1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGObjCRuntime.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "llvm/Intrinsics.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "llvm/Target/TargetData.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 //===--------------------------------------------------------------------===//
27 //                        Miscellaneous Helper Methods
28 //===--------------------------------------------------------------------===//
29 
30 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
31 /// block.
32 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
33                                                     const llvm::Twine &Name) {
34   if (!Builder.isNamePreserving())
35     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
36   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
37 }
38 
39 llvm::Value *CodeGenFunction::CreateIRTemp(QualType Ty,
40                                            const llvm::Twine &Name) {
41   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
42   // FIXME: Should we prefer the preferred type alignment here?
43   CharUnits Align = getContext().getTypeAlignInChars(Ty);
44   Alloc->setAlignment(Align.getQuantity());
45   return Alloc;
46 }
47 
48 llvm::Value *CodeGenFunction::CreateMemTemp(QualType Ty,
49                                             const llvm::Twine &Name) {
50   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
51   // FIXME: Should we prefer the preferred type alignment here?
52   CharUnits Align = getContext().getTypeAlignInChars(Ty);
53   Alloc->setAlignment(Align.getQuantity());
54   return Alloc;
55 }
56 
57 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
58 /// expression and compare the result against zero, returning an Int1Ty value.
59 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
60   QualType BoolTy = getContext().BoolTy;
61   if (E->getType()->isMemberFunctionPointerType()) {
62     LValue LV = EmitAggExprToLValue(E);
63 
64     // Get the pointer.
65     llvm::Value *FuncPtr = Builder.CreateStructGEP(LV.getAddress(), 0,
66                                                    "src.ptr");
67     FuncPtr = Builder.CreateLoad(FuncPtr);
68 
69     llvm::Value *IsNotNull =
70       Builder.CreateICmpNE(FuncPtr,
71                             llvm::Constant::getNullValue(FuncPtr->getType()),
72                             "tobool");
73 
74     return IsNotNull;
75   }
76   if (!E->getType()->isAnyComplexType())
77     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
78 
79   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
80 }
81 
82 /// EmitAnyExpr - Emit code to compute the specified expression which can have
83 /// any type.  The result is returned as an RValue struct.  If this is an
84 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where the
85 /// result should be returned.
86 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc,
87                                     bool IsAggLocVolatile, bool IgnoreResult,
88                                     bool IsInitializer) {
89   if (!hasAggregateLLVMType(E->getType()))
90     return RValue::get(EmitScalarExpr(E, IgnoreResult));
91   else if (E->getType()->isAnyComplexType())
92     return RValue::getComplex(EmitComplexExpr(E, false, false,
93                                               IgnoreResult, IgnoreResult));
94 
95   EmitAggExpr(E, AggLoc, IsAggLocVolatile, IgnoreResult, IsInitializer);
96   return RValue::getAggregate(AggLoc, IsAggLocVolatile);
97 }
98 
99 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
100 /// always be accessible even if no aggregate location is provided.
101 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E,
102                                           bool IsAggLocVolatile,
103                                           bool IsInitializer) {
104   llvm::Value *AggLoc = 0;
105 
106   if (hasAggregateLLVMType(E->getType()) &&
107       !E->getType()->isAnyComplexType())
108     AggLoc = CreateMemTemp(E->getType(), "agg.tmp");
109   return EmitAnyExpr(E, AggLoc, IsAggLocVolatile, /*IgnoreResult=*/false,
110                      IsInitializer);
111 }
112 
113 RValue CodeGenFunction::EmitReferenceBindingToExpr(const Expr* E,
114                                                    bool IsInitializer) {
115   bool ShouldDestroyTemporaries = false;
116   unsigned OldNumLiveTemporaries = 0;
117 
118   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
119     E = DAE->getExpr();
120 
121   if (const CXXExprWithTemporaries *TE = dyn_cast<CXXExprWithTemporaries>(E)) {
122     ShouldDestroyTemporaries = true;
123 
124     // Keep track of the current cleanup stack depth.
125     OldNumLiveTemporaries = LiveTemporaries.size();
126 
127     E = TE->getSubExpr();
128   }
129 
130   RValue Val;
131   if (E->isLvalue(getContext()) == Expr::LV_Valid) {
132     // Emit the expr as an lvalue.
133     LValue LV = EmitLValue(E);
134     if (LV.isSimple()) {
135       if (ShouldDestroyTemporaries) {
136         // Pop temporaries.
137         while (LiveTemporaries.size() > OldNumLiveTemporaries)
138           PopCXXTemporary();
139       }
140 
141       return RValue::get(LV.getAddress());
142     }
143 
144     Val = EmitLoadOfLValue(LV, E->getType());
145 
146     if (ShouldDestroyTemporaries) {
147       // Pop temporaries.
148       while (LiveTemporaries.size() > OldNumLiveTemporaries)
149         PopCXXTemporary();
150     }
151   } else {
152     const CXXRecordDecl *BaseClassDecl = 0;
153     const CXXRecordDecl *DerivedClassDecl = 0;
154 
155     if (const CastExpr *CE =
156           dyn_cast<CastExpr>(E->IgnoreParenNoopCasts(getContext()))) {
157       if (CE->getCastKind() == CastExpr::CK_DerivedToBase) {
158         E = CE->getSubExpr();
159 
160         BaseClassDecl =
161           cast<CXXRecordDecl>(CE->getType()->getAs<RecordType>()->getDecl());
162         DerivedClassDecl =
163           cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
164       }
165     }
166 
167     Val = EmitAnyExprToTemp(E, /*IsAggLocVolatile=*/false,
168                             IsInitializer);
169 
170     if (ShouldDestroyTemporaries) {
171       // Pop temporaries.
172       while (LiveTemporaries.size() > OldNumLiveTemporaries)
173         PopCXXTemporary();
174     }
175 
176     if (IsInitializer) {
177       // We might have to destroy the temporary variable.
178       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
179         if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
180           if (!ClassDecl->hasTrivialDestructor()) {
181             const CXXDestructorDecl *Dtor =
182               ClassDecl->getDestructor(getContext());
183 
184             {
185               DelayedCleanupBlock Scope(*this);
186               EmitCXXDestructorCall(Dtor, Dtor_Complete,
187                                     Val.getAggregateAddr());
188 
189               // Make sure to jump to the exit block.
190               EmitBranch(Scope.getCleanupExitBlock());
191             }
192             if (Exceptions) {
193               EHCleanupBlock Cleanup(*this);
194               EmitCXXDestructorCall(Dtor, Dtor_Complete,
195                                     Val.getAggregateAddr());
196             }
197           }
198         }
199       }
200     }
201 
202     // Check if need to perform the derived-to-base cast.
203     if (BaseClassDecl) {
204       llvm::Value *Derived = Val.getAggregateAddr();
205       llvm::Value *Base =
206         GetAddressOfBaseClass(Derived, DerivedClassDecl, BaseClassDecl,
207                               /*NullCheckValue=*/false);
208       return RValue::get(Base);
209     }
210   }
211 
212   if (Val.isAggregate()) {
213     Val = RValue::get(Val.getAggregateAddr());
214   } else {
215     // Create a temporary variable that we can bind the reference to.
216     llvm::Value *Temp = CreateMemTemp(E->getType(), "reftmp");
217     if (Val.isScalar())
218       EmitStoreOfScalar(Val.getScalarVal(), Temp, false, E->getType());
219     else
220       StoreComplexToAddr(Val.getComplexVal(), Temp, false);
221     Val = RValue::get(Temp);
222   }
223 
224   return Val;
225 }
226 
227 
228 /// getAccessedFieldNo - Given an encoded value and a result number, return the
229 /// input field number being accessed.
230 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
231                                              const llvm::Constant *Elts) {
232   if (isa<llvm::ConstantAggregateZero>(Elts))
233     return 0;
234 
235   return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
236 }
237 
238 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
239   if (!CatchUndefined)
240     return;
241 
242   const llvm::IntegerType *Size_tTy
243     = llvm::IntegerType::get(VMContext, LLVMPointerWidth);
244   Address = Builder.CreateBitCast(Address, PtrToInt8Ty);
245 
246   const llvm::Type *ResType[] = {
247     Size_tTy
248   };
249   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, ResType, 1);
250   const llvm::IntegerType *IntTy = cast<llvm::IntegerType>(
251     CGM.getTypes().ConvertType(CGM.getContext().IntTy));
252   // In time, people may want to control this and use a 1 here.
253   llvm::Value *Arg = llvm::ConstantInt::get(IntTy, 0);
254   llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
255   llvm::BasicBlock *Cont = createBasicBlock();
256   llvm::BasicBlock *Check = createBasicBlock();
257   llvm::Value *NegativeOne = llvm::ConstantInt::get(Size_tTy, -1ULL);
258   Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
259 
260   EmitBlock(Check);
261   Builder.CreateCondBr(Builder.CreateICmpUGE(C,
262                                         llvm::ConstantInt::get(Size_tTy, Size)),
263                        Cont, getTrapBB());
264   EmitBlock(Cont);
265 }
266 
267 
268 llvm::Value *CodeGenFunction::
269 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
270                         bool isInc, bool isPre) {
271   QualType ValTy = E->getSubExpr()->getType();
272   llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy).getScalarVal();
273 
274   int AmountVal = isInc ? 1 : -1;
275 
276   if (ValTy->isPointerType() &&
277       ValTy->getAs<PointerType>()->isVariableArrayType()) {
278     // The amount of the addition/subtraction needs to account for the VLA size
279     ErrorUnsupported(E, "VLA pointer inc/dec");
280   }
281 
282   llvm::Value *NextVal;
283   if (const llvm::PointerType *PT =
284       dyn_cast<llvm::PointerType>(InVal->getType())) {
285     llvm::Constant *Inc =
286     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal);
287     if (!isa<llvm::FunctionType>(PT->getElementType())) {
288       QualType PTEE = ValTy->getPointeeType();
289       if (const ObjCInterfaceType *OIT =
290           dyn_cast<ObjCInterfaceType>(PTEE)) {
291         // Handle interface types, which are not represented with a concrete
292         // type.
293         int size = getContext().getTypeSize(OIT) / 8;
294         if (!isInc)
295           size = -size;
296         Inc = llvm::ConstantInt::get(Inc->getType(), size);
297         const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
298         InVal = Builder.CreateBitCast(InVal, i8Ty);
299         NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
300         llvm::Value *lhs = LV.getAddress();
301         lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
302         LV = LValue::MakeAddr(lhs, MakeQualifiers(ValTy));
303       } else
304         NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
305     } else {
306       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
307       NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
308       NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
309       NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
310     }
311   } else if (InVal->getType() == llvm::Type::getInt1Ty(VMContext) && isInc) {
312     // Bool++ is an interesting case, due to promotion rules, we get:
313     // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
314     // Bool = ((int)Bool+1) != 0
315     // An interesting aspect of this is that increment is always true.
316     // Decrement does not have this property.
317     NextVal = llvm::ConstantInt::getTrue(VMContext);
318   } else if (isa<llvm::IntegerType>(InVal->getType())) {
319     NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
320 
321     // Signed integer overflow is undefined behavior.
322     if (ValTy->isSignedIntegerType())
323       NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
324     else
325       NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
326   } else {
327     // Add the inc/dec to the real part.
328     if (InVal->getType()->isFloatTy())
329       NextVal =
330       llvm::ConstantFP::get(VMContext,
331                             llvm::APFloat(static_cast<float>(AmountVal)));
332     else if (InVal->getType()->isDoubleTy())
333       NextVal =
334       llvm::ConstantFP::get(VMContext,
335                             llvm::APFloat(static_cast<double>(AmountVal)));
336     else {
337       llvm::APFloat F(static_cast<float>(AmountVal));
338       bool ignored;
339       F.convert(Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
340                 &ignored);
341       NextVal = llvm::ConstantFP::get(VMContext, F);
342     }
343     NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
344   }
345 
346   // Store the updated result through the lvalue.
347   if (LV.isBitfield())
348     EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
349   else
350     EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
351 
352   // If this is a postinc, return the value read from memory, otherwise use the
353   // updated value.
354   return isPre ? NextVal : InVal;
355 }
356 
357 
358 CodeGenFunction::ComplexPairTy CodeGenFunction::
359 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
360                          bool isInc, bool isPre) {
361   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
362                                             LV.isVolatileQualified());
363 
364   llvm::Value *NextVal;
365   if (isa<llvm::IntegerType>(InVal.first->getType())) {
366     uint64_t AmountVal = isInc ? 1 : -1;
367     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
368 
369     // Add the inc/dec to the real part.
370     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
371   } else {
372     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
373     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
374     if (!isInc)
375       FVal.changeSign();
376     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
377 
378     // Add the inc/dec to the real part.
379     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
380   }
381 
382   ComplexPairTy IncVal(NextVal, InVal.second);
383 
384   // Store the updated result through the lvalue.
385   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
386 
387   // If this is a postinc, return the value read from memory, otherwise use the
388   // updated value.
389   return isPre ? IncVal : InVal;
390 }
391 
392 
393 //===----------------------------------------------------------------------===//
394 //                         LValue Expression Emission
395 //===----------------------------------------------------------------------===//
396 
397 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
398   if (Ty->isVoidType())
399     return RValue::get(0);
400 
401   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
402     const llvm::Type *EltTy = ConvertType(CTy->getElementType());
403     llvm::Value *U = llvm::UndefValue::get(EltTy);
404     return RValue::getComplex(std::make_pair(U, U));
405   }
406 
407   if (hasAggregateLLVMType(Ty)) {
408     const llvm::Type *LTy = llvm::PointerType::getUnqual(ConvertType(Ty));
409     return RValue::getAggregate(llvm::UndefValue::get(LTy));
410   }
411 
412   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
413 }
414 
415 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
416                                               const char *Name) {
417   ErrorUnsupported(E, Name);
418   return GetUndefRValue(E->getType());
419 }
420 
421 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
422                                               const char *Name) {
423   ErrorUnsupported(E, Name);
424   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
425   return LValue::MakeAddr(llvm::UndefValue::get(Ty),
426                           MakeQualifiers(E->getType()));
427 }
428 
429 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
430   LValue LV = EmitLValue(E);
431   if (!isa<DeclRefExpr>(E) && !LV.isBitfield() && LV.isSimple())
432     EmitCheck(LV.getAddress(), getContext().getTypeSize(E->getType()) / 8);
433   return LV;
434 }
435 
436 /// EmitLValue - Emit code to compute a designator that specifies the location
437 /// of the expression.
438 ///
439 /// This can return one of two things: a simple address or a bitfield reference.
440 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
441 /// an LLVM pointer type.
442 ///
443 /// If this returns a bitfield reference, nothing about the pointee type of the
444 /// LLVM value is known: For example, it may not be a pointer to an integer.
445 ///
446 /// If this returns a normal address, and if the lvalue's C type is fixed size,
447 /// this method guarantees that the returned pointer type will point to an LLVM
448 /// type of the same size of the lvalue's type.  If the lvalue has a variable
449 /// length type, this is not possible.
450 ///
451 LValue CodeGenFunction::EmitLValue(const Expr *E) {
452   switch (E->getStmtClass()) {
453   default: return EmitUnsupportedLValue(E, "l-value expression");
454 
455   case Expr::ObjCIsaExprClass:
456     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
457   case Expr::BinaryOperatorClass:
458     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
459   case Expr::CallExprClass:
460   case Expr::CXXMemberCallExprClass:
461   case Expr::CXXOperatorCallExprClass:
462     return EmitCallExprLValue(cast<CallExpr>(E));
463   case Expr::VAArgExprClass:
464     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
465   case Expr::DeclRefExprClass:
466     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
467   case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
468   case Expr::PredefinedExprClass:
469     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
470   case Expr::StringLiteralClass:
471     return EmitStringLiteralLValue(cast<StringLiteral>(E));
472   case Expr::ObjCEncodeExprClass:
473     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
474 
475   case Expr::BlockDeclRefExprClass:
476     return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
477 
478   case Expr::CXXTemporaryObjectExprClass:
479   case Expr::CXXConstructExprClass:
480     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
481   case Expr::CXXBindTemporaryExprClass:
482     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
483   case Expr::CXXExprWithTemporariesClass:
484     return EmitCXXExprWithTemporariesLValue(cast<CXXExprWithTemporaries>(E));
485   case Expr::CXXZeroInitValueExprClass:
486     return EmitNullInitializationLValue(cast<CXXZeroInitValueExpr>(E));
487   case Expr::CXXDefaultArgExprClass:
488     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
489   case Expr::CXXTypeidExprClass:
490     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
491 
492   case Expr::ObjCMessageExprClass:
493     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
494   case Expr::ObjCIvarRefExprClass:
495     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
496   case Expr::ObjCPropertyRefExprClass:
497     return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E));
498   case Expr::ObjCImplicitSetterGetterRefExprClass:
499     return EmitObjCKVCRefLValue(cast<ObjCImplicitSetterGetterRefExpr>(E));
500   case Expr::ObjCSuperExprClass:
501     return EmitObjCSuperExprLValue(cast<ObjCSuperExpr>(E));
502 
503   case Expr::StmtExprClass:
504     return EmitStmtExprLValue(cast<StmtExpr>(E));
505   case Expr::UnaryOperatorClass:
506     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
507   case Expr::ArraySubscriptExprClass:
508     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
509   case Expr::ExtVectorElementExprClass:
510     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
511   case Expr::MemberExprClass:
512     return EmitMemberExpr(cast<MemberExpr>(E));
513   case Expr::CompoundLiteralExprClass:
514     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
515   case Expr::ConditionalOperatorClass:
516     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
517   case Expr::ChooseExprClass:
518     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
519   case Expr::ImplicitCastExprClass:
520   case Expr::CStyleCastExprClass:
521   case Expr::CXXFunctionalCastExprClass:
522   case Expr::CXXStaticCastExprClass:
523   case Expr::CXXDynamicCastExprClass:
524   case Expr::CXXReinterpretCastExprClass:
525   case Expr::CXXConstCastExprClass:
526     return EmitCastLValue(cast<CastExpr>(E));
527   }
528 }
529 
530 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
531                                                QualType Ty) {
532   llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp");
533   if (Volatile)
534     Load->setVolatile(true);
535 
536   // Bool can have different representation in memory than in registers.
537   llvm::Value *V = Load;
538   if (Ty->isBooleanType())
539     if (V->getType() != llvm::Type::getInt1Ty(VMContext))
540       V = Builder.CreateTrunc(V, llvm::Type::getInt1Ty(VMContext), "tobool");
541 
542   return V;
543 }
544 
545 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
546                                         bool Volatile, QualType Ty) {
547 
548   if (Ty->isBooleanType()) {
549     // Bool can have different representation in memory than in registers.
550     const llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
551     Value = Builder.CreateIntCast(Value, DstPtr->getElementType(), false);
552   }
553   Builder.CreateStore(Value, Addr, Volatile);
554 }
555 
556 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
557 /// method emits the address of the lvalue, then loads the result as an rvalue,
558 /// returning the rvalue.
559 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
560   if (LV.isObjCWeak()) {
561     // load of a __weak object.
562     llvm::Value *AddrWeakObj = LV.getAddress();
563     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
564                                                              AddrWeakObj));
565   }
566 
567   if (LV.isSimple()) {
568     llvm::Value *Ptr = LV.getAddress();
569     const llvm::Type *EltTy =
570       cast<llvm::PointerType>(Ptr->getType())->getElementType();
571 
572     // Simple scalar l-value.
573     //
574     // FIXME: We shouldn't have to use isSingleValueType here.
575     if (EltTy->isSingleValueType())
576       return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(),
577                                           ExprType));
578 
579     assert(ExprType->isFunctionType() && "Unknown scalar value");
580     return RValue::get(Ptr);
581   }
582 
583   if (LV.isVectorElt()) {
584     llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
585                                           LV.isVolatileQualified(), "tmp");
586     return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
587                                                     "vecext"));
588   }
589 
590   // If this is a reference to a subset of the elements of a vector, either
591   // shuffle the input or extract/insert them as appropriate.
592   if (LV.isExtVectorElt())
593     return EmitLoadOfExtVectorElementLValue(LV, ExprType);
594 
595   if (LV.isBitfield())
596     return EmitLoadOfBitfieldLValue(LV, ExprType);
597 
598   if (LV.isPropertyRef())
599     return EmitLoadOfPropertyRefLValue(LV, ExprType);
600 
601   assert(LV.isKVCRef() && "Unknown LValue type!");
602   return EmitLoadOfKVCRefLValue(LV, ExprType);
603 }
604 
605 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
606                                                  QualType ExprType) {
607   unsigned StartBit = LV.getBitfieldStartBit();
608   unsigned BitfieldSize = LV.getBitfieldSize();
609   llvm::Value *Ptr = LV.getBitfieldAddr();
610 
611   const llvm::Type *EltTy =
612     cast<llvm::PointerType>(Ptr->getType())->getElementType();
613   unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
614 
615   // In some cases the bitfield may straddle two memory locations.  Currently we
616   // load the entire bitfield, then do the magic to sign-extend it if
617   // necessary. This results in somewhat more code than necessary for the common
618   // case (one load), since two shifts accomplish both the masking and sign
619   // extension.
620   unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
621   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "tmp");
622 
623   // Shift to proper location.
624   if (StartBit)
625     Val = Builder.CreateLShr(Val, StartBit, "bf.lo");
626 
627   // Mask off unused bits.
628   llvm::Constant *LowMask = llvm::ConstantInt::get(VMContext,
629                                 llvm::APInt::getLowBitsSet(EltTySize, LowBits));
630   Val = Builder.CreateAnd(Val, LowMask, "bf.lo.cleared");
631 
632   // Fetch the high bits if necessary.
633   if (LowBits < BitfieldSize) {
634     unsigned HighBits = BitfieldSize - LowBits;
635     llvm::Value *HighPtr = Builder.CreateGEP(Ptr, llvm::ConstantInt::get(
636                             llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");
637     llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
638                                               LV.isVolatileQualified(),
639                                               "tmp");
640 
641     // Mask off unused bits.
642     llvm::Constant *HighMask = llvm::ConstantInt::get(VMContext,
643                                llvm::APInt::getLowBitsSet(EltTySize, HighBits));
644     HighVal = Builder.CreateAnd(HighVal, HighMask, "bf.lo.cleared");
645 
646     // Shift to proper location and or in to bitfield value.
647     HighVal = Builder.CreateShl(HighVal, LowBits);
648     Val = Builder.CreateOr(Val, HighVal, "bf.val");
649   }
650 
651   // Sign extend if necessary.
652   if (LV.isBitfieldSigned()) {
653     llvm::Value *ExtraBits = llvm::ConstantInt::get(EltTy,
654                                                     EltTySize - BitfieldSize);
655     Val = Builder.CreateAShr(Builder.CreateShl(Val, ExtraBits),
656                              ExtraBits, "bf.val.sext");
657   }
658 
659   // The bitfield type and the normal type differ when the storage sizes differ
660   // (currently just _Bool).
661   Val = Builder.CreateIntCast(Val, ConvertType(ExprType), false, "tmp");
662 
663   return RValue::get(Val);
664 }
665 
666 RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV,
667                                                     QualType ExprType) {
668   return EmitObjCPropertyGet(LV.getPropertyRefExpr());
669 }
670 
671 RValue CodeGenFunction::EmitLoadOfKVCRefLValue(LValue LV,
672                                                QualType ExprType) {
673   return EmitObjCPropertyGet(LV.getKVCRefExpr());
674 }
675 
676 // If this is a reference to a subset of the elements of a vector, create an
677 // appropriate shufflevector.
678 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV,
679                                                          QualType ExprType) {
680   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
681                                         LV.isVolatileQualified(), "tmp");
682 
683   const llvm::Constant *Elts = LV.getExtVectorElts();
684 
685   // If the result of the expression is a non-vector type, we must be extracting
686   // a single element.  Just codegen as an extractelement.
687   const VectorType *ExprVT = ExprType->getAs<VectorType>();
688   if (!ExprVT) {
689     unsigned InIdx = getAccessedFieldNo(0, Elts);
690     llvm::Value *Elt = llvm::ConstantInt::get(
691                                       llvm::Type::getInt32Ty(VMContext), InIdx);
692     return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
693   }
694 
695   // Always use shuffle vector to try to retain the original program structure
696   unsigned NumResultElts = ExprVT->getNumElements();
697 
698   llvm::SmallVector<llvm::Constant*, 4> Mask;
699   for (unsigned i = 0; i != NumResultElts; ++i) {
700     unsigned InIdx = getAccessedFieldNo(i, Elts);
701     Mask.push_back(llvm::ConstantInt::get(
702                                      llvm::Type::getInt32Ty(VMContext), InIdx));
703   }
704 
705   llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
706   Vec = Builder.CreateShuffleVector(Vec,
707                                     llvm::UndefValue::get(Vec->getType()),
708                                     MaskV, "tmp");
709   return RValue::get(Vec);
710 }
711 
712 
713 
714 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
715 /// lvalue, where both are guaranteed to the have the same type, and that type
716 /// is 'Ty'.
717 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
718                                              QualType Ty) {
719   if (!Dst.isSimple()) {
720     if (Dst.isVectorElt()) {
721       // Read/modify/write the vector, inserting the new element.
722       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
723                                             Dst.isVolatileQualified(), "tmp");
724       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
725                                         Dst.getVectorIdx(), "vecins");
726       Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
727       return;
728     }
729 
730     // If this is an update of extended vector elements, insert them as
731     // appropriate.
732     if (Dst.isExtVectorElt())
733       return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty);
734 
735     if (Dst.isBitfield())
736       return EmitStoreThroughBitfieldLValue(Src, Dst, Ty);
737 
738     if (Dst.isPropertyRef())
739       return EmitStoreThroughPropertyRefLValue(Src, Dst, Ty);
740 
741     assert(Dst.isKVCRef() && "Unknown LValue type");
742     return EmitStoreThroughKVCRefLValue(Src, Dst, Ty);
743   }
744 
745   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
746     // load of a __weak object.
747     llvm::Value *LvalueDst = Dst.getAddress();
748     llvm::Value *src = Src.getScalarVal();
749      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
750     return;
751   }
752 
753   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
754     // load of a __strong object.
755     llvm::Value *LvalueDst = Dst.getAddress();
756     llvm::Value *src = Src.getScalarVal();
757     if (Dst.isObjCIvar()) {
758       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
759       const llvm::Type *ResultType = ConvertType(getContext().LongTy);
760       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
761       llvm::Value *dst = RHS;
762       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
763       llvm::Value *LHS =
764         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
765       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
766       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
767                                               BytesBetween);
768     } else if (Dst.isGlobalObjCRef())
769       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst);
770     else
771       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
772     return;
773   }
774 
775   assert(Src.isScalar() && "Can't emit an agg store with this method");
776   EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(),
777                     Dst.isVolatileQualified(), Ty);
778 }
779 
780 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
781                                                      QualType Ty,
782                                                      llvm::Value **Result) {
783   unsigned StartBit = Dst.getBitfieldStartBit();
784   unsigned BitfieldSize = Dst.getBitfieldSize();
785   llvm::Value *Ptr = Dst.getBitfieldAddr();
786 
787   const llvm::Type *EltTy =
788     cast<llvm::PointerType>(Ptr->getType())->getElementType();
789   unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
790 
791   // Get the new value, cast to the appropriate type and masked to exactly the
792   // size of the bit-field.
793   llvm::Value *SrcVal = Src.getScalarVal();
794   llvm::Value *NewVal = Builder.CreateIntCast(SrcVal, EltTy, false, "tmp");
795   llvm::Constant *Mask = llvm::ConstantInt::get(VMContext,
796                            llvm::APInt::getLowBitsSet(EltTySize, BitfieldSize));
797   NewVal = Builder.CreateAnd(NewVal, Mask, "bf.value");
798 
799   // Return the new value of the bit-field, if requested.
800   if (Result) {
801     // Cast back to the proper type for result.
802     const llvm::Type *SrcTy = SrcVal->getType();
803     llvm::Value *SrcTrunc = Builder.CreateIntCast(NewVal, SrcTy, false,
804                                                   "bf.reload.val");
805 
806     // Sign extend if necessary.
807     if (Dst.isBitfieldSigned()) {
808       unsigned SrcTySize = CGM.getTargetData().getTypeSizeInBits(SrcTy);
809       llvm::Value *ExtraBits = llvm::ConstantInt::get(SrcTy,
810                                                       SrcTySize - BitfieldSize);
811       SrcTrunc = Builder.CreateAShr(Builder.CreateShl(SrcTrunc, ExtraBits),
812                                     ExtraBits, "bf.reload.sext");
813     }
814 
815     *Result = SrcTrunc;
816   }
817 
818   // In some cases the bitfield may straddle two memory locations.  Emit the low
819   // part first and check to see if the high needs to be done.
820   unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
821   llvm::Value *LowVal = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
822                                            "bf.prev.low");
823 
824   // Compute the mask for zero-ing the low part of this bitfield.
825   llvm::Constant *InvMask =
826     llvm::ConstantInt::get(VMContext,
827              ~llvm::APInt::getBitsSet(EltTySize, StartBit, StartBit + LowBits));
828 
829   // Compute the new low part as
830   //   LowVal = (LowVal & InvMask) | (NewVal << StartBit),
831   // with the shift of NewVal implicitly stripping the high bits.
832   llvm::Value *NewLowVal =
833     Builder.CreateShl(NewVal, StartBit, "bf.value.lo");
834   LowVal = Builder.CreateAnd(LowVal, InvMask, "bf.prev.lo.cleared");
835   LowVal = Builder.CreateOr(LowVal, NewLowVal, "bf.new.lo");
836 
837   // Write back.
838   Builder.CreateStore(LowVal, Ptr, Dst.isVolatileQualified());
839 
840   // If the low part doesn't cover the bitfield emit a high part.
841   if (LowBits < BitfieldSize) {
842     unsigned HighBits = BitfieldSize - LowBits;
843     llvm::Value *HighPtr =  Builder.CreateGEP(Ptr, llvm::ConstantInt::get(
844                             llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");
845     llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
846                                               Dst.isVolatileQualified(),
847                                               "bf.prev.hi");
848 
849     // Compute the mask for zero-ing the high part of this bitfield.
850     llvm::Constant *InvMask =
851       llvm::ConstantInt::get(VMContext, ~llvm::APInt::getLowBitsSet(EltTySize,
852                                HighBits));
853 
854     // Compute the new high part as
855     //   HighVal = (HighVal & InvMask) | (NewVal lshr LowBits),
856     // where the high bits of NewVal have already been cleared and the
857     // shift stripping the low bits.
858     llvm::Value *NewHighVal =
859       Builder.CreateLShr(NewVal, LowBits, "bf.value.high");
860     HighVal = Builder.CreateAnd(HighVal, InvMask, "bf.prev.hi.cleared");
861     HighVal = Builder.CreateOr(HighVal, NewHighVal, "bf.new.hi");
862 
863     // Write back.
864     Builder.CreateStore(HighVal, HighPtr, Dst.isVolatileQualified());
865   }
866 }
867 
868 void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src,
869                                                         LValue Dst,
870                                                         QualType Ty) {
871   EmitObjCPropertySet(Dst.getPropertyRefExpr(), Src);
872 }
873 
874 void CodeGenFunction::EmitStoreThroughKVCRefLValue(RValue Src,
875                                                    LValue Dst,
876                                                    QualType Ty) {
877   EmitObjCPropertySet(Dst.getKVCRefExpr(), Src);
878 }
879 
880 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
881                                                                LValue Dst,
882                                                                QualType Ty) {
883   // This access turns into a read/modify/write of the vector.  Load the input
884   // value now.
885   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
886                                         Dst.isVolatileQualified(), "tmp");
887   const llvm::Constant *Elts = Dst.getExtVectorElts();
888 
889   llvm::Value *SrcVal = Src.getScalarVal();
890 
891   if (const VectorType *VTy = Ty->getAs<VectorType>()) {
892     unsigned NumSrcElts = VTy->getNumElements();
893     unsigned NumDstElts =
894        cast<llvm::VectorType>(Vec->getType())->getNumElements();
895     if (NumDstElts == NumSrcElts) {
896       // Use shuffle vector is the src and destination are the same number of
897       // elements and restore the vector mask since it is on the side it will be
898       // stored.
899       llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
900       for (unsigned i = 0; i != NumSrcElts; ++i) {
901         unsigned InIdx = getAccessedFieldNo(i, Elts);
902         Mask[InIdx] = llvm::ConstantInt::get(
903                                           llvm::Type::getInt32Ty(VMContext), i);
904       }
905 
906       llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
907       Vec = Builder.CreateShuffleVector(SrcVal,
908                                         llvm::UndefValue::get(Vec->getType()),
909                                         MaskV, "tmp");
910     } else if (NumDstElts > NumSrcElts) {
911       // Extended the source vector to the same length and then shuffle it
912       // into the destination.
913       // FIXME: since we're shuffling with undef, can we just use the indices
914       //        into that?  This could be simpler.
915       llvm::SmallVector<llvm::Constant*, 4> ExtMask;
916       const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
917       unsigned i;
918       for (i = 0; i != NumSrcElts; ++i)
919         ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i));
920       for (; i != NumDstElts; ++i)
921         ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
922       llvm::Value *ExtMaskV = llvm::ConstantVector::get(&ExtMask[0],
923                                                         ExtMask.size());
924       llvm::Value *ExtSrcVal =
925         Builder.CreateShuffleVector(SrcVal,
926                                     llvm::UndefValue::get(SrcVal->getType()),
927                                     ExtMaskV, "tmp");
928       // build identity
929       llvm::SmallVector<llvm::Constant*, 4> Mask;
930       for (unsigned i = 0; i != NumDstElts; ++i)
931         Mask.push_back(llvm::ConstantInt::get(Int32Ty, i));
932 
933       // modify when what gets shuffled in
934       for (unsigned i = 0; i != NumSrcElts; ++i) {
935         unsigned Idx = getAccessedFieldNo(i, Elts);
936         Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts);
937       }
938       llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
939       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp");
940     } else {
941       // We should never shorten the vector
942       assert(0 && "unexpected shorten vector length");
943     }
944   } else {
945     // If the Src is a scalar (not a vector) it must be updating one element.
946     unsigned InIdx = getAccessedFieldNo(0, Elts);
947     const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
948     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
949     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
950   }
951 
952   Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
953 }
954 
955 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
956 // generating write-barries API. It is currently a global, ivar,
957 // or neither.
958 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
959                                  LValue &LV) {
960   if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC)
961     return;
962 
963   if (isa<ObjCIvarRefExpr>(E)) {
964     LV.SetObjCIvar(LV, true);
965     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
966     LV.setBaseIvarExp(Exp->getBase());
967     LV.SetObjCArray(LV, E->getType()->isArrayType());
968     return;
969   }
970 
971   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
972     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
973       if ((VD->isBlockVarDecl() && !VD->hasLocalStorage()) ||
974           VD->isFileVarDecl())
975         LV.SetGlobalObjCRef(LV, true);
976     }
977     LV.SetObjCArray(LV, E->getType()->isArrayType());
978     return;
979   }
980 
981   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
982     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
983     return;
984   }
985 
986   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
987     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
988     if (LV.isObjCIvar()) {
989       // If cast is to a structure pointer, follow gcc's behavior and make it
990       // a non-ivar write-barrier.
991       QualType ExpTy = E->getType();
992       if (ExpTy->isPointerType())
993         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
994       if (ExpTy->isRecordType())
995         LV.SetObjCIvar(LV, false);
996     }
997     return;
998   }
999   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1000     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1001     return;
1002   }
1003 
1004   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1005     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
1006     return;
1007   }
1008 
1009   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1010     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1011     if (LV.isObjCIvar() && !LV.isObjCArray())
1012       // Using array syntax to assigning to what an ivar points to is not
1013       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1014       LV.SetObjCIvar(LV, false);
1015     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1016       // Using array syntax to assigning to what global points to is not
1017       // same as assigning to the global itself. {id *G;} G[i] = 0;
1018       LV.SetGlobalObjCRef(LV, false);
1019     return;
1020   }
1021 
1022   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1023     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1024     // We don't know if member is an 'ivar', but this flag is looked at
1025     // only in the context of LV.isObjCIvar().
1026     LV.SetObjCArray(LV, E->getType()->isArrayType());
1027     return;
1028   }
1029 }
1030 
1031 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1032                                       const Expr *E, const VarDecl *VD) {
1033   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1034          "Var decl must have external storage or be a file var decl!");
1035 
1036   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1037   if (VD->getType()->isReferenceType())
1038     V = CGF.Builder.CreateLoad(V, "tmp");
1039   LValue LV = LValue::MakeAddr(V, CGF.MakeQualifiers(E->getType()));
1040   setObjCGCLValueClass(CGF.getContext(), E, LV);
1041   return LV;
1042 }
1043 
1044 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1045                                       const Expr *E, const FunctionDecl *FD) {
1046   llvm::Value* V = CGF.CGM.GetAddrOfFunction(FD);
1047   if (!FD->hasPrototype()) {
1048     if (const FunctionProtoType *Proto =
1049             FD->getType()->getAs<FunctionProtoType>()) {
1050       // Ugly case: for a K&R-style definition, the type of the definition
1051       // isn't the same as the type of a use.  Correct for this with a
1052       // bitcast.
1053       QualType NoProtoType =
1054           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1055       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1056       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp");
1057     }
1058   }
1059   return LValue::MakeAddr(V, CGF.MakeQualifiers(E->getType()));
1060 }
1061 
1062 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1063   const NamedDecl *ND = E->getDecl();
1064 
1065   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1066 
1067     // Check if this is a global variable.
1068     if (VD->hasExternalStorage() || VD->isFileVarDecl())
1069       return EmitGlobalVarDeclLValue(*this, E, VD);
1070 
1071     bool NonGCable = VD->hasLocalStorage() && !VD->hasAttr<BlocksAttr>();
1072 
1073     llvm::Value *V = LocalDeclMap[VD];
1074     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1075 
1076     Qualifiers Quals = MakeQualifiers(E->getType());
1077     // local variables do not get their gc attribute set.
1078     // local static?
1079     if (NonGCable) Quals.removeObjCGCAttr();
1080 
1081     if (VD->hasAttr<BlocksAttr>()) {
1082       V = Builder.CreateStructGEP(V, 1, "forwarding");
1083       V = Builder.CreateLoad(V);
1084       V = Builder.CreateStructGEP(V, getByRefValueLLVMField(VD),
1085                                   VD->getNameAsString());
1086     }
1087     if (VD->getType()->isReferenceType())
1088       V = Builder.CreateLoad(V, "tmp");
1089     LValue LV = LValue::MakeAddr(V, Quals);
1090     LValue::SetObjCNonGC(LV, NonGCable);
1091     setObjCGCLValueClass(getContext(), E, LV);
1092     return LV;
1093   }
1094 
1095   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1096     return EmitFunctionDeclLValue(*this, E, FD);
1097 
1098   // FIXME: the qualifier check does not seem sufficient here
1099   if (E->getQualifier()) {
1100     const FieldDecl *FD = cast<FieldDecl>(ND);
1101     llvm::Value *V = CGM.EmitPointerToDataMember(FD);
1102 
1103     return LValue::MakeAddr(V, MakeQualifiers(FD->getType()));
1104   }
1105 
1106   assert(false && "Unhandled DeclRefExpr");
1107 
1108   // an invalid LValue, but the assert will
1109   // ensure that this point is never reached.
1110   return LValue();
1111 }
1112 
1113 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
1114   return LValue::MakeAddr(GetAddrOfBlockDecl(E), MakeQualifiers(E->getType()));
1115 }
1116 
1117 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1118   // __extension__ doesn't affect lvalue-ness.
1119   if (E->getOpcode() == UnaryOperator::Extension)
1120     return EmitLValue(E->getSubExpr());
1121 
1122   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1123   switch (E->getOpcode()) {
1124   default: assert(0 && "Unknown unary operator lvalue!");
1125   case UnaryOperator::Deref: {
1126     QualType T = E->getSubExpr()->getType()->getPointeeType();
1127     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1128 
1129     Qualifiers Quals = MakeQualifiers(T);
1130     Quals.setAddressSpace(ExprTy.getAddressSpace());
1131 
1132     LValue LV = LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()), Quals);
1133     // We should not generate __weak write barrier on indirect reference
1134     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1135     // But, we continue to generate __strong write barrier on indirect write
1136     // into a pointer to object.
1137     if (getContext().getLangOptions().ObjC1 &&
1138         getContext().getLangOptions().getGCMode() != LangOptions::NonGC &&
1139         LV.isObjCWeak())
1140       LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext()));
1141     return LV;
1142   }
1143   case UnaryOperator::Real:
1144   case UnaryOperator::Imag: {
1145     LValue LV = EmitLValue(E->getSubExpr());
1146     unsigned Idx = E->getOpcode() == UnaryOperator::Imag;
1147     return LValue::MakeAddr(Builder.CreateStructGEP(LV.getAddress(),
1148                                                     Idx, "idx"),
1149                             MakeQualifiers(ExprTy));
1150   }
1151   case UnaryOperator::PreInc:
1152   case UnaryOperator::PreDec: {
1153     LValue LV = EmitLValue(E->getSubExpr());
1154     bool isInc = E->getOpcode() == UnaryOperator::PreInc;
1155 
1156     if (E->getType()->isAnyComplexType())
1157       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1158     else
1159       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1160     return LV;
1161   }
1162   }
1163 }
1164 
1165 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1166   return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromLiteral(E),
1167                           Qualifiers());
1168 }
1169 
1170 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1171   return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1172                           Qualifiers());
1173 }
1174 
1175 
1176 LValue CodeGenFunction::EmitPredefinedFunctionName(unsigned Type) {
1177   std::string GlobalVarName;
1178 
1179   switch (Type) {
1180   default: assert(0 && "Invalid type");
1181   case PredefinedExpr::Func:
1182     GlobalVarName = "__func__.";
1183     break;
1184   case PredefinedExpr::Function:
1185     GlobalVarName = "__FUNCTION__.";
1186     break;
1187   case PredefinedExpr::PrettyFunction:
1188     GlobalVarName = "__PRETTY_FUNCTION__.";
1189     break;
1190   }
1191 
1192   llvm::StringRef FnName = CurFn->getName();
1193   if (FnName.startswith("\01"))
1194     FnName = FnName.substr(1);
1195   GlobalVarName += FnName;
1196 
1197   std::string FunctionName =
1198     PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurCodeDecl);
1199 
1200   llvm::Constant *C =
1201     CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1202   return LValue::MakeAddr(C, Qualifiers());
1203 }
1204 
1205 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1206   switch (E->getIdentType()) {
1207   default:
1208     return EmitUnsupportedLValue(E, "predefined expression");
1209   case PredefinedExpr::Func:
1210   case PredefinedExpr::Function:
1211   case PredefinedExpr::PrettyFunction:
1212     return EmitPredefinedFunctionName(E->getIdentType());
1213   }
1214 }
1215 
1216 llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1217   const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1218 
1219   // If we are not optimzing, don't collapse all calls to trap in the function
1220   // to the same call, that way, in the debugger they can see which operation
1221   // did in fact fail.  If we are optimizing, we collpase all call to trap down
1222   // to just one per function to save on codesize.
1223   if (GCO.OptimizationLevel
1224       && TrapBB)
1225     return TrapBB;
1226 
1227   llvm::BasicBlock *Cont = 0;
1228   if (HaveInsertPoint()) {
1229     Cont = createBasicBlock("cont");
1230     EmitBranch(Cont);
1231   }
1232   TrapBB = createBasicBlock("trap");
1233   EmitBlock(TrapBB);
1234 
1235   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap, 0, 0);
1236   llvm::CallInst *TrapCall = Builder.CreateCall(F);
1237   TrapCall->setDoesNotReturn();
1238   TrapCall->setDoesNotThrow();
1239   Builder.CreateUnreachable();
1240 
1241   if (Cont)
1242     EmitBlock(Cont);
1243   return TrapBB;
1244 }
1245 
1246 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1247   // The index must always be an integer, which is not an aggregate.  Emit it.
1248   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1249   QualType IdxTy  = E->getIdx()->getType();
1250   bool IdxSigned = IdxTy->isSignedIntegerType();
1251 
1252   // If the base is a vector type, then we are forming a vector element lvalue
1253   // with this subscript.
1254   if (E->getBase()->getType()->isVectorType()) {
1255     // Emit the vector as an lvalue to get its address.
1256     LValue LHS = EmitLValue(E->getBase());
1257     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1258     Idx = Builder.CreateIntCast(Idx,
1259                           llvm::Type::getInt32Ty(VMContext), IdxSigned, "vidx");
1260     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1261                                  E->getBase()->getType().getCVRQualifiers());
1262   }
1263 
1264   // The base must be a pointer, which is not an aggregate.  Emit it.
1265   llvm::Value *Base = EmitScalarExpr(E->getBase());
1266 
1267   // Extend or truncate the index type to 32 or 64-bits.
1268   unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1269   if (IdxBitwidth != LLVMPointerWidth)
1270     Idx = Builder.CreateIntCast(Idx,
1271                             llvm::IntegerType::get(VMContext, LLVMPointerWidth),
1272                                 IdxSigned, "idxprom");
1273 
1274   // FIXME: As llvm implements the object size checking, this can come out.
1275   if (CatchUndefined) {
1276     if (const ImplicitCastExpr *ICE=dyn_cast<ImplicitCastExpr>(E->getBase())) {
1277       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1278         if (ICE->getCastKind() == CastExpr::CK_ArrayToPointerDecay) {
1279           if (const ConstantArrayType *CAT
1280               = getContext().getAsConstantArrayType(DRE->getType())) {
1281             llvm::APInt Size = CAT->getSize();
1282             llvm::BasicBlock *Cont = createBasicBlock("cont");
1283             Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1284                                   llvm::ConstantInt::get(Idx->getType(), Size)),
1285                                  Cont, getTrapBB());
1286             EmitBlock(Cont);
1287           }
1288         }
1289       }
1290     }
1291   }
1292 
1293   // We know that the pointer points to a type of the correct size, unless the
1294   // size is a VLA or Objective-C interface.
1295   llvm::Value *Address = 0;
1296   if (const VariableArrayType *VAT =
1297         getContext().getAsVariableArrayType(E->getType())) {
1298     llvm::Value *VLASize = GetVLASize(VAT);
1299 
1300     Idx = Builder.CreateMul(Idx, VLASize);
1301 
1302     QualType BaseType = getContext().getBaseElementType(VAT);
1303 
1304     CharUnits BaseTypeSize = getContext().getTypeSizeInChars(BaseType);
1305     Idx = Builder.CreateUDiv(Idx,
1306                              llvm::ConstantInt::get(Idx->getType(),
1307                                  BaseTypeSize.getQuantity()));
1308     Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1309   } else if (const ObjCInterfaceType *OIT =
1310              dyn_cast<ObjCInterfaceType>(E->getType())) {
1311     llvm::Value *InterfaceSize =
1312       llvm::ConstantInt::get(Idx->getType(),
1313           getContext().getTypeSizeInChars(OIT).getQuantity());
1314 
1315     Idx = Builder.CreateMul(Idx, InterfaceSize);
1316 
1317     const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
1318     Address = Builder.CreateGEP(Builder.CreateBitCast(Base, i8PTy),
1319                                 Idx, "arrayidx");
1320     Address = Builder.CreateBitCast(Address, Base->getType());
1321   } else {
1322     Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1323   }
1324 
1325   QualType T = E->getBase()->getType()->getPointeeType();
1326   assert(!T.isNull() &&
1327          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1328 
1329   Qualifiers Quals = MakeQualifiers(T);
1330   Quals.setAddressSpace(E->getBase()->getType().getAddressSpace());
1331 
1332   LValue LV = LValue::MakeAddr(Address, Quals);
1333   if (getContext().getLangOptions().ObjC1 &&
1334       getContext().getLangOptions().getGCMode() != LangOptions::NonGC) {
1335     LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext()));
1336     setObjCGCLValueClass(getContext(), E, LV);
1337   }
1338   return LV;
1339 }
1340 
1341 static
1342 llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
1343                                        llvm::SmallVector<unsigned, 4> &Elts) {
1344   llvm::SmallVector<llvm::Constant*, 4> CElts;
1345 
1346   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1347     CElts.push_back(llvm::ConstantInt::get(
1348                                    llvm::Type::getInt32Ty(VMContext), Elts[i]));
1349 
1350   return llvm::ConstantVector::get(&CElts[0], CElts.size());
1351 }
1352 
1353 LValue CodeGenFunction::
1354 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1355   const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
1356 
1357   // Emit the base vector as an l-value.
1358   LValue Base;
1359 
1360   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1361   if (E->isArrow()) {
1362     // If it is a pointer to a vector, emit the address and form an lvalue with
1363     // it.
1364     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1365     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1366     Qualifiers Quals = MakeQualifiers(PT->getPointeeType());
1367     Quals.removeObjCGCAttr();
1368     Base = LValue::MakeAddr(Ptr, Quals);
1369   } else if (E->getBase()->isLvalue(getContext()) == Expr::LV_Valid) {
1370     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1371     // emit the base as an lvalue.
1372     assert(E->getBase()->getType()->isVectorType());
1373     Base = EmitLValue(E->getBase());
1374   } else {
1375     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1376     assert(E->getBase()->getType()->getAs<VectorType>() &&
1377            "Result must be a vector");
1378     llvm::Value *Vec = EmitScalarExpr(E->getBase());
1379 
1380     // Store the vector to memory (because LValue wants an address).
1381     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1382     Builder.CreateStore(Vec, VecMem);
1383     Base = LValue::MakeAddr(VecMem, Qualifiers());
1384   }
1385 
1386   // Encode the element access list into a vector of unsigned indices.
1387   llvm::SmallVector<unsigned, 4> Indices;
1388   E->getEncodedElementAccess(Indices);
1389 
1390   if (Base.isSimple()) {
1391     llvm::Constant *CV = GenerateConstantVector(VMContext, Indices);
1392     return LValue::MakeExtVectorElt(Base.getAddress(), CV,
1393                                     Base.getVRQualifiers());
1394   }
1395   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1396 
1397   llvm::Constant *BaseElts = Base.getExtVectorElts();
1398   llvm::SmallVector<llvm::Constant *, 4> CElts;
1399 
1400   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1401     if (isa<llvm::ConstantAggregateZero>(BaseElts))
1402       CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0));
1403     else
1404       CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i])));
1405   }
1406   llvm::Constant *CV = llvm::ConstantVector::get(&CElts[0], CElts.size());
1407   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV,
1408                                   Base.getVRQualifiers());
1409 }
1410 
1411 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1412   bool isNonGC = false;
1413   Expr *BaseExpr = E->getBase();
1414   llvm::Value *BaseValue = NULL;
1415   Qualifiers BaseQuals;
1416 
1417   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1418   if (E->isArrow()) {
1419     BaseValue = EmitScalarExpr(BaseExpr);
1420     const PointerType *PTy =
1421       BaseExpr->getType()->getAs<PointerType>();
1422     BaseQuals = PTy->getPointeeType().getQualifiers();
1423   } else if (isa<ObjCPropertyRefExpr>(BaseExpr->IgnoreParens()) ||
1424              isa<ObjCImplicitSetterGetterRefExpr>(
1425                BaseExpr->IgnoreParens())) {
1426     RValue RV = EmitObjCPropertyGet(BaseExpr);
1427     BaseValue = RV.getAggregateAddr();
1428     BaseQuals = BaseExpr->getType().getQualifiers();
1429   } else {
1430     LValue BaseLV = EmitLValue(BaseExpr);
1431     if (BaseLV.isNonGC())
1432       isNonGC = true;
1433     // FIXME: this isn't right for bitfields.
1434     BaseValue = BaseLV.getAddress();
1435     QualType BaseTy = BaseExpr->getType();
1436     BaseQuals = BaseTy.getQualifiers();
1437   }
1438 
1439   NamedDecl *ND = E->getMemberDecl();
1440   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1441     LValue LV = EmitLValueForField(BaseValue, Field,
1442                                    BaseQuals.getCVRQualifiers());
1443     LValue::SetObjCNonGC(LV, isNonGC);
1444     setObjCGCLValueClass(getContext(), E, LV);
1445     return LV;
1446   }
1447 
1448   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1449     return EmitGlobalVarDeclLValue(*this, E, VD);
1450 
1451   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1452     return EmitFunctionDeclLValue(*this, E, FD);
1453 
1454   assert(false && "Unhandled member declaration!");
1455   return LValue();
1456 }
1457 
1458 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value* BaseValue,
1459                                               const FieldDecl* Field,
1460                                               unsigned CVRQualifiers) {
1461   CodeGenTypes::BitFieldInfo Info = CGM.getTypes().getBitFieldInfo(Field);
1462 
1463   // FIXME: CodeGenTypes should expose a method to get the appropriate type for
1464   // FieldTy (the appropriate type is ABI-dependent).
1465   const llvm::Type *FieldTy =
1466     CGM.getTypes().ConvertTypeForMem(Field->getType());
1467   const llvm::PointerType *BaseTy =
1468   cast<llvm::PointerType>(BaseValue->getType());
1469   unsigned AS = BaseTy->getAddressSpace();
1470   BaseValue = Builder.CreateBitCast(BaseValue,
1471                                     llvm::PointerType::get(FieldTy, AS),
1472                                     "tmp");
1473 
1474   llvm::Value *Idx =
1475     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), Info.FieldNo);
1476   llvm::Value *V = Builder.CreateGEP(BaseValue, Idx, "tmp");
1477 
1478   return LValue::MakeBitfield(V, Info.Start, Info.Size,
1479                               Field->getType()->isSignedIntegerType(),
1480                             Field->getType().getCVRQualifiers()|CVRQualifiers);
1481 }
1482 
1483 LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue,
1484                                            const FieldDecl* Field,
1485                                            unsigned CVRQualifiers) {
1486   if (Field->isBitField())
1487     return EmitLValueForBitfield(BaseValue, Field, CVRQualifiers);
1488 
1489   unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
1490   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
1491 
1492   // Match union field type.
1493   if (Field->getParent()->isUnion()) {
1494     const llvm::Type *FieldTy =
1495       CGM.getTypes().ConvertTypeForMem(Field->getType());
1496     const llvm::PointerType * BaseTy =
1497       cast<llvm::PointerType>(BaseValue->getType());
1498     unsigned AS = BaseTy->getAddressSpace();
1499     V = Builder.CreateBitCast(V,
1500                               llvm::PointerType::get(FieldTy, AS),
1501                               "tmp");
1502   }
1503   if (Field->getType()->isReferenceType())
1504     V = Builder.CreateLoad(V, "tmp");
1505 
1506   Qualifiers Quals = MakeQualifiers(Field->getType());
1507   Quals.addCVRQualifiers(CVRQualifiers);
1508   // __weak attribute on a field is ignored.
1509   if (Quals.getObjCGCAttr() == Qualifiers::Weak)
1510     Quals.removeObjCGCAttr();
1511 
1512   return LValue::MakeAddr(V, Quals);
1513 }
1514 
1515 LValue
1516 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value* BaseValue,
1517                                                   const FieldDecl* Field,
1518                                                   unsigned CVRQualifiers) {
1519   QualType FieldType = Field->getType();
1520 
1521   if (!FieldType->isReferenceType())
1522     return EmitLValueForField(BaseValue, Field, CVRQualifiers);
1523 
1524   unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
1525   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
1526 
1527   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
1528 
1529   return LValue::MakeAddr(V, MakeQualifiers(FieldType));
1530 }
1531 
1532 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr* E){
1533   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
1534   const Expr* InitExpr = E->getInitializer();
1535   LValue Result = LValue::MakeAddr(DeclPtr, MakeQualifiers(E->getType()));
1536 
1537   if (E->getType()->isComplexType())
1538     EmitComplexExprIntoAddr(InitExpr, DeclPtr, false);
1539   else if (hasAggregateLLVMType(E->getType()))
1540     EmitAnyExpr(InitExpr, DeclPtr, false);
1541   else
1542     EmitStoreThroughLValue(EmitAnyExpr(InitExpr), Result, E->getType());
1543 
1544   return Result;
1545 }
1546 
1547 LValue
1548 CodeGenFunction::EmitConditionalOperatorLValue(const ConditionalOperator* E) {
1549   if (E->isLvalue(getContext()) == Expr::LV_Valid) {
1550     if (int Cond = ConstantFoldsToSimpleInteger(E->getCond())) {
1551       Expr *Live = Cond == 1 ? E->getLHS() : E->getRHS();
1552       if (Live)
1553         return EmitLValue(Live);
1554     }
1555 
1556     if (!E->getLHS())
1557       return EmitUnsupportedLValue(E, "conditional operator with missing LHS");
1558 
1559     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1560     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1561     llvm::BasicBlock *ContBlock = createBasicBlock("cond.end");
1562 
1563     EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1564 
1565     // Any temporaries created here are conditional.
1566     BeginConditionalBranch();
1567     EmitBlock(LHSBlock);
1568     LValue LHS = EmitLValue(E->getLHS());
1569     EndConditionalBranch();
1570 
1571     if (!LHS.isSimple())
1572       return EmitUnsupportedLValue(E, "conditional operator");
1573 
1574     // FIXME: We shouldn't need an alloca for this.
1575     llvm::Value *Temp = CreateTempAlloca(LHS.getAddress()->getType(),"condtmp");
1576     Builder.CreateStore(LHS.getAddress(), Temp);
1577     EmitBranch(ContBlock);
1578 
1579     // Any temporaries created here are conditional.
1580     BeginConditionalBranch();
1581     EmitBlock(RHSBlock);
1582     LValue RHS = EmitLValue(E->getRHS());
1583     EndConditionalBranch();
1584     if (!RHS.isSimple())
1585       return EmitUnsupportedLValue(E, "conditional operator");
1586 
1587     Builder.CreateStore(RHS.getAddress(), Temp);
1588     EmitBranch(ContBlock);
1589 
1590     EmitBlock(ContBlock);
1591 
1592     Temp = Builder.CreateLoad(Temp, "lv");
1593     return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1594   }
1595 
1596   // ?: here should be an aggregate.
1597   assert((hasAggregateLLVMType(E->getType()) &&
1598           !E->getType()->isAnyComplexType()) &&
1599          "Unexpected conditional operator!");
1600 
1601   return EmitAggExprToLValue(E);
1602 }
1603 
1604 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
1605 /// If the cast is a dynamic_cast, we can have the usual lvalue result,
1606 /// otherwise if a cast is needed by the code generator in an lvalue context,
1607 /// then it must mean that we need the address of an aggregate in order to
1608 /// access one of its fields.  This can happen for all the reasons that casts
1609 /// are permitted with aggregate result, including noop aggregate casts, and
1610 /// cast from scalar to union.
1611 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
1612   switch (E->getCastKind()) {
1613   default:
1614     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
1615 
1616   case CastExpr::CK_Dynamic: {
1617     LValue LV = EmitLValue(E->getSubExpr());
1618     llvm::Value *V = LV.getAddress();
1619     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
1620     return LValue::MakeAddr(EmitDynamicCast(V, DCE),
1621                             MakeQualifiers(E->getType()));
1622   }
1623 
1624   case CastExpr::CK_NoOp:
1625   case CastExpr::CK_ConstructorConversion:
1626   case CastExpr::CK_UserDefinedConversion:
1627   case CastExpr::CK_AnyPointerToObjCPointerCast:
1628     return EmitLValue(E->getSubExpr());
1629 
1630   case CastExpr::CK_DerivedToBase: {
1631     const RecordType *DerivedClassTy =
1632       E->getSubExpr()->getType()->getAs<RecordType>();
1633     CXXRecordDecl *DerivedClassDecl =
1634       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1635 
1636     const RecordType *BaseClassTy = E->getType()->getAs<RecordType>();
1637     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
1638 
1639     LValue LV = EmitLValue(E->getSubExpr());
1640 
1641     // Perform the derived-to-base conversion
1642     llvm::Value *Base =
1643       GetAddressOfBaseClass(LV.getAddress(), DerivedClassDecl,
1644                             BaseClassDecl, /*NullCheckValue=*/false);
1645 
1646     return LValue::MakeAddr(Base, MakeQualifiers(E->getType()));
1647   }
1648   case CastExpr::CK_ToUnion:
1649     return EmitAggExprToLValue(E);
1650   case CastExpr::CK_BaseToDerived: {
1651     const RecordType *BaseClassTy =
1652       E->getSubExpr()->getType()->getAs<RecordType>();
1653     CXXRecordDecl *BaseClassDecl =
1654       cast<CXXRecordDecl>(BaseClassTy->getDecl());
1655 
1656     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
1657     CXXRecordDecl *DerivedClassDecl =
1658       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1659 
1660     LValue LV = EmitLValue(E->getSubExpr());
1661 
1662     // Perform the base-to-derived conversion
1663     llvm::Value *Derived =
1664       GetAddressOfDerivedClass(LV.getAddress(), BaseClassDecl,
1665                                DerivedClassDecl, /*NullCheckValue=*/false);
1666 
1667     return LValue::MakeAddr(Derived, MakeQualifiers(E->getType()));
1668   }
1669   case CastExpr::CK_BitCast: {
1670     // This must be a reinterpret_cast (or c-style equivalent).
1671     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
1672 
1673     LValue LV = EmitLValue(E->getSubExpr());
1674     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
1675                                            ConvertType(CE->getTypeAsWritten()));
1676     return LValue::MakeAddr(V, MakeQualifiers(E->getType()));
1677   }
1678   }
1679 }
1680 
1681 LValue CodeGenFunction::EmitNullInitializationLValue(
1682                                               const CXXZeroInitValueExpr *E) {
1683   QualType Ty = E->getType();
1684   LValue LV = LValue::MakeAddr(CreateMemTemp(Ty), MakeQualifiers(Ty));
1685   EmitMemSetToZero(LV.getAddress(), Ty);
1686   return LV;
1687 }
1688 
1689 //===--------------------------------------------------------------------===//
1690 //                             Expression Emission
1691 //===--------------------------------------------------------------------===//
1692 
1693 
1694 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
1695                                      ReturnValueSlot ReturnValue) {
1696   // Builtins never have block type.
1697   if (E->getCallee()->getType()->isBlockPointerType())
1698     return EmitBlockCallExpr(E, ReturnValue);
1699 
1700   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
1701     return EmitCXXMemberCallExpr(CE, ReturnValue);
1702 
1703   const Decl *TargetDecl = 0;
1704   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) {
1705     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
1706       TargetDecl = DRE->getDecl();
1707       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl))
1708         if (unsigned builtinID = FD->getBuiltinID())
1709           return EmitBuiltinExpr(FD, builtinID, E);
1710     }
1711   }
1712 
1713   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
1714     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
1715       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
1716 
1717   if (isa<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
1718     // C++ [expr.pseudo]p1:
1719     //   The result shall only be used as the operand for the function call
1720     //   operator (), and the result of such a call has type void. The only
1721     //   effect is the evaluation of the postfix-expression before the dot or
1722     //   arrow.
1723     EmitScalarExpr(E->getCallee());
1724     return RValue::get(0);
1725   }
1726 
1727   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
1728   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
1729                   E->arg_begin(), E->arg_end(), TargetDecl);
1730 }
1731 
1732 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
1733   // Comma expressions just emit their LHS then their RHS as an l-value.
1734   if (E->getOpcode() == BinaryOperator::Comma) {
1735     EmitAnyExpr(E->getLHS());
1736     EnsureInsertPoint();
1737     return EmitLValue(E->getRHS());
1738   }
1739 
1740   if (E->getOpcode() == BinaryOperator::PtrMemD ||
1741       E->getOpcode() == BinaryOperator::PtrMemI)
1742     return EmitPointerToDataMemberBinaryExpr(E);
1743 
1744   // Can only get l-value for binary operator expressions which are a
1745   // simple assignment of aggregate type.
1746   if (E->getOpcode() != BinaryOperator::Assign)
1747     return EmitUnsupportedLValue(E, "binary l-value expression");
1748 
1749   if (!hasAggregateLLVMType(E->getType())) {
1750     // Emit the LHS as an l-value.
1751     LValue LV = EmitLValue(E->getLHS());
1752 
1753     llvm::Value *RHS = EmitScalarExpr(E->getRHS());
1754     EmitStoreOfScalar(RHS, LV.getAddress(), LV.isVolatileQualified(),
1755                       E->getType());
1756     return LV;
1757   }
1758 
1759   return EmitAggExprToLValue(E);
1760 }
1761 
1762 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
1763   RValue RV = EmitCallExpr(E);
1764 
1765   if (!RV.isScalar())
1766     return LValue::MakeAddr(RV.getAggregateAddr(),MakeQualifiers(E->getType()));
1767 
1768   assert(E->getCallReturnType()->isReferenceType() &&
1769          "Can't have a scalar return unless the return type is a "
1770          "reference type!");
1771 
1772   return LValue::MakeAddr(RV.getScalarVal(), MakeQualifiers(E->getType()));
1773 }
1774 
1775 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
1776   // FIXME: This shouldn't require another copy.
1777   return EmitAggExprToLValue(E);
1778 }
1779 
1780 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
1781   llvm::Value *Temp = CreateMemTemp(E->getType(), "tmp");
1782   EmitCXXConstructExpr(Temp, E);
1783   return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1784 }
1785 
1786 LValue
1787 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
1788   llvm::Value *Temp = EmitCXXTypeidExpr(E);
1789   return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1790 }
1791 
1792 LValue
1793 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
1794   LValue LV = EmitLValue(E->getSubExpr());
1795   PushCXXTemporary(E->getTemporary(), LV.getAddress());
1796   return LV;
1797 }
1798 
1799 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
1800   // Can only get l-value for message expression returning aggregate type
1801   RValue RV = EmitObjCMessageExpr(E);
1802   // FIXME: can this be volatile?
1803   return LValue::MakeAddr(RV.getAggregateAddr(), MakeQualifiers(E->getType()));
1804 }
1805 
1806 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
1807                                              const ObjCIvarDecl *Ivar) {
1808   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
1809 }
1810 
1811 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
1812                                           llvm::Value *BaseValue,
1813                                           const ObjCIvarDecl *Ivar,
1814                                           unsigned CVRQualifiers) {
1815   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
1816                                                    Ivar, CVRQualifiers);
1817 }
1818 
1819 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
1820   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
1821   llvm::Value *BaseValue = 0;
1822   const Expr *BaseExpr = E->getBase();
1823   Qualifiers BaseQuals;
1824   QualType ObjectTy;
1825   if (E->isArrow()) {
1826     BaseValue = EmitScalarExpr(BaseExpr);
1827     ObjectTy = BaseExpr->getType()->getPointeeType();
1828     BaseQuals = ObjectTy.getQualifiers();
1829   } else {
1830     LValue BaseLV = EmitLValue(BaseExpr);
1831     // FIXME: this isn't right for bitfields.
1832     BaseValue = BaseLV.getAddress();
1833     ObjectTy = BaseExpr->getType();
1834     BaseQuals = ObjectTy.getQualifiers();
1835   }
1836 
1837   LValue LV =
1838     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
1839                       BaseQuals.getCVRQualifiers());
1840   setObjCGCLValueClass(getContext(), E, LV);
1841   return LV;
1842 }
1843 
1844 LValue
1845 CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) {
1846   // This is a special l-value that just issues sends when we load or store
1847   // through it.
1848   return LValue::MakePropertyRef(E, E->getType().getCVRQualifiers());
1849 }
1850 
1851 LValue CodeGenFunction::EmitObjCKVCRefLValue(
1852                                 const ObjCImplicitSetterGetterRefExpr *E) {
1853   // This is a special l-value that just issues sends when we load or store
1854   // through it.
1855   return LValue::MakeKVCRef(E, E->getType().getCVRQualifiers());
1856 }
1857 
1858 LValue CodeGenFunction::EmitObjCSuperExprLValue(const ObjCSuperExpr *E) {
1859   return EmitUnsupportedLValue(E, "use of super");
1860 }
1861 
1862 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
1863   // Can only get l-value for message expression returning aggregate type
1864   RValue RV = EmitAnyExprToTemp(E);
1865   // FIXME: can this be volatile?
1866   return LValue::MakeAddr(RV.getAggregateAddr(), MakeQualifiers(E->getType()));
1867 }
1868 
1869 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
1870                                  ReturnValueSlot ReturnValue,
1871                                  CallExpr::const_arg_iterator ArgBeg,
1872                                  CallExpr::const_arg_iterator ArgEnd,
1873                                  const Decl *TargetDecl) {
1874   // Get the actual function type. The callee type will always be a pointer to
1875   // function type or a block pointer type.
1876   assert(CalleeType->isFunctionPointerType() &&
1877          "Call must have function pointer type!");
1878 
1879   CalleeType = getContext().getCanonicalType(CalleeType);
1880 
1881   const FunctionType *FnType
1882     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
1883   QualType ResultType = FnType->getResultType();
1884 
1885   CallArgList Args;
1886   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
1887 
1888   return EmitCall(CGM.getTypes().getFunctionInfo(Args, FnType),
1889                   Callee, ReturnValue, Args, TargetDecl);
1890 }
1891 
1892 LValue CodeGenFunction::
1893 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
1894   llvm::Value *BaseV;
1895   if (E->getOpcode() == BinaryOperator::PtrMemI)
1896     BaseV = EmitScalarExpr(E->getLHS());
1897   else
1898     BaseV = EmitLValue(E->getLHS()).getAddress();
1899   const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(getLLVMContext());
1900   BaseV = Builder.CreateBitCast(BaseV, i8Ty);
1901   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
1902   llvm::Value *AddV = Builder.CreateInBoundsGEP(BaseV, OffsetV, "add.ptr");
1903 
1904   QualType Ty = E->getRHS()->getType();
1905   Ty = Ty->getAs<MemberPointerType>()->getPointeeType();
1906 
1907   const llvm::Type *PType = ConvertType(getContext().getPointerType(Ty));
1908   AddV = Builder.CreateBitCast(AddV, PType);
1909   return LValue::MakeAddr(AddV, MakeQualifiers(Ty));
1910 }
1911 
1912