1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "CGCall.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGRecordLayout.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/ConvertUTF.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/Intrinsics.h" 27 #include "llvm/LLVMContext.h" 28 #include "llvm/MDBuilder.h" 29 #include "llvm/Target/TargetData.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 //===--------------------------------------------------------------------===// 34 // Miscellaneous Helper Methods 35 //===--------------------------------------------------------------------===// 36 37 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 38 unsigned addressSpace = 39 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 40 41 llvm::PointerType *destType = Int8PtrTy; 42 if (addressSpace) 43 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 44 45 if (value->getType() == destType) return value; 46 return Builder.CreateBitCast(value, destType); 47 } 48 49 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 50 /// block. 51 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 52 const Twine &Name) { 53 if (!Builder.isNamePreserving()) 54 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 55 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 56 } 57 58 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 59 llvm::Value *Init) { 60 llvm::StoreInst *Store = new llvm::StoreInst(Init, Var); 61 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 62 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 63 } 64 65 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 66 const Twine &Name) { 67 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 68 // FIXME: Should we prefer the preferred type alignment here? 69 CharUnits Align = getContext().getTypeAlignInChars(Ty); 70 Alloc->setAlignment(Align.getQuantity()); 71 return Alloc; 72 } 73 74 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 75 const Twine &Name) { 76 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 77 // FIXME: Should we prefer the preferred type alignment here? 78 CharUnits Align = getContext().getTypeAlignInChars(Ty); 79 Alloc->setAlignment(Align.getQuantity()); 80 return Alloc; 81 } 82 83 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 84 /// expression and compare the result against zero, returning an Int1Ty value. 85 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 86 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 87 llvm::Value *MemPtr = EmitScalarExpr(E); 88 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 89 } 90 91 QualType BoolTy = getContext().BoolTy; 92 if (!E->getType()->isAnyComplexType()) 93 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 94 95 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 96 } 97 98 /// EmitIgnoredExpr - Emit code to compute the specified expression, 99 /// ignoring the result. 100 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 101 if (E->isRValue()) 102 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 103 104 // Just emit it as an l-value and drop the result. 105 EmitLValue(E); 106 } 107 108 /// EmitAnyExpr - Emit code to compute the specified expression which 109 /// can have any type. The result is returned as an RValue struct. 110 /// If this is an aggregate expression, AggSlot indicates where the 111 /// result should be returned. 112 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 113 AggValueSlot aggSlot, 114 bool ignoreResult) { 115 if (!hasAggregateLLVMType(E->getType())) 116 return RValue::get(EmitScalarExpr(E, ignoreResult)); 117 else if (E->getType()->isAnyComplexType()) 118 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 119 120 if (!ignoreResult && aggSlot.isIgnored()) 121 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 122 EmitAggExpr(E, aggSlot); 123 return aggSlot.asRValue(); 124 } 125 126 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 127 /// always be accessible even if no aggregate location is provided. 128 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 129 AggValueSlot AggSlot = AggValueSlot::ignored(); 130 131 if (hasAggregateLLVMType(E->getType()) && 132 !E->getType()->isAnyComplexType()) 133 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 134 return EmitAnyExpr(E, AggSlot); 135 } 136 137 /// EmitAnyExprToMem - Evaluate an expression into a given memory 138 /// location. 139 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 140 llvm::Value *Location, 141 Qualifiers Quals, 142 bool IsInit) { 143 // FIXME: This function should take an LValue as an argument. 144 if (E->getType()->isAnyComplexType()) { 145 EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile()); 146 } else if (hasAggregateLLVMType(E->getType())) { 147 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 148 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 149 AggValueSlot::IsDestructed_t(IsInit), 150 AggValueSlot::DoesNotNeedGCBarriers, 151 AggValueSlot::IsAliased_t(!IsInit))); 152 } else { 153 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 154 LValue LV = MakeAddrLValue(Location, E->getType()); 155 EmitStoreThroughLValue(RV, LV); 156 } 157 } 158 159 namespace { 160 /// \brief An adjustment to be made to the temporary created when emitting a 161 /// reference binding, which accesses a particular subobject of that temporary. 162 struct SubobjectAdjustment { 163 enum { 164 DerivedToBaseAdjustment, 165 FieldAdjustment, 166 MemberPointerAdjustment 167 } Kind; 168 169 union { 170 struct { 171 const CastExpr *BasePath; 172 const CXXRecordDecl *DerivedClass; 173 } DerivedToBase; 174 175 FieldDecl *Field; 176 177 struct { 178 const MemberPointerType *MPT; 179 llvm::Value *Ptr; 180 } Ptr; 181 }; 182 183 SubobjectAdjustment(const CastExpr *BasePath, 184 const CXXRecordDecl *DerivedClass) 185 : Kind(DerivedToBaseAdjustment) { 186 DerivedToBase.BasePath = BasePath; 187 DerivedToBase.DerivedClass = DerivedClass; 188 } 189 190 SubobjectAdjustment(FieldDecl *Field) 191 : Kind(FieldAdjustment) { 192 this->Field = Field; 193 } 194 195 SubobjectAdjustment(const MemberPointerType *MPT, llvm::Value *Ptr) 196 : Kind(MemberPointerAdjustment) { 197 this->Ptr.MPT = MPT; 198 this->Ptr.Ptr = Ptr; 199 } 200 }; 201 } 202 203 static llvm::Value * 204 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type, 205 const NamedDecl *InitializedDecl) { 206 if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 207 if (VD->hasGlobalStorage()) { 208 SmallString<256> Name; 209 llvm::raw_svector_ostream Out(Name); 210 CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 211 Out.flush(); 212 213 llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type); 214 215 // Create the reference temporary. 216 llvm::GlobalValue *RefTemp = 217 new llvm::GlobalVariable(CGF.CGM.getModule(), 218 RefTempTy, /*isConstant=*/false, 219 llvm::GlobalValue::InternalLinkage, 220 llvm::Constant::getNullValue(RefTempTy), 221 Name.str()); 222 return RefTemp; 223 } 224 } 225 226 return CGF.CreateMemTemp(Type, "ref.tmp"); 227 } 228 229 static llvm::Value * 230 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E, 231 llvm::Value *&ReferenceTemporary, 232 const CXXDestructorDecl *&ReferenceTemporaryDtor, 233 QualType &ObjCARCReferenceLifetimeType, 234 const NamedDecl *InitializedDecl) { 235 // Look through single-element init lists that claim to be lvalues. They're 236 // just syntactic wrappers in this case. 237 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) { 238 if (ILE->getNumInits() == 1 && ILE->isGLValue()) 239 E = ILE->getInit(0); 240 } 241 242 // Look through expressions for materialized temporaries (for now). 243 if (const MaterializeTemporaryExpr *M 244 = dyn_cast<MaterializeTemporaryExpr>(E)) { 245 // Objective-C++ ARC: 246 // If we are binding a reference to a temporary that has ownership, we 247 // need to perform retain/release operations on the temporary. 248 if (CGF.getContext().getLangOpts().ObjCAutoRefCount && 249 E->getType()->isObjCLifetimeType() && 250 (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 251 E->getType().getObjCLifetime() == Qualifiers::OCL_Weak || 252 E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing)) 253 ObjCARCReferenceLifetimeType = E->getType(); 254 255 E = M->GetTemporaryExpr(); 256 } 257 258 if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E)) 259 E = DAE->getExpr(); 260 261 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) { 262 CGF.enterFullExpression(EWC); 263 CodeGenFunction::RunCleanupsScope Scope(CGF); 264 265 return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(), 266 ReferenceTemporary, 267 ReferenceTemporaryDtor, 268 ObjCARCReferenceLifetimeType, 269 InitializedDecl); 270 } 271 272 RValue RV; 273 if (E->isGLValue()) { 274 // Emit the expression as an lvalue. 275 LValue LV = CGF.EmitLValue(E); 276 277 if (LV.isSimple()) 278 return LV.getAddress(); 279 280 // We have to load the lvalue. 281 RV = CGF.EmitLoadOfLValue(LV); 282 } else { 283 if (!ObjCARCReferenceLifetimeType.isNull()) { 284 ReferenceTemporary = CreateReferenceTemporary(CGF, 285 ObjCARCReferenceLifetimeType, 286 InitializedDecl); 287 288 289 LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary, 290 ObjCARCReferenceLifetimeType); 291 292 CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl), 293 RefTempDst, false); 294 295 bool ExtendsLifeOfTemporary = false; 296 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) { 297 if (Var->extendsLifetimeOfTemporary()) 298 ExtendsLifeOfTemporary = true; 299 } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) { 300 ExtendsLifeOfTemporary = true; 301 } 302 303 if (!ExtendsLifeOfTemporary) { 304 // Since the lifetime of this temporary isn't going to be extended, 305 // we need to clean it up ourselves at the end of the full expression. 306 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 307 case Qualifiers::OCL_None: 308 case Qualifiers::OCL_ExplicitNone: 309 case Qualifiers::OCL_Autoreleasing: 310 break; 311 312 case Qualifiers::OCL_Strong: { 313 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 314 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 315 CGF.pushDestroy(cleanupKind, 316 ReferenceTemporary, 317 ObjCARCReferenceLifetimeType, 318 CodeGenFunction::destroyARCStrongImprecise, 319 cleanupKind & EHCleanup); 320 break; 321 } 322 323 case Qualifiers::OCL_Weak: 324 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 325 CGF.pushDestroy(NormalAndEHCleanup, 326 ReferenceTemporary, 327 ObjCARCReferenceLifetimeType, 328 CodeGenFunction::destroyARCWeak, 329 /*useEHCleanupForArray*/ true); 330 break; 331 } 332 333 ObjCARCReferenceLifetimeType = QualType(); 334 } 335 336 return ReferenceTemporary; 337 } 338 339 SmallVector<SubobjectAdjustment, 2> Adjustments; 340 while (true) { 341 E = E->IgnoreParens(); 342 343 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 344 if ((CE->getCastKind() == CK_DerivedToBase || 345 CE->getCastKind() == CK_UncheckedDerivedToBase) && 346 E->getType()->isRecordType()) { 347 E = CE->getSubExpr(); 348 CXXRecordDecl *Derived 349 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl()); 350 Adjustments.push_back(SubobjectAdjustment(CE, Derived)); 351 continue; 352 } 353 354 if (CE->getCastKind() == CK_NoOp) { 355 E = CE->getSubExpr(); 356 continue; 357 } 358 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 359 if (!ME->isArrow() && ME->getBase()->isRValue()) { 360 assert(ME->getBase()->getType()->isRecordType()); 361 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 362 E = ME->getBase(); 363 Adjustments.push_back(SubobjectAdjustment(Field)); 364 continue; 365 } 366 } 367 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 368 if (BO->isPtrMemOp()) { 369 assert(BO->getLHS()->isRValue()); 370 E = BO->getLHS(); 371 const MemberPointerType *MPT = 372 BO->getRHS()->getType()->getAs<MemberPointerType>(); 373 llvm::Value *Ptr = CGF.EmitScalarExpr(BO->getRHS()); 374 Adjustments.push_back(SubobjectAdjustment(MPT, Ptr)); 375 } 376 } 377 378 if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E)) 379 if (opaque->getType()->isRecordType()) 380 return CGF.EmitOpaqueValueLValue(opaque).getAddress(); 381 382 // Nothing changed. 383 break; 384 } 385 386 // Create a reference temporary if necessary. 387 AggValueSlot AggSlot = AggValueSlot::ignored(); 388 if (CGF.hasAggregateLLVMType(E->getType()) && 389 !E->getType()->isAnyComplexType()) { 390 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 391 InitializedDecl); 392 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType()); 393 AggValueSlot::IsDestructed_t isDestructed 394 = AggValueSlot::IsDestructed_t(InitializedDecl != 0); 395 AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment, 396 Qualifiers(), isDestructed, 397 AggValueSlot::DoesNotNeedGCBarriers, 398 AggValueSlot::IsNotAliased); 399 } 400 401 if (InitializedDecl) { 402 // Get the destructor for the reference temporary. 403 if (const RecordType *RT = E->getType()->getAs<RecordType>()) { 404 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 405 if (!ClassDecl->hasTrivialDestructor()) 406 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 407 } 408 } 409 410 RV = CGF.EmitAnyExpr(E, AggSlot); 411 412 // Check if need to perform derived-to-base casts and/or field accesses, to 413 // get from the temporary object we created (and, potentially, for which we 414 // extended the lifetime) to the subobject we're binding the reference to. 415 if (!Adjustments.empty()) { 416 llvm::Value *Object = RV.getAggregateAddr(); 417 for (unsigned I = Adjustments.size(); I != 0; --I) { 418 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 419 switch (Adjustment.Kind) { 420 case SubobjectAdjustment::DerivedToBaseAdjustment: 421 Object = 422 CGF.GetAddressOfBaseClass(Object, 423 Adjustment.DerivedToBase.DerivedClass, 424 Adjustment.DerivedToBase.BasePath->path_begin(), 425 Adjustment.DerivedToBase.BasePath->path_end(), 426 /*NullCheckValue=*/false); 427 break; 428 429 case SubobjectAdjustment::FieldAdjustment: { 430 LValue LV = CGF.MakeAddrLValue(Object, E->getType()); 431 LV = CGF.EmitLValueForField(LV, Adjustment.Field); 432 if (LV.isSimple()) { 433 Object = LV.getAddress(); 434 break; 435 } 436 437 // For non-simple lvalues, we actually have to create a copy of 438 // the object we're binding to. 439 QualType T = Adjustment.Field->getType().getNonReferenceType() 440 .getUnqualifiedType(); 441 Object = CreateReferenceTemporary(CGF, T, InitializedDecl); 442 LValue TempLV = CGF.MakeAddrLValue(Object, 443 Adjustment.Field->getType()); 444 CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV); 445 break; 446 } 447 448 case SubobjectAdjustment::MemberPointerAdjustment: { 449 Object = CGF.CGM.getCXXABI().EmitMemberDataPointerAddress( 450 CGF, Object, Adjustment.Ptr.Ptr, Adjustment.Ptr.MPT); 451 break; 452 } 453 } 454 } 455 456 return Object; 457 } 458 } 459 460 if (RV.isAggregate()) 461 return RV.getAggregateAddr(); 462 463 // Create a temporary variable that we can bind the reference to. 464 ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(), 465 InitializedDecl); 466 467 468 unsigned Alignment = 469 CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity(); 470 if (RV.isScalar()) 471 CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary, 472 /*Volatile=*/false, Alignment, E->getType()); 473 else 474 CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary, 475 /*Volatile=*/false); 476 return ReferenceTemporary; 477 } 478 479 RValue 480 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E, 481 const NamedDecl *InitializedDecl) { 482 llvm::Value *ReferenceTemporary = 0; 483 const CXXDestructorDecl *ReferenceTemporaryDtor = 0; 484 QualType ObjCARCReferenceLifetimeType; 485 llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary, 486 ReferenceTemporaryDtor, 487 ObjCARCReferenceLifetimeType, 488 InitializedDecl); 489 if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull()) 490 return RValue::get(Value); 491 492 // Make sure to call the destructor for the reference temporary. 493 const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl); 494 if (VD && VD->hasGlobalStorage()) { 495 if (ReferenceTemporaryDtor) { 496 llvm::Constant *DtorFn = 497 CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 498 CGM.getCXXABI().registerGlobalDtor(*this, DtorFn, 499 cast<llvm::Constant>(ReferenceTemporary)); 500 } else { 501 assert(!ObjCARCReferenceLifetimeType.isNull()); 502 // Note: We intentionally do not register a global "destructor" to 503 // release the object. 504 } 505 506 return RValue::get(Value); 507 } 508 509 if (ReferenceTemporaryDtor) 510 PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary); 511 else { 512 switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) { 513 case Qualifiers::OCL_None: 514 llvm_unreachable( 515 "Not a reference temporary that needs to be deallocated"); 516 case Qualifiers::OCL_ExplicitNone: 517 case Qualifiers::OCL_Autoreleasing: 518 // Nothing to do. 519 break; 520 521 case Qualifiers::OCL_Strong: { 522 bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 523 CleanupKind cleanupKind = getARCCleanupKind(); 524 pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType, 525 precise ? destroyARCStrongPrecise : destroyARCStrongImprecise, 526 cleanupKind & EHCleanup); 527 break; 528 } 529 530 case Qualifiers::OCL_Weak: { 531 // __weak objects always get EH cleanups; otherwise, exceptions 532 // could cause really nasty crashes instead of mere leaks. 533 pushDestroy(NormalAndEHCleanup, ReferenceTemporary, 534 ObjCARCReferenceLifetimeType, destroyARCWeak, true); 535 break; 536 } 537 } 538 } 539 540 return RValue::get(Value); 541 } 542 543 544 /// getAccessedFieldNo - Given an encoded value and a result number, return the 545 /// input field number being accessed. 546 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 547 const llvm::Constant *Elts) { 548 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 549 ->getZExtValue(); 550 } 551 552 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) { 553 if (!CatchUndefined) 554 return; 555 556 // This needs to be to the standard address space. 557 Address = Builder.CreateBitCast(Address, Int8PtrTy); 558 559 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy); 560 561 llvm::Value *Min = Builder.getFalse(); 562 llvm::Value *C = Builder.CreateCall2(F, Address, Min); 563 llvm::BasicBlock *Cont = createBasicBlock(); 564 Builder.CreateCondBr(Builder.CreateICmpUGE(C, 565 llvm::ConstantInt::get(IntPtrTy, Size)), 566 Cont, getTrapBB()); 567 EmitBlock(Cont); 568 } 569 570 571 CodeGenFunction::ComplexPairTy CodeGenFunction:: 572 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 573 bool isInc, bool isPre) { 574 ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(), 575 LV.isVolatileQualified()); 576 577 llvm::Value *NextVal; 578 if (isa<llvm::IntegerType>(InVal.first->getType())) { 579 uint64_t AmountVal = isInc ? 1 : -1; 580 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 581 582 // Add the inc/dec to the real part. 583 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 584 } else { 585 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 586 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 587 if (!isInc) 588 FVal.changeSign(); 589 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 590 591 // Add the inc/dec to the real part. 592 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 593 } 594 595 ComplexPairTy IncVal(NextVal, InVal.second); 596 597 // Store the updated result through the lvalue. 598 StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified()); 599 600 // If this is a postinc, return the value read from memory, otherwise use the 601 // updated value. 602 return isPre ? IncVal : InVal; 603 } 604 605 606 //===----------------------------------------------------------------------===// 607 // LValue Expression Emission 608 //===----------------------------------------------------------------------===// 609 610 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 611 if (Ty->isVoidType()) 612 return RValue::get(0); 613 614 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 615 llvm::Type *EltTy = ConvertType(CTy->getElementType()); 616 llvm::Value *U = llvm::UndefValue::get(EltTy); 617 return RValue::getComplex(std::make_pair(U, U)); 618 } 619 620 // If this is a use of an undefined aggregate type, the aggregate must have an 621 // identifiable address. Just because the contents of the value are undefined 622 // doesn't mean that the address can't be taken and compared. 623 if (hasAggregateLLVMType(Ty)) { 624 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 625 return RValue::getAggregate(DestPtr); 626 } 627 628 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 629 } 630 631 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 632 const char *Name) { 633 ErrorUnsupported(E, Name); 634 return GetUndefRValue(E->getType()); 635 } 636 637 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 638 const char *Name) { 639 ErrorUnsupported(E, Name); 640 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 641 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 642 } 643 644 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) { 645 LValue LV = EmitLValue(E); 646 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 647 EmitCheck(LV.getAddress(), 648 getContext().getTypeSizeInChars(E->getType()).getQuantity()); 649 return LV; 650 } 651 652 /// EmitLValue - Emit code to compute a designator that specifies the location 653 /// of the expression. 654 /// 655 /// This can return one of two things: a simple address or a bitfield reference. 656 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 657 /// an LLVM pointer type. 658 /// 659 /// If this returns a bitfield reference, nothing about the pointee type of the 660 /// LLVM value is known: For example, it may not be a pointer to an integer. 661 /// 662 /// If this returns a normal address, and if the lvalue's C type is fixed size, 663 /// this method guarantees that the returned pointer type will point to an LLVM 664 /// type of the same size of the lvalue's type. If the lvalue has a variable 665 /// length type, this is not possible. 666 /// 667 LValue CodeGenFunction::EmitLValue(const Expr *E) { 668 switch (E->getStmtClass()) { 669 default: return EmitUnsupportedLValue(E, "l-value expression"); 670 671 case Expr::ObjCPropertyRefExprClass: 672 llvm_unreachable("cannot emit a property reference directly"); 673 674 case Expr::ObjCSelectorExprClass: 675 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 676 case Expr::ObjCIsaExprClass: 677 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 678 case Expr::BinaryOperatorClass: 679 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 680 case Expr::CompoundAssignOperatorClass: 681 if (!E->getType()->isAnyComplexType()) 682 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 683 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 684 case Expr::CallExprClass: 685 case Expr::CXXMemberCallExprClass: 686 case Expr::CXXOperatorCallExprClass: 687 case Expr::UserDefinedLiteralClass: 688 return EmitCallExprLValue(cast<CallExpr>(E)); 689 case Expr::VAArgExprClass: 690 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 691 case Expr::DeclRefExprClass: 692 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 693 case Expr::ParenExprClass: 694 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 695 case Expr::GenericSelectionExprClass: 696 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 697 case Expr::PredefinedExprClass: 698 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 699 case Expr::StringLiteralClass: 700 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 701 case Expr::ObjCEncodeExprClass: 702 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 703 case Expr::PseudoObjectExprClass: 704 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 705 case Expr::InitListExprClass: 706 return EmitInitListLValue(cast<InitListExpr>(E)); 707 case Expr::CXXTemporaryObjectExprClass: 708 case Expr::CXXConstructExprClass: 709 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 710 case Expr::CXXBindTemporaryExprClass: 711 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 712 case Expr::LambdaExprClass: 713 return EmitLambdaLValue(cast<LambdaExpr>(E)); 714 715 case Expr::ExprWithCleanupsClass: { 716 const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E); 717 enterFullExpression(cleanups); 718 RunCleanupsScope Scope(*this); 719 return EmitLValue(cleanups->getSubExpr()); 720 } 721 722 case Expr::CXXScalarValueInitExprClass: 723 return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E)); 724 case Expr::CXXDefaultArgExprClass: 725 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 726 case Expr::CXXTypeidExprClass: 727 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 728 729 case Expr::ObjCMessageExprClass: 730 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 731 case Expr::ObjCIvarRefExprClass: 732 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 733 case Expr::StmtExprClass: 734 return EmitStmtExprLValue(cast<StmtExpr>(E)); 735 case Expr::UnaryOperatorClass: 736 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 737 case Expr::ArraySubscriptExprClass: 738 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 739 case Expr::ExtVectorElementExprClass: 740 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 741 case Expr::MemberExprClass: 742 return EmitMemberExpr(cast<MemberExpr>(E)); 743 case Expr::CompoundLiteralExprClass: 744 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 745 case Expr::ConditionalOperatorClass: 746 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 747 case Expr::BinaryConditionalOperatorClass: 748 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 749 case Expr::ChooseExprClass: 750 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext())); 751 case Expr::OpaqueValueExprClass: 752 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 753 case Expr::SubstNonTypeTemplateParmExprClass: 754 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 755 case Expr::ImplicitCastExprClass: 756 case Expr::CStyleCastExprClass: 757 case Expr::CXXFunctionalCastExprClass: 758 case Expr::CXXStaticCastExprClass: 759 case Expr::CXXDynamicCastExprClass: 760 case Expr::CXXReinterpretCastExprClass: 761 case Expr::CXXConstCastExprClass: 762 case Expr::ObjCBridgedCastExprClass: 763 return EmitCastLValue(cast<CastExpr>(E)); 764 765 case Expr::MaterializeTemporaryExprClass: 766 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 767 } 768 } 769 770 /// Given an object of the given canonical type, can we safely copy a 771 /// value out of it based on its initializer? 772 static bool isConstantEmittableObjectType(QualType type) { 773 assert(type.isCanonical()); 774 assert(!type->isReferenceType()); 775 776 // Must be const-qualified but non-volatile. 777 Qualifiers qs = type.getLocalQualifiers(); 778 if (!qs.hasConst() || qs.hasVolatile()) return false; 779 780 // Otherwise, all object types satisfy this except C++ classes with 781 // mutable subobjects or non-trivial copy/destroy behavior. 782 if (const RecordType *RT = dyn_cast<RecordType>(type)) 783 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 784 if (RD->hasMutableFields() || !RD->isTrivial()) 785 return false; 786 787 return true; 788 } 789 790 /// Can we constant-emit a load of a reference to a variable of the 791 /// given type? This is different from predicates like 792 /// Decl::isUsableInConstantExpressions because we do want it to apply 793 /// in situations that don't necessarily satisfy the language's rules 794 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 795 /// to do this with const float variables even if those variables 796 /// aren't marked 'constexpr'. 797 enum ConstantEmissionKind { 798 CEK_None, 799 CEK_AsReferenceOnly, 800 CEK_AsValueOrReference, 801 CEK_AsValueOnly 802 }; 803 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 804 type = type.getCanonicalType(); 805 if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) { 806 if (isConstantEmittableObjectType(ref->getPointeeType())) 807 return CEK_AsValueOrReference; 808 return CEK_AsReferenceOnly; 809 } 810 if (isConstantEmittableObjectType(type)) 811 return CEK_AsValueOnly; 812 return CEK_None; 813 } 814 815 /// Try to emit a reference to the given value without producing it as 816 /// an l-value. This is actually more than an optimization: we can't 817 /// produce an l-value for variables that we never actually captured 818 /// in a block or lambda, which means const int variables or constexpr 819 /// literals or similar. 820 CodeGenFunction::ConstantEmission 821 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 822 ValueDecl *value = refExpr->getDecl(); 823 824 // The value needs to be an enum constant or a constant variable. 825 ConstantEmissionKind CEK; 826 if (isa<ParmVarDecl>(value)) { 827 CEK = CEK_None; 828 } else if (VarDecl *var = dyn_cast<VarDecl>(value)) { 829 CEK = checkVarTypeForConstantEmission(var->getType()); 830 } else if (isa<EnumConstantDecl>(value)) { 831 CEK = CEK_AsValueOnly; 832 } else { 833 CEK = CEK_None; 834 } 835 if (CEK == CEK_None) return ConstantEmission(); 836 837 Expr::EvalResult result; 838 bool resultIsReference; 839 QualType resultType; 840 841 // It's best to evaluate all the way as an r-value if that's permitted. 842 if (CEK != CEK_AsReferenceOnly && 843 refExpr->EvaluateAsRValue(result, getContext())) { 844 resultIsReference = false; 845 resultType = refExpr->getType(); 846 847 // Otherwise, try to evaluate as an l-value. 848 } else if (CEK != CEK_AsValueOnly && 849 refExpr->EvaluateAsLValue(result, getContext())) { 850 resultIsReference = true; 851 resultType = value->getType(); 852 853 // Failure. 854 } else { 855 return ConstantEmission(); 856 } 857 858 // In any case, if the initializer has side-effects, abandon ship. 859 if (result.HasSideEffects) 860 return ConstantEmission(); 861 862 // Emit as a constant. 863 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 864 865 // Make sure we emit a debug reference to the global variable. 866 // This should probably fire even for 867 if (isa<VarDecl>(value)) { 868 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 869 EmitDeclRefExprDbgValue(refExpr, C); 870 } else { 871 assert(isa<EnumConstantDecl>(value)); 872 EmitDeclRefExprDbgValue(refExpr, C); 873 } 874 875 // If we emitted a reference constant, we need to dereference that. 876 if (resultIsReference) 877 return ConstantEmission::forReference(C); 878 879 return ConstantEmission::forValue(C); 880 } 881 882 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) { 883 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 884 lvalue.getAlignment().getQuantity(), 885 lvalue.getType(), lvalue.getTBAAInfo()); 886 } 887 888 static bool hasBooleanRepresentation(QualType Ty) { 889 if (Ty->isBooleanType()) 890 return true; 891 892 if (const EnumType *ET = Ty->getAs<EnumType>()) 893 return ET->getDecl()->getIntegerType()->isBooleanType(); 894 895 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 896 return hasBooleanRepresentation(AT->getValueType()); 897 898 return false; 899 } 900 901 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 902 const EnumType *ET = Ty->getAs<EnumType>(); 903 bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET && 904 CGM.getCodeGenOpts().StrictEnums && 905 !ET->getDecl()->isFixed()); 906 bool IsBool = hasBooleanRepresentation(Ty); 907 if (!IsBool && !IsRegularCPlusPlusEnum) 908 return NULL; 909 910 llvm::APInt Min; 911 llvm::APInt End; 912 if (IsBool) { 913 Min = llvm::APInt(8, 0); 914 End = llvm::APInt(8, 2); 915 } else { 916 const EnumDecl *ED = ET->getDecl(); 917 llvm::Type *LTy = ConvertTypeForMem(ED->getIntegerType()); 918 unsigned Bitwidth = LTy->getScalarSizeInBits(); 919 unsigned NumNegativeBits = ED->getNumNegativeBits(); 920 unsigned NumPositiveBits = ED->getNumPositiveBits(); 921 922 if (NumNegativeBits) { 923 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 924 assert(NumBits <= Bitwidth); 925 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 926 Min = -End; 927 } else { 928 assert(NumPositiveBits <= Bitwidth); 929 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 930 Min = llvm::APInt(Bitwidth, 0); 931 } 932 } 933 934 llvm::MDBuilder MDHelper(getLLVMContext()); 935 return MDHelper.createRange(Min, End); 936 } 937 938 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 939 unsigned Alignment, QualType Ty, 940 llvm::MDNode *TBAAInfo) { 941 942 // For better performance, handle vector loads differently. 943 if (Ty->isVectorType()) { 944 llvm::Value *V; 945 const llvm::Type *EltTy = 946 cast<llvm::PointerType>(Addr->getType())->getElementType(); 947 948 const llvm::VectorType *VTy = cast<llvm::VectorType>(EltTy); 949 950 // Handle vectors of size 3, like size 4 for better performance. 951 if (VTy->getNumElements() == 3) { 952 953 // Bitcast to vec4 type. 954 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 955 4); 956 llvm::PointerType *ptVec4Ty = 957 llvm::PointerType::get(vec4Ty, 958 (cast<llvm::PointerType>( 959 Addr->getType()))->getAddressSpace()); 960 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 961 "castToVec4"); 962 // Now load value. 963 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 964 965 // Shuffle vector to get vec3. 966 llvm::SmallVector<llvm::Constant*, 3> Mask; 967 Mask.push_back(llvm::ConstantInt::get( 968 llvm::Type::getInt32Ty(getLLVMContext()), 969 0)); 970 Mask.push_back(llvm::ConstantInt::get( 971 llvm::Type::getInt32Ty(getLLVMContext()), 972 1)); 973 Mask.push_back(llvm::ConstantInt::get( 974 llvm::Type::getInt32Ty(getLLVMContext()), 975 2)); 976 977 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 978 V = Builder.CreateShuffleVector(LoadVal, 979 llvm::UndefValue::get(vec4Ty), 980 MaskV, "extractVec"); 981 return EmitFromMemory(V, Ty); 982 } 983 } 984 985 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 986 if (Volatile) 987 Load->setVolatile(true); 988 if (Alignment) 989 Load->setAlignment(Alignment); 990 if (TBAAInfo) 991 CGM.DecorateInstruction(Load, TBAAInfo); 992 // If this is an atomic type, all normal reads must be atomic 993 if (Ty->isAtomicType()) 994 Load->setAtomic(llvm::SequentiallyConsistent); 995 996 if (CGM.getCodeGenOpts().OptimizationLevel > 0) 997 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 998 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 999 1000 return EmitFromMemory(Load, Ty); 1001 } 1002 1003 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1004 // Bool has a different representation in memory than in registers. 1005 if (hasBooleanRepresentation(Ty)) { 1006 // This should really always be an i1, but sometimes it's already 1007 // an i8, and it's awkward to track those cases down. 1008 if (Value->getType()->isIntegerTy(1)) 1009 return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool"); 1010 assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8"); 1011 } 1012 1013 return Value; 1014 } 1015 1016 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1017 // Bool has a different representation in memory than in registers. 1018 if (hasBooleanRepresentation(Ty)) { 1019 assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8"); 1020 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1021 } 1022 1023 return Value; 1024 } 1025 1026 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1027 bool Volatile, unsigned Alignment, 1028 QualType Ty, 1029 llvm::MDNode *TBAAInfo, 1030 bool isInit) { 1031 1032 // Handle vectors differently to get better performance. 1033 if (Ty->isVectorType()) { 1034 llvm::Type *SrcTy = Value->getType(); 1035 llvm::VectorType *VecTy = cast<llvm::VectorType>(SrcTy); 1036 // Handle vec3 special. 1037 if (VecTy->getNumElements() == 3) { 1038 llvm::LLVMContext &VMContext = getLLVMContext(); 1039 1040 // Our source is a vec3, do a shuffle vector to make it a vec4. 1041 llvm::SmallVector<llvm::Constant*, 4> Mask; 1042 Mask.push_back(llvm::ConstantInt::get( 1043 llvm::Type::getInt32Ty(VMContext), 1044 0)); 1045 Mask.push_back(llvm::ConstantInt::get( 1046 llvm::Type::getInt32Ty(VMContext), 1047 1)); 1048 Mask.push_back(llvm::ConstantInt::get( 1049 llvm::Type::getInt32Ty(VMContext), 1050 2)); 1051 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1052 1053 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1054 Value = Builder.CreateShuffleVector(Value, 1055 llvm::UndefValue::get(VecTy), 1056 MaskV, "extractVec"); 1057 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1058 } 1059 llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1060 if (DstPtr->getElementType() != SrcTy) { 1061 llvm::Type *MemTy = 1062 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1063 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1064 } 1065 } 1066 1067 Value = EmitToMemory(Value, Ty); 1068 1069 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1070 if (Alignment) 1071 Store->setAlignment(Alignment); 1072 if (TBAAInfo) 1073 CGM.DecorateInstruction(Store, TBAAInfo); 1074 if (!isInit && Ty->isAtomicType()) 1075 Store->setAtomic(llvm::SequentiallyConsistent); 1076 } 1077 1078 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1079 bool isInit) { 1080 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1081 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1082 lvalue.getTBAAInfo(), isInit); 1083 } 1084 1085 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1086 /// method emits the address of the lvalue, then loads the result as an rvalue, 1087 /// returning the rvalue. 1088 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) { 1089 if (LV.isObjCWeak()) { 1090 // load of a __weak object. 1091 llvm::Value *AddrWeakObj = LV.getAddress(); 1092 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1093 AddrWeakObj)); 1094 } 1095 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) 1096 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1097 1098 if (LV.isSimple()) { 1099 assert(!LV.getType()->isFunctionType()); 1100 1101 // Everything needs a load. 1102 return RValue::get(EmitLoadOfScalar(LV)); 1103 } 1104 1105 if (LV.isVectorElt()) { 1106 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1107 LV.isVolatileQualified()); 1108 Load->setAlignment(LV.getAlignment().getQuantity()); 1109 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1110 "vecext")); 1111 } 1112 1113 // If this is a reference to a subset of the elements of a vector, either 1114 // shuffle the input or extract/insert them as appropriate. 1115 if (LV.isExtVectorElt()) 1116 return EmitLoadOfExtVectorElementLValue(LV); 1117 1118 assert(LV.isBitField() && "Unknown LValue type!"); 1119 return EmitLoadOfBitfieldLValue(LV); 1120 } 1121 1122 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1123 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1124 1125 // Get the output type. 1126 llvm::Type *ResLTy = ConvertType(LV.getType()); 1127 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1128 1129 // Compute the result as an OR of all of the individual component accesses. 1130 llvm::Value *Res = 0; 1131 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1132 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1133 CharUnits AccessAlignment = AI.AccessAlignment; 1134 if (!LV.getAlignment().isZero()) 1135 AccessAlignment = std::min(AccessAlignment, LV.getAlignment()); 1136 1137 // Get the field pointer. 1138 llvm::Value *Ptr = LV.getBitFieldBaseAddr(); 1139 1140 // Only offset by the field index if used, so that incoming values are not 1141 // required to be structures. 1142 if (AI.FieldIndex) 1143 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1144 1145 // Offset by the byte offset, if used. 1146 if (!AI.FieldByteOffset.isZero()) { 1147 Ptr = EmitCastToVoidPtr(Ptr); 1148 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1149 "bf.field.offs"); 1150 } 1151 1152 // Cast to the access type. 1153 llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth, 1154 CGM.getContext().getTargetAddressSpace(LV.getType())); 1155 Ptr = Builder.CreateBitCast(Ptr, PTy); 1156 1157 // Perform the load. 1158 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified()); 1159 Load->setAlignment(AccessAlignment.getQuantity()); 1160 1161 // Shift out unused low bits and mask out unused high bits. 1162 llvm::Value *Val = Load; 1163 if (AI.FieldBitStart) 1164 Val = Builder.CreateLShr(Load, AI.FieldBitStart); 1165 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth, 1166 AI.TargetBitWidth), 1167 "bf.clear"); 1168 1169 // Extend or truncate to the target size. 1170 if (AI.AccessWidth < ResSizeInBits) 1171 Val = Builder.CreateZExt(Val, ResLTy); 1172 else if (AI.AccessWidth > ResSizeInBits) 1173 Val = Builder.CreateTrunc(Val, ResLTy); 1174 1175 // Shift into place, and OR into the result. 1176 if (AI.TargetBitOffset) 1177 Val = Builder.CreateShl(Val, AI.TargetBitOffset); 1178 Res = Res ? Builder.CreateOr(Res, Val) : Val; 1179 } 1180 1181 // If the bit-field is signed, perform the sign-extension. 1182 // 1183 // FIXME: This can easily be folded into the load of the high bits, which 1184 // could also eliminate the mask of high bits in some situations. 1185 if (Info.isSigned()) { 1186 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1187 if (ExtraBits) 1188 Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits), 1189 ExtraBits, "bf.val.sext"); 1190 } 1191 1192 return RValue::get(Res); 1193 } 1194 1195 // If this is a reference to a subset of the elements of a vector, create an 1196 // appropriate shufflevector. 1197 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1198 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1199 LV.isVolatileQualified()); 1200 Load->setAlignment(LV.getAlignment().getQuantity()); 1201 llvm::Value *Vec = Load; 1202 1203 const llvm::Constant *Elts = LV.getExtVectorElts(); 1204 1205 // If the result of the expression is a non-vector type, we must be extracting 1206 // a single element. Just codegen as an extractelement. 1207 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1208 if (!ExprVT) { 1209 unsigned InIdx = getAccessedFieldNo(0, Elts); 1210 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1211 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1212 } 1213 1214 // Always use shuffle vector to try to retain the original program structure 1215 unsigned NumResultElts = ExprVT->getNumElements(); 1216 1217 SmallVector<llvm::Constant*, 4> Mask; 1218 for (unsigned i = 0; i != NumResultElts; ++i) 1219 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1220 1221 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1222 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1223 MaskV); 1224 return RValue::get(Vec); 1225 } 1226 1227 1228 1229 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1230 /// lvalue, where both are guaranteed to the have the same type, and that type 1231 /// is 'Ty'. 1232 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) { 1233 if (!Dst.isSimple()) { 1234 if (Dst.isVectorElt()) { 1235 // Read/modify/write the vector, inserting the new element. 1236 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1237 Dst.isVolatileQualified()); 1238 Load->setAlignment(Dst.getAlignment().getQuantity()); 1239 llvm::Value *Vec = Load; 1240 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1241 Dst.getVectorIdx(), "vecins"); 1242 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1243 Dst.isVolatileQualified()); 1244 Store->setAlignment(Dst.getAlignment().getQuantity()); 1245 return; 1246 } 1247 1248 // If this is an update of extended vector elements, insert them as 1249 // appropriate. 1250 if (Dst.isExtVectorElt()) 1251 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1252 1253 assert(Dst.isBitField() && "Unknown LValue type"); 1254 return EmitStoreThroughBitfieldLValue(Src, Dst); 1255 } 1256 1257 // There's special magic for assigning into an ARC-qualified l-value. 1258 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1259 switch (Lifetime) { 1260 case Qualifiers::OCL_None: 1261 llvm_unreachable("present but none"); 1262 1263 case Qualifiers::OCL_ExplicitNone: 1264 // nothing special 1265 break; 1266 1267 case Qualifiers::OCL_Strong: 1268 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1269 return; 1270 1271 case Qualifiers::OCL_Weak: 1272 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1273 return; 1274 1275 case Qualifiers::OCL_Autoreleasing: 1276 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1277 Src.getScalarVal())); 1278 // fall into the normal path 1279 break; 1280 } 1281 } 1282 1283 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1284 // load of a __weak object. 1285 llvm::Value *LvalueDst = Dst.getAddress(); 1286 llvm::Value *src = Src.getScalarVal(); 1287 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1288 return; 1289 } 1290 1291 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1292 // load of a __strong object. 1293 llvm::Value *LvalueDst = Dst.getAddress(); 1294 llvm::Value *src = Src.getScalarVal(); 1295 if (Dst.isObjCIvar()) { 1296 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1297 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1298 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1299 llvm::Value *dst = RHS; 1300 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1301 llvm::Value *LHS = 1302 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1303 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1304 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1305 BytesBetween); 1306 } else if (Dst.isGlobalObjCRef()) { 1307 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1308 Dst.isThreadLocalRef()); 1309 } 1310 else 1311 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1312 return; 1313 } 1314 1315 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1316 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1317 } 1318 1319 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1320 llvm::Value **Result) { 1321 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1322 1323 // Get the output type. 1324 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1325 unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy); 1326 1327 // Get the source value, truncated to the width of the bit-field. 1328 llvm::Value *SrcVal = Src.getScalarVal(); 1329 1330 if (hasBooleanRepresentation(Dst.getType())) 1331 SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false); 1332 1333 SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits, 1334 Info.getSize()), 1335 "bf.value"); 1336 1337 // Return the new value of the bit-field, if requested. 1338 if (Result) { 1339 // Cast back to the proper type for result. 1340 llvm::Type *SrcTy = Src.getScalarVal()->getType(); 1341 llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false, 1342 "bf.reload.val"); 1343 1344 // Sign extend if necessary. 1345 if (Info.isSigned()) { 1346 unsigned ExtraBits = ResSizeInBits - Info.getSize(); 1347 if (ExtraBits) 1348 ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits), 1349 ExtraBits, "bf.reload.sext"); 1350 } 1351 1352 *Result = ReloadVal; 1353 } 1354 1355 // Iterate over the components, writing each piece to memory. 1356 for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) { 1357 const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i); 1358 CharUnits AccessAlignment = AI.AccessAlignment; 1359 if (!Dst.getAlignment().isZero()) 1360 AccessAlignment = std::min(AccessAlignment, Dst.getAlignment()); 1361 1362 // Get the field pointer. 1363 llvm::Value *Ptr = Dst.getBitFieldBaseAddr(); 1364 unsigned addressSpace = 1365 cast<llvm::PointerType>(Ptr->getType())->getAddressSpace(); 1366 1367 // Only offset by the field index if used, so that incoming values are not 1368 // required to be structures. 1369 if (AI.FieldIndex) 1370 Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field"); 1371 1372 // Offset by the byte offset, if used. 1373 if (!AI.FieldByteOffset.isZero()) { 1374 Ptr = EmitCastToVoidPtr(Ptr); 1375 Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(), 1376 "bf.field.offs"); 1377 } 1378 1379 // Cast to the access type. 1380 llvm::Type *AccessLTy = 1381 llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth); 1382 1383 llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace); 1384 Ptr = Builder.CreateBitCast(Ptr, PTy); 1385 1386 // Extract the piece of the bit-field value to write in this access, limited 1387 // to the values that are part of this access. 1388 llvm::Value *Val = SrcVal; 1389 if (AI.TargetBitOffset) 1390 Val = Builder.CreateLShr(Val, AI.TargetBitOffset); 1391 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits, 1392 AI.TargetBitWidth)); 1393 1394 // Extend or truncate to the access size. 1395 if (ResSizeInBits < AI.AccessWidth) 1396 Val = Builder.CreateZExt(Val, AccessLTy); 1397 else if (ResSizeInBits > AI.AccessWidth) 1398 Val = Builder.CreateTrunc(Val, AccessLTy); 1399 1400 // Shift into the position in memory. 1401 if (AI.FieldBitStart) 1402 Val = Builder.CreateShl(Val, AI.FieldBitStart); 1403 1404 // If necessary, load and OR in bits that are outside of the bit-field. 1405 if (AI.TargetBitWidth != AI.AccessWidth) { 1406 llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified()); 1407 Load->setAlignment(AccessAlignment.getQuantity()); 1408 1409 // Compute the mask for zeroing the bits that are part of the bit-field. 1410 llvm::APInt InvMask = 1411 ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart, 1412 AI.FieldBitStart + AI.TargetBitWidth); 1413 1414 // Apply the mask and OR in to the value to write. 1415 Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val); 1416 } 1417 1418 // Write the value. 1419 llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr, 1420 Dst.isVolatileQualified()); 1421 Store->setAlignment(AccessAlignment.getQuantity()); 1422 } 1423 } 1424 1425 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1426 LValue Dst) { 1427 // This access turns into a read/modify/write of the vector. Load the input 1428 // value now. 1429 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1430 Dst.isVolatileQualified()); 1431 Load->setAlignment(Dst.getAlignment().getQuantity()); 1432 llvm::Value *Vec = Load; 1433 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1434 1435 llvm::Value *SrcVal = Src.getScalarVal(); 1436 1437 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1438 unsigned NumSrcElts = VTy->getNumElements(); 1439 unsigned NumDstElts = 1440 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1441 if (NumDstElts == NumSrcElts) { 1442 // Use shuffle vector is the src and destination are the same number of 1443 // elements and restore the vector mask since it is on the side it will be 1444 // stored. 1445 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1446 for (unsigned i = 0; i != NumSrcElts; ++i) 1447 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1448 1449 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1450 Vec = Builder.CreateShuffleVector(SrcVal, 1451 llvm::UndefValue::get(Vec->getType()), 1452 MaskV); 1453 } else if (NumDstElts > NumSrcElts) { 1454 // Extended the source vector to the same length and then shuffle it 1455 // into the destination. 1456 // FIXME: since we're shuffling with undef, can we just use the indices 1457 // into that? This could be simpler. 1458 SmallVector<llvm::Constant*, 4> ExtMask; 1459 for (unsigned i = 0; i != NumSrcElts; ++i) 1460 ExtMask.push_back(Builder.getInt32(i)); 1461 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1462 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1463 llvm::Value *ExtSrcVal = 1464 Builder.CreateShuffleVector(SrcVal, 1465 llvm::UndefValue::get(SrcVal->getType()), 1466 ExtMaskV); 1467 // build identity 1468 SmallVector<llvm::Constant*, 4> Mask; 1469 for (unsigned i = 0; i != NumDstElts; ++i) 1470 Mask.push_back(Builder.getInt32(i)); 1471 1472 // modify when what gets shuffled in 1473 for (unsigned i = 0; i != NumSrcElts; ++i) 1474 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1475 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1476 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1477 } else { 1478 // We should never shorten the vector 1479 llvm_unreachable("unexpected shorten vector length"); 1480 } 1481 } else { 1482 // If the Src is a scalar (not a vector) it must be updating one element. 1483 unsigned InIdx = getAccessedFieldNo(0, Elts); 1484 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1485 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1486 } 1487 1488 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1489 Dst.isVolatileQualified()); 1490 Store->setAlignment(Dst.getAlignment().getQuantity()); 1491 } 1492 1493 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1494 // generating write-barries API. It is currently a global, ivar, 1495 // or neither. 1496 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1497 LValue &LV, 1498 bool IsMemberAccess=false) { 1499 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1500 return; 1501 1502 if (isa<ObjCIvarRefExpr>(E)) { 1503 QualType ExpTy = E->getType(); 1504 if (IsMemberAccess && ExpTy->isPointerType()) { 1505 // If ivar is a structure pointer, assigning to field of 1506 // this struct follows gcc's behavior and makes it a non-ivar 1507 // writer-barrier conservatively. 1508 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1509 if (ExpTy->isRecordType()) { 1510 LV.setObjCIvar(false); 1511 return; 1512 } 1513 } 1514 LV.setObjCIvar(true); 1515 ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E)); 1516 LV.setBaseIvarExp(Exp->getBase()); 1517 LV.setObjCArray(E->getType()->isArrayType()); 1518 return; 1519 } 1520 1521 if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) { 1522 if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1523 if (VD->hasGlobalStorage()) { 1524 LV.setGlobalObjCRef(true); 1525 LV.setThreadLocalRef(VD->isThreadSpecified()); 1526 } 1527 } 1528 LV.setObjCArray(E->getType()->isArrayType()); 1529 return; 1530 } 1531 1532 if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) { 1533 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1534 return; 1535 } 1536 1537 if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) { 1538 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1539 if (LV.isObjCIvar()) { 1540 // If cast is to a structure pointer, follow gcc's behavior and make it 1541 // a non-ivar write-barrier. 1542 QualType ExpTy = E->getType(); 1543 if (ExpTy->isPointerType()) 1544 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1545 if (ExpTy->isRecordType()) 1546 LV.setObjCIvar(false); 1547 } 1548 return; 1549 } 1550 1551 if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1552 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1553 return; 1554 } 1555 1556 if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1557 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1558 return; 1559 } 1560 1561 if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) { 1562 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1563 return; 1564 } 1565 1566 if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1567 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1568 return; 1569 } 1570 1571 if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1572 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1573 if (LV.isObjCIvar() && !LV.isObjCArray()) 1574 // Using array syntax to assigning to what an ivar points to is not 1575 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1576 LV.setObjCIvar(false); 1577 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1578 // Using array syntax to assigning to what global points to is not 1579 // same as assigning to the global itself. {id *G;} G[i] = 0; 1580 LV.setGlobalObjCRef(false); 1581 return; 1582 } 1583 1584 if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) { 1585 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1586 // We don't know if member is an 'ivar', but this flag is looked at 1587 // only in the context of LV.isObjCIvar(). 1588 LV.setObjCArray(E->getType()->isArrayType()); 1589 return; 1590 } 1591 } 1592 1593 static llvm::Value * 1594 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1595 llvm::Value *V, llvm::Type *IRType, 1596 StringRef Name = StringRef()) { 1597 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1598 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1599 } 1600 1601 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1602 const Expr *E, const VarDecl *VD) { 1603 assert((VD->hasExternalStorage() || VD->isFileVarDecl()) && 1604 "Var decl must have external storage or be a file var decl!"); 1605 1606 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1607 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1608 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1609 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1610 QualType T = E->getType(); 1611 LValue LV; 1612 if (VD->getType()->isReferenceType()) { 1613 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1614 LI->setAlignment(Alignment.getQuantity()); 1615 V = LI; 1616 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1617 } else { 1618 LV = CGF.MakeAddrLValue(V, E->getType(), Alignment); 1619 } 1620 setObjCGCLValueClass(CGF.getContext(), E, LV); 1621 return LV; 1622 } 1623 1624 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1625 const Expr *E, const FunctionDecl *FD) { 1626 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1627 if (!FD->hasPrototype()) { 1628 if (const FunctionProtoType *Proto = 1629 FD->getType()->getAs<FunctionProtoType>()) { 1630 // Ugly case: for a K&R-style definition, the type of the definition 1631 // isn't the same as the type of a use. Correct for this with a 1632 // bitcast. 1633 QualType NoProtoType = 1634 CGF.getContext().getFunctionNoProtoType(Proto->getResultType()); 1635 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1636 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1637 } 1638 } 1639 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1640 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1641 } 1642 1643 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1644 const NamedDecl *ND = E->getDecl(); 1645 CharUnits Alignment = getContext().getDeclAlign(ND); 1646 QualType T = E->getType(); 1647 1648 // FIXME: We should be able to assert this for FunctionDecls as well! 1649 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1650 // those with a valid source location. 1651 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1652 !E->getLocation().isValid()) && 1653 "Should not use decl without marking it used!"); 1654 1655 if (ND->hasAttr<WeakRefAttr>()) { 1656 const ValueDecl *VD = cast<ValueDecl>(ND); 1657 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1658 return MakeAddrLValue(Aliasee, E->getType(), Alignment); 1659 } 1660 1661 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { 1662 // Check if this is a global variable. 1663 if (VD->hasExternalStorage() || VD->isFileVarDecl()) 1664 return EmitGlobalVarDeclLValue(*this, E, VD); 1665 1666 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1667 1668 bool NonGCable = VD->hasLocalStorage() && 1669 !VD->getType()->isReferenceType() && 1670 !isBlockVariable; 1671 1672 llvm::Value *V = LocalDeclMap[VD]; 1673 if (!V && VD->isStaticLocal()) 1674 V = CGM.getStaticLocalDeclAddress(VD); 1675 1676 // Use special handling for lambdas. 1677 if (!V) { 1678 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1679 QualType LambdaTagType = getContext().getTagDeclType(FD->getParent()); 1680 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, 1681 LambdaTagType); 1682 return EmitLValueForField(LambdaLV, FD); 1683 } 1684 1685 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1686 CharUnits alignment = getContext().getDeclAlign(VD); 1687 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1688 E->getType(), alignment); 1689 } 1690 1691 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1692 1693 if (isBlockVariable) 1694 V = BuildBlockByrefAddress(V, VD); 1695 1696 LValue LV; 1697 if (VD->getType()->isReferenceType()) { 1698 llvm::LoadInst *LI = Builder.CreateLoad(V); 1699 LI->setAlignment(Alignment.getQuantity()); 1700 V = LI; 1701 LV = MakeNaturalAlignAddrLValue(V, T); 1702 } else { 1703 LV = MakeAddrLValue(V, T, Alignment); 1704 } 1705 1706 if (NonGCable) { 1707 LV.getQuals().removeObjCGCAttr(); 1708 LV.setNonGC(true); 1709 } 1710 setObjCGCLValueClass(getContext(), E, LV); 1711 return LV; 1712 } 1713 1714 if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) 1715 return EmitFunctionDeclLValue(*this, E, fn); 1716 1717 llvm_unreachable("Unhandled DeclRefExpr"); 1718 } 1719 1720 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1721 // __extension__ doesn't affect lvalue-ness. 1722 if (E->getOpcode() == UO_Extension) 1723 return EmitLValue(E->getSubExpr()); 1724 1725 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1726 switch (E->getOpcode()) { 1727 default: llvm_unreachable("Unknown unary operator lvalue!"); 1728 case UO_Deref: { 1729 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1730 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1731 1732 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1733 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1734 1735 // We should not generate __weak write barrier on indirect reference 1736 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1737 // But, we continue to generate __strong write barrier on indirect write 1738 // into a pointer to object. 1739 if (getContext().getLangOpts().ObjC1 && 1740 getContext().getLangOpts().getGC() != LangOptions::NonGC && 1741 LV.isObjCWeak()) 1742 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1743 return LV; 1744 } 1745 case UO_Real: 1746 case UO_Imag: { 1747 LValue LV = EmitLValue(E->getSubExpr()); 1748 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1749 llvm::Value *Addr = LV.getAddress(); 1750 1751 // __real is valid on scalars. This is a faster way of testing that. 1752 // __imag can only produce an rvalue on scalars. 1753 if (E->getOpcode() == UO_Real && 1754 !cast<llvm::PointerType>(Addr->getType()) 1755 ->getElementType()->isStructTy()) { 1756 assert(E->getSubExpr()->getType()->isArithmeticType()); 1757 return LV; 1758 } 1759 1760 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1761 1762 unsigned Idx = E->getOpcode() == UO_Imag; 1763 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1764 Idx, "idx"), 1765 ExprTy); 1766 } 1767 case UO_PreInc: 1768 case UO_PreDec: { 1769 LValue LV = EmitLValue(E->getSubExpr()); 1770 bool isInc = E->getOpcode() == UO_PreInc; 1771 1772 if (E->getType()->isAnyComplexType()) 1773 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1774 else 1775 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1776 return LV; 1777 } 1778 } 1779 } 1780 1781 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1782 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1783 E->getType()); 1784 } 1785 1786 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1787 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1788 E->getType()); 1789 } 1790 1791 static llvm::Constant* 1792 GetAddrOfConstantWideString(StringRef Str, 1793 const char *GlobalName, 1794 ASTContext &Context, 1795 QualType Ty, SourceLocation Loc, 1796 CodeGenModule &CGM) { 1797 1798 StringLiteral *SL = StringLiteral::Create(Context, 1799 Str, 1800 StringLiteral::Wide, 1801 /*Pascal = */false, 1802 Ty, Loc); 1803 llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL); 1804 llvm::GlobalVariable *GV = 1805 new llvm::GlobalVariable(CGM.getModule(), C->getType(), 1806 !CGM.getLangOpts().WritableStrings, 1807 llvm::GlobalValue::PrivateLinkage, 1808 C, GlobalName); 1809 const unsigned WideAlignment = 1810 Context.getTypeAlignInChars(Ty).getQuantity(); 1811 GV->setAlignment(WideAlignment); 1812 return GV; 1813 } 1814 1815 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, 1816 SmallString<32>& Target) { 1817 Target.resize(CharByteWidth * (Source.size() + 1)); 1818 char* ResultPtr = &Target[0]; 1819 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr); 1820 (void)success; 1821 assert(success); 1822 Target.resize(ResultPtr - &Target[0]); 1823 } 1824 1825 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1826 switch (E->getIdentType()) { 1827 default: 1828 return EmitUnsupportedLValue(E, "predefined expression"); 1829 1830 case PredefinedExpr::Func: 1831 case PredefinedExpr::Function: 1832 case PredefinedExpr::LFunction: 1833 case PredefinedExpr::PrettyFunction: { 1834 unsigned IdentType = E->getIdentType(); 1835 std::string GlobalVarName; 1836 1837 switch (IdentType) { 1838 default: llvm_unreachable("Invalid type"); 1839 case PredefinedExpr::Func: 1840 GlobalVarName = "__func__."; 1841 break; 1842 case PredefinedExpr::Function: 1843 GlobalVarName = "__FUNCTION__."; 1844 break; 1845 case PredefinedExpr::LFunction: 1846 GlobalVarName = "L__FUNCTION__."; 1847 break; 1848 case PredefinedExpr::PrettyFunction: 1849 GlobalVarName = "__PRETTY_FUNCTION__."; 1850 break; 1851 } 1852 1853 StringRef FnName = CurFn->getName(); 1854 if (FnName.startswith("\01")) 1855 FnName = FnName.substr(1); 1856 GlobalVarName += FnName; 1857 1858 const Decl *CurDecl = CurCodeDecl; 1859 if (CurDecl == 0) 1860 CurDecl = getContext().getTranslationUnitDecl(); 1861 1862 std::string FunctionName = 1863 (isa<BlockDecl>(CurDecl) 1864 ? FnName.str() 1865 : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)IdentType, 1866 CurDecl)); 1867 1868 const Type* ElemType = E->getType()->getArrayElementTypeNoTypeQual(); 1869 llvm::Constant *C; 1870 if (ElemType->isWideCharType()) { 1871 SmallString<32> RawChars; 1872 ConvertUTF8ToWideString( 1873 getContext().getTypeSizeInChars(ElemType).getQuantity(), 1874 FunctionName, RawChars); 1875 C = GetAddrOfConstantWideString(RawChars, 1876 GlobalVarName.c_str(), 1877 getContext(), 1878 E->getType(), 1879 E->getLocation(), 1880 CGM); 1881 } else { 1882 C = CGM.GetAddrOfConstantCString(FunctionName, 1883 GlobalVarName.c_str(), 1884 1); 1885 } 1886 return MakeAddrLValue(C, E->getType()); 1887 } 1888 } 1889 } 1890 1891 llvm::BasicBlock *CodeGenFunction::getTrapBB() { 1892 const CodeGenOptions &GCO = CGM.getCodeGenOpts(); 1893 1894 // If we are not optimzing, don't collapse all calls to trap in the function 1895 // to the same call, that way, in the debugger they can see which operation 1896 // did in fact fail. If we are optimizing, we collapse all calls to trap down 1897 // to just one per function to save on codesize. 1898 if (GCO.OptimizationLevel && TrapBB) 1899 return TrapBB; 1900 1901 llvm::BasicBlock *Cont = 0; 1902 if (HaveInsertPoint()) { 1903 Cont = createBasicBlock("cont"); 1904 EmitBranch(Cont); 1905 } 1906 TrapBB = createBasicBlock("trap"); 1907 EmitBlock(TrapBB); 1908 1909 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 1910 llvm::CallInst *TrapCall = Builder.CreateCall(F); 1911 TrapCall->setDoesNotReturn(); 1912 TrapCall->setDoesNotThrow(); 1913 Builder.CreateUnreachable(); 1914 1915 if (Cont) 1916 EmitBlock(Cont); 1917 return TrapBB; 1918 } 1919 1920 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 1921 /// array to pointer, return the array subexpression. 1922 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 1923 // If this isn't just an array->pointer decay, bail out. 1924 const CastExpr *CE = dyn_cast<CastExpr>(E); 1925 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 1926 return 0; 1927 1928 // If this is a decay from variable width array, bail out. 1929 const Expr *SubExpr = CE->getSubExpr(); 1930 if (SubExpr->getType()->isVariableArrayType()) 1931 return 0; 1932 1933 return SubExpr; 1934 } 1935 1936 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { 1937 // The index must always be an integer, which is not an aggregate. Emit it. 1938 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 1939 QualType IdxTy = E->getIdx()->getType(); 1940 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 1941 1942 // If the base is a vector type, then we are forming a vector element lvalue 1943 // with this subscript. 1944 if (E->getBase()->getType()->isVectorType()) { 1945 // Emit the vector as an lvalue to get its address. 1946 LValue LHS = EmitLValue(E->getBase()); 1947 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 1948 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 1949 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 1950 E->getBase()->getType(), LHS.getAlignment()); 1951 } 1952 1953 // Extend or truncate the index type to 32 or 64-bits. 1954 if (Idx->getType() != IntPtrTy) 1955 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 1956 1957 // We know that the pointer points to a type of the correct size, unless the 1958 // size is a VLA or Objective-C interface. 1959 llvm::Value *Address = 0; 1960 CharUnits ArrayAlignment; 1961 if (const VariableArrayType *vla = 1962 getContext().getAsVariableArrayType(E->getType())) { 1963 // The base must be a pointer, which is not an aggregate. Emit 1964 // it. It needs to be emitted first in case it's what captures 1965 // the VLA bounds. 1966 Address = EmitScalarExpr(E->getBase()); 1967 1968 // The element count here is the total number of non-VLA elements. 1969 llvm::Value *numElements = getVLASize(vla).first; 1970 1971 // Effectively, the multiply by the VLA size is part of the GEP. 1972 // GEP indexes are signed, and scaling an index isn't permitted to 1973 // signed-overflow, so we use the same semantics for our explicit 1974 // multiply. We suppress this if overflow is not undefined behavior. 1975 if (getLangOpts().isSignedOverflowDefined()) { 1976 Idx = Builder.CreateMul(Idx, numElements); 1977 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1978 } else { 1979 Idx = Builder.CreateNSWMul(Idx, numElements); 1980 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 1981 } 1982 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 1983 // Indexing over an interface, as in "NSString *P; P[4];" 1984 llvm::Value *InterfaceSize = 1985 llvm::ConstantInt::get(Idx->getType(), 1986 getContext().getTypeSizeInChars(OIT).getQuantity()); 1987 1988 Idx = Builder.CreateMul(Idx, InterfaceSize); 1989 1990 // The base must be a pointer, which is not an aggregate. Emit it. 1991 llvm::Value *Base = EmitScalarExpr(E->getBase()); 1992 Address = EmitCastToVoidPtr(Base); 1993 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 1994 Address = Builder.CreateBitCast(Address, Base->getType()); 1995 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 1996 // If this is A[i] where A is an array, the frontend will have decayed the 1997 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 1998 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 1999 // "gep x, i" here. Emit one "gep A, 0, i". 2000 assert(Array->getType()->isArrayType() && 2001 "Array to pointer decay must have array source type!"); 2002 LValue ArrayLV = EmitLValue(Array); 2003 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2004 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2005 llvm::Value *Args[] = { Zero, Idx }; 2006 2007 // Propagate the alignment from the array itself to the result. 2008 ArrayAlignment = ArrayLV.getAlignment(); 2009 2010 if (getContext().getLangOpts().isSignedOverflowDefined()) 2011 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2012 else 2013 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2014 } else { 2015 // The base must be a pointer, which is not an aggregate. Emit it. 2016 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2017 if (getContext().getLangOpts().isSignedOverflowDefined()) 2018 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2019 else 2020 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2021 } 2022 2023 QualType T = E->getBase()->getType()->getPointeeType(); 2024 assert(!T.isNull() && 2025 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2026 2027 2028 // Limit the alignment to that of the result type. 2029 LValue LV; 2030 if (!ArrayAlignment.isZero()) { 2031 CharUnits Align = getContext().getTypeAlignInChars(T); 2032 ArrayAlignment = std::min(Align, ArrayAlignment); 2033 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2034 } else { 2035 LV = MakeNaturalAlignAddrLValue(Address, T); 2036 } 2037 2038 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2039 2040 if (getContext().getLangOpts().ObjC1 && 2041 getContext().getLangOpts().getGC() != LangOptions::NonGC) { 2042 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2043 setObjCGCLValueClass(getContext(), E, LV); 2044 } 2045 return LV; 2046 } 2047 2048 static 2049 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2050 SmallVector<unsigned, 4> &Elts) { 2051 SmallVector<llvm::Constant*, 4> CElts; 2052 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2053 CElts.push_back(Builder.getInt32(Elts[i])); 2054 2055 return llvm::ConstantVector::get(CElts); 2056 } 2057 2058 LValue CodeGenFunction:: 2059 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2060 // Emit the base vector as an l-value. 2061 LValue Base; 2062 2063 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2064 if (E->isArrow()) { 2065 // If it is a pointer to a vector, emit the address and form an lvalue with 2066 // it. 2067 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2068 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2069 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2070 Base.getQuals().removeObjCGCAttr(); 2071 } else if (E->getBase()->isGLValue()) { 2072 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2073 // emit the base as an lvalue. 2074 assert(E->getBase()->getType()->isVectorType()); 2075 Base = EmitLValue(E->getBase()); 2076 } else { 2077 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2078 assert(E->getBase()->getType()->isVectorType() && 2079 "Result must be a vector"); 2080 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2081 2082 // Store the vector to memory (because LValue wants an address). 2083 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2084 Builder.CreateStore(Vec, VecMem); 2085 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2086 } 2087 2088 QualType type = 2089 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2090 2091 // Encode the element access list into a vector of unsigned indices. 2092 SmallVector<unsigned, 4> Indices; 2093 E->getEncodedElementAccess(Indices); 2094 2095 if (Base.isSimple()) { 2096 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2097 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2098 Base.getAlignment()); 2099 } 2100 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2101 2102 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2103 SmallVector<llvm::Constant *, 4> CElts; 2104 2105 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2106 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2107 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2108 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2109 Base.getAlignment()); 2110 } 2111 2112 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2113 Expr *BaseExpr = E->getBase(); 2114 2115 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2116 LValue BaseLV; 2117 if (E->isArrow()) 2118 BaseLV = MakeNaturalAlignAddrLValue(EmitScalarExpr(BaseExpr), 2119 BaseExpr->getType()->getPointeeType()); 2120 else 2121 BaseLV = EmitLValue(BaseExpr); 2122 2123 NamedDecl *ND = E->getMemberDecl(); 2124 if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) { 2125 LValue LV = EmitLValueForField(BaseLV, Field); 2126 setObjCGCLValueClass(getContext(), E, LV); 2127 return LV; 2128 } 2129 2130 if (VarDecl *VD = dyn_cast<VarDecl>(ND)) 2131 return EmitGlobalVarDeclLValue(*this, E, VD); 2132 2133 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) 2134 return EmitFunctionDeclLValue(*this, E, FD); 2135 2136 llvm_unreachable("Unhandled member declaration!"); 2137 } 2138 2139 LValue CodeGenFunction::EmitLValueForField(LValue base, 2140 const FieldDecl *field) { 2141 if (field->isBitField()) { 2142 const CGRecordLayout &RL = 2143 CGM.getTypes().getCGRecordLayout(field->getParent()); 2144 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2145 QualType fieldType = 2146 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2147 return LValue::MakeBitfield(base.getAddress(), Info, fieldType, 2148 base.getAlignment()); 2149 } 2150 2151 const RecordDecl *rec = field->getParent(); 2152 QualType type = field->getType(); 2153 CharUnits alignment = getContext().getDeclAlign(field); 2154 2155 // FIXME: It should be impossible to have an LValue without alignment for a 2156 // complete type. 2157 if (!base.getAlignment().isZero()) 2158 alignment = std::min(alignment, base.getAlignment()); 2159 2160 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2161 2162 llvm::Value *addr = base.getAddress(); 2163 unsigned cvr = base.getVRQualifiers(); 2164 if (rec->isUnion()) { 2165 // For unions, there is no pointer adjustment. 2166 assert(!type->isReferenceType() && "union has reference member"); 2167 } else { 2168 // For structs, we GEP to the field that the record layout suggests. 2169 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2170 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2171 2172 // If this is a reference field, load the reference right now. 2173 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2174 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2175 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2176 load->setAlignment(alignment.getQuantity()); 2177 2178 if (CGM.shouldUseTBAA()) { 2179 llvm::MDNode *tbaa; 2180 if (mayAlias) 2181 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2182 else 2183 tbaa = CGM.getTBAAInfo(type); 2184 CGM.DecorateInstruction(load, tbaa); 2185 } 2186 2187 addr = load; 2188 mayAlias = false; 2189 type = refType->getPointeeType(); 2190 if (type->isIncompleteType()) 2191 alignment = CharUnits(); 2192 else 2193 alignment = getContext().getTypeAlignInChars(type); 2194 cvr = 0; // qualifiers don't recursively apply to referencee 2195 } 2196 } 2197 2198 // Make sure that the address is pointing to the right type. This is critical 2199 // for both unions and structs. A union needs a bitcast, a struct element 2200 // will need a bitcast if the LLVM type laid out doesn't match the desired 2201 // type. 2202 addr = EmitBitCastOfLValueToProperType(*this, addr, 2203 CGM.getTypes().ConvertTypeForMem(type), 2204 field->getName()); 2205 2206 if (field->hasAttr<AnnotateAttr>()) 2207 addr = EmitFieldAnnotations(field, addr); 2208 2209 LValue LV = MakeAddrLValue(addr, type, alignment); 2210 LV.getQuals().addCVRQualifiers(cvr); 2211 2212 // __weak attribute on a field is ignored. 2213 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2214 LV.getQuals().removeObjCGCAttr(); 2215 2216 // Fields of may_alias structs act like 'char' for TBAA purposes. 2217 // FIXME: this should get propagated down through anonymous structs 2218 // and unions. 2219 if (mayAlias && LV.getTBAAInfo()) 2220 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2221 2222 return LV; 2223 } 2224 2225 LValue 2226 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2227 const FieldDecl *Field) { 2228 QualType FieldType = Field->getType(); 2229 2230 if (!FieldType->isReferenceType()) 2231 return EmitLValueForField(Base, Field); 2232 2233 const CGRecordLayout &RL = 2234 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2235 unsigned idx = RL.getLLVMFieldNo(Field); 2236 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2237 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2238 2239 // Make sure that the address is pointing to the right type. This is critical 2240 // for both unions and structs. A union needs a bitcast, a struct element 2241 // will need a bitcast if the LLVM type laid out doesn't match the desired 2242 // type. 2243 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2244 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2245 2246 CharUnits Alignment = getContext().getDeclAlign(Field); 2247 2248 // FIXME: It should be impossible to have an LValue without alignment for a 2249 // complete type. 2250 if (!Base.getAlignment().isZero()) 2251 Alignment = std::min(Alignment, Base.getAlignment()); 2252 2253 return MakeAddrLValue(V, FieldType, Alignment); 2254 } 2255 2256 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2257 if (E->isFileScope()) { 2258 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2259 return MakeAddrLValue(GlobalPtr, E->getType()); 2260 } 2261 if (E->getType()->isVariablyModifiedType()) 2262 // make sure to emit the VLA size. 2263 EmitVariablyModifiedType(E->getType()); 2264 2265 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2266 const Expr *InitExpr = E->getInitializer(); 2267 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2268 2269 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2270 /*Init*/ true); 2271 2272 return Result; 2273 } 2274 2275 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2276 if (!E->isGLValue()) 2277 // Initializing an aggregate temporary in C++11: T{...}. 2278 return EmitAggExprToLValue(E); 2279 2280 // An lvalue initializer list must be initializing a reference. 2281 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2282 return EmitLValue(E->getInit(0)); 2283 } 2284 2285 LValue CodeGenFunction:: 2286 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2287 if (!expr->isGLValue()) { 2288 // ?: here should be an aggregate. 2289 assert((hasAggregateLLVMType(expr->getType()) && 2290 !expr->getType()->isAnyComplexType()) && 2291 "Unexpected conditional operator!"); 2292 return EmitAggExprToLValue(expr); 2293 } 2294 2295 OpaqueValueMapping binding(*this, expr); 2296 2297 const Expr *condExpr = expr->getCond(); 2298 bool CondExprBool; 2299 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2300 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2301 if (!CondExprBool) std::swap(live, dead); 2302 2303 if (!ContainsLabel(dead)) 2304 return EmitLValue(live); 2305 } 2306 2307 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2308 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2309 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2310 2311 ConditionalEvaluation eval(*this); 2312 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock); 2313 2314 // Any temporaries created here are conditional. 2315 EmitBlock(lhsBlock); 2316 eval.begin(*this); 2317 LValue lhs = EmitLValue(expr->getTrueExpr()); 2318 eval.end(*this); 2319 2320 if (!lhs.isSimple()) 2321 return EmitUnsupportedLValue(expr, "conditional operator"); 2322 2323 lhsBlock = Builder.GetInsertBlock(); 2324 Builder.CreateBr(contBlock); 2325 2326 // Any temporaries created here are conditional. 2327 EmitBlock(rhsBlock); 2328 eval.begin(*this); 2329 LValue rhs = EmitLValue(expr->getFalseExpr()); 2330 eval.end(*this); 2331 if (!rhs.isSimple()) 2332 return EmitUnsupportedLValue(expr, "conditional operator"); 2333 rhsBlock = Builder.GetInsertBlock(); 2334 2335 EmitBlock(contBlock); 2336 2337 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2338 "cond-lvalue"); 2339 phi->addIncoming(lhs.getAddress(), lhsBlock); 2340 phi->addIncoming(rhs.getAddress(), rhsBlock); 2341 return MakeAddrLValue(phi, expr->getType()); 2342 } 2343 2344 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2345 /// type. If the cast is to a reference, we can have the usual lvalue result, 2346 /// otherwise if a cast is needed by the code generator in an lvalue context, 2347 /// then it must mean that we need the address of an aggregate in order to 2348 /// access one of its members. This can happen for all the reasons that casts 2349 /// are permitted with aggregate result, including noop aggregate casts, and 2350 /// cast from scalar to union. 2351 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2352 switch (E->getCastKind()) { 2353 case CK_ToVoid: 2354 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2355 2356 case CK_Dependent: 2357 llvm_unreachable("dependent cast kind in IR gen!"); 2358 2359 // These two casts are currently treated as no-ops, although they could 2360 // potentially be real operations depending on the target's ABI. 2361 case CK_NonAtomicToAtomic: 2362 case CK_AtomicToNonAtomic: 2363 2364 case CK_NoOp: 2365 case CK_LValueToRValue: 2366 if (!E->getSubExpr()->Classify(getContext()).isPRValue() 2367 || E->getType()->isRecordType()) 2368 return EmitLValue(E->getSubExpr()); 2369 // Fall through to synthesize a temporary. 2370 2371 case CK_BitCast: 2372 case CK_ArrayToPointerDecay: 2373 case CK_FunctionToPointerDecay: 2374 case CK_NullToMemberPointer: 2375 case CK_NullToPointer: 2376 case CK_IntegralToPointer: 2377 case CK_PointerToIntegral: 2378 case CK_PointerToBoolean: 2379 case CK_VectorSplat: 2380 case CK_IntegralCast: 2381 case CK_IntegralToBoolean: 2382 case CK_IntegralToFloating: 2383 case CK_FloatingToIntegral: 2384 case CK_FloatingToBoolean: 2385 case CK_FloatingCast: 2386 case CK_FloatingRealToComplex: 2387 case CK_FloatingComplexToReal: 2388 case CK_FloatingComplexToBoolean: 2389 case CK_FloatingComplexCast: 2390 case CK_FloatingComplexToIntegralComplex: 2391 case CK_IntegralRealToComplex: 2392 case CK_IntegralComplexToReal: 2393 case CK_IntegralComplexToBoolean: 2394 case CK_IntegralComplexCast: 2395 case CK_IntegralComplexToFloatingComplex: 2396 case CK_DerivedToBaseMemberPointer: 2397 case CK_BaseToDerivedMemberPointer: 2398 case CK_MemberPointerToBoolean: 2399 case CK_ReinterpretMemberPointer: 2400 case CK_AnyPointerToBlockPointerCast: 2401 case CK_ARCProduceObject: 2402 case CK_ARCConsumeObject: 2403 case CK_ARCReclaimReturnedObject: 2404 case CK_ARCExtendBlockObject: 2405 case CK_CopyAndAutoreleaseBlockObject: { 2406 // These casts only produce lvalues when we're binding a reference to a 2407 // temporary realized from a (converted) pure rvalue. Emit the expression 2408 // as a value, copy it into a temporary, and return an lvalue referring to 2409 // that temporary. 2410 llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp"); 2411 EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false); 2412 return MakeAddrLValue(V, E->getType()); 2413 } 2414 2415 case CK_Dynamic: { 2416 LValue LV = EmitLValue(E->getSubExpr()); 2417 llvm::Value *V = LV.getAddress(); 2418 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E); 2419 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2420 } 2421 2422 case CK_ConstructorConversion: 2423 case CK_UserDefinedConversion: 2424 case CK_CPointerToObjCPointerCast: 2425 case CK_BlockPointerToObjCPointerCast: 2426 return EmitLValue(E->getSubExpr()); 2427 2428 case CK_UncheckedDerivedToBase: 2429 case CK_DerivedToBase: { 2430 const RecordType *DerivedClassTy = 2431 E->getSubExpr()->getType()->getAs<RecordType>(); 2432 CXXRecordDecl *DerivedClassDecl = 2433 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2434 2435 LValue LV = EmitLValue(E->getSubExpr()); 2436 llvm::Value *This = LV.getAddress(); 2437 2438 // Perform the derived-to-base conversion 2439 llvm::Value *Base = 2440 GetAddressOfBaseClass(This, DerivedClassDecl, 2441 E->path_begin(), E->path_end(), 2442 /*NullCheckValue=*/false); 2443 2444 return MakeAddrLValue(Base, E->getType()); 2445 } 2446 case CK_ToUnion: 2447 return EmitAggExprToLValue(E); 2448 case CK_BaseToDerived: { 2449 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2450 CXXRecordDecl *DerivedClassDecl = 2451 cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2452 2453 LValue LV = EmitLValue(E->getSubExpr()); 2454 2455 // Perform the base-to-derived conversion 2456 llvm::Value *Derived = 2457 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2458 E->path_begin(), E->path_end(), 2459 /*NullCheckValue=*/false); 2460 2461 return MakeAddrLValue(Derived, E->getType()); 2462 } 2463 case CK_LValueBitCast: { 2464 // This must be a reinterpret_cast (or c-style equivalent). 2465 const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E); 2466 2467 LValue LV = EmitLValue(E->getSubExpr()); 2468 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2469 ConvertType(CE->getTypeAsWritten())); 2470 return MakeAddrLValue(V, E->getType()); 2471 } 2472 case CK_ObjCObjectLValueCast: { 2473 LValue LV = EmitLValue(E->getSubExpr()); 2474 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2475 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2476 ConvertType(ToType)); 2477 return MakeAddrLValue(V, E->getType()); 2478 } 2479 } 2480 2481 llvm_unreachable("Unhandled lvalue cast kind?"); 2482 } 2483 2484 LValue CodeGenFunction::EmitNullInitializationLValue( 2485 const CXXScalarValueInitExpr *E) { 2486 QualType Ty = E->getType(); 2487 LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty); 2488 EmitNullInitialization(LV.getAddress(), Ty); 2489 return LV; 2490 } 2491 2492 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2493 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2494 return getOpaqueLValueMapping(e); 2495 } 2496 2497 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 2498 const MaterializeTemporaryExpr *E) { 2499 RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0); 2500 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2501 } 2502 2503 RValue CodeGenFunction::EmitRValueForField(LValue LV, 2504 const FieldDecl *FD) { 2505 QualType FT = FD->getType(); 2506 LValue FieldLV = EmitLValueForField(LV, FD); 2507 if (FT->isAnyComplexType()) 2508 return RValue::getComplex( 2509 LoadComplexFromAddr(FieldLV.getAddress(), 2510 FieldLV.isVolatileQualified())); 2511 else if (CodeGenFunction::hasAggregateLLVMType(FT)) 2512 return FieldLV.asAggregateRValue(); 2513 2514 return EmitLoadOfLValue(FieldLV); 2515 } 2516 2517 //===--------------------------------------------------------------------===// 2518 // Expression Emission 2519 //===--------------------------------------------------------------------===// 2520 2521 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2522 ReturnValueSlot ReturnValue) { 2523 if (CGDebugInfo *DI = getDebugInfo()) 2524 DI->EmitLocation(Builder, E->getLocStart()); 2525 2526 // Builtins never have block type. 2527 if (E->getCallee()->getType()->isBlockPointerType()) 2528 return EmitBlockCallExpr(E, ReturnValue); 2529 2530 if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E)) 2531 return EmitCXXMemberCallExpr(CE, ReturnValue); 2532 2533 if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2534 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2535 2536 const Decl *TargetDecl = E->getCalleeDecl(); 2537 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2538 if (unsigned builtinID = FD->getBuiltinID()) 2539 return EmitBuiltinExpr(FD, builtinID, E); 2540 } 2541 2542 if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2543 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2544 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2545 2546 if (const CXXPseudoDestructorExpr *PseudoDtor 2547 = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2548 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2549 if (getContext().getLangOpts().ObjCAutoRefCount && 2550 DestroyedType->isObjCLifetimeType() && 2551 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2552 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2553 // Automatic Reference Counting: 2554 // If the pseudo-expression names a retainable object with weak or 2555 // strong lifetime, the object shall be released. 2556 Expr *BaseExpr = PseudoDtor->getBase(); 2557 llvm::Value *BaseValue = NULL; 2558 Qualifiers BaseQuals; 2559 2560 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2561 if (PseudoDtor->isArrow()) { 2562 BaseValue = EmitScalarExpr(BaseExpr); 2563 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2564 BaseQuals = PTy->getPointeeType().getQualifiers(); 2565 } else { 2566 LValue BaseLV = EmitLValue(BaseExpr); 2567 BaseValue = BaseLV.getAddress(); 2568 QualType BaseTy = BaseExpr->getType(); 2569 BaseQuals = BaseTy.getQualifiers(); 2570 } 2571 2572 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2573 case Qualifiers::OCL_None: 2574 case Qualifiers::OCL_ExplicitNone: 2575 case Qualifiers::OCL_Autoreleasing: 2576 break; 2577 2578 case Qualifiers::OCL_Strong: 2579 EmitARCRelease(Builder.CreateLoad(BaseValue, 2580 PseudoDtor->getDestroyedType().isVolatileQualified()), 2581 /*precise*/ true); 2582 break; 2583 2584 case Qualifiers::OCL_Weak: 2585 EmitARCDestroyWeak(BaseValue); 2586 break; 2587 } 2588 } else { 2589 // C++ [expr.pseudo]p1: 2590 // The result shall only be used as the operand for the function call 2591 // operator (), and the result of such a call has type void. The only 2592 // effect is the evaluation of the postfix-expression before the dot or 2593 // arrow. 2594 EmitScalarExpr(E->getCallee()); 2595 } 2596 2597 return RValue::get(0); 2598 } 2599 2600 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2601 return EmitCall(E->getCallee()->getType(), Callee, ReturnValue, 2602 E->arg_begin(), E->arg_end(), TargetDecl); 2603 } 2604 2605 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2606 // Comma expressions just emit their LHS then their RHS as an l-value. 2607 if (E->getOpcode() == BO_Comma) { 2608 EmitIgnoredExpr(E->getLHS()); 2609 EnsureInsertPoint(); 2610 return EmitLValue(E->getRHS()); 2611 } 2612 2613 if (E->getOpcode() == BO_PtrMemD || 2614 E->getOpcode() == BO_PtrMemI) 2615 return EmitPointerToDataMemberBinaryExpr(E); 2616 2617 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2618 2619 // Note that in all of these cases, __block variables need the RHS 2620 // evaluated first just in case the variable gets moved by the RHS. 2621 2622 if (!hasAggregateLLVMType(E->getType())) { 2623 switch (E->getLHS()->getType().getObjCLifetime()) { 2624 case Qualifiers::OCL_Strong: 2625 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2626 2627 case Qualifiers::OCL_Autoreleasing: 2628 return EmitARCStoreAutoreleasing(E).first; 2629 2630 // No reason to do any of these differently. 2631 case Qualifiers::OCL_None: 2632 case Qualifiers::OCL_ExplicitNone: 2633 case Qualifiers::OCL_Weak: 2634 break; 2635 } 2636 2637 RValue RV = EmitAnyExpr(E->getRHS()); 2638 LValue LV = EmitLValue(E->getLHS()); 2639 EmitStoreThroughLValue(RV, LV); 2640 return LV; 2641 } 2642 2643 if (E->getType()->isAnyComplexType()) 2644 return EmitComplexAssignmentLValue(E); 2645 2646 return EmitAggExprToLValue(E); 2647 } 2648 2649 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 2650 RValue RV = EmitCallExpr(E); 2651 2652 if (!RV.isScalar()) 2653 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2654 2655 assert(E->getCallReturnType()->isReferenceType() && 2656 "Can't have a scalar return unless the return type is a " 2657 "reference type!"); 2658 2659 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2660 } 2661 2662 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 2663 // FIXME: This shouldn't require another copy. 2664 return EmitAggExprToLValue(E); 2665 } 2666 2667 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 2668 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 2669 && "binding l-value to type which needs a temporary"); 2670 AggValueSlot Slot = CreateAggTemp(E->getType()); 2671 EmitCXXConstructExpr(E, Slot); 2672 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2673 } 2674 2675 LValue 2676 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 2677 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 2678 } 2679 2680 LValue 2681 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 2682 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2683 Slot.setExternallyDestructed(); 2684 EmitAggExpr(E->getSubExpr(), Slot); 2685 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 2686 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2687 } 2688 2689 LValue 2690 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 2691 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 2692 EmitLambdaExpr(E, Slot); 2693 return MakeAddrLValue(Slot.getAddr(), E->getType()); 2694 } 2695 2696 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 2697 RValue RV = EmitObjCMessageExpr(E); 2698 2699 if (!RV.isScalar()) 2700 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2701 2702 assert(E->getMethodDecl()->getResultType()->isReferenceType() && 2703 "Can't have a scalar return unless the return type is a " 2704 "reference type!"); 2705 2706 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 2707 } 2708 2709 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 2710 llvm::Value *V = 2711 CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true); 2712 return MakeAddrLValue(V, E->getType()); 2713 } 2714 2715 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2716 const ObjCIvarDecl *Ivar) { 2717 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 2718 } 2719 2720 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 2721 llvm::Value *BaseValue, 2722 const ObjCIvarDecl *Ivar, 2723 unsigned CVRQualifiers) { 2724 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 2725 Ivar, CVRQualifiers); 2726 } 2727 2728 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 2729 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 2730 llvm::Value *BaseValue = 0; 2731 const Expr *BaseExpr = E->getBase(); 2732 Qualifiers BaseQuals; 2733 QualType ObjectTy; 2734 if (E->isArrow()) { 2735 BaseValue = EmitScalarExpr(BaseExpr); 2736 ObjectTy = BaseExpr->getType()->getPointeeType(); 2737 BaseQuals = ObjectTy.getQualifiers(); 2738 } else { 2739 LValue BaseLV = EmitLValue(BaseExpr); 2740 // FIXME: this isn't right for bitfields. 2741 BaseValue = BaseLV.getAddress(); 2742 ObjectTy = BaseExpr->getType(); 2743 BaseQuals = ObjectTy.getQualifiers(); 2744 } 2745 2746 LValue LV = 2747 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 2748 BaseQuals.getCVRQualifiers()); 2749 setObjCGCLValueClass(getContext(), E, LV); 2750 return LV; 2751 } 2752 2753 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 2754 // Can only get l-value for message expression returning aggregate type 2755 RValue RV = EmitAnyExprToTemp(E); 2756 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 2757 } 2758 2759 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 2760 ReturnValueSlot ReturnValue, 2761 CallExpr::const_arg_iterator ArgBeg, 2762 CallExpr::const_arg_iterator ArgEnd, 2763 const Decl *TargetDecl) { 2764 // Get the actual function type. The callee type will always be a pointer to 2765 // function type or a block pointer type. 2766 assert(CalleeType->isFunctionPointerType() && 2767 "Call must have function pointer type!"); 2768 2769 CalleeType = getContext().getCanonicalType(CalleeType); 2770 2771 const FunctionType *FnType 2772 = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 2773 2774 CallArgList Args; 2775 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd); 2776 2777 const CGFunctionInfo &FnInfo = 2778 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); 2779 2780 // C99 6.5.2.2p6: 2781 // If the expression that denotes the called function has a type 2782 // that does not include a prototype, [the default argument 2783 // promotions are performed]. If the number of arguments does not 2784 // equal the number of parameters, the behavior is undefined. If 2785 // the function is defined with a type that includes a prototype, 2786 // and either the prototype ends with an ellipsis (, ...) or the 2787 // types of the arguments after promotion are not compatible with 2788 // the types of the parameters, the behavior is undefined. If the 2789 // function is defined with a type that does not include a 2790 // prototype, and the types of the arguments after promotion are 2791 // not compatible with those of the parameters after promotion, 2792 // the behavior is undefined [except in some trivial cases]. 2793 // That is, in the general case, we should assume that a call 2794 // through an unprototyped function type works like a *non-variadic* 2795 // call. The way we make this work is to cast to the exact type 2796 // of the promoted arguments. 2797 if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) { 2798 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 2799 CalleeTy = CalleeTy->getPointerTo(); 2800 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 2801 } 2802 2803 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 2804 } 2805 2806 LValue CodeGenFunction:: 2807 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 2808 llvm::Value *BaseV; 2809 if (E->getOpcode() == BO_PtrMemI) 2810 BaseV = EmitScalarExpr(E->getLHS()); 2811 else 2812 BaseV = EmitLValue(E->getLHS()).getAddress(); 2813 2814 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 2815 2816 const MemberPointerType *MPT 2817 = E->getRHS()->getType()->getAs<MemberPointerType>(); 2818 2819 llvm::Value *AddV = 2820 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT); 2821 2822 return MakeAddrLValue(AddV, MPT->getPointeeType()); 2823 } 2824 2825 static void 2826 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest, 2827 llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2, 2828 uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) { 2829 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; 2830 llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; 2831 2832 switch (E->getOp()) { 2833 case AtomicExpr::AO__c11_atomic_init: 2834 llvm_unreachable("Already handled!"); 2835 2836 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 2837 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 2838 case AtomicExpr::AO__atomic_compare_exchange: 2839 case AtomicExpr::AO__atomic_compare_exchange_n: { 2840 // Note that cmpxchg only supports specifying one ordering and 2841 // doesn't support weak cmpxchg, at least at the moment. 2842 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2843 LoadVal1->setAlignment(Align); 2844 llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2); 2845 LoadVal2->setAlignment(Align); 2846 llvm::AtomicCmpXchgInst *CXI = 2847 CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order); 2848 CXI->setVolatile(E->isVolatile()); 2849 llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1); 2850 StoreVal1->setAlignment(Align); 2851 llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1); 2852 CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); 2853 return; 2854 } 2855 2856 case AtomicExpr::AO__c11_atomic_load: 2857 case AtomicExpr::AO__atomic_load_n: 2858 case AtomicExpr::AO__atomic_load: { 2859 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); 2860 Load->setAtomic(Order); 2861 Load->setAlignment(Size); 2862 Load->setVolatile(E->isVolatile()); 2863 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest); 2864 StoreDest->setAlignment(Align); 2865 return; 2866 } 2867 2868 case AtomicExpr::AO__c11_atomic_store: 2869 case AtomicExpr::AO__atomic_store: 2870 case AtomicExpr::AO__atomic_store_n: { 2871 assert(!Dest && "Store does not return a value"); 2872 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2873 LoadVal1->setAlignment(Align); 2874 llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); 2875 Store->setAtomic(Order); 2876 Store->setAlignment(Size); 2877 Store->setVolatile(E->isVolatile()); 2878 return; 2879 } 2880 2881 case AtomicExpr::AO__c11_atomic_exchange: 2882 case AtomicExpr::AO__atomic_exchange_n: 2883 case AtomicExpr::AO__atomic_exchange: 2884 Op = llvm::AtomicRMWInst::Xchg; 2885 break; 2886 2887 case AtomicExpr::AO__atomic_add_fetch: 2888 PostOp = llvm::Instruction::Add; 2889 // Fall through. 2890 case AtomicExpr::AO__c11_atomic_fetch_add: 2891 case AtomicExpr::AO__atomic_fetch_add: 2892 Op = llvm::AtomicRMWInst::Add; 2893 break; 2894 2895 case AtomicExpr::AO__atomic_sub_fetch: 2896 PostOp = llvm::Instruction::Sub; 2897 // Fall through. 2898 case AtomicExpr::AO__c11_atomic_fetch_sub: 2899 case AtomicExpr::AO__atomic_fetch_sub: 2900 Op = llvm::AtomicRMWInst::Sub; 2901 break; 2902 2903 case AtomicExpr::AO__atomic_and_fetch: 2904 PostOp = llvm::Instruction::And; 2905 // Fall through. 2906 case AtomicExpr::AO__c11_atomic_fetch_and: 2907 case AtomicExpr::AO__atomic_fetch_and: 2908 Op = llvm::AtomicRMWInst::And; 2909 break; 2910 2911 case AtomicExpr::AO__atomic_or_fetch: 2912 PostOp = llvm::Instruction::Or; 2913 // Fall through. 2914 case AtomicExpr::AO__c11_atomic_fetch_or: 2915 case AtomicExpr::AO__atomic_fetch_or: 2916 Op = llvm::AtomicRMWInst::Or; 2917 break; 2918 2919 case AtomicExpr::AO__atomic_xor_fetch: 2920 PostOp = llvm::Instruction::Xor; 2921 // Fall through. 2922 case AtomicExpr::AO__c11_atomic_fetch_xor: 2923 case AtomicExpr::AO__atomic_fetch_xor: 2924 Op = llvm::AtomicRMWInst::Xor; 2925 break; 2926 2927 case AtomicExpr::AO__atomic_nand_fetch: 2928 PostOp = llvm::Instruction::And; 2929 // Fall through. 2930 case AtomicExpr::AO__atomic_fetch_nand: 2931 Op = llvm::AtomicRMWInst::Nand; 2932 break; 2933 } 2934 2935 llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1); 2936 LoadVal1->setAlignment(Align); 2937 llvm::AtomicRMWInst *RMWI = 2938 CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order); 2939 RMWI->setVolatile(E->isVolatile()); 2940 2941 // For __atomic_*_fetch operations, perform the operation again to 2942 // determine the value which was written. 2943 llvm::Value *Result = RMWI; 2944 if (PostOp) 2945 Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1); 2946 if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch) 2947 Result = CGF.Builder.CreateNot(Result); 2948 llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest); 2949 StoreDest->setAlignment(Align); 2950 } 2951 2952 // This function emits any expression (scalar, complex, or aggregate) 2953 // into a temporary alloca. 2954 static llvm::Value * 2955 EmitValToTemp(CodeGenFunction &CGF, Expr *E) { 2956 llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); 2957 CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), 2958 /*Init*/ true); 2959 return DeclPtr; 2960 } 2961 2962 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty, 2963 llvm::Value *Dest) { 2964 if (Ty->isAnyComplexType()) 2965 return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false)); 2966 if (CGF.hasAggregateLLVMType(Ty)) 2967 return RValue::getAggregate(Dest); 2968 return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty))); 2969 } 2970 2971 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) { 2972 QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); 2973 QualType MemTy = AtomicTy; 2974 if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) 2975 MemTy = AT->getValueType(); 2976 CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy); 2977 uint64_t Size = sizeChars.getQuantity(); 2978 CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy); 2979 unsigned Align = alignChars.getQuantity(); 2980 unsigned MaxInlineWidth = 2981 getContext().getTargetInfo().getMaxAtomicInlineWidth(); 2982 bool UseLibcall = (Size != Align || Size > MaxInlineWidth); 2983 2984 2985 2986 llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0; 2987 Ptr = EmitScalarExpr(E->getPtr()); 2988 2989 if (E->getOp() == AtomicExpr::AO__c11_atomic_init) { 2990 assert(!Dest && "Init does not return a value"); 2991 if (!hasAggregateLLVMType(E->getVal1()->getType())) { 2992 QualType PointeeType 2993 = E->getPtr()->getType()->getAs<PointerType>()->getPointeeType(); 2994 EmitScalarInit(EmitScalarExpr(E->getVal1()), 2995 LValue::MakeAddr(Ptr, PointeeType, alignChars, 2996 getContext())); 2997 } else if (E->getType()->isAnyComplexType()) { 2998 EmitComplexExprIntoAddr(E->getVal1(), Ptr, E->isVolatile()); 2999 } else { 3000 AggValueSlot Slot = AggValueSlot::forAddr(Ptr, alignChars, 3001 AtomicTy.getQualifiers(), 3002 AggValueSlot::IsNotDestructed, 3003 AggValueSlot::DoesNotNeedGCBarriers, 3004 AggValueSlot::IsNotAliased); 3005 EmitAggExpr(E->getVal1(), Slot); 3006 } 3007 return RValue::get(0); 3008 } 3009 3010 Order = EmitScalarExpr(E->getOrder()); 3011 3012 switch (E->getOp()) { 3013 case AtomicExpr::AO__c11_atomic_init: 3014 llvm_unreachable("Already handled!"); 3015 3016 case AtomicExpr::AO__c11_atomic_load: 3017 case AtomicExpr::AO__atomic_load_n: 3018 break; 3019 3020 case AtomicExpr::AO__atomic_load: 3021 Dest = EmitScalarExpr(E->getVal1()); 3022 break; 3023 3024 case AtomicExpr::AO__atomic_store: 3025 Val1 = EmitScalarExpr(E->getVal1()); 3026 break; 3027 3028 case AtomicExpr::AO__atomic_exchange: 3029 Val1 = EmitScalarExpr(E->getVal1()); 3030 Dest = EmitScalarExpr(E->getVal2()); 3031 break; 3032 3033 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 3034 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 3035 case AtomicExpr::AO__atomic_compare_exchange_n: 3036 case AtomicExpr::AO__atomic_compare_exchange: 3037 Val1 = EmitScalarExpr(E->getVal1()); 3038 if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange) 3039 Val2 = EmitScalarExpr(E->getVal2()); 3040 else 3041 Val2 = EmitValToTemp(*this, E->getVal2()); 3042 OrderFail = EmitScalarExpr(E->getOrderFail()); 3043 // Evaluate and discard the 'weak' argument. 3044 if (E->getNumSubExprs() == 6) 3045 EmitScalarExpr(E->getWeak()); 3046 break; 3047 3048 case AtomicExpr::AO__c11_atomic_fetch_add: 3049 case AtomicExpr::AO__c11_atomic_fetch_sub: 3050 if (MemTy->isPointerType()) { 3051 // For pointer arithmetic, we're required to do a bit of math: 3052 // adding 1 to an int* is not the same as adding 1 to a uintptr_t. 3053 // ... but only for the C11 builtins. The GNU builtins expect the 3054 // user to multiply by sizeof(T). 3055 QualType Val1Ty = E->getVal1()->getType(); 3056 llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); 3057 CharUnits PointeeIncAmt = 3058 getContext().getTypeSizeInChars(MemTy->getPointeeType()); 3059 Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); 3060 Val1 = CreateMemTemp(Val1Ty, ".atomictmp"); 3061 EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty)); 3062 break; 3063 } 3064 // Fall through. 3065 case AtomicExpr::AO__atomic_fetch_add: 3066 case AtomicExpr::AO__atomic_fetch_sub: 3067 case AtomicExpr::AO__atomic_add_fetch: 3068 case AtomicExpr::AO__atomic_sub_fetch: 3069 case AtomicExpr::AO__c11_atomic_store: 3070 case AtomicExpr::AO__c11_atomic_exchange: 3071 case AtomicExpr::AO__atomic_store_n: 3072 case AtomicExpr::AO__atomic_exchange_n: 3073 case AtomicExpr::AO__c11_atomic_fetch_and: 3074 case AtomicExpr::AO__c11_atomic_fetch_or: 3075 case AtomicExpr::AO__c11_atomic_fetch_xor: 3076 case AtomicExpr::AO__atomic_fetch_and: 3077 case AtomicExpr::AO__atomic_fetch_or: 3078 case AtomicExpr::AO__atomic_fetch_xor: 3079 case AtomicExpr::AO__atomic_fetch_nand: 3080 case AtomicExpr::AO__atomic_and_fetch: 3081 case AtomicExpr::AO__atomic_or_fetch: 3082 case AtomicExpr::AO__atomic_xor_fetch: 3083 case AtomicExpr::AO__atomic_nand_fetch: 3084 Val1 = EmitValToTemp(*this, E->getVal1()); 3085 break; 3086 } 3087 3088 if (!E->getType()->isVoidType() && !Dest) 3089 Dest = CreateMemTemp(E->getType(), ".atomicdst"); 3090 3091 // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . 3092 if (UseLibcall) { 3093 3094 llvm::SmallVector<QualType, 5> Params; 3095 CallArgList Args; 3096 // Size is always the first parameter 3097 Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), 3098 getContext().getSizeType()); 3099 // Atomic address is always the second parameter 3100 Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), 3101 getContext().VoidPtrTy); 3102 3103 const char* LibCallName; 3104 QualType RetTy = getContext().VoidTy; 3105 switch (E->getOp()) { 3106 // There is only one libcall for compare an exchange, because there is no 3107 // optimisation benefit possible from a libcall version of a weak compare 3108 // and exchange. 3109 // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, 3110 // void *desired, int success, int failure) 3111 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 3112 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 3113 case AtomicExpr::AO__atomic_compare_exchange: 3114 case AtomicExpr::AO__atomic_compare_exchange_n: 3115 LibCallName = "__atomic_compare_exchange"; 3116 RetTy = getContext().BoolTy; 3117 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3118 getContext().VoidPtrTy); 3119 Args.add(RValue::get(EmitCastToVoidPtr(Val2)), 3120 getContext().VoidPtrTy); 3121 Args.add(RValue::get(Order), 3122 getContext().IntTy); 3123 Order = OrderFail; 3124 break; 3125 // void __atomic_exchange(size_t size, void *mem, void *val, void *return, 3126 // int order) 3127 case AtomicExpr::AO__c11_atomic_exchange: 3128 case AtomicExpr::AO__atomic_exchange_n: 3129 case AtomicExpr::AO__atomic_exchange: 3130 LibCallName = "__atomic_exchange"; 3131 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3132 getContext().VoidPtrTy); 3133 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 3134 getContext().VoidPtrTy); 3135 break; 3136 // void __atomic_store(size_t size, void *mem, void *val, int order) 3137 case AtomicExpr::AO__c11_atomic_store: 3138 case AtomicExpr::AO__atomic_store: 3139 case AtomicExpr::AO__atomic_store_n: 3140 LibCallName = "__atomic_store"; 3141 Args.add(RValue::get(EmitCastToVoidPtr(Val1)), 3142 getContext().VoidPtrTy); 3143 break; 3144 // void __atomic_load(size_t size, void *mem, void *return, int order) 3145 case AtomicExpr::AO__c11_atomic_load: 3146 case AtomicExpr::AO__atomic_load: 3147 case AtomicExpr::AO__atomic_load_n: 3148 LibCallName = "__atomic_load"; 3149 Args.add(RValue::get(EmitCastToVoidPtr(Dest)), 3150 getContext().VoidPtrTy); 3151 break; 3152 #if 0 3153 // These are only defined for 1-16 byte integers. It is not clear what 3154 // their semantics would be on anything else... 3155 case AtomicExpr::Add: LibCallName = "__atomic_fetch_add_generic"; break; 3156 case AtomicExpr::Sub: LibCallName = "__atomic_fetch_sub_generic"; break; 3157 case AtomicExpr::And: LibCallName = "__atomic_fetch_and_generic"; break; 3158 case AtomicExpr::Or: LibCallName = "__atomic_fetch_or_generic"; break; 3159 case AtomicExpr::Xor: LibCallName = "__atomic_fetch_xor_generic"; break; 3160 #endif 3161 default: return EmitUnsupportedRValue(E, "atomic library call"); 3162 } 3163 // order is always the last parameter 3164 Args.add(RValue::get(Order), 3165 getContext().IntTy); 3166 3167 const CGFunctionInfo &FuncInfo = 3168 CGM.getTypes().arrangeFreeFunctionCall(RetTy, Args, 3169 FunctionType::ExtInfo(), RequiredArgs::All); 3170 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); 3171 llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 3172 RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args); 3173 if (E->isCmpXChg()) 3174 return Res; 3175 if (E->getType()->isVoidType()) 3176 return RValue::get(0); 3177 return ConvertTempToRValue(*this, E->getType(), Dest); 3178 } 3179 3180 llvm::Type *IPtrTy = 3181 llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo(); 3182 llvm::Value *OrigDest = Dest; 3183 Ptr = Builder.CreateBitCast(Ptr, IPtrTy); 3184 if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy); 3185 if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy); 3186 if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy); 3187 3188 if (isa<llvm::ConstantInt>(Order)) { 3189 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3190 switch (ord) { 3191 case 0: // memory_order_relaxed 3192 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3193 llvm::Monotonic); 3194 break; 3195 case 1: // memory_order_consume 3196 case 2: // memory_order_acquire 3197 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3198 llvm::Acquire); 3199 break; 3200 case 3: // memory_order_release 3201 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3202 llvm::Release); 3203 break; 3204 case 4: // memory_order_acq_rel 3205 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3206 llvm::AcquireRelease); 3207 break; 3208 case 5: // memory_order_seq_cst 3209 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3210 llvm::SequentiallyConsistent); 3211 break; 3212 default: // invalid order 3213 // We should not ever get here normally, but it's hard to 3214 // enforce that in general. 3215 break; 3216 } 3217 if (E->getType()->isVoidType()) 3218 return RValue::get(0); 3219 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3220 } 3221 3222 // Long case, when Order isn't obviously constant. 3223 3224 bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || 3225 E->getOp() == AtomicExpr::AO__atomic_store || 3226 E->getOp() == AtomicExpr::AO__atomic_store_n; 3227 bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || 3228 E->getOp() == AtomicExpr::AO__atomic_load || 3229 E->getOp() == AtomicExpr::AO__atomic_load_n; 3230 3231 // Create all the relevant BB's 3232 llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0, 3233 *AcqRelBB = 0, *SeqCstBB = 0; 3234 MonotonicBB = createBasicBlock("monotonic", CurFn); 3235 if (!IsStore) 3236 AcquireBB = createBasicBlock("acquire", CurFn); 3237 if (!IsLoad) 3238 ReleaseBB = createBasicBlock("release", CurFn); 3239 if (!IsLoad && !IsStore) 3240 AcqRelBB = createBasicBlock("acqrel", CurFn); 3241 SeqCstBB = createBasicBlock("seqcst", CurFn); 3242 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3243 3244 // Create the switch for the split 3245 // MonotonicBB is arbitrarily chosen as the default case; in practice, this 3246 // doesn't matter unless someone is crazy enough to use something that 3247 // doesn't fold to a constant for the ordering. 3248 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3249 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); 3250 3251 // Emit all the different atomics 3252 Builder.SetInsertPoint(MonotonicBB); 3253 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3254 llvm::Monotonic); 3255 Builder.CreateBr(ContBB); 3256 if (!IsStore) { 3257 Builder.SetInsertPoint(AcquireBB); 3258 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3259 llvm::Acquire); 3260 Builder.CreateBr(ContBB); 3261 SI->addCase(Builder.getInt32(1), AcquireBB); 3262 SI->addCase(Builder.getInt32(2), AcquireBB); 3263 } 3264 if (!IsLoad) { 3265 Builder.SetInsertPoint(ReleaseBB); 3266 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3267 llvm::Release); 3268 Builder.CreateBr(ContBB); 3269 SI->addCase(Builder.getInt32(3), ReleaseBB); 3270 } 3271 if (!IsLoad && !IsStore) { 3272 Builder.SetInsertPoint(AcqRelBB); 3273 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3274 llvm::AcquireRelease); 3275 Builder.CreateBr(ContBB); 3276 SI->addCase(Builder.getInt32(4), AcqRelBB); 3277 } 3278 Builder.SetInsertPoint(SeqCstBB); 3279 EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align, 3280 llvm::SequentiallyConsistent); 3281 Builder.CreateBr(ContBB); 3282 SI->addCase(Builder.getInt32(5), SeqCstBB); 3283 3284 // Cleanup and return 3285 Builder.SetInsertPoint(ContBB); 3286 if (E->getType()->isVoidType()) 3287 return RValue::get(0); 3288 return ConvertTempToRValue(*this, E->getType(), OrigDest); 3289 } 3290 3291 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3292 assert(Val->getType()->isFPOrFPVectorTy()); 3293 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3294 return; 3295 3296 llvm::MDBuilder MDHelper(getLLVMContext()); 3297 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3298 3299 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3300 } 3301 3302 namespace { 3303 struct LValueOrRValue { 3304 LValue LV; 3305 RValue RV; 3306 }; 3307 } 3308 3309 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3310 const PseudoObjectExpr *E, 3311 bool forLValue, 3312 AggValueSlot slot) { 3313 llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3314 3315 // Find the result expression, if any. 3316 const Expr *resultExpr = E->getResultExpr(); 3317 LValueOrRValue result; 3318 3319 for (PseudoObjectExpr::const_semantics_iterator 3320 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3321 const Expr *semantic = *i; 3322 3323 // If this semantic expression is an opaque value, bind it 3324 // to the result of its source expression. 3325 if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3326 3327 // If this is the result expression, we may need to evaluate 3328 // directly into the slot. 3329 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3330 OVMA opaqueData; 3331 if (ov == resultExpr && ov->isRValue() && !forLValue && 3332 CodeGenFunction::hasAggregateLLVMType(ov->getType()) && 3333 !ov->getType()->isAnyComplexType()) { 3334 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3335 3336 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3337 opaqueData = OVMA::bind(CGF, ov, LV); 3338 result.RV = slot.asRValue(); 3339 3340 // Otherwise, emit as normal. 3341 } else { 3342 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3343 3344 // If this is the result, also evaluate the result now. 3345 if (ov == resultExpr) { 3346 if (forLValue) 3347 result.LV = CGF.EmitLValue(ov); 3348 else 3349 result.RV = CGF.EmitAnyExpr(ov, slot); 3350 } 3351 } 3352 3353 opaques.push_back(opaqueData); 3354 3355 // Otherwise, if the expression is the result, evaluate it 3356 // and remember the result. 3357 } else if (semantic == resultExpr) { 3358 if (forLValue) 3359 result.LV = CGF.EmitLValue(semantic); 3360 else 3361 result.RV = CGF.EmitAnyExpr(semantic, slot); 3362 3363 // Otherwise, evaluate the expression in an ignored context. 3364 } else { 3365 CGF.EmitIgnoredExpr(semantic); 3366 } 3367 } 3368 3369 // Unbind all the opaques now. 3370 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3371 opaques[i].unbind(CGF); 3372 3373 return result; 3374 } 3375 3376 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3377 AggValueSlot slot) { 3378 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3379 } 3380 3381 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3382 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3383 } 3384