1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/ADT/Hashing.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/Support/ConvertUTF.h" 34 #include "llvm/Support/MathExtras.h" 35 36 using namespace clang; 37 using namespace CodeGen; 38 39 //===--------------------------------------------------------------------===// 40 // Miscellaneous Helper Methods 41 //===--------------------------------------------------------------------===// 42 43 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 44 unsigned addressSpace = 45 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 46 47 llvm::PointerType *destType = Int8PtrTy; 48 if (addressSpace) 49 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 50 51 if (value->getType() == destType) return value; 52 return Builder.CreateBitCast(value, destType); 53 } 54 55 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 56 /// block. 57 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 58 const Twine &Name) { 59 if (!Builder.isNamePreserving()) 60 return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt); 61 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt); 62 } 63 64 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 65 llvm::Value *Init) { 66 auto *Store = new llvm::StoreInst(Init, Var); 67 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 68 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 69 } 70 71 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 72 const Twine &Name) { 73 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 74 // FIXME: Should we prefer the preferred type alignment here? 75 CharUnits Align = getContext().getTypeAlignInChars(Ty); 76 Alloc->setAlignment(Align.getQuantity()); 77 return Alloc; 78 } 79 80 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 81 const Twine &Name) { 82 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 83 // FIXME: Should we prefer the preferred type alignment here? 84 CharUnits Align = getContext().getTypeAlignInChars(Ty); 85 Alloc->setAlignment(Align.getQuantity()); 86 return Alloc; 87 } 88 89 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 90 /// expression and compare the result against zero, returning an Int1Ty value. 91 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 92 PGO.setCurrentStmt(E); 93 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 94 llvm::Value *MemPtr = EmitScalarExpr(E); 95 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 96 } 97 98 QualType BoolTy = getContext().BoolTy; 99 SourceLocation Loc = E->getExprLoc(); 100 if (!E->getType()->isAnyComplexType()) 101 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 102 103 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 104 Loc); 105 } 106 107 /// EmitIgnoredExpr - Emit code to compute the specified expression, 108 /// ignoring the result. 109 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 110 if (E->isRValue()) 111 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 112 113 // Just emit it as an l-value and drop the result. 114 EmitLValue(E); 115 } 116 117 /// EmitAnyExpr - Emit code to compute the specified expression which 118 /// can have any type. The result is returned as an RValue struct. 119 /// If this is an aggregate expression, AggSlot indicates where the 120 /// result should be returned. 121 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 122 AggValueSlot aggSlot, 123 bool ignoreResult) { 124 switch (getEvaluationKind(E->getType())) { 125 case TEK_Scalar: 126 return RValue::get(EmitScalarExpr(E, ignoreResult)); 127 case TEK_Complex: 128 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 129 case TEK_Aggregate: 130 if (!ignoreResult && aggSlot.isIgnored()) 131 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 132 EmitAggExpr(E, aggSlot); 133 return aggSlot.asRValue(); 134 } 135 llvm_unreachable("bad evaluation kind"); 136 } 137 138 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 139 /// always be accessible even if no aggregate location is provided. 140 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 141 AggValueSlot AggSlot = AggValueSlot::ignored(); 142 143 if (hasAggregateEvaluationKind(E->getType())) 144 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 145 return EmitAnyExpr(E, AggSlot); 146 } 147 148 /// EmitAnyExprToMem - Evaluate an expression into a given memory 149 /// location. 150 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 151 llvm::Value *Location, 152 Qualifiers Quals, 153 bool IsInit) { 154 // FIXME: This function should take an LValue as an argument. 155 switch (getEvaluationKind(E->getType())) { 156 case TEK_Complex: 157 EmitComplexExprIntoLValue(E, 158 MakeNaturalAlignAddrLValue(Location, E->getType()), 159 /*isInit*/ false); 160 return; 161 162 case TEK_Aggregate: { 163 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 164 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 165 AggValueSlot::IsDestructed_t(IsInit), 166 AggValueSlot::DoesNotNeedGCBarriers, 167 AggValueSlot::IsAliased_t(!IsInit))); 168 return; 169 } 170 171 case TEK_Scalar: { 172 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 173 LValue LV = MakeAddrLValue(Location, E->getType()); 174 EmitStoreThroughLValue(RV, LV); 175 return; 176 } 177 } 178 llvm_unreachable("bad evaluation kind"); 179 } 180 181 static void 182 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 183 const Expr *E, llvm::Value *ReferenceTemporary) { 184 // Objective-C++ ARC: 185 // If we are binding a reference to a temporary that has ownership, we 186 // need to perform retain/release operations on the temporary. 187 // 188 // FIXME: This should be looking at E, not M. 189 if (CGF.getLangOpts().ObjCAutoRefCount && 190 M->getType()->isObjCLifetimeType()) { 191 QualType ObjCARCReferenceLifetimeType = M->getType(); 192 switch (Qualifiers::ObjCLifetime Lifetime = 193 ObjCARCReferenceLifetimeType.getObjCLifetime()) { 194 case Qualifiers::OCL_None: 195 case Qualifiers::OCL_ExplicitNone: 196 // Carry on to normal cleanup handling. 197 break; 198 199 case Qualifiers::OCL_Autoreleasing: 200 // Nothing to do; cleaned up by an autorelease pool. 201 return; 202 203 case Qualifiers::OCL_Strong: 204 case Qualifiers::OCL_Weak: 205 switch (StorageDuration Duration = M->getStorageDuration()) { 206 case SD_Static: 207 // Note: we intentionally do not register a cleanup to release 208 // the object on program termination. 209 return; 210 211 case SD_Thread: 212 // FIXME: We should probably register a cleanup in this case. 213 return; 214 215 case SD_Automatic: 216 case SD_FullExpression: 217 CodeGenFunction::Destroyer *Destroy; 218 CleanupKind CleanupKind; 219 if (Lifetime == Qualifiers::OCL_Strong) { 220 const ValueDecl *VD = M->getExtendingDecl(); 221 bool Precise = 222 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 223 CleanupKind = CGF.getARCCleanupKind(); 224 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 225 : &CodeGenFunction::destroyARCStrongImprecise; 226 } else { 227 // __weak objects always get EH cleanups; otherwise, exceptions 228 // could cause really nasty crashes instead of mere leaks. 229 CleanupKind = NormalAndEHCleanup; 230 Destroy = &CodeGenFunction::destroyARCWeak; 231 } 232 if (Duration == SD_FullExpression) 233 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 234 ObjCARCReferenceLifetimeType, *Destroy, 235 CleanupKind & EHCleanup); 236 else 237 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 238 ObjCARCReferenceLifetimeType, 239 *Destroy, CleanupKind & EHCleanup); 240 return; 241 242 case SD_Dynamic: 243 llvm_unreachable("temporary cannot have dynamic storage duration"); 244 } 245 llvm_unreachable("unknown storage duration"); 246 } 247 } 248 249 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 250 if (const RecordType *RT = 251 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 252 // Get the destructor for the reference temporary. 253 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 254 if (!ClassDecl->hasTrivialDestructor()) 255 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 256 } 257 258 if (!ReferenceTemporaryDtor) 259 return; 260 261 // Call the destructor for the temporary. 262 switch (M->getStorageDuration()) { 263 case SD_Static: 264 case SD_Thread: { 265 llvm::Constant *CleanupFn; 266 llvm::Constant *CleanupArg; 267 if (E->getType()->isArrayType()) { 268 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 269 cast<llvm::Constant>(ReferenceTemporary), E->getType(), 270 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 271 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 272 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 273 } else { 274 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 275 StructorType::Complete); 276 CleanupArg = cast<llvm::Constant>(ReferenceTemporary); 277 } 278 CGF.CGM.getCXXABI().registerGlobalDtor( 279 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 280 break; 281 } 282 283 case SD_FullExpression: 284 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 285 CodeGenFunction::destroyCXXObject, 286 CGF.getLangOpts().Exceptions); 287 break; 288 289 case SD_Automatic: 290 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 291 ReferenceTemporary, E->getType(), 292 CodeGenFunction::destroyCXXObject, 293 CGF.getLangOpts().Exceptions); 294 break; 295 296 case SD_Dynamic: 297 llvm_unreachable("temporary cannot have dynamic storage duration"); 298 } 299 } 300 301 static llvm::Value * 302 createReferenceTemporary(CodeGenFunction &CGF, 303 const MaterializeTemporaryExpr *M, const Expr *Inner) { 304 switch (M->getStorageDuration()) { 305 case SD_FullExpression: 306 case SD_Automatic: { 307 // If we have a constant temporary array or record try to promote it into a 308 // constant global under the same rules a normal constant would've been 309 // promoted. This is easier on the optimizer and generally emits fewer 310 // instructions. 311 QualType Ty = Inner->getType(); 312 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 313 (Ty->isArrayType() || Ty->isRecordType()) && 314 CGF.CGM.isTypeConstant(Ty, true)) 315 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 316 auto *GV = new llvm::GlobalVariable( 317 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 318 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp"); 319 GV->setAlignment( 320 CGF.getContext().getTypeAlignInChars(Ty).getQuantity()); 321 // FIXME: Should we put the new global into a COMDAT? 322 return GV; 323 } 324 return CGF.CreateMemTemp(Ty, "ref.tmp"); 325 } 326 case SD_Thread: 327 case SD_Static: 328 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 329 330 case SD_Dynamic: 331 llvm_unreachable("temporary can't have dynamic storage duration"); 332 } 333 llvm_unreachable("unknown storage duration"); 334 } 335 336 LValue CodeGenFunction:: 337 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 338 const Expr *E = M->GetTemporaryExpr(); 339 340 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 341 // as that will cause the lifetime adjustment to be lost for ARC 342 if (getLangOpts().ObjCAutoRefCount && 343 M->getType()->isObjCLifetimeType() && 344 M->getType().getObjCLifetime() != Qualifiers::OCL_None && 345 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 346 llvm::Value *Object = createReferenceTemporary(*this, M, E); 347 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 348 Object = llvm::ConstantExpr::getBitCast( 349 Var, ConvertTypeForMem(E->getType())->getPointerTo()); 350 // We should not have emitted the initializer for this temporary as a 351 // constant. 352 assert(!Var->hasInitializer()); 353 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 354 } 355 LValue RefTempDst = MakeAddrLValue(Object, M->getType()); 356 357 switch (getEvaluationKind(E->getType())) { 358 default: llvm_unreachable("expected scalar or aggregate expression"); 359 case TEK_Scalar: 360 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 361 break; 362 case TEK_Aggregate: { 363 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 364 EmitAggExpr(E, AggValueSlot::forAddr(Object, Alignment, 365 E->getType().getQualifiers(), 366 AggValueSlot::IsDestructed, 367 AggValueSlot::DoesNotNeedGCBarriers, 368 AggValueSlot::IsNotAliased)); 369 break; 370 } 371 } 372 373 pushTemporaryCleanup(*this, M, E, Object); 374 return RefTempDst; 375 } 376 377 SmallVector<const Expr *, 2> CommaLHSs; 378 SmallVector<SubobjectAdjustment, 2> Adjustments; 379 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 380 381 for (const auto &Ignored : CommaLHSs) 382 EmitIgnoredExpr(Ignored); 383 384 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 385 if (opaque->getType()->isRecordType()) { 386 assert(Adjustments.empty()); 387 return EmitOpaqueValueLValue(opaque); 388 } 389 } 390 391 // Create and initialize the reference temporary. 392 llvm::Value *Object = createReferenceTemporary(*this, M, E); 393 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 394 Object = llvm::ConstantExpr::getBitCast( 395 Var, ConvertTypeForMem(E->getType())->getPointerTo()); 396 // If the temporary is a global and has a constant initializer or is a 397 // constant temporary that we promoted to a global, we may have already 398 // initialized it. 399 if (!Var->hasInitializer()) { 400 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 401 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 402 } 403 } else { 404 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 405 } 406 pushTemporaryCleanup(*this, M, E, Object); 407 408 // Perform derived-to-base casts and/or field accesses, to get from the 409 // temporary object we created (and, potentially, for which we extended 410 // the lifetime) to the subobject we're binding the reference to. 411 for (unsigned I = Adjustments.size(); I != 0; --I) { 412 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 413 switch (Adjustment.Kind) { 414 case SubobjectAdjustment::DerivedToBaseAdjustment: 415 Object = 416 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 417 Adjustment.DerivedToBase.BasePath->path_begin(), 418 Adjustment.DerivedToBase.BasePath->path_end(), 419 /*NullCheckValue=*/ false, E->getExprLoc()); 420 break; 421 422 case SubobjectAdjustment::FieldAdjustment: { 423 LValue LV = MakeAddrLValue(Object, E->getType()); 424 LV = EmitLValueForField(LV, Adjustment.Field); 425 assert(LV.isSimple() && 426 "materialized temporary field is not a simple lvalue"); 427 Object = LV.getAddress(); 428 break; 429 } 430 431 case SubobjectAdjustment::MemberPointerAdjustment: { 432 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 433 Object = CGM.getCXXABI().EmitMemberDataPointerAddress( 434 *this, E, Object, Ptr, Adjustment.Ptr.MPT); 435 break; 436 } 437 } 438 } 439 440 return MakeAddrLValue(Object, M->getType()); 441 } 442 443 RValue 444 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 445 // Emit the expression as an lvalue. 446 LValue LV = EmitLValue(E); 447 assert(LV.isSimple()); 448 llvm::Value *Value = LV.getAddress(); 449 450 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 451 // C++11 [dcl.ref]p5 (as amended by core issue 453): 452 // If a glvalue to which a reference is directly bound designates neither 453 // an existing object or function of an appropriate type nor a region of 454 // storage of suitable size and alignment to contain an object of the 455 // reference's type, the behavior is undefined. 456 QualType Ty = E->getType(); 457 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 458 } 459 460 return RValue::get(Value); 461 } 462 463 464 /// getAccessedFieldNo - Given an encoded value and a result number, return the 465 /// input field number being accessed. 466 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 467 const llvm::Constant *Elts) { 468 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 469 ->getZExtValue(); 470 } 471 472 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 473 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 474 llvm::Value *High) { 475 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 476 llvm::Value *K47 = Builder.getInt64(47); 477 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 478 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 479 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 480 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 481 return Builder.CreateMul(B1, KMul); 482 } 483 484 bool CodeGenFunction::sanitizePerformTypeCheck() const { 485 return SanOpts.has(SanitizerKind::Null) | 486 SanOpts.has(SanitizerKind::Alignment) | 487 SanOpts.has(SanitizerKind::ObjectSize) | 488 SanOpts.has(SanitizerKind::Vptr); 489 } 490 491 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 492 llvm::Value *Address, QualType Ty, 493 CharUnits Alignment, bool SkipNullCheck) { 494 if (!sanitizePerformTypeCheck()) 495 return; 496 497 // Don't check pointers outside the default address space. The null check 498 // isn't correct, the object-size check isn't supported by LLVM, and we can't 499 // communicate the addresses to the runtime handler for the vptr check. 500 if (Address->getType()->getPointerAddressSpace()) 501 return; 502 503 SanitizerScope SanScope(this); 504 505 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 506 llvm::BasicBlock *Done = nullptr; 507 508 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 509 TCK == TCK_UpcastToVirtualBase; 510 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 511 !SkipNullCheck) { 512 // The glvalue must not be an empty glvalue. 513 llvm::Value *IsNonNull = Builder.CreateICmpNE( 514 Address, llvm::Constant::getNullValue(Address->getType())); 515 516 if (AllowNullPointers) { 517 // When performing pointer casts, it's OK if the value is null. 518 // Skip the remaining checks in that case. 519 Done = createBasicBlock("null"); 520 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 521 Builder.CreateCondBr(IsNonNull, Rest, Done); 522 EmitBlock(Rest); 523 } else { 524 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 525 } 526 } 527 528 if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) { 529 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 530 531 // The glvalue must refer to a large enough storage region. 532 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 533 // to check this. 534 // FIXME: Get object address space 535 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 536 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 537 llvm::Value *Min = Builder.getFalse(); 538 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 539 llvm::Value *LargeEnough = 540 Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}), 541 llvm::ConstantInt::get(IntPtrTy, Size)); 542 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 543 } 544 545 uint64_t AlignVal = 0; 546 547 if (SanOpts.has(SanitizerKind::Alignment)) { 548 AlignVal = Alignment.getQuantity(); 549 if (!Ty->isIncompleteType() && !AlignVal) 550 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 551 552 // The glvalue must be suitably aligned. 553 if (AlignVal) { 554 llvm::Value *Align = 555 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 556 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 557 llvm::Value *Aligned = 558 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 559 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 560 } 561 } 562 563 if (Checks.size() > 0) { 564 llvm::Constant *StaticData[] = { 565 EmitCheckSourceLocation(Loc), 566 EmitCheckTypeDescriptor(Ty), 567 llvm::ConstantInt::get(SizeTy, AlignVal), 568 llvm::ConstantInt::get(Int8Ty, TCK) 569 }; 570 EmitCheck(Checks, "type_mismatch", StaticData, Address); 571 } 572 573 // If possible, check that the vptr indicates that there is a subobject of 574 // type Ty at offset zero within this object. 575 // 576 // C++11 [basic.life]p5,6: 577 // [For storage which does not refer to an object within its lifetime] 578 // The program has undefined behavior if: 579 // -- the [pointer or glvalue] is used to access a non-static data member 580 // or call a non-static member function 581 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 582 if (SanOpts.has(SanitizerKind::Vptr) && 583 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 584 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 585 TCK == TCK_UpcastToVirtualBase) && 586 RD && RD->hasDefinition() && RD->isDynamicClass()) { 587 // Compute a hash of the mangled name of the type. 588 // 589 // FIXME: This is not guaranteed to be deterministic! Move to a 590 // fingerprinting mechanism once LLVM provides one. For the time 591 // being the implementation happens to be deterministic. 592 SmallString<64> MangledName; 593 llvm::raw_svector_ostream Out(MangledName); 594 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 595 Out); 596 597 // Blacklist based on the mangled type. 598 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 599 Out.str())) { 600 llvm::hash_code TypeHash = hash_value(Out.str()); 601 602 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 603 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 604 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 605 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 606 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 607 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 608 609 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 610 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 611 612 // Look the hash up in our cache. 613 const int CacheSize = 128; 614 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 615 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 616 "__ubsan_vptr_type_cache"); 617 llvm::Value *Slot = Builder.CreateAnd(Hash, 618 llvm::ConstantInt::get(IntPtrTy, 619 CacheSize-1)); 620 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 621 llvm::Value *CacheVal = 622 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 623 624 // If the hash isn't in the cache, call a runtime handler to perform the 625 // hard work of checking whether the vptr is for an object of the right 626 // type. This will either fill in the cache and return, or produce a 627 // diagnostic. 628 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 629 llvm::Constant *StaticData[] = { 630 EmitCheckSourceLocation(Loc), 631 EmitCheckTypeDescriptor(Ty), 632 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 633 llvm::ConstantInt::get(Int8Ty, TCK) 634 }; 635 llvm::Value *DynamicData[] = { Address, Hash }; 636 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 637 "dynamic_type_cache_miss", StaticData, DynamicData); 638 } 639 } 640 641 if (Done) { 642 Builder.CreateBr(Done); 643 EmitBlock(Done); 644 } 645 } 646 647 /// Determine whether this expression refers to a flexible array member in a 648 /// struct. We disable array bounds checks for such members. 649 static bool isFlexibleArrayMemberExpr(const Expr *E) { 650 // For compatibility with existing code, we treat arrays of length 0 or 651 // 1 as flexible array members. 652 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 653 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 654 if (CAT->getSize().ugt(1)) 655 return false; 656 } else if (!isa<IncompleteArrayType>(AT)) 657 return false; 658 659 E = E->IgnoreParens(); 660 661 // A flexible array member must be the last member in the class. 662 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 663 // FIXME: If the base type of the member expr is not FD->getParent(), 664 // this should not be treated as a flexible array member access. 665 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 666 RecordDecl::field_iterator FI( 667 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 668 return ++FI == FD->getParent()->field_end(); 669 } 670 } 671 672 return false; 673 } 674 675 /// If Base is known to point to the start of an array, return the length of 676 /// that array. Return 0 if the length cannot be determined. 677 static llvm::Value *getArrayIndexingBound( 678 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 679 // For the vector indexing extension, the bound is the number of elements. 680 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 681 IndexedType = Base->getType(); 682 return CGF.Builder.getInt32(VT->getNumElements()); 683 } 684 685 Base = Base->IgnoreParens(); 686 687 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 688 if (CE->getCastKind() == CK_ArrayToPointerDecay && 689 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 690 IndexedType = CE->getSubExpr()->getType(); 691 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 692 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 693 return CGF.Builder.getInt(CAT->getSize()); 694 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 695 return CGF.getVLASize(VAT).first; 696 } 697 } 698 699 return nullptr; 700 } 701 702 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 703 llvm::Value *Index, QualType IndexType, 704 bool Accessed) { 705 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 706 "should not be called unless adding bounds checks"); 707 SanitizerScope SanScope(this); 708 709 QualType IndexedType; 710 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 711 if (!Bound) 712 return; 713 714 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 715 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 716 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 717 718 llvm::Constant *StaticData[] = { 719 EmitCheckSourceLocation(E->getExprLoc()), 720 EmitCheckTypeDescriptor(IndexedType), 721 EmitCheckTypeDescriptor(IndexType) 722 }; 723 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 724 : Builder.CreateICmpULE(IndexVal, BoundVal); 725 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds", 726 StaticData, Index); 727 } 728 729 730 CodeGenFunction::ComplexPairTy CodeGenFunction:: 731 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 732 bool isInc, bool isPre) { 733 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 734 735 llvm::Value *NextVal; 736 if (isa<llvm::IntegerType>(InVal.first->getType())) { 737 uint64_t AmountVal = isInc ? 1 : -1; 738 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 739 740 // Add the inc/dec to the real part. 741 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 742 } else { 743 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 744 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 745 if (!isInc) 746 FVal.changeSign(); 747 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 748 749 // Add the inc/dec to the real part. 750 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 751 } 752 753 ComplexPairTy IncVal(NextVal, InVal.second); 754 755 // Store the updated result through the lvalue. 756 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 757 758 // If this is a postinc, return the value read from memory, otherwise use the 759 // updated value. 760 return isPre ? IncVal : InVal; 761 } 762 763 //===----------------------------------------------------------------------===// 764 // LValue Expression Emission 765 //===----------------------------------------------------------------------===// 766 767 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 768 if (Ty->isVoidType()) 769 return RValue::get(nullptr); 770 771 switch (getEvaluationKind(Ty)) { 772 case TEK_Complex: { 773 llvm::Type *EltTy = 774 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 775 llvm::Value *U = llvm::UndefValue::get(EltTy); 776 return RValue::getComplex(std::make_pair(U, U)); 777 } 778 779 // If this is a use of an undefined aggregate type, the aggregate must have an 780 // identifiable address. Just because the contents of the value are undefined 781 // doesn't mean that the address can't be taken and compared. 782 case TEK_Aggregate: { 783 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 784 return RValue::getAggregate(DestPtr); 785 } 786 787 case TEK_Scalar: 788 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 789 } 790 llvm_unreachable("bad evaluation kind"); 791 } 792 793 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 794 const char *Name) { 795 ErrorUnsupported(E, Name); 796 return GetUndefRValue(E->getType()); 797 } 798 799 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 800 const char *Name) { 801 ErrorUnsupported(E, Name); 802 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 803 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 804 } 805 806 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 807 LValue LV; 808 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 809 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 810 else 811 LV = EmitLValue(E); 812 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 813 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 814 E->getType(), LV.getAlignment()); 815 return LV; 816 } 817 818 /// EmitLValue - Emit code to compute a designator that specifies the location 819 /// of the expression. 820 /// 821 /// This can return one of two things: a simple address or a bitfield reference. 822 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 823 /// an LLVM pointer type. 824 /// 825 /// If this returns a bitfield reference, nothing about the pointee type of the 826 /// LLVM value is known: For example, it may not be a pointer to an integer. 827 /// 828 /// If this returns a normal address, and if the lvalue's C type is fixed size, 829 /// this method guarantees that the returned pointer type will point to an LLVM 830 /// type of the same size of the lvalue's type. If the lvalue has a variable 831 /// length type, this is not possible. 832 /// 833 LValue CodeGenFunction::EmitLValue(const Expr *E) { 834 ApplyDebugLocation DL(*this, E); 835 switch (E->getStmtClass()) { 836 default: return EmitUnsupportedLValue(E, "l-value expression"); 837 838 case Expr::ObjCPropertyRefExprClass: 839 llvm_unreachable("cannot emit a property reference directly"); 840 841 case Expr::ObjCSelectorExprClass: 842 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 843 case Expr::ObjCIsaExprClass: 844 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 845 case Expr::BinaryOperatorClass: 846 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 847 case Expr::CompoundAssignOperatorClass: { 848 QualType Ty = E->getType(); 849 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 850 Ty = AT->getValueType(); 851 if (!Ty->isAnyComplexType()) 852 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 853 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 854 } 855 case Expr::CallExprClass: 856 case Expr::CXXMemberCallExprClass: 857 case Expr::CXXOperatorCallExprClass: 858 case Expr::UserDefinedLiteralClass: 859 return EmitCallExprLValue(cast<CallExpr>(E)); 860 case Expr::VAArgExprClass: 861 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 862 case Expr::DeclRefExprClass: 863 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 864 case Expr::ParenExprClass: 865 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 866 case Expr::GenericSelectionExprClass: 867 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 868 case Expr::PredefinedExprClass: 869 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 870 case Expr::StringLiteralClass: 871 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 872 case Expr::ObjCEncodeExprClass: 873 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 874 case Expr::PseudoObjectExprClass: 875 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 876 case Expr::InitListExprClass: 877 return EmitInitListLValue(cast<InitListExpr>(E)); 878 case Expr::CXXTemporaryObjectExprClass: 879 case Expr::CXXConstructExprClass: 880 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 881 case Expr::CXXBindTemporaryExprClass: 882 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 883 case Expr::CXXUuidofExprClass: 884 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 885 case Expr::LambdaExprClass: 886 return EmitLambdaLValue(cast<LambdaExpr>(E)); 887 888 case Expr::ExprWithCleanupsClass: { 889 const auto *cleanups = cast<ExprWithCleanups>(E); 890 enterFullExpression(cleanups); 891 RunCleanupsScope Scope(*this); 892 return EmitLValue(cleanups->getSubExpr()); 893 } 894 895 case Expr::CXXDefaultArgExprClass: 896 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 897 case Expr::CXXDefaultInitExprClass: { 898 CXXDefaultInitExprScope Scope(*this); 899 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 900 } 901 case Expr::CXXTypeidExprClass: 902 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 903 904 case Expr::ObjCMessageExprClass: 905 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 906 case Expr::ObjCIvarRefExprClass: 907 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 908 case Expr::StmtExprClass: 909 return EmitStmtExprLValue(cast<StmtExpr>(E)); 910 case Expr::UnaryOperatorClass: 911 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 912 case Expr::ArraySubscriptExprClass: 913 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 914 case Expr::ExtVectorElementExprClass: 915 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 916 case Expr::MemberExprClass: 917 return EmitMemberExpr(cast<MemberExpr>(E)); 918 case Expr::CompoundLiteralExprClass: 919 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 920 case Expr::ConditionalOperatorClass: 921 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 922 case Expr::BinaryConditionalOperatorClass: 923 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 924 case Expr::ChooseExprClass: 925 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 926 case Expr::OpaqueValueExprClass: 927 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 928 case Expr::SubstNonTypeTemplateParmExprClass: 929 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 930 case Expr::ImplicitCastExprClass: 931 case Expr::CStyleCastExprClass: 932 case Expr::CXXFunctionalCastExprClass: 933 case Expr::CXXStaticCastExprClass: 934 case Expr::CXXDynamicCastExprClass: 935 case Expr::CXXReinterpretCastExprClass: 936 case Expr::CXXConstCastExprClass: 937 case Expr::ObjCBridgedCastExprClass: 938 return EmitCastLValue(cast<CastExpr>(E)); 939 940 case Expr::MaterializeTemporaryExprClass: 941 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 942 } 943 } 944 945 /// Given an object of the given canonical type, can we safely copy a 946 /// value out of it based on its initializer? 947 static bool isConstantEmittableObjectType(QualType type) { 948 assert(type.isCanonical()); 949 assert(!type->isReferenceType()); 950 951 // Must be const-qualified but non-volatile. 952 Qualifiers qs = type.getLocalQualifiers(); 953 if (!qs.hasConst() || qs.hasVolatile()) return false; 954 955 // Otherwise, all object types satisfy this except C++ classes with 956 // mutable subobjects or non-trivial copy/destroy behavior. 957 if (const auto *RT = dyn_cast<RecordType>(type)) 958 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 959 if (RD->hasMutableFields() || !RD->isTrivial()) 960 return false; 961 962 return true; 963 } 964 965 /// Can we constant-emit a load of a reference to a variable of the 966 /// given type? This is different from predicates like 967 /// Decl::isUsableInConstantExpressions because we do want it to apply 968 /// in situations that don't necessarily satisfy the language's rules 969 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 970 /// to do this with const float variables even if those variables 971 /// aren't marked 'constexpr'. 972 enum ConstantEmissionKind { 973 CEK_None, 974 CEK_AsReferenceOnly, 975 CEK_AsValueOrReference, 976 CEK_AsValueOnly 977 }; 978 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 979 type = type.getCanonicalType(); 980 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 981 if (isConstantEmittableObjectType(ref->getPointeeType())) 982 return CEK_AsValueOrReference; 983 return CEK_AsReferenceOnly; 984 } 985 if (isConstantEmittableObjectType(type)) 986 return CEK_AsValueOnly; 987 return CEK_None; 988 } 989 990 /// Try to emit a reference to the given value without producing it as 991 /// an l-value. This is actually more than an optimization: we can't 992 /// produce an l-value for variables that we never actually captured 993 /// in a block or lambda, which means const int variables or constexpr 994 /// literals or similar. 995 CodeGenFunction::ConstantEmission 996 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 997 ValueDecl *value = refExpr->getDecl(); 998 999 // The value needs to be an enum constant or a constant variable. 1000 ConstantEmissionKind CEK; 1001 if (isa<ParmVarDecl>(value)) { 1002 CEK = CEK_None; 1003 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1004 CEK = checkVarTypeForConstantEmission(var->getType()); 1005 } else if (isa<EnumConstantDecl>(value)) { 1006 CEK = CEK_AsValueOnly; 1007 } else { 1008 CEK = CEK_None; 1009 } 1010 if (CEK == CEK_None) return ConstantEmission(); 1011 1012 Expr::EvalResult result; 1013 bool resultIsReference; 1014 QualType resultType; 1015 1016 // It's best to evaluate all the way as an r-value if that's permitted. 1017 if (CEK != CEK_AsReferenceOnly && 1018 refExpr->EvaluateAsRValue(result, getContext())) { 1019 resultIsReference = false; 1020 resultType = refExpr->getType(); 1021 1022 // Otherwise, try to evaluate as an l-value. 1023 } else if (CEK != CEK_AsValueOnly && 1024 refExpr->EvaluateAsLValue(result, getContext())) { 1025 resultIsReference = true; 1026 resultType = value->getType(); 1027 1028 // Failure. 1029 } else { 1030 return ConstantEmission(); 1031 } 1032 1033 // In any case, if the initializer has side-effects, abandon ship. 1034 if (result.HasSideEffects) 1035 return ConstantEmission(); 1036 1037 // Emit as a constant. 1038 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1039 1040 // Make sure we emit a debug reference to the global variable. 1041 // This should probably fire even for 1042 if (isa<VarDecl>(value)) { 1043 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1044 EmitDeclRefExprDbgValue(refExpr, C); 1045 } else { 1046 assert(isa<EnumConstantDecl>(value)); 1047 EmitDeclRefExprDbgValue(refExpr, C); 1048 } 1049 1050 // If we emitted a reference constant, we need to dereference that. 1051 if (resultIsReference) 1052 return ConstantEmission::forReference(C); 1053 1054 return ConstantEmission::forValue(C); 1055 } 1056 1057 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1058 SourceLocation Loc) { 1059 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1060 lvalue.getAlignment().getQuantity(), 1061 lvalue.getType(), Loc, lvalue.getTBAAInfo(), 1062 lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); 1063 } 1064 1065 static bool hasBooleanRepresentation(QualType Ty) { 1066 if (Ty->isBooleanType()) 1067 return true; 1068 1069 if (const EnumType *ET = Ty->getAs<EnumType>()) 1070 return ET->getDecl()->getIntegerType()->isBooleanType(); 1071 1072 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1073 return hasBooleanRepresentation(AT->getValueType()); 1074 1075 return false; 1076 } 1077 1078 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1079 llvm::APInt &Min, llvm::APInt &End, 1080 bool StrictEnums) { 1081 const EnumType *ET = Ty->getAs<EnumType>(); 1082 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1083 ET && !ET->getDecl()->isFixed(); 1084 bool IsBool = hasBooleanRepresentation(Ty); 1085 if (!IsBool && !IsRegularCPlusPlusEnum) 1086 return false; 1087 1088 if (IsBool) { 1089 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1090 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1091 } else { 1092 const EnumDecl *ED = ET->getDecl(); 1093 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1094 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1095 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1096 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1097 1098 if (NumNegativeBits) { 1099 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1100 assert(NumBits <= Bitwidth); 1101 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1102 Min = -End; 1103 } else { 1104 assert(NumPositiveBits <= Bitwidth); 1105 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1106 Min = llvm::APInt(Bitwidth, 0); 1107 } 1108 } 1109 return true; 1110 } 1111 1112 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1113 llvm::APInt Min, End; 1114 if (!getRangeForType(*this, Ty, Min, End, 1115 CGM.getCodeGenOpts().StrictEnums)) 1116 return nullptr; 1117 1118 llvm::MDBuilder MDHelper(getLLVMContext()); 1119 return MDHelper.createRange(Min, End); 1120 } 1121 1122 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1123 unsigned Alignment, QualType Ty, 1124 SourceLocation Loc, 1125 llvm::MDNode *TBAAInfo, 1126 QualType TBAABaseType, 1127 uint64_t TBAAOffset) { 1128 // For better performance, handle vector loads differently. 1129 if (Ty->isVectorType()) { 1130 llvm::Value *V; 1131 const llvm::Type *EltTy = 1132 cast<llvm::PointerType>(Addr->getType())->getElementType(); 1133 1134 const auto *VTy = cast<llvm::VectorType>(EltTy); 1135 1136 // Handle vectors of size 3, like size 4 for better performance. 1137 if (VTy->getNumElements() == 3) { 1138 1139 // Bitcast to vec4 type. 1140 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1141 4); 1142 llvm::PointerType *ptVec4Ty = 1143 llvm::PointerType::get(vec4Ty, 1144 (cast<llvm::PointerType>( 1145 Addr->getType()))->getAddressSpace()); 1146 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1147 "castToVec4"); 1148 // Now load value. 1149 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1150 1151 // Shuffle vector to get vec3. 1152 V = Builder.CreateShuffleVector(LoadVal, llvm::UndefValue::get(vec4Ty), 1153 {0, 1, 2}, "extractVec"); 1154 return EmitFromMemory(V, Ty); 1155 } 1156 } 1157 1158 // Atomic operations have to be done on integral types. 1159 if (Ty->isAtomicType() || typeIsSuitableForInlineAtomic(Ty, Volatile)) { 1160 LValue lvalue = LValue::MakeAddr(Addr, Ty, 1161 CharUnits::fromQuantity(Alignment), 1162 getContext(), TBAAInfo); 1163 return EmitAtomicLoad(lvalue, Loc).getScalarVal(); 1164 } 1165 1166 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1167 if (Volatile) 1168 Load->setVolatile(true); 1169 if (Alignment) 1170 Load->setAlignment(Alignment); 1171 if (TBAAInfo) { 1172 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1173 TBAAOffset); 1174 if (TBAAPath) 1175 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/); 1176 } 1177 1178 bool NeedsBoolCheck = 1179 SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty); 1180 bool NeedsEnumCheck = 1181 SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>(); 1182 if (NeedsBoolCheck || NeedsEnumCheck) { 1183 SanitizerScope SanScope(this); 1184 llvm::APInt Min, End; 1185 if (getRangeForType(*this, Ty, Min, End, true)) { 1186 --End; 1187 llvm::Value *Check; 1188 if (!Min) 1189 Check = Builder.CreateICmpULE( 1190 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1191 else { 1192 llvm::Value *Upper = Builder.CreateICmpSLE( 1193 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1194 llvm::Value *Lower = Builder.CreateICmpSGE( 1195 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1196 Check = Builder.CreateAnd(Upper, Lower); 1197 } 1198 llvm::Constant *StaticArgs[] = { 1199 EmitCheckSourceLocation(Loc), 1200 EmitCheckTypeDescriptor(Ty) 1201 }; 1202 SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1203 EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs, 1204 EmitCheckValue(Load)); 1205 } 1206 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1207 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1208 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1209 1210 return EmitFromMemory(Load, Ty); 1211 } 1212 1213 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1214 // Bool has a different representation in memory than in registers. 1215 if (hasBooleanRepresentation(Ty)) { 1216 // This should really always be an i1, but sometimes it's already 1217 // an i8, and it's awkward to track those cases down. 1218 if (Value->getType()->isIntegerTy(1)) 1219 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1220 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1221 "wrong value rep of bool"); 1222 } 1223 1224 return Value; 1225 } 1226 1227 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1228 // Bool has a different representation in memory than in registers. 1229 if (hasBooleanRepresentation(Ty)) { 1230 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1231 "wrong value rep of bool"); 1232 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1233 } 1234 1235 return Value; 1236 } 1237 1238 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1239 bool Volatile, unsigned Alignment, 1240 QualType Ty, llvm::MDNode *TBAAInfo, 1241 bool isInit, QualType TBAABaseType, 1242 uint64_t TBAAOffset) { 1243 1244 // Handle vectors differently to get better performance. 1245 if (Ty->isVectorType()) { 1246 llvm::Type *SrcTy = Value->getType(); 1247 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1248 // Handle vec3 special. 1249 if (VecTy->getNumElements() == 3) { 1250 // Our source is a vec3, do a shuffle vector to make it a vec4. 1251 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1252 Builder.getInt32(2), 1253 llvm::UndefValue::get(Builder.getInt32Ty())}; 1254 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1255 Value = Builder.CreateShuffleVector(Value, 1256 llvm::UndefValue::get(VecTy), 1257 MaskV, "extractVec"); 1258 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1259 } 1260 auto *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1261 if (DstPtr->getElementType() != SrcTy) { 1262 llvm::Type *MemTy = 1263 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1264 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1265 } 1266 } 1267 1268 Value = EmitToMemory(Value, Ty); 1269 1270 if (Ty->isAtomicType() || 1271 (!isInit && typeIsSuitableForInlineAtomic(Ty, Volatile))) { 1272 EmitAtomicStore(RValue::get(Value), 1273 LValue::MakeAddr(Addr, Ty, 1274 CharUnits::fromQuantity(Alignment), 1275 getContext(), TBAAInfo), 1276 isInit); 1277 return; 1278 } 1279 1280 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1281 if (Alignment) 1282 Store->setAlignment(Alignment); 1283 if (TBAAInfo) { 1284 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1285 TBAAOffset); 1286 if (TBAAPath) 1287 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/); 1288 } 1289 } 1290 1291 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1292 bool isInit) { 1293 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1294 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1295 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1296 lvalue.getTBAAOffset()); 1297 } 1298 1299 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1300 /// method emits the address of the lvalue, then loads the result as an rvalue, 1301 /// returning the rvalue. 1302 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1303 if (LV.isObjCWeak()) { 1304 // load of a __weak object. 1305 llvm::Value *AddrWeakObj = LV.getAddress(); 1306 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1307 AddrWeakObj)); 1308 } 1309 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1310 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1311 Object = EmitObjCConsumeObject(LV.getType(), Object); 1312 return RValue::get(Object); 1313 } 1314 1315 if (LV.isSimple()) { 1316 assert(!LV.getType()->isFunctionType()); 1317 1318 // Everything needs a load. 1319 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1320 } 1321 1322 if (LV.isVectorElt()) { 1323 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1324 LV.isVolatileQualified()); 1325 Load->setAlignment(LV.getAlignment().getQuantity()); 1326 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1327 "vecext")); 1328 } 1329 1330 // If this is a reference to a subset of the elements of a vector, either 1331 // shuffle the input or extract/insert them as appropriate. 1332 if (LV.isExtVectorElt()) 1333 return EmitLoadOfExtVectorElementLValue(LV); 1334 1335 // Global Register variables always invoke intrinsics 1336 if (LV.isGlobalReg()) 1337 return EmitLoadOfGlobalRegLValue(LV); 1338 1339 assert(LV.isBitField() && "Unknown LValue type!"); 1340 return EmitLoadOfBitfieldLValue(LV); 1341 } 1342 1343 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1344 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1345 CharUnits Align = LV.getAlignment().alignmentAtOffset(Info.StorageOffset); 1346 1347 // Get the output type. 1348 llvm::Type *ResLTy = ConvertType(LV.getType()); 1349 1350 llvm::Value *Ptr = LV.getBitFieldAddr(); 1351 llvm::Value *Val = Builder.CreateAlignedLoad(Ptr, Align.getQuantity(), 1352 LV.isVolatileQualified(), 1353 "bf.load"); 1354 1355 if (Info.IsSigned) { 1356 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1357 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1358 if (HighBits) 1359 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1360 if (Info.Offset + HighBits) 1361 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1362 } else { 1363 if (Info.Offset) 1364 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1365 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1366 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1367 Info.Size), 1368 "bf.clear"); 1369 } 1370 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1371 1372 return RValue::get(Val); 1373 } 1374 1375 // If this is a reference to a subset of the elements of a vector, create an 1376 // appropriate shufflevector. 1377 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1378 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1379 LV.isVolatileQualified()); 1380 Load->setAlignment(LV.getAlignment().getQuantity()); 1381 llvm::Value *Vec = Load; 1382 1383 const llvm::Constant *Elts = LV.getExtVectorElts(); 1384 1385 // If the result of the expression is a non-vector type, we must be extracting 1386 // a single element. Just codegen as an extractelement. 1387 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1388 if (!ExprVT) { 1389 unsigned InIdx = getAccessedFieldNo(0, Elts); 1390 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1391 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1392 } 1393 1394 // Always use shuffle vector to try to retain the original program structure 1395 unsigned NumResultElts = ExprVT->getNumElements(); 1396 1397 SmallVector<llvm::Constant*, 4> Mask; 1398 for (unsigned i = 0; i != NumResultElts; ++i) 1399 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1400 1401 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1402 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1403 MaskV); 1404 return RValue::get(Vec); 1405 } 1406 1407 /// @brief Generates lvalue for partial ext_vector access. 1408 llvm::Value *CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1409 llvm::Value *VectorAddress = LV.getExtVectorAddr(); 1410 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1411 QualType EQT = ExprVT->getElementType(); 1412 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1413 llvm::Type *VectorElementPtrToTy = VectorElementTy->getPointerTo(); 1414 1415 llvm::Value *CastToPointerElement = 1416 Builder.CreateBitCast(VectorAddress, 1417 VectorElementPtrToTy, "conv.ptr.element"); 1418 1419 const llvm::Constant *Elts = LV.getExtVectorElts(); 1420 unsigned ix = getAccessedFieldNo(0, Elts); 1421 1422 llvm::Value *VectorBasePtrPlusIx = 1423 Builder.CreateInBoundsGEP(CastToPointerElement, 1424 llvm::ConstantInt::get(SizeTy, ix), "add.ptr"); 1425 1426 return VectorBasePtrPlusIx; 1427 } 1428 1429 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1430 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1431 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1432 "Bad type for register variable"); 1433 llvm::MDNode *RegName = cast<llvm::MDNode>( 1434 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1435 1436 // We accept integer and pointer types only 1437 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1438 llvm::Type *Ty = OrigTy; 1439 if (OrigTy->isPointerTy()) 1440 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1441 llvm::Type *Types[] = { Ty }; 1442 1443 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1444 llvm::Value *Call = Builder.CreateCall( 1445 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1446 if (OrigTy->isPointerTy()) 1447 Call = Builder.CreateIntToPtr(Call, OrigTy); 1448 return RValue::get(Call); 1449 } 1450 1451 1452 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1453 /// lvalue, where both are guaranteed to the have the same type, and that type 1454 /// is 'Ty'. 1455 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1456 bool isInit) { 1457 if (!Dst.isSimple()) { 1458 if (Dst.isVectorElt()) { 1459 // Read/modify/write the vector, inserting the new element. 1460 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1461 Dst.isVolatileQualified()); 1462 Load->setAlignment(Dst.getAlignment().getQuantity()); 1463 llvm::Value *Vec = Load; 1464 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1465 Dst.getVectorIdx(), "vecins"); 1466 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1467 Dst.isVolatileQualified()); 1468 Store->setAlignment(Dst.getAlignment().getQuantity()); 1469 return; 1470 } 1471 1472 // If this is an update of extended vector elements, insert them as 1473 // appropriate. 1474 if (Dst.isExtVectorElt()) 1475 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1476 1477 if (Dst.isGlobalReg()) 1478 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1479 1480 assert(Dst.isBitField() && "Unknown LValue type"); 1481 return EmitStoreThroughBitfieldLValue(Src, Dst); 1482 } 1483 1484 // There's special magic for assigning into an ARC-qualified l-value. 1485 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1486 switch (Lifetime) { 1487 case Qualifiers::OCL_None: 1488 llvm_unreachable("present but none"); 1489 1490 case Qualifiers::OCL_ExplicitNone: 1491 // nothing special 1492 break; 1493 1494 case Qualifiers::OCL_Strong: 1495 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1496 return; 1497 1498 case Qualifiers::OCL_Weak: 1499 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1500 return; 1501 1502 case Qualifiers::OCL_Autoreleasing: 1503 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1504 Src.getScalarVal())); 1505 // fall into the normal path 1506 break; 1507 } 1508 } 1509 1510 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1511 // load of a __weak object. 1512 llvm::Value *LvalueDst = Dst.getAddress(); 1513 llvm::Value *src = Src.getScalarVal(); 1514 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1515 return; 1516 } 1517 1518 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1519 // load of a __strong object. 1520 llvm::Value *LvalueDst = Dst.getAddress(); 1521 llvm::Value *src = Src.getScalarVal(); 1522 if (Dst.isObjCIvar()) { 1523 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1524 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1525 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1526 llvm::Value *dst = RHS; 1527 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1528 llvm::Value *LHS = 1529 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1530 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1531 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1532 BytesBetween); 1533 } else if (Dst.isGlobalObjCRef()) { 1534 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1535 Dst.isThreadLocalRef()); 1536 } 1537 else 1538 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1539 return; 1540 } 1541 1542 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1543 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1544 } 1545 1546 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1547 llvm::Value **Result) { 1548 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1549 CharUnits Align = Dst.getAlignment().alignmentAtOffset(Info.StorageOffset); 1550 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1551 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1552 1553 // Get the source value, truncated to the width of the bit-field. 1554 llvm::Value *SrcVal = Src.getScalarVal(); 1555 1556 // Cast the source to the storage type and shift it into place. 1557 SrcVal = Builder.CreateIntCast(SrcVal, 1558 Ptr->getType()->getPointerElementType(), 1559 /*IsSigned=*/false); 1560 llvm::Value *MaskedVal = SrcVal; 1561 1562 // See if there are other bits in the bitfield's storage we'll need to load 1563 // and mask together with source before storing. 1564 if (Info.StorageSize != Info.Size) { 1565 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1566 llvm::Value *Val = Builder.CreateAlignedLoad(Ptr, Align.getQuantity(), 1567 Dst.isVolatileQualified(), 1568 "bf.load"); 1569 1570 // Mask the source value as needed. 1571 if (!hasBooleanRepresentation(Dst.getType())) 1572 SrcVal = Builder.CreateAnd(SrcVal, 1573 llvm::APInt::getLowBitsSet(Info.StorageSize, 1574 Info.Size), 1575 "bf.value"); 1576 MaskedVal = SrcVal; 1577 if (Info.Offset) 1578 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1579 1580 // Mask out the original value. 1581 Val = Builder.CreateAnd(Val, 1582 ~llvm::APInt::getBitsSet(Info.StorageSize, 1583 Info.Offset, 1584 Info.Offset + Info.Size), 1585 "bf.clear"); 1586 1587 // Or together the unchanged values and the source value. 1588 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1589 } else { 1590 assert(Info.Offset == 0); 1591 } 1592 1593 // Write the new value back out. 1594 Builder.CreateAlignedStore(SrcVal, Ptr, Align.getQuantity(), 1595 Dst.isVolatileQualified()); 1596 1597 // Return the new value of the bit-field, if requested. 1598 if (Result) { 1599 llvm::Value *ResultVal = MaskedVal; 1600 1601 // Sign extend the value if needed. 1602 if (Info.IsSigned) { 1603 assert(Info.Size <= Info.StorageSize); 1604 unsigned HighBits = Info.StorageSize - Info.Size; 1605 if (HighBits) { 1606 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1607 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1608 } 1609 } 1610 1611 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1612 "bf.result.cast"); 1613 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1614 } 1615 } 1616 1617 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1618 LValue Dst) { 1619 // This access turns into a read/modify/write of the vector. Load the input 1620 // value now. 1621 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1622 Dst.isVolatileQualified()); 1623 Load->setAlignment(Dst.getAlignment().getQuantity()); 1624 llvm::Value *Vec = Load; 1625 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1626 1627 llvm::Value *SrcVal = Src.getScalarVal(); 1628 1629 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1630 unsigned NumSrcElts = VTy->getNumElements(); 1631 unsigned NumDstElts = 1632 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1633 if (NumDstElts == NumSrcElts) { 1634 // Use shuffle vector is the src and destination are the same number of 1635 // elements and restore the vector mask since it is on the side it will be 1636 // stored. 1637 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1638 for (unsigned i = 0; i != NumSrcElts; ++i) 1639 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1640 1641 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1642 Vec = Builder.CreateShuffleVector(SrcVal, 1643 llvm::UndefValue::get(Vec->getType()), 1644 MaskV); 1645 } else if (NumDstElts > NumSrcElts) { 1646 // Extended the source vector to the same length and then shuffle it 1647 // into the destination. 1648 // FIXME: since we're shuffling with undef, can we just use the indices 1649 // into that? This could be simpler. 1650 SmallVector<llvm::Constant*, 4> ExtMask; 1651 for (unsigned i = 0; i != NumSrcElts; ++i) 1652 ExtMask.push_back(Builder.getInt32(i)); 1653 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1654 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1655 llvm::Value *ExtSrcVal = 1656 Builder.CreateShuffleVector(SrcVal, 1657 llvm::UndefValue::get(SrcVal->getType()), 1658 ExtMaskV); 1659 // build identity 1660 SmallVector<llvm::Constant*, 4> Mask; 1661 for (unsigned i = 0; i != NumDstElts; ++i) 1662 Mask.push_back(Builder.getInt32(i)); 1663 1664 // When the vector size is odd and .odd or .hi is used, the last element 1665 // of the Elts constant array will be one past the size of the vector. 1666 // Ignore the last element here, if it is greater than the mask size. 1667 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1668 NumSrcElts--; 1669 1670 // modify when what gets shuffled in 1671 for (unsigned i = 0; i != NumSrcElts; ++i) 1672 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1673 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1674 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1675 } else { 1676 // We should never shorten the vector 1677 llvm_unreachable("unexpected shorten vector length"); 1678 } 1679 } else { 1680 // If the Src is a scalar (not a vector) it must be updating one element. 1681 unsigned InIdx = getAccessedFieldNo(0, Elts); 1682 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1683 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1684 } 1685 1686 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1687 Dst.isVolatileQualified()); 1688 Store->setAlignment(Dst.getAlignment().getQuantity()); 1689 } 1690 1691 /// @brief Store of global named registers are always calls to intrinsics. 1692 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1693 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1694 "Bad type for register variable"); 1695 llvm::MDNode *RegName = cast<llvm::MDNode>( 1696 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1697 assert(RegName && "Register LValue is not metadata"); 1698 1699 // We accept integer and pointer types only 1700 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1701 llvm::Type *Ty = OrigTy; 1702 if (OrigTy->isPointerTy()) 1703 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1704 llvm::Type *Types[] = { Ty }; 1705 1706 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1707 llvm::Value *Value = Src.getScalarVal(); 1708 if (OrigTy->isPointerTy()) 1709 Value = Builder.CreatePtrToInt(Value, Ty); 1710 Builder.CreateCall( 1711 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 1712 } 1713 1714 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1715 // generating write-barries API. It is currently a global, ivar, 1716 // or neither. 1717 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1718 LValue &LV, 1719 bool IsMemberAccess=false) { 1720 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1721 return; 1722 1723 if (isa<ObjCIvarRefExpr>(E)) { 1724 QualType ExpTy = E->getType(); 1725 if (IsMemberAccess && ExpTy->isPointerType()) { 1726 // If ivar is a structure pointer, assigning to field of 1727 // this struct follows gcc's behavior and makes it a non-ivar 1728 // writer-barrier conservatively. 1729 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1730 if (ExpTy->isRecordType()) { 1731 LV.setObjCIvar(false); 1732 return; 1733 } 1734 } 1735 LV.setObjCIvar(true); 1736 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1737 LV.setBaseIvarExp(Exp->getBase()); 1738 LV.setObjCArray(E->getType()->isArrayType()); 1739 return; 1740 } 1741 1742 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1743 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1744 if (VD->hasGlobalStorage()) { 1745 LV.setGlobalObjCRef(true); 1746 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1747 } 1748 } 1749 LV.setObjCArray(E->getType()->isArrayType()); 1750 return; 1751 } 1752 1753 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1754 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1755 return; 1756 } 1757 1758 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1759 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1760 if (LV.isObjCIvar()) { 1761 // If cast is to a structure pointer, follow gcc's behavior and make it 1762 // a non-ivar write-barrier. 1763 QualType ExpTy = E->getType(); 1764 if (ExpTy->isPointerType()) 1765 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1766 if (ExpTy->isRecordType()) 1767 LV.setObjCIvar(false); 1768 } 1769 return; 1770 } 1771 1772 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1773 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1774 return; 1775 } 1776 1777 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1778 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1779 return; 1780 } 1781 1782 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 1783 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1784 return; 1785 } 1786 1787 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1788 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1789 return; 1790 } 1791 1792 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1793 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1794 if (LV.isObjCIvar() && !LV.isObjCArray()) 1795 // Using array syntax to assigning to what an ivar points to is not 1796 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1797 LV.setObjCIvar(false); 1798 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1799 // Using array syntax to assigning to what global points to is not 1800 // same as assigning to the global itself. {id *G;} G[i] = 0; 1801 LV.setGlobalObjCRef(false); 1802 return; 1803 } 1804 1805 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 1806 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1807 // We don't know if member is an 'ivar', but this flag is looked at 1808 // only in the context of LV.isObjCIvar(). 1809 LV.setObjCArray(E->getType()->isArrayType()); 1810 return; 1811 } 1812 } 1813 1814 static llvm::Value * 1815 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1816 llvm::Value *V, llvm::Type *IRType, 1817 StringRef Name = StringRef()) { 1818 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1819 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1820 } 1821 1822 static LValue EmitThreadPrivateVarDeclLValue( 1823 CodeGenFunction &CGF, const VarDecl *VD, QualType T, llvm::Value *V, 1824 llvm::Type *RealVarTy, CharUnits Alignment, SourceLocation Loc) { 1825 V = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, V, Loc); 1826 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1827 return CGF.MakeAddrLValue(V, T, Alignment); 1828 } 1829 1830 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1831 const Expr *E, const VarDecl *VD) { 1832 QualType T = E->getType(); 1833 1834 // If it's thread_local, emit a call to its wrapper function instead. 1835 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 1836 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 1837 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 1838 1839 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1840 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1841 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1842 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1843 LValue LV; 1844 // Emit reference to the private copy of the variable if it is an OpenMP 1845 // threadprivate variable. 1846 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 1847 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, V, RealVarTy, Alignment, 1848 E->getExprLoc()); 1849 if (VD->getType()->isReferenceType()) { 1850 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1851 LI->setAlignment(Alignment.getQuantity()); 1852 V = LI; 1853 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1854 } else { 1855 LV = CGF.MakeAddrLValue(V, T, Alignment); 1856 } 1857 setObjCGCLValueClass(CGF.getContext(), E, LV); 1858 return LV; 1859 } 1860 1861 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1862 const Expr *E, const FunctionDecl *FD) { 1863 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1864 if (!FD->hasPrototype()) { 1865 if (const FunctionProtoType *Proto = 1866 FD->getType()->getAs<FunctionProtoType>()) { 1867 // Ugly case: for a K&R-style definition, the type of the definition 1868 // isn't the same as the type of a use. Correct for this with a 1869 // bitcast. 1870 QualType NoProtoType = 1871 CGF.getContext().getFunctionNoProtoType(Proto->getReturnType()); 1872 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1873 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1874 } 1875 } 1876 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1877 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1878 } 1879 1880 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 1881 llvm::Value *ThisValue) { 1882 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 1883 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 1884 return CGF.EmitLValueForField(LV, FD); 1885 } 1886 1887 /// Named Registers are named metadata pointing to the register name 1888 /// which will be read from/written to as an argument to the intrinsic 1889 /// @llvm.read/write_register. 1890 /// So far, only the name is being passed down, but other options such as 1891 /// register type, allocation type or even optimization options could be 1892 /// passed down via the metadata node. 1893 static LValue EmitGlobalNamedRegister(const VarDecl *VD, 1894 CodeGenModule &CGM, 1895 CharUnits Alignment) { 1896 SmallString<64> Name("llvm.named.register."); 1897 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 1898 assert(Asm->getLabel().size() < 64-Name.size() && 1899 "Register name too big"); 1900 Name.append(Asm->getLabel()); 1901 llvm::NamedMDNode *M = 1902 CGM.getModule().getOrInsertNamedMetadata(Name); 1903 if (M->getNumOperands() == 0) { 1904 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 1905 Asm->getLabel()); 1906 llvm::Metadata *Ops[] = {Str}; 1907 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 1908 } 1909 return LValue::MakeGlobalReg( 1910 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)), 1911 VD->getType(), Alignment); 1912 } 1913 1914 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1915 const NamedDecl *ND = E->getDecl(); 1916 CharUnits Alignment = getContext().getDeclAlign(ND); 1917 QualType T = E->getType(); 1918 1919 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1920 // Global Named registers access via intrinsics only 1921 if (VD->getStorageClass() == SC_Register && 1922 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 1923 return EmitGlobalNamedRegister(VD, CGM, Alignment); 1924 1925 // A DeclRefExpr for a reference initialized by a constant expression can 1926 // appear without being odr-used. Directly emit the constant initializer. 1927 const Expr *Init = VD->getAnyInitializer(VD); 1928 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1929 VD->isUsableInConstantExpressions(getContext()) && 1930 VD->checkInitIsICE()) { 1931 llvm::Constant *Val = 1932 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1933 assert(Val && "failed to emit reference constant expression"); 1934 // FIXME: Eventually we will want to emit vector element references. 1935 return MakeAddrLValue(Val, T, Alignment); 1936 } 1937 1938 // Check for captured variables. 1939 if (E->refersToEnclosingVariableOrCapture()) { 1940 if (auto *FD = LambdaCaptureFields.lookup(VD)) 1941 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 1942 else if (CapturedStmtInfo) { 1943 if (auto *V = LocalDeclMap.lookup(VD)) 1944 return MakeAddrLValue(V, T, Alignment); 1945 else 1946 return EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 1947 CapturedStmtInfo->getContextValue()); 1948 } 1949 assert(isa<BlockDecl>(CurCodeDecl)); 1950 return MakeAddrLValue(GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()), 1951 T, Alignment); 1952 } 1953 } 1954 1955 // FIXME: We should be able to assert this for FunctionDecls as well! 1956 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1957 // those with a valid source location. 1958 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1959 !E->getLocation().isValid()) && 1960 "Should not use decl without marking it used!"); 1961 1962 if (ND->hasAttr<WeakRefAttr>()) { 1963 const auto *VD = cast<ValueDecl>(ND); 1964 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1965 return MakeAddrLValue(Aliasee, T, Alignment); 1966 } 1967 1968 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1969 // Check if this is a global variable. 1970 if (VD->hasLinkage() || VD->isStaticDataMember()) 1971 return EmitGlobalVarDeclLValue(*this, E, VD); 1972 1973 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1974 1975 llvm::Value *V = LocalDeclMap.lookup(VD); 1976 if (!V && VD->isStaticLocal()) 1977 V = CGM.getOrCreateStaticVarDecl( 1978 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 1979 1980 // Check if variable is threadprivate. 1981 if (V && getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 1982 return EmitThreadPrivateVarDeclLValue( 1983 *this, VD, T, V, getTypes().ConvertTypeForMem(VD->getType()), 1984 Alignment, E->getExprLoc()); 1985 1986 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1987 1988 if (isBlockVariable) 1989 V = BuildBlockByrefAddress(V, VD); 1990 1991 LValue LV; 1992 if (VD->getType()->isReferenceType()) { 1993 llvm::LoadInst *LI = Builder.CreateLoad(V); 1994 LI->setAlignment(Alignment.getQuantity()); 1995 V = LI; 1996 LV = MakeNaturalAlignAddrLValue(V, T); 1997 } else { 1998 LV = MakeAddrLValue(V, T, Alignment); 1999 } 2000 2001 bool isLocalStorage = VD->hasLocalStorage(); 2002 2003 bool NonGCable = isLocalStorage && 2004 !VD->getType()->isReferenceType() && 2005 !isBlockVariable; 2006 if (NonGCable) { 2007 LV.getQuals().removeObjCGCAttr(); 2008 LV.setNonGC(true); 2009 } 2010 2011 bool isImpreciseLifetime = 2012 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2013 if (isImpreciseLifetime) 2014 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2015 setObjCGCLValueClass(getContext(), E, LV); 2016 return LV; 2017 } 2018 2019 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2020 return EmitFunctionDeclLValue(*this, E, FD); 2021 2022 llvm_unreachable("Unhandled DeclRefExpr"); 2023 } 2024 2025 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2026 // __extension__ doesn't affect lvalue-ness. 2027 if (E->getOpcode() == UO_Extension) 2028 return EmitLValue(E->getSubExpr()); 2029 2030 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2031 switch (E->getOpcode()) { 2032 default: llvm_unreachable("Unknown unary operator lvalue!"); 2033 case UO_Deref: { 2034 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2035 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2036 2037 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 2038 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2039 2040 // We should not generate __weak write barrier on indirect reference 2041 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2042 // But, we continue to generate __strong write barrier on indirect write 2043 // into a pointer to object. 2044 if (getLangOpts().ObjC1 && 2045 getLangOpts().getGC() != LangOptions::NonGC && 2046 LV.isObjCWeak()) 2047 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2048 return LV; 2049 } 2050 case UO_Real: 2051 case UO_Imag: { 2052 LValue LV = EmitLValue(E->getSubExpr()); 2053 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2054 llvm::Value *Addr = LV.getAddress(); 2055 2056 // __real is valid on scalars. This is a faster way of testing that. 2057 // __imag can only produce an rvalue on scalars. 2058 if (E->getOpcode() == UO_Real && 2059 !cast<llvm::PointerType>(Addr->getType()) 2060 ->getElementType()->isStructTy()) { 2061 assert(E->getSubExpr()->getType()->isArithmeticType()); 2062 return LV; 2063 } 2064 2065 assert(E->getSubExpr()->getType()->isAnyComplexType()); 2066 2067 unsigned Idx = E->getOpcode() == UO_Imag; 2068 return MakeAddrLValue( 2069 Builder.CreateStructGEP(nullptr, LV.getAddress(), Idx, "idx"), ExprTy); 2070 } 2071 case UO_PreInc: 2072 case UO_PreDec: { 2073 LValue LV = EmitLValue(E->getSubExpr()); 2074 bool isInc = E->getOpcode() == UO_PreInc; 2075 2076 if (E->getType()->isAnyComplexType()) 2077 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2078 else 2079 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2080 return LV; 2081 } 2082 } 2083 } 2084 2085 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2086 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2087 E->getType()); 2088 } 2089 2090 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2091 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2092 E->getType()); 2093 } 2094 2095 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2096 auto SL = E->getFunctionName(); 2097 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2098 StringRef FnName = CurFn->getName(); 2099 if (FnName.startswith("\01")) 2100 FnName = FnName.substr(1); 2101 StringRef NameItems[] = { 2102 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2103 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2104 if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) { 2105 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str(), 1); 2106 return MakeAddrLValue(C, E->getType()); 2107 } 2108 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2109 return MakeAddrLValue(C, E->getType()); 2110 } 2111 2112 /// Emit a type description suitable for use by a runtime sanitizer library. The 2113 /// format of a type descriptor is 2114 /// 2115 /// \code 2116 /// { i16 TypeKind, i16 TypeInfo } 2117 /// \endcode 2118 /// 2119 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2120 /// integer, 1 for a floating point value, and -1 for anything else. 2121 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2122 // Only emit each type's descriptor once. 2123 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2124 return C; 2125 2126 uint16_t TypeKind = -1; 2127 uint16_t TypeInfo = 0; 2128 2129 if (T->isIntegerType()) { 2130 TypeKind = 0; 2131 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2132 (T->isSignedIntegerType() ? 1 : 0); 2133 } else if (T->isFloatingType()) { 2134 TypeKind = 1; 2135 TypeInfo = getContext().getTypeSize(T); 2136 } 2137 2138 // Format the type name as if for a diagnostic, including quotes and 2139 // optionally an 'aka'. 2140 SmallString<32> Buffer; 2141 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2142 (intptr_t)T.getAsOpaquePtr(), 2143 StringRef(), StringRef(), None, Buffer, 2144 None); 2145 2146 llvm::Constant *Components[] = { 2147 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2148 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2149 }; 2150 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2151 2152 auto *GV = new llvm::GlobalVariable( 2153 CGM.getModule(), Descriptor->getType(), 2154 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2155 GV->setUnnamedAddr(true); 2156 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2157 2158 // Remember the descriptor for this type. 2159 CGM.setTypeDescriptorInMap(T, GV); 2160 2161 return GV; 2162 } 2163 2164 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2165 llvm::Type *TargetTy = IntPtrTy; 2166 2167 // Floating-point types which fit into intptr_t are bitcast to integers 2168 // and then passed directly (after zero-extension, if necessary). 2169 if (V->getType()->isFloatingPointTy()) { 2170 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2171 if (Bits <= TargetTy->getIntegerBitWidth()) 2172 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2173 Bits)); 2174 } 2175 2176 // Integers which fit in intptr_t are zero-extended and passed directly. 2177 if (V->getType()->isIntegerTy() && 2178 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2179 return Builder.CreateZExt(V, TargetTy); 2180 2181 // Pointers are passed directly, everything else is passed by address. 2182 if (!V->getType()->isPointerTy()) { 2183 llvm::Value *Ptr = CreateTempAlloca(V->getType()); 2184 Builder.CreateStore(V, Ptr); 2185 V = Ptr; 2186 } 2187 return Builder.CreatePtrToInt(V, TargetTy); 2188 } 2189 2190 /// \brief Emit a representation of a SourceLocation for passing to a handler 2191 /// in a sanitizer runtime library. The format for this data is: 2192 /// \code 2193 /// struct SourceLocation { 2194 /// const char *Filename; 2195 /// int32_t Line, Column; 2196 /// }; 2197 /// \endcode 2198 /// For an invalid SourceLocation, the Filename pointer is null. 2199 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2200 llvm::Constant *Filename; 2201 int Line, Column; 2202 2203 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2204 if (PLoc.isValid()) { 2205 auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src"); 2206 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(FilenameGV); 2207 Filename = FilenameGV; 2208 Line = PLoc.getLine(); 2209 Column = PLoc.getColumn(); 2210 } else { 2211 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2212 Line = Column = 0; 2213 } 2214 2215 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2216 Builder.getInt32(Column)}; 2217 2218 return llvm::ConstantStruct::getAnon(Data); 2219 } 2220 2221 namespace { 2222 /// \brief Specify under what conditions this check can be recovered 2223 enum class CheckRecoverableKind { 2224 /// Always terminate program execution if this check fails. 2225 Unrecoverable, 2226 /// Check supports recovering, runtime has both fatal (noreturn) and 2227 /// non-fatal handlers for this check. 2228 Recoverable, 2229 /// Runtime conditionally aborts, always need to support recovery. 2230 AlwaysRecoverable 2231 }; 2232 } 2233 2234 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2235 assert(llvm::countPopulation(Kind) == 1); 2236 switch (Kind) { 2237 case SanitizerKind::Vptr: 2238 return CheckRecoverableKind::AlwaysRecoverable; 2239 case SanitizerKind::Return: 2240 case SanitizerKind::Unreachable: 2241 return CheckRecoverableKind::Unrecoverable; 2242 default: 2243 return CheckRecoverableKind::Recoverable; 2244 } 2245 } 2246 2247 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2248 llvm::FunctionType *FnType, 2249 ArrayRef<llvm::Value *> FnArgs, 2250 StringRef CheckName, 2251 CheckRecoverableKind RecoverKind, bool IsFatal, 2252 llvm::BasicBlock *ContBB) { 2253 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2254 bool NeedsAbortSuffix = 2255 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2256 std::string FnName = ("__ubsan_handle_" + CheckName + 2257 (NeedsAbortSuffix ? "_abort" : "")).str(); 2258 bool MayReturn = 2259 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2260 2261 llvm::AttrBuilder B; 2262 if (!MayReturn) { 2263 B.addAttribute(llvm::Attribute::NoReturn) 2264 .addAttribute(llvm::Attribute::NoUnwind); 2265 } 2266 B.addAttribute(llvm::Attribute::UWTable); 2267 2268 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2269 FnType, FnName, 2270 llvm::AttributeSet::get(CGF.getLLVMContext(), 2271 llvm::AttributeSet::FunctionIndex, B)); 2272 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2273 if (!MayReturn) { 2274 HandlerCall->setDoesNotReturn(); 2275 CGF.Builder.CreateUnreachable(); 2276 } else { 2277 CGF.Builder.CreateBr(ContBB); 2278 } 2279 } 2280 2281 void CodeGenFunction::EmitCheck( 2282 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2283 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 2284 ArrayRef<llvm::Value *> DynamicArgs) { 2285 assert(IsSanitizerScope); 2286 assert(Checked.size() > 0); 2287 2288 llvm::Value *FatalCond = nullptr; 2289 llvm::Value *RecoverableCond = nullptr; 2290 llvm::Value *TrapCond = nullptr; 2291 for (int i = 0, n = Checked.size(); i < n; ++i) { 2292 llvm::Value *Check = Checked[i].first; 2293 // -fsanitize-trap= overrides -fsanitize-recover=. 2294 llvm::Value *&Cond = 2295 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2296 ? TrapCond 2297 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2298 ? RecoverableCond 2299 : FatalCond; 2300 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2301 } 2302 2303 if (TrapCond) 2304 EmitTrapCheck(TrapCond); 2305 if (!FatalCond && !RecoverableCond) 2306 return; 2307 2308 llvm::Value *JointCond; 2309 if (FatalCond && RecoverableCond) 2310 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2311 else 2312 JointCond = FatalCond ? FatalCond : RecoverableCond; 2313 assert(JointCond); 2314 2315 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2316 assert(SanOpts.has(Checked[0].second)); 2317 #ifndef NDEBUG 2318 for (int i = 1, n = Checked.size(); i < n; ++i) { 2319 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2320 "All recoverable kinds in a single check must be same!"); 2321 assert(SanOpts.has(Checked[i].second)); 2322 } 2323 #endif 2324 2325 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2326 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2327 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2328 // Give hint that we very much don't expect to execute the handler 2329 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2330 llvm::MDBuilder MDHelper(getLLVMContext()); 2331 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2332 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2333 EmitBlock(Handlers); 2334 2335 // Emit handler arguments and create handler function type. 2336 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2337 auto *InfoPtr = 2338 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2339 llvm::GlobalVariable::PrivateLinkage, Info); 2340 InfoPtr->setUnnamedAddr(true); 2341 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2342 2343 SmallVector<llvm::Value *, 4> Args; 2344 SmallVector<llvm::Type *, 4> ArgTypes; 2345 Args.reserve(DynamicArgs.size() + 1); 2346 ArgTypes.reserve(DynamicArgs.size() + 1); 2347 2348 // Handler functions take an i8* pointing to the (handler-specific) static 2349 // information block, followed by a sequence of intptr_t arguments 2350 // representing operand values. 2351 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2352 ArgTypes.push_back(Int8PtrTy); 2353 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2354 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2355 ArgTypes.push_back(IntPtrTy); 2356 } 2357 2358 llvm::FunctionType *FnType = 2359 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2360 2361 if (!FatalCond || !RecoverableCond) { 2362 // Simple case: we need to generate a single handler call, either 2363 // fatal, or non-fatal. 2364 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, 2365 (FatalCond != nullptr), Cont); 2366 } else { 2367 // Emit two handler calls: first one for set of unrecoverable checks, 2368 // another one for recoverable. 2369 llvm::BasicBlock *NonFatalHandlerBB = 2370 createBasicBlock("non_fatal." + CheckName); 2371 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2372 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2373 EmitBlock(FatalHandlerBB); 2374 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true, 2375 NonFatalHandlerBB); 2376 EmitBlock(NonFatalHandlerBB); 2377 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false, 2378 Cont); 2379 } 2380 2381 EmitBlock(Cont); 2382 } 2383 2384 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2385 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2386 2387 // If we're optimizing, collapse all calls to trap down to just one per 2388 // function to save on code size. 2389 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2390 TrapBB = createBasicBlock("trap"); 2391 Builder.CreateCondBr(Checked, Cont, TrapBB); 2392 EmitBlock(TrapBB); 2393 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2394 TrapCall->setDoesNotReturn(); 2395 TrapCall->setDoesNotThrow(); 2396 Builder.CreateUnreachable(); 2397 } else { 2398 Builder.CreateCondBr(Checked, Cont, TrapBB); 2399 } 2400 2401 EmitBlock(Cont); 2402 } 2403 2404 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 2405 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 2406 2407 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) 2408 TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex, 2409 "trap-func-name", 2410 CGM.getCodeGenOpts().TrapFuncName); 2411 2412 return TrapCall; 2413 } 2414 2415 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2416 /// array to pointer, return the array subexpression. 2417 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2418 // If this isn't just an array->pointer decay, bail out. 2419 const auto *CE = dyn_cast<CastExpr>(E); 2420 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2421 return nullptr; 2422 2423 // If this is a decay from variable width array, bail out. 2424 const Expr *SubExpr = CE->getSubExpr(); 2425 if (SubExpr->getType()->isVariableArrayType()) 2426 return nullptr; 2427 2428 return SubExpr; 2429 } 2430 2431 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2432 bool Accessed) { 2433 // The index must always be an integer, which is not an aggregate. Emit it. 2434 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2435 QualType IdxTy = E->getIdx()->getType(); 2436 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2437 2438 if (SanOpts.has(SanitizerKind::ArrayBounds)) 2439 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2440 2441 // If the base is a vector type, then we are forming a vector element lvalue 2442 // with this subscript. 2443 if (E->getBase()->getType()->isVectorType() && 2444 !isa<ExtVectorElementExpr>(E->getBase())) { 2445 // Emit the vector as an lvalue to get its address. 2446 LValue LHS = EmitLValue(E->getBase()); 2447 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2448 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2449 E->getBase()->getType(), LHS.getAlignment()); 2450 } 2451 2452 // Extend or truncate the index type to 32 or 64-bits. 2453 if (Idx->getType() != IntPtrTy) 2454 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2455 2456 // We know that the pointer points to a type of the correct size, unless the 2457 // size is a VLA or Objective-C interface. 2458 llvm::Value *Address = nullptr; 2459 CharUnits ArrayAlignment; 2460 if (isa<ExtVectorElementExpr>(E->getBase())) { 2461 LValue LV = EmitLValue(E->getBase()); 2462 Address = EmitExtVectorElementLValue(LV); 2463 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2464 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 2465 QualType EQT = ExprVT->getElementType(); 2466 return MakeAddrLValue(Address, EQT, 2467 getContext().getTypeAlignInChars(EQT)); 2468 } 2469 else if (const VariableArrayType *vla = 2470 getContext().getAsVariableArrayType(E->getType())) { 2471 // The base must be a pointer, which is not an aggregate. Emit 2472 // it. It needs to be emitted first in case it's what captures 2473 // the VLA bounds. 2474 Address = EmitScalarExpr(E->getBase()); 2475 2476 // The element count here is the total number of non-VLA elements. 2477 llvm::Value *numElements = getVLASize(vla).first; 2478 2479 // Effectively, the multiply by the VLA size is part of the GEP. 2480 // GEP indexes are signed, and scaling an index isn't permitted to 2481 // signed-overflow, so we use the same semantics for our explicit 2482 // multiply. We suppress this if overflow is not undefined behavior. 2483 if (getLangOpts().isSignedOverflowDefined()) { 2484 Idx = Builder.CreateMul(Idx, numElements); 2485 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2486 } else { 2487 Idx = Builder.CreateNSWMul(Idx, numElements); 2488 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2489 } 2490 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2491 // Indexing over an interface, as in "NSString *P; P[4];" 2492 llvm::Value *InterfaceSize = 2493 llvm::ConstantInt::get(Idx->getType(), 2494 getContext().getTypeSizeInChars(OIT).getQuantity()); 2495 2496 Idx = Builder.CreateMul(Idx, InterfaceSize); 2497 2498 // The base must be a pointer, which is not an aggregate. Emit it. 2499 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2500 Address = EmitCastToVoidPtr(Base); 2501 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2502 Address = Builder.CreateBitCast(Address, Base->getType()); 2503 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2504 // If this is A[i] where A is an array, the frontend will have decayed the 2505 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2506 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2507 // "gep x, i" here. Emit one "gep A, 0, i". 2508 assert(Array->getType()->isArrayType() && 2509 "Array to pointer decay must have array source type!"); 2510 LValue ArrayLV; 2511 // For simple multidimensional array indexing, set the 'accessed' flag for 2512 // better bounds-checking of the base expression. 2513 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2514 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2515 else 2516 ArrayLV = EmitLValue(Array); 2517 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2518 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2519 llvm::Value *Args[] = { Zero, Idx }; 2520 2521 // Propagate the alignment from the array itself to the result. 2522 ArrayAlignment = ArrayLV.getAlignment(); 2523 2524 if (getLangOpts().isSignedOverflowDefined()) 2525 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2526 else 2527 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2528 } else { 2529 // The base must be a pointer, which is not an aggregate. Emit it. 2530 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2531 if (getLangOpts().isSignedOverflowDefined()) 2532 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2533 else 2534 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2535 } 2536 2537 QualType T = E->getBase()->getType()->getPointeeType(); 2538 assert(!T.isNull() && 2539 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2540 2541 2542 // Limit the alignment to that of the result type. 2543 LValue LV; 2544 if (!ArrayAlignment.isZero()) { 2545 CharUnits Align = getContext().getTypeAlignInChars(T); 2546 ArrayAlignment = std::min(Align, ArrayAlignment); 2547 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2548 } else { 2549 LV = MakeNaturalAlignAddrLValue(Address, T); 2550 } 2551 2552 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2553 2554 if (getLangOpts().ObjC1 && 2555 getLangOpts().getGC() != LangOptions::NonGC) { 2556 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2557 setObjCGCLValueClass(getContext(), E, LV); 2558 } 2559 return LV; 2560 } 2561 2562 LValue CodeGenFunction:: 2563 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2564 // Emit the base vector as an l-value. 2565 LValue Base; 2566 2567 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2568 if (E->isArrow()) { 2569 // If it is a pointer to a vector, emit the address and form an lvalue with 2570 // it. 2571 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2572 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2573 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2574 Base.getQuals().removeObjCGCAttr(); 2575 } else if (E->getBase()->isGLValue()) { 2576 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2577 // emit the base as an lvalue. 2578 assert(E->getBase()->getType()->isVectorType()); 2579 Base = EmitLValue(E->getBase()); 2580 } else { 2581 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2582 assert(E->getBase()->getType()->isVectorType() && 2583 "Result must be a vector"); 2584 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2585 2586 // Store the vector to memory (because LValue wants an address). 2587 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2588 Builder.CreateStore(Vec, VecMem); 2589 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2590 } 2591 2592 QualType type = 2593 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2594 2595 // Encode the element access list into a vector of unsigned indices. 2596 SmallVector<uint32_t, 4> Indices; 2597 E->getEncodedElementAccess(Indices); 2598 2599 if (Base.isSimple()) { 2600 llvm::Constant *CV = 2601 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 2602 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2603 Base.getAlignment()); 2604 } 2605 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2606 2607 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2608 SmallVector<llvm::Constant *, 4> CElts; 2609 2610 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2611 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2612 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2613 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2614 Base.getAlignment()); 2615 } 2616 2617 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2618 Expr *BaseExpr = E->getBase(); 2619 2620 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2621 LValue BaseLV; 2622 if (E->isArrow()) { 2623 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2624 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2625 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2626 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2627 } else 2628 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2629 2630 NamedDecl *ND = E->getMemberDecl(); 2631 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 2632 LValue LV = EmitLValueForField(BaseLV, Field); 2633 setObjCGCLValueClass(getContext(), E, LV); 2634 return LV; 2635 } 2636 2637 if (auto *VD = dyn_cast<VarDecl>(ND)) 2638 return EmitGlobalVarDeclLValue(*this, E, VD); 2639 2640 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2641 return EmitFunctionDeclLValue(*this, E, FD); 2642 2643 llvm_unreachable("Unhandled member declaration!"); 2644 } 2645 2646 /// Given that we are currently emitting a lambda, emit an l-value for 2647 /// one of its members. 2648 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 2649 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 2650 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 2651 QualType LambdaTagType = 2652 getContext().getTagDeclType(Field->getParent()); 2653 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 2654 return EmitLValueForField(LambdaLV, Field); 2655 } 2656 2657 LValue CodeGenFunction::EmitLValueForField(LValue base, 2658 const FieldDecl *field) { 2659 if (field->isBitField()) { 2660 const CGRecordLayout &RL = 2661 CGM.getTypes().getCGRecordLayout(field->getParent()); 2662 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2663 llvm::Value *Addr = base.getAddress(); 2664 unsigned Idx = RL.getLLVMFieldNo(field); 2665 if (Idx != 0) 2666 // For structs, we GEP to the field that the record layout suggests. 2667 Addr = Builder.CreateStructGEP(nullptr, Addr, Idx, field->getName()); 2668 // Get the access type. 2669 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2670 getLLVMContext(), Info.StorageSize, 2671 CGM.getContext().getTargetAddressSpace(base.getType())); 2672 if (Addr->getType() != PtrTy) 2673 Addr = Builder.CreateBitCast(Addr, PtrTy); 2674 2675 QualType fieldType = 2676 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2677 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2678 } 2679 2680 const RecordDecl *rec = field->getParent(); 2681 QualType type = field->getType(); 2682 CharUnits alignment = getContext().getDeclAlign(field); 2683 2684 // FIXME: It should be impossible to have an LValue without alignment for a 2685 // complete type. 2686 if (!base.getAlignment().isZero()) 2687 alignment = std::min(alignment, base.getAlignment()); 2688 2689 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2690 2691 llvm::Value *addr = base.getAddress(); 2692 unsigned cvr = base.getVRQualifiers(); 2693 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 2694 if (rec->isUnion()) { 2695 // For unions, there is no pointer adjustment. 2696 assert(!type->isReferenceType() && "union has reference member"); 2697 // TODO: handle path-aware TBAA for union. 2698 TBAAPath = false; 2699 } else { 2700 // For structs, we GEP to the field that the record layout suggests. 2701 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2702 addr = Builder.CreateStructGEP(nullptr, addr, idx, field->getName()); 2703 2704 // If this is a reference field, load the reference right now. 2705 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2706 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2707 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2708 load->setAlignment(alignment.getQuantity()); 2709 2710 // Loading the reference will disable path-aware TBAA. 2711 TBAAPath = false; 2712 if (CGM.shouldUseTBAA()) { 2713 llvm::MDNode *tbaa; 2714 if (mayAlias) 2715 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2716 else 2717 tbaa = CGM.getTBAAInfo(type); 2718 if (tbaa) 2719 CGM.DecorateInstruction(load, tbaa); 2720 } 2721 2722 addr = load; 2723 mayAlias = false; 2724 type = refType->getPointeeType(); 2725 if (type->isIncompleteType()) 2726 alignment = CharUnits(); 2727 else 2728 alignment = getContext().getTypeAlignInChars(type); 2729 cvr = 0; // qualifiers don't recursively apply to referencee 2730 } 2731 } 2732 2733 // Make sure that the address is pointing to the right type. This is critical 2734 // for both unions and structs. A union needs a bitcast, a struct element 2735 // will need a bitcast if the LLVM type laid out doesn't match the desired 2736 // type. 2737 addr = EmitBitCastOfLValueToProperType(*this, addr, 2738 CGM.getTypes().ConvertTypeForMem(type), 2739 field->getName()); 2740 2741 if (field->hasAttr<AnnotateAttr>()) 2742 addr = EmitFieldAnnotations(field, addr); 2743 2744 LValue LV = MakeAddrLValue(addr, type, alignment); 2745 LV.getQuals().addCVRQualifiers(cvr); 2746 if (TBAAPath) { 2747 const ASTRecordLayout &Layout = 2748 getContext().getASTRecordLayout(field->getParent()); 2749 // Set the base type to be the base type of the base LValue and 2750 // update offset to be relative to the base type. 2751 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 2752 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 2753 Layout.getFieldOffset(field->getFieldIndex()) / 2754 getContext().getCharWidth()); 2755 } 2756 2757 // __weak attribute on a field is ignored. 2758 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2759 LV.getQuals().removeObjCGCAttr(); 2760 2761 // Fields of may_alias structs act like 'char' for TBAA purposes. 2762 // FIXME: this should get propagated down through anonymous structs 2763 // and unions. 2764 if (mayAlias && LV.getTBAAInfo()) 2765 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2766 2767 return LV; 2768 } 2769 2770 LValue 2771 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2772 const FieldDecl *Field) { 2773 QualType FieldType = Field->getType(); 2774 2775 if (!FieldType->isReferenceType()) 2776 return EmitLValueForField(Base, Field); 2777 2778 const CGRecordLayout &RL = 2779 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2780 unsigned idx = RL.getLLVMFieldNo(Field); 2781 llvm::Value *V = Builder.CreateStructGEP(nullptr, Base.getAddress(), idx); 2782 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2783 2784 // Make sure that the address is pointing to the right type. This is critical 2785 // for both unions and structs. A union needs a bitcast, a struct element 2786 // will need a bitcast if the LLVM type laid out doesn't match the desired 2787 // type. 2788 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2789 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2790 2791 CharUnits Alignment = getContext().getDeclAlign(Field); 2792 2793 // FIXME: It should be impossible to have an LValue without alignment for a 2794 // complete type. 2795 if (!Base.getAlignment().isZero()) 2796 Alignment = std::min(Alignment, Base.getAlignment()); 2797 2798 return MakeAddrLValue(V, FieldType, Alignment); 2799 } 2800 2801 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2802 if (E->isFileScope()) { 2803 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2804 return MakeAddrLValue(GlobalPtr, E->getType()); 2805 } 2806 if (E->getType()->isVariablyModifiedType()) 2807 // make sure to emit the VLA size. 2808 EmitVariablyModifiedType(E->getType()); 2809 2810 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2811 const Expr *InitExpr = E->getInitializer(); 2812 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2813 2814 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2815 /*Init*/ true); 2816 2817 return Result; 2818 } 2819 2820 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2821 if (!E->isGLValue()) 2822 // Initializing an aggregate temporary in C++11: T{...}. 2823 return EmitAggExprToLValue(E); 2824 2825 // An lvalue initializer list must be initializing a reference. 2826 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2827 return EmitLValue(E->getInit(0)); 2828 } 2829 2830 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 2831 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 2832 /// LValue is returned and the current block has been terminated. 2833 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 2834 const Expr *Operand) { 2835 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 2836 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 2837 return None; 2838 } 2839 2840 return CGF.EmitLValue(Operand); 2841 } 2842 2843 LValue CodeGenFunction:: 2844 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2845 if (!expr->isGLValue()) { 2846 // ?: here should be an aggregate. 2847 assert(hasAggregateEvaluationKind(expr->getType()) && 2848 "Unexpected conditional operator!"); 2849 return EmitAggExprToLValue(expr); 2850 } 2851 2852 OpaqueValueMapping binding(*this, expr); 2853 2854 const Expr *condExpr = expr->getCond(); 2855 bool CondExprBool; 2856 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2857 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2858 if (!CondExprBool) std::swap(live, dead); 2859 2860 if (!ContainsLabel(dead)) { 2861 // If the true case is live, we need to track its region. 2862 if (CondExprBool) 2863 incrementProfileCounter(expr); 2864 return EmitLValue(live); 2865 } 2866 } 2867 2868 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2869 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2870 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2871 2872 ConditionalEvaluation eval(*this); 2873 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 2874 2875 // Any temporaries created here are conditional. 2876 EmitBlock(lhsBlock); 2877 incrementProfileCounter(expr); 2878 eval.begin(*this); 2879 Optional<LValue> lhs = 2880 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 2881 eval.end(*this); 2882 2883 if (lhs && !lhs->isSimple()) 2884 return EmitUnsupportedLValue(expr, "conditional operator"); 2885 2886 lhsBlock = Builder.GetInsertBlock(); 2887 if (lhs) 2888 Builder.CreateBr(contBlock); 2889 2890 // Any temporaries created here are conditional. 2891 EmitBlock(rhsBlock); 2892 eval.begin(*this); 2893 Optional<LValue> rhs = 2894 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 2895 eval.end(*this); 2896 if (rhs && !rhs->isSimple()) 2897 return EmitUnsupportedLValue(expr, "conditional operator"); 2898 rhsBlock = Builder.GetInsertBlock(); 2899 2900 EmitBlock(contBlock); 2901 2902 if (lhs && rhs) { 2903 llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(), 2904 2, "cond-lvalue"); 2905 phi->addIncoming(lhs->getAddress(), lhsBlock); 2906 phi->addIncoming(rhs->getAddress(), rhsBlock); 2907 return MakeAddrLValue(phi, expr->getType()); 2908 } else { 2909 assert((lhs || rhs) && 2910 "both operands of glvalue conditional are throw-expressions?"); 2911 return lhs ? *lhs : *rhs; 2912 } 2913 } 2914 2915 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2916 /// type. If the cast is to a reference, we can have the usual lvalue result, 2917 /// otherwise if a cast is needed by the code generator in an lvalue context, 2918 /// then it must mean that we need the address of an aggregate in order to 2919 /// access one of its members. This can happen for all the reasons that casts 2920 /// are permitted with aggregate result, including noop aggregate casts, and 2921 /// cast from scalar to union. 2922 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2923 switch (E->getCastKind()) { 2924 case CK_ToVoid: 2925 case CK_BitCast: 2926 case CK_ArrayToPointerDecay: 2927 case CK_FunctionToPointerDecay: 2928 case CK_NullToMemberPointer: 2929 case CK_NullToPointer: 2930 case CK_IntegralToPointer: 2931 case CK_PointerToIntegral: 2932 case CK_PointerToBoolean: 2933 case CK_VectorSplat: 2934 case CK_IntegralCast: 2935 case CK_IntegralToBoolean: 2936 case CK_IntegralToFloating: 2937 case CK_FloatingToIntegral: 2938 case CK_FloatingToBoolean: 2939 case CK_FloatingCast: 2940 case CK_FloatingRealToComplex: 2941 case CK_FloatingComplexToReal: 2942 case CK_FloatingComplexToBoolean: 2943 case CK_FloatingComplexCast: 2944 case CK_FloatingComplexToIntegralComplex: 2945 case CK_IntegralRealToComplex: 2946 case CK_IntegralComplexToReal: 2947 case CK_IntegralComplexToBoolean: 2948 case CK_IntegralComplexCast: 2949 case CK_IntegralComplexToFloatingComplex: 2950 case CK_DerivedToBaseMemberPointer: 2951 case CK_BaseToDerivedMemberPointer: 2952 case CK_MemberPointerToBoolean: 2953 case CK_ReinterpretMemberPointer: 2954 case CK_AnyPointerToBlockPointerCast: 2955 case CK_ARCProduceObject: 2956 case CK_ARCConsumeObject: 2957 case CK_ARCReclaimReturnedObject: 2958 case CK_ARCExtendBlockObject: 2959 case CK_CopyAndAutoreleaseBlockObject: 2960 case CK_AddressSpaceConversion: 2961 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2962 2963 case CK_Dependent: 2964 llvm_unreachable("dependent cast kind in IR gen!"); 2965 2966 case CK_BuiltinFnToFnPtr: 2967 llvm_unreachable("builtin functions are handled elsewhere"); 2968 2969 // These are never l-values; just use the aggregate emission code. 2970 case CK_NonAtomicToAtomic: 2971 case CK_AtomicToNonAtomic: 2972 return EmitAggExprToLValue(E); 2973 2974 case CK_Dynamic: { 2975 LValue LV = EmitLValue(E->getSubExpr()); 2976 llvm::Value *V = LV.getAddress(); 2977 const auto *DCE = cast<CXXDynamicCastExpr>(E); 2978 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2979 } 2980 2981 case CK_ConstructorConversion: 2982 case CK_UserDefinedConversion: 2983 case CK_CPointerToObjCPointerCast: 2984 case CK_BlockPointerToObjCPointerCast: 2985 case CK_NoOp: 2986 case CK_LValueToRValue: 2987 return EmitLValue(E->getSubExpr()); 2988 2989 case CK_UncheckedDerivedToBase: 2990 case CK_DerivedToBase: { 2991 const RecordType *DerivedClassTy = 2992 E->getSubExpr()->getType()->getAs<RecordType>(); 2993 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2994 2995 LValue LV = EmitLValue(E->getSubExpr()); 2996 llvm::Value *This = LV.getAddress(); 2997 2998 // Perform the derived-to-base conversion 2999 llvm::Value *Base = GetAddressOfBaseClass( 3000 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3001 /*NullCheckValue=*/false, E->getExprLoc()); 3002 3003 return MakeAddrLValue(Base, E->getType()); 3004 } 3005 case CK_ToUnion: 3006 return EmitAggExprToLValue(E); 3007 case CK_BaseToDerived: { 3008 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3009 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3010 3011 LValue LV = EmitLValue(E->getSubExpr()); 3012 3013 // Perform the base-to-derived conversion 3014 llvm::Value *Derived = 3015 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3016 E->path_begin(), E->path_end(), 3017 /*NullCheckValue=*/false); 3018 3019 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3020 // performed and the object is not of the derived type. 3021 if (sanitizePerformTypeCheck()) 3022 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3023 Derived, E->getType()); 3024 3025 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3026 EmitVTablePtrCheckForCast(E->getType(), Derived, /*MayBeNull=*/false, 3027 CFITCK_DerivedCast, E->getLocStart()); 3028 3029 return MakeAddrLValue(Derived, E->getType()); 3030 } 3031 case CK_LValueBitCast: { 3032 // This must be a reinterpret_cast (or c-style equivalent). 3033 const auto *CE = cast<ExplicitCastExpr>(E); 3034 3035 LValue LV = EmitLValue(E->getSubExpr()); 3036 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 3037 ConvertType(CE->getTypeAsWritten())); 3038 3039 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 3040 EmitVTablePtrCheckForCast(E->getType(), V, /*MayBeNull=*/false, 3041 CFITCK_UnrelatedCast, E->getLocStart()); 3042 3043 return MakeAddrLValue(V, E->getType()); 3044 } 3045 case CK_ObjCObjectLValueCast: { 3046 LValue LV = EmitLValue(E->getSubExpr()); 3047 QualType ToType = getContext().getLValueReferenceType(E->getType()); 3048 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 3049 ConvertType(ToType)); 3050 return MakeAddrLValue(V, E->getType()); 3051 } 3052 case CK_ZeroToOCLEvent: 3053 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 3054 } 3055 3056 llvm_unreachable("Unhandled lvalue cast kind?"); 3057 } 3058 3059 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 3060 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 3061 return getOpaqueLValueMapping(e); 3062 } 3063 3064 RValue CodeGenFunction::EmitRValueForField(LValue LV, 3065 const FieldDecl *FD, 3066 SourceLocation Loc) { 3067 QualType FT = FD->getType(); 3068 LValue FieldLV = EmitLValueForField(LV, FD); 3069 switch (getEvaluationKind(FT)) { 3070 case TEK_Complex: 3071 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 3072 case TEK_Aggregate: 3073 return FieldLV.asAggregateRValue(); 3074 case TEK_Scalar: 3075 return EmitLoadOfLValue(FieldLV, Loc); 3076 } 3077 llvm_unreachable("bad evaluation kind"); 3078 } 3079 3080 //===--------------------------------------------------------------------===// 3081 // Expression Emission 3082 //===--------------------------------------------------------------------===// 3083 3084 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 3085 ReturnValueSlot ReturnValue) { 3086 // Builtins never have block type. 3087 if (E->getCallee()->getType()->isBlockPointerType()) 3088 return EmitBlockCallExpr(E, ReturnValue); 3089 3090 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 3091 return EmitCXXMemberCallExpr(CE, ReturnValue); 3092 3093 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 3094 return EmitCUDAKernelCallExpr(CE, ReturnValue); 3095 3096 const Decl *TargetDecl = E->getCalleeDecl(); 3097 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 3098 if (unsigned builtinID = FD->getBuiltinID()) 3099 return EmitBuiltinExpr(FD, builtinID, E, ReturnValue); 3100 } 3101 3102 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 3103 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 3104 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 3105 3106 if (const auto *PseudoDtor = 3107 dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 3108 QualType DestroyedType = PseudoDtor->getDestroyedType(); 3109 if (getLangOpts().ObjCAutoRefCount && 3110 DestroyedType->isObjCLifetimeType() && 3111 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 3112 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 3113 // Automatic Reference Counting: 3114 // If the pseudo-expression names a retainable object with weak or 3115 // strong lifetime, the object shall be released. 3116 Expr *BaseExpr = PseudoDtor->getBase(); 3117 llvm::Value *BaseValue = nullptr; 3118 Qualifiers BaseQuals; 3119 3120 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3121 if (PseudoDtor->isArrow()) { 3122 BaseValue = EmitScalarExpr(BaseExpr); 3123 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 3124 BaseQuals = PTy->getPointeeType().getQualifiers(); 3125 } else { 3126 LValue BaseLV = EmitLValue(BaseExpr); 3127 BaseValue = BaseLV.getAddress(); 3128 QualType BaseTy = BaseExpr->getType(); 3129 BaseQuals = BaseTy.getQualifiers(); 3130 } 3131 3132 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 3133 case Qualifiers::OCL_None: 3134 case Qualifiers::OCL_ExplicitNone: 3135 case Qualifiers::OCL_Autoreleasing: 3136 break; 3137 3138 case Qualifiers::OCL_Strong: 3139 EmitARCRelease(Builder.CreateLoad(BaseValue, 3140 PseudoDtor->getDestroyedType().isVolatileQualified()), 3141 ARCPreciseLifetime); 3142 break; 3143 3144 case Qualifiers::OCL_Weak: 3145 EmitARCDestroyWeak(BaseValue); 3146 break; 3147 } 3148 } else { 3149 // C++ [expr.pseudo]p1: 3150 // The result shall only be used as the operand for the function call 3151 // operator (), and the result of such a call has type void. The only 3152 // effect is the evaluation of the postfix-expression before the dot or 3153 // arrow. 3154 EmitScalarExpr(E->getCallee()); 3155 } 3156 3157 return RValue::get(nullptr); 3158 } 3159 3160 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 3161 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue, 3162 TargetDecl); 3163 } 3164 3165 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 3166 // Comma expressions just emit their LHS then their RHS as an l-value. 3167 if (E->getOpcode() == BO_Comma) { 3168 EmitIgnoredExpr(E->getLHS()); 3169 EnsureInsertPoint(); 3170 return EmitLValue(E->getRHS()); 3171 } 3172 3173 if (E->getOpcode() == BO_PtrMemD || 3174 E->getOpcode() == BO_PtrMemI) 3175 return EmitPointerToDataMemberBinaryExpr(E); 3176 3177 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 3178 3179 // Note that in all of these cases, __block variables need the RHS 3180 // evaluated first just in case the variable gets moved by the RHS. 3181 3182 switch (getEvaluationKind(E->getType())) { 3183 case TEK_Scalar: { 3184 switch (E->getLHS()->getType().getObjCLifetime()) { 3185 case Qualifiers::OCL_Strong: 3186 return EmitARCStoreStrong(E, /*ignored*/ false).first; 3187 3188 case Qualifiers::OCL_Autoreleasing: 3189 return EmitARCStoreAutoreleasing(E).first; 3190 3191 // No reason to do any of these differently. 3192 case Qualifiers::OCL_None: 3193 case Qualifiers::OCL_ExplicitNone: 3194 case Qualifiers::OCL_Weak: 3195 break; 3196 } 3197 3198 RValue RV = EmitAnyExpr(E->getRHS()); 3199 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 3200 EmitStoreThroughLValue(RV, LV); 3201 return LV; 3202 } 3203 3204 case TEK_Complex: 3205 return EmitComplexAssignmentLValue(E); 3206 3207 case TEK_Aggregate: 3208 return EmitAggExprToLValue(E); 3209 } 3210 llvm_unreachable("bad evaluation kind"); 3211 } 3212 3213 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 3214 RValue RV = EmitCallExpr(E); 3215 3216 if (!RV.isScalar()) 3217 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3218 3219 assert(E->getCallReturnType(getContext())->isReferenceType() && 3220 "Can't have a scalar return unless the return type is a " 3221 "reference type!"); 3222 3223 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3224 } 3225 3226 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3227 // FIXME: This shouldn't require another copy. 3228 return EmitAggExprToLValue(E); 3229 } 3230 3231 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3232 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3233 && "binding l-value to type which needs a temporary"); 3234 AggValueSlot Slot = CreateAggTemp(E->getType()); 3235 EmitCXXConstructExpr(E, Slot); 3236 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3237 } 3238 3239 LValue 3240 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3241 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3242 } 3243 3244 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3245 return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E), 3246 ConvertType(E->getType())->getPointerTo()); 3247 } 3248 3249 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3250 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 3251 } 3252 3253 LValue 3254 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3255 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3256 Slot.setExternallyDestructed(); 3257 EmitAggExpr(E->getSubExpr(), Slot); 3258 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 3259 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3260 } 3261 3262 LValue 3263 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3264 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3265 EmitLambdaExpr(E, Slot); 3266 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3267 } 3268 3269 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3270 RValue RV = EmitObjCMessageExpr(E); 3271 3272 if (!RV.isScalar()) 3273 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3274 3275 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 3276 "Can't have a scalar return unless the return type is a " 3277 "reference type!"); 3278 3279 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3280 } 3281 3282 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3283 llvm::Value *V = 3284 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); 3285 return MakeAddrLValue(V, E->getType()); 3286 } 3287 3288 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3289 const ObjCIvarDecl *Ivar) { 3290 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3291 } 3292 3293 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3294 llvm::Value *BaseValue, 3295 const ObjCIvarDecl *Ivar, 3296 unsigned CVRQualifiers) { 3297 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3298 Ivar, CVRQualifiers); 3299 } 3300 3301 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3302 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3303 llvm::Value *BaseValue = nullptr; 3304 const Expr *BaseExpr = E->getBase(); 3305 Qualifiers BaseQuals; 3306 QualType ObjectTy; 3307 if (E->isArrow()) { 3308 BaseValue = EmitScalarExpr(BaseExpr); 3309 ObjectTy = BaseExpr->getType()->getPointeeType(); 3310 BaseQuals = ObjectTy.getQualifiers(); 3311 } else { 3312 LValue BaseLV = EmitLValue(BaseExpr); 3313 // FIXME: this isn't right for bitfields. 3314 BaseValue = BaseLV.getAddress(); 3315 ObjectTy = BaseExpr->getType(); 3316 BaseQuals = ObjectTy.getQualifiers(); 3317 } 3318 3319 LValue LV = 3320 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3321 BaseQuals.getCVRQualifiers()); 3322 setObjCGCLValueClass(getContext(), E, LV); 3323 return LV; 3324 } 3325 3326 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3327 // Can only get l-value for message expression returning aggregate type 3328 RValue RV = EmitAnyExprToTemp(E); 3329 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3330 } 3331 3332 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3333 const CallExpr *E, ReturnValueSlot ReturnValue, 3334 const Decl *TargetDecl, llvm::Value *Chain) { 3335 // Get the actual function type. The callee type will always be a pointer to 3336 // function type or a block pointer type. 3337 assert(CalleeType->isFunctionPointerType() && 3338 "Call must have function pointer type!"); 3339 3340 CalleeType = getContext().getCanonicalType(CalleeType); 3341 3342 const auto *FnType = 3343 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3344 3345 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 3346 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 3347 if (llvm::Constant *PrefixSig = 3348 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 3349 SanitizerScope SanScope(this); 3350 llvm::Constant *FTRTTIConst = 3351 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 3352 llvm::Type *PrefixStructTyElems[] = { 3353 PrefixSig->getType(), 3354 FTRTTIConst->getType() 3355 }; 3356 llvm::StructType *PrefixStructTy = llvm::StructType::get( 3357 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 3358 3359 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 3360 Callee, llvm::PointerType::getUnqual(PrefixStructTy)); 3361 llvm::Value *CalleeSigPtr = 3362 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 3363 llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr); 3364 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 3365 3366 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3367 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 3368 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 3369 3370 EmitBlock(TypeCheck); 3371 llvm::Value *CalleeRTTIPtr = 3372 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 3373 llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr); 3374 llvm::Value *CalleeRTTIMatch = 3375 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 3376 llvm::Constant *StaticData[] = { 3377 EmitCheckSourceLocation(E->getLocStart()), 3378 EmitCheckTypeDescriptor(CalleeType) 3379 }; 3380 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 3381 "function_type_mismatch", StaticData, Callee); 3382 3383 Builder.CreateBr(Cont); 3384 EmitBlock(Cont); 3385 } 3386 } 3387 3388 CallArgList Args; 3389 if (Chain) 3390 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 3391 CGM.getContext().VoidPtrTy); 3392 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 3393 E->getDirectCallee(), /*ParamsToSkip*/ 0); 3394 3395 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 3396 Args, FnType, /*isChainCall=*/Chain); 3397 3398 // C99 6.5.2.2p6: 3399 // If the expression that denotes the called function has a type 3400 // that does not include a prototype, [the default argument 3401 // promotions are performed]. If the number of arguments does not 3402 // equal the number of parameters, the behavior is undefined. If 3403 // the function is defined with a type that includes a prototype, 3404 // and either the prototype ends with an ellipsis (, ...) or the 3405 // types of the arguments after promotion are not compatible with 3406 // the types of the parameters, the behavior is undefined. If the 3407 // function is defined with a type that does not include a 3408 // prototype, and the types of the arguments after promotion are 3409 // not compatible with those of the parameters after promotion, 3410 // the behavior is undefined [except in some trivial cases]. 3411 // That is, in the general case, we should assume that a call 3412 // through an unprototyped function type works like a *non-variadic* 3413 // call. The way we make this work is to cast to the exact type 3414 // of the promoted arguments. 3415 // 3416 // Chain calls use this same code path to add the invisible chain parameter 3417 // to the function type. 3418 if (isa<FunctionNoProtoType>(FnType) || Chain) { 3419 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3420 CalleeTy = CalleeTy->getPointerTo(); 3421 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3422 } 3423 3424 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3425 } 3426 3427 LValue CodeGenFunction:: 3428 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3429 llvm::Value *BaseV; 3430 if (E->getOpcode() == BO_PtrMemI) 3431 BaseV = EmitScalarExpr(E->getLHS()); 3432 else 3433 BaseV = EmitLValue(E->getLHS()).getAddress(); 3434 3435 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3436 3437 const MemberPointerType *MPT 3438 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3439 3440 llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress( 3441 *this, E, BaseV, OffsetV, MPT); 3442 3443 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3444 } 3445 3446 /// Given the address of a temporary variable, produce an r-value of 3447 /// its type. 3448 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, 3449 QualType type, 3450 SourceLocation loc) { 3451 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); 3452 switch (getEvaluationKind(type)) { 3453 case TEK_Complex: 3454 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 3455 case TEK_Aggregate: 3456 return lvalue.asAggregateRValue(); 3457 case TEK_Scalar: 3458 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 3459 } 3460 llvm_unreachable("bad evaluation kind"); 3461 } 3462 3463 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3464 assert(Val->getType()->isFPOrFPVectorTy()); 3465 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3466 return; 3467 3468 llvm::MDBuilder MDHelper(getLLVMContext()); 3469 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3470 3471 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3472 } 3473 3474 namespace { 3475 struct LValueOrRValue { 3476 LValue LV; 3477 RValue RV; 3478 }; 3479 } 3480 3481 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3482 const PseudoObjectExpr *E, 3483 bool forLValue, 3484 AggValueSlot slot) { 3485 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3486 3487 // Find the result expression, if any. 3488 const Expr *resultExpr = E->getResultExpr(); 3489 LValueOrRValue result; 3490 3491 for (PseudoObjectExpr::const_semantics_iterator 3492 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3493 const Expr *semantic = *i; 3494 3495 // If this semantic expression is an opaque value, bind it 3496 // to the result of its source expression. 3497 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3498 3499 // If this is the result expression, we may need to evaluate 3500 // directly into the slot. 3501 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3502 OVMA opaqueData; 3503 if (ov == resultExpr && ov->isRValue() && !forLValue && 3504 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 3505 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3506 3507 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3508 opaqueData = OVMA::bind(CGF, ov, LV); 3509 result.RV = slot.asRValue(); 3510 3511 // Otherwise, emit as normal. 3512 } else { 3513 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3514 3515 // If this is the result, also evaluate the result now. 3516 if (ov == resultExpr) { 3517 if (forLValue) 3518 result.LV = CGF.EmitLValue(ov); 3519 else 3520 result.RV = CGF.EmitAnyExpr(ov, slot); 3521 } 3522 } 3523 3524 opaques.push_back(opaqueData); 3525 3526 // Otherwise, if the expression is the result, evaluate it 3527 // and remember the result. 3528 } else if (semantic == resultExpr) { 3529 if (forLValue) 3530 result.LV = CGF.EmitLValue(semantic); 3531 else 3532 result.RV = CGF.EmitAnyExpr(semantic, slot); 3533 3534 // Otherwise, evaluate the expression in an ignored context. 3535 } else { 3536 CGF.EmitIgnoredExpr(semantic); 3537 } 3538 } 3539 3540 // Unbind all the opaques now. 3541 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3542 opaques[i].unbind(CGF); 3543 3544 return result; 3545 } 3546 3547 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3548 AggValueSlot slot) { 3549 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3550 } 3551 3552 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3553 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3554 } 3555