1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/Hashing.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/Support/ConvertUTF.h"
34 #include "llvm/Support/MathExtras.h"
35 
36 using namespace clang;
37 using namespace CodeGen;
38 
39 //===--------------------------------------------------------------------===//
40 //                        Miscellaneous Helper Methods
41 //===--------------------------------------------------------------------===//
42 
43 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
44   unsigned addressSpace =
45     cast<llvm::PointerType>(value->getType())->getAddressSpace();
46 
47   llvm::PointerType *destType = Int8PtrTy;
48   if (addressSpace)
49     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
50 
51   if (value->getType() == destType) return value;
52   return Builder.CreateBitCast(value, destType);
53 }
54 
55 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
56 /// block.
57 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
58                                           const Twine &Name) {
59   auto Alloca = CreateTempAlloca(Ty, Name);
60   Alloca->setAlignment(Align.getQuantity());
61   return Address(Alloca, Align);
62 }
63 
64 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
65 /// block.
66 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
67                                                     const Twine &Name) {
68   if (!Builder.isNamePreserving())
69     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
70   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
71 }
72 
73 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
74 /// default alignment of the corresponding LLVM type, which is *not*
75 /// guaranteed to be related in any way to the expected alignment of
76 /// an AST type that might have been lowered to Ty.
77 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
78                                                       const Twine &Name) {
79   CharUnits Align =
80     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
81   return CreateTempAlloca(Ty, Align, Name);
82 }
83 
84 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
85   assert(isa<llvm::AllocaInst>(Var.getPointer()));
86   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
87   Store->setAlignment(Var.getAlignment().getQuantity());
88   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
89   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
90 }
91 
92 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
93   CharUnits Align = getContext().getTypeAlignInChars(Ty);
94   return CreateTempAlloca(ConvertType(Ty), Align, Name);
95 }
96 
97 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) {
98   // FIXME: Should we prefer the preferred type alignment here?
99   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name);
100 }
101 
102 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
103                                        const Twine &Name) {
104   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name);
105 }
106 
107 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
108 /// expression and compare the result against zero, returning an Int1Ty value.
109 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
110   PGO.setCurrentStmt(E);
111   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
112     llvm::Value *MemPtr = EmitScalarExpr(E);
113     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
114   }
115 
116   QualType BoolTy = getContext().BoolTy;
117   SourceLocation Loc = E->getExprLoc();
118   if (!E->getType()->isAnyComplexType())
119     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
120 
121   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
122                                        Loc);
123 }
124 
125 /// EmitIgnoredExpr - Emit code to compute the specified expression,
126 /// ignoring the result.
127 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
128   if (E->isRValue())
129     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
130 
131   // Just emit it as an l-value and drop the result.
132   EmitLValue(E);
133 }
134 
135 /// EmitAnyExpr - Emit code to compute the specified expression which
136 /// can have any type.  The result is returned as an RValue struct.
137 /// If this is an aggregate expression, AggSlot indicates where the
138 /// result should be returned.
139 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
140                                     AggValueSlot aggSlot,
141                                     bool ignoreResult) {
142   switch (getEvaluationKind(E->getType())) {
143   case TEK_Scalar:
144     return RValue::get(EmitScalarExpr(E, ignoreResult));
145   case TEK_Complex:
146     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
147   case TEK_Aggregate:
148     if (!ignoreResult && aggSlot.isIgnored())
149       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
150     EmitAggExpr(E, aggSlot);
151     return aggSlot.asRValue();
152   }
153   llvm_unreachable("bad evaluation kind");
154 }
155 
156 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
157 /// always be accessible even if no aggregate location is provided.
158 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
159   AggValueSlot AggSlot = AggValueSlot::ignored();
160 
161   if (hasAggregateEvaluationKind(E->getType()))
162     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
163   return EmitAnyExpr(E, AggSlot);
164 }
165 
166 /// EmitAnyExprToMem - Evaluate an expression into a given memory
167 /// location.
168 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
169                                        Address Location,
170                                        Qualifiers Quals,
171                                        bool IsInit) {
172   // FIXME: This function should take an LValue as an argument.
173   switch (getEvaluationKind(E->getType())) {
174   case TEK_Complex:
175     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
176                               /*isInit*/ false);
177     return;
178 
179   case TEK_Aggregate: {
180     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
181                                          AggValueSlot::IsDestructed_t(IsInit),
182                                          AggValueSlot::DoesNotNeedGCBarriers,
183                                          AggValueSlot::IsAliased_t(!IsInit)));
184     return;
185   }
186 
187   case TEK_Scalar: {
188     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
189     LValue LV = MakeAddrLValue(Location, E->getType());
190     EmitStoreThroughLValue(RV, LV);
191     return;
192   }
193   }
194   llvm_unreachable("bad evaluation kind");
195 }
196 
197 static void
198 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
199                      const Expr *E, Address ReferenceTemporary) {
200   // Objective-C++ ARC:
201   //   If we are binding a reference to a temporary that has ownership, we
202   //   need to perform retain/release operations on the temporary.
203   //
204   // FIXME: This should be looking at E, not M.
205   if (CGF.getLangOpts().ObjCAutoRefCount &&
206       M->getType()->isObjCLifetimeType()) {
207     QualType ObjCARCReferenceLifetimeType = M->getType();
208     switch (Qualifiers::ObjCLifetime Lifetime =
209                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
210     case Qualifiers::OCL_None:
211     case Qualifiers::OCL_ExplicitNone:
212       // Carry on to normal cleanup handling.
213       break;
214 
215     case Qualifiers::OCL_Autoreleasing:
216       // Nothing to do; cleaned up by an autorelease pool.
217       return;
218 
219     case Qualifiers::OCL_Strong:
220     case Qualifiers::OCL_Weak:
221       switch (StorageDuration Duration = M->getStorageDuration()) {
222       case SD_Static:
223         // Note: we intentionally do not register a cleanup to release
224         // the object on program termination.
225         return;
226 
227       case SD_Thread:
228         // FIXME: We should probably register a cleanup in this case.
229         return;
230 
231       case SD_Automatic:
232       case SD_FullExpression:
233         CodeGenFunction::Destroyer *Destroy;
234         CleanupKind CleanupKind;
235         if (Lifetime == Qualifiers::OCL_Strong) {
236           const ValueDecl *VD = M->getExtendingDecl();
237           bool Precise =
238               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
239           CleanupKind = CGF.getARCCleanupKind();
240           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
241                             : &CodeGenFunction::destroyARCStrongImprecise;
242         } else {
243           // __weak objects always get EH cleanups; otherwise, exceptions
244           // could cause really nasty crashes instead of mere leaks.
245           CleanupKind = NormalAndEHCleanup;
246           Destroy = &CodeGenFunction::destroyARCWeak;
247         }
248         if (Duration == SD_FullExpression)
249           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
250                           ObjCARCReferenceLifetimeType, *Destroy,
251                           CleanupKind & EHCleanup);
252         else
253           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
254                                           ObjCARCReferenceLifetimeType,
255                                           *Destroy, CleanupKind & EHCleanup);
256         return;
257 
258       case SD_Dynamic:
259         llvm_unreachable("temporary cannot have dynamic storage duration");
260       }
261       llvm_unreachable("unknown storage duration");
262     }
263   }
264 
265   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
266   if (const RecordType *RT =
267           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
268     // Get the destructor for the reference temporary.
269     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
270     if (!ClassDecl->hasTrivialDestructor())
271       ReferenceTemporaryDtor = ClassDecl->getDestructor();
272   }
273 
274   if (!ReferenceTemporaryDtor)
275     return;
276 
277   // Call the destructor for the temporary.
278   switch (M->getStorageDuration()) {
279   case SD_Static:
280   case SD_Thread: {
281     llvm::Constant *CleanupFn;
282     llvm::Constant *CleanupArg;
283     if (E->getType()->isArrayType()) {
284       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
285           ReferenceTemporary, E->getType(),
286           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
287           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
288       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
289     } else {
290       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
291                                                StructorType::Complete);
292       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
293     }
294     CGF.CGM.getCXXABI().registerGlobalDtor(
295         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
296     break;
297   }
298 
299   case SD_FullExpression:
300     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
301                     CodeGenFunction::destroyCXXObject,
302                     CGF.getLangOpts().Exceptions);
303     break;
304 
305   case SD_Automatic:
306     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
307                                     ReferenceTemporary, E->getType(),
308                                     CodeGenFunction::destroyCXXObject,
309                                     CGF.getLangOpts().Exceptions);
310     break;
311 
312   case SD_Dynamic:
313     llvm_unreachable("temporary cannot have dynamic storage duration");
314   }
315 }
316 
317 static Address
318 createReferenceTemporary(CodeGenFunction &CGF,
319                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
320   switch (M->getStorageDuration()) {
321   case SD_FullExpression:
322   case SD_Automatic: {
323     // If we have a constant temporary array or record try to promote it into a
324     // constant global under the same rules a normal constant would've been
325     // promoted. This is easier on the optimizer and generally emits fewer
326     // instructions.
327     QualType Ty = Inner->getType();
328     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
329         (Ty->isArrayType() || Ty->isRecordType()) &&
330         CGF.CGM.isTypeConstant(Ty, true))
331       if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
332         auto *GV = new llvm::GlobalVariable(
333             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
334             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp");
335         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
336         GV->setAlignment(alignment.getQuantity());
337         // FIXME: Should we put the new global into a COMDAT?
338         return Address(GV, alignment);
339       }
340     return CGF.CreateMemTemp(Ty, "ref.tmp");
341   }
342   case SD_Thread:
343   case SD_Static:
344     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
345 
346   case SD_Dynamic:
347     llvm_unreachable("temporary can't have dynamic storage duration");
348   }
349   llvm_unreachable("unknown storage duration");
350 }
351 
352 LValue CodeGenFunction::
353 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
354   const Expr *E = M->GetTemporaryExpr();
355 
356     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
357     // as that will cause the lifetime adjustment to be lost for ARC
358   if (getLangOpts().ObjCAutoRefCount &&
359       M->getType()->isObjCLifetimeType() &&
360       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
361       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
362     Address Object = createReferenceTemporary(*this, M, E);
363     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
364       Object = Address(llvm::ConstantExpr::getBitCast(Var,
365                            ConvertTypeForMem(E->getType())
366                              ->getPointerTo(Object.getAddressSpace())),
367                        Object.getAlignment());
368       // We should not have emitted the initializer for this temporary as a
369       // constant.
370       assert(!Var->hasInitializer());
371       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
372     }
373     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
374                                        AlignmentSource::Decl);
375 
376     switch (getEvaluationKind(E->getType())) {
377     default: llvm_unreachable("expected scalar or aggregate expression");
378     case TEK_Scalar:
379       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
380       break;
381     case TEK_Aggregate: {
382       EmitAggExpr(E, AggValueSlot::forAddr(Object,
383                                            E->getType().getQualifiers(),
384                                            AggValueSlot::IsDestructed,
385                                            AggValueSlot::DoesNotNeedGCBarriers,
386                                            AggValueSlot::IsNotAliased));
387       break;
388     }
389     }
390 
391     pushTemporaryCleanup(*this, M, E, Object);
392     return RefTempDst;
393   }
394 
395   SmallVector<const Expr *, 2> CommaLHSs;
396   SmallVector<SubobjectAdjustment, 2> Adjustments;
397   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
398 
399   for (const auto &Ignored : CommaLHSs)
400     EmitIgnoredExpr(Ignored);
401 
402   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
403     if (opaque->getType()->isRecordType()) {
404       assert(Adjustments.empty());
405       return EmitOpaqueValueLValue(opaque);
406     }
407   }
408 
409   // Create and initialize the reference temporary.
410   Address Object = createReferenceTemporary(*this, M, E);
411   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
412     Object = Address(llvm::ConstantExpr::getBitCast(
413         Var, ConvertTypeForMem(E->getType())->getPointerTo()),
414                      Object.getAlignment());
415     // If the temporary is a global and has a constant initializer or is a
416     // constant temporary that we promoted to a global, we may have already
417     // initialized it.
418     if (!Var->hasInitializer()) {
419       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
420       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
421     }
422   } else {
423     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
424   }
425   pushTemporaryCleanup(*this, M, E, Object);
426 
427   // Perform derived-to-base casts and/or field accesses, to get from the
428   // temporary object we created (and, potentially, for which we extended
429   // the lifetime) to the subobject we're binding the reference to.
430   for (unsigned I = Adjustments.size(); I != 0; --I) {
431     SubobjectAdjustment &Adjustment = Adjustments[I-1];
432     switch (Adjustment.Kind) {
433     case SubobjectAdjustment::DerivedToBaseAdjustment:
434       Object =
435           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
436                                 Adjustment.DerivedToBase.BasePath->path_begin(),
437                                 Adjustment.DerivedToBase.BasePath->path_end(),
438                                 /*NullCheckValue=*/ false, E->getExprLoc());
439       break;
440 
441     case SubobjectAdjustment::FieldAdjustment: {
442       LValue LV = MakeAddrLValue(Object, E->getType(),
443                                  AlignmentSource::Decl);
444       LV = EmitLValueForField(LV, Adjustment.Field);
445       assert(LV.isSimple() &&
446              "materialized temporary field is not a simple lvalue");
447       Object = LV.getAddress();
448       break;
449     }
450 
451     case SubobjectAdjustment::MemberPointerAdjustment: {
452       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
453       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
454                                                Adjustment.Ptr.MPT);
455       break;
456     }
457     }
458   }
459 
460   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
461 }
462 
463 RValue
464 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
465   // Emit the expression as an lvalue.
466   LValue LV = EmitLValue(E);
467   assert(LV.isSimple());
468   llvm::Value *Value = LV.getPointer();
469 
470   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
471     // C++11 [dcl.ref]p5 (as amended by core issue 453):
472     //   If a glvalue to which a reference is directly bound designates neither
473     //   an existing object or function of an appropriate type nor a region of
474     //   storage of suitable size and alignment to contain an object of the
475     //   reference's type, the behavior is undefined.
476     QualType Ty = E->getType();
477     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
478   }
479 
480   return RValue::get(Value);
481 }
482 
483 
484 /// getAccessedFieldNo - Given an encoded value and a result number, return the
485 /// input field number being accessed.
486 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
487                                              const llvm::Constant *Elts) {
488   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
489       ->getZExtValue();
490 }
491 
492 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
493 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
494                                     llvm::Value *High) {
495   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
496   llvm::Value *K47 = Builder.getInt64(47);
497   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
498   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
499   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
500   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
501   return Builder.CreateMul(B1, KMul);
502 }
503 
504 bool CodeGenFunction::sanitizePerformTypeCheck() const {
505   return SanOpts.has(SanitizerKind::Null) |
506          SanOpts.has(SanitizerKind::Alignment) |
507          SanOpts.has(SanitizerKind::ObjectSize) |
508          SanOpts.has(SanitizerKind::Vptr);
509 }
510 
511 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
512                                     llvm::Value *Ptr, QualType Ty,
513                                     CharUnits Alignment, bool SkipNullCheck) {
514   if (!sanitizePerformTypeCheck())
515     return;
516 
517   // Don't check pointers outside the default address space. The null check
518   // isn't correct, the object-size check isn't supported by LLVM, and we can't
519   // communicate the addresses to the runtime handler for the vptr check.
520   if (Ptr->getType()->getPointerAddressSpace())
521     return;
522 
523   SanitizerScope SanScope(this);
524 
525   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
526   llvm::BasicBlock *Done = nullptr;
527 
528   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
529                            TCK == TCK_UpcastToVirtualBase;
530   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
531       !SkipNullCheck) {
532     // The glvalue must not be an empty glvalue.
533     llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr);
534 
535     if (AllowNullPointers) {
536       // When performing pointer casts, it's OK if the value is null.
537       // Skip the remaining checks in that case.
538       Done = createBasicBlock("null");
539       llvm::BasicBlock *Rest = createBasicBlock("not.null");
540       Builder.CreateCondBr(IsNonNull, Rest, Done);
541       EmitBlock(Rest);
542     } else {
543       Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
544     }
545   }
546 
547   if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
548     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
549 
550     // The glvalue must refer to a large enough storage region.
551     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
552     //        to check this.
553     // FIXME: Get object address space
554     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
555     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
556     llvm::Value *Min = Builder.getFalse();
557     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
558     llvm::Value *LargeEnough =
559         Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}),
560                               llvm::ConstantInt::get(IntPtrTy, Size));
561     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
562   }
563 
564   uint64_t AlignVal = 0;
565 
566   if (SanOpts.has(SanitizerKind::Alignment)) {
567     AlignVal = Alignment.getQuantity();
568     if (!Ty->isIncompleteType() && !AlignVal)
569       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
570 
571     // The glvalue must be suitably aligned.
572     if (AlignVal) {
573       llvm::Value *Align =
574           Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
575                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
576       llvm::Value *Aligned =
577         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
578       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
579     }
580   }
581 
582   if (Checks.size() > 0) {
583     llvm::Constant *StaticData[] = {
584       EmitCheckSourceLocation(Loc),
585       EmitCheckTypeDescriptor(Ty),
586       llvm::ConstantInt::get(SizeTy, AlignVal),
587       llvm::ConstantInt::get(Int8Ty, TCK)
588     };
589     EmitCheck(Checks, "type_mismatch", StaticData, Ptr);
590   }
591 
592   // If possible, check that the vptr indicates that there is a subobject of
593   // type Ty at offset zero within this object.
594   //
595   // C++11 [basic.life]p5,6:
596   //   [For storage which does not refer to an object within its lifetime]
597   //   The program has undefined behavior if:
598   //    -- the [pointer or glvalue] is used to access a non-static data member
599   //       or call a non-static member function
600   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
601   if (SanOpts.has(SanitizerKind::Vptr) &&
602       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
603        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
604        TCK == TCK_UpcastToVirtualBase) &&
605       RD && RD->hasDefinition() && RD->isDynamicClass()) {
606     // Compute a hash of the mangled name of the type.
607     //
608     // FIXME: This is not guaranteed to be deterministic! Move to a
609     //        fingerprinting mechanism once LLVM provides one. For the time
610     //        being the implementation happens to be deterministic.
611     SmallString<64> MangledName;
612     llvm::raw_svector_ostream Out(MangledName);
613     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
614                                                      Out);
615 
616     // Blacklist based on the mangled type.
617     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
618             Out.str())) {
619       llvm::hash_code TypeHash = hash_value(Out.str());
620 
621       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
622       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
623       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
624       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
625       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
626       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
627 
628       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
629       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
630 
631       // Look the hash up in our cache.
632       const int CacheSize = 128;
633       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
634       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
635                                                      "__ubsan_vptr_type_cache");
636       llvm::Value *Slot = Builder.CreateAnd(Hash,
637                                             llvm::ConstantInt::get(IntPtrTy,
638                                                                    CacheSize-1));
639       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
640       llvm::Value *CacheVal =
641         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
642                                   getPointerAlign());
643 
644       // If the hash isn't in the cache, call a runtime handler to perform the
645       // hard work of checking whether the vptr is for an object of the right
646       // type. This will either fill in the cache and return, or produce a
647       // diagnostic.
648       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
649       llvm::Constant *StaticData[] = {
650         EmitCheckSourceLocation(Loc),
651         EmitCheckTypeDescriptor(Ty),
652         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
653         llvm::ConstantInt::get(Int8Ty, TCK)
654       };
655       llvm::Value *DynamicData[] = { Ptr, Hash };
656       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
657                 "dynamic_type_cache_miss", StaticData, DynamicData);
658     }
659   }
660 
661   if (Done) {
662     Builder.CreateBr(Done);
663     EmitBlock(Done);
664   }
665 }
666 
667 /// Determine whether this expression refers to a flexible array member in a
668 /// struct. We disable array bounds checks for such members.
669 static bool isFlexibleArrayMemberExpr(const Expr *E) {
670   // For compatibility with existing code, we treat arrays of length 0 or
671   // 1 as flexible array members.
672   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
673   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
674     if (CAT->getSize().ugt(1))
675       return false;
676   } else if (!isa<IncompleteArrayType>(AT))
677     return false;
678 
679   E = E->IgnoreParens();
680 
681   // A flexible array member must be the last member in the class.
682   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
683     // FIXME: If the base type of the member expr is not FD->getParent(),
684     // this should not be treated as a flexible array member access.
685     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
686       RecordDecl::field_iterator FI(
687           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
688       return ++FI == FD->getParent()->field_end();
689     }
690   }
691 
692   return false;
693 }
694 
695 /// If Base is known to point to the start of an array, return the length of
696 /// that array. Return 0 if the length cannot be determined.
697 static llvm::Value *getArrayIndexingBound(
698     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
699   // For the vector indexing extension, the bound is the number of elements.
700   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
701     IndexedType = Base->getType();
702     return CGF.Builder.getInt32(VT->getNumElements());
703   }
704 
705   Base = Base->IgnoreParens();
706 
707   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
708     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
709         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
710       IndexedType = CE->getSubExpr()->getType();
711       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
712       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
713         return CGF.Builder.getInt(CAT->getSize());
714       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
715         return CGF.getVLASize(VAT).first;
716     }
717   }
718 
719   return nullptr;
720 }
721 
722 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
723                                       llvm::Value *Index, QualType IndexType,
724                                       bool Accessed) {
725   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
726          "should not be called unless adding bounds checks");
727   SanitizerScope SanScope(this);
728 
729   QualType IndexedType;
730   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
731   if (!Bound)
732     return;
733 
734   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
735   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
736   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
737 
738   llvm::Constant *StaticData[] = {
739     EmitCheckSourceLocation(E->getExprLoc()),
740     EmitCheckTypeDescriptor(IndexedType),
741     EmitCheckTypeDescriptor(IndexType)
742   };
743   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
744                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
745   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
746             StaticData, Index);
747 }
748 
749 
750 CodeGenFunction::ComplexPairTy CodeGenFunction::
751 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
752                          bool isInc, bool isPre) {
753   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
754 
755   llvm::Value *NextVal;
756   if (isa<llvm::IntegerType>(InVal.first->getType())) {
757     uint64_t AmountVal = isInc ? 1 : -1;
758     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
759 
760     // Add the inc/dec to the real part.
761     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
762   } else {
763     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
764     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
765     if (!isInc)
766       FVal.changeSign();
767     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
768 
769     // Add the inc/dec to the real part.
770     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
771   }
772 
773   ComplexPairTy IncVal(NextVal, InVal.second);
774 
775   // Store the updated result through the lvalue.
776   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
777 
778   // If this is a postinc, return the value read from memory, otherwise use the
779   // updated value.
780   return isPre ? IncVal : InVal;
781 }
782 
783 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
784                                              CodeGenFunction *CGF) {
785   // Bind VLAs in the cast type.
786   if (CGF && E->getType()->isVariablyModifiedType())
787     CGF->EmitVariablyModifiedType(E->getType());
788 
789   if (CGDebugInfo *DI = getModuleDebugInfo())
790     DI->EmitExplicitCastType(E->getType());
791 }
792 
793 //===----------------------------------------------------------------------===//
794 //                         LValue Expression Emission
795 //===----------------------------------------------------------------------===//
796 
797 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
798 /// derive a more accurate bound on the alignment of the pointer.
799 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
800                                                   AlignmentSource  *Source) {
801   // We allow this with ObjC object pointers because of fragile ABIs.
802   assert(E->getType()->isPointerType() ||
803          E->getType()->isObjCObjectPointerType());
804   E = E->IgnoreParens();
805 
806   // Casts:
807   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
808     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
809       CGM.EmitExplicitCastExprType(ECE, this);
810 
811     switch (CE->getCastKind()) {
812     // Non-converting casts (but not C's implicit conversion from void*).
813     case CK_BitCast:
814     case CK_NoOp:
815       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
816         if (PtrTy->getPointeeType()->isVoidType())
817           break;
818 
819         AlignmentSource InnerSource;
820         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource);
821         if (Source) *Source = InnerSource;
822 
823         // If this is an explicit bitcast, and the source l-value is
824         // opaque, honor the alignment of the casted-to type.
825         if (isa<ExplicitCastExpr>(CE) &&
826             InnerSource != AlignmentSource::Decl) {
827           Addr = Address(Addr.getPointer(),
828                          getNaturalPointeeTypeAlignment(E->getType(), Source));
829         }
830 
831         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
832           if (auto PT = E->getType()->getAs<PointerType>())
833             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
834                                       /*MayBeNull=*/true,
835                                       CodeGenFunction::CFITCK_UnrelatedCast,
836                                       CE->getLocStart());
837         }
838 
839         return Builder.CreateBitCast(Addr, ConvertType(E->getType()));
840       }
841       break;
842 
843     // Array-to-pointer decay.
844     case CK_ArrayToPointerDecay:
845       return EmitArrayToPointerDecay(CE->getSubExpr(), Source);
846 
847     // Derived-to-base conversions.
848     case CK_UncheckedDerivedToBase:
849     case CK_DerivedToBase: {
850       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source);
851       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
852       return GetAddressOfBaseClass(Addr, Derived,
853                                    CE->path_begin(), CE->path_end(),
854                                    ShouldNullCheckClassCastValue(CE),
855                                    CE->getExprLoc());
856     }
857 
858     // TODO: Is there any reason to treat base-to-derived conversions
859     // specially?
860     default:
861       break;
862     }
863   }
864 
865   // Unary &.
866   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
867     if (UO->getOpcode() == UO_AddrOf) {
868       LValue LV = EmitLValue(UO->getSubExpr());
869       if (Source) *Source = LV.getAlignmentSource();
870       return LV.getAddress();
871     }
872   }
873 
874   // TODO: conditional operators, comma.
875 
876   // Otherwise, use the alignment of the type.
877   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source);
878   return Address(EmitScalarExpr(E), Align);
879 }
880 
881 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
882   if (Ty->isVoidType())
883     return RValue::get(nullptr);
884 
885   switch (getEvaluationKind(Ty)) {
886   case TEK_Complex: {
887     llvm::Type *EltTy =
888       ConvertType(Ty->castAs<ComplexType>()->getElementType());
889     llvm::Value *U = llvm::UndefValue::get(EltTy);
890     return RValue::getComplex(std::make_pair(U, U));
891   }
892 
893   // If this is a use of an undefined aggregate type, the aggregate must have an
894   // identifiable address.  Just because the contents of the value are undefined
895   // doesn't mean that the address can't be taken and compared.
896   case TEK_Aggregate: {
897     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
898     return RValue::getAggregate(DestPtr);
899   }
900 
901   case TEK_Scalar:
902     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
903   }
904   llvm_unreachable("bad evaluation kind");
905 }
906 
907 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
908                                               const char *Name) {
909   ErrorUnsupported(E, Name);
910   return GetUndefRValue(E->getType());
911 }
912 
913 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
914                                               const char *Name) {
915   ErrorUnsupported(E, Name);
916   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
917   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
918                         E->getType());
919 }
920 
921 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
922   LValue LV;
923   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
924     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
925   else
926     LV = EmitLValue(E);
927   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
928     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
929                   E->getType(), LV.getAlignment());
930   return LV;
931 }
932 
933 /// EmitLValue - Emit code to compute a designator that specifies the location
934 /// of the expression.
935 ///
936 /// This can return one of two things: a simple address or a bitfield reference.
937 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
938 /// an LLVM pointer type.
939 ///
940 /// If this returns a bitfield reference, nothing about the pointee type of the
941 /// LLVM value is known: For example, it may not be a pointer to an integer.
942 ///
943 /// If this returns a normal address, and if the lvalue's C type is fixed size,
944 /// this method guarantees that the returned pointer type will point to an LLVM
945 /// type of the same size of the lvalue's type.  If the lvalue has a variable
946 /// length type, this is not possible.
947 ///
948 LValue CodeGenFunction::EmitLValue(const Expr *E) {
949   ApplyDebugLocation DL(*this, E);
950   switch (E->getStmtClass()) {
951   default: return EmitUnsupportedLValue(E, "l-value expression");
952 
953   case Expr::ObjCPropertyRefExprClass:
954     llvm_unreachable("cannot emit a property reference directly");
955 
956   case Expr::ObjCSelectorExprClass:
957     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
958   case Expr::ObjCIsaExprClass:
959     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
960   case Expr::BinaryOperatorClass:
961     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
962   case Expr::CompoundAssignOperatorClass: {
963     QualType Ty = E->getType();
964     if (const AtomicType *AT = Ty->getAs<AtomicType>())
965       Ty = AT->getValueType();
966     if (!Ty->isAnyComplexType())
967       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
968     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
969   }
970   case Expr::CallExprClass:
971   case Expr::CXXMemberCallExprClass:
972   case Expr::CXXOperatorCallExprClass:
973   case Expr::UserDefinedLiteralClass:
974     return EmitCallExprLValue(cast<CallExpr>(E));
975   case Expr::VAArgExprClass:
976     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
977   case Expr::DeclRefExprClass:
978     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
979   case Expr::ParenExprClass:
980     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
981   case Expr::GenericSelectionExprClass:
982     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
983   case Expr::PredefinedExprClass:
984     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
985   case Expr::StringLiteralClass:
986     return EmitStringLiteralLValue(cast<StringLiteral>(E));
987   case Expr::ObjCEncodeExprClass:
988     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
989   case Expr::PseudoObjectExprClass:
990     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
991   case Expr::InitListExprClass:
992     return EmitInitListLValue(cast<InitListExpr>(E));
993   case Expr::CXXTemporaryObjectExprClass:
994   case Expr::CXXConstructExprClass:
995     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
996   case Expr::CXXBindTemporaryExprClass:
997     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
998   case Expr::CXXUuidofExprClass:
999     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1000   case Expr::LambdaExprClass:
1001     return EmitLambdaLValue(cast<LambdaExpr>(E));
1002 
1003   case Expr::ExprWithCleanupsClass: {
1004     const auto *cleanups = cast<ExprWithCleanups>(E);
1005     enterFullExpression(cleanups);
1006     RunCleanupsScope Scope(*this);
1007     return EmitLValue(cleanups->getSubExpr());
1008   }
1009 
1010   case Expr::CXXDefaultArgExprClass:
1011     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1012   case Expr::CXXDefaultInitExprClass: {
1013     CXXDefaultInitExprScope Scope(*this);
1014     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1015   }
1016   case Expr::CXXTypeidExprClass:
1017     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1018 
1019   case Expr::ObjCMessageExprClass:
1020     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1021   case Expr::ObjCIvarRefExprClass:
1022     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1023   case Expr::StmtExprClass:
1024     return EmitStmtExprLValue(cast<StmtExpr>(E));
1025   case Expr::UnaryOperatorClass:
1026     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1027   case Expr::ArraySubscriptExprClass:
1028     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1029   case Expr::OMPArraySectionExprClass:
1030     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1031   case Expr::ExtVectorElementExprClass:
1032     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1033   case Expr::MemberExprClass:
1034     return EmitMemberExpr(cast<MemberExpr>(E));
1035   case Expr::CompoundLiteralExprClass:
1036     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1037   case Expr::ConditionalOperatorClass:
1038     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1039   case Expr::BinaryConditionalOperatorClass:
1040     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1041   case Expr::ChooseExprClass:
1042     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1043   case Expr::OpaqueValueExprClass:
1044     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1045   case Expr::SubstNonTypeTemplateParmExprClass:
1046     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1047   case Expr::ImplicitCastExprClass:
1048   case Expr::CStyleCastExprClass:
1049   case Expr::CXXFunctionalCastExprClass:
1050   case Expr::CXXStaticCastExprClass:
1051   case Expr::CXXDynamicCastExprClass:
1052   case Expr::CXXReinterpretCastExprClass:
1053   case Expr::CXXConstCastExprClass:
1054   case Expr::ObjCBridgedCastExprClass:
1055     return EmitCastLValue(cast<CastExpr>(E));
1056 
1057   case Expr::MaterializeTemporaryExprClass:
1058     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1059   }
1060 }
1061 
1062 /// Given an object of the given canonical type, can we safely copy a
1063 /// value out of it based on its initializer?
1064 static bool isConstantEmittableObjectType(QualType type) {
1065   assert(type.isCanonical());
1066   assert(!type->isReferenceType());
1067 
1068   // Must be const-qualified but non-volatile.
1069   Qualifiers qs = type.getLocalQualifiers();
1070   if (!qs.hasConst() || qs.hasVolatile()) return false;
1071 
1072   // Otherwise, all object types satisfy this except C++ classes with
1073   // mutable subobjects or non-trivial copy/destroy behavior.
1074   if (const auto *RT = dyn_cast<RecordType>(type))
1075     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1076       if (RD->hasMutableFields() || !RD->isTrivial())
1077         return false;
1078 
1079   return true;
1080 }
1081 
1082 /// Can we constant-emit a load of a reference to a variable of the
1083 /// given type?  This is different from predicates like
1084 /// Decl::isUsableInConstantExpressions because we do want it to apply
1085 /// in situations that don't necessarily satisfy the language's rules
1086 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1087 /// to do this with const float variables even if those variables
1088 /// aren't marked 'constexpr'.
1089 enum ConstantEmissionKind {
1090   CEK_None,
1091   CEK_AsReferenceOnly,
1092   CEK_AsValueOrReference,
1093   CEK_AsValueOnly
1094 };
1095 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1096   type = type.getCanonicalType();
1097   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1098     if (isConstantEmittableObjectType(ref->getPointeeType()))
1099       return CEK_AsValueOrReference;
1100     return CEK_AsReferenceOnly;
1101   }
1102   if (isConstantEmittableObjectType(type))
1103     return CEK_AsValueOnly;
1104   return CEK_None;
1105 }
1106 
1107 /// Try to emit a reference to the given value without producing it as
1108 /// an l-value.  This is actually more than an optimization: we can't
1109 /// produce an l-value for variables that we never actually captured
1110 /// in a block or lambda, which means const int variables or constexpr
1111 /// literals or similar.
1112 CodeGenFunction::ConstantEmission
1113 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1114   ValueDecl *value = refExpr->getDecl();
1115 
1116   // The value needs to be an enum constant or a constant variable.
1117   ConstantEmissionKind CEK;
1118   if (isa<ParmVarDecl>(value)) {
1119     CEK = CEK_None;
1120   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1121     CEK = checkVarTypeForConstantEmission(var->getType());
1122   } else if (isa<EnumConstantDecl>(value)) {
1123     CEK = CEK_AsValueOnly;
1124   } else {
1125     CEK = CEK_None;
1126   }
1127   if (CEK == CEK_None) return ConstantEmission();
1128 
1129   Expr::EvalResult result;
1130   bool resultIsReference;
1131   QualType resultType;
1132 
1133   // It's best to evaluate all the way as an r-value if that's permitted.
1134   if (CEK != CEK_AsReferenceOnly &&
1135       refExpr->EvaluateAsRValue(result, getContext())) {
1136     resultIsReference = false;
1137     resultType = refExpr->getType();
1138 
1139   // Otherwise, try to evaluate as an l-value.
1140   } else if (CEK != CEK_AsValueOnly &&
1141              refExpr->EvaluateAsLValue(result, getContext())) {
1142     resultIsReference = true;
1143     resultType = value->getType();
1144 
1145   // Failure.
1146   } else {
1147     return ConstantEmission();
1148   }
1149 
1150   // In any case, if the initializer has side-effects, abandon ship.
1151   if (result.HasSideEffects)
1152     return ConstantEmission();
1153 
1154   // Emit as a constant.
1155   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1156 
1157   // Make sure we emit a debug reference to the global variable.
1158   // This should probably fire even for
1159   if (isa<VarDecl>(value)) {
1160     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1161       EmitDeclRefExprDbgValue(refExpr, C);
1162   } else {
1163     assert(isa<EnumConstantDecl>(value));
1164     EmitDeclRefExprDbgValue(refExpr, C);
1165   }
1166 
1167   // If we emitted a reference constant, we need to dereference that.
1168   if (resultIsReference)
1169     return ConstantEmission::forReference(C);
1170 
1171   return ConstantEmission::forValue(C);
1172 }
1173 
1174 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1175                                                SourceLocation Loc) {
1176   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1177                           lvalue.getType(), Loc, lvalue.getAlignmentSource(),
1178                           lvalue.getTBAAInfo(),
1179                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
1180                           lvalue.isNontemporal());
1181 }
1182 
1183 static bool hasBooleanRepresentation(QualType Ty) {
1184   if (Ty->isBooleanType())
1185     return true;
1186 
1187   if (const EnumType *ET = Ty->getAs<EnumType>())
1188     return ET->getDecl()->getIntegerType()->isBooleanType();
1189 
1190   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1191     return hasBooleanRepresentation(AT->getValueType());
1192 
1193   return false;
1194 }
1195 
1196 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1197                             llvm::APInt &Min, llvm::APInt &End,
1198                             bool StrictEnums) {
1199   const EnumType *ET = Ty->getAs<EnumType>();
1200   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1201                                 ET && !ET->getDecl()->isFixed();
1202   bool IsBool = hasBooleanRepresentation(Ty);
1203   if (!IsBool && !IsRegularCPlusPlusEnum)
1204     return false;
1205 
1206   if (IsBool) {
1207     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1208     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1209   } else {
1210     const EnumDecl *ED = ET->getDecl();
1211     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1212     unsigned Bitwidth = LTy->getScalarSizeInBits();
1213     unsigned NumNegativeBits = ED->getNumNegativeBits();
1214     unsigned NumPositiveBits = ED->getNumPositiveBits();
1215 
1216     if (NumNegativeBits) {
1217       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1218       assert(NumBits <= Bitwidth);
1219       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1220       Min = -End;
1221     } else {
1222       assert(NumPositiveBits <= Bitwidth);
1223       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1224       Min = llvm::APInt(Bitwidth, 0);
1225     }
1226   }
1227   return true;
1228 }
1229 
1230 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1231   llvm::APInt Min, End;
1232   if (!getRangeForType(*this, Ty, Min, End,
1233                        CGM.getCodeGenOpts().StrictEnums))
1234     return nullptr;
1235 
1236   llvm::MDBuilder MDHelper(getLLVMContext());
1237   return MDHelper.createRange(Min, End);
1238 }
1239 
1240 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1241                                                QualType Ty,
1242                                                SourceLocation Loc,
1243                                                AlignmentSource AlignSource,
1244                                                llvm::MDNode *TBAAInfo,
1245                                                QualType TBAABaseType,
1246                                                uint64_t TBAAOffset,
1247                                                bool isNontemporal) {
1248   // For better performance, handle vector loads differently.
1249   if (Ty->isVectorType()) {
1250     const llvm::Type *EltTy = Addr.getElementType();
1251 
1252     const auto *VTy = cast<llvm::VectorType>(EltTy);
1253 
1254     // Handle vectors of size 3 like size 4 for better performance.
1255     if (VTy->getNumElements() == 3) {
1256 
1257       // Bitcast to vec4 type.
1258       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1259                                                          4);
1260       Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1261       // Now load value.
1262       llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1263 
1264       // Shuffle vector to get vec3.
1265       V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1266                                       {0, 1, 2}, "extractVec");
1267       return EmitFromMemory(V, Ty);
1268     }
1269   }
1270 
1271   // Atomic operations have to be done on integral types.
1272   if (Ty->isAtomicType() || typeIsSuitableForInlineAtomic(Ty, Volatile)) {
1273     LValue lvalue =
1274       LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
1275     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1276   }
1277 
1278   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1279   if (isNontemporal) {
1280     llvm::MDNode *Node = llvm::MDNode::get(
1281         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1282     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1283   }
1284   if (TBAAInfo) {
1285     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1286                                                       TBAAOffset);
1287     if (TBAAPath)
1288       CGM.DecorateInstructionWithTBAA(Load, TBAAPath,
1289                                       false /*ConvertTypeToTag*/);
1290   }
1291 
1292   bool NeedsBoolCheck =
1293       SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
1294   bool NeedsEnumCheck =
1295       SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
1296   if (NeedsBoolCheck || NeedsEnumCheck) {
1297     SanitizerScope SanScope(this);
1298     llvm::APInt Min, End;
1299     if (getRangeForType(*this, Ty, Min, End, true)) {
1300       --End;
1301       llvm::Value *Check;
1302       if (!Min)
1303         Check = Builder.CreateICmpULE(
1304           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1305       else {
1306         llvm::Value *Upper = Builder.CreateICmpSLE(
1307           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1308         llvm::Value *Lower = Builder.CreateICmpSGE(
1309           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1310         Check = Builder.CreateAnd(Upper, Lower);
1311       }
1312       llvm::Constant *StaticArgs[] = {
1313         EmitCheckSourceLocation(Loc),
1314         EmitCheckTypeDescriptor(Ty)
1315       };
1316       SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1317       EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
1318                 EmitCheckValue(Load));
1319     }
1320   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1321     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1322       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1323 
1324   return EmitFromMemory(Load, Ty);
1325 }
1326 
1327 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1328   // Bool has a different representation in memory than in registers.
1329   if (hasBooleanRepresentation(Ty)) {
1330     // This should really always be an i1, but sometimes it's already
1331     // an i8, and it's awkward to track those cases down.
1332     if (Value->getType()->isIntegerTy(1))
1333       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1334     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1335            "wrong value rep of bool");
1336   }
1337 
1338   return Value;
1339 }
1340 
1341 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1342   // Bool has a different representation in memory than in registers.
1343   if (hasBooleanRepresentation(Ty)) {
1344     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1345            "wrong value rep of bool");
1346     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1347   }
1348 
1349   return Value;
1350 }
1351 
1352 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1353                                         bool Volatile, QualType Ty,
1354                                         AlignmentSource AlignSource,
1355                                         llvm::MDNode *TBAAInfo,
1356                                         bool isInit, QualType TBAABaseType,
1357                                         uint64_t TBAAOffset,
1358                                         bool isNontemporal) {
1359 
1360   // Handle vectors differently to get better performance.
1361   if (Ty->isVectorType()) {
1362     llvm::Type *SrcTy = Value->getType();
1363     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1364     // Handle vec3 special.
1365     if (VecTy->getNumElements() == 3) {
1366       // Our source is a vec3, do a shuffle vector to make it a vec4.
1367       llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1368                                 Builder.getInt32(2),
1369                                 llvm::UndefValue::get(Builder.getInt32Ty())};
1370       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1371       Value = Builder.CreateShuffleVector(Value,
1372                                           llvm::UndefValue::get(VecTy),
1373                                           MaskV, "extractVec");
1374       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1375     }
1376     if (Addr.getElementType() != SrcTy) {
1377       Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1378     }
1379   }
1380 
1381   Value = EmitToMemory(Value, Ty);
1382 
1383   if (Ty->isAtomicType() ||
1384       (!isInit && typeIsSuitableForInlineAtomic(Ty, Volatile))) {
1385     EmitAtomicStore(RValue::get(Value),
1386                     LValue::MakeAddr(Addr, Ty, getContext(),
1387                                      AlignSource, TBAAInfo),
1388                     isInit);
1389     return;
1390   }
1391 
1392   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1393   if (isNontemporal) {
1394     llvm::MDNode *Node =
1395         llvm::MDNode::get(Store->getContext(),
1396                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1397     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1398   }
1399   if (TBAAInfo) {
1400     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1401                                                       TBAAOffset);
1402     if (TBAAPath)
1403       CGM.DecorateInstructionWithTBAA(Store, TBAAPath,
1404                                       false /*ConvertTypeToTag*/);
1405   }
1406 }
1407 
1408 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1409                                         bool isInit) {
1410   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1411                     lvalue.getType(), lvalue.getAlignmentSource(),
1412                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1413                     lvalue.getTBAAOffset(), lvalue.isNontemporal());
1414 }
1415 
1416 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1417 /// method emits the address of the lvalue, then loads the result as an rvalue,
1418 /// returning the rvalue.
1419 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1420   if (LV.isObjCWeak()) {
1421     // load of a __weak object.
1422     Address AddrWeakObj = LV.getAddress();
1423     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1424                                                              AddrWeakObj));
1425   }
1426   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1427     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1428     Object = EmitObjCConsumeObject(LV.getType(), Object);
1429     return RValue::get(Object);
1430   }
1431 
1432   if (LV.isSimple()) {
1433     assert(!LV.getType()->isFunctionType());
1434 
1435     // Everything needs a load.
1436     return RValue::get(EmitLoadOfScalar(LV, Loc));
1437   }
1438 
1439   if (LV.isVectorElt()) {
1440     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1441                                               LV.isVolatileQualified());
1442     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1443                                                     "vecext"));
1444   }
1445 
1446   // If this is a reference to a subset of the elements of a vector, either
1447   // shuffle the input or extract/insert them as appropriate.
1448   if (LV.isExtVectorElt())
1449     return EmitLoadOfExtVectorElementLValue(LV);
1450 
1451   // Global Register variables always invoke intrinsics
1452   if (LV.isGlobalReg())
1453     return EmitLoadOfGlobalRegLValue(LV);
1454 
1455   assert(LV.isBitField() && "Unknown LValue type!");
1456   return EmitLoadOfBitfieldLValue(LV);
1457 }
1458 
1459 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1460   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1461 
1462   // Get the output type.
1463   llvm::Type *ResLTy = ConvertType(LV.getType());
1464 
1465   Address Ptr = LV.getBitFieldAddress();
1466   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1467 
1468   if (Info.IsSigned) {
1469     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1470     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1471     if (HighBits)
1472       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1473     if (Info.Offset + HighBits)
1474       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1475   } else {
1476     if (Info.Offset)
1477       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1478     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1479       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1480                                                               Info.Size),
1481                               "bf.clear");
1482   }
1483   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1484 
1485   return RValue::get(Val);
1486 }
1487 
1488 // If this is a reference to a subset of the elements of a vector, create an
1489 // appropriate shufflevector.
1490 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1491   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1492                                         LV.isVolatileQualified());
1493 
1494   const llvm::Constant *Elts = LV.getExtVectorElts();
1495 
1496   // If the result of the expression is a non-vector type, we must be extracting
1497   // a single element.  Just codegen as an extractelement.
1498   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1499   if (!ExprVT) {
1500     unsigned InIdx = getAccessedFieldNo(0, Elts);
1501     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1502     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1503   }
1504 
1505   // Always use shuffle vector to try to retain the original program structure
1506   unsigned NumResultElts = ExprVT->getNumElements();
1507 
1508   SmallVector<llvm::Constant*, 4> Mask;
1509   for (unsigned i = 0; i != NumResultElts; ++i)
1510     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1511 
1512   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1513   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1514                                     MaskV);
1515   return RValue::get(Vec);
1516 }
1517 
1518 /// @brief Generates lvalue for partial ext_vector access.
1519 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1520   Address VectorAddress = LV.getExtVectorAddress();
1521   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1522   QualType EQT = ExprVT->getElementType();
1523   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1524 
1525   Address CastToPointerElement =
1526     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1527                                  "conv.ptr.element");
1528 
1529   const llvm::Constant *Elts = LV.getExtVectorElts();
1530   unsigned ix = getAccessedFieldNo(0, Elts);
1531 
1532   Address VectorBasePtrPlusIx =
1533     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1534                                    getContext().getTypeSizeInChars(EQT),
1535                                    "vector.elt");
1536 
1537   return VectorBasePtrPlusIx;
1538 }
1539 
1540 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1541 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1542   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1543          "Bad type for register variable");
1544   llvm::MDNode *RegName = cast<llvm::MDNode>(
1545       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1546 
1547   // We accept integer and pointer types only
1548   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1549   llvm::Type *Ty = OrigTy;
1550   if (OrigTy->isPointerTy())
1551     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1552   llvm::Type *Types[] = { Ty };
1553 
1554   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1555   llvm::Value *Call = Builder.CreateCall(
1556       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1557   if (OrigTy->isPointerTy())
1558     Call = Builder.CreateIntToPtr(Call, OrigTy);
1559   return RValue::get(Call);
1560 }
1561 
1562 
1563 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1564 /// lvalue, where both are guaranteed to the have the same type, and that type
1565 /// is 'Ty'.
1566 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1567                                              bool isInit) {
1568   if (!Dst.isSimple()) {
1569     if (Dst.isVectorElt()) {
1570       // Read/modify/write the vector, inserting the new element.
1571       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1572                                             Dst.isVolatileQualified());
1573       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1574                                         Dst.getVectorIdx(), "vecins");
1575       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1576                           Dst.isVolatileQualified());
1577       return;
1578     }
1579 
1580     // If this is an update of extended vector elements, insert them as
1581     // appropriate.
1582     if (Dst.isExtVectorElt())
1583       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1584 
1585     if (Dst.isGlobalReg())
1586       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1587 
1588     assert(Dst.isBitField() && "Unknown LValue type");
1589     return EmitStoreThroughBitfieldLValue(Src, Dst);
1590   }
1591 
1592   // There's special magic for assigning into an ARC-qualified l-value.
1593   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1594     switch (Lifetime) {
1595     case Qualifiers::OCL_None:
1596       llvm_unreachable("present but none");
1597 
1598     case Qualifiers::OCL_ExplicitNone:
1599       // nothing special
1600       break;
1601 
1602     case Qualifiers::OCL_Strong:
1603       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1604       return;
1605 
1606     case Qualifiers::OCL_Weak:
1607       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1608       return;
1609 
1610     case Qualifiers::OCL_Autoreleasing:
1611       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1612                                                      Src.getScalarVal()));
1613       // fall into the normal path
1614       break;
1615     }
1616   }
1617 
1618   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1619     // load of a __weak object.
1620     Address LvalueDst = Dst.getAddress();
1621     llvm::Value *src = Src.getScalarVal();
1622      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1623     return;
1624   }
1625 
1626   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1627     // load of a __strong object.
1628     Address LvalueDst = Dst.getAddress();
1629     llvm::Value *src = Src.getScalarVal();
1630     if (Dst.isObjCIvar()) {
1631       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1632       llvm::Type *ResultType = IntPtrTy;
1633       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1634       llvm::Value *RHS = dst.getPointer();
1635       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1636       llvm::Value *LHS =
1637         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1638                                "sub.ptr.lhs.cast");
1639       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1640       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1641                                               BytesBetween);
1642     } else if (Dst.isGlobalObjCRef()) {
1643       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1644                                                 Dst.isThreadLocalRef());
1645     }
1646     else
1647       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1648     return;
1649   }
1650 
1651   assert(Src.isScalar() && "Can't emit an agg store with this method");
1652   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1653 }
1654 
1655 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1656                                                      llvm::Value **Result) {
1657   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1658   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1659   Address Ptr = Dst.getBitFieldAddress();
1660 
1661   // Get the source value, truncated to the width of the bit-field.
1662   llvm::Value *SrcVal = Src.getScalarVal();
1663 
1664   // Cast the source to the storage type and shift it into place.
1665   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1666                                  /*IsSigned=*/false);
1667   llvm::Value *MaskedVal = SrcVal;
1668 
1669   // See if there are other bits in the bitfield's storage we'll need to load
1670   // and mask together with source before storing.
1671   if (Info.StorageSize != Info.Size) {
1672     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1673     llvm::Value *Val =
1674       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1675 
1676     // Mask the source value as needed.
1677     if (!hasBooleanRepresentation(Dst.getType()))
1678       SrcVal = Builder.CreateAnd(SrcVal,
1679                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1680                                                             Info.Size),
1681                                  "bf.value");
1682     MaskedVal = SrcVal;
1683     if (Info.Offset)
1684       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1685 
1686     // Mask out the original value.
1687     Val = Builder.CreateAnd(Val,
1688                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1689                                                      Info.Offset,
1690                                                      Info.Offset + Info.Size),
1691                             "bf.clear");
1692 
1693     // Or together the unchanged values and the source value.
1694     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1695   } else {
1696     assert(Info.Offset == 0);
1697   }
1698 
1699   // Write the new value back out.
1700   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1701 
1702   // Return the new value of the bit-field, if requested.
1703   if (Result) {
1704     llvm::Value *ResultVal = MaskedVal;
1705 
1706     // Sign extend the value if needed.
1707     if (Info.IsSigned) {
1708       assert(Info.Size <= Info.StorageSize);
1709       unsigned HighBits = Info.StorageSize - Info.Size;
1710       if (HighBits) {
1711         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1712         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1713       }
1714     }
1715 
1716     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1717                                       "bf.result.cast");
1718     *Result = EmitFromMemory(ResultVal, Dst.getType());
1719   }
1720 }
1721 
1722 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1723                                                                LValue Dst) {
1724   // This access turns into a read/modify/write of the vector.  Load the input
1725   // value now.
1726   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1727                                         Dst.isVolatileQualified());
1728   const llvm::Constant *Elts = Dst.getExtVectorElts();
1729 
1730   llvm::Value *SrcVal = Src.getScalarVal();
1731 
1732   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1733     unsigned NumSrcElts = VTy->getNumElements();
1734     unsigned NumDstElts =
1735        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1736     if (NumDstElts == NumSrcElts) {
1737       // Use shuffle vector is the src and destination are the same number of
1738       // elements and restore the vector mask since it is on the side it will be
1739       // stored.
1740       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1741       for (unsigned i = 0; i != NumSrcElts; ++i)
1742         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1743 
1744       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1745       Vec = Builder.CreateShuffleVector(SrcVal,
1746                                         llvm::UndefValue::get(Vec->getType()),
1747                                         MaskV);
1748     } else if (NumDstElts > NumSrcElts) {
1749       // Extended the source vector to the same length and then shuffle it
1750       // into the destination.
1751       // FIXME: since we're shuffling with undef, can we just use the indices
1752       //        into that?  This could be simpler.
1753       SmallVector<llvm::Constant*, 4> ExtMask;
1754       for (unsigned i = 0; i != NumSrcElts; ++i)
1755         ExtMask.push_back(Builder.getInt32(i));
1756       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1757       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1758       llvm::Value *ExtSrcVal =
1759         Builder.CreateShuffleVector(SrcVal,
1760                                     llvm::UndefValue::get(SrcVal->getType()),
1761                                     ExtMaskV);
1762       // build identity
1763       SmallVector<llvm::Constant*, 4> Mask;
1764       for (unsigned i = 0; i != NumDstElts; ++i)
1765         Mask.push_back(Builder.getInt32(i));
1766 
1767       // When the vector size is odd and .odd or .hi is used, the last element
1768       // of the Elts constant array will be one past the size of the vector.
1769       // Ignore the last element here, if it is greater than the mask size.
1770       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1771         NumSrcElts--;
1772 
1773       // modify when what gets shuffled in
1774       for (unsigned i = 0; i != NumSrcElts; ++i)
1775         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1776       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1777       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1778     } else {
1779       // We should never shorten the vector
1780       llvm_unreachable("unexpected shorten vector length");
1781     }
1782   } else {
1783     // If the Src is a scalar (not a vector) it must be updating one element.
1784     unsigned InIdx = getAccessedFieldNo(0, Elts);
1785     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1786     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1787   }
1788 
1789   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
1790                       Dst.isVolatileQualified());
1791 }
1792 
1793 /// @brief Store of global named registers are always calls to intrinsics.
1794 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1795   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1796          "Bad type for register variable");
1797   llvm::MDNode *RegName = cast<llvm::MDNode>(
1798       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
1799   assert(RegName && "Register LValue is not metadata");
1800 
1801   // We accept integer and pointer types only
1802   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1803   llvm::Type *Ty = OrigTy;
1804   if (OrigTy->isPointerTy())
1805     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1806   llvm::Type *Types[] = { Ty };
1807 
1808   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1809   llvm::Value *Value = Src.getScalarVal();
1810   if (OrigTy->isPointerTy())
1811     Value = Builder.CreatePtrToInt(Value, Ty);
1812   Builder.CreateCall(
1813       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
1814 }
1815 
1816 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1817 // generating write-barries API. It is currently a global, ivar,
1818 // or neither.
1819 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1820                                  LValue &LV,
1821                                  bool IsMemberAccess=false) {
1822   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1823     return;
1824 
1825   if (isa<ObjCIvarRefExpr>(E)) {
1826     QualType ExpTy = E->getType();
1827     if (IsMemberAccess && ExpTy->isPointerType()) {
1828       // If ivar is a structure pointer, assigning to field of
1829       // this struct follows gcc's behavior and makes it a non-ivar
1830       // writer-barrier conservatively.
1831       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1832       if (ExpTy->isRecordType()) {
1833         LV.setObjCIvar(false);
1834         return;
1835       }
1836     }
1837     LV.setObjCIvar(true);
1838     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1839     LV.setBaseIvarExp(Exp->getBase());
1840     LV.setObjCArray(E->getType()->isArrayType());
1841     return;
1842   }
1843 
1844   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1845     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1846       if (VD->hasGlobalStorage()) {
1847         LV.setGlobalObjCRef(true);
1848         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1849       }
1850     }
1851     LV.setObjCArray(E->getType()->isArrayType());
1852     return;
1853   }
1854 
1855   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1856     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1857     return;
1858   }
1859 
1860   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1861     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1862     if (LV.isObjCIvar()) {
1863       // If cast is to a structure pointer, follow gcc's behavior and make it
1864       // a non-ivar write-barrier.
1865       QualType ExpTy = E->getType();
1866       if (ExpTy->isPointerType())
1867         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1868       if (ExpTy->isRecordType())
1869         LV.setObjCIvar(false);
1870     }
1871     return;
1872   }
1873 
1874   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1875     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1876     return;
1877   }
1878 
1879   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1880     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1881     return;
1882   }
1883 
1884   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1885     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1886     return;
1887   }
1888 
1889   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1890     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1891     return;
1892   }
1893 
1894   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1895     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1896     if (LV.isObjCIvar() && !LV.isObjCArray())
1897       // Using array syntax to assigning to what an ivar points to is not
1898       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1899       LV.setObjCIvar(false);
1900     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1901       // Using array syntax to assigning to what global points to is not
1902       // same as assigning to the global itself. {id *G;} G[i] = 0;
1903       LV.setGlobalObjCRef(false);
1904     return;
1905   }
1906 
1907   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1908     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1909     // We don't know if member is an 'ivar', but this flag is looked at
1910     // only in the context of LV.isObjCIvar().
1911     LV.setObjCArray(E->getType()->isArrayType());
1912     return;
1913   }
1914 }
1915 
1916 static llvm::Value *
1917 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1918                                 llvm::Value *V, llvm::Type *IRType,
1919                                 StringRef Name = StringRef()) {
1920   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1921   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1922 }
1923 
1924 static LValue EmitThreadPrivateVarDeclLValue(
1925     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
1926     llvm::Type *RealVarTy, SourceLocation Loc) {
1927   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
1928   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
1929   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
1930 }
1931 
1932 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
1933                                              const ReferenceType *RefTy,
1934                                              AlignmentSource *Source) {
1935   llvm::Value *Ptr = Builder.CreateLoad(Addr);
1936   return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
1937                                               Source, /*forPointee*/ true));
1938 
1939 }
1940 
1941 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
1942                                                   const ReferenceType *RefTy) {
1943   AlignmentSource Source;
1944   Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source);
1945   return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source);
1946 }
1947 
1948 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1949                                       const Expr *E, const VarDecl *VD) {
1950   QualType T = E->getType();
1951 
1952   // If it's thread_local, emit a call to its wrapper function instead.
1953   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1954       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
1955     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1956 
1957   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1958   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1959   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1960   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1961   Address Addr(V, Alignment);
1962   LValue LV;
1963   // Emit reference to the private copy of the variable if it is an OpenMP
1964   // threadprivate variable.
1965   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
1966     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
1967                                           E->getExprLoc());
1968   if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
1969     LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
1970   } else {
1971     LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
1972   }
1973   setObjCGCLValueClass(CGF.getContext(), E, LV);
1974   return LV;
1975 }
1976 
1977 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1978                                      const Expr *E, const FunctionDecl *FD) {
1979   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1980   if (!FD->hasPrototype()) {
1981     if (const FunctionProtoType *Proto =
1982             FD->getType()->getAs<FunctionProtoType>()) {
1983       // Ugly case: for a K&R-style definition, the type of the definition
1984       // isn't the same as the type of a use.  Correct for this with a
1985       // bitcast.
1986       QualType NoProtoType =
1987           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1988       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1989       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1990     }
1991   }
1992   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1993   return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl);
1994 }
1995 
1996 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1997                                       llvm::Value *ThisValue) {
1998   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1999   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2000   return CGF.EmitLValueForField(LV, FD);
2001 }
2002 
2003 /// Named Registers are named metadata pointing to the register name
2004 /// which will be read from/written to as an argument to the intrinsic
2005 /// @llvm.read/write_register.
2006 /// So far, only the name is being passed down, but other options such as
2007 /// register type, allocation type or even optimization options could be
2008 /// passed down via the metadata node.
2009 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2010   SmallString<64> Name("llvm.named.register.");
2011   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2012   assert(Asm->getLabel().size() < 64-Name.size() &&
2013       "Register name too big");
2014   Name.append(Asm->getLabel());
2015   llvm::NamedMDNode *M =
2016     CGM.getModule().getOrInsertNamedMetadata(Name);
2017   if (M->getNumOperands() == 0) {
2018     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2019                                               Asm->getLabel());
2020     llvm::Metadata *Ops[] = {Str};
2021     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2022   }
2023 
2024   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2025 
2026   llvm::Value *Ptr =
2027     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2028   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2029 }
2030 
2031 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2032   const NamedDecl *ND = E->getDecl();
2033   QualType T = E->getType();
2034 
2035   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2036     // Global Named registers access via intrinsics only
2037     if (VD->getStorageClass() == SC_Register &&
2038         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2039       return EmitGlobalNamedRegister(VD, CGM);
2040 
2041     // A DeclRefExpr for a reference initialized by a constant expression can
2042     // appear without being odr-used. Directly emit the constant initializer.
2043     const Expr *Init = VD->getAnyInitializer(VD);
2044     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2045         VD->isUsableInConstantExpressions(getContext()) &&
2046         VD->checkInitIsICE() &&
2047         // Do not emit if it is private OpenMP variable.
2048         !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
2049           LocalDeclMap.count(VD))) {
2050       llvm::Constant *Val =
2051         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
2052       assert(Val && "failed to emit reference constant expression");
2053       // FIXME: Eventually we will want to emit vector element references.
2054 
2055       // Should we be using the alignment of the constant pointer we emitted?
2056       CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
2057                                                     /*pointee*/ true);
2058 
2059       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2060     }
2061 
2062     // Check for captured variables.
2063     if (E->refersToEnclosingVariableOrCapture()) {
2064       if (auto *FD = LambdaCaptureFields.lookup(VD))
2065         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2066       else if (CapturedStmtInfo) {
2067         auto it = LocalDeclMap.find(VD);
2068         if (it != LocalDeclMap.end()) {
2069           if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2070             return EmitLoadOfReferenceLValue(it->second, RefTy);
2071           }
2072           return MakeAddrLValue(it->second, T);
2073         }
2074         LValue CapLVal =
2075             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2076                                     CapturedStmtInfo->getContextValue());
2077         return MakeAddrLValue(
2078             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2079             CapLVal.getType(), AlignmentSource::Decl);
2080       }
2081 
2082       assert(isa<BlockDecl>(CurCodeDecl));
2083       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2084       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2085     }
2086   }
2087 
2088   // FIXME: We should be able to assert this for FunctionDecls as well!
2089   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2090   // those with a valid source location.
2091   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2092           !E->getLocation().isValid()) &&
2093          "Should not use decl without marking it used!");
2094 
2095   if (ND->hasAttr<WeakRefAttr>()) {
2096     const auto *VD = cast<ValueDecl>(ND);
2097     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2098     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2099   }
2100 
2101   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2102     // Check if this is a global variable.
2103     if (VD->hasLinkage() || VD->isStaticDataMember())
2104       return EmitGlobalVarDeclLValue(*this, E, VD);
2105 
2106     Address addr = Address::invalid();
2107 
2108     // The variable should generally be present in the local decl map.
2109     auto iter = LocalDeclMap.find(VD);
2110     if (iter != LocalDeclMap.end()) {
2111       addr = iter->second;
2112 
2113     // Otherwise, it might be static local we haven't emitted yet for
2114     // some reason; most likely, because it's in an outer function.
2115     } else if (VD->isStaticLocal()) {
2116       addr = Address(CGM.getOrCreateStaticVarDecl(
2117           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2118                      getContext().getDeclAlign(VD));
2119 
2120     // No other cases for now.
2121     } else {
2122       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2123     }
2124 
2125 
2126     // Check for OpenMP threadprivate variables.
2127     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2128       return EmitThreadPrivateVarDeclLValue(
2129           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2130           E->getExprLoc());
2131     }
2132 
2133     // Drill into block byref variables.
2134     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2135     if (isBlockByref) {
2136       addr = emitBlockByrefAddress(addr, VD);
2137     }
2138 
2139     // Drill into reference types.
2140     LValue LV;
2141     if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2142       LV = EmitLoadOfReferenceLValue(addr, RefTy);
2143     } else {
2144       LV = MakeAddrLValue(addr, T, AlignmentSource::Decl);
2145     }
2146 
2147     bool isLocalStorage = VD->hasLocalStorage();
2148 
2149     bool NonGCable = isLocalStorage &&
2150                      !VD->getType()->isReferenceType() &&
2151                      !isBlockByref;
2152     if (NonGCable) {
2153       LV.getQuals().removeObjCGCAttr();
2154       LV.setNonGC(true);
2155     }
2156 
2157     bool isImpreciseLifetime =
2158       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2159     if (isImpreciseLifetime)
2160       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2161     setObjCGCLValueClass(getContext(), E, LV);
2162     return LV;
2163   }
2164 
2165   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2166     return EmitFunctionDeclLValue(*this, E, FD);
2167 
2168   llvm_unreachable("Unhandled DeclRefExpr");
2169 }
2170 
2171 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2172   // __extension__ doesn't affect lvalue-ness.
2173   if (E->getOpcode() == UO_Extension)
2174     return EmitLValue(E->getSubExpr());
2175 
2176   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2177   switch (E->getOpcode()) {
2178   default: llvm_unreachable("Unknown unary operator lvalue!");
2179   case UO_Deref: {
2180     QualType T = E->getSubExpr()->getType()->getPointeeType();
2181     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2182 
2183     AlignmentSource AlignSource;
2184     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource);
2185     LValue LV = MakeAddrLValue(Addr, T, AlignSource);
2186     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2187 
2188     // We should not generate __weak write barrier on indirect reference
2189     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2190     // But, we continue to generate __strong write barrier on indirect write
2191     // into a pointer to object.
2192     if (getLangOpts().ObjC1 &&
2193         getLangOpts().getGC() != LangOptions::NonGC &&
2194         LV.isObjCWeak())
2195       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2196     return LV;
2197   }
2198   case UO_Real:
2199   case UO_Imag: {
2200     LValue LV = EmitLValue(E->getSubExpr());
2201     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2202 
2203     // __real is valid on scalars.  This is a faster way of testing that.
2204     // __imag can only produce an rvalue on scalars.
2205     if (E->getOpcode() == UO_Real &&
2206         !LV.getAddress().getElementType()->isStructTy()) {
2207       assert(E->getSubExpr()->getType()->isArithmeticType());
2208       return LV;
2209     }
2210 
2211     assert(E->getSubExpr()->getType()->isAnyComplexType());
2212 
2213     Address Component =
2214       (E->getOpcode() == UO_Real
2215          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2216          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2217     return MakeAddrLValue(Component, ExprTy, LV.getAlignmentSource());
2218   }
2219   case UO_PreInc:
2220   case UO_PreDec: {
2221     LValue LV = EmitLValue(E->getSubExpr());
2222     bool isInc = E->getOpcode() == UO_PreInc;
2223 
2224     if (E->getType()->isAnyComplexType())
2225       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2226     else
2227       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2228     return LV;
2229   }
2230   }
2231 }
2232 
2233 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2234   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2235                         E->getType(), AlignmentSource::Decl);
2236 }
2237 
2238 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2239   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2240                         E->getType(), AlignmentSource::Decl);
2241 }
2242 
2243 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2244   auto SL = E->getFunctionName();
2245   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2246   StringRef FnName = CurFn->getName();
2247   if (FnName.startswith("\01"))
2248     FnName = FnName.substr(1);
2249   StringRef NameItems[] = {
2250       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2251   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2252   if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
2253     auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2254     return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2255   }
2256   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2257   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2258 }
2259 
2260 /// Emit a type description suitable for use by a runtime sanitizer library. The
2261 /// format of a type descriptor is
2262 ///
2263 /// \code
2264 ///   { i16 TypeKind, i16 TypeInfo }
2265 /// \endcode
2266 ///
2267 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2268 /// integer, 1 for a floating point value, and -1 for anything else.
2269 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2270   // Only emit each type's descriptor once.
2271   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2272     return C;
2273 
2274   uint16_t TypeKind = -1;
2275   uint16_t TypeInfo = 0;
2276 
2277   if (T->isIntegerType()) {
2278     TypeKind = 0;
2279     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2280                (T->isSignedIntegerType() ? 1 : 0);
2281   } else if (T->isFloatingType()) {
2282     TypeKind = 1;
2283     TypeInfo = getContext().getTypeSize(T);
2284   }
2285 
2286   // Format the type name as if for a diagnostic, including quotes and
2287   // optionally an 'aka'.
2288   SmallString<32> Buffer;
2289   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2290                                     (intptr_t)T.getAsOpaquePtr(),
2291                                     StringRef(), StringRef(), None, Buffer,
2292                                     None);
2293 
2294   llvm::Constant *Components[] = {
2295     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2296     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2297   };
2298   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2299 
2300   auto *GV = new llvm::GlobalVariable(
2301       CGM.getModule(), Descriptor->getType(),
2302       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2303   GV->setUnnamedAddr(true);
2304   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2305 
2306   // Remember the descriptor for this type.
2307   CGM.setTypeDescriptorInMap(T, GV);
2308 
2309   return GV;
2310 }
2311 
2312 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2313   llvm::Type *TargetTy = IntPtrTy;
2314 
2315   // Floating-point types which fit into intptr_t are bitcast to integers
2316   // and then passed directly (after zero-extension, if necessary).
2317   if (V->getType()->isFloatingPointTy()) {
2318     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2319     if (Bits <= TargetTy->getIntegerBitWidth())
2320       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2321                                                          Bits));
2322   }
2323 
2324   // Integers which fit in intptr_t are zero-extended and passed directly.
2325   if (V->getType()->isIntegerTy() &&
2326       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2327     return Builder.CreateZExt(V, TargetTy);
2328 
2329   // Pointers are passed directly, everything else is passed by address.
2330   if (!V->getType()->isPointerTy()) {
2331     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2332     Builder.CreateStore(V, Ptr);
2333     V = Ptr.getPointer();
2334   }
2335   return Builder.CreatePtrToInt(V, TargetTy);
2336 }
2337 
2338 /// \brief Emit a representation of a SourceLocation for passing to a handler
2339 /// in a sanitizer runtime library. The format for this data is:
2340 /// \code
2341 ///   struct SourceLocation {
2342 ///     const char *Filename;
2343 ///     int32_t Line, Column;
2344 ///   };
2345 /// \endcode
2346 /// For an invalid SourceLocation, the Filename pointer is null.
2347 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2348   llvm::Constant *Filename;
2349   int Line, Column;
2350 
2351   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2352   if (PLoc.isValid()) {
2353     auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src");
2354     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2355                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2356     Filename = FilenameGV.getPointer();
2357     Line = PLoc.getLine();
2358     Column = PLoc.getColumn();
2359   } else {
2360     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2361     Line = Column = 0;
2362   }
2363 
2364   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2365                             Builder.getInt32(Column)};
2366 
2367   return llvm::ConstantStruct::getAnon(Data);
2368 }
2369 
2370 namespace {
2371 /// \brief Specify under what conditions this check can be recovered
2372 enum class CheckRecoverableKind {
2373   /// Always terminate program execution if this check fails.
2374   Unrecoverable,
2375   /// Check supports recovering, runtime has both fatal (noreturn) and
2376   /// non-fatal handlers for this check.
2377   Recoverable,
2378   /// Runtime conditionally aborts, always need to support recovery.
2379   AlwaysRecoverable
2380 };
2381 }
2382 
2383 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2384   assert(llvm::countPopulation(Kind) == 1);
2385   switch (Kind) {
2386   case SanitizerKind::Vptr:
2387     return CheckRecoverableKind::AlwaysRecoverable;
2388   case SanitizerKind::Return:
2389   case SanitizerKind::Unreachable:
2390     return CheckRecoverableKind::Unrecoverable;
2391   default:
2392     return CheckRecoverableKind::Recoverable;
2393   }
2394 }
2395 
2396 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2397                                  llvm::FunctionType *FnType,
2398                                  ArrayRef<llvm::Value *> FnArgs,
2399                                  StringRef CheckName,
2400                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2401                                  llvm::BasicBlock *ContBB) {
2402   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2403   bool NeedsAbortSuffix =
2404       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2405   std::string FnName = ("__ubsan_handle_" + CheckName +
2406                         (NeedsAbortSuffix ? "_abort" : "")).str();
2407   bool MayReturn =
2408       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2409 
2410   llvm::AttrBuilder B;
2411   if (!MayReturn) {
2412     B.addAttribute(llvm::Attribute::NoReturn)
2413         .addAttribute(llvm::Attribute::NoUnwind);
2414   }
2415   B.addAttribute(llvm::Attribute::UWTable);
2416 
2417   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2418       FnType, FnName,
2419       llvm::AttributeSet::get(CGF.getLLVMContext(),
2420                               llvm::AttributeSet::FunctionIndex, B));
2421   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2422   if (!MayReturn) {
2423     HandlerCall->setDoesNotReturn();
2424     CGF.Builder.CreateUnreachable();
2425   } else {
2426     CGF.Builder.CreateBr(ContBB);
2427   }
2428 }
2429 
2430 void CodeGenFunction::EmitCheck(
2431     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2432     StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2433     ArrayRef<llvm::Value *> DynamicArgs) {
2434   assert(IsSanitizerScope);
2435   assert(Checked.size() > 0);
2436 
2437   llvm::Value *FatalCond = nullptr;
2438   llvm::Value *RecoverableCond = nullptr;
2439   llvm::Value *TrapCond = nullptr;
2440   for (int i = 0, n = Checked.size(); i < n; ++i) {
2441     llvm::Value *Check = Checked[i].first;
2442     // -fsanitize-trap= overrides -fsanitize-recover=.
2443     llvm::Value *&Cond =
2444         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2445             ? TrapCond
2446             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2447                   ? RecoverableCond
2448                   : FatalCond;
2449     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2450   }
2451 
2452   if (TrapCond)
2453     EmitTrapCheck(TrapCond);
2454   if (!FatalCond && !RecoverableCond)
2455     return;
2456 
2457   llvm::Value *JointCond;
2458   if (FatalCond && RecoverableCond)
2459     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2460   else
2461     JointCond = FatalCond ? FatalCond : RecoverableCond;
2462   assert(JointCond);
2463 
2464   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2465   assert(SanOpts.has(Checked[0].second));
2466 #ifndef NDEBUG
2467   for (int i = 1, n = Checked.size(); i < n; ++i) {
2468     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2469            "All recoverable kinds in a single check must be same!");
2470     assert(SanOpts.has(Checked[i].second));
2471   }
2472 #endif
2473 
2474   llvm::BasicBlock *Cont = createBasicBlock("cont");
2475   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2476   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2477   // Give hint that we very much don't expect to execute the handler
2478   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2479   llvm::MDBuilder MDHelper(getLLVMContext());
2480   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2481   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2482   EmitBlock(Handlers);
2483 
2484   // Emit handler arguments and create handler function type.
2485   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2486   auto *InfoPtr =
2487       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2488                                llvm::GlobalVariable::PrivateLinkage, Info);
2489   InfoPtr->setUnnamedAddr(true);
2490   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2491 
2492   SmallVector<llvm::Value *, 4> Args;
2493   SmallVector<llvm::Type *, 4> ArgTypes;
2494   Args.reserve(DynamicArgs.size() + 1);
2495   ArgTypes.reserve(DynamicArgs.size() + 1);
2496 
2497   // Handler functions take an i8* pointing to the (handler-specific) static
2498   // information block, followed by a sequence of intptr_t arguments
2499   // representing operand values.
2500   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2501   ArgTypes.push_back(Int8PtrTy);
2502   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2503     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2504     ArgTypes.push_back(IntPtrTy);
2505   }
2506 
2507   llvm::FunctionType *FnType =
2508     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2509 
2510   if (!FatalCond || !RecoverableCond) {
2511     // Simple case: we need to generate a single handler call, either
2512     // fatal, or non-fatal.
2513     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
2514                          (FatalCond != nullptr), Cont);
2515   } else {
2516     // Emit two handler calls: first one for set of unrecoverable checks,
2517     // another one for recoverable.
2518     llvm::BasicBlock *NonFatalHandlerBB =
2519         createBasicBlock("non_fatal." + CheckName);
2520     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2521     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2522     EmitBlock(FatalHandlerBB);
2523     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
2524                          NonFatalHandlerBB);
2525     EmitBlock(NonFatalHandlerBB);
2526     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
2527                          Cont);
2528   }
2529 
2530   EmitBlock(Cont);
2531 }
2532 
2533 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2534   llvm::BasicBlock *Cont = createBasicBlock("cont");
2535 
2536   // If we're optimizing, collapse all calls to trap down to just one per
2537   // function to save on code size.
2538   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2539     TrapBB = createBasicBlock("trap");
2540     Builder.CreateCondBr(Checked, Cont, TrapBB);
2541     EmitBlock(TrapBB);
2542     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2543     TrapCall->setDoesNotReturn();
2544     TrapCall->setDoesNotThrow();
2545     Builder.CreateUnreachable();
2546   } else {
2547     Builder.CreateCondBr(Checked, Cont, TrapBB);
2548   }
2549 
2550   EmitBlock(Cont);
2551 }
2552 
2553 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
2554   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
2555 
2556   if (!CGM.getCodeGenOpts().TrapFuncName.empty())
2557     TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex,
2558                            "trap-func-name",
2559                            CGM.getCodeGenOpts().TrapFuncName);
2560 
2561   return TrapCall;
2562 }
2563 
2564 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
2565                                                  AlignmentSource *AlignSource) {
2566   assert(E->getType()->isArrayType() &&
2567          "Array to pointer decay must have array source type!");
2568 
2569   // Expressions of array type can't be bitfields or vector elements.
2570   LValue LV = EmitLValue(E);
2571   Address Addr = LV.getAddress();
2572   if (AlignSource) *AlignSource = LV.getAlignmentSource();
2573 
2574   // If the array type was an incomplete type, we need to make sure
2575   // the decay ends up being the right type.
2576   llvm::Type *NewTy = ConvertType(E->getType());
2577   Addr = Builder.CreateElementBitCast(Addr, NewTy);
2578 
2579   // Note that VLA pointers are always decayed, so we don't need to do
2580   // anything here.
2581   if (!E->getType()->isVariableArrayType()) {
2582     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
2583            "Expected pointer to array");
2584     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
2585   }
2586 
2587   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
2588   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
2589 }
2590 
2591 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2592 /// array to pointer, return the array subexpression.
2593 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2594   // If this isn't just an array->pointer decay, bail out.
2595   const auto *CE = dyn_cast<CastExpr>(E);
2596   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2597     return nullptr;
2598 
2599   // If this is a decay from variable width array, bail out.
2600   const Expr *SubExpr = CE->getSubExpr();
2601   if (SubExpr->getType()->isVariableArrayType())
2602     return nullptr;
2603 
2604   return SubExpr;
2605 }
2606 
2607 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
2608                                           llvm::Value *ptr,
2609                                           ArrayRef<llvm::Value*> indices,
2610                                           bool inbounds,
2611                                     const llvm::Twine &name = "arrayidx") {
2612   if (inbounds) {
2613     return CGF.Builder.CreateInBoundsGEP(ptr, indices, name);
2614   } else {
2615     return CGF.Builder.CreateGEP(ptr, indices, name);
2616   }
2617 }
2618 
2619 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
2620                                       llvm::Value *idx,
2621                                       CharUnits eltSize) {
2622   // If we have a constant index, we can use the exact offset of the
2623   // element we're accessing.
2624   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
2625     CharUnits offset = constantIdx->getZExtValue() * eltSize;
2626     return arrayAlign.alignmentAtOffset(offset);
2627 
2628   // Otherwise, use the worst-case alignment for any element.
2629   } else {
2630     return arrayAlign.alignmentOfArrayElement(eltSize);
2631   }
2632 }
2633 
2634 static QualType getFixedSizeElementType(const ASTContext &ctx,
2635                                         const VariableArrayType *vla) {
2636   QualType eltType;
2637   do {
2638     eltType = vla->getElementType();
2639   } while ((vla = ctx.getAsVariableArrayType(eltType)));
2640   return eltType;
2641 }
2642 
2643 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
2644                                      ArrayRef<llvm::Value*> indices,
2645                                      QualType eltType, bool inbounds,
2646                                      const llvm::Twine &name = "arrayidx") {
2647   // All the indices except that last must be zero.
2648 #ifndef NDEBUG
2649   for (auto idx : indices.drop_back())
2650     assert(isa<llvm::ConstantInt>(idx) &&
2651            cast<llvm::ConstantInt>(idx)->isZero());
2652 #endif
2653 
2654   // Determine the element size of the statically-sized base.  This is
2655   // the thing that the indices are expressed in terms of.
2656   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
2657     eltType = getFixedSizeElementType(CGF.getContext(), vla);
2658   }
2659 
2660   // We can use that to compute the best alignment of the element.
2661   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2662   CharUnits eltAlign =
2663     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
2664 
2665   llvm::Value *eltPtr =
2666     emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name);
2667   return Address(eltPtr, eltAlign);
2668 }
2669 
2670 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2671                                                bool Accessed) {
2672   // The index must always be an integer, which is not an aggregate.  Emit it.
2673   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2674   QualType IdxTy  = E->getIdx()->getType();
2675   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2676 
2677   if (SanOpts.has(SanitizerKind::ArrayBounds))
2678     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2679 
2680   // If the base is a vector type, then we are forming a vector element lvalue
2681   // with this subscript.
2682   if (E->getBase()->getType()->isVectorType() &&
2683       !isa<ExtVectorElementExpr>(E->getBase())) {
2684     // Emit the vector as an lvalue to get its address.
2685     LValue LHS = EmitLValue(E->getBase());
2686     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2687     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2688                                  E->getBase()->getType(),
2689                                  LHS.getAlignmentSource());
2690   }
2691 
2692   // All the other cases basically behave like simple offsetting.
2693 
2694   // Extend or truncate the index type to 32 or 64-bits.
2695   if (Idx->getType() != IntPtrTy)
2696     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2697 
2698   // Handle the extvector case we ignored above.
2699   if (isa<ExtVectorElementExpr>(E->getBase())) {
2700     LValue LV = EmitLValue(E->getBase());
2701     Address Addr = EmitExtVectorElementLValue(LV);
2702 
2703     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
2704     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true);
2705     return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource());
2706   }
2707 
2708   AlignmentSource AlignSource;
2709   Address Addr = Address::invalid();
2710   if (const VariableArrayType *vla =
2711            getContext().getAsVariableArrayType(E->getType())) {
2712     // The base must be a pointer, which is not an aggregate.  Emit
2713     // it.  It needs to be emitted first in case it's what captures
2714     // the VLA bounds.
2715     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2716 
2717     // The element count here is the total number of non-VLA elements.
2718     llvm::Value *numElements = getVLASize(vla).first;
2719 
2720     // Effectively, the multiply by the VLA size is part of the GEP.
2721     // GEP indexes are signed, and scaling an index isn't permitted to
2722     // signed-overflow, so we use the same semantics for our explicit
2723     // multiply.  We suppress this if overflow is not undefined behavior.
2724     if (getLangOpts().isSignedOverflowDefined()) {
2725       Idx = Builder.CreateMul(Idx, numElements);
2726     } else {
2727       Idx = Builder.CreateNSWMul(Idx, numElements);
2728     }
2729 
2730     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
2731                                  !getLangOpts().isSignedOverflowDefined());
2732 
2733   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2734     // Indexing over an interface, as in "NSString *P; P[4];"
2735     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
2736     llvm::Value *InterfaceSizeVal =
2737       llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());;
2738 
2739     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
2740 
2741     // Emit the base pointer.
2742     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2743 
2744     // We don't necessarily build correct LLVM struct types for ObjC
2745     // interfaces, so we can't rely on GEP to do this scaling
2746     // correctly, so we need to cast to i8*.  FIXME: is this actually
2747     // true?  A lot of other things in the fragile ABI would break...
2748     llvm::Type *OrigBaseTy = Addr.getType();
2749     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
2750 
2751     // Do the GEP.
2752     CharUnits EltAlign =
2753       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
2754     llvm::Value *EltPtr =
2755       emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false);
2756     Addr = Address(EltPtr, EltAlign);
2757 
2758     // Cast back.
2759     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
2760   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2761     // If this is A[i] where A is an array, the frontend will have decayed the
2762     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2763     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2764     // "gep x, i" here.  Emit one "gep A, 0, i".
2765     assert(Array->getType()->isArrayType() &&
2766            "Array to pointer decay must have array source type!");
2767     LValue ArrayLV;
2768     // For simple multidimensional array indexing, set the 'accessed' flag for
2769     // better bounds-checking of the base expression.
2770     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2771       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2772     else
2773       ArrayLV = EmitLValue(Array);
2774 
2775     // Propagate the alignment from the array itself to the result.
2776     Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(),
2777                                  {CGM.getSize(CharUnits::Zero()), Idx},
2778                                  E->getType(),
2779                                  !getLangOpts().isSignedOverflowDefined());
2780     AlignSource = ArrayLV.getAlignmentSource();
2781   } else {
2782     // The base must be a pointer; emit it with an estimate of its alignment.
2783     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2784     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
2785                                  !getLangOpts().isSignedOverflowDefined());
2786   }
2787 
2788   LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource);
2789 
2790   // TODO: Preserve/extend path TBAA metadata?
2791 
2792   if (getLangOpts().ObjC1 &&
2793       getLangOpts().getGC() != LangOptions::NonGC) {
2794     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2795     setObjCGCLValueClass(getContext(), E, LV);
2796   }
2797   return LV;
2798 }
2799 
2800 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
2801                                                 bool IsLowerBound) {
2802   LValue Base;
2803   if (auto *ASE =
2804           dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
2805     Base = EmitOMPArraySectionExpr(ASE, IsLowerBound);
2806   else
2807     Base = EmitLValue(E->getBase());
2808   QualType BaseTy = Base.getType();
2809   llvm::Value *Idx = nullptr;
2810   QualType ResultExprTy;
2811   if (auto *AT = getContext().getAsArrayType(BaseTy))
2812     ResultExprTy = AT->getElementType();
2813   else
2814     ResultExprTy = BaseTy->getPointeeType();
2815   if (IsLowerBound || (!IsLowerBound && E->getColonLoc().isInvalid())) {
2816     // Requesting lower bound or upper bound, but without provided length and
2817     // without ':' symbol for the default length -> length = 1.
2818     // Idx = LowerBound ?: 0;
2819     if (auto *LowerBound = E->getLowerBound()) {
2820       Idx = Builder.CreateIntCast(
2821           EmitScalarExpr(LowerBound), IntPtrTy,
2822           LowerBound->getType()->hasSignedIntegerRepresentation());
2823     } else
2824       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
2825   } else {
2826     // Try to emit length or lower bound as constant. If this is possible, 1 is
2827     // subtracted from constant length or lower bound. Otherwise, emit LLVM IR
2828     // (LB + Len) - 1.
2829     auto &C = CGM.getContext();
2830     auto *Length = E->getLength();
2831     llvm::APSInt ConstLength;
2832     if (Length) {
2833       // Idx = LowerBound + Length - 1;
2834       if (Length->isIntegerConstantExpr(ConstLength, C)) {
2835         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
2836         Length = nullptr;
2837       }
2838       auto *LowerBound = E->getLowerBound();
2839       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
2840       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
2841         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
2842         LowerBound = nullptr;
2843       }
2844       if (!Length)
2845         --ConstLength;
2846       else if (!LowerBound)
2847         --ConstLowerBound;
2848 
2849       if (Length || LowerBound) {
2850         auto *LowerBoundVal =
2851             LowerBound
2852                 ? Builder.CreateIntCast(
2853                       EmitScalarExpr(LowerBound), IntPtrTy,
2854                       LowerBound->getType()->hasSignedIntegerRepresentation())
2855                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
2856         auto *LengthVal =
2857             Length
2858                 ? Builder.CreateIntCast(
2859                       EmitScalarExpr(Length), IntPtrTy,
2860                       Length->getType()->hasSignedIntegerRepresentation())
2861                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
2862         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
2863                                 /*HasNUW=*/false,
2864                                 !getLangOpts().isSignedOverflowDefined());
2865         if (Length && LowerBound) {
2866           Idx = Builder.CreateSub(
2867               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
2868               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
2869         }
2870       } else
2871         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
2872     } else {
2873       // Idx = ArraySize - 1;
2874       if (auto *VAT = C.getAsVariableArrayType(BaseTy)) {
2875         Length = VAT->getSizeExpr();
2876         if (Length->isIntegerConstantExpr(ConstLength, C))
2877           Length = nullptr;
2878       } else {
2879         auto *CAT = C.getAsConstantArrayType(BaseTy);
2880         ConstLength = CAT->getSize();
2881       }
2882       if (Length) {
2883         auto *LengthVal = Builder.CreateIntCast(
2884             EmitScalarExpr(Length), IntPtrTy,
2885             Length->getType()->hasSignedIntegerRepresentation());
2886         Idx = Builder.CreateSub(
2887             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
2888             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
2889       } else {
2890         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
2891         --ConstLength;
2892         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
2893       }
2894     }
2895   }
2896   assert(Idx);
2897 
2898   llvm::Value *EltPtr;
2899   QualType FixedSizeEltType = ResultExprTy;
2900   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
2901     // The element count here is the total number of non-VLA elements.
2902     llvm::Value *numElements = getVLASize(VLA).first;
2903     FixedSizeEltType = getFixedSizeElementType(getContext(), VLA);
2904 
2905     // Effectively, the multiply by the VLA size is part of the GEP.
2906     // GEP indexes are signed, and scaling an index isn't permitted to
2907     // signed-overflow, so we use the same semantics for our explicit
2908     // multiply.  We suppress this if overflow is not undefined behavior.
2909     if (getLangOpts().isSignedOverflowDefined()) {
2910       Idx = Builder.CreateMul(Idx, numElements);
2911       EltPtr = Builder.CreateGEP(Base.getPointer(), Idx, "arrayidx");
2912     } else {
2913       Idx = Builder.CreateNSWMul(Idx, numElements);
2914       EltPtr = Builder.CreateInBoundsGEP(Base.getPointer(), Idx, "arrayidx");
2915     }
2916   } else if (BaseTy->isConstantArrayType()) {
2917     llvm::Value *ArrayPtr = Base.getPointer();
2918     llvm::Value *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
2919     llvm::Value *Args[] = {Zero, Idx};
2920 
2921     if (getLangOpts().isSignedOverflowDefined())
2922       EltPtr = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2923     else
2924       EltPtr = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2925   } else {
2926     // The base must be a pointer, which is not an aggregate.  Emit it.
2927     if (getLangOpts().isSignedOverflowDefined())
2928       EltPtr = Builder.CreateGEP(Base.getPointer(), Idx, "arrayidx");
2929     else
2930       EltPtr = Builder.CreateInBoundsGEP(Base.getPointer(), Idx, "arrayidx");
2931   }
2932 
2933   CharUnits EltAlign =
2934     Base.getAlignment().alignmentOfArrayElement(
2935                           getContext().getTypeSizeInChars(FixedSizeEltType));
2936 
2937   // Limit the alignment to that of the result type.
2938   LValue LV = MakeAddrLValue(Address(EltPtr, EltAlign), ResultExprTy,
2939                              Base.getAlignmentSource());
2940 
2941   LV.getQuals().setAddressSpace(BaseTy.getAddressSpace());
2942 
2943   return LV;
2944 }
2945 
2946 LValue CodeGenFunction::
2947 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2948   // Emit the base vector as an l-value.
2949   LValue Base;
2950 
2951   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2952   if (E->isArrow()) {
2953     // If it is a pointer to a vector, emit the address and form an lvalue with
2954     // it.
2955     AlignmentSource AlignSource;
2956     Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2957     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2958     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource);
2959     Base.getQuals().removeObjCGCAttr();
2960   } else if (E->getBase()->isGLValue()) {
2961     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2962     // emit the base as an lvalue.
2963     assert(E->getBase()->getType()->isVectorType());
2964     Base = EmitLValue(E->getBase());
2965   } else {
2966     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2967     assert(E->getBase()->getType()->isVectorType() &&
2968            "Result must be a vector");
2969     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2970 
2971     // Store the vector to memory (because LValue wants an address).
2972     Address VecMem = CreateMemTemp(E->getBase()->getType());
2973     Builder.CreateStore(Vec, VecMem);
2974     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
2975                           AlignmentSource::Decl);
2976   }
2977 
2978   QualType type =
2979     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2980 
2981   // Encode the element access list into a vector of unsigned indices.
2982   SmallVector<uint32_t, 4> Indices;
2983   E->getEncodedElementAccess(Indices);
2984 
2985   if (Base.isSimple()) {
2986     llvm::Constant *CV =
2987         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
2988     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2989                                     Base.getAlignmentSource());
2990   }
2991   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2992 
2993   llvm::Constant *BaseElts = Base.getExtVectorElts();
2994   SmallVector<llvm::Constant *, 4> CElts;
2995 
2996   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2997     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2998   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2999   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3000                                   Base.getAlignmentSource());
3001 }
3002 
3003 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3004   Expr *BaseExpr = E->getBase();
3005 
3006   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3007   LValue BaseLV;
3008   if (E->isArrow()) {
3009     AlignmentSource AlignSource;
3010     Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource);
3011     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3012     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy);
3013     BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource);
3014   } else
3015     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3016 
3017   NamedDecl *ND = E->getMemberDecl();
3018   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3019     LValue LV = EmitLValueForField(BaseLV, Field);
3020     setObjCGCLValueClass(getContext(), E, LV);
3021     return LV;
3022   }
3023 
3024   if (auto *VD = dyn_cast<VarDecl>(ND))
3025     return EmitGlobalVarDeclLValue(*this, E, VD);
3026 
3027   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3028     return EmitFunctionDeclLValue(*this, E, FD);
3029 
3030   llvm_unreachable("Unhandled member declaration!");
3031 }
3032 
3033 /// Given that we are currently emitting a lambda, emit an l-value for
3034 /// one of its members.
3035 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3036   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3037   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3038   QualType LambdaTagType =
3039     getContext().getTagDeclType(Field->getParent());
3040   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3041   return EmitLValueForField(LambdaLV, Field);
3042 }
3043 
3044 /// Drill down to the storage of a field without walking into
3045 /// reference types.
3046 ///
3047 /// The resulting address doesn't necessarily have the right type.
3048 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3049                                       const FieldDecl *field) {
3050   const RecordDecl *rec = field->getParent();
3051 
3052   unsigned idx =
3053     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3054 
3055   CharUnits offset;
3056   // Adjust the alignment down to the given offset.
3057   // As a special case, if the LLVM field index is 0, we know that this
3058   // is zero.
3059   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3060                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3061          "LLVM field at index zero had non-zero offset?");
3062   if (idx != 0) {
3063     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3064     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3065     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3066   }
3067 
3068   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3069 }
3070 
3071 LValue CodeGenFunction::EmitLValueForField(LValue base,
3072                                            const FieldDecl *field) {
3073   AlignmentSource fieldAlignSource =
3074     getFieldAlignmentSource(base.getAlignmentSource());
3075 
3076   if (field->isBitField()) {
3077     const CGRecordLayout &RL =
3078       CGM.getTypes().getCGRecordLayout(field->getParent());
3079     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3080     Address Addr = base.getAddress();
3081     unsigned Idx = RL.getLLVMFieldNo(field);
3082     if (Idx != 0)
3083       // For structs, we GEP to the field that the record layout suggests.
3084       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3085                                      field->getName());
3086     // Get the access type.
3087     llvm::Type *FieldIntTy =
3088       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3089     if (Addr.getElementType() != FieldIntTy)
3090       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3091 
3092     QualType fieldType =
3093       field->getType().withCVRQualifiers(base.getVRQualifiers());
3094     return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource);
3095   }
3096 
3097   const RecordDecl *rec = field->getParent();
3098   QualType type = field->getType();
3099 
3100   bool mayAlias = rec->hasAttr<MayAliasAttr>();
3101 
3102   Address addr = base.getAddress();
3103   unsigned cvr = base.getVRQualifiers();
3104   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
3105   if (rec->isUnion()) {
3106     // For unions, there is no pointer adjustment.
3107     assert(!type->isReferenceType() && "union has reference member");
3108     // TODO: handle path-aware TBAA for union.
3109     TBAAPath = false;
3110   } else {
3111     // For structs, we GEP to the field that the record layout suggests.
3112     addr = emitAddrOfFieldStorage(*this, addr, field);
3113 
3114     // If this is a reference field, load the reference right now.
3115     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
3116       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
3117       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
3118 
3119       // Loading the reference will disable path-aware TBAA.
3120       TBAAPath = false;
3121       if (CGM.shouldUseTBAA()) {
3122         llvm::MDNode *tbaa;
3123         if (mayAlias)
3124           tbaa = CGM.getTBAAInfo(getContext().CharTy);
3125         else
3126           tbaa = CGM.getTBAAInfo(type);
3127         if (tbaa)
3128           CGM.DecorateInstructionWithTBAA(load, tbaa);
3129       }
3130 
3131       mayAlias = false;
3132       type = refType->getPointeeType();
3133 
3134       CharUnits alignment =
3135         getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true);
3136       addr = Address(load, alignment);
3137 
3138       // Qualifiers on the struct don't apply to the referencee, and
3139       // we'll pick up CVR from the actual type later, so reset these
3140       // additional qualifiers now.
3141       cvr = 0;
3142     }
3143   }
3144 
3145   // Make sure that the address is pointing to the right type.  This is critical
3146   // for both unions and structs.  A union needs a bitcast, a struct element
3147   // will need a bitcast if the LLVM type laid out doesn't match the desired
3148   // type.
3149   addr = Builder.CreateElementBitCast(addr,
3150                                       CGM.getTypes().ConvertTypeForMem(type),
3151                                       field->getName());
3152 
3153   if (field->hasAttr<AnnotateAttr>())
3154     addr = EmitFieldAnnotations(field, addr);
3155 
3156   LValue LV = MakeAddrLValue(addr, type, fieldAlignSource);
3157   LV.getQuals().addCVRQualifiers(cvr);
3158   if (TBAAPath) {
3159     const ASTRecordLayout &Layout =
3160         getContext().getASTRecordLayout(field->getParent());
3161     // Set the base type to be the base type of the base LValue and
3162     // update offset to be relative to the base type.
3163     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
3164     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
3165                      Layout.getFieldOffset(field->getFieldIndex()) /
3166                                            getContext().getCharWidth());
3167   }
3168 
3169   // __weak attribute on a field is ignored.
3170   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3171     LV.getQuals().removeObjCGCAttr();
3172 
3173   // Fields of may_alias structs act like 'char' for TBAA purposes.
3174   // FIXME: this should get propagated down through anonymous structs
3175   // and unions.
3176   if (mayAlias && LV.getTBAAInfo())
3177     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
3178 
3179   return LV;
3180 }
3181 
3182 LValue
3183 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3184                                                   const FieldDecl *Field) {
3185   QualType FieldType = Field->getType();
3186 
3187   if (!FieldType->isReferenceType())
3188     return EmitLValueForField(Base, Field);
3189 
3190   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3191 
3192   // Make sure that the address is pointing to the right type.
3193   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3194   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3195 
3196   // TODO: access-path TBAA?
3197   auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource());
3198   return MakeAddrLValue(V, FieldType, FieldAlignSource);
3199 }
3200 
3201 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3202   if (E->isFileScope()) {
3203     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3204     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3205   }
3206   if (E->getType()->isVariablyModifiedType())
3207     // make sure to emit the VLA size.
3208     EmitVariablyModifiedType(E->getType());
3209 
3210   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3211   const Expr *InitExpr = E->getInitializer();
3212   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3213 
3214   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3215                    /*Init*/ true);
3216 
3217   return Result;
3218 }
3219 
3220 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3221   if (!E->isGLValue())
3222     // Initializing an aggregate temporary in C++11: T{...}.
3223     return EmitAggExprToLValue(E);
3224 
3225   // An lvalue initializer list must be initializing a reference.
3226   assert(E->getNumInits() == 1 && "reference init with multiple values");
3227   return EmitLValue(E->getInit(0));
3228 }
3229 
3230 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3231 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3232 /// LValue is returned and the current block has been terminated.
3233 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3234                                                     const Expr *Operand) {
3235   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3236     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3237     return None;
3238   }
3239 
3240   return CGF.EmitLValue(Operand);
3241 }
3242 
3243 LValue CodeGenFunction::
3244 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3245   if (!expr->isGLValue()) {
3246     // ?: here should be an aggregate.
3247     assert(hasAggregateEvaluationKind(expr->getType()) &&
3248            "Unexpected conditional operator!");
3249     return EmitAggExprToLValue(expr);
3250   }
3251 
3252   OpaqueValueMapping binding(*this, expr);
3253 
3254   const Expr *condExpr = expr->getCond();
3255   bool CondExprBool;
3256   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3257     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3258     if (!CondExprBool) std::swap(live, dead);
3259 
3260     if (!ContainsLabel(dead)) {
3261       // If the true case is live, we need to track its region.
3262       if (CondExprBool)
3263         incrementProfileCounter(expr);
3264       return EmitLValue(live);
3265     }
3266   }
3267 
3268   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3269   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3270   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3271 
3272   ConditionalEvaluation eval(*this);
3273   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3274 
3275   // Any temporaries created here are conditional.
3276   EmitBlock(lhsBlock);
3277   incrementProfileCounter(expr);
3278   eval.begin(*this);
3279   Optional<LValue> lhs =
3280       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3281   eval.end(*this);
3282 
3283   if (lhs && !lhs->isSimple())
3284     return EmitUnsupportedLValue(expr, "conditional operator");
3285 
3286   lhsBlock = Builder.GetInsertBlock();
3287   if (lhs)
3288     Builder.CreateBr(contBlock);
3289 
3290   // Any temporaries created here are conditional.
3291   EmitBlock(rhsBlock);
3292   eval.begin(*this);
3293   Optional<LValue> rhs =
3294       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3295   eval.end(*this);
3296   if (rhs && !rhs->isSimple())
3297     return EmitUnsupportedLValue(expr, "conditional operator");
3298   rhsBlock = Builder.GetInsertBlock();
3299 
3300   EmitBlock(contBlock);
3301 
3302   if (lhs && rhs) {
3303     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3304                                            2, "cond-lvalue");
3305     phi->addIncoming(lhs->getPointer(), lhsBlock);
3306     phi->addIncoming(rhs->getPointer(), rhsBlock);
3307     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3308     AlignmentSource alignSource =
3309       std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource());
3310     return MakeAddrLValue(result, expr->getType(), alignSource);
3311   } else {
3312     assert((lhs || rhs) &&
3313            "both operands of glvalue conditional are throw-expressions?");
3314     return lhs ? *lhs : *rhs;
3315   }
3316 }
3317 
3318 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3319 /// type. If the cast is to a reference, we can have the usual lvalue result,
3320 /// otherwise if a cast is needed by the code generator in an lvalue context,
3321 /// then it must mean that we need the address of an aggregate in order to
3322 /// access one of its members.  This can happen for all the reasons that casts
3323 /// are permitted with aggregate result, including noop aggregate casts, and
3324 /// cast from scalar to union.
3325 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3326   switch (E->getCastKind()) {
3327   case CK_ToVoid:
3328   case CK_BitCast:
3329   case CK_ArrayToPointerDecay:
3330   case CK_FunctionToPointerDecay:
3331   case CK_NullToMemberPointer:
3332   case CK_NullToPointer:
3333   case CK_IntegralToPointer:
3334   case CK_PointerToIntegral:
3335   case CK_PointerToBoolean:
3336   case CK_VectorSplat:
3337   case CK_IntegralCast:
3338   case CK_IntegralToBoolean:
3339   case CK_IntegralToFloating:
3340   case CK_FloatingToIntegral:
3341   case CK_FloatingToBoolean:
3342   case CK_FloatingCast:
3343   case CK_FloatingRealToComplex:
3344   case CK_FloatingComplexToReal:
3345   case CK_FloatingComplexToBoolean:
3346   case CK_FloatingComplexCast:
3347   case CK_FloatingComplexToIntegralComplex:
3348   case CK_IntegralRealToComplex:
3349   case CK_IntegralComplexToReal:
3350   case CK_IntegralComplexToBoolean:
3351   case CK_IntegralComplexCast:
3352   case CK_IntegralComplexToFloatingComplex:
3353   case CK_DerivedToBaseMemberPointer:
3354   case CK_BaseToDerivedMemberPointer:
3355   case CK_MemberPointerToBoolean:
3356   case CK_ReinterpretMemberPointer:
3357   case CK_AnyPointerToBlockPointerCast:
3358   case CK_ARCProduceObject:
3359   case CK_ARCConsumeObject:
3360   case CK_ARCReclaimReturnedObject:
3361   case CK_ARCExtendBlockObject:
3362   case CK_CopyAndAutoreleaseBlockObject:
3363   case CK_AddressSpaceConversion:
3364     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
3365 
3366   case CK_Dependent:
3367     llvm_unreachable("dependent cast kind in IR gen!");
3368 
3369   case CK_BuiltinFnToFnPtr:
3370     llvm_unreachable("builtin functions are handled elsewhere");
3371 
3372   // These are never l-values; just use the aggregate emission code.
3373   case CK_NonAtomicToAtomic:
3374   case CK_AtomicToNonAtomic:
3375     return EmitAggExprToLValue(E);
3376 
3377   case CK_Dynamic: {
3378     LValue LV = EmitLValue(E->getSubExpr());
3379     Address V = LV.getAddress();
3380     const auto *DCE = cast<CXXDynamicCastExpr>(E);
3381     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
3382   }
3383 
3384   case CK_ConstructorConversion:
3385   case CK_UserDefinedConversion:
3386   case CK_CPointerToObjCPointerCast:
3387   case CK_BlockPointerToObjCPointerCast:
3388   case CK_NoOp:
3389   case CK_LValueToRValue:
3390     return EmitLValue(E->getSubExpr());
3391 
3392   case CK_UncheckedDerivedToBase:
3393   case CK_DerivedToBase: {
3394     const RecordType *DerivedClassTy =
3395       E->getSubExpr()->getType()->getAs<RecordType>();
3396     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3397 
3398     LValue LV = EmitLValue(E->getSubExpr());
3399     Address This = LV.getAddress();
3400 
3401     // Perform the derived-to-base conversion
3402     Address Base = GetAddressOfBaseClass(
3403         This, DerivedClassDecl, E->path_begin(), E->path_end(),
3404         /*NullCheckValue=*/false, E->getExprLoc());
3405 
3406     return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource());
3407   }
3408   case CK_ToUnion:
3409     return EmitAggExprToLValue(E);
3410   case CK_BaseToDerived: {
3411     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
3412     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3413 
3414     LValue LV = EmitLValue(E->getSubExpr());
3415 
3416     // Perform the base-to-derived conversion
3417     Address Derived =
3418       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
3419                                E->path_begin(), E->path_end(),
3420                                /*NullCheckValue=*/false);
3421 
3422     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
3423     // performed and the object is not of the derived type.
3424     if (sanitizePerformTypeCheck())
3425       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
3426                     Derived.getPointer(), E->getType());
3427 
3428     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
3429       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
3430                                 /*MayBeNull=*/false,
3431                                 CFITCK_DerivedCast, E->getLocStart());
3432 
3433     return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource());
3434   }
3435   case CK_LValueBitCast: {
3436     // This must be a reinterpret_cast (or c-style equivalent).
3437     const auto *CE = cast<ExplicitCastExpr>(E);
3438 
3439     CGM.EmitExplicitCastExprType(CE, this);
3440     LValue LV = EmitLValue(E->getSubExpr());
3441     Address V = Builder.CreateBitCast(LV.getAddress(),
3442                                       ConvertType(CE->getTypeAsWritten()));
3443 
3444     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
3445       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
3446                                 /*MayBeNull=*/false,
3447                                 CFITCK_UnrelatedCast, E->getLocStart());
3448 
3449     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3450   }
3451   case CK_ObjCObjectLValueCast: {
3452     LValue LV = EmitLValue(E->getSubExpr());
3453     Address V = Builder.CreateElementBitCast(LV.getAddress(),
3454                                              ConvertType(E->getType()));
3455     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3456   }
3457   case CK_ZeroToOCLEvent:
3458     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
3459   }
3460 
3461   llvm_unreachable("Unhandled lvalue cast kind?");
3462 }
3463 
3464 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
3465   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
3466   return getOpaqueLValueMapping(e);
3467 }
3468 
3469 RValue CodeGenFunction::EmitRValueForField(LValue LV,
3470                                            const FieldDecl *FD,
3471                                            SourceLocation Loc) {
3472   QualType FT = FD->getType();
3473   LValue FieldLV = EmitLValueForField(LV, FD);
3474   switch (getEvaluationKind(FT)) {
3475   case TEK_Complex:
3476     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
3477   case TEK_Aggregate:
3478     return FieldLV.asAggregateRValue();
3479   case TEK_Scalar:
3480     return EmitLoadOfLValue(FieldLV, Loc);
3481   }
3482   llvm_unreachable("bad evaluation kind");
3483 }
3484 
3485 //===--------------------------------------------------------------------===//
3486 //                             Expression Emission
3487 //===--------------------------------------------------------------------===//
3488 
3489 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
3490                                      ReturnValueSlot ReturnValue) {
3491   // Builtins never have block type.
3492   if (E->getCallee()->getType()->isBlockPointerType())
3493     return EmitBlockCallExpr(E, ReturnValue);
3494 
3495   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
3496     return EmitCXXMemberCallExpr(CE, ReturnValue);
3497 
3498   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
3499     return EmitCUDAKernelCallExpr(CE, ReturnValue);
3500 
3501   const Decl *TargetDecl = E->getCalleeDecl();
3502   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
3503     if (unsigned builtinID = FD->getBuiltinID())
3504       return EmitBuiltinExpr(FD, builtinID, E, ReturnValue);
3505   }
3506 
3507   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
3508     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
3509       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
3510 
3511   if (const auto *PseudoDtor =
3512           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
3513     QualType DestroyedType = PseudoDtor->getDestroyedType();
3514     if (getLangOpts().ObjCAutoRefCount &&
3515         DestroyedType->isObjCLifetimeType() &&
3516         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
3517          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
3518       // Automatic Reference Counting:
3519       //   If the pseudo-expression names a retainable object with weak or
3520       //   strong lifetime, the object shall be released.
3521       Expr *BaseExpr = PseudoDtor->getBase();
3522       Address BaseValue = Address::invalid();
3523       Qualifiers BaseQuals;
3524 
3525       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
3526       if (PseudoDtor->isArrow()) {
3527         BaseValue = EmitPointerWithAlignment(BaseExpr);
3528         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
3529         BaseQuals = PTy->getPointeeType().getQualifiers();
3530       } else {
3531         LValue BaseLV = EmitLValue(BaseExpr);
3532         BaseValue = BaseLV.getAddress();
3533         QualType BaseTy = BaseExpr->getType();
3534         BaseQuals = BaseTy.getQualifiers();
3535       }
3536 
3537       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
3538       case Qualifiers::OCL_None:
3539       case Qualifiers::OCL_ExplicitNone:
3540       case Qualifiers::OCL_Autoreleasing:
3541         break;
3542 
3543       case Qualifiers::OCL_Strong:
3544         EmitARCRelease(Builder.CreateLoad(BaseValue,
3545                           PseudoDtor->getDestroyedType().isVolatileQualified()),
3546                        ARCPreciseLifetime);
3547         break;
3548 
3549       case Qualifiers::OCL_Weak:
3550         EmitARCDestroyWeak(BaseValue);
3551         break;
3552       }
3553     } else {
3554       // C++ [expr.pseudo]p1:
3555       //   The result shall only be used as the operand for the function call
3556       //   operator (), and the result of such a call has type void. The only
3557       //   effect is the evaluation of the postfix-expression before the dot or
3558       //   arrow.
3559       EmitScalarExpr(E->getCallee());
3560     }
3561 
3562     return RValue::get(nullptr);
3563   }
3564 
3565   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3566   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
3567                   TargetDecl);
3568 }
3569 
3570 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3571   // Comma expressions just emit their LHS then their RHS as an l-value.
3572   if (E->getOpcode() == BO_Comma) {
3573     EmitIgnoredExpr(E->getLHS());
3574     EnsureInsertPoint();
3575     return EmitLValue(E->getRHS());
3576   }
3577 
3578   if (E->getOpcode() == BO_PtrMemD ||
3579       E->getOpcode() == BO_PtrMemI)
3580     return EmitPointerToDataMemberBinaryExpr(E);
3581 
3582   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3583 
3584   // Note that in all of these cases, __block variables need the RHS
3585   // evaluated first just in case the variable gets moved by the RHS.
3586 
3587   switch (getEvaluationKind(E->getType())) {
3588   case TEK_Scalar: {
3589     switch (E->getLHS()->getType().getObjCLifetime()) {
3590     case Qualifiers::OCL_Strong:
3591       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3592 
3593     case Qualifiers::OCL_Autoreleasing:
3594       return EmitARCStoreAutoreleasing(E).first;
3595 
3596     // No reason to do any of these differently.
3597     case Qualifiers::OCL_None:
3598     case Qualifiers::OCL_ExplicitNone:
3599     case Qualifiers::OCL_Weak:
3600       break;
3601     }
3602 
3603     RValue RV = EmitAnyExpr(E->getRHS());
3604     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3605     EmitStoreThroughLValue(RV, LV);
3606     return LV;
3607   }
3608 
3609   case TEK_Complex:
3610     return EmitComplexAssignmentLValue(E);
3611 
3612   case TEK_Aggregate:
3613     return EmitAggExprToLValue(E);
3614   }
3615   llvm_unreachable("bad evaluation kind");
3616 }
3617 
3618 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3619   RValue RV = EmitCallExpr(E);
3620 
3621   if (!RV.isScalar())
3622     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3623                           AlignmentSource::Decl);
3624 
3625   assert(E->getCallReturnType(getContext())->isReferenceType() &&
3626          "Can't have a scalar return unless the return type is a "
3627          "reference type!");
3628 
3629   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
3630 }
3631 
3632 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3633   // FIXME: This shouldn't require another copy.
3634   return EmitAggExprToLValue(E);
3635 }
3636 
3637 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3638   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3639          && "binding l-value to type which needs a temporary");
3640   AggValueSlot Slot = CreateAggTemp(E->getType());
3641   EmitCXXConstructExpr(E, Slot);
3642   return MakeAddrLValue(Slot.getAddress(), E->getType(),
3643                         AlignmentSource::Decl);
3644 }
3645 
3646 LValue
3647 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3648   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3649 }
3650 
3651 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3652   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
3653                                       ConvertType(E->getType()));
3654 }
3655 
3656 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3657   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
3658                         AlignmentSource::Decl);
3659 }
3660 
3661 LValue
3662 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3663   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3664   Slot.setExternallyDestructed();
3665   EmitAggExpr(E->getSubExpr(), Slot);
3666   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
3667   return MakeAddrLValue(Slot.getAddress(), E->getType(),
3668                         AlignmentSource::Decl);
3669 }
3670 
3671 LValue
3672 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3673   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3674   EmitLambdaExpr(E, Slot);
3675   return MakeAddrLValue(Slot.getAddress(), E->getType(),
3676                         AlignmentSource::Decl);
3677 }
3678 
3679 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3680   RValue RV = EmitObjCMessageExpr(E);
3681 
3682   if (!RV.isScalar())
3683     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3684                           AlignmentSource::Decl);
3685 
3686   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3687          "Can't have a scalar return unless the return type is a "
3688          "reference type!");
3689 
3690   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
3691 }
3692 
3693 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3694   Address V =
3695     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
3696   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
3697 }
3698 
3699 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3700                                              const ObjCIvarDecl *Ivar) {
3701   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3702 }
3703 
3704 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3705                                           llvm::Value *BaseValue,
3706                                           const ObjCIvarDecl *Ivar,
3707                                           unsigned CVRQualifiers) {
3708   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3709                                                    Ivar, CVRQualifiers);
3710 }
3711 
3712 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3713   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3714   llvm::Value *BaseValue = nullptr;
3715   const Expr *BaseExpr = E->getBase();
3716   Qualifiers BaseQuals;
3717   QualType ObjectTy;
3718   if (E->isArrow()) {
3719     BaseValue = EmitScalarExpr(BaseExpr);
3720     ObjectTy = BaseExpr->getType()->getPointeeType();
3721     BaseQuals = ObjectTy.getQualifiers();
3722   } else {
3723     LValue BaseLV = EmitLValue(BaseExpr);
3724     BaseValue = BaseLV.getPointer();
3725     ObjectTy = BaseExpr->getType();
3726     BaseQuals = ObjectTy.getQualifiers();
3727   }
3728 
3729   LValue LV =
3730     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3731                       BaseQuals.getCVRQualifiers());
3732   setObjCGCLValueClass(getContext(), E, LV);
3733   return LV;
3734 }
3735 
3736 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3737   // Can only get l-value for message expression returning aggregate type
3738   RValue RV = EmitAnyExprToTemp(E);
3739   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3740                         AlignmentSource::Decl);
3741 }
3742 
3743 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3744                                  const CallExpr *E, ReturnValueSlot ReturnValue,
3745                                  const Decl *TargetDecl, llvm::Value *Chain) {
3746   // Get the actual function type. The callee type will always be a pointer to
3747   // function type or a block pointer type.
3748   assert(CalleeType->isFunctionPointerType() &&
3749          "Call must have function pointer type!");
3750 
3751   CalleeType = getContext().getCanonicalType(CalleeType);
3752 
3753   const auto *FnType =
3754       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3755 
3756   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
3757       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3758     if (llvm::Constant *PrefixSig =
3759             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3760       SanitizerScope SanScope(this);
3761       llvm::Constant *FTRTTIConst =
3762           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3763       llvm::Type *PrefixStructTyElems[] = {
3764         PrefixSig->getType(),
3765         FTRTTIConst->getType()
3766       };
3767       llvm::StructType *PrefixStructTy = llvm::StructType::get(
3768           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3769 
3770       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3771           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3772       llvm::Value *CalleeSigPtr =
3773           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
3774       llvm::Value *CalleeSig =
3775           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
3776       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3777 
3778       llvm::BasicBlock *Cont = createBasicBlock("cont");
3779       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3780       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3781 
3782       EmitBlock(TypeCheck);
3783       llvm::Value *CalleeRTTIPtr =
3784           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
3785       llvm::Value *CalleeRTTI =
3786           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
3787       llvm::Value *CalleeRTTIMatch =
3788           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3789       llvm::Constant *StaticData[] = {
3790         EmitCheckSourceLocation(E->getLocStart()),
3791         EmitCheckTypeDescriptor(CalleeType)
3792       };
3793       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
3794                 "function_type_mismatch", StaticData, Callee);
3795 
3796       Builder.CreateBr(Cont);
3797       EmitBlock(Cont);
3798     }
3799   }
3800 
3801   // If we are checking indirect calls and this call is indirect, check that the
3802   // function pointer is a member of the bit set for the function type.
3803   if (SanOpts.has(SanitizerKind::CFIICall) &&
3804       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3805     SanitizerScope SanScope(this);
3806 
3807     llvm::Value *BitSetName = llvm::MetadataAsValue::get(
3808         getLLVMContext(),
3809         CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)));
3810 
3811     llvm::Value *CastedCallee = Builder.CreateBitCast(Callee, Int8PtrTy);
3812     llvm::Value *BitSetTest =
3813         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test),
3814                            {CastedCallee, BitSetName});
3815 
3816     llvm::Constant *StaticData[] = {
3817       EmitCheckSourceLocation(E->getLocStart()),
3818       EmitCheckTypeDescriptor(QualType(FnType, 0)),
3819     };
3820     EmitCheck(std::make_pair(BitSetTest, SanitizerKind::CFIICall),
3821               "cfi_bad_icall", StaticData, CastedCallee);
3822   }
3823 
3824   CallArgList Args;
3825   if (Chain)
3826     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
3827              CGM.getContext().VoidPtrTy);
3828   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
3829                E->getDirectCallee(), /*ParamsToSkip*/ 0);
3830 
3831   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
3832       Args, FnType, /*isChainCall=*/Chain);
3833 
3834   // C99 6.5.2.2p6:
3835   //   If the expression that denotes the called function has a type
3836   //   that does not include a prototype, [the default argument
3837   //   promotions are performed]. If the number of arguments does not
3838   //   equal the number of parameters, the behavior is undefined. If
3839   //   the function is defined with a type that includes a prototype,
3840   //   and either the prototype ends with an ellipsis (, ...) or the
3841   //   types of the arguments after promotion are not compatible with
3842   //   the types of the parameters, the behavior is undefined. If the
3843   //   function is defined with a type that does not include a
3844   //   prototype, and the types of the arguments after promotion are
3845   //   not compatible with those of the parameters after promotion,
3846   //   the behavior is undefined [except in some trivial cases].
3847   // That is, in the general case, we should assume that a call
3848   // through an unprototyped function type works like a *non-variadic*
3849   // call.  The way we make this work is to cast to the exact type
3850   // of the promoted arguments.
3851   //
3852   // Chain calls use this same code path to add the invisible chain parameter
3853   // to the function type.
3854   if (isa<FunctionNoProtoType>(FnType) || Chain) {
3855     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3856     CalleeTy = CalleeTy->getPointerTo();
3857     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3858   }
3859 
3860   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3861 }
3862 
3863 LValue CodeGenFunction::
3864 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3865   Address BaseAddr = Address::invalid();
3866   if (E->getOpcode() == BO_PtrMemI) {
3867     BaseAddr = EmitPointerWithAlignment(E->getLHS());
3868   } else {
3869     BaseAddr = EmitLValue(E->getLHS()).getAddress();
3870   }
3871 
3872   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3873 
3874   const MemberPointerType *MPT
3875     = E->getRHS()->getType()->getAs<MemberPointerType>();
3876 
3877   AlignmentSource AlignSource;
3878   Address MemberAddr =
3879     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT,
3880                                     &AlignSource);
3881 
3882   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource);
3883 }
3884 
3885 /// Given the address of a temporary variable, produce an r-value of
3886 /// its type.
3887 RValue CodeGenFunction::convertTempToRValue(Address addr,
3888                                             QualType type,
3889                                             SourceLocation loc) {
3890   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
3891   switch (getEvaluationKind(type)) {
3892   case TEK_Complex:
3893     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3894   case TEK_Aggregate:
3895     return lvalue.asAggregateRValue();
3896   case TEK_Scalar:
3897     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3898   }
3899   llvm_unreachable("bad evaluation kind");
3900 }
3901 
3902 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3903   assert(Val->getType()->isFPOrFPVectorTy());
3904   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3905     return;
3906 
3907   llvm::MDBuilder MDHelper(getLLVMContext());
3908   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3909 
3910   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3911 }
3912 
3913 namespace {
3914   struct LValueOrRValue {
3915     LValue LV;
3916     RValue RV;
3917   };
3918 }
3919 
3920 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3921                                            const PseudoObjectExpr *E,
3922                                            bool forLValue,
3923                                            AggValueSlot slot) {
3924   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3925 
3926   // Find the result expression, if any.
3927   const Expr *resultExpr = E->getResultExpr();
3928   LValueOrRValue result;
3929 
3930   for (PseudoObjectExpr::const_semantics_iterator
3931          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3932     const Expr *semantic = *i;
3933 
3934     // If this semantic expression is an opaque value, bind it
3935     // to the result of its source expression.
3936     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3937 
3938       // If this is the result expression, we may need to evaluate
3939       // directly into the slot.
3940       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3941       OVMA opaqueData;
3942       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3943           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3944         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3945 
3946         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
3947                                        AlignmentSource::Decl);
3948         opaqueData = OVMA::bind(CGF, ov, LV);
3949         result.RV = slot.asRValue();
3950 
3951       // Otherwise, emit as normal.
3952       } else {
3953         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3954 
3955         // If this is the result, also evaluate the result now.
3956         if (ov == resultExpr) {
3957           if (forLValue)
3958             result.LV = CGF.EmitLValue(ov);
3959           else
3960             result.RV = CGF.EmitAnyExpr(ov, slot);
3961         }
3962       }
3963 
3964       opaques.push_back(opaqueData);
3965 
3966     // Otherwise, if the expression is the result, evaluate it
3967     // and remember the result.
3968     } else if (semantic == resultExpr) {
3969       if (forLValue)
3970         result.LV = CGF.EmitLValue(semantic);
3971       else
3972         result.RV = CGF.EmitAnyExpr(semantic, slot);
3973 
3974     // Otherwise, evaluate the expression in an ignored context.
3975     } else {
3976       CGF.EmitIgnoredExpr(semantic);
3977     }
3978   }
3979 
3980   // Unbind all the opaques now.
3981   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3982     opaques[i].unbind(CGF);
3983 
3984   return result;
3985 }
3986 
3987 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3988                                                AggValueSlot slot) {
3989   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3990 }
3991 
3992 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3993   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3994 }
3995