1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGRecordLayout.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/Target/TargetData.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===--------------------------------------------------------------------===//
32 //                        Miscellaneous Helper Methods
33 //===--------------------------------------------------------------------===//
34 
35 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
36   unsigned addressSpace =
37     cast<llvm::PointerType>(value->getType())->getAddressSpace();
38 
39   llvm::PointerType *destType = Int8PtrTy;
40   if (addressSpace)
41     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
42 
43   if (value->getType() == destType) return value;
44   return Builder.CreateBitCast(value, destType);
45 }
46 
47 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
48 /// block.
49 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
50                                                     const Twine &Name) {
51   if (!Builder.isNamePreserving())
52     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
53   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
54 }
55 
56 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
57                                      llvm::Value *Init) {
58   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
59   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
60   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
61 }
62 
63 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
64                                                 const Twine &Name) {
65   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
66   // FIXME: Should we prefer the preferred type alignment here?
67   CharUnits Align = getContext().getTypeAlignInChars(Ty);
68   Alloc->setAlignment(Align.getQuantity());
69   return Alloc;
70 }
71 
72 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
73                                                  const Twine &Name) {
74   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
75   // FIXME: Should we prefer the preferred type alignment here?
76   CharUnits Align = getContext().getTypeAlignInChars(Ty);
77   Alloc->setAlignment(Align.getQuantity());
78   return Alloc;
79 }
80 
81 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
82 /// expression and compare the result against zero, returning an Int1Ty value.
83 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
84   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
85     llvm::Value *MemPtr = EmitScalarExpr(E);
86     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
87   }
88 
89   QualType BoolTy = getContext().BoolTy;
90   if (!E->getType()->isAnyComplexType())
91     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
92 
93   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
94 }
95 
96 /// EmitIgnoredExpr - Emit code to compute the specified expression,
97 /// ignoring the result.
98 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
99   if (E->isRValue())
100     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
101 
102   // Just emit it as an l-value and drop the result.
103   EmitLValue(E);
104 }
105 
106 /// EmitAnyExpr - Emit code to compute the specified expression which
107 /// can have any type.  The result is returned as an RValue struct.
108 /// If this is an aggregate expression, AggSlot indicates where the
109 /// result should be returned.
110 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
111                                     bool IgnoreResult) {
112   if (!hasAggregateLLVMType(E->getType()))
113     return RValue::get(EmitScalarExpr(E, IgnoreResult));
114   else if (E->getType()->isAnyComplexType())
115     return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
116 
117   EmitAggExpr(E, AggSlot, IgnoreResult);
118   return AggSlot.asRValue();
119 }
120 
121 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
122 /// always be accessible even if no aggregate location is provided.
123 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
124   AggValueSlot AggSlot = AggValueSlot::ignored();
125 
126   if (hasAggregateLLVMType(E->getType()) &&
127       !E->getType()->isAnyComplexType())
128     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
129   return EmitAnyExpr(E, AggSlot);
130 }
131 
132 /// EmitAnyExprToMem - Evaluate an expression into a given memory
133 /// location.
134 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
135                                        llvm::Value *Location,
136                                        Qualifiers Quals,
137                                        bool IsInit) {
138   // FIXME: This function should take an LValue as an argument.
139   if (E->getType()->isAnyComplexType()) {
140     EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
141   } else if (hasAggregateLLVMType(E->getType())) {
142     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
143     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
144                                          AggValueSlot::IsDestructed_t(IsInit),
145                                          AggValueSlot::DoesNotNeedGCBarriers,
146                                          AggValueSlot::IsAliased_t(!IsInit)));
147   } else {
148     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
149     LValue LV = MakeAddrLValue(Location, E->getType());
150     EmitStoreThroughLValue(RV, LV);
151   }
152 }
153 
154 namespace {
155 /// \brief An adjustment to be made to the temporary created when emitting a
156 /// reference binding, which accesses a particular subobject of that temporary.
157   struct SubobjectAdjustment {
158     enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
159 
160     union {
161       struct {
162         const CastExpr *BasePath;
163         const CXXRecordDecl *DerivedClass;
164       } DerivedToBase;
165 
166       FieldDecl *Field;
167     };
168 
169     SubobjectAdjustment(const CastExpr *BasePath,
170                         const CXXRecordDecl *DerivedClass)
171       : Kind(DerivedToBaseAdjustment) {
172       DerivedToBase.BasePath = BasePath;
173       DerivedToBase.DerivedClass = DerivedClass;
174     }
175 
176     SubobjectAdjustment(FieldDecl *Field)
177       : Kind(FieldAdjustment) {
178       this->Field = Field;
179     }
180   };
181 }
182 
183 static llvm::Value *
184 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
185                          const NamedDecl *InitializedDecl) {
186   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
187     if (VD->hasGlobalStorage()) {
188       llvm::SmallString<256> Name;
189       llvm::raw_svector_ostream Out(Name);
190       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
191       Out.flush();
192 
193       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
194 
195       // Create the reference temporary.
196       llvm::GlobalValue *RefTemp =
197         new llvm::GlobalVariable(CGF.CGM.getModule(),
198                                  RefTempTy, /*isConstant=*/false,
199                                  llvm::GlobalValue::InternalLinkage,
200                                  llvm::Constant::getNullValue(RefTempTy),
201                                  Name.str());
202       return RefTemp;
203     }
204   }
205 
206   return CGF.CreateMemTemp(Type, "ref.tmp");
207 }
208 
209 static llvm::Value *
210 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
211                             llvm::Value *&ReferenceTemporary,
212                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
213                             QualType &ObjCARCReferenceLifetimeType,
214                             const NamedDecl *InitializedDecl) {
215   // Look through single-element init lists that claim to be lvalues. They're
216   // just syntactic wrappers in this case.
217   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
218     if (ILE->getNumInits() == 1 && ILE->isGLValue())
219       E = ILE->getInit(0);
220   }
221 
222   // Look through expressions for materialized temporaries (for now).
223   if (const MaterializeTemporaryExpr *M
224                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
225     // Objective-C++ ARC:
226     //   If we are binding a reference to a temporary that has ownership, we
227     //   need to perform retain/release operations on the temporary.
228     if (CGF.getContext().getLangOptions().ObjCAutoRefCount &&
229         E->getType()->isObjCLifetimeType() &&
230         (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
231          E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
232          E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
233       ObjCARCReferenceLifetimeType = E->getType();
234 
235     E = M->GetTemporaryExpr();
236   }
237 
238   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
239     E = DAE->getExpr();
240 
241   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
242     CGF.enterFullExpression(EWC);
243     CodeGenFunction::RunCleanupsScope Scope(CGF);
244 
245     return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
246                                        ReferenceTemporary,
247                                        ReferenceTemporaryDtor,
248                                        ObjCARCReferenceLifetimeType,
249                                        InitializedDecl);
250   }
251 
252   RValue RV;
253   if (E->isGLValue()) {
254     // Emit the expression as an lvalue.
255     LValue LV = CGF.EmitLValue(E);
256 
257     if (LV.isSimple())
258       return LV.getAddress();
259 
260     // We have to load the lvalue.
261     RV = CGF.EmitLoadOfLValue(LV);
262   } else {
263     if (!ObjCARCReferenceLifetimeType.isNull()) {
264       ReferenceTemporary = CreateReferenceTemporary(CGF,
265                                                   ObjCARCReferenceLifetimeType,
266                                                     InitializedDecl);
267 
268 
269       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
270                                              ObjCARCReferenceLifetimeType);
271 
272       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
273                          RefTempDst, false);
274 
275       bool ExtendsLifeOfTemporary = false;
276       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
277         if (Var->extendsLifetimeOfTemporary())
278           ExtendsLifeOfTemporary = true;
279       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
280         ExtendsLifeOfTemporary = true;
281       }
282 
283       if (!ExtendsLifeOfTemporary) {
284         // Since the lifetime of this temporary isn't going to be extended,
285         // we need to clean it up ourselves at the end of the full expression.
286         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
287         case Qualifiers::OCL_None:
288         case Qualifiers::OCL_ExplicitNone:
289         case Qualifiers::OCL_Autoreleasing:
290           break;
291 
292         case Qualifiers::OCL_Strong: {
293           assert(!ObjCARCReferenceLifetimeType->isArrayType());
294           CleanupKind cleanupKind = CGF.getARCCleanupKind();
295           CGF.pushDestroy(cleanupKind,
296                           ReferenceTemporary,
297                           ObjCARCReferenceLifetimeType,
298                           CodeGenFunction::destroyARCStrongImprecise,
299                           cleanupKind & EHCleanup);
300           break;
301         }
302 
303         case Qualifiers::OCL_Weak:
304           assert(!ObjCARCReferenceLifetimeType->isArrayType());
305           CGF.pushDestroy(NormalAndEHCleanup,
306                           ReferenceTemporary,
307                           ObjCARCReferenceLifetimeType,
308                           CodeGenFunction::destroyARCWeak,
309                           /*useEHCleanupForArray*/ true);
310           break;
311         }
312 
313         ObjCARCReferenceLifetimeType = QualType();
314       }
315 
316       return ReferenceTemporary;
317     }
318 
319     SmallVector<SubobjectAdjustment, 2> Adjustments;
320     while (true) {
321       E = E->IgnoreParens();
322 
323       if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
324         if ((CE->getCastKind() == CK_DerivedToBase ||
325              CE->getCastKind() == CK_UncheckedDerivedToBase) &&
326             E->getType()->isRecordType()) {
327           E = CE->getSubExpr();
328           CXXRecordDecl *Derived
329             = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
330           Adjustments.push_back(SubobjectAdjustment(CE, Derived));
331           continue;
332         }
333 
334         if (CE->getCastKind() == CK_NoOp) {
335           E = CE->getSubExpr();
336           continue;
337         }
338       } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
339         if (!ME->isArrow() && ME->getBase()->isRValue()) {
340           assert(ME->getBase()->getType()->isRecordType());
341           if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
342             E = ME->getBase();
343             Adjustments.push_back(SubobjectAdjustment(Field));
344             continue;
345           }
346         }
347       }
348 
349       if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
350         if (opaque->getType()->isRecordType())
351           return CGF.EmitOpaqueValueLValue(opaque).getAddress();
352 
353       // Nothing changed.
354       break;
355     }
356 
357     // Create a reference temporary if necessary.
358     AggValueSlot AggSlot = AggValueSlot::ignored();
359     if (CGF.hasAggregateLLVMType(E->getType()) &&
360         !E->getType()->isAnyComplexType()) {
361       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
362                                                     InitializedDecl);
363       CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
364       AggValueSlot::IsDestructed_t isDestructed
365         = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
366       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
367                                       Qualifiers(), isDestructed,
368                                       AggValueSlot::DoesNotNeedGCBarriers,
369                                       AggValueSlot::IsNotAliased);
370     }
371 
372     if (InitializedDecl) {
373       // Get the destructor for the reference temporary.
374       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
375         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
376         if (!ClassDecl->hasTrivialDestructor())
377           ReferenceTemporaryDtor = ClassDecl->getDestructor();
378       }
379     }
380 
381     RV = CGF.EmitAnyExpr(E, AggSlot);
382 
383     // Check if need to perform derived-to-base casts and/or field accesses, to
384     // get from the temporary object we created (and, potentially, for which we
385     // extended the lifetime) to the subobject we're binding the reference to.
386     if (!Adjustments.empty()) {
387       llvm::Value *Object = RV.getAggregateAddr();
388       for (unsigned I = Adjustments.size(); I != 0; --I) {
389         SubobjectAdjustment &Adjustment = Adjustments[I-1];
390         switch (Adjustment.Kind) {
391         case SubobjectAdjustment::DerivedToBaseAdjustment:
392           Object =
393               CGF.GetAddressOfBaseClass(Object,
394                                         Adjustment.DerivedToBase.DerivedClass,
395                               Adjustment.DerivedToBase.BasePath->path_begin(),
396                               Adjustment.DerivedToBase.BasePath->path_end(),
397                                         /*NullCheckValue=*/false);
398           break;
399 
400         case SubobjectAdjustment::FieldAdjustment: {
401           LValue LV =
402             CGF.EmitLValueForField(Object, Adjustment.Field, 0);
403           if (LV.isSimple()) {
404             Object = LV.getAddress();
405             break;
406           }
407 
408           // For non-simple lvalues, we actually have to create a copy of
409           // the object we're binding to.
410           QualType T = Adjustment.Field->getType().getNonReferenceType()
411                                                   .getUnqualifiedType();
412           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
413           LValue TempLV = CGF.MakeAddrLValue(Object,
414                                              Adjustment.Field->getType());
415           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
416           break;
417         }
418 
419         }
420       }
421 
422       return Object;
423     }
424   }
425 
426   if (RV.isAggregate())
427     return RV.getAggregateAddr();
428 
429   // Create a temporary variable that we can bind the reference to.
430   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
431                                                 InitializedDecl);
432 
433 
434   unsigned Alignment =
435     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
436   if (RV.isScalar())
437     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
438                           /*Volatile=*/false, Alignment, E->getType());
439   else
440     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
441                            /*Volatile=*/false);
442   return ReferenceTemporary;
443 }
444 
445 RValue
446 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
447                                             const NamedDecl *InitializedDecl) {
448   llvm::Value *ReferenceTemporary = 0;
449   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
450   QualType ObjCARCReferenceLifetimeType;
451   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
452                                                    ReferenceTemporaryDtor,
453                                                    ObjCARCReferenceLifetimeType,
454                                                    InitializedDecl);
455   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
456     return RValue::get(Value);
457 
458   // Make sure to call the destructor for the reference temporary.
459   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
460   if (VD && VD->hasGlobalStorage()) {
461     if (ReferenceTemporaryDtor) {
462       llvm::Constant *DtorFn =
463         CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
464       EmitCXXGlobalDtorRegistration(DtorFn,
465                                     cast<llvm::Constant>(ReferenceTemporary));
466     } else {
467       assert(!ObjCARCReferenceLifetimeType.isNull());
468       // Note: We intentionally do not register a global "destructor" to
469       // release the object.
470     }
471 
472     return RValue::get(Value);
473   }
474 
475   if (ReferenceTemporaryDtor)
476     PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
477   else {
478     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
479     case Qualifiers::OCL_None:
480       llvm_unreachable(
481                       "Not a reference temporary that needs to be deallocated");
482     case Qualifiers::OCL_ExplicitNone:
483     case Qualifiers::OCL_Autoreleasing:
484       // Nothing to do.
485       break;
486 
487     case Qualifiers::OCL_Strong: {
488       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
489       CleanupKind cleanupKind = getARCCleanupKind();
490       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
491                   precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
492                   cleanupKind & EHCleanup);
493       break;
494     }
495 
496     case Qualifiers::OCL_Weak: {
497       // __weak objects always get EH cleanups; otherwise, exceptions
498       // could cause really nasty crashes instead of mere leaks.
499       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
500                   ObjCARCReferenceLifetimeType, destroyARCWeak, true);
501       break;
502     }
503     }
504   }
505 
506   return RValue::get(Value);
507 }
508 
509 
510 /// getAccessedFieldNo - Given an encoded value and a result number, return the
511 /// input field number being accessed.
512 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
513                                              const llvm::Constant *Elts) {
514   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
515       ->getZExtValue();
516 }
517 
518 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
519   if (!CatchUndefined)
520     return;
521 
522   // This needs to be to the standard address space.
523   Address = Builder.CreateBitCast(Address, Int8PtrTy);
524 
525   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
526 
527   // In time, people may want to control this and use a 1 here.
528   llvm::Value *Arg = Builder.getFalse();
529   llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
530   llvm::BasicBlock *Cont = createBasicBlock();
531   llvm::BasicBlock *Check = createBasicBlock();
532   llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
533   Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
534 
535   EmitBlock(Check);
536   Builder.CreateCondBr(Builder.CreateICmpUGE(C,
537                                         llvm::ConstantInt::get(IntPtrTy, Size)),
538                        Cont, getTrapBB());
539   EmitBlock(Cont);
540 }
541 
542 
543 CodeGenFunction::ComplexPairTy CodeGenFunction::
544 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
545                          bool isInc, bool isPre) {
546   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
547                                             LV.isVolatileQualified());
548 
549   llvm::Value *NextVal;
550   if (isa<llvm::IntegerType>(InVal.first->getType())) {
551     uint64_t AmountVal = isInc ? 1 : -1;
552     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
553 
554     // Add the inc/dec to the real part.
555     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
556   } else {
557     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
558     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
559     if (!isInc)
560       FVal.changeSign();
561     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
562 
563     // Add the inc/dec to the real part.
564     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
565   }
566 
567   ComplexPairTy IncVal(NextVal, InVal.second);
568 
569   // Store the updated result through the lvalue.
570   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
571 
572   // If this is a postinc, return the value read from memory, otherwise use the
573   // updated value.
574   return isPre ? IncVal : InVal;
575 }
576 
577 
578 //===----------------------------------------------------------------------===//
579 //                         LValue Expression Emission
580 //===----------------------------------------------------------------------===//
581 
582 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
583   if (Ty->isVoidType())
584     return RValue::get(0);
585 
586   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
587     llvm::Type *EltTy = ConvertType(CTy->getElementType());
588     llvm::Value *U = llvm::UndefValue::get(EltTy);
589     return RValue::getComplex(std::make_pair(U, U));
590   }
591 
592   // If this is a use of an undefined aggregate type, the aggregate must have an
593   // identifiable address.  Just because the contents of the value are undefined
594   // doesn't mean that the address can't be taken and compared.
595   if (hasAggregateLLVMType(Ty)) {
596     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
597     return RValue::getAggregate(DestPtr);
598   }
599 
600   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
601 }
602 
603 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
604                                               const char *Name) {
605   ErrorUnsupported(E, Name);
606   return GetUndefRValue(E->getType());
607 }
608 
609 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
610                                               const char *Name) {
611   ErrorUnsupported(E, Name);
612   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
613   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
614 }
615 
616 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
617   LValue LV = EmitLValue(E);
618   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
619     EmitCheck(LV.getAddress(),
620               getContext().getTypeSizeInChars(E->getType()).getQuantity());
621   return LV;
622 }
623 
624 /// EmitLValue - Emit code to compute a designator that specifies the location
625 /// of the expression.
626 ///
627 /// This can return one of two things: a simple address or a bitfield reference.
628 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
629 /// an LLVM pointer type.
630 ///
631 /// If this returns a bitfield reference, nothing about the pointee type of the
632 /// LLVM value is known: For example, it may not be a pointer to an integer.
633 ///
634 /// If this returns a normal address, and if the lvalue's C type is fixed size,
635 /// this method guarantees that the returned pointer type will point to an LLVM
636 /// type of the same size of the lvalue's type.  If the lvalue has a variable
637 /// length type, this is not possible.
638 ///
639 LValue CodeGenFunction::EmitLValue(const Expr *E) {
640   switch (E->getStmtClass()) {
641   default: return EmitUnsupportedLValue(E, "l-value expression");
642 
643   case Expr::ObjCPropertyRefExprClass:
644     llvm_unreachable("cannot emit a property reference directly");
645 
646   case Expr::ObjCSelectorExprClass:
647   return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
648   case Expr::ObjCIsaExprClass:
649     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
650   case Expr::BinaryOperatorClass:
651     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
652   case Expr::CompoundAssignOperatorClass:
653     if (!E->getType()->isAnyComplexType())
654       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
655     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
656   case Expr::CallExprClass:
657   case Expr::CXXMemberCallExprClass:
658   case Expr::CXXOperatorCallExprClass:
659     return EmitCallExprLValue(cast<CallExpr>(E));
660   case Expr::VAArgExprClass:
661     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
662   case Expr::DeclRefExprClass:
663     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
664   case Expr::ParenExprClass:
665     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
666   case Expr::GenericSelectionExprClass:
667     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
668   case Expr::PredefinedExprClass:
669     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
670   case Expr::StringLiteralClass:
671     return EmitStringLiteralLValue(cast<StringLiteral>(E));
672   case Expr::ObjCEncodeExprClass:
673     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
674   case Expr::PseudoObjectExprClass:
675     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
676   case Expr::InitListExprClass:
677     assert(cast<InitListExpr>(E)->getNumInits() == 1 &&
678            "Only single-element init list can be lvalue.");
679     return EmitLValue(cast<InitListExpr>(E)->getInit(0));
680 
681   case Expr::BlockDeclRefExprClass:
682     return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));
683 
684   case Expr::CXXTemporaryObjectExprClass:
685   case Expr::CXXConstructExprClass:
686     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
687   case Expr::CXXBindTemporaryExprClass:
688     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
689 
690   case Expr::ExprWithCleanupsClass: {
691     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
692     enterFullExpression(cleanups);
693     RunCleanupsScope Scope(*this);
694     return EmitLValue(cleanups->getSubExpr());
695   }
696 
697   case Expr::CXXScalarValueInitExprClass:
698     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
699   case Expr::CXXDefaultArgExprClass:
700     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
701   case Expr::CXXTypeidExprClass:
702     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
703 
704   case Expr::ObjCMessageExprClass:
705     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
706   case Expr::ObjCIvarRefExprClass:
707     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
708   case Expr::StmtExprClass:
709     return EmitStmtExprLValue(cast<StmtExpr>(E));
710   case Expr::UnaryOperatorClass:
711     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
712   case Expr::ArraySubscriptExprClass:
713     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
714   case Expr::ExtVectorElementExprClass:
715     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
716   case Expr::MemberExprClass:
717     return EmitMemberExpr(cast<MemberExpr>(E));
718   case Expr::CompoundLiteralExprClass:
719     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
720   case Expr::ConditionalOperatorClass:
721     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
722   case Expr::BinaryConditionalOperatorClass:
723     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
724   case Expr::ChooseExprClass:
725     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
726   case Expr::OpaqueValueExprClass:
727     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
728   case Expr::SubstNonTypeTemplateParmExprClass:
729     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
730   case Expr::ImplicitCastExprClass:
731   case Expr::CStyleCastExprClass:
732   case Expr::CXXFunctionalCastExprClass:
733   case Expr::CXXStaticCastExprClass:
734   case Expr::CXXDynamicCastExprClass:
735   case Expr::CXXReinterpretCastExprClass:
736   case Expr::CXXConstCastExprClass:
737   case Expr::ObjCBridgedCastExprClass:
738     return EmitCastLValue(cast<CastExpr>(E));
739 
740   case Expr::MaterializeTemporaryExprClass:
741     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
742   }
743 }
744 
745 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
746   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
747                           lvalue.getAlignment().getQuantity(),
748                           lvalue.getType(), lvalue.getTBAAInfo());
749 }
750 
751 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
752                                               unsigned Alignment, QualType Ty,
753                                               llvm::MDNode *TBAAInfo) {
754   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
755   if (Volatile)
756     Load->setVolatile(true);
757   if (Alignment)
758     Load->setAlignment(Alignment);
759   if (TBAAInfo)
760     CGM.DecorateInstruction(Load, TBAAInfo);
761   // If this is an atomic type, all normal reads must be atomic
762   if (Ty->isAtomicType())
763     Load->setAtomic(llvm::SequentiallyConsistent);
764 
765   return EmitFromMemory(Load, Ty);
766 }
767 
768 static bool isBooleanUnderlyingType(QualType Ty) {
769   if (const EnumType *ET = dyn_cast<EnumType>(Ty))
770     return ET->getDecl()->getIntegerType()->isBooleanType();
771   return false;
772 }
773 
774 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
775   // Bool has a different representation in memory than in registers.
776   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
777     // This should really always be an i1, but sometimes it's already
778     // an i8, and it's awkward to track those cases down.
779     if (Value->getType()->isIntegerTy(1))
780       return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
781     assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
782   }
783 
784   return Value;
785 }
786 
787 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
788   // Bool has a different representation in memory than in registers.
789   if (Ty->isBooleanType() || isBooleanUnderlyingType(Ty)) {
790     assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
791     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
792   }
793 
794   return Value;
795 }
796 
797 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
798                                         bool Volatile, unsigned Alignment,
799                                         QualType Ty,
800                                         llvm::MDNode *TBAAInfo,
801                                         bool isInit) {
802   Value = EmitToMemory(Value, Ty);
803 
804   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
805   if (Alignment)
806     Store->setAlignment(Alignment);
807   if (TBAAInfo)
808     CGM.DecorateInstruction(Store, TBAAInfo);
809   if (!isInit && Ty->isAtomicType())
810     Store->setAtomic(llvm::SequentiallyConsistent);
811 }
812 
813 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
814     bool isInit) {
815   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
816                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
817                     lvalue.getTBAAInfo(), isInit);
818 }
819 
820 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
821 /// method emits the address of the lvalue, then loads the result as an rvalue,
822 /// returning the rvalue.
823 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
824   if (LV.isObjCWeak()) {
825     // load of a __weak object.
826     llvm::Value *AddrWeakObj = LV.getAddress();
827     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
828                                                              AddrWeakObj));
829   }
830   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
831     return RValue::get(EmitARCLoadWeak(LV.getAddress()));
832 
833   if (LV.isSimple()) {
834     assert(!LV.getType()->isFunctionType());
835 
836     // Everything needs a load.
837     return RValue::get(EmitLoadOfScalar(LV));
838   }
839 
840   if (LV.isVectorElt()) {
841     llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
842                                           LV.isVolatileQualified());
843     return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
844                                                     "vecext"));
845   }
846 
847   // If this is a reference to a subset of the elements of a vector, either
848   // shuffle the input or extract/insert them as appropriate.
849   if (LV.isExtVectorElt())
850     return EmitLoadOfExtVectorElementLValue(LV);
851 
852   assert(LV.isBitField() && "Unknown LValue type!");
853   return EmitLoadOfBitfieldLValue(LV);
854 }
855 
856 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
857   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
858 
859   // Get the output type.
860   llvm::Type *ResLTy = ConvertType(LV.getType());
861   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
862 
863   // Compute the result as an OR of all of the individual component accesses.
864   llvm::Value *Res = 0;
865   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
866     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
867 
868     // Get the field pointer.
869     llvm::Value *Ptr = LV.getBitFieldBaseAddr();
870 
871     // Only offset by the field index if used, so that incoming values are not
872     // required to be structures.
873     if (AI.FieldIndex)
874       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
875 
876     // Offset by the byte offset, if used.
877     if (!AI.FieldByteOffset.isZero()) {
878       Ptr = EmitCastToVoidPtr(Ptr);
879       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
880                                        "bf.field.offs");
881     }
882 
883     // Cast to the access type.
884     llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(),
885                                                      AI.AccessWidth,
886                        CGM.getContext().getTargetAddressSpace(LV.getType()));
887     Ptr = Builder.CreateBitCast(Ptr, PTy);
888 
889     // Perform the load.
890     llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
891     if (!AI.AccessAlignment.isZero())
892       Load->setAlignment(AI.AccessAlignment.getQuantity());
893 
894     // Shift out unused low bits and mask out unused high bits.
895     llvm::Value *Val = Load;
896     if (AI.FieldBitStart)
897       Val = Builder.CreateLShr(Load, AI.FieldBitStart);
898     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
899                                                             AI.TargetBitWidth),
900                             "bf.clear");
901 
902     // Extend or truncate to the target size.
903     if (AI.AccessWidth < ResSizeInBits)
904       Val = Builder.CreateZExt(Val, ResLTy);
905     else if (AI.AccessWidth > ResSizeInBits)
906       Val = Builder.CreateTrunc(Val, ResLTy);
907 
908     // Shift into place, and OR into the result.
909     if (AI.TargetBitOffset)
910       Val = Builder.CreateShl(Val, AI.TargetBitOffset);
911     Res = Res ? Builder.CreateOr(Res, Val) : Val;
912   }
913 
914   // If the bit-field is signed, perform the sign-extension.
915   //
916   // FIXME: This can easily be folded into the load of the high bits, which
917   // could also eliminate the mask of high bits in some situations.
918   if (Info.isSigned()) {
919     unsigned ExtraBits = ResSizeInBits - Info.getSize();
920     if (ExtraBits)
921       Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
922                                ExtraBits, "bf.val.sext");
923   }
924 
925   return RValue::get(Res);
926 }
927 
928 // If this is a reference to a subset of the elements of a vector, create an
929 // appropriate shufflevector.
930 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
931   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
932                                         LV.isVolatileQualified());
933 
934   const llvm::Constant *Elts = LV.getExtVectorElts();
935 
936   // If the result of the expression is a non-vector type, we must be extracting
937   // a single element.  Just codegen as an extractelement.
938   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
939   if (!ExprVT) {
940     unsigned InIdx = getAccessedFieldNo(0, Elts);
941     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
942     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
943   }
944 
945   // Always use shuffle vector to try to retain the original program structure
946   unsigned NumResultElts = ExprVT->getNumElements();
947 
948   SmallVector<llvm::Constant*, 4> Mask;
949   for (unsigned i = 0; i != NumResultElts; ++i)
950     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
951 
952   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
953   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
954                                     MaskV);
955   return RValue::get(Vec);
956 }
957 
958 
959 
960 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
961 /// lvalue, where both are guaranteed to the have the same type, and that type
962 /// is 'Ty'.
963 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
964   if (!Dst.isSimple()) {
965     if (Dst.isVectorElt()) {
966       // Read/modify/write the vector, inserting the new element.
967       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
968                                             Dst.isVolatileQualified());
969       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
970                                         Dst.getVectorIdx(), "vecins");
971       Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
972       return;
973     }
974 
975     // If this is an update of extended vector elements, insert them as
976     // appropriate.
977     if (Dst.isExtVectorElt())
978       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
979 
980     assert(Dst.isBitField() && "Unknown LValue type");
981     return EmitStoreThroughBitfieldLValue(Src, Dst);
982   }
983 
984   // There's special magic for assigning into an ARC-qualified l-value.
985   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
986     switch (Lifetime) {
987     case Qualifiers::OCL_None:
988       llvm_unreachable("present but none");
989 
990     case Qualifiers::OCL_ExplicitNone:
991       // nothing special
992       break;
993 
994     case Qualifiers::OCL_Strong:
995       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
996       return;
997 
998     case Qualifiers::OCL_Weak:
999       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1000       return;
1001 
1002     case Qualifiers::OCL_Autoreleasing:
1003       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1004                                                      Src.getScalarVal()));
1005       // fall into the normal path
1006       break;
1007     }
1008   }
1009 
1010   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1011     // load of a __weak object.
1012     llvm::Value *LvalueDst = Dst.getAddress();
1013     llvm::Value *src = Src.getScalarVal();
1014      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1015     return;
1016   }
1017 
1018   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1019     // load of a __strong object.
1020     llvm::Value *LvalueDst = Dst.getAddress();
1021     llvm::Value *src = Src.getScalarVal();
1022     if (Dst.isObjCIvar()) {
1023       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1024       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1025       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1026       llvm::Value *dst = RHS;
1027       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1028       llvm::Value *LHS =
1029         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1030       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1031       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1032                                               BytesBetween);
1033     } else if (Dst.isGlobalObjCRef()) {
1034       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1035                                                 Dst.isThreadLocalRef());
1036     }
1037     else
1038       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1039     return;
1040   }
1041 
1042   assert(Src.isScalar() && "Can't emit an agg store with this method");
1043   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1044 }
1045 
1046 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1047                                                      llvm::Value **Result) {
1048   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1049 
1050   // Get the output type.
1051   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1052   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1053 
1054   // Get the source value, truncated to the width of the bit-field.
1055   llvm::Value *SrcVal = Src.getScalarVal();
1056 
1057   if (Dst.getType()->isBooleanType())
1058     SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1059 
1060   SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1061                                                                 Info.getSize()),
1062                              "bf.value");
1063 
1064   // Return the new value of the bit-field, if requested.
1065   if (Result) {
1066     // Cast back to the proper type for result.
1067     llvm::Type *SrcTy = Src.getScalarVal()->getType();
1068     llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1069                                                    "bf.reload.val");
1070 
1071     // Sign extend if necessary.
1072     if (Info.isSigned()) {
1073       unsigned ExtraBits = ResSizeInBits - Info.getSize();
1074       if (ExtraBits)
1075         ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1076                                        ExtraBits, "bf.reload.sext");
1077     }
1078 
1079     *Result = ReloadVal;
1080   }
1081 
1082   // Iterate over the components, writing each piece to memory.
1083   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1084     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1085 
1086     // Get the field pointer.
1087     llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1088     unsigned addressSpace =
1089       cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1090 
1091     // Only offset by the field index if used, so that incoming values are not
1092     // required to be structures.
1093     if (AI.FieldIndex)
1094       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1095 
1096     // Offset by the byte offset, if used.
1097     if (!AI.FieldByteOffset.isZero()) {
1098       Ptr = EmitCastToVoidPtr(Ptr);
1099       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1100                                        "bf.field.offs");
1101     }
1102 
1103     // Cast to the access type.
1104     llvm::Type *AccessLTy =
1105       llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1106 
1107     llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1108     Ptr = Builder.CreateBitCast(Ptr, PTy);
1109 
1110     // Extract the piece of the bit-field value to write in this access, limited
1111     // to the values that are part of this access.
1112     llvm::Value *Val = SrcVal;
1113     if (AI.TargetBitOffset)
1114       Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1115     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1116                                                             AI.TargetBitWidth));
1117 
1118     // Extend or truncate to the access size.
1119     if (ResSizeInBits < AI.AccessWidth)
1120       Val = Builder.CreateZExt(Val, AccessLTy);
1121     else if (ResSizeInBits > AI.AccessWidth)
1122       Val = Builder.CreateTrunc(Val, AccessLTy);
1123 
1124     // Shift into the position in memory.
1125     if (AI.FieldBitStart)
1126       Val = Builder.CreateShl(Val, AI.FieldBitStart);
1127 
1128     // If necessary, load and OR in bits that are outside of the bit-field.
1129     if (AI.TargetBitWidth != AI.AccessWidth) {
1130       llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1131       if (!AI.AccessAlignment.isZero())
1132         Load->setAlignment(AI.AccessAlignment.getQuantity());
1133 
1134       // Compute the mask for zeroing the bits that are part of the bit-field.
1135       llvm::APInt InvMask =
1136         ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1137                                  AI.FieldBitStart + AI.TargetBitWidth);
1138 
1139       // Apply the mask and OR in to the value to write.
1140       Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1141     }
1142 
1143     // Write the value.
1144     llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1145                                                  Dst.isVolatileQualified());
1146     if (!AI.AccessAlignment.isZero())
1147       Store->setAlignment(AI.AccessAlignment.getQuantity());
1148   }
1149 }
1150 
1151 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1152                                                                LValue Dst) {
1153   // This access turns into a read/modify/write of the vector.  Load the input
1154   // value now.
1155   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
1156                                         Dst.isVolatileQualified());
1157   const llvm::Constant *Elts = Dst.getExtVectorElts();
1158 
1159   llvm::Value *SrcVal = Src.getScalarVal();
1160 
1161   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1162     unsigned NumSrcElts = VTy->getNumElements();
1163     unsigned NumDstElts =
1164        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1165     if (NumDstElts == NumSrcElts) {
1166       // Use shuffle vector is the src and destination are the same number of
1167       // elements and restore the vector mask since it is on the side it will be
1168       // stored.
1169       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1170       for (unsigned i = 0; i != NumSrcElts; ++i)
1171         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1172 
1173       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1174       Vec = Builder.CreateShuffleVector(SrcVal,
1175                                         llvm::UndefValue::get(Vec->getType()),
1176                                         MaskV);
1177     } else if (NumDstElts > NumSrcElts) {
1178       // Extended the source vector to the same length and then shuffle it
1179       // into the destination.
1180       // FIXME: since we're shuffling with undef, can we just use the indices
1181       //        into that?  This could be simpler.
1182       SmallVector<llvm::Constant*, 4> ExtMask;
1183       unsigned i;
1184       for (i = 0; i != NumSrcElts; ++i)
1185         ExtMask.push_back(Builder.getInt32(i));
1186       for (; i != NumDstElts; ++i)
1187         ExtMask.push_back(llvm::UndefValue::get(Int32Ty));
1188       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1189       llvm::Value *ExtSrcVal =
1190         Builder.CreateShuffleVector(SrcVal,
1191                                     llvm::UndefValue::get(SrcVal->getType()),
1192                                     ExtMaskV);
1193       // build identity
1194       SmallVector<llvm::Constant*, 4> Mask;
1195       for (unsigned i = 0; i != NumDstElts; ++i)
1196         Mask.push_back(Builder.getInt32(i));
1197 
1198       // modify when what gets shuffled in
1199       for (unsigned i = 0; i != NumSrcElts; ++i)
1200         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1201       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1202       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1203     } else {
1204       // We should never shorten the vector
1205       llvm_unreachable("unexpected shorten vector length");
1206     }
1207   } else {
1208     // If the Src is a scalar (not a vector) it must be updating one element.
1209     unsigned InIdx = getAccessedFieldNo(0, Elts);
1210     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1211     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1212   }
1213 
1214   Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
1215 }
1216 
1217 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1218 // generating write-barries API. It is currently a global, ivar,
1219 // or neither.
1220 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1221                                  LValue &LV,
1222                                  bool IsMemberAccess=false) {
1223   if (Ctx.getLangOptions().getGC() == LangOptions::NonGC)
1224     return;
1225 
1226   if (isa<ObjCIvarRefExpr>(E)) {
1227     QualType ExpTy = E->getType();
1228     if (IsMemberAccess && ExpTy->isPointerType()) {
1229       // If ivar is a structure pointer, assigning to field of
1230       // this struct follows gcc's behavior and makes it a non-ivar
1231       // writer-barrier conservatively.
1232       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1233       if (ExpTy->isRecordType()) {
1234         LV.setObjCIvar(false);
1235         return;
1236       }
1237     }
1238     LV.setObjCIvar(true);
1239     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1240     LV.setBaseIvarExp(Exp->getBase());
1241     LV.setObjCArray(E->getType()->isArrayType());
1242     return;
1243   }
1244 
1245   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1246     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1247       if (VD->hasGlobalStorage()) {
1248         LV.setGlobalObjCRef(true);
1249         LV.setThreadLocalRef(VD->isThreadSpecified());
1250       }
1251     }
1252     LV.setObjCArray(E->getType()->isArrayType());
1253     return;
1254   }
1255 
1256   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1257     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1258     return;
1259   }
1260 
1261   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1262     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1263     if (LV.isObjCIvar()) {
1264       // If cast is to a structure pointer, follow gcc's behavior and make it
1265       // a non-ivar write-barrier.
1266       QualType ExpTy = E->getType();
1267       if (ExpTy->isPointerType())
1268         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1269       if (ExpTy->isRecordType())
1270         LV.setObjCIvar(false);
1271     }
1272     return;
1273   }
1274 
1275   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1276     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1277     return;
1278   }
1279 
1280   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1281     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1282     return;
1283   }
1284 
1285   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1286     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1287     return;
1288   }
1289 
1290   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1291     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1292     return;
1293   }
1294 
1295   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1296     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1297     if (LV.isObjCIvar() && !LV.isObjCArray())
1298       // Using array syntax to assigning to what an ivar points to is not
1299       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1300       LV.setObjCIvar(false);
1301     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1302       // Using array syntax to assigning to what global points to is not
1303       // same as assigning to the global itself. {id *G;} G[i] = 0;
1304       LV.setGlobalObjCRef(false);
1305     return;
1306   }
1307 
1308   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1309     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1310     // We don't know if member is an 'ivar', but this flag is looked at
1311     // only in the context of LV.isObjCIvar().
1312     LV.setObjCArray(E->getType()->isArrayType());
1313     return;
1314   }
1315 }
1316 
1317 static llvm::Value *
1318 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1319                                 llvm::Value *V, llvm::Type *IRType,
1320                                 StringRef Name = StringRef()) {
1321   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1322   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1323 }
1324 
1325 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1326                                       const Expr *E, const VarDecl *VD) {
1327   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1328          "Var decl must have external storage or be a file var decl!");
1329 
1330   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1331   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1332   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1333   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1334   QualType T = E->getType();
1335   LValue LV;
1336   if (VD->getType()->isReferenceType()) {
1337     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1338     LI->setAlignment(Alignment.getQuantity());
1339     V = LI;
1340     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1341   } else {
1342     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1343   }
1344   setObjCGCLValueClass(CGF.getContext(), E, LV);
1345   return LV;
1346 }
1347 
1348 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1349                                      const Expr *E, const FunctionDecl *FD) {
1350   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1351   if (!FD->hasPrototype()) {
1352     if (const FunctionProtoType *Proto =
1353             FD->getType()->getAs<FunctionProtoType>()) {
1354       // Ugly case: for a K&R-style definition, the type of the definition
1355       // isn't the same as the type of a use.  Correct for this with a
1356       // bitcast.
1357       QualType NoProtoType =
1358           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1359       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1360       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1361     }
1362   }
1363   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1364   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1365 }
1366 
1367 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1368   const NamedDecl *ND = E->getDecl();
1369   CharUnits Alignment = getContext().getDeclAlign(ND);
1370   QualType T = E->getType();
1371 
1372   // FIXME: We should be able to assert this for FunctionDecls as well!
1373   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1374   // those with a valid source location.
1375   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1376           !E->getLocation().isValid()) &&
1377          "Should not use decl without marking it used!");
1378 
1379   if (ND->hasAttr<WeakRefAttr>()) {
1380     const ValueDecl *VD = cast<ValueDecl>(ND);
1381     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1382     return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1383   }
1384 
1385   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1386 
1387     // Check if this is a global variable.
1388     if (VD->hasExternalStorage() || VD->isFileVarDecl())
1389       return EmitGlobalVarDeclLValue(*this, E, VD);
1390 
1391     bool NonGCable = VD->hasLocalStorage() &&
1392                      !VD->getType()->isReferenceType() &&
1393                      !VD->hasAttr<BlocksAttr>();
1394 
1395     llvm::Value *V = LocalDeclMap[VD];
1396     if (!V && VD->isStaticLocal())
1397       V = CGM.getStaticLocalDeclAddress(VD);
1398     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1399 
1400     if (VD->hasAttr<BlocksAttr>())
1401       V = BuildBlockByrefAddress(V, VD);
1402 
1403     LValue LV;
1404     if (VD->getType()->isReferenceType()) {
1405       llvm::LoadInst *LI = Builder.CreateLoad(V);
1406       LI->setAlignment(Alignment.getQuantity());
1407       V = LI;
1408       LV = MakeNaturalAlignAddrLValue(V, T);
1409     } else {
1410       LV = MakeAddrLValue(V, T, Alignment);
1411     }
1412 
1413     if (NonGCable) {
1414       LV.getQuals().removeObjCGCAttr();
1415       LV.setNonGC(true);
1416     }
1417     setObjCGCLValueClass(getContext(), E, LV);
1418     return LV;
1419   }
1420 
1421   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1422     return EmitFunctionDeclLValue(*this, E, fn);
1423 
1424   llvm_unreachable("Unhandled DeclRefExpr");
1425 }
1426 
1427 LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
1428   CharUnits Alignment = getContext().getDeclAlign(E->getDecl());
1429   return MakeAddrLValue(GetAddrOfBlockDecl(E), E->getType(), Alignment);
1430 }
1431 
1432 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1433   // __extension__ doesn't affect lvalue-ness.
1434   if (E->getOpcode() == UO_Extension)
1435     return EmitLValue(E->getSubExpr());
1436 
1437   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1438   switch (E->getOpcode()) {
1439   default: llvm_unreachable("Unknown unary operator lvalue!");
1440   case UO_Deref: {
1441     QualType T = E->getSubExpr()->getType()->getPointeeType();
1442     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1443 
1444     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1445     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1446 
1447     // We should not generate __weak write barrier on indirect reference
1448     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1449     // But, we continue to generate __strong write barrier on indirect write
1450     // into a pointer to object.
1451     if (getContext().getLangOptions().ObjC1 &&
1452         getContext().getLangOptions().getGC() != LangOptions::NonGC &&
1453         LV.isObjCWeak())
1454       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1455     return LV;
1456   }
1457   case UO_Real:
1458   case UO_Imag: {
1459     LValue LV = EmitLValue(E->getSubExpr());
1460     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1461     llvm::Value *Addr = LV.getAddress();
1462 
1463     // real and imag are valid on scalars.  This is a faster way of
1464     // testing that.
1465     if (!cast<llvm::PointerType>(Addr->getType())
1466            ->getElementType()->isStructTy()) {
1467       assert(E->getSubExpr()->getType()->isArithmeticType());
1468       return LV;
1469     }
1470 
1471     assert(E->getSubExpr()->getType()->isAnyComplexType());
1472 
1473     unsigned Idx = E->getOpcode() == UO_Imag;
1474     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1475                                                   Idx, "idx"),
1476                           ExprTy);
1477   }
1478   case UO_PreInc:
1479   case UO_PreDec: {
1480     LValue LV = EmitLValue(E->getSubExpr());
1481     bool isInc = E->getOpcode() == UO_PreInc;
1482 
1483     if (E->getType()->isAnyComplexType())
1484       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1485     else
1486       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1487     return LV;
1488   }
1489   }
1490 }
1491 
1492 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1493   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1494                         E->getType());
1495 }
1496 
1497 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1498   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1499                         E->getType());
1500 }
1501 
1502 
1503 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1504   switch (E->getIdentType()) {
1505   default:
1506     return EmitUnsupportedLValue(E, "predefined expression");
1507 
1508   case PredefinedExpr::Func:
1509   case PredefinedExpr::Function:
1510   case PredefinedExpr::PrettyFunction: {
1511     unsigned Type = E->getIdentType();
1512     std::string GlobalVarName;
1513 
1514     switch (Type) {
1515     default: llvm_unreachable("Invalid type");
1516     case PredefinedExpr::Func:
1517       GlobalVarName = "__func__.";
1518       break;
1519     case PredefinedExpr::Function:
1520       GlobalVarName = "__FUNCTION__.";
1521       break;
1522     case PredefinedExpr::PrettyFunction:
1523       GlobalVarName = "__PRETTY_FUNCTION__.";
1524       break;
1525     }
1526 
1527     StringRef FnName = CurFn->getName();
1528     if (FnName.startswith("\01"))
1529       FnName = FnName.substr(1);
1530     GlobalVarName += FnName;
1531 
1532     const Decl *CurDecl = CurCodeDecl;
1533     if (CurDecl == 0)
1534       CurDecl = getContext().getTranslationUnitDecl();
1535 
1536     std::string FunctionName =
1537         (isa<BlockDecl>(CurDecl)
1538          ? FnName.str()
1539          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
1540 
1541     llvm::Constant *C =
1542       CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1543     return MakeAddrLValue(C, E->getType());
1544   }
1545   }
1546 }
1547 
1548 llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1549   const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1550 
1551   // If we are not optimzing, don't collapse all calls to trap in the function
1552   // to the same call, that way, in the debugger they can see which operation
1553   // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1554   // to just one per function to save on codesize.
1555   if (GCO.OptimizationLevel && TrapBB)
1556     return TrapBB;
1557 
1558   llvm::BasicBlock *Cont = 0;
1559   if (HaveInsertPoint()) {
1560     Cont = createBasicBlock("cont");
1561     EmitBranch(Cont);
1562   }
1563   TrapBB = createBasicBlock("trap");
1564   EmitBlock(TrapBB);
1565 
1566   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
1567   llvm::CallInst *TrapCall = Builder.CreateCall(F);
1568   TrapCall->setDoesNotReturn();
1569   TrapCall->setDoesNotThrow();
1570   Builder.CreateUnreachable();
1571 
1572   if (Cont)
1573     EmitBlock(Cont);
1574   return TrapBB;
1575 }
1576 
1577 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1578 /// array to pointer, return the array subexpression.
1579 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1580   // If this isn't just an array->pointer decay, bail out.
1581   const CastExpr *CE = dyn_cast<CastExpr>(E);
1582   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1583     return 0;
1584 
1585   // If this is a decay from variable width array, bail out.
1586   const Expr *SubExpr = CE->getSubExpr();
1587   if (SubExpr->getType()->isVariableArrayType())
1588     return 0;
1589 
1590   return SubExpr;
1591 }
1592 
1593 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1594   // The index must always be an integer, which is not an aggregate.  Emit it.
1595   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1596   QualType IdxTy  = E->getIdx()->getType();
1597   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1598 
1599   // If the base is a vector type, then we are forming a vector element lvalue
1600   // with this subscript.
1601   if (E->getBase()->getType()->isVectorType()) {
1602     // Emit the vector as an lvalue to get its address.
1603     LValue LHS = EmitLValue(E->getBase());
1604     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1605     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1606     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1607                                  E->getBase()->getType());
1608   }
1609 
1610   // Extend or truncate the index type to 32 or 64-bits.
1611   if (Idx->getType() != IntPtrTy)
1612     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1613 
1614   // FIXME: As llvm implements the object size checking, this can come out.
1615   if (CatchUndefined) {
1616     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
1617       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1618         if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1619           if (const ConstantArrayType *CAT
1620               = getContext().getAsConstantArrayType(DRE->getType())) {
1621             llvm::APInt Size = CAT->getSize();
1622             llvm::BasicBlock *Cont = createBasicBlock("cont");
1623             Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1624                                   llvm::ConstantInt::get(Idx->getType(), Size)),
1625                                  Cont, getTrapBB());
1626             EmitBlock(Cont);
1627           }
1628         }
1629       }
1630     }
1631   }
1632 
1633   // We know that the pointer points to a type of the correct size, unless the
1634   // size is a VLA or Objective-C interface.
1635   llvm::Value *Address = 0;
1636   CharUnits ArrayAlignment;
1637   if (const VariableArrayType *vla =
1638         getContext().getAsVariableArrayType(E->getType())) {
1639     // The base must be a pointer, which is not an aggregate.  Emit
1640     // it.  It needs to be emitted first in case it's what captures
1641     // the VLA bounds.
1642     Address = EmitScalarExpr(E->getBase());
1643 
1644     // The element count here is the total number of non-VLA elements.
1645     llvm::Value *numElements = getVLASize(vla).first;
1646 
1647     // Effectively, the multiply by the VLA size is part of the GEP.
1648     // GEP indexes are signed, and scaling an index isn't permitted to
1649     // signed-overflow, so we use the same semantics for our explicit
1650     // multiply.  We suppress this if overflow is not undefined behavior.
1651     if (getLangOptions().isSignedOverflowDefined()) {
1652       Idx = Builder.CreateMul(Idx, numElements);
1653       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1654     } else {
1655       Idx = Builder.CreateNSWMul(Idx, numElements);
1656       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1657     }
1658   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1659     // Indexing over an interface, as in "NSString *P; P[4];"
1660     llvm::Value *InterfaceSize =
1661       llvm::ConstantInt::get(Idx->getType(),
1662           getContext().getTypeSizeInChars(OIT).getQuantity());
1663 
1664     Idx = Builder.CreateMul(Idx, InterfaceSize);
1665 
1666     // The base must be a pointer, which is not an aggregate.  Emit it.
1667     llvm::Value *Base = EmitScalarExpr(E->getBase());
1668     Address = EmitCastToVoidPtr(Base);
1669     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1670     Address = Builder.CreateBitCast(Address, Base->getType());
1671   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1672     // If this is A[i] where A is an array, the frontend will have decayed the
1673     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
1674     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1675     // "gep x, i" here.  Emit one "gep A, 0, i".
1676     assert(Array->getType()->isArrayType() &&
1677            "Array to pointer decay must have array source type!");
1678     LValue ArrayLV = EmitLValue(Array);
1679     llvm::Value *ArrayPtr = ArrayLV.getAddress();
1680     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1681     llvm::Value *Args[] = { Zero, Idx };
1682 
1683     // Propagate the alignment from the array itself to the result.
1684     ArrayAlignment = ArrayLV.getAlignment();
1685 
1686     if (getContext().getLangOptions().isSignedOverflowDefined())
1687       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
1688     else
1689       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
1690   } else {
1691     // The base must be a pointer, which is not an aggregate.  Emit it.
1692     llvm::Value *Base = EmitScalarExpr(E->getBase());
1693     if (getContext().getLangOptions().isSignedOverflowDefined())
1694       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
1695     else
1696       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1697   }
1698 
1699   QualType T = E->getBase()->getType()->getPointeeType();
1700   assert(!T.isNull() &&
1701          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1702 
1703 
1704   // Limit the alignment to that of the result type.
1705   LValue LV;
1706   if (!ArrayAlignment.isZero()) {
1707     CharUnits Align = getContext().getTypeAlignInChars(T);
1708     ArrayAlignment = std::min(Align, ArrayAlignment);
1709     LV = MakeAddrLValue(Address, T, ArrayAlignment);
1710   } else {
1711     LV = MakeNaturalAlignAddrLValue(Address, T);
1712   }
1713 
1714   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1715 
1716   if (getContext().getLangOptions().ObjC1 &&
1717       getContext().getLangOptions().getGC() != LangOptions::NonGC) {
1718     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1719     setObjCGCLValueClass(getContext(), E, LV);
1720   }
1721   return LV;
1722 }
1723 
1724 static
1725 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
1726                                        SmallVector<unsigned, 4> &Elts) {
1727   SmallVector<llvm::Constant*, 4> CElts;
1728   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1729     CElts.push_back(Builder.getInt32(Elts[i]));
1730 
1731   return llvm::ConstantVector::get(CElts);
1732 }
1733 
1734 LValue CodeGenFunction::
1735 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1736   // Emit the base vector as an l-value.
1737   LValue Base;
1738 
1739   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1740   if (E->isArrow()) {
1741     // If it is a pointer to a vector, emit the address and form an lvalue with
1742     // it.
1743     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1744     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1745     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1746     Base.getQuals().removeObjCGCAttr();
1747   } else if (E->getBase()->isGLValue()) {
1748     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1749     // emit the base as an lvalue.
1750     assert(E->getBase()->getType()->isVectorType());
1751     Base = EmitLValue(E->getBase());
1752   } else {
1753     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1754     assert(E->getBase()->getType()->isVectorType() &&
1755            "Result must be a vector");
1756     llvm::Value *Vec = EmitScalarExpr(E->getBase());
1757 
1758     // Store the vector to memory (because LValue wants an address).
1759     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1760     Builder.CreateStore(Vec, VecMem);
1761     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
1762   }
1763 
1764   QualType type =
1765     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
1766 
1767   // Encode the element access list into a vector of unsigned indices.
1768   SmallVector<unsigned, 4> Indices;
1769   E->getEncodedElementAccess(Indices);
1770 
1771   if (Base.isSimple()) {
1772     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
1773     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type);
1774   }
1775   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1776 
1777   llvm::Constant *BaseElts = Base.getExtVectorElts();
1778   SmallVector<llvm::Constant *, 4> CElts;
1779 
1780   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1781     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
1782   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
1783   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type);
1784 }
1785 
1786 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1787   bool isNonGC = false;
1788   Expr *BaseExpr = E->getBase();
1789   llvm::Value *BaseValue = NULL;
1790   Qualifiers BaseQuals;
1791 
1792   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1793   if (E->isArrow()) {
1794     BaseValue = EmitScalarExpr(BaseExpr);
1795     const PointerType *PTy =
1796       BaseExpr->getType()->getAs<PointerType>();
1797     BaseQuals = PTy->getPointeeType().getQualifiers();
1798   } else {
1799     LValue BaseLV = EmitLValue(BaseExpr);
1800     if (BaseLV.isNonGC())
1801       isNonGC = true;
1802     // FIXME: this isn't right for bitfields.
1803     BaseValue = BaseLV.getAddress();
1804     QualType BaseTy = BaseExpr->getType();
1805     BaseQuals = BaseTy.getQualifiers();
1806   }
1807 
1808   NamedDecl *ND = E->getMemberDecl();
1809   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1810     LValue LV = EmitLValueForField(BaseValue, Field,
1811                                    BaseQuals.getCVRQualifiers());
1812     LV.setNonGC(isNonGC);
1813     setObjCGCLValueClass(getContext(), E, LV);
1814     return LV;
1815   }
1816 
1817   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
1818     return EmitGlobalVarDeclLValue(*this, E, VD);
1819 
1820   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
1821     return EmitFunctionDeclLValue(*this, E, FD);
1822 
1823   llvm_unreachable("Unhandled member declaration!");
1824 }
1825 
1826 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
1827                                               const FieldDecl *Field,
1828                                               unsigned CVRQualifiers) {
1829   const CGRecordLayout &RL =
1830     CGM.getTypes().getCGRecordLayout(Field->getParent());
1831   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
1832   return LValue::MakeBitfield(BaseValue, Info,
1833                           Field->getType().withCVRQualifiers(CVRQualifiers));
1834 }
1835 
1836 /// EmitLValueForAnonRecordField - Given that the field is a member of
1837 /// an anonymous struct or union buried inside a record, and given
1838 /// that the base value is a pointer to the enclosing record, derive
1839 /// an lvalue for the ultimate field.
1840 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
1841                                              const IndirectFieldDecl *Field,
1842                                                      unsigned CVRQualifiers) {
1843   IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
1844     IEnd = Field->chain_end();
1845   while (true) {
1846     LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I),
1847                                    CVRQualifiers);
1848     if (++I == IEnd) return LV;
1849 
1850     assert(LV.isSimple());
1851     BaseValue = LV.getAddress();
1852     CVRQualifiers |= LV.getVRQualifiers();
1853   }
1854 }
1855 
1856 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr,
1857                                            const FieldDecl *field,
1858                                            unsigned cvr) {
1859   if (field->isBitField())
1860     return EmitLValueForBitfield(baseAddr, field, cvr);
1861 
1862   const RecordDecl *rec = field->getParent();
1863   QualType type = field->getType();
1864   CharUnits alignment = getContext().getDeclAlign(field);
1865 
1866   bool mayAlias = rec->hasAttr<MayAliasAttr>();
1867 
1868   llvm::Value *addr = baseAddr;
1869   if (rec->isUnion()) {
1870     // For unions, there is no pointer adjustment.
1871     assert(!type->isReferenceType() && "union has reference member");
1872   } else {
1873     // For structs, we GEP to the field that the record layout suggests.
1874     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
1875     addr = Builder.CreateStructGEP(addr, idx, field->getName());
1876 
1877     // If this is a reference field, load the reference right now.
1878     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
1879       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
1880       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
1881       load->setAlignment(alignment.getQuantity());
1882 
1883       if (CGM.shouldUseTBAA()) {
1884         llvm::MDNode *tbaa;
1885         if (mayAlias)
1886           tbaa = CGM.getTBAAInfo(getContext().CharTy);
1887         else
1888           tbaa = CGM.getTBAAInfo(type);
1889         CGM.DecorateInstruction(load, tbaa);
1890       }
1891 
1892       addr = load;
1893       mayAlias = false;
1894       type = refType->getPointeeType();
1895       if (type->isIncompleteType())
1896         alignment = CharUnits();
1897       else
1898         alignment = getContext().getTypeAlignInChars(type);
1899       cvr = 0; // qualifiers don't recursively apply to referencee
1900     }
1901   }
1902 
1903   // Make sure that the address is pointing to the right type.  This is critical
1904   // for both unions and structs.  A union needs a bitcast, a struct element
1905   // will need a bitcast if the LLVM type laid out doesn't match the desired
1906   // type.
1907   addr = EmitBitCastOfLValueToProperType(*this, addr,
1908                                          CGM.getTypes().ConvertTypeForMem(type),
1909                                          field->getName());
1910 
1911   if (field->hasAttr<AnnotateAttr>())
1912     addr = EmitFieldAnnotations(field, addr);
1913 
1914   LValue LV = MakeAddrLValue(addr, type, alignment);
1915   LV.getQuals().addCVRQualifiers(cvr);
1916 
1917   // __weak attribute on a field is ignored.
1918   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
1919     LV.getQuals().removeObjCGCAttr();
1920 
1921   // Fields of may_alias structs act like 'char' for TBAA purposes.
1922   // FIXME: this should get propagated down through anonymous structs
1923   // and unions.
1924   if (mayAlias && LV.getTBAAInfo())
1925     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
1926 
1927   return LV;
1928 }
1929 
1930 LValue
1931 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue,
1932                                                   const FieldDecl *Field,
1933                                                   unsigned CVRQualifiers) {
1934   QualType FieldType = Field->getType();
1935 
1936   if (!FieldType->isReferenceType())
1937     return EmitLValueForField(BaseValue, Field, CVRQualifiers);
1938 
1939   const CGRecordLayout &RL =
1940     CGM.getTypes().getCGRecordLayout(Field->getParent());
1941   unsigned idx = RL.getLLVMFieldNo(Field);
1942   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx);
1943   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
1944 
1945 
1946   // Make sure that the address is pointing to the right type.  This is critical
1947   // for both unions and structs.  A union needs a bitcast, a struct element
1948   // will need a bitcast if the LLVM type laid out doesn't match the desired
1949   // type.
1950   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
1951   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1952   V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS));
1953 
1954   CharUnits Alignment = getContext().getDeclAlign(Field);
1955   return MakeAddrLValue(V, FieldType, Alignment);
1956 }
1957 
1958 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
1959   if (E->isFileScope()) {
1960     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
1961     return MakeAddrLValue(GlobalPtr, E->getType());
1962   }
1963 
1964   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
1965   const Expr *InitExpr = E->getInitializer();
1966   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
1967 
1968   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
1969                    /*Init*/ true);
1970 
1971   return Result;
1972 }
1973 
1974 LValue CodeGenFunction::
1975 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
1976   if (!expr->isGLValue()) {
1977     // ?: here should be an aggregate.
1978     assert((hasAggregateLLVMType(expr->getType()) &&
1979             !expr->getType()->isAnyComplexType()) &&
1980            "Unexpected conditional operator!");
1981     return EmitAggExprToLValue(expr);
1982   }
1983 
1984   OpaqueValueMapping binding(*this, expr);
1985 
1986   const Expr *condExpr = expr->getCond();
1987   bool CondExprBool;
1988   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
1989     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
1990     if (!CondExprBool) std::swap(live, dead);
1991 
1992     if (!ContainsLabel(dead))
1993       return EmitLValue(live);
1994   }
1995 
1996   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
1997   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
1998   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
1999 
2000   ConditionalEvaluation eval(*this);
2001   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2002 
2003   // Any temporaries created here are conditional.
2004   EmitBlock(lhsBlock);
2005   eval.begin(*this);
2006   LValue lhs = EmitLValue(expr->getTrueExpr());
2007   eval.end(*this);
2008 
2009   if (!lhs.isSimple())
2010     return EmitUnsupportedLValue(expr, "conditional operator");
2011 
2012   lhsBlock = Builder.GetInsertBlock();
2013   Builder.CreateBr(contBlock);
2014 
2015   // Any temporaries created here are conditional.
2016   EmitBlock(rhsBlock);
2017   eval.begin(*this);
2018   LValue rhs = EmitLValue(expr->getFalseExpr());
2019   eval.end(*this);
2020   if (!rhs.isSimple())
2021     return EmitUnsupportedLValue(expr, "conditional operator");
2022   rhsBlock = Builder.GetInsertBlock();
2023 
2024   EmitBlock(contBlock);
2025 
2026   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2027                                          "cond-lvalue");
2028   phi->addIncoming(lhs.getAddress(), lhsBlock);
2029   phi->addIncoming(rhs.getAddress(), rhsBlock);
2030   return MakeAddrLValue(phi, expr->getType());
2031 }
2032 
2033 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
2034 /// If the cast is a dynamic_cast, we can have the usual lvalue result,
2035 /// otherwise if a cast is needed by the code generator in an lvalue context,
2036 /// then it must mean that we need the address of an aggregate in order to
2037 /// access one of its fields.  This can happen for all the reasons that casts
2038 /// are permitted with aggregate result, including noop aggregate casts, and
2039 /// cast from scalar to union.
2040 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2041   switch (E->getCastKind()) {
2042   case CK_ToVoid:
2043     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2044 
2045   case CK_Dependent:
2046     llvm_unreachable("dependent cast kind in IR gen!");
2047 
2048   // These two casts are currently treated as no-ops, although they could
2049   // potentially be real operations depending on the target's ABI.
2050   case CK_NonAtomicToAtomic:
2051   case CK_AtomicToNonAtomic:
2052 
2053   case CK_NoOp:
2054   case CK_LValueToRValue:
2055     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2056         || E->getType()->isRecordType())
2057       return EmitLValue(E->getSubExpr());
2058     // Fall through to synthesize a temporary.
2059 
2060   case CK_BitCast:
2061   case CK_ArrayToPointerDecay:
2062   case CK_FunctionToPointerDecay:
2063   case CK_NullToMemberPointer:
2064   case CK_NullToPointer:
2065   case CK_IntegralToPointer:
2066   case CK_PointerToIntegral:
2067   case CK_PointerToBoolean:
2068   case CK_VectorSplat:
2069   case CK_IntegralCast:
2070   case CK_IntegralToBoolean:
2071   case CK_IntegralToFloating:
2072   case CK_FloatingToIntegral:
2073   case CK_FloatingToBoolean:
2074   case CK_FloatingCast:
2075   case CK_FloatingRealToComplex:
2076   case CK_FloatingComplexToReal:
2077   case CK_FloatingComplexToBoolean:
2078   case CK_FloatingComplexCast:
2079   case CK_FloatingComplexToIntegralComplex:
2080   case CK_IntegralRealToComplex:
2081   case CK_IntegralComplexToReal:
2082   case CK_IntegralComplexToBoolean:
2083   case CK_IntegralComplexCast:
2084   case CK_IntegralComplexToFloatingComplex:
2085   case CK_DerivedToBaseMemberPointer:
2086   case CK_BaseToDerivedMemberPointer:
2087   case CK_MemberPointerToBoolean:
2088   case CK_AnyPointerToBlockPointerCast:
2089   case CK_ARCProduceObject:
2090   case CK_ARCConsumeObject:
2091   case CK_ARCReclaimReturnedObject:
2092   case CK_ARCExtendBlockObject: {
2093     // These casts only produce lvalues when we're binding a reference to a
2094     // temporary realized from a (converted) pure rvalue. Emit the expression
2095     // as a value, copy it into a temporary, and return an lvalue referring to
2096     // that temporary.
2097     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2098     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2099     return MakeAddrLValue(V, E->getType());
2100   }
2101 
2102   case CK_Dynamic: {
2103     LValue LV = EmitLValue(E->getSubExpr());
2104     llvm::Value *V = LV.getAddress();
2105     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2106     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2107   }
2108 
2109   case CK_ConstructorConversion:
2110   case CK_UserDefinedConversion:
2111   case CK_CPointerToObjCPointerCast:
2112   case CK_BlockPointerToObjCPointerCast:
2113     return EmitLValue(E->getSubExpr());
2114 
2115   case CK_UncheckedDerivedToBase:
2116   case CK_DerivedToBase: {
2117     const RecordType *DerivedClassTy =
2118       E->getSubExpr()->getType()->getAs<RecordType>();
2119     CXXRecordDecl *DerivedClassDecl =
2120       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2121 
2122     LValue LV = EmitLValue(E->getSubExpr());
2123     llvm::Value *This = LV.getAddress();
2124 
2125     // Perform the derived-to-base conversion
2126     llvm::Value *Base =
2127       GetAddressOfBaseClass(This, DerivedClassDecl,
2128                             E->path_begin(), E->path_end(),
2129                             /*NullCheckValue=*/false);
2130 
2131     return MakeAddrLValue(Base, E->getType());
2132   }
2133   case CK_ToUnion:
2134     return EmitAggExprToLValue(E);
2135   case CK_BaseToDerived: {
2136     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2137     CXXRecordDecl *DerivedClassDecl =
2138       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2139 
2140     LValue LV = EmitLValue(E->getSubExpr());
2141 
2142     // Perform the base-to-derived conversion
2143     llvm::Value *Derived =
2144       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2145                                E->path_begin(), E->path_end(),
2146                                /*NullCheckValue=*/false);
2147 
2148     return MakeAddrLValue(Derived, E->getType());
2149   }
2150   case CK_LValueBitCast: {
2151     // This must be a reinterpret_cast (or c-style equivalent).
2152     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2153 
2154     LValue LV = EmitLValue(E->getSubExpr());
2155     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2156                                            ConvertType(CE->getTypeAsWritten()));
2157     return MakeAddrLValue(V, E->getType());
2158   }
2159   case CK_ObjCObjectLValueCast: {
2160     LValue LV = EmitLValue(E->getSubExpr());
2161     QualType ToType = getContext().getLValueReferenceType(E->getType());
2162     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2163                                            ConvertType(ToType));
2164     return MakeAddrLValue(V, E->getType());
2165   }
2166   }
2167 
2168   llvm_unreachable("Unhandled lvalue cast kind?");
2169 }
2170 
2171 LValue CodeGenFunction::EmitNullInitializationLValue(
2172                                               const CXXScalarValueInitExpr *E) {
2173   QualType Ty = E->getType();
2174   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2175   EmitNullInitialization(LV.getAddress(), Ty);
2176   return LV;
2177 }
2178 
2179 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2180   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2181   return getOpaqueLValueMapping(e);
2182 }
2183 
2184 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2185                                            const MaterializeTemporaryExpr *E) {
2186   RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2187   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2188 }
2189 
2190 
2191 //===--------------------------------------------------------------------===//
2192 //                             Expression Emission
2193 //===--------------------------------------------------------------------===//
2194 
2195 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2196                                      ReturnValueSlot ReturnValue) {
2197   if (CGDebugInfo *DI = getDebugInfo())
2198     DI->EmitLocation(Builder, E->getLocStart());
2199 
2200   // Builtins never have block type.
2201   if (E->getCallee()->getType()->isBlockPointerType())
2202     return EmitBlockCallExpr(E, ReturnValue);
2203 
2204   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2205     return EmitCXXMemberCallExpr(CE, ReturnValue);
2206 
2207   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2208     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2209 
2210   const Decl *TargetDecl = E->getCalleeDecl();
2211   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2212     if (unsigned builtinID = FD->getBuiltinID())
2213       return EmitBuiltinExpr(FD, builtinID, E);
2214   }
2215 
2216   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2217     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2218       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2219 
2220   if (const CXXPseudoDestructorExpr *PseudoDtor
2221           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2222     QualType DestroyedType = PseudoDtor->getDestroyedType();
2223     if (getContext().getLangOptions().ObjCAutoRefCount &&
2224         DestroyedType->isObjCLifetimeType() &&
2225         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2226          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2227       // Automatic Reference Counting:
2228       //   If the pseudo-expression names a retainable object with weak or
2229       //   strong lifetime, the object shall be released.
2230       Expr *BaseExpr = PseudoDtor->getBase();
2231       llvm::Value *BaseValue = NULL;
2232       Qualifiers BaseQuals;
2233 
2234       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2235       if (PseudoDtor->isArrow()) {
2236         BaseValue = EmitScalarExpr(BaseExpr);
2237         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2238         BaseQuals = PTy->getPointeeType().getQualifiers();
2239       } else {
2240         LValue BaseLV = EmitLValue(BaseExpr);
2241         BaseValue = BaseLV.getAddress();
2242         QualType BaseTy = BaseExpr->getType();
2243         BaseQuals = BaseTy.getQualifiers();
2244       }
2245 
2246       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2247       case Qualifiers::OCL_None:
2248       case Qualifiers::OCL_ExplicitNone:
2249       case Qualifiers::OCL_Autoreleasing:
2250         break;
2251 
2252       case Qualifiers::OCL_Strong:
2253         EmitARCRelease(Builder.CreateLoad(BaseValue,
2254                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2255                        /*precise*/ true);
2256         break;
2257 
2258       case Qualifiers::OCL_Weak:
2259         EmitARCDestroyWeak(BaseValue);
2260         break;
2261       }
2262     } else {
2263       // C++ [expr.pseudo]p1:
2264       //   The result shall only be used as the operand for the function call
2265       //   operator (), and the result of such a call has type void. The only
2266       //   effect is the evaluation of the postfix-expression before the dot or
2267       //   arrow.
2268       EmitScalarExpr(E->getCallee());
2269     }
2270 
2271     return RValue::get(0);
2272   }
2273 
2274   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2275   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2276                   E->arg_begin(), E->arg_end(), TargetDecl);
2277 }
2278 
2279 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2280   // Comma expressions just emit their LHS then their RHS as an l-value.
2281   if (E->getOpcode() == BO_Comma) {
2282     EmitIgnoredExpr(E->getLHS());
2283     EnsureInsertPoint();
2284     return EmitLValue(E->getRHS());
2285   }
2286 
2287   if (E->getOpcode() == BO_PtrMemD ||
2288       E->getOpcode() == BO_PtrMemI)
2289     return EmitPointerToDataMemberBinaryExpr(E);
2290 
2291   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2292 
2293   // Note that in all of these cases, __block variables need the RHS
2294   // evaluated first just in case the variable gets moved by the RHS.
2295 
2296   if (!hasAggregateLLVMType(E->getType())) {
2297     switch (E->getLHS()->getType().getObjCLifetime()) {
2298     case Qualifiers::OCL_Strong:
2299       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2300 
2301     case Qualifiers::OCL_Autoreleasing:
2302       return EmitARCStoreAutoreleasing(E).first;
2303 
2304     // No reason to do any of these differently.
2305     case Qualifiers::OCL_None:
2306     case Qualifiers::OCL_ExplicitNone:
2307     case Qualifiers::OCL_Weak:
2308       break;
2309     }
2310 
2311     RValue RV = EmitAnyExpr(E->getRHS());
2312     LValue LV = EmitLValue(E->getLHS());
2313     EmitStoreThroughLValue(RV, LV);
2314     return LV;
2315   }
2316 
2317   if (E->getType()->isAnyComplexType())
2318     return EmitComplexAssignmentLValue(E);
2319 
2320   return EmitAggExprToLValue(E);
2321 }
2322 
2323 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2324   RValue RV = EmitCallExpr(E);
2325 
2326   if (!RV.isScalar())
2327     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2328 
2329   assert(E->getCallReturnType()->isReferenceType() &&
2330          "Can't have a scalar return unless the return type is a "
2331          "reference type!");
2332 
2333   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2334 }
2335 
2336 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2337   // FIXME: This shouldn't require another copy.
2338   return EmitAggExprToLValue(E);
2339 }
2340 
2341 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2342   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2343          && "binding l-value to type which needs a temporary");
2344   AggValueSlot Slot = CreateAggTemp(E->getType());
2345   EmitCXXConstructExpr(E, Slot);
2346   return MakeAddrLValue(Slot.getAddr(), E->getType());
2347 }
2348 
2349 LValue
2350 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2351   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2352 }
2353 
2354 LValue
2355 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2356   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2357   Slot.setExternallyDestructed();
2358   EmitAggExpr(E->getSubExpr(), Slot);
2359   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2360   return MakeAddrLValue(Slot.getAddr(), E->getType());
2361 }
2362 
2363 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2364   RValue RV = EmitObjCMessageExpr(E);
2365 
2366   if (!RV.isScalar())
2367     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2368 
2369   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2370          "Can't have a scalar return unless the return type is a "
2371          "reference type!");
2372 
2373   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2374 }
2375 
2376 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2377   llvm::Value *V =
2378     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2379   return MakeAddrLValue(V, E->getType());
2380 }
2381 
2382 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2383                                              const ObjCIvarDecl *Ivar) {
2384   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2385 }
2386 
2387 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2388                                           llvm::Value *BaseValue,
2389                                           const ObjCIvarDecl *Ivar,
2390                                           unsigned CVRQualifiers) {
2391   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2392                                                    Ivar, CVRQualifiers);
2393 }
2394 
2395 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2396   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2397   llvm::Value *BaseValue = 0;
2398   const Expr *BaseExpr = E->getBase();
2399   Qualifiers BaseQuals;
2400   QualType ObjectTy;
2401   if (E->isArrow()) {
2402     BaseValue = EmitScalarExpr(BaseExpr);
2403     ObjectTy = BaseExpr->getType()->getPointeeType();
2404     BaseQuals = ObjectTy.getQualifiers();
2405   } else {
2406     LValue BaseLV = EmitLValue(BaseExpr);
2407     // FIXME: this isn't right for bitfields.
2408     BaseValue = BaseLV.getAddress();
2409     ObjectTy = BaseExpr->getType();
2410     BaseQuals = ObjectTy.getQualifiers();
2411   }
2412 
2413   LValue LV =
2414     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2415                       BaseQuals.getCVRQualifiers());
2416   setObjCGCLValueClass(getContext(), E, LV);
2417   return LV;
2418 }
2419 
2420 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2421   // Can only get l-value for message expression returning aggregate type
2422   RValue RV = EmitAnyExprToTemp(E);
2423   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2424 }
2425 
2426 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2427                                  ReturnValueSlot ReturnValue,
2428                                  CallExpr::const_arg_iterator ArgBeg,
2429                                  CallExpr::const_arg_iterator ArgEnd,
2430                                  const Decl *TargetDecl) {
2431   // Get the actual function type. The callee type will always be a pointer to
2432   // function type or a block pointer type.
2433   assert(CalleeType->isFunctionPointerType() &&
2434          "Call must have function pointer type!");
2435 
2436   CalleeType = getContext().getCanonicalType(CalleeType);
2437 
2438   const FunctionType *FnType
2439     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2440 
2441   CallArgList Args;
2442   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2443 
2444   const CGFunctionInfo &FnInfo = CGM.getTypes().getFunctionInfo(Args, FnType);
2445 
2446   // C99 6.5.2.2p6:
2447   //   If the expression that denotes the called function has a type
2448   //   that does not include a prototype, [the default argument
2449   //   promotions are performed]. If the number of arguments does not
2450   //   equal the number of parameters, the behavior is undefined. If
2451   //   the function is defined with a type that includes a prototype,
2452   //   and either the prototype ends with an ellipsis (, ...) or the
2453   //   types of the arguments after promotion are not compatible with
2454   //   the types of the parameters, the behavior is undefined. If the
2455   //   function is defined with a type that does not include a
2456   //   prototype, and the types of the arguments after promotion are
2457   //   not compatible with those of the parameters after promotion,
2458   //   the behavior is undefined [except in some trivial cases].
2459   // That is, in the general case, we should assume that a call
2460   // through an unprototyped function type works like a *non-variadic*
2461   // call.  The way we make this work is to cast to the exact type
2462   // of the promoted arguments.
2463   if (isa<FunctionNoProtoType>(FnType) &&
2464       !getTargetHooks().isNoProtoCallVariadic(FnInfo)) {
2465     assert(cast<llvm::FunctionType>(Callee->getType()->getContainedType(0))
2466              ->isVarArg());
2467     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo, false);
2468     CalleeTy = CalleeTy->getPointerTo();
2469     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2470   }
2471 
2472   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2473 }
2474 
2475 LValue CodeGenFunction::
2476 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2477   llvm::Value *BaseV;
2478   if (E->getOpcode() == BO_PtrMemI)
2479     BaseV = EmitScalarExpr(E->getLHS());
2480   else
2481     BaseV = EmitLValue(E->getLHS()).getAddress();
2482 
2483   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2484 
2485   const MemberPointerType *MPT
2486     = E->getRHS()->getType()->getAs<MemberPointerType>();
2487 
2488   llvm::Value *AddV =
2489     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2490 
2491   return MakeAddrLValue(AddV, MPT->getPointeeType());
2492 }
2493 
2494 static void
2495 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
2496              llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
2497              uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
2498   if (E->isCmpXChg()) {
2499     // Note that cmpxchg only supports specifying one ordering and
2500     // doesn't support weak cmpxchg, at least at the moment.
2501     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2502     LoadVal1->setAlignment(Align);
2503     llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
2504     LoadVal2->setAlignment(Align);
2505     llvm::AtomicCmpXchgInst *CXI =
2506         CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
2507     CXI->setVolatile(E->isVolatile());
2508     llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
2509     StoreVal1->setAlignment(Align);
2510     llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
2511     CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
2512     return;
2513   }
2514 
2515   if (E->getOp() == AtomicExpr::Load) {
2516     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
2517     Load->setAtomic(Order);
2518     Load->setAlignment(Size);
2519     Load->setVolatile(E->isVolatile());
2520     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
2521     StoreDest->setAlignment(Align);
2522     return;
2523   }
2524 
2525   if (E->getOp() == AtomicExpr::Store) {
2526     assert(!Dest && "Store does not return a value");
2527     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2528     LoadVal1->setAlignment(Align);
2529     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
2530     Store->setAtomic(Order);
2531     Store->setAlignment(Size);
2532     Store->setVolatile(E->isVolatile());
2533     return;
2534   }
2535 
2536   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
2537   switch (E->getOp()) {
2538     case AtomicExpr::CmpXchgWeak:
2539     case AtomicExpr::CmpXchgStrong:
2540     case AtomicExpr::Store:
2541     case AtomicExpr::Init:
2542     case AtomicExpr::Load:  assert(0 && "Already handled!");
2543     case AtomicExpr::Add:   Op = llvm::AtomicRMWInst::Add;  break;
2544     case AtomicExpr::Sub:   Op = llvm::AtomicRMWInst::Sub;  break;
2545     case AtomicExpr::And:   Op = llvm::AtomicRMWInst::And;  break;
2546     case AtomicExpr::Or:    Op = llvm::AtomicRMWInst::Or;   break;
2547     case AtomicExpr::Xor:   Op = llvm::AtomicRMWInst::Xor;  break;
2548     case AtomicExpr::Xchg:  Op = llvm::AtomicRMWInst::Xchg; break;
2549   }
2550   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2551   LoadVal1->setAlignment(Align);
2552   llvm::AtomicRMWInst *RMWI =
2553       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
2554   RMWI->setVolatile(E->isVolatile());
2555   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(RMWI, Dest);
2556   StoreDest->setAlignment(Align);
2557 }
2558 
2559 // This function emits any expression (scalar, complex, or aggregate)
2560 // into a temporary alloca.
2561 static llvm::Value *
2562 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
2563   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
2564   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
2565                        /*Init*/ true);
2566   return DeclPtr;
2567 }
2568 
2569 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
2570                                   llvm::Value *Dest) {
2571   if (Ty->isAnyComplexType())
2572     return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
2573   if (CGF.hasAggregateLLVMType(Ty))
2574     return RValue::getAggregate(Dest);
2575   return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
2576 }
2577 
2578 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
2579   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
2580   QualType MemTy = AtomicTy->getAs<AtomicType>()->getValueType();
2581   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
2582   uint64_t Size = sizeChars.getQuantity();
2583   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
2584   unsigned Align = alignChars.getQuantity();
2585   unsigned MaxInlineWidth =
2586       getContext().getTargetInfo().getMaxAtomicInlineWidth();
2587   bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
2588 
2589 
2590 
2591   llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
2592   Ptr = EmitScalarExpr(E->getPtr());
2593 
2594   if (E->getOp() == AtomicExpr::Init) {
2595     assert(!Dest && "Init does not return a value");
2596     Val1 = EmitScalarExpr(E->getVal1());
2597     llvm::StoreInst *Store = Builder.CreateStore(Val1, Ptr);
2598     Store->setAlignment(Size);
2599     Store->setVolatile(E->isVolatile());
2600     return RValue::get(0);
2601   }
2602 
2603   Order = EmitScalarExpr(E->getOrder());
2604   if (E->isCmpXChg()) {
2605     Val1 = EmitScalarExpr(E->getVal1());
2606     Val2 = EmitValToTemp(*this, E->getVal2());
2607     OrderFail = EmitScalarExpr(E->getOrderFail());
2608     (void)OrderFail; // OrderFail is unused at the moment
2609   } else if ((E->getOp() == AtomicExpr::Add || E->getOp() == AtomicExpr::Sub) &&
2610              MemTy->isPointerType()) {
2611     // For pointers, we're required to do a bit of math: adding 1 to an int*
2612     // is not the same as adding 1 to a uintptr_t.
2613     QualType Val1Ty = E->getVal1()->getType();
2614     llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
2615     CharUnits PointeeIncAmt =
2616         getContext().getTypeSizeInChars(MemTy->getPointeeType());
2617     Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
2618     Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
2619     EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
2620   } else if (E->getOp() != AtomicExpr::Load) {
2621     Val1 = EmitValToTemp(*this, E->getVal1());
2622   }
2623 
2624   if (E->getOp() != AtomicExpr::Store && !Dest)
2625     Dest = CreateMemTemp(E->getType(), ".atomicdst");
2626 
2627   if (UseLibcall) {
2628     // FIXME: Finalize what the libcalls are actually supposed to look like.
2629     // See also http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
2630     return EmitUnsupportedRValue(E, "atomic library call");
2631   }
2632 #if 0
2633   if (UseLibcall) {
2634     const char* LibCallName;
2635     switch (E->getOp()) {
2636     case AtomicExpr::CmpXchgWeak:
2637       LibCallName = "__atomic_compare_exchange_generic"; break;
2638     case AtomicExpr::CmpXchgStrong:
2639       LibCallName = "__atomic_compare_exchange_generic"; break;
2640     case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
2641     case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
2642     case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
2643     case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
2644     case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
2645     case AtomicExpr::Xchg:  LibCallName = "__atomic_exchange_generic"; break;
2646     case AtomicExpr::Store: LibCallName = "__atomic_store_generic"; break;
2647     case AtomicExpr::Load:  LibCallName = "__atomic_load_generic"; break;
2648     }
2649     llvm::SmallVector<QualType, 4> Params;
2650     CallArgList Args;
2651     QualType RetTy = getContext().VoidTy;
2652     if (E->getOp() != AtomicExpr::Store && !E->isCmpXChg())
2653       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
2654                getContext().VoidPtrTy);
2655     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
2656              getContext().VoidPtrTy);
2657     if (E->getOp() != AtomicExpr::Load)
2658       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2659                getContext().VoidPtrTy);
2660     if (E->isCmpXChg()) {
2661       Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
2662                getContext().VoidPtrTy);
2663       RetTy = getContext().IntTy;
2664     }
2665     Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
2666              getContext().getSizeType());
2667     const CGFunctionInfo &FuncInfo =
2668         CGM.getTypes().getFunctionInfo(RetTy, Args, FunctionType::ExtInfo());
2669     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo, false);
2670     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2671     RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
2672     if (E->isCmpXChg())
2673       return Res;
2674     if (E->getOp() == AtomicExpr::Store)
2675       return RValue::get(0);
2676     return ConvertTempToRValue(*this, E->getType(), Dest);
2677   }
2678 #endif
2679   llvm::Type *IPtrTy =
2680       llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
2681   llvm::Value *OrigDest = Dest;
2682   Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
2683   if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
2684   if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
2685   if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
2686 
2687   if (isa<llvm::ConstantInt>(Order)) {
2688     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2689     switch (ord) {
2690     case 0:  // memory_order_relaxed
2691       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2692                    llvm::Monotonic);
2693       break;
2694     case 1:  // memory_order_consume
2695     case 2:  // memory_order_acquire
2696       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2697                    llvm::Acquire);
2698       break;
2699     case 3:  // memory_order_release
2700       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2701                    llvm::Release);
2702       break;
2703     case 4:  // memory_order_acq_rel
2704       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2705                    llvm::AcquireRelease);
2706       break;
2707     case 5:  // memory_order_seq_cst
2708       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2709                    llvm::SequentiallyConsistent);
2710       break;
2711     default: // invalid order
2712       // We should not ever get here normally, but it's hard to
2713       // enforce that in general.
2714       break;
2715     }
2716     if (E->getOp() == AtomicExpr::Store || E->getOp() == AtomicExpr::Init)
2717       return RValue::get(0);
2718     return ConvertTempToRValue(*this, E->getType(), OrigDest);
2719   }
2720 
2721   // Long case, when Order isn't obviously constant.
2722 
2723   // Create all the relevant BB's
2724   llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
2725                    *AcqRelBB = 0, *SeqCstBB = 0;
2726   MonotonicBB = createBasicBlock("monotonic", CurFn);
2727   if (E->getOp() != AtomicExpr::Store)
2728     AcquireBB = createBasicBlock("acquire", CurFn);
2729   if (E->getOp() != AtomicExpr::Load)
2730     ReleaseBB = createBasicBlock("release", CurFn);
2731   if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store)
2732     AcqRelBB = createBasicBlock("acqrel", CurFn);
2733   SeqCstBB = createBasicBlock("seqcst", CurFn);
2734   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2735 
2736   // Create the switch for the split
2737   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
2738   // doesn't matter unless someone is crazy enough to use something that
2739   // doesn't fold to a constant for the ordering.
2740   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2741   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
2742 
2743   // Emit all the different atomics
2744   Builder.SetInsertPoint(MonotonicBB);
2745   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2746                llvm::Monotonic);
2747   Builder.CreateBr(ContBB);
2748   if (E->getOp() != AtomicExpr::Store) {
2749     Builder.SetInsertPoint(AcquireBB);
2750     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2751                  llvm::Acquire);
2752     Builder.CreateBr(ContBB);
2753     SI->addCase(Builder.getInt32(1), AcquireBB);
2754     SI->addCase(Builder.getInt32(2), AcquireBB);
2755   }
2756   if (E->getOp() != AtomicExpr::Load) {
2757     Builder.SetInsertPoint(ReleaseBB);
2758     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2759                  llvm::Release);
2760     Builder.CreateBr(ContBB);
2761     SI->addCase(Builder.getInt32(3), ReleaseBB);
2762   }
2763   if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) {
2764     Builder.SetInsertPoint(AcqRelBB);
2765     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2766                  llvm::AcquireRelease);
2767     Builder.CreateBr(ContBB);
2768     SI->addCase(Builder.getInt32(4), AcqRelBB);
2769   }
2770   Builder.SetInsertPoint(SeqCstBB);
2771   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2772                llvm::SequentiallyConsistent);
2773   Builder.CreateBr(ContBB);
2774   SI->addCase(Builder.getInt32(5), SeqCstBB);
2775 
2776   // Cleanup and return
2777   Builder.SetInsertPoint(ContBB);
2778   if (E->getOp() == AtomicExpr::Store)
2779     return RValue::get(0);
2780   return ConvertTempToRValue(*this, E->getType(), OrigDest);
2781 }
2782 
2783 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN,
2784                                     unsigned AccuracyD) {
2785   assert(Val->getType()->isFPOrFPVectorTy());
2786   if (!AccuracyN || !isa<llvm::Instruction>(Val))
2787     return;
2788 
2789   llvm::Value *Vals[2];
2790   Vals[0] = llvm::ConstantInt::get(Int32Ty, AccuracyN);
2791   Vals[1] = llvm::ConstantInt::get(Int32Ty, AccuracyD);
2792   llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), Vals);
2793 
2794   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy,
2795                                             Node);
2796 }
2797 
2798 namespace {
2799   struct LValueOrRValue {
2800     LValue LV;
2801     RValue RV;
2802   };
2803 }
2804 
2805 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
2806                                            const PseudoObjectExpr *E,
2807                                            bool forLValue,
2808                                            AggValueSlot slot) {
2809   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2810 
2811   // Find the result expression, if any.
2812   const Expr *resultExpr = E->getResultExpr();
2813   LValueOrRValue result;
2814 
2815   for (PseudoObjectExpr::const_semantics_iterator
2816          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2817     const Expr *semantic = *i;
2818 
2819     // If this semantic expression is an opaque value, bind it
2820     // to the result of its source expression.
2821     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2822 
2823       // If this is the result expression, we may need to evaluate
2824       // directly into the slot.
2825       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2826       OVMA opaqueData;
2827       if (ov == resultExpr && ov->isRValue() && !forLValue &&
2828           CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
2829           !ov->getType()->isAnyComplexType()) {
2830         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
2831 
2832         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
2833         opaqueData = OVMA::bind(CGF, ov, LV);
2834         result.RV = slot.asRValue();
2835 
2836       // Otherwise, emit as normal.
2837       } else {
2838         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2839 
2840         // If this is the result, also evaluate the result now.
2841         if (ov == resultExpr) {
2842           if (forLValue)
2843             result.LV = CGF.EmitLValue(ov);
2844           else
2845             result.RV = CGF.EmitAnyExpr(ov, slot);
2846         }
2847       }
2848 
2849       opaques.push_back(opaqueData);
2850 
2851     // Otherwise, if the expression is the result, evaluate it
2852     // and remember the result.
2853     } else if (semantic == resultExpr) {
2854       if (forLValue)
2855         result.LV = CGF.EmitLValue(semantic);
2856       else
2857         result.RV = CGF.EmitAnyExpr(semantic, slot);
2858 
2859     // Otherwise, evaluate the expression in an ignored context.
2860     } else {
2861       CGF.EmitIgnoredExpr(semantic);
2862     }
2863   }
2864 
2865   // Unbind all the opaques now.
2866   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2867     opaques[i].unbind(CGF);
2868 
2869   return result;
2870 }
2871 
2872 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
2873                                                AggValueSlot slot) {
2874   return emitPseudoObjectExpr(*this, E, false, slot).RV;
2875 }
2876 
2877 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
2878   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
2879 }
2880