1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGObjCRuntime.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "llvm/Intrinsics.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "llvm/Target/TargetData.h"
23 using namespace clang;
24 using namespace CodeGen;
25 
26 //===--------------------------------------------------------------------===//
27 //                        Miscellaneous Helper Methods
28 //===--------------------------------------------------------------------===//
29 
30 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
31 /// block.
32 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
33                                                     const llvm::Twine &Name) {
34   if (!Builder.isNamePreserving())
35     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
36   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
37 }
38 
39 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
40 /// expression and compare the result against zero, returning an Int1Ty value.
41 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
42   QualType BoolTy = getContext().BoolTy;
43   if (E->getType()->isMemberFunctionPointerType()) {
44     llvm::Value *Ptr = CreateTempAlloca(ConvertType(E->getType()));
45     EmitAggExpr(E, Ptr, /*VolatileDest=*/false);
46 
47     // Get the pointer.
48     llvm::Value *FuncPtr = Builder.CreateStructGEP(Ptr, 0, "src.ptr");
49     FuncPtr = Builder.CreateLoad(FuncPtr);
50 
51     llvm::Value *IsNotNull =
52       Builder.CreateICmpNE(FuncPtr,
53                             llvm::Constant::getNullValue(FuncPtr->getType()),
54                             "tobool");
55 
56     return IsNotNull;
57   }
58   if (!E->getType()->isAnyComplexType())
59     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
60 
61   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
62 }
63 
64 /// EmitAnyExpr - Emit code to compute the specified expression which can have
65 /// any type.  The result is returned as an RValue struct.  If this is an
66 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where the
67 /// result should be returned.
68 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc,
69                                     bool IsAggLocVolatile, bool IgnoreResult,
70                                     bool IsInitializer) {
71   if (!hasAggregateLLVMType(E->getType()))
72     return RValue::get(EmitScalarExpr(E, IgnoreResult));
73   else if (E->getType()->isAnyComplexType())
74     return RValue::getComplex(EmitComplexExpr(E, false, false,
75                                               IgnoreResult, IgnoreResult));
76 
77   EmitAggExpr(E, AggLoc, IsAggLocVolatile, IgnoreResult, IsInitializer);
78   return RValue::getAggregate(AggLoc, IsAggLocVolatile);
79 }
80 
81 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
82 /// always be accessible even if no aggregate location is provided.
83 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E,
84                                           bool IsAggLocVolatile,
85                                           bool IsInitializer) {
86   llvm::Value *AggLoc = 0;
87 
88   if (hasAggregateLLVMType(E->getType()) &&
89       !E->getType()->isAnyComplexType())
90     AggLoc = CreateTempAlloca(ConvertType(E->getType()), "agg.tmp");
91   return EmitAnyExpr(E, AggLoc, IsAggLocVolatile, /*IgnoreResult=*/false,
92                      IsInitializer);
93 }
94 
95 RValue CodeGenFunction::EmitReferenceBindingToExpr(const Expr* E,
96                                                    QualType DestType,
97                                                    bool IsInitializer) {
98   bool ShouldDestroyTemporaries = false;
99   unsigned OldNumLiveTemporaries = 0;
100 
101   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
102     E = DAE->getExpr();
103 
104   if (const CXXExprWithTemporaries *TE = dyn_cast<CXXExprWithTemporaries>(E)) {
105     ShouldDestroyTemporaries = true;
106 
107     // Keep track of the current cleanup stack depth.
108     OldNumLiveTemporaries = LiveTemporaries.size();
109 
110     E = TE->getSubExpr();
111   }
112 
113   RValue Val;
114   if (E->isLvalue(getContext()) == Expr::LV_Valid) {
115     // Emit the expr as an lvalue.
116     LValue LV = EmitLValue(E);
117     if (LV.isSimple())
118       return RValue::get(LV.getAddress());
119     Val = EmitLoadOfLValue(LV, E->getType());
120 
121     if (ShouldDestroyTemporaries) {
122       // Pop temporaries.
123       while (LiveTemporaries.size() > OldNumLiveTemporaries)
124         PopCXXTemporary();
125     }
126   } else {
127     const CXXRecordDecl *BaseClassDecl = 0;
128     const CXXRecordDecl *DerivedClassDecl = 0;
129 
130     if (const CastExpr *CE =
131           dyn_cast<CastExpr>(E->IgnoreParenNoopCasts(getContext()))) {
132       if (CE->getCastKind() == CastExpr::CK_DerivedToBase) {
133         E = CE->getSubExpr();
134 
135         BaseClassDecl =
136           cast<CXXRecordDecl>(CE->getType()->getAs<RecordType>()->getDecl());
137         DerivedClassDecl =
138           cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
139       }
140     }
141 
142     Val = EmitAnyExprToTemp(E, /*IsAggLocVolatile=*/false,
143                             IsInitializer);
144 
145     if (ShouldDestroyTemporaries) {
146       // Pop temporaries.
147       while (LiveTemporaries.size() > OldNumLiveTemporaries)
148         PopCXXTemporary();
149     }
150 
151     if (IsInitializer) {
152       // We might have to destroy the temporary variable.
153       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
154         if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
155           if (!ClassDecl->hasTrivialDestructor()) {
156             const CXXDestructorDecl *Dtor =
157               ClassDecl->getDestructor(getContext());
158 
159             {
160               DelayedCleanupBlock Scope(*this);
161               EmitCXXDestructorCall(Dtor, Dtor_Complete,
162                                     Val.getAggregateAddr());
163 
164               // Make sure to jump to the exit block.
165               EmitBranch(Scope.getCleanupExitBlock());
166             }
167             if (Exceptions) {
168               EHCleanupBlock Cleanup(*this);
169               EmitCXXDestructorCall(Dtor, Dtor_Complete,
170                                     Val.getAggregateAddr());
171             }
172           }
173         }
174       }
175     }
176 
177     // Check if need to perform the derived-to-base cast.
178     if (BaseClassDecl) {
179       llvm::Value *Derived = Val.getAggregateAddr();
180       llvm::Value *Base =
181         GetAddressOfBaseClass(Derived, DerivedClassDecl, BaseClassDecl,
182                               /*NullCheckValue=*/false);
183       return RValue::get(Base);
184     }
185   }
186 
187   if (Val.isAggregate()) {
188     Val = RValue::get(Val.getAggregateAddr());
189   } else {
190     // Create a temporary variable that we can bind the reference to.
191     llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(E->getType()),
192                                          "reftmp");
193     if (Val.isScalar())
194       EmitStoreOfScalar(Val.getScalarVal(), Temp, false, E->getType());
195     else
196       StoreComplexToAddr(Val.getComplexVal(), Temp, false);
197     Val = RValue::get(Temp);
198   }
199 
200   return Val;
201 }
202 
203 
204 /// getAccessedFieldNo - Given an encoded value and a result number, return the
205 /// input field number being accessed.
206 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
207                                              const llvm::Constant *Elts) {
208   if (isa<llvm::ConstantAggregateZero>(Elts))
209     return 0;
210 
211   return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
212 }
213 
214 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
215   if (!CatchUndefined)
216     return;
217 
218   const llvm::IntegerType *Size_tTy
219     = llvm::IntegerType::get(VMContext, LLVMPointerWidth);
220   Address = Builder.CreateBitCast(Address, PtrToInt8Ty);
221 
222   const llvm::Type *ResType[] = {
223     Size_tTy
224   };
225   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, ResType, 1);
226   const llvm::IntegerType *IntTy = cast<llvm::IntegerType>(
227     CGM.getTypes().ConvertType(CGM.getContext().IntTy));
228   // In time, people may want to control this and use a 1 here.
229   llvm::Value *Arg = llvm::ConstantInt::get(IntTy, 0);
230   llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
231   llvm::BasicBlock *Cont = createBasicBlock();
232   llvm::BasicBlock *Check = createBasicBlock();
233   llvm::Value *NegativeOne = llvm::ConstantInt::get(Size_tTy, -1ULL);
234   Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
235 
236   EmitBlock(Check);
237   Builder.CreateCondBr(Builder.CreateICmpUGE(C,
238                                         llvm::ConstantInt::get(Size_tTy, Size)),
239                        Cont, getTrapBB());
240   EmitBlock(Cont);
241 }
242 
243 
244 llvm::Value *CodeGenFunction::
245 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
246                         bool isInc, bool isPre) {
247   QualType ValTy = E->getSubExpr()->getType();
248   llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy).getScalarVal();
249 
250   int AmountVal = isInc ? 1 : -1;
251 
252   if (ValTy->isPointerType() &&
253       ValTy->getAs<PointerType>()->isVariableArrayType()) {
254     // The amount of the addition/subtraction needs to account for the VLA size
255     ErrorUnsupported(E, "VLA pointer inc/dec");
256   }
257 
258   llvm::Value *NextVal;
259   if (const llvm::PointerType *PT =
260       dyn_cast<llvm::PointerType>(InVal->getType())) {
261     llvm::Constant *Inc =
262     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), AmountVal);
263     if (!isa<llvm::FunctionType>(PT->getElementType())) {
264       QualType PTEE = ValTy->getPointeeType();
265       if (const ObjCInterfaceType *OIT =
266           dyn_cast<ObjCInterfaceType>(PTEE)) {
267         // Handle interface types, which are not represented with a concrete
268         // type.
269         int size = getContext().getTypeSize(OIT) / 8;
270         if (!isInc)
271           size = -size;
272         Inc = llvm::ConstantInt::get(Inc->getType(), size);
273         const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
274         InVal = Builder.CreateBitCast(InVal, i8Ty);
275         NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
276         llvm::Value *lhs = LV.getAddress();
277         lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
278         LV = LValue::MakeAddr(lhs, MakeQualifiers(ValTy));
279       } else
280         NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
281     } else {
282       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
283       NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
284       NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
285       NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
286     }
287   } else if (InVal->getType() == llvm::Type::getInt1Ty(VMContext) && isInc) {
288     // Bool++ is an interesting case, due to promotion rules, we get:
289     // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
290     // Bool = ((int)Bool+1) != 0
291     // An interesting aspect of this is that increment is always true.
292     // Decrement does not have this property.
293     NextVal = llvm::ConstantInt::getTrue(VMContext);
294   } else if (isa<llvm::IntegerType>(InVal->getType())) {
295     NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
296 
297     // Signed integer overflow is undefined behavior.
298     if (ValTy->isSignedIntegerType())
299       NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
300     else
301       NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
302   } else {
303     // Add the inc/dec to the real part.
304     if (InVal->getType()->isFloatTy())
305       NextVal =
306       llvm::ConstantFP::get(VMContext,
307                             llvm::APFloat(static_cast<float>(AmountVal)));
308     else if (InVal->getType()->isDoubleTy())
309       NextVal =
310       llvm::ConstantFP::get(VMContext,
311                             llvm::APFloat(static_cast<double>(AmountVal)));
312     else {
313       llvm::APFloat F(static_cast<float>(AmountVal));
314       bool ignored;
315       F.convert(Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
316                 &ignored);
317       NextVal = llvm::ConstantFP::get(VMContext, F);
318     }
319     NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
320   }
321 
322   // Store the updated result through the lvalue.
323   if (LV.isBitfield())
324     EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
325   else
326     EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
327 
328   // If this is a postinc, return the value read from memory, otherwise use the
329   // updated value.
330   return isPre ? NextVal : InVal;
331 }
332 
333 
334 CodeGenFunction::ComplexPairTy CodeGenFunction::
335 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
336                          bool isInc, bool isPre) {
337   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
338                                             LV.isVolatileQualified());
339 
340   llvm::Value *NextVal;
341   if (isa<llvm::IntegerType>(InVal.first->getType())) {
342     uint64_t AmountVal = isInc ? 1 : -1;
343     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
344 
345     // Add the inc/dec to the real part.
346     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
347   } else {
348     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
349     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
350     if (!isInc)
351       FVal.changeSign();
352     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
353 
354     // Add the inc/dec to the real part.
355     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
356   }
357 
358   ComplexPairTy IncVal(NextVal, InVal.second);
359 
360   // Store the updated result through the lvalue.
361   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
362 
363   // If this is a postinc, return the value read from memory, otherwise use the
364   // updated value.
365   return isPre ? IncVal : InVal;
366 }
367 
368 
369 //===----------------------------------------------------------------------===//
370 //                         LValue Expression Emission
371 //===----------------------------------------------------------------------===//
372 
373 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
374   if (Ty->isVoidType())
375     return RValue::get(0);
376 
377   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
378     const llvm::Type *EltTy = ConvertType(CTy->getElementType());
379     llvm::Value *U = llvm::UndefValue::get(EltTy);
380     return RValue::getComplex(std::make_pair(U, U));
381   }
382 
383   if (hasAggregateLLVMType(Ty)) {
384     const llvm::Type *LTy = llvm::PointerType::getUnqual(ConvertType(Ty));
385     return RValue::getAggregate(llvm::UndefValue::get(LTy));
386   }
387 
388   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
389 }
390 
391 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
392                                               const char *Name) {
393   ErrorUnsupported(E, Name);
394   return GetUndefRValue(E->getType());
395 }
396 
397 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
398                                               const char *Name) {
399   ErrorUnsupported(E, Name);
400   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
401   return LValue::MakeAddr(llvm::UndefValue::get(Ty),
402                           MakeQualifiers(E->getType()));
403 }
404 
405 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
406   LValue LV = EmitLValue(E);
407   if (!isa<DeclRefExpr>(E) && !LV.isBitfield() && LV.isSimple())
408     EmitCheck(LV.getAddress(), getContext().getTypeSize(E->getType()) / 8);
409   return LV;
410 }
411 
412 /// EmitLValue - Emit code to compute a designator that specifies the location
413 /// of the expression.
414 ///
415 /// This can return one of two things: a simple address or a bitfield reference.
416 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
417 /// an LLVM pointer type.
418 ///
419 /// If this returns a bitfield reference, nothing about the pointee type of the
420 /// LLVM value is known: For example, it may not be a pointer to an integer.
421 ///
422 /// If this returns a normal address, and if the lvalue's C type is fixed size,
423 /// this method guarantees that the returned pointer type will point to an LLVM
424 /// type of the same size of the lvalue's type.  If the lvalue has a variable
425 /// length type, this is not possible.
426 ///
427 LValue CodeGenFunction::EmitLValue(const Expr *E) {
428   switch (E->getStmtClass()) {
429   default: return EmitUnsupportedLValue(E, "l-value expression");
430 
431   case Expr::ObjCIsaExprClass:
432     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
433   case Expr::BinaryOperatorClass:
434     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
435   case Expr::CallExprClass:
436   case Expr::CXXMemberCallExprClass:
437   case Expr::CXXOperatorCallExprClass:
438     return EmitCallExprLValue(cast<CallExpr>(E));
439   case Expr::VAArgExprClass:
440     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
441   case Expr::DeclRefExprClass:
442     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
443   case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
444   case Expr::PredefinedExprClass:
445     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
446   case Expr::StringLiteralClass:
447     return EmitStringLiteralLValue(cast<StringLiteral>(E));
448   case Expr::ObjCEncodeExprClass:
449     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
450 
451   case Expr::BlockDeclRefExprClass:
452     return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
453 
454   case Expr::CXXTemporaryObjectExprClass:
455   case Expr::CXXConstructExprClass:
456     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
457   case Expr::CXXBindTemporaryExprClass:
458     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
459   case Expr::CXXBindReferenceExprClass:
460     return EmitLValue(cast<CXXBindReferenceExpr>(E)->getSubExpr());
461   case Expr::CXXExprWithTemporariesClass:
462     return EmitCXXExprWithTemporariesLValue(cast<CXXExprWithTemporaries>(E));
463   case Expr::CXXZeroInitValueExprClass:
464     return EmitNullInitializationLValue(cast<CXXZeroInitValueExpr>(E));
465   case Expr::CXXDefaultArgExprClass:
466     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
467   case Expr::CXXTypeidExprClass:
468     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
469 
470   case Expr::ObjCMessageExprClass:
471     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
472   case Expr::ObjCIvarRefExprClass:
473     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
474   case Expr::ObjCPropertyRefExprClass:
475     return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E));
476   case Expr::ObjCImplicitSetterGetterRefExprClass:
477     return EmitObjCKVCRefLValue(cast<ObjCImplicitSetterGetterRefExpr>(E));
478   case Expr::ObjCSuperExprClass:
479     return EmitObjCSuperExprLValue(cast<ObjCSuperExpr>(E));
480 
481   case Expr::StmtExprClass:
482     return EmitStmtExprLValue(cast<StmtExpr>(E));
483   case Expr::UnaryOperatorClass:
484     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
485   case Expr::ArraySubscriptExprClass:
486     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
487   case Expr::ExtVectorElementExprClass:
488     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
489   case Expr::MemberExprClass:
490     return EmitMemberExpr(cast<MemberExpr>(E));
491   case Expr::CompoundLiteralExprClass:
492     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
493   case Expr::ConditionalOperatorClass:
494     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
495   case Expr::ChooseExprClass:
496     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
497   case Expr::ImplicitCastExprClass:
498   case Expr::CStyleCastExprClass:
499   case Expr::CXXFunctionalCastExprClass:
500   case Expr::CXXStaticCastExprClass:
501   case Expr::CXXDynamicCastExprClass:
502   case Expr::CXXReinterpretCastExprClass:
503   case Expr::CXXConstCastExprClass:
504     return EmitCastLValue(cast<CastExpr>(E));
505   }
506 }
507 
508 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
509                                                QualType Ty) {
510   llvm::LoadInst *Load = Builder.CreateLoad(Addr, "tmp");
511   if (Volatile)
512     Load->setVolatile(true);
513 
514   // Bool can have different representation in memory than in registers.
515   llvm::Value *V = Load;
516   if (Ty->isBooleanType())
517     if (V->getType() != llvm::Type::getInt1Ty(VMContext))
518       V = Builder.CreateTrunc(V, llvm::Type::getInt1Ty(VMContext), "tobool");
519 
520   return V;
521 }
522 
523 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
524                                         bool Volatile, QualType Ty) {
525 
526   if (Ty->isBooleanType()) {
527     // Bool can have different representation in memory than in registers.
528     const llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
529     Value = Builder.CreateIntCast(Value, DstPtr->getElementType(), false);
530   }
531   Builder.CreateStore(Value, Addr, Volatile);
532 }
533 
534 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
535 /// method emits the address of the lvalue, then loads the result as an rvalue,
536 /// returning the rvalue.
537 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
538   if (LV.isObjCWeak()) {
539     // load of a __weak object.
540     llvm::Value *AddrWeakObj = LV.getAddress();
541     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
542                                                              AddrWeakObj));
543   }
544 
545   if (LV.isSimple()) {
546     llvm::Value *Ptr = LV.getAddress();
547     const llvm::Type *EltTy =
548       cast<llvm::PointerType>(Ptr->getType())->getElementType();
549 
550     // Simple scalar l-value.
551     if (EltTy->isSingleValueType())
552       return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(),
553                                           ExprType));
554 
555     assert(ExprType->isFunctionType() && "Unknown scalar value");
556     return RValue::get(Ptr);
557   }
558 
559   if (LV.isVectorElt()) {
560     llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
561                                           LV.isVolatileQualified(), "tmp");
562     return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
563                                                     "vecext"));
564   }
565 
566   // If this is a reference to a subset of the elements of a vector, either
567   // shuffle the input or extract/insert them as appropriate.
568   if (LV.isExtVectorElt())
569     return EmitLoadOfExtVectorElementLValue(LV, ExprType);
570 
571   if (LV.isBitfield())
572     return EmitLoadOfBitfieldLValue(LV, ExprType);
573 
574   if (LV.isPropertyRef())
575     return EmitLoadOfPropertyRefLValue(LV, ExprType);
576 
577   assert(LV.isKVCRef() && "Unknown LValue type!");
578   return EmitLoadOfKVCRefLValue(LV, ExprType);
579 }
580 
581 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
582                                                  QualType ExprType) {
583   unsigned StartBit = LV.getBitfieldStartBit();
584   unsigned BitfieldSize = LV.getBitfieldSize();
585   llvm::Value *Ptr = LV.getBitfieldAddr();
586 
587   const llvm::Type *EltTy =
588     cast<llvm::PointerType>(Ptr->getType())->getElementType();
589   unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
590 
591   // In some cases the bitfield may straddle two memory locations.  Currently we
592   // load the entire bitfield, then do the magic to sign-extend it if
593   // necessary. This results in somewhat more code than necessary for the common
594   // case (one load), since two shifts accomplish both the masking and sign
595   // extension.
596   unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
597   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "tmp");
598 
599   // Shift to proper location.
600   if (StartBit)
601     Val = Builder.CreateLShr(Val, StartBit, "bf.lo");
602 
603   // Mask off unused bits.
604   llvm::Constant *LowMask = llvm::ConstantInt::get(VMContext,
605                                 llvm::APInt::getLowBitsSet(EltTySize, LowBits));
606   Val = Builder.CreateAnd(Val, LowMask, "bf.lo.cleared");
607 
608   // Fetch the high bits if necessary.
609   if (LowBits < BitfieldSize) {
610     unsigned HighBits = BitfieldSize - LowBits;
611     llvm::Value *HighPtr = Builder.CreateGEP(Ptr, llvm::ConstantInt::get(
612                             llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");
613     llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
614                                               LV.isVolatileQualified(),
615                                               "tmp");
616 
617     // Mask off unused bits.
618     llvm::Constant *HighMask = llvm::ConstantInt::get(VMContext,
619                                llvm::APInt::getLowBitsSet(EltTySize, HighBits));
620     HighVal = Builder.CreateAnd(HighVal, HighMask, "bf.lo.cleared");
621 
622     // Shift to proper location and or in to bitfield value.
623     HighVal = Builder.CreateShl(HighVal, LowBits);
624     Val = Builder.CreateOr(Val, HighVal, "bf.val");
625   }
626 
627   // Sign extend if necessary.
628   if (LV.isBitfieldSigned()) {
629     llvm::Value *ExtraBits = llvm::ConstantInt::get(EltTy,
630                                                     EltTySize - BitfieldSize);
631     Val = Builder.CreateAShr(Builder.CreateShl(Val, ExtraBits),
632                              ExtraBits, "bf.val.sext");
633   }
634 
635   // The bitfield type and the normal type differ when the storage sizes differ
636   // (currently just _Bool).
637   Val = Builder.CreateIntCast(Val, ConvertType(ExprType), false, "tmp");
638 
639   return RValue::get(Val);
640 }
641 
642 RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV,
643                                                     QualType ExprType) {
644   return EmitObjCPropertyGet(LV.getPropertyRefExpr());
645 }
646 
647 RValue CodeGenFunction::EmitLoadOfKVCRefLValue(LValue LV,
648                                                QualType ExprType) {
649   return EmitObjCPropertyGet(LV.getKVCRefExpr());
650 }
651 
652 // If this is a reference to a subset of the elements of a vector, create an
653 // appropriate shufflevector.
654 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV,
655                                                          QualType ExprType) {
656   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
657                                         LV.isVolatileQualified(), "tmp");
658 
659   const llvm::Constant *Elts = LV.getExtVectorElts();
660 
661   // If the result of the expression is a non-vector type, we must be extracting
662   // a single element.  Just codegen as an extractelement.
663   const VectorType *ExprVT = ExprType->getAs<VectorType>();
664   if (!ExprVT) {
665     unsigned InIdx = getAccessedFieldNo(0, Elts);
666     llvm::Value *Elt = llvm::ConstantInt::get(
667                                       llvm::Type::getInt32Ty(VMContext), InIdx);
668     return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
669   }
670 
671   // Always use shuffle vector to try to retain the original program structure
672   unsigned NumResultElts = ExprVT->getNumElements();
673 
674   llvm::SmallVector<llvm::Constant*, 4> Mask;
675   for (unsigned i = 0; i != NumResultElts; ++i) {
676     unsigned InIdx = getAccessedFieldNo(i, Elts);
677     Mask.push_back(llvm::ConstantInt::get(
678                                      llvm::Type::getInt32Ty(VMContext), InIdx));
679   }
680 
681   llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
682   Vec = Builder.CreateShuffleVector(Vec,
683                                     llvm::UndefValue::get(Vec->getType()),
684                                     MaskV, "tmp");
685   return RValue::get(Vec);
686 }
687 
688 
689 
690 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
691 /// lvalue, where both are guaranteed to the have the same type, and that type
692 /// is 'Ty'.
693 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
694                                              QualType Ty) {
695   if (!Dst.isSimple()) {
696     if (Dst.isVectorElt()) {
697       // Read/modify/write the vector, inserting the new element.
698       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
699                                             Dst.isVolatileQualified(), "tmp");
700       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
701                                         Dst.getVectorIdx(), "vecins");
702       Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
703       return;
704     }
705 
706     // If this is an update of extended vector elements, insert them as
707     // appropriate.
708     if (Dst.isExtVectorElt())
709       return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty);
710 
711     if (Dst.isBitfield())
712       return EmitStoreThroughBitfieldLValue(Src, Dst, Ty);
713 
714     if (Dst.isPropertyRef())
715       return EmitStoreThroughPropertyRefLValue(Src, Dst, Ty);
716 
717     assert(Dst.isKVCRef() && "Unknown LValue type");
718     return EmitStoreThroughKVCRefLValue(Src, Dst, Ty);
719   }
720 
721   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
722     // load of a __weak object.
723     llvm::Value *LvalueDst = Dst.getAddress();
724     llvm::Value *src = Src.getScalarVal();
725      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
726     return;
727   }
728 
729   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
730     // load of a __strong object.
731     llvm::Value *LvalueDst = Dst.getAddress();
732     llvm::Value *src = Src.getScalarVal();
733     if (Dst.isObjCIvar()) {
734       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
735       const llvm::Type *ResultType = ConvertType(getContext().LongTy);
736       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
737       llvm::Value *dst = RHS;
738       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
739       llvm::Value *LHS =
740         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
741       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
742       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
743                                               BytesBetween);
744     } else if (Dst.isGlobalObjCRef())
745       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst);
746     else
747       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
748     return;
749   }
750 
751   assert(Src.isScalar() && "Can't emit an agg store with this method");
752   EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(),
753                     Dst.isVolatileQualified(), Ty);
754 }
755 
756 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
757                                                      QualType Ty,
758                                                      llvm::Value **Result) {
759   unsigned StartBit = Dst.getBitfieldStartBit();
760   unsigned BitfieldSize = Dst.getBitfieldSize();
761   llvm::Value *Ptr = Dst.getBitfieldAddr();
762 
763   const llvm::Type *EltTy =
764     cast<llvm::PointerType>(Ptr->getType())->getElementType();
765   unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);
766 
767   // Get the new value, cast to the appropriate type and masked to exactly the
768   // size of the bit-field.
769   llvm::Value *SrcVal = Src.getScalarVal();
770   llvm::Value *NewVal = Builder.CreateIntCast(SrcVal, EltTy, false, "tmp");
771   llvm::Constant *Mask = llvm::ConstantInt::get(VMContext,
772                            llvm::APInt::getLowBitsSet(EltTySize, BitfieldSize));
773   NewVal = Builder.CreateAnd(NewVal, Mask, "bf.value");
774 
775   // Return the new value of the bit-field, if requested.
776   if (Result) {
777     // Cast back to the proper type for result.
778     const llvm::Type *SrcTy = SrcVal->getType();
779     llvm::Value *SrcTrunc = Builder.CreateIntCast(NewVal, SrcTy, false,
780                                                   "bf.reload.val");
781 
782     // Sign extend if necessary.
783     if (Dst.isBitfieldSigned()) {
784       unsigned SrcTySize = CGM.getTargetData().getTypeSizeInBits(SrcTy);
785       llvm::Value *ExtraBits = llvm::ConstantInt::get(SrcTy,
786                                                       SrcTySize - BitfieldSize);
787       SrcTrunc = Builder.CreateAShr(Builder.CreateShl(SrcTrunc, ExtraBits),
788                                     ExtraBits, "bf.reload.sext");
789     }
790 
791     *Result = SrcTrunc;
792   }
793 
794   // In some cases the bitfield may straddle two memory locations.  Emit the low
795   // part first and check to see if the high needs to be done.
796   unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
797   llvm::Value *LowVal = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
798                                            "bf.prev.low");
799 
800   // Compute the mask for zero-ing the low part of this bitfield.
801   llvm::Constant *InvMask =
802     llvm::ConstantInt::get(VMContext,
803              ~llvm::APInt::getBitsSet(EltTySize, StartBit, StartBit + LowBits));
804 
805   // Compute the new low part as
806   //   LowVal = (LowVal & InvMask) | (NewVal << StartBit),
807   // with the shift of NewVal implicitly stripping the high bits.
808   llvm::Value *NewLowVal =
809     Builder.CreateShl(NewVal, StartBit, "bf.value.lo");
810   LowVal = Builder.CreateAnd(LowVal, InvMask, "bf.prev.lo.cleared");
811   LowVal = Builder.CreateOr(LowVal, NewLowVal, "bf.new.lo");
812 
813   // Write back.
814   Builder.CreateStore(LowVal, Ptr, Dst.isVolatileQualified());
815 
816   // If the low part doesn't cover the bitfield emit a high part.
817   if (LowBits < BitfieldSize) {
818     unsigned HighBits = BitfieldSize - LowBits;
819     llvm::Value *HighPtr =  Builder.CreateGEP(Ptr, llvm::ConstantInt::get(
820                             llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");
821     llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
822                                               Dst.isVolatileQualified(),
823                                               "bf.prev.hi");
824 
825     // Compute the mask for zero-ing the high part of this bitfield.
826     llvm::Constant *InvMask =
827       llvm::ConstantInt::get(VMContext, ~llvm::APInt::getLowBitsSet(EltTySize,
828                                HighBits));
829 
830     // Compute the new high part as
831     //   HighVal = (HighVal & InvMask) | (NewVal lshr LowBits),
832     // where the high bits of NewVal have already been cleared and the
833     // shift stripping the low bits.
834     llvm::Value *NewHighVal =
835       Builder.CreateLShr(NewVal, LowBits, "bf.value.high");
836     HighVal = Builder.CreateAnd(HighVal, InvMask, "bf.prev.hi.cleared");
837     HighVal = Builder.CreateOr(HighVal, NewHighVal, "bf.new.hi");
838 
839     // Write back.
840     Builder.CreateStore(HighVal, HighPtr, Dst.isVolatileQualified());
841   }
842 }
843 
844 void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src,
845                                                         LValue Dst,
846                                                         QualType Ty) {
847   EmitObjCPropertySet(Dst.getPropertyRefExpr(), Src);
848 }
849 
850 void CodeGenFunction::EmitStoreThroughKVCRefLValue(RValue Src,
851                                                    LValue Dst,
852                                                    QualType Ty) {
853   EmitObjCPropertySet(Dst.getKVCRefExpr(), Src);
854 }
855 
856 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
857                                                                LValue Dst,
858                                                                QualType Ty) {
859   // This access turns into a read/modify/write of the vector.  Load the input
860   // value now.
861   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
862                                         Dst.isVolatileQualified(), "tmp");
863   const llvm::Constant *Elts = Dst.getExtVectorElts();
864 
865   llvm::Value *SrcVal = Src.getScalarVal();
866 
867   if (const VectorType *VTy = Ty->getAs<VectorType>()) {
868     unsigned NumSrcElts = VTy->getNumElements();
869     unsigned NumDstElts =
870        cast<llvm::VectorType>(Vec->getType())->getNumElements();
871     if (NumDstElts == NumSrcElts) {
872       // Use shuffle vector is the src and destination are the same number of
873       // elements and restore the vector mask since it is on the side it will be
874       // stored.
875       llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
876       for (unsigned i = 0; i != NumSrcElts; ++i) {
877         unsigned InIdx = getAccessedFieldNo(i, Elts);
878         Mask[InIdx] = llvm::ConstantInt::get(
879                                           llvm::Type::getInt32Ty(VMContext), i);
880       }
881 
882       llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
883       Vec = Builder.CreateShuffleVector(SrcVal,
884                                         llvm::UndefValue::get(Vec->getType()),
885                                         MaskV, "tmp");
886     } else if (NumDstElts > NumSrcElts) {
887       // Extended the source vector to the same length and then shuffle it
888       // into the destination.
889       // FIXME: since we're shuffling with undef, can we just use the indices
890       //        into that?  This could be simpler.
891       llvm::SmallVector<llvm::Constant*, 4> ExtMask;
892       const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
893       unsigned i;
894       for (i = 0; i != NumSrcElts; ++i)
895         ExtMask.push_back(llvm::ConstantInt::get(Int32Ty, i));
896       for (; i != NumDstElts; ++i)
897         ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
898       llvm::Value *ExtMaskV = llvm::ConstantVector::get(&ExtMask[0],
899                                                         ExtMask.size());
900       llvm::Value *ExtSrcVal =
901         Builder.CreateShuffleVector(SrcVal,
902                                     llvm::UndefValue::get(SrcVal->getType()),
903                                     ExtMaskV, "tmp");
904       // build identity
905       llvm::SmallVector<llvm::Constant*, 4> Mask;
906       for (unsigned i = 0; i != NumDstElts; ++i)
907         Mask.push_back(llvm::ConstantInt::get(Int32Ty, i));
908 
909       // modify when what gets shuffled in
910       for (unsigned i = 0; i != NumSrcElts; ++i) {
911         unsigned Idx = getAccessedFieldNo(i, Elts);
912         Mask[Idx] = llvm::ConstantInt::get(Int32Ty, i+NumDstElts);
913       }
914       llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
915       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp");
916     } else {
917       // We should never shorten the vector
918       assert(0 && "unexpected shorten vector length");
919     }
920   } else {
921     // If the Src is a scalar (not a vector) it must be updating one element.
922     unsigned InIdx = getAccessedFieldNo(0, Elts);
923     const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
924     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
925     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
926   }
927 
928   Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
929 }
930 
931 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
932 // generating write-barries API. It is currently a global, ivar,
933 // or neither.
934 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
935                                  LValue &LV) {
936   if (Ctx.getLangOptions().getGCMode() == LangOptions::NonGC)
937     return;
938 
939   if (isa<ObjCIvarRefExpr>(E)) {
940     LV.SetObjCIvar(LV, true);
941     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
942     LV.setBaseIvarExp(Exp->getBase());
943     LV.SetObjCArray(LV, E->getType()->isArrayType());
944     return;
945   }
946 
947   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
948     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
949       if ((VD->isBlockVarDecl() && !VD->hasLocalStorage()) ||
950           VD->isFileVarDecl())
951         LV.SetGlobalObjCRef(LV, true);
952     }
953     LV.SetObjCArray(LV, E->getType()->isArrayType());
954     return;
955   }
956 
957   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
958     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
959     return;
960   }
961 
962   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
963     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
964     if (LV.isObjCIvar()) {
965       // If cast is to a structure pointer, follow gcc's behavior and make it
966       // a non-ivar write-barrier.
967       QualType ExpTy = E->getType();
968       if (ExpTy->isPointerType())
969         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
970       if (ExpTy->isRecordType())
971         LV.SetObjCIvar(LV, false);
972     }
973     return;
974   }
975   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
976     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
977     return;
978   }
979 
980   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
981     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV);
982     return;
983   }
984 
985   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
986     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
987     if (LV.isObjCIvar() && !LV.isObjCArray())
988       // Using array syntax to assigning to what an ivar points to is not
989       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
990       LV.SetObjCIvar(LV, false);
991     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
992       // Using array syntax to assigning to what global points to is not
993       // same as assigning to the global itself. {id *G;} G[i] = 0;
994       LV.SetGlobalObjCRef(LV, false);
995     return;
996   }
997 
998   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
999     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1000     // We don't know if member is an 'ivar', but this flag is looked at
1001     // only in the context of LV.isObjCIvar().
1002     LV.SetObjCArray(LV, E->getType()->isArrayType());
1003     return;
1004   }
1005 }
1006 
1007 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1008                                       const Expr *E, const VarDecl *VD) {
1009   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1010          "Var decl must have external storage or be a file var decl!");
1011 
1012   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1013   if (VD->getType()->isReferenceType())
1014     V = CGF.Builder.CreateLoad(V, "tmp");
1015   LValue LV = LValue::MakeAddr(V, CGF.MakeQualifiers(E->getType()));
1016   setObjCGCLValueClass(CGF.getContext(), E, LV);
1017   return LV;
1018 }
1019 
1020 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1021                                       const Expr *E, const FunctionDecl *FD) {
1022   llvm::Value* V = CGF.CGM.GetAddrOfFunction(FD);
1023   if (!FD->hasPrototype()) {
1024     if (const FunctionProtoType *Proto =
1025             FD->getType()->getAs<FunctionProtoType>()) {
1026       // Ugly case: for a K&R-style definition, the type of the definition
1027       // isn't the same as the type of a use.  Correct for this with a
1028       // bitcast.
1029       QualType NoProtoType =
1030           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1031       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1032       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType), "tmp");
1033     }
1034   }
1035   return LValue::MakeAddr(V, CGF.MakeQualifiers(E->getType()));
1036 }
1037 
1038 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1039   const NamedDecl *ND = E->getDecl();
1040 
1041   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1042 
1043     // Check if this is a global variable.
1044     if (VD->hasExternalStorage() || VD->isFileVarDecl())
1045       return EmitGlobalVarDeclLValue(*this, E, VD);
1046 
1047     bool NonGCable = VD->hasLocalStorage() && !VD->hasAttr<BlocksAttr>();
1048 
1049     llvm::Value *V = LocalDeclMap[VD];
1050     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1051 
1052     Qualifiers Quals = MakeQualifiers(E->getType());
1053     // local variables do not get their gc attribute set.
1054     // local static?
1055     if (NonGCable) Quals.removeObjCGCAttr();
1056 
1057     if (VD->hasAttr<BlocksAttr>()) {
1058       V = Builder.CreateStructGEP(V, 1, "forwarding");
1059       V = Builder.CreateLoad(V);
1060       V = Builder.CreateStructGEP(V, getByRefValueLLVMField(VD),
1061                                   VD->getNameAsString());
1062     }
1063     if (VD->getType()->isReferenceType())
1064       V = Builder.CreateLoad(V, "tmp");
1065     LValue LV = LValue::MakeAddr(V, Quals);
1066     LValue::SetObjCNonGC(LV, NonGCable);
1067     setObjCGCLValueClass(getContext(), E, LV);
1068     return LV;
1069   }
1070 
1071   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1072     return EmitFunctionDeclLValue(*this, E, FD);
1073 
1074   if (E->getQualifier()) {
1075     // FIXME: the qualifier check does not seem sufficient here
1076     return EmitPointerToDataMemberLValue(cast<FieldDecl>(ND));
1077   }
1078 
1079   assert(false && "Unhandled DeclRefExpr");
1080 
1081   // an invalid LValue, but the assert will
1082   // ensure that this point is never reached.
1083   return LValue();
1084 }
1085 
1086 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
1087   return LValue::MakeAddr(GetAddrOfBlockDecl(E), MakeQualifiers(E->getType()));
1088 }
1089 
1090 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1091   // __extension__ doesn't affect lvalue-ness.
1092   if (E->getOpcode() == UnaryOperator::Extension)
1093     return EmitLValue(E->getSubExpr());
1094 
1095   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1096   switch (E->getOpcode()) {
1097   default: assert(0 && "Unknown unary operator lvalue!");
1098   case UnaryOperator::Deref: {
1099     QualType T = E->getSubExpr()->getType()->getPointeeType();
1100     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1101 
1102     Qualifiers Quals = MakeQualifiers(T);
1103     Quals.setAddressSpace(ExprTy.getAddressSpace());
1104 
1105     LValue LV = LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()), Quals);
1106     // We should not generate __weak write barrier on indirect reference
1107     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1108     // But, we continue to generate __strong write barrier on indirect write
1109     // into a pointer to object.
1110     if (getContext().getLangOptions().ObjC1 &&
1111         getContext().getLangOptions().getGCMode() != LangOptions::NonGC &&
1112         LV.isObjCWeak())
1113       LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext()));
1114     return LV;
1115   }
1116   case UnaryOperator::Real:
1117   case UnaryOperator::Imag: {
1118     LValue LV = EmitLValue(E->getSubExpr());
1119     unsigned Idx = E->getOpcode() == UnaryOperator::Imag;
1120     return LValue::MakeAddr(Builder.CreateStructGEP(LV.getAddress(),
1121                                                     Idx, "idx"),
1122                             MakeQualifiers(ExprTy));
1123   }
1124   case UnaryOperator::PreInc:
1125   case UnaryOperator::PreDec: {
1126     LValue LV = EmitLValue(E->getSubExpr());
1127     bool isInc = E->getOpcode() == UnaryOperator::PreInc;
1128 
1129     if (E->getType()->isAnyComplexType())
1130       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1131     else
1132       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1133     return LV;
1134   }
1135   }
1136 }
1137 
1138 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1139   return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromLiteral(E),
1140                           Qualifiers());
1141 }
1142 
1143 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1144   return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1145                           Qualifiers());
1146 }
1147 
1148 
1149 LValue CodeGenFunction::EmitPredefinedFunctionName(unsigned Type) {
1150   std::string GlobalVarName;
1151 
1152   switch (Type) {
1153   default: assert(0 && "Invalid type");
1154   case PredefinedExpr::Func:
1155     GlobalVarName = "__func__.";
1156     break;
1157   case PredefinedExpr::Function:
1158     GlobalVarName = "__FUNCTION__.";
1159     break;
1160   case PredefinedExpr::PrettyFunction:
1161     GlobalVarName = "__PRETTY_FUNCTION__.";
1162     break;
1163   }
1164 
1165   llvm::StringRef FnName = CurFn->getName();
1166   if (FnName.startswith("\01"))
1167     FnName = FnName.substr(1);
1168   GlobalVarName += FnName;
1169 
1170   std::string FunctionName =
1171     PredefinedExpr::ComputeName(getContext(), (PredefinedExpr::IdentType)Type,
1172                                 CurCodeDecl);
1173 
1174   llvm::Constant *C =
1175     CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1176   return LValue::MakeAddr(C, Qualifiers());
1177 }
1178 
1179 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1180   switch (E->getIdentType()) {
1181   default:
1182     return EmitUnsupportedLValue(E, "predefined expression");
1183   case PredefinedExpr::Func:
1184   case PredefinedExpr::Function:
1185   case PredefinedExpr::PrettyFunction:
1186     return EmitPredefinedFunctionName(E->getIdentType());
1187   }
1188 }
1189 
1190 llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1191   const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1192 
1193   // If we are not optimzing, don't collapse all calls to trap in the function
1194   // to the same call, that way, in the debugger they can see which operation
1195   // did in fact fail.  If we are optimizing, we collpase all call to trap down
1196   // to just one per function to save on codesize.
1197   if (GCO.OptimizationLevel
1198       && TrapBB)
1199     return TrapBB;
1200 
1201   llvm::BasicBlock *Cont = 0;
1202   if (HaveInsertPoint()) {
1203     Cont = createBasicBlock("cont");
1204     EmitBranch(Cont);
1205   }
1206   TrapBB = createBasicBlock("trap");
1207   EmitBlock(TrapBB);
1208 
1209   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap, 0, 0);
1210   llvm::CallInst *TrapCall = Builder.CreateCall(F);
1211   TrapCall->setDoesNotReturn();
1212   TrapCall->setDoesNotThrow();
1213   Builder.CreateUnreachable();
1214 
1215   if (Cont)
1216     EmitBlock(Cont);
1217   return TrapBB;
1218 }
1219 
1220 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1221   // The index must always be an integer, which is not an aggregate.  Emit it.
1222   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1223   QualType IdxTy  = E->getIdx()->getType();
1224   bool IdxSigned = IdxTy->isSignedIntegerType();
1225 
1226   // If the base is a vector type, then we are forming a vector element lvalue
1227   // with this subscript.
1228   if (E->getBase()->getType()->isVectorType()) {
1229     // Emit the vector as an lvalue to get its address.
1230     LValue LHS = EmitLValue(E->getBase());
1231     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1232     Idx = Builder.CreateIntCast(Idx,
1233                           llvm::Type::getInt32Ty(VMContext), IdxSigned, "vidx");
1234     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1235                                  E->getBase()->getType().getCVRQualifiers());
1236   }
1237 
1238   // The base must be a pointer, which is not an aggregate.  Emit it.
1239   llvm::Value *Base = EmitScalarExpr(E->getBase());
1240 
1241   // Extend or truncate the index type to 32 or 64-bits.
1242   unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1243   if (IdxBitwidth != LLVMPointerWidth)
1244     Idx = Builder.CreateIntCast(Idx,
1245                             llvm::IntegerType::get(VMContext, LLVMPointerWidth),
1246                                 IdxSigned, "idxprom");
1247 
1248   // FIXME: As llvm implements the object size checking, this can come out.
1249   if (CatchUndefined) {
1250     if (const ImplicitCastExpr *ICE=dyn_cast<ImplicitCastExpr>(E->getBase())) {
1251       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1252         if (ICE->getCastKind() == CastExpr::CK_ArrayToPointerDecay) {
1253           if (const ConstantArrayType *CAT
1254               = getContext().getAsConstantArrayType(DRE->getType())) {
1255             llvm::APInt Size = CAT->getSize();
1256             llvm::BasicBlock *Cont = createBasicBlock("cont");
1257             Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1258                                   llvm::ConstantInt::get(Idx->getType(), Size)),
1259                                  Cont, getTrapBB());
1260             EmitBlock(Cont);
1261           }
1262         }
1263       }
1264     }
1265   }
1266 
1267   // We know that the pointer points to a type of the correct size, unless the
1268   // size is a VLA or Objective-C interface.
1269   llvm::Value *Address = 0;
1270   if (const VariableArrayType *VAT =
1271         getContext().getAsVariableArrayType(E->getType())) {
1272     llvm::Value *VLASize = GetVLASize(VAT);
1273 
1274     Idx = Builder.CreateMul(Idx, VLASize);
1275 
1276     QualType BaseType = getContext().getBaseElementType(VAT);
1277 
1278     CharUnits BaseTypeSize = getContext().getTypeSizeInChars(BaseType);
1279     Idx = Builder.CreateUDiv(Idx,
1280                              llvm::ConstantInt::get(Idx->getType(),
1281                                  BaseTypeSize.getQuantity()));
1282     Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1283   } else if (const ObjCInterfaceType *OIT =
1284              dyn_cast<ObjCInterfaceType>(E->getType())) {
1285     llvm::Value *InterfaceSize =
1286       llvm::ConstantInt::get(Idx->getType(),
1287           getContext().getTypeSizeInChars(OIT).getQuantity());
1288 
1289     Idx = Builder.CreateMul(Idx, InterfaceSize);
1290 
1291     const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
1292     Address = Builder.CreateGEP(Builder.CreateBitCast(Base, i8PTy),
1293                                 Idx, "arrayidx");
1294     Address = Builder.CreateBitCast(Address, Base->getType());
1295   } else {
1296     Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1297   }
1298 
1299   QualType T = E->getBase()->getType()->getPointeeType();
1300   assert(!T.isNull() &&
1301          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1302 
1303   Qualifiers Quals = MakeQualifiers(T);
1304   Quals.setAddressSpace(E->getBase()->getType().getAddressSpace());
1305 
1306   LValue LV = LValue::MakeAddr(Address, Quals);
1307   if (getContext().getLangOptions().ObjC1 &&
1308       getContext().getLangOptions().getGCMode() != LangOptions::NonGC) {
1309     LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext()));
1310     setObjCGCLValueClass(getContext(), E, LV);
1311   }
1312   return LV;
1313 }
1314 
1315 static
1316 llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
1317                                        llvm::SmallVector<unsigned, 4> &Elts) {
1318   llvm::SmallVector<llvm::Constant*, 4> CElts;
1319 
1320   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1321     CElts.push_back(llvm::ConstantInt::get(
1322                                    llvm::Type::getInt32Ty(VMContext), Elts[i]));
1323 
1324   return llvm::ConstantVector::get(&CElts[0], CElts.size());
1325 }
1326 
1327 LValue CodeGenFunction::
1328 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1329   const llvm::Type *Int32Ty = llvm::Type::getInt32Ty(VMContext);
1330 
1331   // Emit the base vector as an l-value.
1332   LValue Base;
1333 
1334   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1335   if (E->isArrow()) {
1336     // If it is a pointer to a vector, emit the address and form an lvalue with
1337     // it.
1338     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1339     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1340     Qualifiers Quals = MakeQualifiers(PT->getPointeeType());
1341     Quals.removeObjCGCAttr();
1342     Base = LValue::MakeAddr(Ptr, Quals);
1343   } else if (E->getBase()->isLvalue(getContext()) == Expr::LV_Valid) {
1344     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1345     // emit the base as an lvalue.
1346     assert(E->getBase()->getType()->isVectorType());
1347     Base = EmitLValue(E->getBase());
1348   } else {
1349     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1350     assert(E->getBase()->getType()->getAs<VectorType>() &&
1351            "Result must be a vector");
1352     llvm::Value *Vec = EmitScalarExpr(E->getBase());
1353 
1354     // Store the vector to memory (because LValue wants an address).
1355     llvm::Value *VecMem =CreateTempAlloca(ConvertType(E->getBase()->getType()));
1356     Builder.CreateStore(Vec, VecMem);
1357     Base = LValue::MakeAddr(VecMem, Qualifiers());
1358   }
1359 
1360   // Encode the element access list into a vector of unsigned indices.
1361   llvm::SmallVector<unsigned, 4> Indices;
1362   E->getEncodedElementAccess(Indices);
1363 
1364   if (Base.isSimple()) {
1365     llvm::Constant *CV = GenerateConstantVector(VMContext, Indices);
1366     return LValue::MakeExtVectorElt(Base.getAddress(), CV,
1367                                     Base.getVRQualifiers());
1368   }
1369   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1370 
1371   llvm::Constant *BaseElts = Base.getExtVectorElts();
1372   llvm::SmallVector<llvm::Constant *, 4> CElts;
1373 
1374   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1375     if (isa<llvm::ConstantAggregateZero>(BaseElts))
1376       CElts.push_back(llvm::ConstantInt::get(Int32Ty, 0));
1377     else
1378       CElts.push_back(cast<llvm::Constant>(BaseElts->getOperand(Indices[i])));
1379   }
1380   llvm::Constant *CV = llvm::ConstantVector::get(&CElts[0], CElts.size());
1381   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV,
1382                                   Base.getVRQualifiers());
1383 }
1384 
1385 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1386   bool isNonGC = false;
1387   Expr *BaseExpr = E->getBase();
1388   llvm::Value *BaseValue = NULL;
1389   Qualifiers BaseQuals;
1390 
1391   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1392   if (E->isArrow()) {
1393     BaseValue = EmitScalarExpr(BaseExpr);
1394     const PointerType *PTy =
1395       BaseExpr->getType()->getAs<PointerType>();
1396     BaseQuals = PTy->getPointeeType().getQualifiers();
1397   } else if (isa<ObjCPropertyRefExpr>(BaseExpr->IgnoreParens()) ||
1398              isa<ObjCImplicitSetterGetterRefExpr>(
1399                BaseExpr->IgnoreParens())) {
1400     RValue RV = EmitObjCPropertyGet(BaseExpr);
1401     BaseValue = RV.getAggregateAddr();
1402     BaseQuals = BaseExpr->getType().getQualifiers();
1403   } else {
1404     LValue BaseLV = EmitLValue(BaseExpr);
1405     if (BaseLV.isNonGC())
1406       isNonGC = true;
1407     // FIXME: this isn't right for bitfields.
1408     BaseValue = BaseLV.getAddress();
1409     QualType BaseTy = BaseExpr->getType();
1410     BaseQuals = BaseTy.getQualifiers();
1411   }
1412 
1413   NamedDecl *ND = E->getMemberDecl();
1414   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1415     LValue LV = EmitLValueForField(BaseValue, Field,
1416                                    BaseQuals.getCVRQualifiers());
1417     LValue::SetObjCNonGC(LV, isNonGC);
1418     setObjCGCLValueClass(getContext(), E, LV);
1419     return LV;
1420   }
1421 
1422   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1423     return EmitGlobalVarDeclLValue(*this, E, VD);
1424 
1425   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1426     return EmitFunctionDeclLValue(*this, E, FD);
1427 
1428   assert(false && "Unhandled member declaration!");
1429   return LValue();
1430 }
1431 
1432 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value* BaseValue,
1433                                               const FieldDecl* Field,
1434                                               unsigned CVRQualifiers) {
1435   CodeGenTypes::BitFieldInfo Info = CGM.getTypes().getBitFieldInfo(Field);
1436 
1437   // FIXME: CodeGenTypes should expose a method to get the appropriate type for
1438   // FieldTy (the appropriate type is ABI-dependent).
1439   const llvm::Type *FieldTy =
1440     CGM.getTypes().ConvertTypeForMem(Field->getType());
1441   const llvm::PointerType *BaseTy =
1442   cast<llvm::PointerType>(BaseValue->getType());
1443   unsigned AS = BaseTy->getAddressSpace();
1444   BaseValue = Builder.CreateBitCast(BaseValue,
1445                                     llvm::PointerType::get(FieldTy, AS),
1446                                     "tmp");
1447 
1448   llvm::Value *Idx =
1449     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), Info.FieldNo);
1450   llvm::Value *V = Builder.CreateGEP(BaseValue, Idx, "tmp");
1451 
1452   return LValue::MakeBitfield(V, Info.Start, Info.Size,
1453                               Field->getType()->isSignedIntegerType(),
1454                             Field->getType().getCVRQualifiers()|CVRQualifiers);
1455 }
1456 
1457 LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue,
1458                                            const FieldDecl* Field,
1459                                            unsigned CVRQualifiers) {
1460   if (Field->isBitField())
1461     return EmitLValueForBitfield(BaseValue, Field, CVRQualifiers);
1462 
1463   unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
1464   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
1465 
1466   // Match union field type.
1467   if (Field->getParent()->isUnion()) {
1468     const llvm::Type *FieldTy =
1469       CGM.getTypes().ConvertTypeForMem(Field->getType());
1470     const llvm::PointerType * BaseTy =
1471       cast<llvm::PointerType>(BaseValue->getType());
1472     unsigned AS = BaseTy->getAddressSpace();
1473     V = Builder.CreateBitCast(V,
1474                               llvm::PointerType::get(FieldTy, AS),
1475                               "tmp");
1476   }
1477   if (Field->getType()->isReferenceType())
1478     V = Builder.CreateLoad(V, "tmp");
1479 
1480   Qualifiers Quals = MakeQualifiers(Field->getType());
1481   Quals.addCVRQualifiers(CVRQualifiers);
1482   // __weak attribute on a field is ignored.
1483   if (Quals.getObjCGCAttr() == Qualifiers::Weak)
1484     Quals.removeObjCGCAttr();
1485 
1486   return LValue::MakeAddr(V, Quals);
1487 }
1488 
1489 LValue
1490 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value* BaseValue,
1491                                                   const FieldDecl* Field,
1492                                                   unsigned CVRQualifiers) {
1493   QualType FieldType = Field->getType();
1494 
1495   if (!FieldType->isReferenceType())
1496     return EmitLValueForField(BaseValue, Field, CVRQualifiers);
1497 
1498   unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
1499   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");
1500 
1501   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
1502 
1503   return LValue::MakeAddr(V, MakeQualifiers(FieldType));
1504 }
1505 
1506 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr* E){
1507   const llvm::Type *LTy = ConvertType(E->getType());
1508   llvm::Value *DeclPtr = CreateTempAlloca(LTy, ".compoundliteral");
1509 
1510   const Expr* InitExpr = E->getInitializer();
1511   LValue Result = LValue::MakeAddr(DeclPtr, MakeQualifiers(E->getType()));
1512 
1513   if (E->getType()->isComplexType())
1514     EmitComplexExprIntoAddr(InitExpr, DeclPtr, false);
1515   else if (hasAggregateLLVMType(E->getType()))
1516     EmitAnyExpr(InitExpr, DeclPtr, false);
1517   else
1518     EmitStoreThroughLValue(EmitAnyExpr(InitExpr), Result, E->getType());
1519 
1520   return Result;
1521 }
1522 
1523 LValue
1524 CodeGenFunction::EmitConditionalOperatorLValue(const ConditionalOperator* E) {
1525   if (E->isLvalue(getContext()) == Expr::LV_Valid) {
1526     if (int Cond = ConstantFoldsToSimpleInteger(E->getCond())) {
1527       Expr *Live = Cond == 1 ? E->getLHS() : E->getRHS();
1528       if (Live)
1529         return EmitLValue(Live);
1530     }
1531 
1532     if (!E->getLHS())
1533       return EmitUnsupportedLValue(E, "conditional operator with missing LHS");
1534 
1535     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1536     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1537     llvm::BasicBlock *ContBlock = createBasicBlock("cond.end");
1538 
1539     EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1540 
1541     EmitBlock(LHSBlock);
1542 
1543     LValue LHS = EmitLValue(E->getLHS());
1544     if (!LHS.isSimple())
1545       return EmitUnsupportedLValue(E, "conditional operator");
1546 
1547     llvm::Value *Temp = CreateTempAlloca(LHS.getAddress()->getType(),"condtmp");
1548     Builder.CreateStore(LHS.getAddress(), Temp);
1549     EmitBranch(ContBlock);
1550 
1551     EmitBlock(RHSBlock);
1552     LValue RHS = EmitLValue(E->getRHS());
1553     if (!RHS.isSimple())
1554       return EmitUnsupportedLValue(E, "conditional operator");
1555 
1556     Builder.CreateStore(RHS.getAddress(), Temp);
1557     EmitBranch(ContBlock);
1558 
1559     EmitBlock(ContBlock);
1560 
1561     Temp = Builder.CreateLoad(Temp, "lv");
1562     return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1563   }
1564 
1565   // ?: here should be an aggregate.
1566   assert((hasAggregateLLVMType(E->getType()) &&
1567           !E->getType()->isAnyComplexType()) &&
1568          "Unexpected conditional operator!");
1569 
1570   llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
1571   EmitAggExpr(E, Temp, false);
1572 
1573   return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1574 }
1575 
1576 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
1577 /// If the cast is a dynamic_cast, we can have the usual lvalue result,
1578 /// otherwise if a cast is needed by the code generator in an lvalue context,
1579 /// then it must mean that we need the address of an aggregate in order to
1580 /// access one of its fields.  This can happen for all the reasons that casts
1581 /// are permitted with aggregate result, including noop aggregate casts, and
1582 /// cast from scalar to union.
1583 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
1584   switch (E->getCastKind()) {
1585   default:
1586     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
1587 
1588   case CastExpr::CK_Dynamic: {
1589     LValue LV = EmitLValue(E->getSubExpr());
1590     llvm::Value *V = LV.getAddress();
1591     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
1592     return LValue::MakeAddr(EmitDynamicCast(V, DCE),
1593                             MakeQualifiers(E->getType()));
1594   }
1595 
1596   case CastExpr::CK_NoOp:
1597   case CastExpr::CK_ConstructorConversion:
1598   case CastExpr::CK_UserDefinedConversion:
1599   case CastExpr::CK_AnyPointerToObjCPointerCast:
1600     return EmitLValue(E->getSubExpr());
1601 
1602   case CastExpr::CK_DerivedToBase: {
1603     const RecordType *DerivedClassTy =
1604       E->getSubExpr()->getType()->getAs<RecordType>();
1605     CXXRecordDecl *DerivedClassDecl =
1606       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1607 
1608     const RecordType *BaseClassTy = E->getType()->getAs<RecordType>();
1609     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
1610 
1611     LValue LV = EmitLValue(E->getSubExpr());
1612 
1613     // Perform the derived-to-base conversion
1614     llvm::Value *Base =
1615       GetAddressOfBaseClass(LV.getAddress(), DerivedClassDecl,
1616                             BaseClassDecl, /*NullCheckValue=*/false);
1617 
1618     return LValue::MakeAddr(Base, MakeQualifiers(E->getType()));
1619   }
1620   case CastExpr::CK_ToUnion: {
1621     llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
1622     EmitAnyExpr(E->getSubExpr(), Temp, false);
1623 
1624     return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1625   }
1626   case CastExpr::CK_BaseToDerived: {
1627     const RecordType *BaseClassTy =
1628       E->getSubExpr()->getType()->getAs<RecordType>();
1629     CXXRecordDecl *BaseClassDecl =
1630       cast<CXXRecordDecl>(BaseClassTy->getDecl());
1631 
1632     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
1633     CXXRecordDecl *DerivedClassDecl =
1634       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1635 
1636     LValue LV = EmitLValue(E->getSubExpr());
1637 
1638     // Perform the base-to-derived conversion
1639     llvm::Value *Derived =
1640       GetAddressOfDerivedClass(LV.getAddress(), BaseClassDecl,
1641                                DerivedClassDecl, /*NullCheckValue=*/false);
1642 
1643     return LValue::MakeAddr(Derived, MakeQualifiers(E->getType()));
1644   }
1645   case CastExpr::CK_BitCast: {
1646     // This must be a reinterpret_cast (or c-style equivalent).
1647     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
1648 
1649     LValue LV = EmitLValue(E->getSubExpr());
1650     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
1651                                            ConvertType(CE->getTypeAsWritten()));
1652     return LValue::MakeAddr(V, MakeQualifiers(E->getType()));
1653   }
1654   }
1655 }
1656 
1657 LValue CodeGenFunction::EmitNullInitializationLValue(
1658                                               const CXXZeroInitValueExpr *E) {
1659   QualType Ty = E->getType();
1660   const llvm::Type *LTy = ConvertTypeForMem(Ty);
1661   llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
1662   CharUnits Align = getContext().getTypeAlignInChars(Ty);
1663   Alloc->setAlignment(Align.getQuantity());
1664   LValue lvalue = LValue::MakeAddr(Alloc, Qualifiers());
1665   EmitMemSetToZero(lvalue.getAddress(), Ty);
1666   return lvalue;
1667 }
1668 
1669 //===--------------------------------------------------------------------===//
1670 //                             Expression Emission
1671 //===--------------------------------------------------------------------===//
1672 
1673 
1674 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
1675                                      ReturnValueSlot ReturnValue) {
1676   // Builtins never have block type.
1677   if (E->getCallee()->getType()->isBlockPointerType())
1678     return EmitBlockCallExpr(E, ReturnValue);
1679 
1680   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
1681     return EmitCXXMemberCallExpr(CE, ReturnValue);
1682 
1683   const Decl *TargetDecl = 0;
1684   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) {
1685     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
1686       TargetDecl = DRE->getDecl();
1687       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl))
1688         if (unsigned builtinID = FD->getBuiltinID())
1689           return EmitBuiltinExpr(FD, builtinID, E);
1690     }
1691   }
1692 
1693   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
1694     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
1695       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
1696 
1697   if (isa<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
1698     // C++ [expr.pseudo]p1:
1699     //   The result shall only be used as the operand for the function call
1700     //   operator (), and the result of such a call has type void. The only
1701     //   effect is the evaluation of the postfix-expression before the dot or
1702     //   arrow.
1703     EmitScalarExpr(E->getCallee());
1704     return RValue::get(0);
1705   }
1706 
1707   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
1708   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
1709                   E->arg_begin(), E->arg_end(), TargetDecl);
1710 }
1711 
1712 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
1713   // Comma expressions just emit their LHS then their RHS as an l-value.
1714   if (E->getOpcode() == BinaryOperator::Comma) {
1715     EmitAnyExpr(E->getLHS());
1716     EnsureInsertPoint();
1717     return EmitLValue(E->getRHS());
1718   }
1719 
1720   if (E->getOpcode() == BinaryOperator::PtrMemD ||
1721       E->getOpcode() == BinaryOperator::PtrMemI)
1722     return EmitPointerToDataMemberBinaryExpr(E);
1723 
1724   // Can only get l-value for binary operator expressions which are a
1725   // simple assignment of aggregate type.
1726   if (E->getOpcode() != BinaryOperator::Assign)
1727     return EmitUnsupportedLValue(E, "binary l-value expression");
1728 
1729   if (!hasAggregateLLVMType(E->getType())) {
1730     // Emit the LHS as an l-value.
1731     LValue LV = EmitLValue(E->getLHS());
1732 
1733     llvm::Value *RHS = EmitScalarExpr(E->getRHS());
1734     EmitStoreOfScalar(RHS, LV.getAddress(), LV.isVolatileQualified(),
1735                       E->getType());
1736     return LV;
1737   }
1738 
1739   llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
1740   EmitAggExpr(E, Temp, false);
1741   // FIXME: Are these qualifiers correct?
1742   return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1743 }
1744 
1745 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
1746   RValue RV = EmitCallExpr(E);
1747 
1748   if (!RV.isScalar())
1749     return LValue::MakeAddr(RV.getAggregateAddr(),MakeQualifiers(E->getType()));
1750 
1751   assert(E->getCallReturnType()->isReferenceType() &&
1752          "Can't have a scalar return unless the return type is a "
1753          "reference type!");
1754 
1755   return LValue::MakeAddr(RV.getScalarVal(), MakeQualifiers(E->getType()));
1756 }
1757 
1758 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
1759   // FIXME: This shouldn't require another copy.
1760   llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
1761   EmitAggExpr(E, Temp, false);
1762   return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1763 }
1764 
1765 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
1766   llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(E->getType()), "tmp");
1767   EmitCXXConstructExpr(Temp, E);
1768   return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1769 }
1770 
1771 LValue
1772 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
1773   llvm::Value *Temp = EmitCXXTypeidExpr(E);
1774   return LValue::MakeAddr(Temp, MakeQualifiers(E->getType()));
1775 }
1776 
1777 LValue
1778 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
1779   LValue LV = EmitLValue(E->getSubExpr());
1780   PushCXXTemporary(E->getTemporary(), LV.getAddress());
1781   return LV;
1782 }
1783 
1784 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
1785   // Can only get l-value for message expression returning aggregate type
1786   RValue RV = EmitObjCMessageExpr(E);
1787   // FIXME: can this be volatile?
1788   return LValue::MakeAddr(RV.getAggregateAddr(), MakeQualifiers(E->getType()));
1789 }
1790 
1791 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
1792                                              const ObjCIvarDecl *Ivar) {
1793   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
1794 }
1795 
1796 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
1797                                           llvm::Value *BaseValue,
1798                                           const ObjCIvarDecl *Ivar,
1799                                           unsigned CVRQualifiers) {
1800   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
1801                                                    Ivar, CVRQualifiers);
1802 }
1803 
1804 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
1805   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
1806   llvm::Value *BaseValue = 0;
1807   const Expr *BaseExpr = E->getBase();
1808   Qualifiers BaseQuals;
1809   QualType ObjectTy;
1810   if (E->isArrow()) {
1811     BaseValue = EmitScalarExpr(BaseExpr);
1812     ObjectTy = BaseExpr->getType()->getPointeeType();
1813     BaseQuals = ObjectTy.getQualifiers();
1814   } else {
1815     LValue BaseLV = EmitLValue(BaseExpr);
1816     // FIXME: this isn't right for bitfields.
1817     BaseValue = BaseLV.getAddress();
1818     ObjectTy = BaseExpr->getType();
1819     BaseQuals = ObjectTy.getQualifiers();
1820   }
1821 
1822   LValue LV =
1823     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
1824                       BaseQuals.getCVRQualifiers());
1825   setObjCGCLValueClass(getContext(), E, LV);
1826   return LV;
1827 }
1828 
1829 LValue
1830 CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) {
1831   // This is a special l-value that just issues sends when we load or store
1832   // through it.
1833   return LValue::MakePropertyRef(E, E->getType().getCVRQualifiers());
1834 }
1835 
1836 LValue CodeGenFunction::EmitObjCKVCRefLValue(
1837                                 const ObjCImplicitSetterGetterRefExpr *E) {
1838   // This is a special l-value that just issues sends when we load or store
1839   // through it.
1840   return LValue::MakeKVCRef(E, E->getType().getCVRQualifiers());
1841 }
1842 
1843 LValue CodeGenFunction::EmitObjCSuperExprLValue(const ObjCSuperExpr *E) {
1844   return EmitUnsupportedLValue(E, "use of super");
1845 }
1846 
1847 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
1848   // Can only get l-value for message expression returning aggregate type
1849   RValue RV = EmitAnyExprToTemp(E);
1850   // FIXME: can this be volatile?
1851   return LValue::MakeAddr(RV.getAggregateAddr(), MakeQualifiers(E->getType()));
1852 }
1853 
1854 
1855 LValue CodeGenFunction::EmitPointerToDataMemberLValue(const FieldDecl *Field) {
1856   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Field->getDeclContext());
1857   QualType NNSpecTy =
1858     getContext().getCanonicalType(
1859       getContext().getTypeDeclType(const_cast<CXXRecordDecl*>(ClassDecl)));
1860   NNSpecTy = getContext().getPointerType(NNSpecTy);
1861   llvm::Value *V = llvm::Constant::getNullValue(ConvertType(NNSpecTy));
1862   LValue MemExpLV = EmitLValueForField(V, Field, /*Qualifiers=*/0);
1863   const llvm::Type *ResultType = ConvertType(getContext().getPointerDiffType());
1864   V = Builder.CreatePtrToInt(MemExpLV.getAddress(), ResultType, "datamember");
1865   return LValue::MakeAddr(V, MakeQualifiers(Field->getType()));
1866 }
1867 
1868 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
1869                                  ReturnValueSlot ReturnValue,
1870                                  CallExpr::const_arg_iterator ArgBeg,
1871                                  CallExpr::const_arg_iterator ArgEnd,
1872                                  const Decl *TargetDecl) {
1873   // Get the actual function type. The callee type will always be a pointer to
1874   // function type or a block pointer type.
1875   assert(CalleeType->isFunctionPointerType() &&
1876          "Call must have function pointer type!");
1877 
1878   CalleeType = getContext().getCanonicalType(CalleeType);
1879 
1880   QualType FnType = cast<PointerType>(CalleeType)->getPointeeType();
1881   QualType ResultType = cast<FunctionType>(FnType)->getResultType();
1882 
1883   CallArgList Args;
1884   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
1885 
1886   // FIXME: We should not need to do this, it should be part of the function
1887   // type.
1888   unsigned CallingConvention = 0;
1889   if (const llvm::Function *F =
1890       dyn_cast<llvm::Function>(Callee->stripPointerCasts()))
1891     CallingConvention = F->getCallingConv();
1892   return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args,
1893                                                  CallingConvention),
1894                   Callee, ReturnValue, Args, TargetDecl);
1895 }
1896 
1897 LValue CodeGenFunction::
1898 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
1899   llvm::Value *BaseV;
1900   if (E->getOpcode() == BinaryOperator::PtrMemI)
1901     BaseV = EmitScalarExpr(E->getLHS());
1902   else
1903     BaseV = EmitLValue(E->getLHS()).getAddress();
1904   const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(getLLVMContext());
1905   BaseV = Builder.CreateBitCast(BaseV, i8Ty);
1906   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
1907   llvm::Value *AddV = Builder.CreateInBoundsGEP(BaseV, OffsetV, "add.ptr");
1908 
1909   QualType Ty = E->getRHS()->getType();
1910   Ty = Ty->getAs<MemberPointerType>()->getPointeeType();
1911 
1912   const llvm::Type *PType = ConvertType(getContext().getPointerType(Ty));
1913   AddV = Builder.CreateBitCast(AddV, PType);
1914   return LValue::MakeAddr(AddV, MakeQualifiers(Ty));
1915 }
1916 
1917