382 
1383   const llvm::Constant *Elts = LV.getExtVectorElts();
1384 
1385   // If the result of the expression is a non-vector type, we must be extracting
1386   // a single element.  Just codegen as an extractelement.
1387   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1388   if (!ExprVT) {
1389     unsigned InIdx = getAccessedFieldNo(0, Elts);
1390     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1391     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1392   }
1393 
1394   // Always use shuffle vector to try to retain the original program structure
1395   unsigned NumResultElts = ExprVT->getNumElements();
1396 
1397   SmallVector<llvm::Constant*, 4> Mask;
1398   for (unsigned i = 0; i != NumResultElts; ++i)
1399     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1400 
1401   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1402   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1403                                     MaskV);
1404   return RValue::get(Vec);
1405 }
1406 
1407 /// @brief Generates lvalue for partial ext_vector access.
1408 llvm::Value *CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1409   llvm::Value *VectorAddress = LV.getExtVectorAddr();
1410   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1411   QualType EQT = ExprVT->getElementType();
1412   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1413   llvm::Type *VectorElementPtrToTy = VectorElementTy->getPointerTo();
1414 
1415   llvm::Value *CastToPointerElement =
1416     Builder.CreateBitCast(VectorAddress,
1417                           VectorElementPtrToTy, "conv.ptr.element");
1418 
1419   const llvm::Constant *Elts = LV.getExtVectorElts();
1420   unsigned ix = getAccessedFieldNo(0, Elts);
1421 
1422   llvm::Value *VectorBasePtrPlusIx =
1423     Builder.CreateInBoundsGEP(CastToPointerElement,
1424                               llvm::ConstantInt::get(SizeTy, ix), "add.ptr");
1425 
1426   return VectorBasePtrPlusIx;
1427 }
1428 
1429 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1430 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1431   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1432          "Bad type for register variable");
1433   llvm::MDNode *RegName = cast<llvm::MDNode>(
1434       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1435 
1436   // We accept integer and pointer types only
1437   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1438   llvm::Type *Ty = OrigTy;
1439   if (OrigTy->isPointerTy())
1440     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1441   llvm::Type *Types[] = { Ty };
1442 
1443   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1444   llvm::Value *Call = Builder.CreateCall(
1445       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1446   if (OrigTy->isPointerTy())
1447     Call = Builder.CreateIntToPtr(Call, OrigTy);
1448   return RValue::get(Call);
1449 }
1450 
1451 
1452 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1453 /// lvalue, where both are guaranteed to the have the same type, and that type
1454 /// is 'Ty'.
1455 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1456                                              bool isInit) {
1457   if (!Dst.isSimple()) {
1458     if (Dst.isVectorElt()) {
1459       // Read/modify/write the vector, inserting the new element.
1460       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1461                                                 Dst.isVolatileQualified());
1462       Load->setAlignment(Dst.getAlignment().getQuantity());
1463       llvm::Value *Vec = Load;
1464       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1465                                         Dst.getVectorIdx(), "vecins");
1466       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1467                                                    Dst.isVolatileQualified());
1468       Store->setAlignment(Dst.getAlignment().getQuantity());
1469       return;
1470     }
1471 
1472     // If this is an update of extended vector elements, insert them as
1473     // appropriate.
1474     if (Dst.isExtVectorElt())
1475       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1476 
1477     if (Dst.isGlobalReg())
1478       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1479 
1480     assert(Dst.isBitField() && "Unknown LValue type");
1481     return EmitStoreThroughBitfieldLValue(Src, Dst);
1482   }
1483 
1484   // There's special magic for assigning into an ARC-qualified l-value.
1485   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1486     switch (Lifetime) {
1487     case Qualifiers::OCL_None:
1488       llvm_unreachable("present but none");
1489 
1490     case Qualifiers::OCL_ExplicitNone:
1491       // nothing special
1492       break;
1493 
1494     case Qualifiers::OCL_Strong:
1495       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1496       return;
1497 
1498     case Qualifiers::OCL_Weak:
1499       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1500       return;
1501 
1502     case Qualifiers::OCL_Autoreleasing:
1503       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1504                                                      Src.getScalarVal()));
1505       // fall into the normal path
1506       break;
1507     }
1508   }
1509 
1510   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1511     // load of a __weak object.
1512     llvm::Value *LvalueDst = Dst.getAddress();
1513     llvm::Value *src = Src.getScalarVal();
1514      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1515     return;
1516   }
1517 
1518   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1519     // load of a __strong object.
1520     llvm::Value *LvalueDst = Dst.getAddress();
1521     llvm::Value *src = Src.getScalarVal();
1522     if (Dst.isObjCIvar()) {
1523       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1524       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1525       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1526       llvm::Value *dst = RHS;
1527       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1528       llvm::Value *LHS =
1529         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1530       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1531       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1532                                               BytesBetween);
1533     } else if (Dst.isGlobalObjCRef()) {
1534       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1535                                                 Dst.isThreadLocalRef());
1536     }
1537     else
1538       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1539     return;
1540   }
1541 
1542   assert(Src.isScalar() && "Can't emit an agg store with this method");
1543   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1544 }
1545 
1546 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1547                                                      llvm::Value **Result) {
1548   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1549   CharUnits Align = Dst.getAlignment().alignmentAtOffset(Info.StorageOffset);
1550   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1551   llvm::Value *Ptr = Dst.getBitFieldAddr();
1552 
1553   // Get the source value, truncated to the width of the bit-field.
1554   llvm::Value *SrcVal = Src.getScalarVal();
1555 
1556   // Cast the source to the storage type and shift it into place.
1557   SrcVal = Builder.CreateIntCast(SrcVal,
1558                                  Ptr->getType()->getPointerElementType(),
1559                                  /*IsSigned=*/false);
1560   llvm::Value *MaskedVal = SrcVal;
1561 
1562   // See if there are other bits in the bitfield's storage we'll need to load
1563   // and mask together with source before storing.
1564   if (Info.StorageSize != Info.Size) {
1565     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1566     llvm::Value *Val = Builder.CreateAlignedLoad(Ptr, Align.getQuantity(),
1567                                                  Dst.isVolatileQualified(),
1568                                                  "bf.load");
1569 
1570     // Mask the source value as needed.
1571     if (!hasBooleanRepresentation(Dst.getType()))
1572       SrcVal = Builder.CreateAnd(SrcVal,
1573                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1574                                                             Info.Size),
1575                                  "bf.value");
1576     MaskedVal = SrcVal;
1577     if (Info.Offset)
1578       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1579 
1580     // Mask out the original value.
1581     Val = Builder.CreateAnd(Val,
1582                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1583                                                      Info.Offset,
1584                                                      Info.Offset + Info.Size),
1585                             "bf.clear");
1586 
1587     // Or together the unchanged values and the source value.
1588     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1589   } else {
1590     assert(Info.Offset == 0);
1591   }
1592 
1593   // Write the new value back out.
1594   Builder.CreateAlignedStore(SrcVal, Ptr, Align.getQuantity(),
1595                              Dst.isVolatileQualified());
1596 
1597   // Return the new value of the bit-field, if requested.
1598   if (Result) {
1599     llvm::Value *ResultVal = MaskedVal;
1600 
1601     // Sign extend the value if needed.
1602     if (Info.IsSigned) {
1603       assert(Info.Size <= Info.StorageSize);
1604       unsigned HighBits = Info.StorageSize - Info.Size;
1605       if (HighBits) {
1606         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1607         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1608       }
1609     }
1610 
1611     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1612                                       "bf.result.cast");
1613     *Result = EmitFromMemory(ResultVal, Dst.getType());
1614   }
1615 }
1616 
1617 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1618                                                                LValue Dst) {
1619   // This access turns into a read/modify/write of the vector.  Load the input
1620   // value now.
1621   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1622                                             Dst.isVolatileQualified());
1623   Load->setAlignment(Dst.getAlignment().getQuantity());
1624   llvm::Value *Vec = Load;
1625   const llvm::Constant *Elts = Dst.getExtVectorElts();
1626 
1627   llvm::Value *SrcVal = Src.getScalarVal();
1628 
1629   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1630     unsigned NumSrcElts = VTy->getNumElements();
1631     unsigned NumDstElts =
1632        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1633     if (NumDstElts == NumSrcElts) {
1634       // Use shuffle vector is the src and destination are the same number of
1635       // elements and restore the vector mask since it is on the side it will be
1636       // stored.
1637       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1638       for (unsigned i = 0; i != NumSrcElts; ++i)
1639         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1640 
1641       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1642       Vec = Builder.CreateShuffleVector(SrcVal,
1643                                         llvm::UndefValue::get(Vec->getType()),
1644                                         MaskV);
1645     } else if (NumDstElts > NumSrcElts) {
1646       // Extended the source vector to the same length and then shuffle it
1647       // into the destination.
1648       // FIXME: since we're shuffling with undef, can we just use the indices
1649       //        into that?  This could be simpler.
1650       SmallVector<llvm::Constant*, 4> ExtMask;
1651       for (unsigned i = 0; i != NumSrcElts; ++i)
1652         ExtMask.push_back(Builder.getInt32(i));
1653       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1654       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1655       llvm::Value *ExtSrcVal =
1656         Builder.CreateShuffleVector(SrcVal,
1657                                     llvm::UndefValue::get(SrcVal->getType()),
1658                                     ExtMaskV);
1659       // build identity
1660       SmallVector<llvm::Constant*, 4> Mask;
1661       for (unsigned i = 0; i != NumDstElts; ++i)
1662         Mask.push_back(Builder.getInt32(i));
1663 
1664       // When the vector size is odd and .odd or .hi is used, the last element
1665       // of the Elts constant array will be one past the size of the vector.
1666       // Ignore the last element here, if it is greater than the mask size.
1667       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1668         NumSrcElts--;
1669 
1670       // modify when what gets shuffled in
1671       for (unsigned i = 0; i != NumSrcElts; ++i)
1672         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1673       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1674       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1675     } else {
1676       // We should never shorten the vector
1677       llvm_unreachable("unexpected shorten vector length");
1678     }
1679   } else {
1680     // If the Src is a scalar (not a vector) it must be updating one element.
1681     unsigned InIdx = getAccessedFieldNo(0, Elts);
1682     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1683     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1684   }
1685 
1686   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1687                                                Dst.isVolatileQualified());
1688   Store->setAlignment(Dst.getAlignment().getQuantity());
1689 }
1690 
1691 /// @brief Store of global named registers are always calls to intrinsics.
1692 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1693   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1694          "Bad type for register variable");
1695   llvm::MDNode *RegName = cast<llvm::MDNode>(
1696       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
1697   assert(RegName && "Register LValue is not metadata");
1698 
1699   // We accept integer and pointer types only
1700   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1701   llvm::Type *Ty = OrigTy;
1702   if (OrigTy->isPointerTy())
1703     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1704   llvm::Type *Types[] = { Ty };
1705 
1706   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1707   llvm::Value *Value = Src.getScalarVal();
1708   if (OrigTy->isPointerTy())
1709     Value = Builder.CreatePtrToInt(Value, Ty);
1710   Builder.CreateCall(
1711       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
1712 }
1713 
1714 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1715 // generating write-barries API. It is currently a global, ivar,
1716 // or neither.
1717 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1718                                  LValue &LV,
1719                                  bool IsMemberAccess=false) {
1720   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1721     return;
1722 
1723   if (isa<ObjCIvarRefExpr>(E)) {
1724     QualType ExpTy = E->getType();
1725     if (IsMemberAccess && ExpTy->isPointerType()) {
1726       // If ivar is a structure pointer, assigning to field of
1727       // this struct follows gcc's behavior and makes it a non-ivar
1728       // writer-barrier conservatively.
1729       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1730       if (ExpTy->isRecordType()) {
1731         LV.setObjCIvar(false);
1732         return;
1733       }
1734     }
1735     LV.setObjCIvar(true);
1736     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1737     LV.setBaseIvarExp(Exp->getBase());
1738     LV.setObjCArray(E->getType()->isArrayType());
1739     return;
1740   }
1741 
1742   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1743     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1744       if (VD->hasGlobalStorage()) {
1745         LV.setGlobalObjCRef(true);
1746         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1747       }
1748     }
1749     LV.setObjCArray(E->getType()->isArrayType());
1750     return;
1751   }
1752 
1753   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1754     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1755     return;
1756   }
1757 
1758   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1759     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1760     if (LV.isObjCIvar()) {
1761       // If cast is to a structure pointer, follow gcc's behavior and make it
1762       // a non-ivar write-barrier.
1763       QualType ExpTy = E->getType();
1764       if (ExpTy->isPointerType())
1765         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1766       if (ExpTy->isRecordType())
1767         LV.setObjCIvar(false);
1768     }
1769     return;
1770   }
1771 
1772   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1773     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1774     return;
1775   }
1776 
1777   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1778     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1779     return;
1780   }
1781 
1782   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1783     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1784     return;
1785   }
1786 
1787   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1788     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1789     return;
1790   }
1791 
1792   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1793     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1794     if (LV.isObjCIvar() && !LV.isObjCArray())
1795       // Using array syntax to assigning to what an ivar points to is not
1796       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1797       LV.setObjCIvar(false);
1798     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1799       // Using array syntax to assigning to what global points to is not
1800       // same as assigning to the global itself. {id *G;} G[i] = 0;
1801       LV.setGlobalObjCRef(false);
1802     return;
1803   }
1804 
1805   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1806     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1807     // We don't know if member is an 'ivar', but this flag is looked at
1808     // only in the context of LV.isObjCIvar().
1809     LV.setObjCArray(E->getType()->isArrayType());
1810     return;
1811   }
1812 }
1813 
1814 static llvm::Value *
1815 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1816                                 llvm::Value *V, llvm::Type *IRType,
1817                                 StringRef Name = StringRef()) {
1818   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1819   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1820 }
1821 
1822 static LValue EmitThreadPrivateVarDeclLValue(
1823     CodeGenFunction &CGF, const VarDecl *VD, QualType T, llvm::Value *V,
1824     llvm::Type *RealVarTy, CharUnits Alignment, SourceLocation Loc) {
1825   V = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, V, Loc);
1826   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1827   return CGF.MakeAddrLValue(V, T, Alignment);
1828 }
1829 
1830 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1831                                       const Expr *E, const VarDecl *VD) {
1832   QualType T = E->getType();
1833 
1834   // If it's thread_local, emit a call to its wrapper function instead.
1835   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1836       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
1837     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1838 
1839   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1840   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1841   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1842   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1843   LValue LV;
1844   // Emit reference to the private copy of the variable if it is an OpenMP
1845   // threadprivate variable.
1846   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
1847     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, V, RealVarTy, Alignment,
1848                                           E->getExprLoc());
1849   if (VD->getType()->isReferenceType()) {
1850     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1851     LI->setAlignment(Alignment.getQuantity());
1852     V = LI;
1853     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1854   } else {
1855     LV = CGF.MakeAddrLValue(V, T, Alignment);
1856   }
1857   setObjCGCLValueClass(CGF.getContext(), E, LV);
1858   return LV;
1859 }
1860 
1861 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1862                                      const Expr *E, const FunctionDecl *FD) {
1863   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1864   if (!FD->hasPrototype()) {
1865     if (const FunctionProtoType *Proto =
1866             FD->getType()->getAs<FunctionProtoType>()) {
1867       // Ugly case: for a K&R-style definition, the type of the definition
1868       // isn't the same as the type of a use.  Correct for this with a
1869       // bitcast.
1870       QualType NoProtoType =
1871           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1872       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1873       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1874     }
1875   }
1876   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1877   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1878 }
1879 
1880 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1881                                       llvm::Value *ThisValue) {
1882   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1883   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1884   return CGF.EmitLValueForField(LV, FD);
1885 }
1886 
1887 /// Named Registers are named metadata pointing to the register name
1888 /// which will be read from/written to as an argument to the intrinsic
1889 /// @llvm.read/write_register.
1890 /// So far, only the name is being passed down, but other options such as
1891 /// register type, allocation type or even optimization options could be
1892 /// passed down via the metadata node.
1893 static LValue EmitGlobalNamedRegister(const VarDecl *VD,
1894                                       CodeGenModule &CGM,
1895                                       CharUnits Alignment) {
1896   SmallString<64> Name("llvm.named.register.");
1897   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
1898   assert(Asm->getLabel().size() < 64-Name.size() &&
1899       "Register name too big");
1900   Name.append(Asm->getLabel());
1901   llvm::NamedMDNode *M =
1902     CGM.getModule().getOrInsertNamedMetadata(Name);
1903   if (M->getNumOperands() == 0) {
1904     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
1905                                               Asm->getLabel());
1906     llvm::Metadata *Ops[] = {Str};
1907     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
1908   }
1909   return LValue::MakeGlobalReg(
1910       llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)),
1911       VD->getType(), Alignment);
1912 }
1913 
1914 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1915   const NamedDecl *ND = E->getDecl();
1916   CharUnits Alignment = getContext().getDeclAlign(ND);
1917   QualType T = E->getType();
1918 
1919   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1920     // Global Named registers access via intrinsics only
1921     if (VD->getStorageClass() == SC_Register &&
1922         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
1923       return EmitGlobalNamedRegister(VD, CGM, Alignment);
1924 
1925     // A DeclRefExpr for a reference initialized by a constant expression can
1926     // appear without being odr-used. Directly emit the constant initializer.
1927     const Expr *Init = VD->getAnyInitializer(VD);
1928     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1929         VD->isUsableInConstantExpressions(getContext()) &&
1930         VD->checkInitIsICE()) {
1931       llvm::Constant *Val =
1932         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1933       assert(Val && "failed to emit reference constant expression");
1934       // FIXME: Eventually we will want to emit vector element references.
1935       return MakeAddrLValue(Val, T, Alignment);
1936     }
1937 
1938     // Check for captured variables.
1939     if (E->refersToEnclosingVariableOrCapture()) {
1940       if (auto *FD = LambdaCaptureFields.lookup(VD))
1941         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1942       else if (CapturedStmtInfo) {
1943         if (auto *V = LocalDeclMap.lookup(VD))
1944           return MakeAddrLValue(V, T, Alignment);
1945         else
1946           return EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
1947                                          CapturedStmtInfo->getContextValue());
1948       }
1949       assert(isa<BlockDecl>(CurCodeDecl));
1950       return MakeAddrLValue(GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()),
1951                             T, Alignment);
1952     }
1953   }
1954 
1955   // FIXME: We should be able to assert this for FunctionDecls as well!
1956   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1957   // those with a valid source location.
1958   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1959           !E->getLocation().isValid()) &&
1960          "Should not use decl without marking it used!");
1961 
1962   if (ND->hasAttr<WeakRefAttr>()) {
1963     const auto *VD = cast<ValueDecl>(ND);
1964     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1965     return MakeAddrLValue(Aliasee, T, Alignment);
1966   }
1967 
1968   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1969     // Check if this is a global variable.
1970     if (VD->hasLinkage() || VD->isStaticDataMember())
1971       return EmitGlobalVarDeclLValue(*this, E, VD);
1972 
1973     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1974 
1975     llvm::Value *V = LocalDeclMap.lookup(VD);
1976     if (!V && VD->isStaticLocal())
1977       V = CGM.getOrCreateStaticVarDecl(
1978           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false));
1979 
1980     // Check if variable is threadprivate.
1981     if (V && getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
1982       return EmitThreadPrivateVarDeclLValue(
1983           *this, VD, T, V, getTypes().ConvertTypeForMem(VD->getType()),
1984           Alignment, E->getExprLoc());
1985 
1986     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1987 
1988     if (isBlockVariable)
1989       V = BuildBlockByrefAddress(V, VD);
1990 
1991     LValue LV;
1992     if (VD->getType()->isReferenceType()) {
1993       llvm::LoadInst *LI = Builder.CreateLoad(V);
1994       LI->setAlignment(Alignment.getQuantity());
1995       V = LI;
1996       LV = MakeNaturalAlignAddrLValue(V, T);
1997     } else {
1998       LV = MakeAddrLValue(V, T, Alignment);
1999     }
2000 
2001     bool isLocalStorage = VD->hasLocalStorage();
2002 
2003     bool NonGCable = isLocalStorage &&
2004                      !VD->getType()->isReferenceType() &&
2005                      !isBlockVariable;
2006     if (NonGCable) {
2007       LV.getQuals().removeObjCGCAttr();
2008       LV.setNonGC(true);
2009     }
2010 
2011     bool isImpreciseLifetime =
2012       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2013     if (isImpreciseLifetime)
2014       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2015     setObjCGCLValueClass(getContext(), E, LV);
2016     return LV;
2017   }
2018 
2019   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2020     return EmitFunctionDeclLValue(*this, E, FD);
2021 
2022   llvm_unreachable("Unhandled DeclRefExpr");
2023 }
2024 
2025 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2026   // __extension__ doesn't affect lvalue-ness.
2027   if (E->getOpcode() == UO_Extension)
2028     return EmitLValue(E->getSubExpr());
2029 
2030   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2031   switch (E->getOpcode()) {
2032   default: llvm_unreachable("Unknown unary operator lvalue!");
2033   case UO_Deref: {
2034     QualType T = E->getSubExpr()->getType()->getPointeeType();
2035     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2036 
2037     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
2038     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2039 
2040     // We should not generate __weak write barrier on indirect reference
2041     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2042     // But, we continue to generate __strong write barrier on indirect write
2043     // into a pointer to object.
2044     if (getLangOpts().ObjC1 &&
2045         getLangOpts().getGC() != LangOptions::NonGC &&
2046         LV.isObjCWeak())
2047       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2048     return LV;
2049   }
2050   case UO_Real:
2051   case UO_Imag: {
2052     LValue LV = EmitLValue(E->getSubExpr());
2053     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2054     llvm::Value *Addr = LV.getAddress();
2055 
2056     // __real is valid on scalars.  This is a faster way of testing that.
2057     // __imag can only produce an rvalue on scalars.
2058     if (E->getOpcode() == UO_Real &&
2059         !cast<llvm::PointerType>(Addr->getType())
2060            ->getElementType()->isStructTy()) {
2061       assert(E->getSubExpr()->getType()->isArithmeticType());
2062       return LV;
2063     }
2064 
2065     assert(E->getSubExpr()->getType()->isAnyComplexType());
2066 
2067     unsigned Idx = E->getOpcode() == UO_Imag;
2068     return MakeAddrLValue(
2069         Builder.CreateStructGEP(nullptr, LV.getAddress(), Idx, "idx"), ExprTy);
2070   }
2071   case UO_PreInc:
2072   case UO_PreDec: {
2073     LValue LV = EmitLValue(E->getSubExpr());
2074     bool isInc = E->getOpcode() == UO_PreInc;
2075 
2076     if (E->getType()->isAnyComplexType())
2077       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2078     else
2079       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2080     return LV;
2081   }
2082   }
2083 }
2084 
2085 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2086   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2087                         E->getType());
2088 }
2089 
2090 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2091   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2092                         E->getType());
2093 }
2094 
2095 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2096   auto SL = E->getFunctionName();
2097   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2098   StringRef FnName = CurFn->getName();
2099   if (FnName.startswith("\01"))
2100     FnName = FnName.substr(1);
2101   StringRef NameItems[] = {
2102       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2103   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2104   if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
2105     auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str(), 1);
2106     return MakeAddrLValue(C, E->getType());
2107   }
2108   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2109   return MakeAddrLValue(C, E->getType());
2110 }
2111 
2112 /// Emit a type description suitable for use by a runtime sanitizer library. The
2113 /// format of a type descriptor is
2114 ///
2115 /// \code
2116 ///   { i16 TypeKind, i16 TypeInfo }
2117 /// \endcode
2118 ///
2119 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2120 /// integer, 1 for a floating point value, and -1 for anything else.
2121 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2122   // Only emit each type's descriptor once.
2123   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2124     return C;
2125 
2126   uint16_t TypeKind = -1;
2127   uint16_t TypeInfo = 0;
2128 
2129   if (T->isIntegerType()) {
2130     TypeKind = 0;
2131     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2132                (T->isSignedIntegerType() ? 1 : 0);
2133   } else if (T->isFloatingType()) {
2134     TypeKind = 1;
2135     TypeInfo = getContext().getTypeSize(T);
2136   }
2137 
2138   // Format the type name as if for a diagnostic, including quotes and
2139   // optionally an 'aka'.
2140   SmallString<32> Buffer;
2141   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2142                                     (intptr_t)T.getAsOpaquePtr(),
2143                                     StringRef(), StringRef(), None, Buffer,
2144                                     None);
2145 
2146   llvm::Constant *Components[] = {
2147     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2148     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2149   };
2150   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2151 
2152   auto *GV = new llvm::GlobalVariable(
2153       CGM.getModule(), Descriptor->getType(),
2154       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2155   GV->setUnnamedAddr(true);
2156   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2157 
2158   // Remember the descriptor for this type.
2159   CGM.setTypeDescriptorInMap(T, GV);
2160 
2161   return GV;
2162 }
2163 
2164 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2165   llvm::Type *TargetTy = IntPtrTy;
2166 
2167   // Floating-point types which fit into intptr_t are bitcast to integers
2168   // and then passed directly (after zero-extension, if necessary).
2169   if (V->getType()->isFloatingPointTy()) {
2170     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2171     if (Bits <= TargetTy->getIntegerBitWidth())
2172       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2173                                                          Bits));
2174   }
2175 
2176   // Integers which fit in intptr_t are zero-extended and passed directly.
2177   if (V->getType()->isIntegerTy() &&
2178       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2179     return Builder.CreateZExt(V, TargetTy);
2180 
2181   // Pointers are passed directly, everything else is passed by address.
2182   if (!V->getType()->isPointerTy()) {
2183     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2184     Builder.CreateStore(V, Ptr);
2185     V = Ptr;
2186   }
2187   return Builder.CreatePtrToInt(V, TargetTy);
2188 }
2189 
2190 /// \brief Emit a representation of a SourceLocation for passing to a handler
2191 /// in a sanitizer runtime library. The format for this data is:
2192 /// \code
2193 ///   struct SourceLocation {
2194 ///     const char *Filename;
2195 ///     int32_t Line, Column;
2196 ///   };
2197 /// \endcode
2198 /// For an invalid SourceLocation, the Filename pointer is null.
2199 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2200   llvm::Constant *Filename;
2201   int Line, Column;
2202 
2203   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2204   if (PLoc.isValid()) {
2205     auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src");
2206     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(FilenameGV);
2207     Filename = FilenameGV;
2208     Line = PLoc.getLine();
2209     Column = PLoc.getColumn();
2210   } else {
2211     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2212     Line = Column = 0;
2213   }
2214 
2215   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2216                             Builder.getInt32(Column)};
2217 
2218   return llvm::ConstantStruct::getAnon(Data);
2219 }
2220 
2221 namespace {
2222 /// \brief Specify under what conditions this check can be recovered
2223 enum class CheckRecoverableKind {
2224   /// Always terminate program execution if this check fails.
2225   Unrecoverable,
2226   /// Check supports recovering, runtime has both fatal (noreturn) and
2227   /// non-fatal handlers for this check.
2228   Recoverable,
2229   /// Runtime conditionally aborts, always need to support recovery.
2230   AlwaysRecoverable
2231 };
2232 }
2233 
2234 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2235   assert(llvm::countPopulation(Kind) == 1);
2236   switch (Kind) {
2237   case SanitizerKind::Vptr:
2238     return CheckRecoverableKind::AlwaysRecoverable;
2239   case SanitizerKind::Return:
2240   case SanitizerKind::Unreachable:
2241     return CheckRecoverableKind::Unrecoverable;
2242   default:
2243     return CheckRecoverableKind::Recoverable;
2244   }
2245 }
2246 
2247 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2248                                  llvm::FunctionType *FnType,
2249                                  ArrayRef<llvm::Value *> FnArgs,
2250                                  StringRef CheckName,
2251                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2252                                  llvm::BasicBlock *ContBB) {
2253   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2254   bool NeedsAbortSuffix =
2255       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2256   std::string FnName = ("__ubsan_handle_" + CheckName +
2257                         (NeedsAbortSuffix ? "_abort" : "")).str();
2258   bool MayReturn =
2259       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2260 
2261   llvm::AttrBuilder B;
2262   if (!MayReturn) {
2263     B.addAttribute(llvm::Attribute::NoReturn)
2264         .addAttribute(llvm::Attribute::NoUnwind);
2265   }
2266   B.addAttribute(llvm::Attribute::UWTable);
2267 
2268   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2269       FnType, FnName,
2270       llvm::AttributeSet::get(CGF.getLLVMContext(),
2271                               llvm::AttributeSet::FunctionIndex, B));
2272   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2273   if (!MayReturn) {
2274     HandlerCall->setDoesNotReturn();
2275     CGF.Builder.CreateUnreachable();
2276   } else {
2277     CGF.Builder.CreateBr(ContBB);
2278   }
2279 }
2280 
2281 void CodeGenFunction::EmitCheck(
2282     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2283     StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2284     ArrayRef<llvm::Value *> DynamicArgs) {
2285   assert(IsSanitizerScope);
2286   assert(Checked.size() > 0);
2287 
2288   llvm::Value *FatalCond = nullptr;
2289   llvm::Value *RecoverableCond = nullptr;
2290   llvm::Value *TrapCond = nullptr;
2291   for (int i = 0, n = Checked.size(); i < n; ++i) {
2292     llvm::Value *Check = Checked[i].first;
2293     // -fsanitize-trap= overrides -fsanitize-recover=.
2294     llvm::Value *&Cond =
2295         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2296             ? TrapCond
2297             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2298                   ? RecoverableCond
2299                   : FatalCond;
2300     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2301   }
2302 
2303   if (TrapCond)
2304     EmitTrapCheck(TrapCond);
2305   if (!FatalCond && !RecoverableCond)
2306     return;
2307 
2308   llvm::Value *JointCond;
2309   if (FatalCond && RecoverableCond)
2310     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2311   else
2312     JointCond = FatalCond ? FatalCond : RecoverableCond;
2313   assert(JointCond);
2314 
2315   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2316   assert(SanOpts.has(Checked[0].second));
2317 #ifndef NDEBUG
2318   for (int i = 1, n = Checked.size(); i < n; ++i) {
2319     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2320            "All recoverable kinds in a single check must be same!");
2321     assert(SanOpts.has(Checked[i].second));
2322   }
2323 #endif
2324 
2325   llvm::BasicBlock *Cont = createBasicBlock("cont");
2326   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2327   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2328   // Give hint that we very much don't expect to execute the handler
2329   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2330   llvm::MDBuilder MDHelper(getLLVMContext());
2331   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2332   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2333   EmitBlock(Handlers);
2334 
2335   // Emit handler arguments and create handler function type.
2336   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2337   auto *InfoPtr =
2338       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2339                                llvm::GlobalVariable::PrivateLinkage, Info);
2340   InfoPtr->setUnnamedAddr(true);
2341   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2342 
2343   SmallVector<llvm::Value *, 4> Args;
2344   SmallVector<llvm::Type *, 4> ArgTypes;
2345   Args.reserve(DynamicArgs.size() + 1);
2346   ArgTypes.reserve(DynamicArgs.size() + 1);
2347 
2348   // Handler functions take an i8* pointing to the (handler-specific) static
2349   // information block, followed by a sequence of intptr_t arguments
2350   // representing operand values.
2351   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2352   ArgTypes.push_back(Int8PtrTy);
2353   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2354     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2355     ArgTypes.push_back(IntPtrTy);
2356   }
2357 
2358   llvm::FunctionType *FnType =
2359     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2360 
2361   if (!FatalCond || !RecoverableCond) {
2362     // Simple case: we need to generate a single handler call, either
2363     // fatal, or non-fatal.
2364     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
2365                          (FatalCond != nullptr), Cont);
2366   } else {
2367     // Emit two handler calls: first one for set of unrecoverable checks,
2368     // another one for recoverable.
2369     llvm::BasicBlock *NonFatalHandlerBB =
2370         createBasicBlock("non_fatal." + CheckName);
2371     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2372     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2373     EmitBlock(FatalHandlerBB);
2374     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
2375                          NonFatalHandlerBB);
2376     EmitBlock(NonFatalHandlerBB);
2377     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
2378                          Cont);
2379   }
2380 
2381   EmitBlock(Cont);
2382 }
2383 
2384 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2385   llvm::BasicBlock *Cont = createBasicBlock("cont");
2386 
2387   // If we're optimizing, collapse all calls to trap down to just one per
2388   // function to save on code size.
2389   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2390     TrapBB = createBasicBlock("trap");
2391     Builder.CreateCondBr(Checked, Cont, TrapBB);
2392     EmitBlock(TrapBB);
2393     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2394     TrapCall->setDoesNotReturn();
2395     TrapCall->setDoesNotThrow();
2396     Builder.CreateUnreachable();
2397   } else {
2398     Builder.CreateCondBr(Checked, Cont, TrapBB);
2399   }
2400 
2401   EmitBlock(Cont);
2402 }
2403 
2404 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
2405   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
2406 
2407   if (!CGM.getCodeGenOpts().TrapFuncName.empty())
2408     TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex,
2409                            "trap-func-name",
2410                            CGM.getCodeGenOpts().TrapFuncName);
2411 
2412   return TrapCall;
2413 }
2414 
2415 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2416 /// array to pointer, return the array subexpression.
2417 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2418   // If this isn't just an array->pointer decay, bail out.
2419   const auto *CE = dyn_cast<CastExpr>(E);
2420   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2421     return nullptr;
2422 
2423   // If this is a decay from variable width array, bail out.
2424   const Expr *SubExpr = CE->getSubExpr();
2425   if (SubExpr->getType()->isVariableArrayType())
2426     return nullptr;
2427 
2428   return SubExpr;
2429 }
2430 
2431 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2432                                                bool Accessed) {
2433   // The index must always be an integer, which is not an aggregate.  Emit it.
2434   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2435   QualType IdxTy  = E->getIdx()->getType();
2436   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2437 
2438   if (SanOpts.has(SanitizerKind::ArrayBounds))
2439     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2440 
2441   // If the base is a vector type, then we are forming a vector element lvalue
2442   // with this subscript.
2443   if (E->getBase()->getType()->isVectorType() &&
2444       !isa<ExtVectorElementExpr>(E->getBase())) {
2445     // Emit the vector as an lvalue to get its address.
2446     LValue LHS = EmitLValue(E->getBase());
2447     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2448     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2449                                  E->getBase()->getType(), LHS.getAlignment());
2450   }
2451 
2452   // Extend or truncate the index type to 32 or 64-bits.
2453   if (Idx->getType() != IntPtrTy)
2454     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2455 
2456   // We know that the pointer points to a type of the correct size, unless the
2457   // size is a VLA or Objective-C interface.
2458   llvm::Value *Address = nullptr;
2459   CharUnits ArrayAlignment;
2460   if (isa<ExtVectorElementExpr>(E->getBase())) {
2461     LValue LV = EmitLValue(E->getBase());
2462     Address = EmitExtVectorElementLValue(LV);
2463     Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2464     const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2465     QualType EQT = ExprVT->getElementType();
2466     return MakeAddrLValue(Address, EQT,
2467                           getContext().getTypeAlignInChars(EQT));
2468   }
2469   else if (const VariableArrayType *vla =
2470            getContext().getAsVariableArrayType(E->getType())) {
2471     // The base must be a pointer, which is not an aggregate.  Emit
2472     // it.  It needs to be emitted first in case it's what captures
2473     // the VLA bounds.
2474     Address = EmitScalarExpr(E->getBase());
2475 
2476     // The element count here is the total number of non-VLA elements.
2477     llvm::Value *numElements = getVLASize(vla).first;
2478 
2479     // Effectively, the multiply by the VLA size is part of the GEP.
2480     // GEP indexes are signed, and scaling an index isn't permitted to
2481     // signed-overflow, so we use the same semantics for our explicit
2482     // multiply.  We suppress this if overflow is not undefined behavior.
2483     if (getLangOpts().isSignedOverflowDefined()) {
2484       Idx = Builder.CreateMul(Idx, numElements);
2485       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2486     } else {
2487       Idx = Builder.CreateNSWMul(Idx, numElements);
2488       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2489     }
2490   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2491     // Indexing over an interface, as in "NSString *P; P[4];"
2492     llvm::Value *InterfaceSize =
2493       llvm::ConstantInt::get(Idx->getType(),
2494           getContext().getTypeSizeInChars(OIT).getQuantity());
2495 
2496     Idx = Builder.CreateMul(Idx, InterfaceSize);
2497 
2498     // The base must be a pointer, which is not an aggregate.  Emit it.
2499     llvm::Value *Base = EmitScalarExpr(E->getBase());
2500     Address = EmitCastToVoidPtr(Base);
2501     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2502     Address = Builder.CreateBitCast(Address, Base->getType());
2503   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2504     // If this is A[i] where A is an array, the frontend will have decayed the
2505     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2506     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2507     // "gep x, i" here.  Emit one "gep A, 0, i".
2508     assert(Array->getType()->isArrayType() &&
2509            "Array to pointer decay must have array source type!");
2510     LValue ArrayLV;
2511     // For simple multidimensional array indexing, set the 'accessed' flag for
2512     // better bounds-checking of the base expression.
2513     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2514       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2515     else
2516       ArrayLV = EmitLValue(Array);
2517     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2518     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2519     llvm::Value *Args[] = { Zero, Idx };
2520 
2521     // Propagate the alignment from the array itself to the result.
2522     ArrayAlignment = ArrayLV.getAlignment();
2523 
2524     if (getLangOpts().isSignedOverflowDefined())
2525       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2526     else
2527       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2528   } else {
2529     // The base must be a pointer, which is not an aggregate.  Emit it.
2530     llvm::Value *Base = EmitScalarExpr(E->getBase());
2531     if (getLangOpts().isSignedOverflowDefined())
2532       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2533     else
2534       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2535   }
2536 
2537   QualType T = E->getBase()->getType()->getPointeeType();
2538   assert(!T.isNull() &&
2539          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2540 
2541 
2542   // Limit the alignment to that of the result type.
2543   LValue LV;
2544   if (!ArrayAlignment.isZero()) {
2545     CharUnits Align = getContext().getTypeAlignInChars(T);
2546     ArrayAlignment = std::min(Align, ArrayAlignment);
2547     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2548   } else {
2549     LV = MakeNaturalAlignAddrLValue(Address, T);
2550   }
2551 
2552   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2553 
2554   if (getLangOpts().ObjC1 &&
2555       getLangOpts().getGC() != LangOptions::NonGC) {
2556     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2557     setObjCGCLValueClass(getContext(), E, LV);
2558   }
2559   return LV;
2560 }
2561 
2562 LValue CodeGenFunction::
2563 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2564   // Emit the base vector as an l-value.
2565   LValue Base;
2566 
2567   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2568   if (E->isArrow()) {
2569     // If it is a pointer to a vector, emit the address and form an lvalue with
2570     // it.
2571     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2572     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2573     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2574     Base.getQuals().removeObjCGCAttr();
2575   } else if (E->getBase()->isGLValue()) {
2576     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2577     // emit the base as an lvalue.
2578     assert(E->getBase()->getType()->isVectorType());
2579     Base = EmitLValue(E->getBase());
2580   } else {
2581     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2582     assert(E->getBase()->getType()->isVectorType() &&
2583            "Result must be a vector");
2584     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2585 
2586     // Store the vector to memory (because LValue wants an address).
2587     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2588     Builder.CreateStore(Vec, VecMem);
2589     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2590   }
2591 
2592   QualType type =
2593     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2594 
2595   // Encode the element access list into a vector of unsigned indices.
2596   SmallVector<uint32_t, 4> Indices;
2597   E->getEncodedElementAccess(Indices);
2598 
2599   if (Base.isSimple()) {
2600     llvm::Constant *CV =
2601         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
2602     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2603                                     Base.getAlignment());
2604   }
2605   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2606 
2607   llvm::Constant *BaseElts = Base.getExtVectorElts();
2608   SmallVector<llvm::Constant *, 4> CElts;
2609 
2610   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2611     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2612   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2613   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2614                                   Base.getAlignment());
2615 }
2616 
2617 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2618   Expr *BaseExpr = E->getBase();
2619 
2620   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2621   LValue BaseLV;
2622   if (E->isArrow()) {
2623     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2624     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2625     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2626     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2627   } else
2628     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2629 
2630   NamedDecl *ND = E->getMemberDecl();
2631   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
2632     LValue LV = EmitLValueForField(BaseLV, Field);
2633     setObjCGCLValueClass(getContext(), E, LV);
2634     return LV;
2635   }
2636 
2637   if (auto *VD = dyn_cast<VarDecl>(ND))
2638     return EmitGlobalVarDeclLValue(*this, E, VD);
2639 
2640   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2641     return EmitFunctionDeclLValue(*this, E, FD);
2642 
2643   llvm_unreachable("Unhandled member declaration!");
2644 }
2645 
2646 /// Given that we are currently emitting a lambda, emit an l-value for
2647 /// one of its members.
2648 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2649   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2650   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2651   QualType LambdaTagType =
2652     getContext().getTagDeclType(Field->getParent());
2653   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2654   return EmitLValueForField(LambdaLV, Field);
2655 }
2656 
2657 LValue CodeGenFunction::EmitLValueForField(LValue base,
2658                                            const FieldDecl *field) {
2659   if (field->isBitField()) {
2660     const CGRecordLayout &RL =
2661       CGM.getTypes().getCGRecordLayout(field->getParent());
2662     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2663     llvm::Value *Addr = base.getAddress();
2664     unsigned Idx = RL.getLLVMFieldNo(field);
2665     if (Idx != 0)
2666       // For structs, we GEP to the field that the record layout suggests.
2667       Addr = Builder.CreateStructGEP(nullptr, Addr, Idx, field->getName());
2668     // Get the access type.
2669     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2670       getLLVMContext(), Info.StorageSize,
2671       CGM.getContext().getTargetAddressSpace(base.getType()));
2672     if (Addr->getType() != PtrTy)
2673       Addr = Builder.CreateBitCast(Addr, PtrTy);
2674 
2675     QualType fieldType =
2676       field->getType().withCVRQualifiers(base.getVRQualifiers());
2677     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2678   }
2679 
2680   const RecordDecl *rec = field->getParent();
2681   QualType type = field->getType();
2682   CharUnits alignment = getContext().getDeclAlign(field);
2683 
2684   // FIXME: It should be impossible to have an LValue without alignment for a
2685   // complete type.
2686   if (!base.getAlignment().isZero())
2687     alignment = std::min(alignment, base.getAlignment());
2688 
2689   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2690 
2691   llvm::Value *addr = base.getAddress();
2692   unsigned cvr = base.getVRQualifiers();
2693   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2694   if (rec->isUnion()) {
2695     // For unions, there is no pointer adjustment.
2696     assert(!type->isReferenceType() && "union has reference member");
2697     // TODO: handle path-aware TBAA for union.
2698     TBAAPath = false;
2699   } else {
2700     // For structs, we GEP to the field that the record layout suggests.
2701     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2702     addr = Builder.CreateStructGEP(nullptr, addr, idx, field->getName());
2703 
2704     // If this is a reference field, load the reference right now.
2705     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2706       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2707       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2708       load->setAlignment(alignment.getQuantity());
2709 
2710       // Loading the reference will disable path-aware TBAA.
2711       TBAAPath = false;
2712       if (CGM.shouldUseTBAA()) {
2713         llvm::MDNode *tbaa;
2714         if (mayAlias)
2715           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2716         else
2717           tbaa = CGM.getTBAAInfo(type);
2718         if (tbaa)
2719           CGM.DecorateInstruction(load, tbaa);
2720       }
2721 
2722       addr = load;
2723       mayAlias = false;
2724       type = refType->getPointeeType();
2725       if (type->isIncompleteType())
2726         alignment = CharUnits();
2727       else
2728         alignment = getContext().getTypeAlignInChars(type);
2729       cvr = 0; // qualifiers don't recursively apply to referencee
2730     }
2731   }
2732 
2733   // Make sure that the address is pointing to the right type.  This is critical
2734   // for both unions and structs.  A union needs a bitcast, a struct element
2735   // will need a bitcast if the LLVM type laid out doesn't match the desired
2736   // type.
2737   addr = EmitBitCastOfLValueToProperType(*this, addr,
2738                                          CGM.getTypes().ConvertTypeForMem(type),
2739                                          field->getName());
2740 
2741   if (field->hasAttr<AnnotateAttr>())
2742     addr = EmitFieldAnnotations(field, addr);
2743 
2744   LValue LV = MakeAddrLValue(addr, type, alignment);
2745   LV.getQuals().addCVRQualifiers(cvr);
2746   if (TBAAPath) {
2747     const ASTRecordLayout &Layout =
2748         getContext().getASTRecordLayout(field->getParent());
2749     // Set the base type to be the base type of the base LValue and
2750     // update offset to be relative to the base type.
2751     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2752     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2753                      Layout.getFieldOffset(field->getFieldIndex()) /
2754                                            getContext().getCharWidth());
2755   }
2756 
2757   // __weak attribute on a field is ignored.
2758   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2759     LV.getQuals().removeObjCGCAttr();
2760 
2761   // Fields of may_alias structs act like 'char' for TBAA purposes.
2762   // FIXME: this should get propagated down through anonymous structs
2763   // and unions.
2764   if (mayAlias && LV.getTBAAInfo())
2765     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2766 
2767   return LV;
2768 }
2769 
2770 LValue
2771 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2772                                                   const FieldDecl *Field) {
2773   QualType FieldType = Field->getType();
2774 
2775   if (!FieldType->isReferenceType())
2776     return EmitLValueForField(Base, Field);
2777 
2778   const CGRecordLayout &RL =
2779     CGM.getTypes().getCGRecordLayout(Field->getParent());
2780   unsigned idx = RL.getLLVMFieldNo(Field);
2781   llvm::Value *V = Builder.CreateStructGEP(nullptr, Base.getAddress(), idx);
2782   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2783 
2784   // Make sure that the address is pointing to the right type.  This is critical
2785   // for both unions and structs.  A union needs a bitcast, a struct element
2786   // will need a bitcast if the LLVM type laid out doesn't match the desired
2787   // type.
2788   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2789   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2790 
2791   CharUnits Alignment = getContext().getDeclAlign(Field);
2792 
2793   // FIXME: It should be impossible to have an LValue without alignment for a
2794   // complete type.
2795   if (!Base.getAlignment().isZero())
2796     Alignment = std::min(Alignment, Base.getAlignment());
2797 
2798   return MakeAddrLValue(V, FieldType, Alignment);
2799 }
2800 
2801 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2802   if (E->isFileScope()) {
2803     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2804     return MakeAddrLValue(GlobalPtr, E->getType());
2805   }
2806   if (E->getType()->isVariablyModifiedType())
2807     // make sure to emit the VLA size.
2808     EmitVariablyModifiedType(E->getType());
2809 
2810   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2811   const Expr *InitExpr = E->getInitializer();
2812   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2813 
2814   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2815                    /*Init*/ true);
2816 
2817   return Result;
2818 }
2819 
2820 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2821   if (!E->isGLValue())
2822     // Initializing an aggregate temporary in C++11: T{...}.
2823     return EmitAggExprToLValue(E);
2824 
2825   // An lvalue initializer list must be initializing a reference.
2826   assert(E->getNumInits() == 1 && "reference init with multiple values");
2827   return EmitLValue(E->getInit(0));
2828 }
2829 
2830 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
2831 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
2832 /// LValue is returned and the current block has been terminated.
2833 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
2834                                                     const Expr *Operand) {
2835   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
2836     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
2837     return None;
2838   }
2839 
2840   return CGF.EmitLValue(Operand);
2841 }
2842 
2843 LValue CodeGenFunction::
2844 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2845   if (!expr->isGLValue()) {
2846     // ?: here should be an aggregate.
2847     assert(hasAggregateEvaluationKind(expr->getType()) &&
2848            "Unexpected conditional operator!");
2849     return EmitAggExprToLValue(expr);
2850   }
2851 
2852   OpaqueValueMapping binding(*this, expr);
2853 
2854   const Expr *condExpr = expr->getCond();
2855   bool CondExprBool;
2856   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2857     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2858     if (!CondExprBool) std::swap(live, dead);
2859 
2860     if (!ContainsLabel(dead)) {
2861       // If the true case is live, we need to track its region.
2862       if (CondExprBool)
2863         incrementProfileCounter(expr);
2864       return EmitLValue(live);
2865     }
2866   }
2867 
2868   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2869   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2870   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2871 
2872   ConditionalEvaluation eval(*this);
2873   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
2874 
2875   // Any temporaries created here are conditional.
2876   EmitBlock(lhsBlock);
2877   incrementProfileCounter(expr);
2878   eval.begin(*this);
2879   Optional<LValue> lhs =
2880       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
2881   eval.end(*this);
2882 
2883   if (lhs && !lhs->isSimple())
2884     return EmitUnsupportedLValue(expr, "conditional operator");
2885 
2886   lhsBlock = Builder.GetInsertBlock();
2887   if (lhs)
2888     Builder.CreateBr(contBlock);
2889 
2890   // Any temporaries created here are conditional.
2891   EmitBlock(rhsBlock);
2892   eval.begin(*this);
2893   Optional<LValue> rhs =
2894       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
2895   eval.end(*this);
2896   if (rhs && !rhs->isSimple())
2897     return EmitUnsupportedLValue(expr, "conditional operator");
2898   rhsBlock = Builder.GetInsertBlock();
2899 
2900   EmitBlock(contBlock);
2901 
2902   if (lhs && rhs) {
2903     llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
2904                                            2, "cond-lvalue");
2905     phi->addIncoming(lhs->getAddress(), lhsBlock);
2906     phi->addIncoming(rhs->getAddress(), rhsBlock);
2907     return MakeAddrLValue(phi, expr->getType());
2908   } else {
2909     assert((lhs || rhs) &&
2910            "both operands of glvalue conditional are throw-expressions?");
2911     return lhs ? *lhs : *rhs;
2912   }
2913 }
2914 
2915 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2916 /// type. If the cast is to a reference, we can have the usual lvalue result,
2917 /// otherwise if a cast is needed by the code generator in an lvalue context,
2918 /// then it must mean that we need the address of an aggregate in order to
2919 /// access one of its members.  This can happen for all the reasons that casts
2920 /// are permitted with aggregate result, including noop aggregate casts, and
2921 /// cast from scalar to union.
2922 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2923   switch (E->getCastKind()) {
2924   case CK_ToVoid:
2925   case CK_BitCast:
2926   case CK_ArrayToPointerDecay:
2927   case CK_FunctionToPointerDecay:
2928   case CK_NullToMemberPointer:
2929   case CK_NullToPointer:
2930   case CK_IntegralToPointer:
2931   case CK_PointerToIntegral:
2932   case CK_PointerToBoolean:
2933   case CK_VectorSplat:
2934   case CK_IntegralCast:
2935   case CK_IntegralToBoolean:
2936   case CK_IntegralToFloating:
2937   case CK_FloatingToIntegral:
2938   case CK_FloatingToBoolean:
2939   case CK_FloatingCast:
2940   case CK_FloatingRealToComplex:
2941   case CK_FloatingComplexToReal:
2942   case CK_FloatingComplexToBoolean:
2943   case CK_FloatingComplexCast:
2944   case CK_FloatingComplexToIntegralComplex:
2945   case CK_IntegralRealToComplex:
2946   case CK_IntegralComplexToReal:
2947   case CK_IntegralComplexToBoolean:
2948   case CK_IntegralComplexCast:
2949   case CK_IntegralComplexToFloatingComplex:
2950   case CK_DerivedToBaseMemberPointer:
2951   case CK_BaseToDerivedMemberPointer:
2952   case CK_MemberPointerToBoolean:
2953   case CK_ReinterpretMemberPointer:
2954   case CK_AnyPointerToBlockPointerCast:
2955   case CK_ARCProduceObject:
2956   case CK_ARCConsumeObject:
2957   case CK_ARCReclaimReturnedObject:
2958   case CK_ARCExtendBlockObject:
2959   case CK_CopyAndAutoreleaseBlockObject:
2960   case CK_AddressSpaceConversion:
2961     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2962 
2963   case CK_Dependent:
2964     llvm_unreachable("dependent cast kind in IR gen!");
2965 
2966   case CK_BuiltinFnToFnPtr:
2967     llvm_unreachable("builtin functions are handled elsewhere");
2968 
2969   // These are never l-values; just use the aggregate emission code.
2970   case CK_NonAtomicToAtomic:
2971   case CK_AtomicToNonAtomic:
2972     return EmitAggExprToLValue(E);
2973 
2974   case CK_Dynamic: {
2975     LValue LV = EmitLValue(E->getSubExpr());
2976     llvm::Value *V = LV.getAddress();
2977     const auto *DCE = cast<CXXDynamicCastExpr>(E);
2978     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2979   }
2980 
2981   case CK_ConstructorConversion:
2982   case CK_UserDefinedConversion:
2983   case CK_CPointerToObjCPointerCast:
2984   case CK_BlockPointerToObjCPointerCast:
2985   case CK_NoOp:
2986   case CK_LValueToRValue:
2987     return EmitLValue(E->getSubExpr());
2988 
2989   case CK_UncheckedDerivedToBase:
2990   case CK_DerivedToBase: {
2991     const RecordType *DerivedClassTy =
2992       E->getSubExpr()->getType()->getAs<RecordType>();
2993     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2994 
2995     LValue LV = EmitLValue(E->getSubExpr());
2996     llvm::Value *This = LV.getAddress();
2997 
2998     // Perform the derived-to-base conversion
2999     llvm::Value *Base = GetAddressOfBaseClass(
3000         This, DerivedClassDecl, E->path_begin(), E->path_end(),
3001         /*NullCheckValue=*/false, E->getExprLoc());
3002 
3003     return MakeAddrLValue(Base, E->getType());
3004   }
3005   case CK_ToUnion:
3006     return EmitAggExprToLValue(E);
3007   case CK_BaseToDerived: {
3008     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
3009     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3010 
3011     LValue LV = EmitLValue(E->getSubExpr());
3012 
3013     // Perform the base-to-derived conversion
3014     llvm::Value *Derived =
3015       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
3016                                E->path_begin(), E->path_end(),
3017                                /*NullCheckValue=*/false);
3018 
3019     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
3020     // performed and the object is not of the derived type.
3021     if (sanitizePerformTypeCheck())
3022       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
3023                     Derived, E->getType());
3024 
3025     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
3026       EmitVTablePtrCheckForCast(E->getType(), Derived, /*MayBeNull=*/false,
3027                                 CFITCK_DerivedCast, E->getLocStart());
3028 
3029     return MakeAddrLValue(Derived, E->getType());
3030   }
3031   case CK_LValueBitCast: {
3032     // This must be a reinterpret_cast (or c-style equivalent).
3033     const auto *CE = cast<ExplicitCastExpr>(E);
3034 
3035     LValue LV = EmitLValue(E->getSubExpr());
3036     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
3037                                            ConvertType(CE->getTypeAsWritten()));
3038 
3039     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
3040       EmitVTablePtrCheckForCast(E->getType(), V, /*MayBeNull=*/false,
3041                                 CFITCK_UnrelatedCast, E->getLocStart());
3042 
3043     return MakeAddrLValue(V, E->getType());
3044   }
3045   case CK_ObjCObjectLValueCast: {
3046     LValue LV = EmitLValue(E->getSubExpr());
3047     QualType ToType = getContext().getLValueReferenceType(E->getType());
3048     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
3049                                            ConvertType(ToType));
3050     return MakeAddrLValue(V, E->getType());
3051   }
3052   case CK_ZeroToOCLEvent:
3053     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
3054   }
3055 
3056   llvm_unreachable("Unhandled lvalue cast kind?");
3057 }
3058 
3059 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
3060   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
3061   return getOpaqueLValueMapping(e);
3062 }
3063 
3064 RValue CodeGenFunction::EmitRValueForField(LValue LV,
3065                                            const FieldDecl *FD,
3066                                            SourceLocation Loc) {
3067   QualType FT = FD->getType();
3068   LValue FieldLV = EmitLValueForField(LV, FD);
3069   switch (getEvaluationKind(FT)) {
3070   case TEK_Complex:
3071     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
3072   case TEK_Aggregate:
3073     return FieldLV.asAggregateRValue();
3074   case TEK_Scalar:
3075     return EmitLoadOfLValue(FieldLV, Loc);
3076   }
3077   llvm_unreachable("bad evaluation kind");
3078 }
3079 
3080 //===--------------------------------------------------------------------===//
3081 //                             Expression Emission
3082 //===--------------------------------------------------------------------===//
3083 
3084 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
3085                                      ReturnValueSlot ReturnValue) {
3086   // Builtins never have block type.
3087   if (E->getCallee()->getType()->isBlockPointerType())
3088     return EmitBlockCallExpr(E, ReturnValue);
3089 
3090   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
3091     return EmitCXXMemberCallExpr(CE, ReturnValue);
3092 
3093   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
3094     return EmitCUDAKernelCallExpr(CE, ReturnValue);
3095 
3096   const Decl *TargetDecl = E->getCalleeDecl();
3097   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
3098     if (unsigned builtinID = FD->getBuiltinID())
3099       return EmitBuiltinExpr(FD, builtinID, E, ReturnValue);
3100   }
3101 
3102   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
3103     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
3104       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
3105 
3106   if (const auto *PseudoDtor =
3107           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
3108     QualType DestroyedType = PseudoDtor->getDestroyedType();
3109     if (getLangOpts().ObjCAutoRefCount &&
3110         DestroyedType->isObjCLifetimeType() &&
3111         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
3112          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
3113       // Automatic Reference Counting:
3114       //   If the pseudo-expression names a retainable object with weak or
3115       //   strong lifetime, the object shall be released.
3116       Expr *BaseExpr = PseudoDtor->getBase();
3117       llvm::Value *BaseValue = nullptr;
3118       Qualifiers BaseQuals;
3119 
3120       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
3121       if (PseudoDtor->isArrow()) {
3122         BaseValue = EmitScalarExpr(BaseExpr);
3123         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
3124         BaseQuals = PTy->getPointeeType().getQualifiers();
3125       } else {
3126         LValue BaseLV = EmitLValue(BaseExpr);
3127         BaseValue = BaseLV.getAddress();
3128         QualType BaseTy = BaseExpr->getType();
3129         BaseQuals = BaseTy.getQualifiers();
3130       }
3131 
3132       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
3133       case Qualifiers::OCL_None:
3134       case Qualifiers::OCL_ExplicitNone:
3135       case Qualifiers::OCL_Autoreleasing:
3136         break;
3137 
3138       case Qualifiers::OCL_Strong:
3139         EmitARCRelease(Builder.CreateLoad(BaseValue,
3140                           PseudoDtor->getDestroyedType().isVolatileQualified()),
3141                        ARCPreciseLifetime);
3142         break;
3143 
3144       case Qualifiers::OCL_Weak:
3145         EmitARCDestroyWeak(BaseValue);
3146         break;
3147       }
3148     } else {
3149       // C++ [expr.pseudo]p1:
3150       //   The result shall only be used as the operand for the function call
3151       //   operator (), and the result of such a call has type void. The only
3152       //   effect is the evaluation of the postfix-expression before the dot or
3153       //   arrow.
3154       EmitScalarExpr(E->getCallee());
3155     }
3156 
3157     return RValue::get(nullptr);
3158   }
3159 
3160   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3161   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
3162                   TargetDecl);
3163 }
3164 
3165 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3166   // Comma expressions just emit their LHS then their RHS as an l-value.
3167   if (E->getOpcode() == BO_Comma) {
3168     EmitIgnoredExpr(E->getLHS());
3169     EnsureInsertPoint();
3170     return EmitLValue(E->getRHS());
3171   }
3172 
3173   if (E->getOpcode() == BO_PtrMemD ||
3174       E->getOpcode() == BO_PtrMemI)
3175     return EmitPointerToDataMemberBinaryExpr(E);
3176 
3177   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3178 
3179   // Note that in all of these cases, __block variables need the RHS
3180   // evaluated first just in case the variable gets moved by the RHS.
3181 
3182   switch (getEvaluationKind(E->getType())) {
3183   case TEK_Scalar: {
3184     switch (E->getLHS()->getType().getObjCLifetime()) {
3185     case Qualifiers::OCL_Strong:
3186       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3187 
3188     case Qualifiers::OCL_Autoreleasing:
3189       return EmitARCStoreAutoreleasing(E).first;
3190 
3191     // No reason to do any of these differently.
3192     case Qualifiers::OCL_None:
3193     case Qualifiers::OCL_ExplicitNone:
3194     case Qualifiers::OCL_Weak:
3195       break;
3196     }
3197 
3198     RValue RV = EmitAnyExpr(E->getRHS());
3199     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3200     EmitStoreThroughLValue(RV, LV);
3201     return LV;
3202   }
3203 
3204   case TEK_Complex:
3205     return EmitComplexAssignmentLValue(E);
3206 
3207   case TEK_Aggregate:
3208     return EmitAggExprToLValue(E);
3209   }
3210   llvm_unreachable("bad evaluation kind");
3211 }
3212 
3213 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3214   RValue RV = EmitCallExpr(E);
3215 
3216   if (!RV.isScalar())
3217     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3218 
3219   assert(E->getCallReturnType(getContext())->isReferenceType() &&
3220          "Can't have a scalar return unless the return type is a "
3221          "reference type!");
3222 
3223   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3224 }
3225 
3226 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3227   // FIXME: This shouldn't require another copy.
3228   return EmitAggExprToLValue(E);
3229 }
3230 
3231 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3232   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3233          && "binding l-value to type which needs a temporary");
3234   AggValueSlot Slot = CreateAggTemp(E->getType());
3235   EmitCXXConstructExpr(E, Slot);
3236   return MakeAddrLValue(Slot.getAddr(), E->getType());
3237 }
3238 
3239 LValue
3240 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3241   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3242 }
3243 
3244 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3245   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3246                                ConvertType(E->getType())->getPointerTo());
3247 }
3248 
3249 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3250   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3251 }
3252 
3253 LValue
3254 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3255   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3256   Slot.setExternallyDestructed();
3257   EmitAggExpr(E->getSubExpr(), Slot);
3258   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3259   return MakeAddrLValue(Slot.getAddr(), E->getType());
3260 }
3261 
3262 LValue
3263 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3264   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3265   EmitLambdaExpr(E, Slot);
3266   return MakeAddrLValue(Slot.getAddr(), E->getType());
3267 }
3268 
3269 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3270   RValue RV = EmitObjCMessageExpr(E);
3271 
3272   if (!RV.isScalar())
3273     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3274 
3275   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3276          "Can't have a scalar return unless the return type is a "
3277          "reference type!");
3278 
3279   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3280 }
3281 
3282 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3283   llvm::Value *V =
3284     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3285   return MakeAddrLValue(V, E->getType());
3286 }
3287 
3288 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3289                                              const ObjCIvarDecl *Ivar) {
3290   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3291 }
3292 
3293 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3294                                           llvm::Value *BaseValue,
3295                                           const ObjCIvarDecl *Ivar,
3296                                           unsigned CVRQualifiers) {
3297   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3298                                                    Ivar, CVRQualifiers);
3299 }
3300 
3301 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3302   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3303   llvm::Value *BaseValue = nullptr;
3304   const Expr *BaseExpr = E->getBase();
3305   Qualifiers BaseQuals;
3306   QualType ObjectTy;
3307   if (E->isArrow()) {
3308     BaseValue = EmitScalarExpr(BaseExpr);
3309     ObjectTy = BaseExpr->getType()->getPointeeType();
3310     BaseQuals = ObjectTy.getQualifiers();
3311   } else {
3312     LValue BaseLV = EmitLValue(BaseExpr);
3313     // FIXME: this isn't right for bitfields.
3314     BaseValue = BaseLV.getAddress();
3315     ObjectTy = BaseExpr->getType();
3316     BaseQuals = ObjectTy.getQualifiers();
3317   }
3318 
3319   LValue LV =
3320     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3321                       BaseQuals.getCVRQualifiers());
3322   setObjCGCLValueClass(getContext(), E, LV);
3323   return LV;
3324 }
3325 
3326 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3327   // Can only get l-value for message expression returning aggregate type
3328   RValue RV = EmitAnyExprToTemp(E);
3329   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3330 }
3331 
3332 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3333                                  const CallExpr *E, ReturnValueSlot ReturnValue,
3334                                  const Decl *TargetDecl, llvm::Value *Chain) {
3335   // Get the actual function type. The callee type will always be a pointer to
3336   // function type or a block pointer type.
3337   assert(CalleeType->isFunctionPointerType() &&
3338          "Call must have function pointer type!");
3339 
3340   CalleeType = getContext().getCanonicalType(CalleeType);
3341 
3342   const auto *FnType =
3343       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3344 
3345   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
3346       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3347     if (llvm::Constant *PrefixSig =
3348             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3349       SanitizerScope SanScope(this);
3350       llvm::Constant *FTRTTIConst =
3351           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3352       llvm::Type *PrefixStructTyElems[] = {
3353         PrefixSig->getType(),
3354         FTRTTIConst->getType()
3355       };
3356       llvm::StructType *PrefixStructTy = llvm::StructType::get(
3357           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3358 
3359       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3360           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3361       llvm::Value *CalleeSigPtr =
3362           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
3363       llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3364       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3365 
3366       llvm::BasicBlock *Cont = createBasicBlock("cont");
3367       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3368       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3369 
3370       EmitBlock(TypeCheck);
3371       llvm::Value *CalleeRTTIPtr =
3372           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
3373       llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3374       llvm::Value *CalleeRTTIMatch =
3375           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3376       llvm::Constant *StaticData[] = {
3377         EmitCheckSourceLocation(E->getLocStart()),
3378         EmitCheckTypeDescriptor(CalleeType)
3379       };
3380       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
3381                 "function_type_mismatch", StaticData, Callee);
3382 
3383       Builder.CreateBr(Cont);
3384       EmitBlock(Cont);
3385     }
3386   }
3387 
3388   CallArgList Args;
3389   if (Chain)
3390     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
3391              CGM.getContext().VoidPtrTy);
3392   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
3393                E->getDirectCallee(), /*ParamsToSkip*/ 0);
3394 
3395   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
3396       Args, FnType, /*isChainCall=*/Chain);
3397 
3398   // C99 6.5.2.2p6:
3399   //   If the expression that denotes the called function has a type
3400   //   that does not include a prototype, [the default argument
3401   //   promotions are performed]. If the number of arguments does not
3402   //   equal the number of parameters, the behavior is undefined. If
3403   //   the function is defined with a type that includes a prototype,
3404   //   and either the prototype ends with an ellipsis (, ...) or the
3405   //   types of the arguments after promotion are not compatible with
3406   //   the types of the parameters, the behavior is undefined. If the
3407   //   function is defined with a type that does not include a
3408   //   prototype, and the types of the arguments after promotion are
3409   //   not compatible with those of the parameters after promotion,
3410   //   the behavior is undefined [except in some trivial cases].
3411   // That is, in the general case, we should assume that a call
3412   // through an unprototyped function type works like a *non-variadic*
3413   // call.  The way we make this work is to cast to the exact type
3414   // of the promoted arguments.
3415   //
3416   // Chain calls use this same code path to add the invisible chain parameter
3417   // to the function type.
3418   if (isa<FunctionNoProtoType>(FnType) || Chain) {
3419     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3420     CalleeTy = CalleeTy->getPointerTo();
3421     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3422   }
3423 
3424   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3425 }
3426 
3427 LValue CodeGenFunction::
3428 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3429   llvm::Value *BaseV;
3430   if (E->getOpcode() == BO_PtrMemI)
3431     BaseV = EmitScalarExpr(E->getLHS());
3432   else
3433     BaseV = EmitLValue(E->getLHS()).getAddress();
3434 
3435   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3436 
3437   const MemberPointerType *MPT
3438     = E->getRHS()->getType()->getAs<MemberPointerType>();
3439 
3440   llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
3441       *this, E, BaseV, OffsetV, MPT);
3442 
3443   return MakeAddrLValue(AddV, MPT->getPointeeType());
3444 }
3445 
3446 /// Given the address of a temporary variable, produce an r-value of
3447 /// its type.
3448 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3449                                             QualType type,
3450                                             SourceLocation loc) {
3451   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3452   switch (getEvaluationKind(type)) {
3453   case TEK_Complex:
3454     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3455   case TEK_Aggregate:
3456     return lvalue.asAggregateRValue();
3457   case TEK_Scalar:
3458     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3459   }
3460   llvm_unreachable("bad evaluation kind");
3461 }
3462 
3463 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3464   assert(Val->getType()->isFPOrFPVectorTy());
3465   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3466     return;
3467 
3468   llvm::MDBuilder MDHelper(getLLVMContext());
3469   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3470 
3471   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3472 }
3473 
3474 namespace {
3475   struct LValueOrRValue {
3476     LValue LV;
3477     RValue RV;
3478   };
3479 }
3480 
3481 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3482                                            const PseudoObjectExpr *E,
3483                                            bool forLValue,
3484                                            AggValueSlot slot) {
3485   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3486 
3487   // Find the result expression, if any.
3488   const Expr *resultExpr = E->getResultExpr();
3489   LValueOrRValue result;
3490 
3491   for (PseudoObjectExpr::const_semantics_iterator
3492          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3493     const Expr *semantic = *i;
3494 
3495     // If this semantic expression is an opaque value, bind it
3496     // to the result of its source expression.
3497     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3498 
3499       // If this is the result expression, we may need to evaluate
3500       // directly into the slot.
3501       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3502       OVMA opaqueData;
3503       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3504           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3505         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3506 
3507         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3508         opaqueData = OVMA::bind(CGF, ov, LV);
3509         result.RV = slot.asRValue();
3510 
3511       // Otherwise, emit as normal.
3512       } else {
3513         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3514 
3515         // If this is the result, also evaluate the result now.
3516         if (ov == resultExpr) {
3517           if (forLValue)
3518             result.LV = CGF.EmitLValue(ov);
3519           else
3520             result.RV = CGF.EmitAnyExpr(ov, slot);
3521         }
3522       }
3523 
3524       opaques.push_back(opaqueData);
3525 
3526     // Otherwise, if the expression is the result, evaluate it
3527     // and remember the result.
3528     } else if (semantic == resultExpr) {
3529       if (forLValue)
3530         result.LV = CGF.EmitLValue(semantic);
3531       else
3532         result.RV = CGF.EmitAnyExpr(semantic, slot);
3533 
3534     // Otherwise, evaluate the expression in an ignored context.
3535     } else {
3536       CGF.EmitIgnoredExpr(semantic);
3537     }
3538   }
3539 
3540   // Unbind all the opaques now.
3541   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3542     opaques[i].unbind(CGF);
3543 
3544   return result;
3545 }
3546 
3547 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3548                                                AggValueSlot slot) {
3549   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3550 }
3551 
3552 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3553   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3554 }
3555