1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 65 const Twine &Name, 66 llvm::Value *ArraySize, 67 bool CastToDefaultAddrSpace) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getQuantity()); 70 llvm::Value *V = Alloca; 71 // Alloca always returns a pointer in alloca address space, which may 72 // be different from the type defined by the language. For example, 73 // in C++ the auto variables are in the default address space. Therefore 74 // cast alloca to the default address space when necessary. 75 if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) { 76 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 77 auto CurIP = Builder.saveIP(); 78 Builder.SetInsertPoint(AllocaInsertPt); 79 V = getTargetHooks().performAddrSpaceCast( 80 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 81 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 82 Builder.restoreIP(CurIP); 83 } 84 85 return Address(V, Align); 86 } 87 88 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 89 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 90 /// insertion point of the builder. 91 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 92 const Twine &Name, 93 llvm::Value *ArraySize) { 94 if (ArraySize) 95 return Builder.CreateAlloca(Ty, ArraySize, Name); 96 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 97 ArraySize, Name, AllocaInsertPt); 98 } 99 100 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 101 /// default alignment of the corresponding LLVM type, which is *not* 102 /// guaranteed to be related in any way to the expected alignment of 103 /// an AST type that might have been lowered to Ty. 104 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 105 const Twine &Name) { 106 CharUnits Align = 107 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 108 return CreateTempAlloca(Ty, Align, Name); 109 } 110 111 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 112 assert(isa<llvm::AllocaInst>(Var.getPointer())); 113 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 114 Store->setAlignment(Var.getAlignment().getQuantity()); 115 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 116 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 117 } 118 119 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 120 CharUnits Align = getContext().getTypeAlignInChars(Ty); 121 return CreateTempAlloca(ConvertType(Ty), Align, Name); 122 } 123 124 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 125 bool CastToDefaultAddrSpace) { 126 // FIXME: Should we prefer the preferred type alignment here? 127 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, 128 CastToDefaultAddrSpace); 129 } 130 131 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 132 const Twine &Name, 133 bool CastToDefaultAddrSpace) { 134 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr, 135 CastToDefaultAddrSpace); 136 } 137 138 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 139 /// expression and compare the result against zero, returning an Int1Ty value. 140 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 141 PGO.setCurrentStmt(E); 142 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 143 llvm::Value *MemPtr = EmitScalarExpr(E); 144 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 145 } 146 147 QualType BoolTy = getContext().BoolTy; 148 SourceLocation Loc = E->getExprLoc(); 149 if (!E->getType()->isAnyComplexType()) 150 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 151 152 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 153 Loc); 154 } 155 156 /// EmitIgnoredExpr - Emit code to compute the specified expression, 157 /// ignoring the result. 158 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 159 if (E->isRValue()) 160 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 161 162 // Just emit it as an l-value and drop the result. 163 EmitLValue(E); 164 } 165 166 /// EmitAnyExpr - Emit code to compute the specified expression which 167 /// can have any type. The result is returned as an RValue struct. 168 /// If this is an aggregate expression, AggSlot indicates where the 169 /// result should be returned. 170 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 171 AggValueSlot aggSlot, 172 bool ignoreResult) { 173 switch (getEvaluationKind(E->getType())) { 174 case TEK_Scalar: 175 return RValue::get(EmitScalarExpr(E, ignoreResult)); 176 case TEK_Complex: 177 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 178 case TEK_Aggregate: 179 if (!ignoreResult && aggSlot.isIgnored()) 180 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 181 EmitAggExpr(E, aggSlot); 182 return aggSlot.asRValue(); 183 } 184 llvm_unreachable("bad evaluation kind"); 185 } 186 187 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 188 /// always be accessible even if no aggregate location is provided. 189 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 190 AggValueSlot AggSlot = AggValueSlot::ignored(); 191 192 if (hasAggregateEvaluationKind(E->getType())) 193 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 194 return EmitAnyExpr(E, AggSlot); 195 } 196 197 /// EmitAnyExprToMem - Evaluate an expression into a given memory 198 /// location. 199 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 200 Address Location, 201 Qualifiers Quals, 202 bool IsInit) { 203 // FIXME: This function should take an LValue as an argument. 204 switch (getEvaluationKind(E->getType())) { 205 case TEK_Complex: 206 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 207 /*isInit*/ false); 208 return; 209 210 case TEK_Aggregate: { 211 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 212 AggValueSlot::IsDestructed_t(IsInit), 213 AggValueSlot::DoesNotNeedGCBarriers, 214 AggValueSlot::IsAliased_t(!IsInit))); 215 return; 216 } 217 218 case TEK_Scalar: { 219 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 220 LValue LV = MakeAddrLValue(Location, E->getType()); 221 EmitStoreThroughLValue(RV, LV); 222 return; 223 } 224 } 225 llvm_unreachable("bad evaluation kind"); 226 } 227 228 static void 229 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 230 const Expr *E, Address ReferenceTemporary) { 231 // Objective-C++ ARC: 232 // If we are binding a reference to a temporary that has ownership, we 233 // need to perform retain/release operations on the temporary. 234 // 235 // FIXME: This should be looking at E, not M. 236 if (auto Lifetime = M->getType().getObjCLifetime()) { 237 switch (Lifetime) { 238 case Qualifiers::OCL_None: 239 case Qualifiers::OCL_ExplicitNone: 240 // Carry on to normal cleanup handling. 241 break; 242 243 case Qualifiers::OCL_Autoreleasing: 244 // Nothing to do; cleaned up by an autorelease pool. 245 return; 246 247 case Qualifiers::OCL_Strong: 248 case Qualifiers::OCL_Weak: 249 switch (StorageDuration Duration = M->getStorageDuration()) { 250 case SD_Static: 251 // Note: we intentionally do not register a cleanup to release 252 // the object on program termination. 253 return; 254 255 case SD_Thread: 256 // FIXME: We should probably register a cleanup in this case. 257 return; 258 259 case SD_Automatic: 260 case SD_FullExpression: 261 CodeGenFunction::Destroyer *Destroy; 262 CleanupKind CleanupKind; 263 if (Lifetime == Qualifiers::OCL_Strong) { 264 const ValueDecl *VD = M->getExtendingDecl(); 265 bool Precise = 266 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 267 CleanupKind = CGF.getARCCleanupKind(); 268 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 269 : &CodeGenFunction::destroyARCStrongImprecise; 270 } else { 271 // __weak objects always get EH cleanups; otherwise, exceptions 272 // could cause really nasty crashes instead of mere leaks. 273 CleanupKind = NormalAndEHCleanup; 274 Destroy = &CodeGenFunction::destroyARCWeak; 275 } 276 if (Duration == SD_FullExpression) 277 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 278 M->getType(), *Destroy, 279 CleanupKind & EHCleanup); 280 else 281 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 282 M->getType(), 283 *Destroy, CleanupKind & EHCleanup); 284 return; 285 286 case SD_Dynamic: 287 llvm_unreachable("temporary cannot have dynamic storage duration"); 288 } 289 llvm_unreachable("unknown storage duration"); 290 } 291 } 292 293 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 294 if (const RecordType *RT = 295 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 296 // Get the destructor for the reference temporary. 297 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 298 if (!ClassDecl->hasTrivialDestructor()) 299 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 300 } 301 302 if (!ReferenceTemporaryDtor) 303 return; 304 305 // Call the destructor for the temporary. 306 switch (M->getStorageDuration()) { 307 case SD_Static: 308 case SD_Thread: { 309 llvm::Constant *CleanupFn; 310 llvm::Constant *CleanupArg; 311 if (E->getType()->isArrayType()) { 312 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 313 ReferenceTemporary, E->getType(), 314 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 315 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 316 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 317 } else { 318 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 319 StructorType::Complete); 320 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 321 } 322 CGF.CGM.getCXXABI().registerGlobalDtor( 323 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 324 break; 325 } 326 327 case SD_FullExpression: 328 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 329 CodeGenFunction::destroyCXXObject, 330 CGF.getLangOpts().Exceptions); 331 break; 332 333 case SD_Automatic: 334 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 335 ReferenceTemporary, E->getType(), 336 CodeGenFunction::destroyCXXObject, 337 CGF.getLangOpts().Exceptions); 338 break; 339 340 case SD_Dynamic: 341 llvm_unreachable("temporary cannot have dynamic storage duration"); 342 } 343 } 344 345 static Address createReferenceTemporary(CodeGenFunction &CGF, 346 const MaterializeTemporaryExpr *M, 347 const Expr *Inner) { 348 auto &TCG = CGF.getTargetHooks(); 349 switch (M->getStorageDuration()) { 350 case SD_FullExpression: 351 case SD_Automatic: { 352 // If we have a constant temporary array or record try to promote it into a 353 // constant global under the same rules a normal constant would've been 354 // promoted. This is easier on the optimizer and generally emits fewer 355 // instructions. 356 QualType Ty = Inner->getType(); 357 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 358 (Ty->isArrayType() || Ty->isRecordType()) && 359 CGF.CGM.isTypeConstant(Ty, true)) 360 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 361 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 362 auto AS = AddrSpace.getValue(); 363 auto *GV = new llvm::GlobalVariable( 364 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 365 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 366 llvm::GlobalValue::NotThreadLocal, 367 CGF.getContext().getTargetAddressSpace(AS)); 368 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 369 GV->setAlignment(alignment.getQuantity()); 370 llvm::Constant *C = GV; 371 if (AS != LangAS::Default) 372 C = TCG.performAddrSpaceCast( 373 CGF.CGM, GV, AS, LangAS::Default, 374 GV->getValueType()->getPointerTo( 375 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 376 // FIXME: Should we put the new global into a COMDAT? 377 return Address(C, alignment); 378 } 379 } 380 return CGF.CreateMemTemp(Ty, "ref.tmp"); 381 } 382 case SD_Thread: 383 case SD_Static: 384 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 385 386 case SD_Dynamic: 387 llvm_unreachable("temporary can't have dynamic storage duration"); 388 } 389 llvm_unreachable("unknown storage duration"); 390 } 391 392 LValue CodeGenFunction:: 393 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 394 const Expr *E = M->GetTemporaryExpr(); 395 396 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 397 // as that will cause the lifetime adjustment to be lost for ARC 398 auto ownership = M->getType().getObjCLifetime(); 399 if (ownership != Qualifiers::OCL_None && 400 ownership != Qualifiers::OCL_ExplicitNone) { 401 Address Object = createReferenceTemporary(*this, M, E); 402 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 403 Object = Address(llvm::ConstantExpr::getBitCast(Var, 404 ConvertTypeForMem(E->getType()) 405 ->getPointerTo(Object.getAddressSpace())), 406 Object.getAlignment()); 407 408 // createReferenceTemporary will promote the temporary to a global with a 409 // constant initializer if it can. It can only do this to a value of 410 // ARC-manageable type if the value is global and therefore "immune" to 411 // ref-counting operations. Therefore we have no need to emit either a 412 // dynamic initialization or a cleanup and we can just return the address 413 // of the temporary. 414 if (Var->hasInitializer()) 415 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 416 417 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 418 } 419 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 420 AlignmentSource::Decl); 421 422 switch (getEvaluationKind(E->getType())) { 423 default: llvm_unreachable("expected scalar or aggregate expression"); 424 case TEK_Scalar: 425 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 426 break; 427 case TEK_Aggregate: { 428 EmitAggExpr(E, AggValueSlot::forAddr(Object, 429 E->getType().getQualifiers(), 430 AggValueSlot::IsDestructed, 431 AggValueSlot::DoesNotNeedGCBarriers, 432 AggValueSlot::IsNotAliased)); 433 break; 434 } 435 } 436 437 pushTemporaryCleanup(*this, M, E, Object); 438 return RefTempDst; 439 } 440 441 SmallVector<const Expr *, 2> CommaLHSs; 442 SmallVector<SubobjectAdjustment, 2> Adjustments; 443 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 444 445 for (const auto &Ignored : CommaLHSs) 446 EmitIgnoredExpr(Ignored); 447 448 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 449 if (opaque->getType()->isRecordType()) { 450 assert(Adjustments.empty()); 451 return EmitOpaqueValueLValue(opaque); 452 } 453 } 454 455 // Create and initialize the reference temporary. 456 Address Object = createReferenceTemporary(*this, M, E); 457 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 458 Object.getPointer()->stripPointerCasts())) { 459 Object = Address(llvm::ConstantExpr::getBitCast( 460 cast<llvm::Constant>(Object.getPointer()), 461 ConvertTypeForMem(E->getType())->getPointerTo()), 462 Object.getAlignment()); 463 // If the temporary is a global and has a constant initializer or is a 464 // constant temporary that we promoted to a global, we may have already 465 // initialized it. 466 if (!Var->hasInitializer()) { 467 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 468 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 469 } 470 } else { 471 switch (M->getStorageDuration()) { 472 case SD_Automatic: 473 case SD_FullExpression: 474 if (auto *Size = EmitLifetimeStart( 475 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 476 Object.getPointer())) { 477 if (M->getStorageDuration() == SD_Automatic) 478 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 479 Object, Size); 480 else 481 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 482 Size); 483 } 484 break; 485 default: 486 break; 487 } 488 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 489 } 490 pushTemporaryCleanup(*this, M, E, Object); 491 492 // Perform derived-to-base casts and/or field accesses, to get from the 493 // temporary object we created (and, potentially, for which we extended 494 // the lifetime) to the subobject we're binding the reference to. 495 for (unsigned I = Adjustments.size(); I != 0; --I) { 496 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 497 switch (Adjustment.Kind) { 498 case SubobjectAdjustment::DerivedToBaseAdjustment: 499 Object = 500 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 501 Adjustment.DerivedToBase.BasePath->path_begin(), 502 Adjustment.DerivedToBase.BasePath->path_end(), 503 /*NullCheckValue=*/ false, E->getExprLoc()); 504 break; 505 506 case SubobjectAdjustment::FieldAdjustment: { 507 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 508 LV = EmitLValueForField(LV, Adjustment.Field); 509 assert(LV.isSimple() && 510 "materialized temporary field is not a simple lvalue"); 511 Object = LV.getAddress(); 512 break; 513 } 514 515 case SubobjectAdjustment::MemberPointerAdjustment: { 516 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 517 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 518 Adjustment.Ptr.MPT); 519 break; 520 } 521 } 522 } 523 524 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 525 } 526 527 RValue 528 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 529 // Emit the expression as an lvalue. 530 LValue LV = EmitLValue(E); 531 assert(LV.isSimple()); 532 llvm::Value *Value = LV.getPointer(); 533 534 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 535 // C++11 [dcl.ref]p5 (as amended by core issue 453): 536 // If a glvalue to which a reference is directly bound designates neither 537 // an existing object or function of an appropriate type nor a region of 538 // storage of suitable size and alignment to contain an object of the 539 // reference's type, the behavior is undefined. 540 QualType Ty = E->getType(); 541 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 542 } 543 544 return RValue::get(Value); 545 } 546 547 548 /// getAccessedFieldNo - Given an encoded value and a result number, return the 549 /// input field number being accessed. 550 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 551 const llvm::Constant *Elts) { 552 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 553 ->getZExtValue(); 554 } 555 556 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 557 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 558 llvm::Value *High) { 559 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 560 llvm::Value *K47 = Builder.getInt64(47); 561 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 562 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 563 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 564 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 565 return Builder.CreateMul(B1, KMul); 566 } 567 568 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 569 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 570 TCK == TCK_UpcastToVirtualBase; 571 } 572 573 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 574 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 575 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 576 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 577 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 578 TCK == TCK_UpcastToVirtualBase); 579 } 580 581 bool CodeGenFunction::sanitizePerformTypeCheck() const { 582 return SanOpts.has(SanitizerKind::Null) | 583 SanOpts.has(SanitizerKind::Alignment) | 584 SanOpts.has(SanitizerKind::ObjectSize) | 585 SanOpts.has(SanitizerKind::Vptr); 586 } 587 588 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 589 llvm::Value *Ptr, QualType Ty, 590 CharUnits Alignment, 591 SanitizerSet SkippedChecks) { 592 if (!sanitizePerformTypeCheck()) 593 return; 594 595 // Don't check pointers outside the default address space. The null check 596 // isn't correct, the object-size check isn't supported by LLVM, and we can't 597 // communicate the addresses to the runtime handler for the vptr check. 598 if (Ptr->getType()->getPointerAddressSpace()) 599 return; 600 601 // Don't check pointers to volatile data. The behavior here is implementation- 602 // defined. 603 if (Ty.isVolatileQualified()) 604 return; 605 606 SanitizerScope SanScope(this); 607 608 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 609 llvm::BasicBlock *Done = nullptr; 610 611 // Quickly determine whether we have a pointer to an alloca. It's possible 612 // to skip null checks, and some alignment checks, for these pointers. This 613 // can reduce compile-time significantly. 614 auto PtrToAlloca = 615 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 616 617 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 618 llvm::Value *IsNonNull = nullptr; 619 bool IsGuaranteedNonNull = 620 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 621 bool AllowNullPointers = isNullPointerAllowed(TCK); 622 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 623 !IsGuaranteedNonNull) { 624 // The glvalue must not be an empty glvalue. 625 IsNonNull = Builder.CreateIsNotNull(Ptr); 626 627 // The IR builder can constant-fold the null check if the pointer points to 628 // a constant. 629 IsGuaranteedNonNull = IsNonNull == True; 630 631 // Skip the null check if the pointer is known to be non-null. 632 if (!IsGuaranteedNonNull) { 633 if (AllowNullPointers) { 634 // When performing pointer casts, it's OK if the value is null. 635 // Skip the remaining checks in that case. 636 Done = createBasicBlock("null"); 637 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 638 Builder.CreateCondBr(IsNonNull, Rest, Done); 639 EmitBlock(Rest); 640 } else { 641 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 642 } 643 } 644 } 645 646 if (SanOpts.has(SanitizerKind::ObjectSize) && 647 !SkippedChecks.has(SanitizerKind::ObjectSize) && 648 !Ty->isIncompleteType()) { 649 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 650 651 // The glvalue must refer to a large enough storage region. 652 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 653 // to check this. 654 // FIXME: Get object address space 655 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 656 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 657 llvm::Value *Min = Builder.getFalse(); 658 llvm::Value *NullIsUnknown = Builder.getFalse(); 659 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 660 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 661 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 662 llvm::ConstantInt::get(IntPtrTy, Size)); 663 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 664 } 665 666 uint64_t AlignVal = 0; 667 llvm::Value *PtrAsInt = nullptr; 668 669 if (SanOpts.has(SanitizerKind::Alignment) && 670 !SkippedChecks.has(SanitizerKind::Alignment)) { 671 AlignVal = Alignment.getQuantity(); 672 if (!Ty->isIncompleteType() && !AlignVal) 673 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 674 675 // The glvalue must be suitably aligned. 676 if (AlignVal > 1 && 677 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 678 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 679 llvm::Value *Align = Builder.CreateAnd( 680 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 681 llvm::Value *Aligned = 682 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 683 if (Aligned != True) 684 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 685 } 686 } 687 688 if (Checks.size() > 0) { 689 // Make sure we're not losing information. Alignment needs to be a power of 690 // 2 691 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 692 llvm::Constant *StaticData[] = { 693 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 694 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 695 llvm::ConstantInt::get(Int8Ty, TCK)}; 696 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 697 PtrAsInt ? PtrAsInt : Ptr); 698 } 699 700 // If possible, check that the vptr indicates that there is a subobject of 701 // type Ty at offset zero within this object. 702 // 703 // C++11 [basic.life]p5,6: 704 // [For storage which does not refer to an object within its lifetime] 705 // The program has undefined behavior if: 706 // -- the [pointer or glvalue] is used to access a non-static data member 707 // or call a non-static member function 708 if (SanOpts.has(SanitizerKind::Vptr) && 709 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 710 // Ensure that the pointer is non-null before loading it. If there is no 711 // compile-time guarantee, reuse the run-time null check or emit a new one. 712 if (!IsGuaranteedNonNull) { 713 if (!IsNonNull) 714 IsNonNull = Builder.CreateIsNotNull(Ptr); 715 if (!Done) 716 Done = createBasicBlock("vptr.null"); 717 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 718 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 719 EmitBlock(VptrNotNull); 720 } 721 722 // Compute a hash of the mangled name of the type. 723 // 724 // FIXME: This is not guaranteed to be deterministic! Move to a 725 // fingerprinting mechanism once LLVM provides one. For the time 726 // being the implementation happens to be deterministic. 727 SmallString<64> MangledName; 728 llvm::raw_svector_ostream Out(MangledName); 729 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 730 Out); 731 732 // Blacklist based on the mangled type. 733 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 734 SanitizerKind::Vptr, Out.str())) { 735 llvm::hash_code TypeHash = hash_value(Out.str()); 736 737 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 738 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 739 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 740 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 741 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 742 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 743 744 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 745 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 746 747 // Look the hash up in our cache. 748 const int CacheSize = 128; 749 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 750 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 751 "__ubsan_vptr_type_cache"); 752 llvm::Value *Slot = Builder.CreateAnd(Hash, 753 llvm::ConstantInt::get(IntPtrTy, 754 CacheSize-1)); 755 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 756 llvm::Value *CacheVal = 757 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 758 getPointerAlign()); 759 760 // If the hash isn't in the cache, call a runtime handler to perform the 761 // hard work of checking whether the vptr is for an object of the right 762 // type. This will either fill in the cache and return, or produce a 763 // diagnostic. 764 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 765 llvm::Constant *StaticData[] = { 766 EmitCheckSourceLocation(Loc), 767 EmitCheckTypeDescriptor(Ty), 768 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 769 llvm::ConstantInt::get(Int8Ty, TCK) 770 }; 771 llvm::Value *DynamicData[] = { Ptr, Hash }; 772 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 773 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 774 DynamicData); 775 } 776 } 777 778 if (Done) { 779 Builder.CreateBr(Done); 780 EmitBlock(Done); 781 } 782 } 783 784 /// Determine whether this expression refers to a flexible array member in a 785 /// struct. We disable array bounds checks for such members. 786 static bool isFlexibleArrayMemberExpr(const Expr *E) { 787 // For compatibility with existing code, we treat arrays of length 0 or 788 // 1 as flexible array members. 789 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 790 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 791 if (CAT->getSize().ugt(1)) 792 return false; 793 } else if (!isa<IncompleteArrayType>(AT)) 794 return false; 795 796 E = E->IgnoreParens(); 797 798 // A flexible array member must be the last member in the class. 799 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 800 // FIXME: If the base type of the member expr is not FD->getParent(), 801 // this should not be treated as a flexible array member access. 802 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 803 RecordDecl::field_iterator FI( 804 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 805 return ++FI == FD->getParent()->field_end(); 806 } 807 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 808 return IRE->getDecl()->getNextIvar() == nullptr; 809 } 810 811 return false; 812 } 813 814 /// If Base is known to point to the start of an array, return the length of 815 /// that array. Return 0 if the length cannot be determined. 816 static llvm::Value *getArrayIndexingBound( 817 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 818 // For the vector indexing extension, the bound is the number of elements. 819 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 820 IndexedType = Base->getType(); 821 return CGF.Builder.getInt32(VT->getNumElements()); 822 } 823 824 Base = Base->IgnoreParens(); 825 826 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 827 if (CE->getCastKind() == CK_ArrayToPointerDecay && 828 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 829 IndexedType = CE->getSubExpr()->getType(); 830 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 831 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 832 return CGF.Builder.getInt(CAT->getSize()); 833 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 834 return CGF.getVLASize(VAT).first; 835 } 836 } 837 838 return nullptr; 839 } 840 841 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 842 llvm::Value *Index, QualType IndexType, 843 bool Accessed) { 844 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 845 "should not be called unless adding bounds checks"); 846 SanitizerScope SanScope(this); 847 848 QualType IndexedType; 849 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 850 if (!Bound) 851 return; 852 853 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 854 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 855 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 856 857 llvm::Constant *StaticData[] = { 858 EmitCheckSourceLocation(E->getExprLoc()), 859 EmitCheckTypeDescriptor(IndexedType), 860 EmitCheckTypeDescriptor(IndexType) 861 }; 862 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 863 : Builder.CreateICmpULE(IndexVal, BoundVal); 864 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 865 SanitizerHandler::OutOfBounds, StaticData, Index); 866 } 867 868 869 CodeGenFunction::ComplexPairTy CodeGenFunction:: 870 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 871 bool isInc, bool isPre) { 872 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 873 874 llvm::Value *NextVal; 875 if (isa<llvm::IntegerType>(InVal.first->getType())) { 876 uint64_t AmountVal = isInc ? 1 : -1; 877 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 878 879 // Add the inc/dec to the real part. 880 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 881 } else { 882 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 883 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 884 if (!isInc) 885 FVal.changeSign(); 886 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 887 888 // Add the inc/dec to the real part. 889 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 890 } 891 892 ComplexPairTy IncVal(NextVal, InVal.second); 893 894 // Store the updated result through the lvalue. 895 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 896 897 // If this is a postinc, return the value read from memory, otherwise use the 898 // updated value. 899 return isPre ? IncVal : InVal; 900 } 901 902 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 903 CodeGenFunction *CGF) { 904 // Bind VLAs in the cast type. 905 if (CGF && E->getType()->isVariablyModifiedType()) 906 CGF->EmitVariablyModifiedType(E->getType()); 907 908 if (CGDebugInfo *DI = getModuleDebugInfo()) 909 DI->EmitExplicitCastType(E->getType()); 910 } 911 912 //===----------------------------------------------------------------------===// 913 // LValue Expression Emission 914 //===----------------------------------------------------------------------===// 915 916 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 917 /// derive a more accurate bound on the alignment of the pointer. 918 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 919 LValueBaseInfo *BaseInfo) { 920 // We allow this with ObjC object pointers because of fragile ABIs. 921 assert(E->getType()->isPointerType() || 922 E->getType()->isObjCObjectPointerType()); 923 E = E->IgnoreParens(); 924 925 // Casts: 926 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 927 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 928 CGM.EmitExplicitCastExprType(ECE, this); 929 930 switch (CE->getCastKind()) { 931 // Non-converting casts (but not C's implicit conversion from void*). 932 case CK_BitCast: 933 case CK_NoOp: 934 case CK_AddressSpaceConversion: 935 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 936 if (PtrTy->getPointeeType()->isVoidType()) 937 break; 938 939 LValueBaseInfo InnerInfo; 940 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerInfo); 941 if (BaseInfo) *BaseInfo = InnerInfo; 942 943 // If this is an explicit bitcast, and the source l-value is 944 // opaque, honor the alignment of the casted-to type. 945 if (isa<ExplicitCastExpr>(CE) && 946 InnerInfo.getAlignmentSource() != AlignmentSource::Decl) { 947 LValueBaseInfo ExpInfo; 948 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 949 &ExpInfo); 950 if (BaseInfo) 951 BaseInfo->mergeForCast(ExpInfo); 952 Addr = Address(Addr.getPointer(), Align); 953 } 954 955 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 956 CE->getCastKind() == CK_BitCast) { 957 if (auto PT = E->getType()->getAs<PointerType>()) 958 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 959 /*MayBeNull=*/true, 960 CodeGenFunction::CFITCK_UnrelatedCast, 961 CE->getLocStart()); 962 } 963 return CE->getCastKind() != CK_AddressSpaceConversion 964 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 965 : Builder.CreateAddrSpaceCast(Addr, 966 ConvertType(E->getType())); 967 } 968 break; 969 970 // Array-to-pointer decay. 971 case CK_ArrayToPointerDecay: 972 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo); 973 974 // Derived-to-base conversions. 975 case CK_UncheckedDerivedToBase: 976 case CK_DerivedToBase: { 977 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 978 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 979 return GetAddressOfBaseClass(Addr, Derived, 980 CE->path_begin(), CE->path_end(), 981 ShouldNullCheckClassCastValue(CE), 982 CE->getExprLoc()); 983 } 984 985 // TODO: Is there any reason to treat base-to-derived conversions 986 // specially? 987 default: 988 break; 989 } 990 } 991 992 // Unary &. 993 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 994 if (UO->getOpcode() == UO_AddrOf) { 995 LValue LV = EmitLValue(UO->getSubExpr()); 996 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 997 return LV.getAddress(); 998 } 999 } 1000 1001 // TODO: conditional operators, comma. 1002 1003 // Otherwise, use the alignment of the type. 1004 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo); 1005 return Address(EmitScalarExpr(E), Align); 1006 } 1007 1008 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1009 if (Ty->isVoidType()) 1010 return RValue::get(nullptr); 1011 1012 switch (getEvaluationKind(Ty)) { 1013 case TEK_Complex: { 1014 llvm::Type *EltTy = 1015 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1016 llvm::Value *U = llvm::UndefValue::get(EltTy); 1017 return RValue::getComplex(std::make_pair(U, U)); 1018 } 1019 1020 // If this is a use of an undefined aggregate type, the aggregate must have an 1021 // identifiable address. Just because the contents of the value are undefined 1022 // doesn't mean that the address can't be taken and compared. 1023 case TEK_Aggregate: { 1024 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1025 return RValue::getAggregate(DestPtr); 1026 } 1027 1028 case TEK_Scalar: 1029 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1030 } 1031 llvm_unreachable("bad evaluation kind"); 1032 } 1033 1034 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1035 const char *Name) { 1036 ErrorUnsupported(E, Name); 1037 return GetUndefRValue(E->getType()); 1038 } 1039 1040 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1041 const char *Name) { 1042 ErrorUnsupported(E, Name); 1043 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1044 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1045 E->getType()); 1046 } 1047 1048 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1049 const Expr *Base = Obj; 1050 while (!isa<CXXThisExpr>(Base)) { 1051 // The result of a dynamic_cast can be null. 1052 if (isa<CXXDynamicCastExpr>(Base)) 1053 return false; 1054 1055 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1056 Base = CE->getSubExpr(); 1057 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1058 Base = PE->getSubExpr(); 1059 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1060 if (UO->getOpcode() == UO_Extension) 1061 Base = UO->getSubExpr(); 1062 else 1063 return false; 1064 } else { 1065 return false; 1066 } 1067 } 1068 return true; 1069 } 1070 1071 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1072 LValue LV; 1073 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1074 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1075 else 1076 LV = EmitLValue(E); 1077 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1078 SanitizerSet SkippedChecks; 1079 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1080 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1081 if (IsBaseCXXThis) 1082 SkippedChecks.set(SanitizerKind::Alignment, true); 1083 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1084 SkippedChecks.set(SanitizerKind::Null, true); 1085 } 1086 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1087 E->getType(), LV.getAlignment(), SkippedChecks); 1088 } 1089 return LV; 1090 } 1091 1092 /// EmitLValue - Emit code to compute a designator that specifies the location 1093 /// of the expression. 1094 /// 1095 /// This can return one of two things: a simple address or a bitfield reference. 1096 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1097 /// an LLVM pointer type. 1098 /// 1099 /// If this returns a bitfield reference, nothing about the pointee type of the 1100 /// LLVM value is known: For example, it may not be a pointer to an integer. 1101 /// 1102 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1103 /// this method guarantees that the returned pointer type will point to an LLVM 1104 /// type of the same size of the lvalue's type. If the lvalue has a variable 1105 /// length type, this is not possible. 1106 /// 1107 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1108 ApplyDebugLocation DL(*this, E); 1109 switch (E->getStmtClass()) { 1110 default: return EmitUnsupportedLValue(E, "l-value expression"); 1111 1112 case Expr::ObjCPropertyRefExprClass: 1113 llvm_unreachable("cannot emit a property reference directly"); 1114 1115 case Expr::ObjCSelectorExprClass: 1116 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1117 case Expr::ObjCIsaExprClass: 1118 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1119 case Expr::BinaryOperatorClass: 1120 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1121 case Expr::CompoundAssignOperatorClass: { 1122 QualType Ty = E->getType(); 1123 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1124 Ty = AT->getValueType(); 1125 if (!Ty->isAnyComplexType()) 1126 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1127 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1128 } 1129 case Expr::CallExprClass: 1130 case Expr::CXXMemberCallExprClass: 1131 case Expr::CXXOperatorCallExprClass: 1132 case Expr::UserDefinedLiteralClass: 1133 return EmitCallExprLValue(cast<CallExpr>(E)); 1134 case Expr::VAArgExprClass: 1135 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1136 case Expr::DeclRefExprClass: 1137 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1138 case Expr::ParenExprClass: 1139 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1140 case Expr::GenericSelectionExprClass: 1141 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1142 case Expr::PredefinedExprClass: 1143 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1144 case Expr::StringLiteralClass: 1145 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1146 case Expr::ObjCEncodeExprClass: 1147 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1148 case Expr::PseudoObjectExprClass: 1149 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1150 case Expr::InitListExprClass: 1151 return EmitInitListLValue(cast<InitListExpr>(E)); 1152 case Expr::CXXTemporaryObjectExprClass: 1153 case Expr::CXXConstructExprClass: 1154 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1155 case Expr::CXXBindTemporaryExprClass: 1156 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1157 case Expr::CXXUuidofExprClass: 1158 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1159 case Expr::LambdaExprClass: 1160 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1161 1162 case Expr::ExprWithCleanupsClass: { 1163 const auto *cleanups = cast<ExprWithCleanups>(E); 1164 enterFullExpression(cleanups); 1165 RunCleanupsScope Scope(*this); 1166 LValue LV = EmitLValue(cleanups->getSubExpr()); 1167 if (LV.isSimple()) { 1168 // Defend against branches out of gnu statement expressions surrounded by 1169 // cleanups. 1170 llvm::Value *V = LV.getPointer(); 1171 Scope.ForceCleanup({&V}); 1172 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1173 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1174 } 1175 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1176 // bitfield lvalue or some other non-simple lvalue? 1177 return LV; 1178 } 1179 1180 case Expr::CXXDefaultArgExprClass: 1181 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1182 case Expr::CXXDefaultInitExprClass: { 1183 CXXDefaultInitExprScope Scope(*this); 1184 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1185 } 1186 case Expr::CXXTypeidExprClass: 1187 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1188 1189 case Expr::ObjCMessageExprClass: 1190 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1191 case Expr::ObjCIvarRefExprClass: 1192 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1193 case Expr::StmtExprClass: 1194 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1195 case Expr::UnaryOperatorClass: 1196 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1197 case Expr::ArraySubscriptExprClass: 1198 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1199 case Expr::OMPArraySectionExprClass: 1200 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1201 case Expr::ExtVectorElementExprClass: 1202 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1203 case Expr::MemberExprClass: 1204 return EmitMemberExpr(cast<MemberExpr>(E)); 1205 case Expr::CompoundLiteralExprClass: 1206 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1207 case Expr::ConditionalOperatorClass: 1208 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1209 case Expr::BinaryConditionalOperatorClass: 1210 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1211 case Expr::ChooseExprClass: 1212 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1213 case Expr::OpaqueValueExprClass: 1214 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1215 case Expr::SubstNonTypeTemplateParmExprClass: 1216 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1217 case Expr::ImplicitCastExprClass: 1218 case Expr::CStyleCastExprClass: 1219 case Expr::CXXFunctionalCastExprClass: 1220 case Expr::CXXStaticCastExprClass: 1221 case Expr::CXXDynamicCastExprClass: 1222 case Expr::CXXReinterpretCastExprClass: 1223 case Expr::CXXConstCastExprClass: 1224 case Expr::ObjCBridgedCastExprClass: 1225 return EmitCastLValue(cast<CastExpr>(E)); 1226 1227 case Expr::MaterializeTemporaryExprClass: 1228 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1229 1230 case Expr::CoawaitExprClass: 1231 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1232 case Expr::CoyieldExprClass: 1233 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1234 } 1235 } 1236 1237 /// Given an object of the given canonical type, can we safely copy a 1238 /// value out of it based on its initializer? 1239 static bool isConstantEmittableObjectType(QualType type) { 1240 assert(type.isCanonical()); 1241 assert(!type->isReferenceType()); 1242 1243 // Must be const-qualified but non-volatile. 1244 Qualifiers qs = type.getLocalQualifiers(); 1245 if (!qs.hasConst() || qs.hasVolatile()) return false; 1246 1247 // Otherwise, all object types satisfy this except C++ classes with 1248 // mutable subobjects or non-trivial copy/destroy behavior. 1249 if (const auto *RT = dyn_cast<RecordType>(type)) 1250 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1251 if (RD->hasMutableFields() || !RD->isTrivial()) 1252 return false; 1253 1254 return true; 1255 } 1256 1257 /// Can we constant-emit a load of a reference to a variable of the 1258 /// given type? This is different from predicates like 1259 /// Decl::isUsableInConstantExpressions because we do want it to apply 1260 /// in situations that don't necessarily satisfy the language's rules 1261 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1262 /// to do this with const float variables even if those variables 1263 /// aren't marked 'constexpr'. 1264 enum ConstantEmissionKind { 1265 CEK_None, 1266 CEK_AsReferenceOnly, 1267 CEK_AsValueOrReference, 1268 CEK_AsValueOnly 1269 }; 1270 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1271 type = type.getCanonicalType(); 1272 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1273 if (isConstantEmittableObjectType(ref->getPointeeType())) 1274 return CEK_AsValueOrReference; 1275 return CEK_AsReferenceOnly; 1276 } 1277 if (isConstantEmittableObjectType(type)) 1278 return CEK_AsValueOnly; 1279 return CEK_None; 1280 } 1281 1282 /// Try to emit a reference to the given value without producing it as 1283 /// an l-value. This is actually more than an optimization: we can't 1284 /// produce an l-value for variables that we never actually captured 1285 /// in a block or lambda, which means const int variables or constexpr 1286 /// literals or similar. 1287 CodeGenFunction::ConstantEmission 1288 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1289 ValueDecl *value = refExpr->getDecl(); 1290 1291 // The value needs to be an enum constant or a constant variable. 1292 ConstantEmissionKind CEK; 1293 if (isa<ParmVarDecl>(value)) { 1294 CEK = CEK_None; 1295 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1296 CEK = checkVarTypeForConstantEmission(var->getType()); 1297 } else if (isa<EnumConstantDecl>(value)) { 1298 CEK = CEK_AsValueOnly; 1299 } else { 1300 CEK = CEK_None; 1301 } 1302 if (CEK == CEK_None) return ConstantEmission(); 1303 1304 Expr::EvalResult result; 1305 bool resultIsReference; 1306 QualType resultType; 1307 1308 // It's best to evaluate all the way as an r-value if that's permitted. 1309 if (CEK != CEK_AsReferenceOnly && 1310 refExpr->EvaluateAsRValue(result, getContext())) { 1311 resultIsReference = false; 1312 resultType = refExpr->getType(); 1313 1314 // Otherwise, try to evaluate as an l-value. 1315 } else if (CEK != CEK_AsValueOnly && 1316 refExpr->EvaluateAsLValue(result, getContext())) { 1317 resultIsReference = true; 1318 resultType = value->getType(); 1319 1320 // Failure. 1321 } else { 1322 return ConstantEmission(); 1323 } 1324 1325 // In any case, if the initializer has side-effects, abandon ship. 1326 if (result.HasSideEffects) 1327 return ConstantEmission(); 1328 1329 // Emit as a constant. 1330 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1331 result.Val, resultType); 1332 1333 // Make sure we emit a debug reference to the global variable. 1334 // This should probably fire even for 1335 if (isa<VarDecl>(value)) { 1336 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1337 EmitDeclRefExprDbgValue(refExpr, result.Val); 1338 } else { 1339 assert(isa<EnumConstantDecl>(value)); 1340 EmitDeclRefExprDbgValue(refExpr, result.Val); 1341 } 1342 1343 // If we emitted a reference constant, we need to dereference that. 1344 if (resultIsReference) 1345 return ConstantEmission::forReference(C); 1346 1347 return ConstantEmission::forValue(C); 1348 } 1349 1350 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1351 const MemberExpr *ME) { 1352 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1353 // Try to emit static variable member expressions as DREs. 1354 return DeclRefExpr::Create( 1355 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1356 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1357 ME->getType(), ME->getValueKind()); 1358 } 1359 return nullptr; 1360 } 1361 1362 CodeGenFunction::ConstantEmission 1363 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1364 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1365 return tryEmitAsConstant(DRE); 1366 return ConstantEmission(); 1367 } 1368 1369 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1370 SourceLocation Loc) { 1371 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1372 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1373 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1374 } 1375 1376 static bool hasBooleanRepresentation(QualType Ty) { 1377 if (Ty->isBooleanType()) 1378 return true; 1379 1380 if (const EnumType *ET = Ty->getAs<EnumType>()) 1381 return ET->getDecl()->getIntegerType()->isBooleanType(); 1382 1383 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1384 return hasBooleanRepresentation(AT->getValueType()); 1385 1386 return false; 1387 } 1388 1389 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1390 llvm::APInt &Min, llvm::APInt &End, 1391 bool StrictEnums, bool IsBool) { 1392 const EnumType *ET = Ty->getAs<EnumType>(); 1393 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1394 ET && !ET->getDecl()->isFixed(); 1395 if (!IsBool && !IsRegularCPlusPlusEnum) 1396 return false; 1397 1398 if (IsBool) { 1399 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1400 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1401 } else { 1402 const EnumDecl *ED = ET->getDecl(); 1403 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1404 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1405 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1406 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1407 1408 if (NumNegativeBits) { 1409 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1410 assert(NumBits <= Bitwidth); 1411 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1412 Min = -End; 1413 } else { 1414 assert(NumPositiveBits <= Bitwidth); 1415 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1416 Min = llvm::APInt(Bitwidth, 0); 1417 } 1418 } 1419 return true; 1420 } 1421 1422 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1423 llvm::APInt Min, End; 1424 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1425 hasBooleanRepresentation(Ty))) 1426 return nullptr; 1427 1428 llvm::MDBuilder MDHelper(getLLVMContext()); 1429 return MDHelper.createRange(Min, End); 1430 } 1431 1432 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1433 SourceLocation Loc) { 1434 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1435 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1436 if (!HasBoolCheck && !HasEnumCheck) 1437 return false; 1438 1439 bool IsBool = hasBooleanRepresentation(Ty) || 1440 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1441 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1442 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1443 if (!NeedsBoolCheck && !NeedsEnumCheck) 1444 return false; 1445 1446 // Single-bit booleans don't need to be checked. Special-case this to avoid 1447 // a bit width mismatch when handling bitfield values. This is handled by 1448 // EmitFromMemory for the non-bitfield case. 1449 if (IsBool && 1450 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1451 return false; 1452 1453 llvm::APInt Min, End; 1454 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1455 return true; 1456 1457 auto &Ctx = getLLVMContext(); 1458 SanitizerScope SanScope(this); 1459 llvm::Value *Check; 1460 --End; 1461 if (!Min) { 1462 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1463 } else { 1464 llvm::Value *Upper = 1465 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1466 llvm::Value *Lower = 1467 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1468 Check = Builder.CreateAnd(Upper, Lower); 1469 } 1470 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1471 EmitCheckTypeDescriptor(Ty)}; 1472 SanitizerMask Kind = 1473 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1474 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1475 StaticArgs, EmitCheckValue(Value)); 1476 return true; 1477 } 1478 1479 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1480 QualType Ty, 1481 SourceLocation Loc, 1482 LValueBaseInfo BaseInfo, 1483 TBAAAccessInfo TBAAInfo, 1484 bool isNontemporal) { 1485 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1486 // For better performance, handle vector loads differently. 1487 if (Ty->isVectorType()) { 1488 const llvm::Type *EltTy = Addr.getElementType(); 1489 1490 const auto *VTy = cast<llvm::VectorType>(EltTy); 1491 1492 // Handle vectors of size 3 like size 4 for better performance. 1493 if (VTy->getNumElements() == 3) { 1494 1495 // Bitcast to vec4 type. 1496 llvm::VectorType *vec4Ty = 1497 llvm::VectorType::get(VTy->getElementType(), 4); 1498 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1499 // Now load value. 1500 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1501 1502 // Shuffle vector to get vec3. 1503 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1504 {0, 1, 2}, "extractVec"); 1505 return EmitFromMemory(V, Ty); 1506 } 1507 } 1508 } 1509 1510 // Atomic operations have to be done on integral types. 1511 LValue AtomicLValue = 1512 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1513 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1514 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1515 } 1516 1517 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1518 if (isNontemporal) { 1519 llvm::MDNode *Node = llvm::MDNode::get( 1520 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1521 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1522 } 1523 1524 if (BaseInfo.getMayAlias()) 1525 TBAAInfo = CGM.getTBAAMayAliasAccessInfo(); 1526 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1527 1528 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1529 // In order to prevent the optimizer from throwing away the check, don't 1530 // attach range metadata to the load. 1531 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1532 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1533 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1534 1535 return EmitFromMemory(Load, Ty); 1536 } 1537 1538 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1539 // Bool has a different representation in memory than in registers. 1540 if (hasBooleanRepresentation(Ty)) { 1541 // This should really always be an i1, but sometimes it's already 1542 // an i8, and it's awkward to track those cases down. 1543 if (Value->getType()->isIntegerTy(1)) 1544 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1545 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1546 "wrong value rep of bool"); 1547 } 1548 1549 return Value; 1550 } 1551 1552 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1553 // Bool has a different representation in memory than in registers. 1554 if (hasBooleanRepresentation(Ty)) { 1555 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1556 "wrong value rep of bool"); 1557 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1558 } 1559 1560 return Value; 1561 } 1562 1563 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1564 bool Volatile, QualType Ty, 1565 LValueBaseInfo BaseInfo, 1566 TBAAAccessInfo TBAAInfo, 1567 bool isInit, bool isNontemporal) { 1568 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1569 // Handle vectors differently to get better performance. 1570 if (Ty->isVectorType()) { 1571 llvm::Type *SrcTy = Value->getType(); 1572 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1573 // Handle vec3 special. 1574 if (VecTy && VecTy->getNumElements() == 3) { 1575 // Our source is a vec3, do a shuffle vector to make it a vec4. 1576 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1577 Builder.getInt32(2), 1578 llvm::UndefValue::get(Builder.getInt32Ty())}; 1579 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1580 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1581 MaskV, "extractVec"); 1582 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1583 } 1584 if (Addr.getElementType() != SrcTy) { 1585 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1586 } 1587 } 1588 } 1589 1590 Value = EmitToMemory(Value, Ty); 1591 1592 LValue AtomicLValue = 1593 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1594 if (Ty->isAtomicType() || 1595 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1596 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1597 return; 1598 } 1599 1600 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1601 if (isNontemporal) { 1602 llvm::MDNode *Node = 1603 llvm::MDNode::get(Store->getContext(), 1604 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1605 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1606 } 1607 1608 if (BaseInfo.getMayAlias()) 1609 TBAAInfo = CGM.getTBAAMayAliasAccessInfo(); 1610 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1611 } 1612 1613 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1614 bool isInit) { 1615 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1616 lvalue.getType(), lvalue.getBaseInfo(), 1617 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1618 } 1619 1620 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1621 /// method emits the address of the lvalue, then loads the result as an rvalue, 1622 /// returning the rvalue. 1623 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1624 if (LV.isObjCWeak()) { 1625 // load of a __weak object. 1626 Address AddrWeakObj = LV.getAddress(); 1627 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1628 AddrWeakObj)); 1629 } 1630 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1631 // In MRC mode, we do a load+autorelease. 1632 if (!getLangOpts().ObjCAutoRefCount) { 1633 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1634 } 1635 1636 // In ARC mode, we load retained and then consume the value. 1637 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1638 Object = EmitObjCConsumeObject(LV.getType(), Object); 1639 return RValue::get(Object); 1640 } 1641 1642 if (LV.isSimple()) { 1643 assert(!LV.getType()->isFunctionType()); 1644 1645 // Everything needs a load. 1646 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1647 } 1648 1649 if (LV.isVectorElt()) { 1650 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1651 LV.isVolatileQualified()); 1652 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1653 "vecext")); 1654 } 1655 1656 // If this is a reference to a subset of the elements of a vector, either 1657 // shuffle the input or extract/insert them as appropriate. 1658 if (LV.isExtVectorElt()) 1659 return EmitLoadOfExtVectorElementLValue(LV); 1660 1661 // Global Register variables always invoke intrinsics 1662 if (LV.isGlobalReg()) 1663 return EmitLoadOfGlobalRegLValue(LV); 1664 1665 assert(LV.isBitField() && "Unknown LValue type!"); 1666 return EmitLoadOfBitfieldLValue(LV, Loc); 1667 } 1668 1669 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1670 SourceLocation Loc) { 1671 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1672 1673 // Get the output type. 1674 llvm::Type *ResLTy = ConvertType(LV.getType()); 1675 1676 Address Ptr = LV.getBitFieldAddress(); 1677 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1678 1679 if (Info.IsSigned) { 1680 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1681 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1682 if (HighBits) 1683 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1684 if (Info.Offset + HighBits) 1685 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1686 } else { 1687 if (Info.Offset) 1688 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1689 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1690 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1691 Info.Size), 1692 "bf.clear"); 1693 } 1694 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1695 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1696 return RValue::get(Val); 1697 } 1698 1699 // If this is a reference to a subset of the elements of a vector, create an 1700 // appropriate shufflevector. 1701 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1702 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1703 LV.isVolatileQualified()); 1704 1705 const llvm::Constant *Elts = LV.getExtVectorElts(); 1706 1707 // If the result of the expression is a non-vector type, we must be extracting 1708 // a single element. Just codegen as an extractelement. 1709 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1710 if (!ExprVT) { 1711 unsigned InIdx = getAccessedFieldNo(0, Elts); 1712 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1713 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1714 } 1715 1716 // Always use shuffle vector to try to retain the original program structure 1717 unsigned NumResultElts = ExprVT->getNumElements(); 1718 1719 SmallVector<llvm::Constant*, 4> Mask; 1720 for (unsigned i = 0; i != NumResultElts; ++i) 1721 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1722 1723 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1724 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1725 MaskV); 1726 return RValue::get(Vec); 1727 } 1728 1729 /// @brief Generates lvalue for partial ext_vector access. 1730 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1731 Address VectorAddress = LV.getExtVectorAddress(); 1732 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1733 QualType EQT = ExprVT->getElementType(); 1734 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1735 1736 Address CastToPointerElement = 1737 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1738 "conv.ptr.element"); 1739 1740 const llvm::Constant *Elts = LV.getExtVectorElts(); 1741 unsigned ix = getAccessedFieldNo(0, Elts); 1742 1743 Address VectorBasePtrPlusIx = 1744 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1745 getContext().getTypeSizeInChars(EQT), 1746 "vector.elt"); 1747 1748 return VectorBasePtrPlusIx; 1749 } 1750 1751 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1752 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1753 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1754 "Bad type for register variable"); 1755 llvm::MDNode *RegName = cast<llvm::MDNode>( 1756 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1757 1758 // We accept integer and pointer types only 1759 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1760 llvm::Type *Ty = OrigTy; 1761 if (OrigTy->isPointerTy()) 1762 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1763 llvm::Type *Types[] = { Ty }; 1764 1765 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1766 llvm::Value *Call = Builder.CreateCall( 1767 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1768 if (OrigTy->isPointerTy()) 1769 Call = Builder.CreateIntToPtr(Call, OrigTy); 1770 return RValue::get(Call); 1771 } 1772 1773 1774 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1775 /// lvalue, where both are guaranteed to the have the same type, and that type 1776 /// is 'Ty'. 1777 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1778 bool isInit) { 1779 if (!Dst.isSimple()) { 1780 if (Dst.isVectorElt()) { 1781 // Read/modify/write the vector, inserting the new element. 1782 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1783 Dst.isVolatileQualified()); 1784 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1785 Dst.getVectorIdx(), "vecins"); 1786 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1787 Dst.isVolatileQualified()); 1788 return; 1789 } 1790 1791 // If this is an update of extended vector elements, insert them as 1792 // appropriate. 1793 if (Dst.isExtVectorElt()) 1794 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1795 1796 if (Dst.isGlobalReg()) 1797 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1798 1799 assert(Dst.isBitField() && "Unknown LValue type"); 1800 return EmitStoreThroughBitfieldLValue(Src, Dst); 1801 } 1802 1803 // There's special magic for assigning into an ARC-qualified l-value. 1804 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1805 switch (Lifetime) { 1806 case Qualifiers::OCL_None: 1807 llvm_unreachable("present but none"); 1808 1809 case Qualifiers::OCL_ExplicitNone: 1810 // nothing special 1811 break; 1812 1813 case Qualifiers::OCL_Strong: 1814 if (isInit) { 1815 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1816 break; 1817 } 1818 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1819 return; 1820 1821 case Qualifiers::OCL_Weak: 1822 if (isInit) 1823 // Initialize and then skip the primitive store. 1824 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1825 else 1826 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1827 return; 1828 1829 case Qualifiers::OCL_Autoreleasing: 1830 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1831 Src.getScalarVal())); 1832 // fall into the normal path 1833 break; 1834 } 1835 } 1836 1837 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1838 // load of a __weak object. 1839 Address LvalueDst = Dst.getAddress(); 1840 llvm::Value *src = Src.getScalarVal(); 1841 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1842 return; 1843 } 1844 1845 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1846 // load of a __strong object. 1847 Address LvalueDst = Dst.getAddress(); 1848 llvm::Value *src = Src.getScalarVal(); 1849 if (Dst.isObjCIvar()) { 1850 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1851 llvm::Type *ResultType = IntPtrTy; 1852 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1853 llvm::Value *RHS = dst.getPointer(); 1854 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1855 llvm::Value *LHS = 1856 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1857 "sub.ptr.lhs.cast"); 1858 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1859 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1860 BytesBetween); 1861 } else if (Dst.isGlobalObjCRef()) { 1862 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1863 Dst.isThreadLocalRef()); 1864 } 1865 else 1866 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1867 return; 1868 } 1869 1870 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1871 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1872 } 1873 1874 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1875 llvm::Value **Result) { 1876 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1877 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1878 Address Ptr = Dst.getBitFieldAddress(); 1879 1880 // Get the source value, truncated to the width of the bit-field. 1881 llvm::Value *SrcVal = Src.getScalarVal(); 1882 1883 // Cast the source to the storage type and shift it into place. 1884 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1885 /*IsSigned=*/false); 1886 llvm::Value *MaskedVal = SrcVal; 1887 1888 // See if there are other bits in the bitfield's storage we'll need to load 1889 // and mask together with source before storing. 1890 if (Info.StorageSize != Info.Size) { 1891 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1892 llvm::Value *Val = 1893 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1894 1895 // Mask the source value as needed. 1896 if (!hasBooleanRepresentation(Dst.getType())) 1897 SrcVal = Builder.CreateAnd(SrcVal, 1898 llvm::APInt::getLowBitsSet(Info.StorageSize, 1899 Info.Size), 1900 "bf.value"); 1901 MaskedVal = SrcVal; 1902 if (Info.Offset) 1903 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1904 1905 // Mask out the original value. 1906 Val = Builder.CreateAnd(Val, 1907 ~llvm::APInt::getBitsSet(Info.StorageSize, 1908 Info.Offset, 1909 Info.Offset + Info.Size), 1910 "bf.clear"); 1911 1912 // Or together the unchanged values and the source value. 1913 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1914 } else { 1915 assert(Info.Offset == 0); 1916 } 1917 1918 // Write the new value back out. 1919 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1920 1921 // Return the new value of the bit-field, if requested. 1922 if (Result) { 1923 llvm::Value *ResultVal = MaskedVal; 1924 1925 // Sign extend the value if needed. 1926 if (Info.IsSigned) { 1927 assert(Info.Size <= Info.StorageSize); 1928 unsigned HighBits = Info.StorageSize - Info.Size; 1929 if (HighBits) { 1930 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1931 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1932 } 1933 } 1934 1935 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1936 "bf.result.cast"); 1937 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1938 } 1939 } 1940 1941 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1942 LValue Dst) { 1943 // This access turns into a read/modify/write of the vector. Load the input 1944 // value now. 1945 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1946 Dst.isVolatileQualified()); 1947 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1948 1949 llvm::Value *SrcVal = Src.getScalarVal(); 1950 1951 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1952 unsigned NumSrcElts = VTy->getNumElements(); 1953 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1954 if (NumDstElts == NumSrcElts) { 1955 // Use shuffle vector is the src and destination are the same number of 1956 // elements and restore the vector mask since it is on the side it will be 1957 // stored. 1958 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1959 for (unsigned i = 0; i != NumSrcElts; ++i) 1960 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1961 1962 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1963 Vec = Builder.CreateShuffleVector(SrcVal, 1964 llvm::UndefValue::get(Vec->getType()), 1965 MaskV); 1966 } else if (NumDstElts > NumSrcElts) { 1967 // Extended the source vector to the same length and then shuffle it 1968 // into the destination. 1969 // FIXME: since we're shuffling with undef, can we just use the indices 1970 // into that? This could be simpler. 1971 SmallVector<llvm::Constant*, 4> ExtMask; 1972 for (unsigned i = 0; i != NumSrcElts; ++i) 1973 ExtMask.push_back(Builder.getInt32(i)); 1974 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1975 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1976 llvm::Value *ExtSrcVal = 1977 Builder.CreateShuffleVector(SrcVal, 1978 llvm::UndefValue::get(SrcVal->getType()), 1979 ExtMaskV); 1980 // build identity 1981 SmallVector<llvm::Constant*, 4> Mask; 1982 for (unsigned i = 0; i != NumDstElts; ++i) 1983 Mask.push_back(Builder.getInt32(i)); 1984 1985 // When the vector size is odd and .odd or .hi is used, the last element 1986 // of the Elts constant array will be one past the size of the vector. 1987 // Ignore the last element here, if it is greater than the mask size. 1988 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1989 NumSrcElts--; 1990 1991 // modify when what gets shuffled in 1992 for (unsigned i = 0; i != NumSrcElts; ++i) 1993 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1994 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1995 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1996 } else { 1997 // We should never shorten the vector 1998 llvm_unreachable("unexpected shorten vector length"); 1999 } 2000 } else { 2001 // If the Src is a scalar (not a vector) it must be updating one element. 2002 unsigned InIdx = getAccessedFieldNo(0, Elts); 2003 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2004 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2005 } 2006 2007 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2008 Dst.isVolatileQualified()); 2009 } 2010 2011 /// @brief Store of global named registers are always calls to intrinsics. 2012 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2013 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2014 "Bad type for register variable"); 2015 llvm::MDNode *RegName = cast<llvm::MDNode>( 2016 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2017 assert(RegName && "Register LValue is not metadata"); 2018 2019 // We accept integer and pointer types only 2020 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2021 llvm::Type *Ty = OrigTy; 2022 if (OrigTy->isPointerTy()) 2023 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2024 llvm::Type *Types[] = { Ty }; 2025 2026 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2027 llvm::Value *Value = Src.getScalarVal(); 2028 if (OrigTy->isPointerTy()) 2029 Value = Builder.CreatePtrToInt(Value, Ty); 2030 Builder.CreateCall( 2031 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2032 } 2033 2034 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2035 // generating write-barries API. It is currently a global, ivar, 2036 // or neither. 2037 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2038 LValue &LV, 2039 bool IsMemberAccess=false) { 2040 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2041 return; 2042 2043 if (isa<ObjCIvarRefExpr>(E)) { 2044 QualType ExpTy = E->getType(); 2045 if (IsMemberAccess && ExpTy->isPointerType()) { 2046 // If ivar is a structure pointer, assigning to field of 2047 // this struct follows gcc's behavior and makes it a non-ivar 2048 // writer-barrier conservatively. 2049 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2050 if (ExpTy->isRecordType()) { 2051 LV.setObjCIvar(false); 2052 return; 2053 } 2054 } 2055 LV.setObjCIvar(true); 2056 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2057 LV.setBaseIvarExp(Exp->getBase()); 2058 LV.setObjCArray(E->getType()->isArrayType()); 2059 return; 2060 } 2061 2062 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2063 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2064 if (VD->hasGlobalStorage()) { 2065 LV.setGlobalObjCRef(true); 2066 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2067 } 2068 } 2069 LV.setObjCArray(E->getType()->isArrayType()); 2070 return; 2071 } 2072 2073 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2074 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2075 return; 2076 } 2077 2078 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2079 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2080 if (LV.isObjCIvar()) { 2081 // If cast is to a structure pointer, follow gcc's behavior and make it 2082 // a non-ivar write-barrier. 2083 QualType ExpTy = E->getType(); 2084 if (ExpTy->isPointerType()) 2085 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2086 if (ExpTy->isRecordType()) 2087 LV.setObjCIvar(false); 2088 } 2089 return; 2090 } 2091 2092 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2093 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2094 return; 2095 } 2096 2097 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2098 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2099 return; 2100 } 2101 2102 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2103 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2104 return; 2105 } 2106 2107 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2108 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2109 return; 2110 } 2111 2112 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2113 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2114 if (LV.isObjCIvar() && !LV.isObjCArray()) 2115 // Using array syntax to assigning to what an ivar points to is not 2116 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2117 LV.setObjCIvar(false); 2118 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2119 // Using array syntax to assigning to what global points to is not 2120 // same as assigning to the global itself. {id *G;} G[i] = 0; 2121 LV.setGlobalObjCRef(false); 2122 return; 2123 } 2124 2125 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2126 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2127 // We don't know if member is an 'ivar', but this flag is looked at 2128 // only in the context of LV.isObjCIvar(). 2129 LV.setObjCArray(E->getType()->isArrayType()); 2130 return; 2131 } 2132 } 2133 2134 static llvm::Value * 2135 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2136 llvm::Value *V, llvm::Type *IRType, 2137 StringRef Name = StringRef()) { 2138 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2139 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2140 } 2141 2142 static LValue EmitThreadPrivateVarDeclLValue( 2143 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2144 llvm::Type *RealVarTy, SourceLocation Loc) { 2145 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2146 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2147 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2148 } 2149 2150 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 2151 const ReferenceType *RefTy, 2152 LValueBaseInfo *BaseInfo) { 2153 llvm::Value *Ptr = Builder.CreateLoad(Addr); 2154 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 2155 BaseInfo, /*forPointee*/ true)); 2156 } 2157 2158 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 2159 const ReferenceType *RefTy) { 2160 LValueBaseInfo BaseInfo; 2161 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &BaseInfo); 2162 return MakeAddrLValue(Addr, RefTy->getPointeeType(), BaseInfo); 2163 } 2164 2165 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2166 const PointerType *PtrTy, 2167 LValueBaseInfo *BaseInfo) { 2168 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2169 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2170 BaseInfo, 2171 /*forPointeeType=*/true)); 2172 } 2173 2174 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2175 const PointerType *PtrTy) { 2176 LValueBaseInfo BaseInfo; 2177 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo); 2178 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo); 2179 } 2180 2181 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2182 const Expr *E, const VarDecl *VD) { 2183 QualType T = E->getType(); 2184 2185 // If it's thread_local, emit a call to its wrapper function instead. 2186 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2187 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2188 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2189 2190 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2191 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2192 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2193 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2194 Address Addr(V, Alignment); 2195 LValue LV; 2196 // Emit reference to the private copy of the variable if it is an OpenMP 2197 // threadprivate variable. 2198 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2199 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2200 E->getExprLoc()); 2201 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2202 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2203 } else { 2204 LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2205 } 2206 setObjCGCLValueClass(CGF.getContext(), E, LV); 2207 return LV; 2208 } 2209 2210 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2211 const FunctionDecl *FD) { 2212 if (FD->hasAttr<WeakRefAttr>()) { 2213 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2214 return aliasee.getPointer(); 2215 } 2216 2217 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2218 if (!FD->hasPrototype()) { 2219 if (const FunctionProtoType *Proto = 2220 FD->getType()->getAs<FunctionProtoType>()) { 2221 // Ugly case: for a K&R-style definition, the type of the definition 2222 // isn't the same as the type of a use. Correct for this with a 2223 // bitcast. 2224 QualType NoProtoType = 2225 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2226 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2227 V = llvm::ConstantExpr::getBitCast(V, 2228 CGM.getTypes().ConvertType(NoProtoType)); 2229 } 2230 } 2231 return V; 2232 } 2233 2234 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2235 const Expr *E, const FunctionDecl *FD) { 2236 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2237 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2238 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2239 AlignmentSource::Decl); 2240 } 2241 2242 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2243 llvm::Value *ThisValue) { 2244 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2245 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2246 return CGF.EmitLValueForField(LV, FD); 2247 } 2248 2249 /// Named Registers are named metadata pointing to the register name 2250 /// which will be read from/written to as an argument to the intrinsic 2251 /// @llvm.read/write_register. 2252 /// So far, only the name is being passed down, but other options such as 2253 /// register type, allocation type or even optimization options could be 2254 /// passed down via the metadata node. 2255 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2256 SmallString<64> Name("llvm.named.register."); 2257 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2258 assert(Asm->getLabel().size() < 64-Name.size() && 2259 "Register name too big"); 2260 Name.append(Asm->getLabel()); 2261 llvm::NamedMDNode *M = 2262 CGM.getModule().getOrInsertNamedMetadata(Name); 2263 if (M->getNumOperands() == 0) { 2264 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2265 Asm->getLabel()); 2266 llvm::Metadata *Ops[] = {Str}; 2267 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2268 } 2269 2270 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2271 2272 llvm::Value *Ptr = 2273 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2274 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2275 } 2276 2277 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2278 const NamedDecl *ND = E->getDecl(); 2279 QualType T = E->getType(); 2280 2281 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2282 // Global Named registers access via intrinsics only 2283 if (VD->getStorageClass() == SC_Register && 2284 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2285 return EmitGlobalNamedRegister(VD, CGM); 2286 2287 // A DeclRefExpr for a reference initialized by a constant expression can 2288 // appear without being odr-used. Directly emit the constant initializer. 2289 const Expr *Init = VD->getAnyInitializer(VD); 2290 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2291 VD->isUsableInConstantExpressions(getContext()) && 2292 VD->checkInitIsICE() && 2293 // Do not emit if it is private OpenMP variable. 2294 !(E->refersToEnclosingVariableOrCapture() && 2295 ((CapturedStmtInfo && 2296 (LocalDeclMap.count(VD->getCanonicalDecl()) || 2297 CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || 2298 LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || 2299 isa<BlockDecl>(CurCodeDecl)))) { 2300 llvm::Constant *Val = 2301 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2302 *VD->evaluateValue(), 2303 VD->getType()); 2304 assert(Val && "failed to emit reference constant expression"); 2305 // FIXME: Eventually we will want to emit vector element references. 2306 2307 // Should we be using the alignment of the constant pointer we emitted? 2308 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2309 /*pointee*/ true); 2310 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2311 } 2312 2313 // Check for captured variables. 2314 if (E->refersToEnclosingVariableOrCapture()) { 2315 VD = VD->getCanonicalDecl(); 2316 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2317 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2318 else if (CapturedStmtInfo) { 2319 auto I = LocalDeclMap.find(VD); 2320 if (I != LocalDeclMap.end()) { 2321 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2322 return EmitLoadOfReferenceLValue(I->second, RefTy); 2323 return MakeAddrLValue(I->second, T); 2324 } 2325 LValue CapLVal = 2326 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2327 CapturedStmtInfo->getContextValue()); 2328 bool MayAlias = CapLVal.getBaseInfo().getMayAlias(); 2329 return MakeAddrLValue( 2330 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2331 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl, MayAlias)); 2332 } 2333 2334 assert(isa<BlockDecl>(CurCodeDecl)); 2335 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2336 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2337 } 2338 } 2339 2340 // FIXME: We should be able to assert this for FunctionDecls as well! 2341 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2342 // those with a valid source location. 2343 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2344 !E->getLocation().isValid()) && 2345 "Should not use decl without marking it used!"); 2346 2347 if (ND->hasAttr<WeakRefAttr>()) { 2348 const auto *VD = cast<ValueDecl>(ND); 2349 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2350 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2351 } 2352 2353 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2354 // Check if this is a global variable. 2355 if (VD->hasLinkage() || VD->isStaticDataMember()) 2356 return EmitGlobalVarDeclLValue(*this, E, VD); 2357 2358 Address addr = Address::invalid(); 2359 2360 // The variable should generally be present in the local decl map. 2361 auto iter = LocalDeclMap.find(VD); 2362 if (iter != LocalDeclMap.end()) { 2363 addr = iter->second; 2364 2365 // Otherwise, it might be static local we haven't emitted yet for 2366 // some reason; most likely, because it's in an outer function. 2367 } else if (VD->isStaticLocal()) { 2368 addr = Address(CGM.getOrCreateStaticVarDecl( 2369 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2370 getContext().getDeclAlign(VD)); 2371 2372 // No other cases for now. 2373 } else { 2374 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2375 } 2376 2377 2378 // Check for OpenMP threadprivate variables. 2379 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2380 return EmitThreadPrivateVarDeclLValue( 2381 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2382 E->getExprLoc()); 2383 } 2384 2385 // Drill into block byref variables. 2386 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2387 if (isBlockByref) { 2388 addr = emitBlockByrefAddress(addr, VD); 2389 } 2390 2391 // Drill into reference types. 2392 LValue LV; 2393 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2394 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2395 } else { 2396 LV = MakeAddrLValue(addr, T, AlignmentSource::Decl); 2397 } 2398 2399 bool isLocalStorage = VD->hasLocalStorage(); 2400 2401 bool NonGCable = isLocalStorage && 2402 !VD->getType()->isReferenceType() && 2403 !isBlockByref; 2404 if (NonGCable) { 2405 LV.getQuals().removeObjCGCAttr(); 2406 LV.setNonGC(true); 2407 } 2408 2409 bool isImpreciseLifetime = 2410 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2411 if (isImpreciseLifetime) 2412 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2413 setObjCGCLValueClass(getContext(), E, LV); 2414 return LV; 2415 } 2416 2417 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2418 return EmitFunctionDeclLValue(*this, E, FD); 2419 2420 // FIXME: While we're emitting a binding from an enclosing scope, all other 2421 // DeclRefExprs we see should be implicitly treated as if they also refer to 2422 // an enclosing scope. 2423 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2424 return EmitLValue(BD->getBinding()); 2425 2426 llvm_unreachable("Unhandled DeclRefExpr"); 2427 } 2428 2429 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2430 // __extension__ doesn't affect lvalue-ness. 2431 if (E->getOpcode() == UO_Extension) 2432 return EmitLValue(E->getSubExpr()); 2433 2434 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2435 switch (E->getOpcode()) { 2436 default: llvm_unreachable("Unknown unary operator lvalue!"); 2437 case UO_Deref: { 2438 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2439 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2440 2441 LValueBaseInfo BaseInfo; 2442 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo); 2443 LValue LV = MakeAddrLValue(Addr, T, BaseInfo); 2444 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2445 2446 // We should not generate __weak write barrier on indirect reference 2447 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2448 // But, we continue to generate __strong write barrier on indirect write 2449 // into a pointer to object. 2450 if (getLangOpts().ObjC1 && 2451 getLangOpts().getGC() != LangOptions::NonGC && 2452 LV.isObjCWeak()) 2453 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2454 return LV; 2455 } 2456 case UO_Real: 2457 case UO_Imag: { 2458 LValue LV = EmitLValue(E->getSubExpr()); 2459 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2460 2461 // __real is valid on scalars. This is a faster way of testing that. 2462 // __imag can only produce an rvalue on scalars. 2463 if (E->getOpcode() == UO_Real && 2464 !LV.getAddress().getElementType()->isStructTy()) { 2465 assert(E->getSubExpr()->getType()->isArithmeticType()); 2466 return LV; 2467 } 2468 2469 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2470 2471 Address Component = 2472 (E->getOpcode() == UO_Real 2473 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2474 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2475 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo()); 2476 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2477 return ElemLV; 2478 } 2479 case UO_PreInc: 2480 case UO_PreDec: { 2481 LValue LV = EmitLValue(E->getSubExpr()); 2482 bool isInc = E->getOpcode() == UO_PreInc; 2483 2484 if (E->getType()->isAnyComplexType()) 2485 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2486 else 2487 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2488 return LV; 2489 } 2490 } 2491 } 2492 2493 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2494 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2495 E->getType(), AlignmentSource::Decl); 2496 } 2497 2498 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2499 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2500 E->getType(), AlignmentSource::Decl); 2501 } 2502 2503 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2504 auto SL = E->getFunctionName(); 2505 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2506 StringRef FnName = CurFn->getName(); 2507 if (FnName.startswith("\01")) 2508 FnName = FnName.substr(1); 2509 StringRef NameItems[] = { 2510 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2511 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2512 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2513 std::string Name = SL->getString(); 2514 if (!Name.empty()) { 2515 unsigned Discriminator = 2516 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2517 if (Discriminator) 2518 Name += "_" + Twine(Discriminator + 1).str(); 2519 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2520 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2521 } else { 2522 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2523 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2524 } 2525 } 2526 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2527 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2528 } 2529 2530 /// Emit a type description suitable for use by a runtime sanitizer library. The 2531 /// format of a type descriptor is 2532 /// 2533 /// \code 2534 /// { i16 TypeKind, i16 TypeInfo } 2535 /// \endcode 2536 /// 2537 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2538 /// integer, 1 for a floating point value, and -1 for anything else. 2539 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2540 // Only emit each type's descriptor once. 2541 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2542 return C; 2543 2544 uint16_t TypeKind = -1; 2545 uint16_t TypeInfo = 0; 2546 2547 if (T->isIntegerType()) { 2548 TypeKind = 0; 2549 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2550 (T->isSignedIntegerType() ? 1 : 0); 2551 } else if (T->isFloatingType()) { 2552 TypeKind = 1; 2553 TypeInfo = getContext().getTypeSize(T); 2554 } 2555 2556 // Format the type name as if for a diagnostic, including quotes and 2557 // optionally an 'aka'. 2558 SmallString<32> Buffer; 2559 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2560 (intptr_t)T.getAsOpaquePtr(), 2561 StringRef(), StringRef(), None, Buffer, 2562 None); 2563 2564 llvm::Constant *Components[] = { 2565 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2566 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2567 }; 2568 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2569 2570 auto *GV = new llvm::GlobalVariable( 2571 CGM.getModule(), Descriptor->getType(), 2572 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2573 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2574 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2575 2576 // Remember the descriptor for this type. 2577 CGM.setTypeDescriptorInMap(T, GV); 2578 2579 return GV; 2580 } 2581 2582 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2583 llvm::Type *TargetTy = IntPtrTy; 2584 2585 if (V->getType() == TargetTy) 2586 return V; 2587 2588 // Floating-point types which fit into intptr_t are bitcast to integers 2589 // and then passed directly (after zero-extension, if necessary). 2590 if (V->getType()->isFloatingPointTy()) { 2591 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2592 if (Bits <= TargetTy->getIntegerBitWidth()) 2593 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2594 Bits)); 2595 } 2596 2597 // Integers which fit in intptr_t are zero-extended and passed directly. 2598 if (V->getType()->isIntegerTy() && 2599 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2600 return Builder.CreateZExt(V, TargetTy); 2601 2602 // Pointers are passed directly, everything else is passed by address. 2603 if (!V->getType()->isPointerTy()) { 2604 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2605 Builder.CreateStore(V, Ptr); 2606 V = Ptr.getPointer(); 2607 } 2608 return Builder.CreatePtrToInt(V, TargetTy); 2609 } 2610 2611 /// \brief Emit a representation of a SourceLocation for passing to a handler 2612 /// in a sanitizer runtime library. The format for this data is: 2613 /// \code 2614 /// struct SourceLocation { 2615 /// const char *Filename; 2616 /// int32_t Line, Column; 2617 /// }; 2618 /// \endcode 2619 /// For an invalid SourceLocation, the Filename pointer is null. 2620 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2621 llvm::Constant *Filename; 2622 int Line, Column; 2623 2624 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2625 if (PLoc.isValid()) { 2626 StringRef FilenameString = PLoc.getFilename(); 2627 2628 int PathComponentsToStrip = 2629 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2630 if (PathComponentsToStrip < 0) { 2631 assert(PathComponentsToStrip != INT_MIN); 2632 int PathComponentsToKeep = -PathComponentsToStrip; 2633 auto I = llvm::sys::path::rbegin(FilenameString); 2634 auto E = llvm::sys::path::rend(FilenameString); 2635 while (I != E && --PathComponentsToKeep) 2636 ++I; 2637 2638 FilenameString = FilenameString.substr(I - E); 2639 } else if (PathComponentsToStrip > 0) { 2640 auto I = llvm::sys::path::begin(FilenameString); 2641 auto E = llvm::sys::path::end(FilenameString); 2642 while (I != E && PathComponentsToStrip--) 2643 ++I; 2644 2645 if (I != E) 2646 FilenameString = 2647 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2648 else 2649 FilenameString = llvm::sys::path::filename(FilenameString); 2650 } 2651 2652 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2653 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2654 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2655 Filename = FilenameGV.getPointer(); 2656 Line = PLoc.getLine(); 2657 Column = PLoc.getColumn(); 2658 } else { 2659 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2660 Line = Column = 0; 2661 } 2662 2663 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2664 Builder.getInt32(Column)}; 2665 2666 return llvm::ConstantStruct::getAnon(Data); 2667 } 2668 2669 namespace { 2670 /// \brief Specify under what conditions this check can be recovered 2671 enum class CheckRecoverableKind { 2672 /// Always terminate program execution if this check fails. 2673 Unrecoverable, 2674 /// Check supports recovering, runtime has both fatal (noreturn) and 2675 /// non-fatal handlers for this check. 2676 Recoverable, 2677 /// Runtime conditionally aborts, always need to support recovery. 2678 AlwaysRecoverable 2679 }; 2680 } 2681 2682 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2683 assert(llvm::countPopulation(Kind) == 1); 2684 switch (Kind) { 2685 case SanitizerKind::Vptr: 2686 return CheckRecoverableKind::AlwaysRecoverable; 2687 case SanitizerKind::Return: 2688 case SanitizerKind::Unreachable: 2689 return CheckRecoverableKind::Unrecoverable; 2690 default: 2691 return CheckRecoverableKind::Recoverable; 2692 } 2693 } 2694 2695 namespace { 2696 struct SanitizerHandlerInfo { 2697 char const *const Name; 2698 unsigned Version; 2699 }; 2700 } 2701 2702 const SanitizerHandlerInfo SanitizerHandlers[] = { 2703 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2704 LIST_SANITIZER_CHECKS 2705 #undef SANITIZER_CHECK 2706 }; 2707 2708 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2709 llvm::FunctionType *FnType, 2710 ArrayRef<llvm::Value *> FnArgs, 2711 SanitizerHandler CheckHandler, 2712 CheckRecoverableKind RecoverKind, bool IsFatal, 2713 llvm::BasicBlock *ContBB) { 2714 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2715 bool NeedsAbortSuffix = 2716 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2717 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2718 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2719 const StringRef CheckName = CheckInfo.Name; 2720 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2721 if (CheckInfo.Version && !MinimalRuntime) 2722 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2723 if (MinimalRuntime) 2724 FnName += "_minimal"; 2725 if (NeedsAbortSuffix) 2726 FnName += "_abort"; 2727 bool MayReturn = 2728 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2729 2730 llvm::AttrBuilder B; 2731 if (!MayReturn) { 2732 B.addAttribute(llvm::Attribute::NoReturn) 2733 .addAttribute(llvm::Attribute::NoUnwind); 2734 } 2735 B.addAttribute(llvm::Attribute::UWTable); 2736 2737 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2738 FnType, FnName, 2739 llvm::AttributeList::get(CGF.getLLVMContext(), 2740 llvm::AttributeList::FunctionIndex, B), 2741 /*Local=*/true); 2742 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2743 if (!MayReturn) { 2744 HandlerCall->setDoesNotReturn(); 2745 CGF.Builder.CreateUnreachable(); 2746 } else { 2747 CGF.Builder.CreateBr(ContBB); 2748 } 2749 } 2750 2751 void CodeGenFunction::EmitCheck( 2752 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2753 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2754 ArrayRef<llvm::Value *> DynamicArgs) { 2755 assert(IsSanitizerScope); 2756 assert(Checked.size() > 0); 2757 assert(CheckHandler >= 0 && 2758 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2759 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2760 2761 llvm::Value *FatalCond = nullptr; 2762 llvm::Value *RecoverableCond = nullptr; 2763 llvm::Value *TrapCond = nullptr; 2764 for (int i = 0, n = Checked.size(); i < n; ++i) { 2765 llvm::Value *Check = Checked[i].first; 2766 // -fsanitize-trap= overrides -fsanitize-recover=. 2767 llvm::Value *&Cond = 2768 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2769 ? TrapCond 2770 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2771 ? RecoverableCond 2772 : FatalCond; 2773 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2774 } 2775 2776 if (TrapCond) 2777 EmitTrapCheck(TrapCond); 2778 if (!FatalCond && !RecoverableCond) 2779 return; 2780 2781 llvm::Value *JointCond; 2782 if (FatalCond && RecoverableCond) 2783 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2784 else 2785 JointCond = FatalCond ? FatalCond : RecoverableCond; 2786 assert(JointCond); 2787 2788 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2789 assert(SanOpts.has(Checked[0].second)); 2790 #ifndef NDEBUG 2791 for (int i = 1, n = Checked.size(); i < n; ++i) { 2792 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2793 "All recoverable kinds in a single check must be same!"); 2794 assert(SanOpts.has(Checked[i].second)); 2795 } 2796 #endif 2797 2798 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2799 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2800 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2801 // Give hint that we very much don't expect to execute the handler 2802 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2803 llvm::MDBuilder MDHelper(getLLVMContext()); 2804 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2805 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2806 EmitBlock(Handlers); 2807 2808 // Handler functions take an i8* pointing to the (handler-specific) static 2809 // information block, followed by a sequence of intptr_t arguments 2810 // representing operand values. 2811 SmallVector<llvm::Value *, 4> Args; 2812 SmallVector<llvm::Type *, 4> ArgTypes; 2813 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2814 Args.reserve(DynamicArgs.size() + 1); 2815 ArgTypes.reserve(DynamicArgs.size() + 1); 2816 2817 // Emit handler arguments and create handler function type. 2818 if (!StaticArgs.empty()) { 2819 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2820 auto *InfoPtr = 2821 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2822 llvm::GlobalVariable::PrivateLinkage, Info); 2823 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2824 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2825 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2826 ArgTypes.push_back(Int8PtrTy); 2827 } 2828 2829 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2830 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2831 ArgTypes.push_back(IntPtrTy); 2832 } 2833 } 2834 2835 llvm::FunctionType *FnType = 2836 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2837 2838 if (!FatalCond || !RecoverableCond) { 2839 // Simple case: we need to generate a single handler call, either 2840 // fatal, or non-fatal. 2841 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2842 (FatalCond != nullptr), Cont); 2843 } else { 2844 // Emit two handler calls: first one for set of unrecoverable checks, 2845 // another one for recoverable. 2846 llvm::BasicBlock *NonFatalHandlerBB = 2847 createBasicBlock("non_fatal." + CheckName); 2848 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2849 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2850 EmitBlock(FatalHandlerBB); 2851 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2852 NonFatalHandlerBB); 2853 EmitBlock(NonFatalHandlerBB); 2854 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2855 Cont); 2856 } 2857 2858 EmitBlock(Cont); 2859 } 2860 2861 void CodeGenFunction::EmitCfiSlowPathCheck( 2862 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2863 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2864 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2865 2866 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2867 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2868 2869 llvm::MDBuilder MDHelper(getLLVMContext()); 2870 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2871 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2872 2873 EmitBlock(CheckBB); 2874 2875 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2876 2877 llvm::CallInst *CheckCall; 2878 if (WithDiag) { 2879 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2880 auto *InfoPtr = 2881 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2882 llvm::GlobalVariable::PrivateLinkage, Info); 2883 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2884 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2885 2886 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2887 "__cfi_slowpath_diag", 2888 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2889 false)); 2890 CheckCall = Builder.CreateCall( 2891 SlowPathDiagFn, 2892 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2893 } else { 2894 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2895 "__cfi_slowpath", 2896 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2897 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2898 } 2899 2900 CheckCall->setDoesNotThrow(); 2901 2902 EmitBlock(Cont); 2903 } 2904 2905 // Emit a stub for __cfi_check function so that the linker knows about this 2906 // symbol in LTO mode. 2907 void CodeGenFunction::EmitCfiCheckStub() { 2908 llvm::Module *M = &CGM.getModule(); 2909 auto &Ctx = M->getContext(); 2910 llvm::Function *F = llvm::Function::Create( 2911 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 2912 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 2913 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 2914 // FIXME: consider emitting an intrinsic call like 2915 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 2916 // which can be lowered in CrossDSOCFI pass to the actual contents of 2917 // __cfi_check. This would allow inlining of __cfi_check calls. 2918 llvm::CallInst::Create( 2919 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 2920 llvm::ReturnInst::Create(Ctx, nullptr, BB); 2921 } 2922 2923 // This function is basically a switch over the CFI failure kind, which is 2924 // extracted from CFICheckFailData (1st function argument). Each case is either 2925 // llvm.trap or a call to one of the two runtime handlers, based on 2926 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2927 // failure kind) traps, but this should really never happen. CFICheckFailData 2928 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2929 // check kind; in this case __cfi_check_fail traps as well. 2930 void CodeGenFunction::EmitCfiCheckFail() { 2931 SanitizerScope SanScope(this); 2932 FunctionArgList Args; 2933 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 2934 ImplicitParamDecl::Other); 2935 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 2936 ImplicitParamDecl::Other); 2937 Args.push_back(&ArgData); 2938 Args.push_back(&ArgAddr); 2939 2940 const CGFunctionInfo &FI = 2941 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2942 2943 llvm::Function *F = llvm::Function::Create( 2944 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2945 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2946 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2947 2948 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2949 SourceLocation()); 2950 2951 llvm::Value *Data = 2952 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2953 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2954 llvm::Value *Addr = 2955 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2956 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2957 2958 // Data == nullptr means the calling module has trap behaviour for this check. 2959 llvm::Value *DataIsNotNullPtr = 2960 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2961 EmitTrapCheck(DataIsNotNullPtr); 2962 2963 llvm::StructType *SourceLocationTy = 2964 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 2965 llvm::StructType *CfiCheckFailDataTy = 2966 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 2967 2968 llvm::Value *V = Builder.CreateConstGEP2_32( 2969 CfiCheckFailDataTy, 2970 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2971 0); 2972 Address CheckKindAddr(V, getIntAlign()); 2973 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2974 2975 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2976 CGM.getLLVMContext(), 2977 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2978 llvm::Value *ValidVtable = Builder.CreateZExt( 2979 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2980 {Addr, AllVtables}), 2981 IntPtrTy); 2982 2983 const std::pair<int, SanitizerMask> CheckKinds[] = { 2984 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2985 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2986 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2987 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2988 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2989 2990 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2991 for (auto CheckKindMaskPair : CheckKinds) { 2992 int Kind = CheckKindMaskPair.first; 2993 SanitizerMask Mask = CheckKindMaskPair.second; 2994 llvm::Value *Cond = 2995 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2996 if (CGM.getLangOpts().Sanitize.has(Mask)) 2997 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 2998 {Data, Addr, ValidVtable}); 2999 else 3000 EmitTrapCheck(Cond); 3001 } 3002 3003 FinishFunction(); 3004 // The only reference to this function will be created during LTO link. 3005 // Make sure it survives until then. 3006 CGM.addUsedGlobal(F); 3007 } 3008 3009 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3010 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3011 3012 // If we're optimizing, collapse all calls to trap down to just one per 3013 // function to save on code size. 3014 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3015 TrapBB = createBasicBlock("trap"); 3016 Builder.CreateCondBr(Checked, Cont, TrapBB); 3017 EmitBlock(TrapBB); 3018 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3019 TrapCall->setDoesNotReturn(); 3020 TrapCall->setDoesNotThrow(); 3021 Builder.CreateUnreachable(); 3022 } else { 3023 Builder.CreateCondBr(Checked, Cont, TrapBB); 3024 } 3025 3026 EmitBlock(Cont); 3027 } 3028 3029 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3030 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3031 3032 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3033 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3034 CGM.getCodeGenOpts().TrapFuncName); 3035 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3036 } 3037 3038 return TrapCall; 3039 } 3040 3041 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3042 LValueBaseInfo *BaseInfo) { 3043 assert(E->getType()->isArrayType() && 3044 "Array to pointer decay must have array source type!"); 3045 3046 // Expressions of array type can't be bitfields or vector elements. 3047 LValue LV = EmitLValue(E); 3048 Address Addr = LV.getAddress(); 3049 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3050 3051 // If the array type was an incomplete type, we need to make sure 3052 // the decay ends up being the right type. 3053 llvm::Type *NewTy = ConvertType(E->getType()); 3054 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3055 3056 // Note that VLA pointers are always decayed, so we don't need to do 3057 // anything here. 3058 if (!E->getType()->isVariableArrayType()) { 3059 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3060 "Expected pointer to array"); 3061 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3062 } 3063 3064 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3065 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3066 } 3067 3068 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3069 /// array to pointer, return the array subexpression. 3070 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3071 // If this isn't just an array->pointer decay, bail out. 3072 const auto *CE = dyn_cast<CastExpr>(E); 3073 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3074 return nullptr; 3075 3076 // If this is a decay from variable width array, bail out. 3077 const Expr *SubExpr = CE->getSubExpr(); 3078 if (SubExpr->getType()->isVariableArrayType()) 3079 return nullptr; 3080 3081 return SubExpr; 3082 } 3083 3084 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3085 llvm::Value *ptr, 3086 ArrayRef<llvm::Value*> indices, 3087 bool inbounds, 3088 bool signedIndices, 3089 SourceLocation loc, 3090 const llvm::Twine &name = "arrayidx") { 3091 if (inbounds) { 3092 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3093 CodeGenFunction::NotSubtraction, loc, 3094 name); 3095 } else { 3096 return CGF.Builder.CreateGEP(ptr, indices, name); 3097 } 3098 } 3099 3100 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3101 llvm::Value *idx, 3102 CharUnits eltSize) { 3103 // If we have a constant index, we can use the exact offset of the 3104 // element we're accessing. 3105 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3106 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3107 return arrayAlign.alignmentAtOffset(offset); 3108 3109 // Otherwise, use the worst-case alignment for any element. 3110 } else { 3111 return arrayAlign.alignmentOfArrayElement(eltSize); 3112 } 3113 } 3114 3115 static QualType getFixedSizeElementType(const ASTContext &ctx, 3116 const VariableArrayType *vla) { 3117 QualType eltType; 3118 do { 3119 eltType = vla->getElementType(); 3120 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3121 return eltType; 3122 } 3123 3124 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3125 ArrayRef<llvm::Value *> indices, 3126 QualType eltType, bool inbounds, 3127 bool signedIndices, SourceLocation loc, 3128 const llvm::Twine &name = "arrayidx") { 3129 // All the indices except that last must be zero. 3130 #ifndef NDEBUG 3131 for (auto idx : indices.drop_back()) 3132 assert(isa<llvm::ConstantInt>(idx) && 3133 cast<llvm::ConstantInt>(idx)->isZero()); 3134 #endif 3135 3136 // Determine the element size of the statically-sized base. This is 3137 // the thing that the indices are expressed in terms of. 3138 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3139 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3140 } 3141 3142 // We can use that to compute the best alignment of the element. 3143 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3144 CharUnits eltAlign = 3145 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3146 3147 llvm::Value *eltPtr = emitArraySubscriptGEP( 3148 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3149 return Address(eltPtr, eltAlign); 3150 } 3151 3152 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3153 bool Accessed) { 3154 // The index must always be an integer, which is not an aggregate. Emit it 3155 // in lexical order (this complexity is, sadly, required by C++17). 3156 llvm::Value *IdxPre = 3157 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3158 bool SignedIndices = false; 3159 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3160 auto *Idx = IdxPre; 3161 if (E->getLHS() != E->getIdx()) { 3162 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3163 Idx = EmitScalarExpr(E->getIdx()); 3164 } 3165 3166 QualType IdxTy = E->getIdx()->getType(); 3167 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3168 SignedIndices |= IdxSigned; 3169 3170 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3171 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3172 3173 // Extend or truncate the index type to 32 or 64-bits. 3174 if (Promote && Idx->getType() != IntPtrTy) 3175 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3176 3177 return Idx; 3178 }; 3179 IdxPre = nullptr; 3180 3181 // If the base is a vector type, then we are forming a vector element lvalue 3182 // with this subscript. 3183 if (E->getBase()->getType()->isVectorType() && 3184 !isa<ExtVectorElementExpr>(E->getBase())) { 3185 // Emit the vector as an lvalue to get its address. 3186 LValue LHS = EmitLValue(E->getBase()); 3187 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3188 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3189 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 3190 E->getBase()->getType(), 3191 LHS.getBaseInfo()); 3192 } 3193 3194 // All the other cases basically behave like simple offsetting. 3195 3196 // Handle the extvector case we ignored above. 3197 if (isa<ExtVectorElementExpr>(E->getBase())) { 3198 LValue LV = EmitLValue(E->getBase()); 3199 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3200 Address Addr = EmitExtVectorElementLValue(LV); 3201 3202 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3203 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3204 SignedIndices, E->getExprLoc()); 3205 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo()); 3206 } 3207 3208 LValueBaseInfo BaseInfo; 3209 Address Addr = Address::invalid(); 3210 if (const VariableArrayType *vla = 3211 getContext().getAsVariableArrayType(E->getType())) { 3212 // The base must be a pointer, which is not an aggregate. Emit 3213 // it. It needs to be emitted first in case it's what captures 3214 // the VLA bounds. 3215 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3216 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3217 3218 // The element count here is the total number of non-VLA elements. 3219 llvm::Value *numElements = getVLASize(vla).first; 3220 3221 // Effectively, the multiply by the VLA size is part of the GEP. 3222 // GEP indexes are signed, and scaling an index isn't permitted to 3223 // signed-overflow, so we use the same semantics for our explicit 3224 // multiply. We suppress this if overflow is not undefined behavior. 3225 if (getLangOpts().isSignedOverflowDefined()) { 3226 Idx = Builder.CreateMul(Idx, numElements); 3227 } else { 3228 Idx = Builder.CreateNSWMul(Idx, numElements); 3229 } 3230 3231 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3232 !getLangOpts().isSignedOverflowDefined(), 3233 SignedIndices, E->getExprLoc()); 3234 3235 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3236 // Indexing over an interface, as in "NSString *P; P[4];" 3237 3238 // Emit the base pointer. 3239 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3240 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3241 3242 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3243 llvm::Value *InterfaceSizeVal = 3244 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3245 3246 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3247 3248 // We don't necessarily build correct LLVM struct types for ObjC 3249 // interfaces, so we can't rely on GEP to do this scaling 3250 // correctly, so we need to cast to i8*. FIXME: is this actually 3251 // true? A lot of other things in the fragile ABI would break... 3252 llvm::Type *OrigBaseTy = Addr.getType(); 3253 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3254 3255 // Do the GEP. 3256 CharUnits EltAlign = 3257 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3258 llvm::Value *EltPtr = 3259 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3260 SignedIndices, E->getExprLoc()); 3261 Addr = Address(EltPtr, EltAlign); 3262 3263 // Cast back. 3264 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3265 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3266 // If this is A[i] where A is an array, the frontend will have decayed the 3267 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3268 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3269 // "gep x, i" here. Emit one "gep A, 0, i". 3270 assert(Array->getType()->isArrayType() && 3271 "Array to pointer decay must have array source type!"); 3272 LValue ArrayLV; 3273 // For simple multidimensional array indexing, set the 'accessed' flag for 3274 // better bounds-checking of the base expression. 3275 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3276 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3277 else 3278 ArrayLV = EmitLValue(Array); 3279 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3280 3281 // Propagate the alignment from the array itself to the result. 3282 Addr = emitArraySubscriptGEP( 3283 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3284 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3285 E->getExprLoc()); 3286 BaseInfo = ArrayLV.getBaseInfo(); 3287 } else { 3288 // The base must be a pointer; emit it with an estimate of its alignment. 3289 Addr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3290 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3291 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3292 !getLangOpts().isSignedOverflowDefined(), 3293 SignedIndices, E->getExprLoc()); 3294 } 3295 3296 LValue LV = MakeAddrLValue(Addr, E->getType(), BaseInfo); 3297 3298 // TODO: Preserve/extend path TBAA metadata? 3299 3300 if (getLangOpts().ObjC1 && 3301 getLangOpts().getGC() != LangOptions::NonGC) { 3302 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3303 setObjCGCLValueClass(getContext(), E, LV); 3304 } 3305 return LV; 3306 } 3307 3308 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3309 LValueBaseInfo &BaseInfo, 3310 QualType BaseTy, QualType ElTy, 3311 bool IsLowerBound) { 3312 LValue BaseLVal; 3313 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3314 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3315 if (BaseTy->isArrayType()) { 3316 Address Addr = BaseLVal.getAddress(); 3317 BaseInfo = BaseLVal.getBaseInfo(); 3318 3319 // If the array type was an incomplete type, we need to make sure 3320 // the decay ends up being the right type. 3321 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3322 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3323 3324 // Note that VLA pointers are always decayed, so we don't need to do 3325 // anything here. 3326 if (!BaseTy->isVariableArrayType()) { 3327 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3328 "Expected pointer to array"); 3329 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3330 "arraydecay"); 3331 } 3332 3333 return CGF.Builder.CreateElementBitCast(Addr, 3334 CGF.ConvertTypeForMem(ElTy)); 3335 } 3336 LValueBaseInfo TypeInfo; 3337 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeInfo); 3338 BaseInfo.mergeForCast(TypeInfo); 3339 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3340 } 3341 return CGF.EmitPointerWithAlignment(Base, &BaseInfo); 3342 } 3343 3344 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3345 bool IsLowerBound) { 3346 QualType BaseTy; 3347 if (auto *ASE = 3348 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 3349 BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE); 3350 else 3351 BaseTy = E->getBase()->getType(); 3352 QualType ResultExprTy; 3353 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3354 ResultExprTy = AT->getElementType(); 3355 else 3356 ResultExprTy = BaseTy->getPointeeType(); 3357 llvm::Value *Idx = nullptr; 3358 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3359 // Requesting lower bound or upper bound, but without provided length and 3360 // without ':' symbol for the default length -> length = 1. 3361 // Idx = LowerBound ?: 0; 3362 if (auto *LowerBound = E->getLowerBound()) { 3363 Idx = Builder.CreateIntCast( 3364 EmitScalarExpr(LowerBound), IntPtrTy, 3365 LowerBound->getType()->hasSignedIntegerRepresentation()); 3366 } else 3367 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3368 } else { 3369 // Try to emit length or lower bound as constant. If this is possible, 1 3370 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3371 // IR (LB + Len) - 1. 3372 auto &C = CGM.getContext(); 3373 auto *Length = E->getLength(); 3374 llvm::APSInt ConstLength; 3375 if (Length) { 3376 // Idx = LowerBound + Length - 1; 3377 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3378 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3379 Length = nullptr; 3380 } 3381 auto *LowerBound = E->getLowerBound(); 3382 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3383 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3384 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3385 LowerBound = nullptr; 3386 } 3387 if (!Length) 3388 --ConstLength; 3389 else if (!LowerBound) 3390 --ConstLowerBound; 3391 3392 if (Length || LowerBound) { 3393 auto *LowerBoundVal = 3394 LowerBound 3395 ? Builder.CreateIntCast( 3396 EmitScalarExpr(LowerBound), IntPtrTy, 3397 LowerBound->getType()->hasSignedIntegerRepresentation()) 3398 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3399 auto *LengthVal = 3400 Length 3401 ? Builder.CreateIntCast( 3402 EmitScalarExpr(Length), IntPtrTy, 3403 Length->getType()->hasSignedIntegerRepresentation()) 3404 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3405 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3406 /*HasNUW=*/false, 3407 !getLangOpts().isSignedOverflowDefined()); 3408 if (Length && LowerBound) { 3409 Idx = Builder.CreateSub( 3410 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3411 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3412 } 3413 } else 3414 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3415 } else { 3416 // Idx = ArraySize - 1; 3417 QualType ArrayTy = BaseTy->isPointerType() 3418 ? E->getBase()->IgnoreParenImpCasts()->getType() 3419 : BaseTy; 3420 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3421 Length = VAT->getSizeExpr(); 3422 if (Length->isIntegerConstantExpr(ConstLength, C)) 3423 Length = nullptr; 3424 } else { 3425 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3426 ConstLength = CAT->getSize(); 3427 } 3428 if (Length) { 3429 auto *LengthVal = Builder.CreateIntCast( 3430 EmitScalarExpr(Length), IntPtrTy, 3431 Length->getType()->hasSignedIntegerRepresentation()); 3432 Idx = Builder.CreateSub( 3433 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3434 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3435 } else { 3436 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3437 --ConstLength; 3438 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3439 } 3440 } 3441 } 3442 assert(Idx); 3443 3444 Address EltPtr = Address::invalid(); 3445 LValueBaseInfo BaseInfo; 3446 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3447 // The base must be a pointer, which is not an aggregate. Emit 3448 // it. It needs to be emitted first in case it's what captures 3449 // the VLA bounds. 3450 Address Base = 3451 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, BaseTy, 3452 VLA->getElementType(), IsLowerBound); 3453 // The element count here is the total number of non-VLA elements. 3454 llvm::Value *NumElements = getVLASize(VLA).first; 3455 3456 // Effectively, the multiply by the VLA size is part of the GEP. 3457 // GEP indexes are signed, and scaling an index isn't permitted to 3458 // signed-overflow, so we use the same semantics for our explicit 3459 // multiply. We suppress this if overflow is not undefined behavior. 3460 if (getLangOpts().isSignedOverflowDefined()) 3461 Idx = Builder.CreateMul(Idx, NumElements); 3462 else 3463 Idx = Builder.CreateNSWMul(Idx, NumElements); 3464 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3465 !getLangOpts().isSignedOverflowDefined(), 3466 /*SignedIndices=*/false, E->getExprLoc()); 3467 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3468 // If this is A[i] where A is an array, the frontend will have decayed the 3469 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3470 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3471 // "gep x, i" here. Emit one "gep A, 0, i". 3472 assert(Array->getType()->isArrayType() && 3473 "Array to pointer decay must have array source type!"); 3474 LValue ArrayLV; 3475 // For simple multidimensional array indexing, set the 'accessed' flag for 3476 // better bounds-checking of the base expression. 3477 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3478 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3479 else 3480 ArrayLV = EmitLValue(Array); 3481 3482 // Propagate the alignment from the array itself to the result. 3483 EltPtr = emitArraySubscriptGEP( 3484 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3485 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3486 /*SignedIndices=*/false, E->getExprLoc()); 3487 BaseInfo = ArrayLV.getBaseInfo(); 3488 } else { 3489 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3490 BaseTy, ResultExprTy, IsLowerBound); 3491 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3492 !getLangOpts().isSignedOverflowDefined(), 3493 /*SignedIndices=*/false, E->getExprLoc()); 3494 } 3495 3496 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo); 3497 } 3498 3499 LValue CodeGenFunction:: 3500 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3501 // Emit the base vector as an l-value. 3502 LValue Base; 3503 3504 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3505 if (E->isArrow()) { 3506 // If it is a pointer to a vector, emit the address and form an lvalue with 3507 // it. 3508 LValueBaseInfo BaseInfo; 3509 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo); 3510 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3511 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo); 3512 Base.getQuals().removeObjCGCAttr(); 3513 } else if (E->getBase()->isGLValue()) { 3514 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3515 // emit the base as an lvalue. 3516 assert(E->getBase()->getType()->isVectorType()); 3517 Base = EmitLValue(E->getBase()); 3518 } else { 3519 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3520 assert(E->getBase()->getType()->isVectorType() && 3521 "Result must be a vector"); 3522 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3523 3524 // Store the vector to memory (because LValue wants an address). 3525 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3526 Builder.CreateStore(Vec, VecMem); 3527 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3528 AlignmentSource::Decl); 3529 } 3530 3531 QualType type = 3532 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3533 3534 // Encode the element access list into a vector of unsigned indices. 3535 SmallVector<uint32_t, 4> Indices; 3536 E->getEncodedElementAccess(Indices); 3537 3538 if (Base.isSimple()) { 3539 llvm::Constant *CV = 3540 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3541 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3542 Base.getBaseInfo()); 3543 } 3544 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3545 3546 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3547 SmallVector<llvm::Constant *, 4> CElts; 3548 3549 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3550 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3551 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3552 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3553 Base.getBaseInfo()); 3554 } 3555 3556 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3557 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3558 EmitIgnoredExpr(E->getBase()); 3559 return EmitDeclRefLValue(DRE); 3560 } 3561 3562 Expr *BaseExpr = E->getBase(); 3563 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3564 LValue BaseLV; 3565 if (E->isArrow()) { 3566 LValueBaseInfo BaseInfo; 3567 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo); 3568 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3569 SanitizerSet SkippedChecks; 3570 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3571 if (IsBaseCXXThis) 3572 SkippedChecks.set(SanitizerKind::Alignment, true); 3573 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3574 SkippedChecks.set(SanitizerKind::Null, true); 3575 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3576 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3577 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo); 3578 } else 3579 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3580 3581 NamedDecl *ND = E->getMemberDecl(); 3582 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3583 LValue LV = EmitLValueForField(BaseLV, Field); 3584 setObjCGCLValueClass(getContext(), E, LV); 3585 return LV; 3586 } 3587 3588 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3589 return EmitFunctionDeclLValue(*this, E, FD); 3590 3591 llvm_unreachable("Unhandled member declaration!"); 3592 } 3593 3594 /// Given that we are currently emitting a lambda, emit an l-value for 3595 /// one of its members. 3596 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3597 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3598 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3599 QualType LambdaTagType = 3600 getContext().getTagDeclType(Field->getParent()); 3601 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3602 return EmitLValueForField(LambdaLV, Field); 3603 } 3604 3605 /// Drill down to the storage of a field without walking into 3606 /// reference types. 3607 /// 3608 /// The resulting address doesn't necessarily have the right type. 3609 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3610 const FieldDecl *field) { 3611 const RecordDecl *rec = field->getParent(); 3612 3613 unsigned idx = 3614 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3615 3616 CharUnits offset; 3617 // Adjust the alignment down to the given offset. 3618 // As a special case, if the LLVM field index is 0, we know that this 3619 // is zero. 3620 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3621 .getFieldOffset(field->getFieldIndex()) == 0) && 3622 "LLVM field at index zero had non-zero offset?"); 3623 if (idx != 0) { 3624 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3625 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3626 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3627 } 3628 3629 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3630 } 3631 3632 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3633 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3634 if (!RD) 3635 return false; 3636 3637 if (RD->isDynamicClass()) 3638 return true; 3639 3640 for (const auto &Base : RD->bases()) 3641 if (hasAnyVptr(Base.getType(), Context)) 3642 return true; 3643 3644 for (const FieldDecl *Field : RD->fields()) 3645 if (hasAnyVptr(Field->getType(), Context)) 3646 return true; 3647 3648 return false; 3649 } 3650 3651 LValue CodeGenFunction::EmitLValueForField(LValue base, 3652 const FieldDecl *field) { 3653 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3654 AlignmentSource fieldAlignSource = 3655 getFieldAlignmentSource(BaseInfo.getAlignmentSource()); 3656 LValueBaseInfo FieldBaseInfo(fieldAlignSource, BaseInfo.getMayAlias()); 3657 3658 QualType type = field->getType(); 3659 const RecordDecl *rec = field->getParent(); 3660 if (rec->isUnion() || rec->hasAttr<MayAliasAttr>() || type->isVectorType()) 3661 FieldBaseInfo.setMayAlias(true); 3662 bool mayAlias = FieldBaseInfo.getMayAlias(); 3663 3664 if (field->isBitField()) { 3665 const CGRecordLayout &RL = 3666 CGM.getTypes().getCGRecordLayout(field->getParent()); 3667 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3668 Address Addr = base.getAddress(); 3669 unsigned Idx = RL.getLLVMFieldNo(field); 3670 if (Idx != 0) 3671 // For structs, we GEP to the field that the record layout suggests. 3672 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3673 field->getName()); 3674 // Get the access type. 3675 llvm::Type *FieldIntTy = 3676 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3677 if (Addr.getElementType() != FieldIntTy) 3678 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3679 3680 QualType fieldType = 3681 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3682 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo); 3683 } 3684 3685 Address addr = base.getAddress(); 3686 unsigned cvr = base.getVRQualifiers(); 3687 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3688 if (rec->isUnion()) { 3689 // For unions, there is no pointer adjustment. 3690 assert(!type->isReferenceType() && "union has reference member"); 3691 // TODO: handle path-aware TBAA for union. 3692 TBAAPath = false; 3693 3694 const auto FieldType = field->getType(); 3695 if (CGM.getCodeGenOpts().StrictVTablePointers && 3696 hasAnyVptr(FieldType, getContext())) 3697 // Because unions can easily skip invariant.barriers, we need to add 3698 // a barrier every time CXXRecord field with vptr is referenced. 3699 addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()), 3700 addr.getAlignment()); 3701 } else { 3702 // For structs, we GEP to the field that the record layout suggests. 3703 addr = emitAddrOfFieldStorage(*this, addr, field); 3704 3705 // If this is a reference field, load the reference right now. 3706 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3707 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3708 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3709 3710 // Loading the reference will disable path-aware TBAA. 3711 TBAAPath = false; 3712 TBAAAccessInfo TBAAInfo = mayAlias ? CGM.getTBAAMayAliasAccessInfo() : 3713 CGM.getTBAAAccessInfo(type); 3714 CGM.DecorateInstructionWithTBAA(load, TBAAInfo); 3715 3716 mayAlias = false; 3717 type = refType->getPointeeType(); 3718 3719 CharUnits alignment = 3720 getNaturalTypeAlignment(type, &FieldBaseInfo, /*pointee*/ true); 3721 FieldBaseInfo.setMayAlias(false); 3722 addr = Address(load, alignment); 3723 3724 // Qualifiers on the struct don't apply to the referencee, and 3725 // we'll pick up CVR from the actual type later, so reset these 3726 // additional qualifiers now. 3727 cvr = 0; 3728 } 3729 } 3730 3731 // Make sure that the address is pointing to the right type. This is critical 3732 // for both unions and structs. A union needs a bitcast, a struct element 3733 // will need a bitcast if the LLVM type laid out doesn't match the desired 3734 // type. 3735 addr = Builder.CreateElementBitCast(addr, 3736 CGM.getTypes().ConvertTypeForMem(type), 3737 field->getName()); 3738 3739 if (field->hasAttr<AnnotateAttr>()) 3740 addr = EmitFieldAnnotations(field, addr); 3741 3742 LValue LV = MakeAddrLValue(addr, type, FieldBaseInfo); 3743 LV.getQuals().addCVRQualifiers(cvr); 3744 3745 // Fields of may_alias structs act like 'char' for TBAA purposes. 3746 // FIXME: this should get propagated down through anonymous structs 3747 // and unions. 3748 if (mayAlias) { 3749 LV.setTBAAInfo(CGM.getTBAAMayAliasAccessInfo()); 3750 } else if (TBAAPath) { 3751 // If no base type been assigned for the base access, then try to generate 3752 // one for this base lvalue. 3753 TBAAAccessInfo TBAAInfo = base.getTBAAInfo(); 3754 if (!TBAAInfo.BaseType) { 3755 TBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3756 assert(!TBAAInfo.Offset && 3757 "Nonzero offset for an access with no base type!"); 3758 } 3759 3760 // Adjust offset to be relative to the base type. 3761 const ASTRecordLayout &Layout = 3762 getContext().getASTRecordLayout(field->getParent()); 3763 unsigned CharWidth = getContext().getCharWidth(); 3764 if (TBAAInfo.BaseType) 3765 TBAAInfo.Offset += 3766 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3767 3768 // Update the final access type. 3769 TBAAInfo.AccessType = LV.getTBAAInfo().AccessType; 3770 3771 LV.setTBAAInfo(TBAAInfo); 3772 } 3773 3774 // __weak attribute on a field is ignored. 3775 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3776 LV.getQuals().removeObjCGCAttr(); 3777 3778 return LV; 3779 } 3780 3781 LValue 3782 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3783 const FieldDecl *Field) { 3784 QualType FieldType = Field->getType(); 3785 3786 if (!FieldType->isReferenceType()) 3787 return EmitLValueForField(Base, Field); 3788 3789 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3790 3791 // Make sure that the address is pointing to the right type. 3792 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3793 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3794 3795 // TODO: access-path TBAA? 3796 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3797 LValueBaseInfo FieldBaseInfo( 3798 getFieldAlignmentSource(BaseInfo.getAlignmentSource()), 3799 BaseInfo.getMayAlias()); 3800 return MakeAddrLValue(V, FieldType, FieldBaseInfo); 3801 } 3802 3803 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3804 if (E->isFileScope()) { 3805 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3806 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3807 } 3808 if (E->getType()->isVariablyModifiedType()) 3809 // make sure to emit the VLA size. 3810 EmitVariablyModifiedType(E->getType()); 3811 3812 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3813 const Expr *InitExpr = E->getInitializer(); 3814 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3815 3816 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3817 /*Init*/ true); 3818 3819 return Result; 3820 } 3821 3822 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3823 if (!E->isGLValue()) 3824 // Initializing an aggregate temporary in C++11: T{...}. 3825 return EmitAggExprToLValue(E); 3826 3827 // An lvalue initializer list must be initializing a reference. 3828 assert(E->isTransparent() && "non-transparent glvalue init list"); 3829 return EmitLValue(E->getInit(0)); 3830 } 3831 3832 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3833 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3834 /// LValue is returned and the current block has been terminated. 3835 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3836 const Expr *Operand) { 3837 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3838 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3839 return None; 3840 } 3841 3842 return CGF.EmitLValue(Operand); 3843 } 3844 3845 LValue CodeGenFunction:: 3846 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3847 if (!expr->isGLValue()) { 3848 // ?: here should be an aggregate. 3849 assert(hasAggregateEvaluationKind(expr->getType()) && 3850 "Unexpected conditional operator!"); 3851 return EmitAggExprToLValue(expr); 3852 } 3853 3854 OpaqueValueMapping binding(*this, expr); 3855 3856 const Expr *condExpr = expr->getCond(); 3857 bool CondExprBool; 3858 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3859 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3860 if (!CondExprBool) std::swap(live, dead); 3861 3862 if (!ContainsLabel(dead)) { 3863 // If the true case is live, we need to track its region. 3864 if (CondExprBool) 3865 incrementProfileCounter(expr); 3866 return EmitLValue(live); 3867 } 3868 } 3869 3870 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3871 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3872 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3873 3874 ConditionalEvaluation eval(*this); 3875 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3876 3877 // Any temporaries created here are conditional. 3878 EmitBlock(lhsBlock); 3879 incrementProfileCounter(expr); 3880 eval.begin(*this); 3881 Optional<LValue> lhs = 3882 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3883 eval.end(*this); 3884 3885 if (lhs && !lhs->isSimple()) 3886 return EmitUnsupportedLValue(expr, "conditional operator"); 3887 3888 lhsBlock = Builder.GetInsertBlock(); 3889 if (lhs) 3890 Builder.CreateBr(contBlock); 3891 3892 // Any temporaries created here are conditional. 3893 EmitBlock(rhsBlock); 3894 eval.begin(*this); 3895 Optional<LValue> rhs = 3896 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3897 eval.end(*this); 3898 if (rhs && !rhs->isSimple()) 3899 return EmitUnsupportedLValue(expr, "conditional operator"); 3900 rhsBlock = Builder.GetInsertBlock(); 3901 3902 EmitBlock(contBlock); 3903 3904 if (lhs && rhs) { 3905 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3906 2, "cond-lvalue"); 3907 phi->addIncoming(lhs->getPointer(), lhsBlock); 3908 phi->addIncoming(rhs->getPointer(), rhsBlock); 3909 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3910 AlignmentSource alignSource = 3911 std::max(lhs->getBaseInfo().getAlignmentSource(), 3912 rhs->getBaseInfo().getAlignmentSource()); 3913 bool MayAlias = lhs->getBaseInfo().getMayAlias() || 3914 rhs->getBaseInfo().getMayAlias(); 3915 return MakeAddrLValue(result, expr->getType(), 3916 LValueBaseInfo(alignSource, MayAlias)); 3917 } else { 3918 assert((lhs || rhs) && 3919 "both operands of glvalue conditional are throw-expressions?"); 3920 return lhs ? *lhs : *rhs; 3921 } 3922 } 3923 3924 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3925 /// type. If the cast is to a reference, we can have the usual lvalue result, 3926 /// otherwise if a cast is needed by the code generator in an lvalue context, 3927 /// then it must mean that we need the address of an aggregate in order to 3928 /// access one of its members. This can happen for all the reasons that casts 3929 /// are permitted with aggregate result, including noop aggregate casts, and 3930 /// cast from scalar to union. 3931 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3932 switch (E->getCastKind()) { 3933 case CK_ToVoid: 3934 case CK_BitCast: 3935 case CK_ArrayToPointerDecay: 3936 case CK_FunctionToPointerDecay: 3937 case CK_NullToMemberPointer: 3938 case CK_NullToPointer: 3939 case CK_IntegralToPointer: 3940 case CK_PointerToIntegral: 3941 case CK_PointerToBoolean: 3942 case CK_VectorSplat: 3943 case CK_IntegralCast: 3944 case CK_BooleanToSignedIntegral: 3945 case CK_IntegralToBoolean: 3946 case CK_IntegralToFloating: 3947 case CK_FloatingToIntegral: 3948 case CK_FloatingToBoolean: 3949 case CK_FloatingCast: 3950 case CK_FloatingRealToComplex: 3951 case CK_FloatingComplexToReal: 3952 case CK_FloatingComplexToBoolean: 3953 case CK_FloatingComplexCast: 3954 case CK_FloatingComplexToIntegralComplex: 3955 case CK_IntegralRealToComplex: 3956 case CK_IntegralComplexToReal: 3957 case CK_IntegralComplexToBoolean: 3958 case CK_IntegralComplexCast: 3959 case CK_IntegralComplexToFloatingComplex: 3960 case CK_DerivedToBaseMemberPointer: 3961 case CK_BaseToDerivedMemberPointer: 3962 case CK_MemberPointerToBoolean: 3963 case CK_ReinterpretMemberPointer: 3964 case CK_AnyPointerToBlockPointerCast: 3965 case CK_ARCProduceObject: 3966 case CK_ARCConsumeObject: 3967 case CK_ARCReclaimReturnedObject: 3968 case CK_ARCExtendBlockObject: 3969 case CK_CopyAndAutoreleaseBlockObject: 3970 case CK_AddressSpaceConversion: 3971 case CK_IntToOCLSampler: 3972 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3973 3974 case CK_Dependent: 3975 llvm_unreachable("dependent cast kind in IR gen!"); 3976 3977 case CK_BuiltinFnToFnPtr: 3978 llvm_unreachable("builtin functions are handled elsewhere"); 3979 3980 // These are never l-values; just use the aggregate emission code. 3981 case CK_NonAtomicToAtomic: 3982 case CK_AtomicToNonAtomic: 3983 return EmitAggExprToLValue(E); 3984 3985 case CK_Dynamic: { 3986 LValue LV = EmitLValue(E->getSubExpr()); 3987 Address V = LV.getAddress(); 3988 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3989 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3990 } 3991 3992 case CK_ConstructorConversion: 3993 case CK_UserDefinedConversion: 3994 case CK_CPointerToObjCPointerCast: 3995 case CK_BlockPointerToObjCPointerCast: 3996 case CK_NoOp: 3997 case CK_LValueToRValue: 3998 return EmitLValue(E->getSubExpr()); 3999 4000 case CK_UncheckedDerivedToBase: 4001 case CK_DerivedToBase: { 4002 const RecordType *DerivedClassTy = 4003 E->getSubExpr()->getType()->getAs<RecordType>(); 4004 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4005 4006 LValue LV = EmitLValue(E->getSubExpr()); 4007 Address This = LV.getAddress(); 4008 4009 // Perform the derived-to-base conversion 4010 Address Base = GetAddressOfBaseClass( 4011 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4012 /*NullCheckValue=*/false, E->getExprLoc()); 4013 4014 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo()); 4015 } 4016 case CK_ToUnion: 4017 return EmitAggExprToLValue(E); 4018 case CK_BaseToDerived: { 4019 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4020 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4021 4022 LValue LV = EmitLValue(E->getSubExpr()); 4023 4024 // Perform the base-to-derived conversion 4025 Address Derived = 4026 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4027 E->path_begin(), E->path_end(), 4028 /*NullCheckValue=*/false); 4029 4030 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4031 // performed and the object is not of the derived type. 4032 if (sanitizePerformTypeCheck()) 4033 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4034 Derived.getPointer(), E->getType()); 4035 4036 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4037 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4038 /*MayBeNull=*/false, 4039 CFITCK_DerivedCast, E->getLocStart()); 4040 4041 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo()); 4042 } 4043 case CK_LValueBitCast: { 4044 // This must be a reinterpret_cast (or c-style equivalent). 4045 const auto *CE = cast<ExplicitCastExpr>(E); 4046 4047 CGM.EmitExplicitCastExprType(CE, this); 4048 LValue LV = EmitLValue(E->getSubExpr()); 4049 Address V = Builder.CreateBitCast(LV.getAddress(), 4050 ConvertType(CE->getTypeAsWritten())); 4051 4052 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4053 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4054 /*MayBeNull=*/false, 4055 CFITCK_UnrelatedCast, E->getLocStart()); 4056 4057 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo()); 4058 } 4059 case CK_ObjCObjectLValueCast: { 4060 LValue LV = EmitLValue(E->getSubExpr()); 4061 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4062 ConvertType(E->getType())); 4063 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo()); 4064 } 4065 case CK_ZeroToOCLQueue: 4066 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 4067 case CK_ZeroToOCLEvent: 4068 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 4069 } 4070 4071 llvm_unreachable("Unhandled lvalue cast kind?"); 4072 } 4073 4074 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4075 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4076 return getOpaqueLValueMapping(e); 4077 } 4078 4079 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4080 const FieldDecl *FD, 4081 SourceLocation Loc) { 4082 QualType FT = FD->getType(); 4083 LValue FieldLV = EmitLValueForField(LV, FD); 4084 switch (getEvaluationKind(FT)) { 4085 case TEK_Complex: 4086 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4087 case TEK_Aggregate: 4088 return FieldLV.asAggregateRValue(); 4089 case TEK_Scalar: 4090 // This routine is used to load fields one-by-one to perform a copy, so 4091 // don't load reference fields. 4092 if (FD->getType()->isReferenceType()) 4093 return RValue::get(FieldLV.getPointer()); 4094 return EmitLoadOfLValue(FieldLV, Loc); 4095 } 4096 llvm_unreachable("bad evaluation kind"); 4097 } 4098 4099 //===--------------------------------------------------------------------===// 4100 // Expression Emission 4101 //===--------------------------------------------------------------------===// 4102 4103 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4104 ReturnValueSlot ReturnValue) { 4105 // Builtins never have block type. 4106 if (E->getCallee()->getType()->isBlockPointerType()) 4107 return EmitBlockCallExpr(E, ReturnValue); 4108 4109 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4110 return EmitCXXMemberCallExpr(CE, ReturnValue); 4111 4112 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4113 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4114 4115 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4116 if (const CXXMethodDecl *MD = 4117 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4118 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4119 4120 CGCallee callee = EmitCallee(E->getCallee()); 4121 4122 if (callee.isBuiltin()) { 4123 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4124 E, ReturnValue); 4125 } 4126 4127 if (callee.isPseudoDestructor()) { 4128 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4129 } 4130 4131 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4132 } 4133 4134 /// Emit a CallExpr without considering whether it might be a subclass. 4135 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4136 ReturnValueSlot ReturnValue) { 4137 CGCallee Callee = EmitCallee(E->getCallee()); 4138 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4139 } 4140 4141 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4142 if (auto builtinID = FD->getBuiltinID()) { 4143 return CGCallee::forBuiltin(builtinID, FD); 4144 } 4145 4146 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4147 return CGCallee::forDirect(calleePtr, FD); 4148 } 4149 4150 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4151 E = E->IgnoreParens(); 4152 4153 // Look through function-to-pointer decay. 4154 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4155 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4156 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4157 return EmitCallee(ICE->getSubExpr()); 4158 } 4159 4160 // Resolve direct calls. 4161 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4162 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4163 return EmitDirectCallee(*this, FD); 4164 } 4165 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4166 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4167 EmitIgnoredExpr(ME->getBase()); 4168 return EmitDirectCallee(*this, FD); 4169 } 4170 4171 // Look through template substitutions. 4172 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4173 return EmitCallee(NTTP->getReplacement()); 4174 4175 // Treat pseudo-destructor calls differently. 4176 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4177 return CGCallee::forPseudoDestructor(PDE); 4178 } 4179 4180 // Otherwise, we have an indirect reference. 4181 llvm::Value *calleePtr; 4182 QualType functionType; 4183 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4184 calleePtr = EmitScalarExpr(E); 4185 functionType = ptrType->getPointeeType(); 4186 } else { 4187 functionType = E->getType(); 4188 calleePtr = EmitLValue(E).getPointer(); 4189 } 4190 assert(functionType->isFunctionType()); 4191 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4192 E->getReferencedDeclOfCallee()); 4193 CGCallee callee(calleeInfo, calleePtr); 4194 return callee; 4195 } 4196 4197 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4198 // Comma expressions just emit their LHS then their RHS as an l-value. 4199 if (E->getOpcode() == BO_Comma) { 4200 EmitIgnoredExpr(E->getLHS()); 4201 EnsureInsertPoint(); 4202 return EmitLValue(E->getRHS()); 4203 } 4204 4205 if (E->getOpcode() == BO_PtrMemD || 4206 E->getOpcode() == BO_PtrMemI) 4207 return EmitPointerToDataMemberBinaryExpr(E); 4208 4209 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4210 4211 // Note that in all of these cases, __block variables need the RHS 4212 // evaluated first just in case the variable gets moved by the RHS. 4213 4214 switch (getEvaluationKind(E->getType())) { 4215 case TEK_Scalar: { 4216 switch (E->getLHS()->getType().getObjCLifetime()) { 4217 case Qualifiers::OCL_Strong: 4218 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4219 4220 case Qualifiers::OCL_Autoreleasing: 4221 return EmitARCStoreAutoreleasing(E).first; 4222 4223 // No reason to do any of these differently. 4224 case Qualifiers::OCL_None: 4225 case Qualifiers::OCL_ExplicitNone: 4226 case Qualifiers::OCL_Weak: 4227 break; 4228 } 4229 4230 RValue RV = EmitAnyExpr(E->getRHS()); 4231 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4232 if (RV.isScalar()) 4233 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4234 EmitStoreThroughLValue(RV, LV); 4235 return LV; 4236 } 4237 4238 case TEK_Complex: 4239 return EmitComplexAssignmentLValue(E); 4240 4241 case TEK_Aggregate: 4242 return EmitAggExprToLValue(E); 4243 } 4244 llvm_unreachable("bad evaluation kind"); 4245 } 4246 4247 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4248 RValue RV = EmitCallExpr(E); 4249 4250 if (!RV.isScalar()) 4251 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4252 AlignmentSource::Decl); 4253 4254 assert(E->getCallReturnType(getContext())->isReferenceType() && 4255 "Can't have a scalar return unless the return type is a " 4256 "reference type!"); 4257 4258 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4259 } 4260 4261 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4262 // FIXME: This shouldn't require another copy. 4263 return EmitAggExprToLValue(E); 4264 } 4265 4266 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4267 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4268 && "binding l-value to type which needs a temporary"); 4269 AggValueSlot Slot = CreateAggTemp(E->getType()); 4270 EmitCXXConstructExpr(E, Slot); 4271 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4272 } 4273 4274 LValue 4275 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4276 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4277 } 4278 4279 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4280 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4281 ConvertType(E->getType())); 4282 } 4283 4284 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4285 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4286 AlignmentSource::Decl); 4287 } 4288 4289 LValue 4290 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4291 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4292 Slot.setExternallyDestructed(); 4293 EmitAggExpr(E->getSubExpr(), Slot); 4294 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4295 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4296 } 4297 4298 LValue 4299 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4300 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4301 EmitLambdaExpr(E, Slot); 4302 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4303 } 4304 4305 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4306 RValue RV = EmitObjCMessageExpr(E); 4307 4308 if (!RV.isScalar()) 4309 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4310 AlignmentSource::Decl); 4311 4312 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4313 "Can't have a scalar return unless the return type is a " 4314 "reference type!"); 4315 4316 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4317 } 4318 4319 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4320 Address V = 4321 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4322 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4323 } 4324 4325 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4326 const ObjCIvarDecl *Ivar) { 4327 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4328 } 4329 4330 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4331 llvm::Value *BaseValue, 4332 const ObjCIvarDecl *Ivar, 4333 unsigned CVRQualifiers) { 4334 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4335 Ivar, CVRQualifiers); 4336 } 4337 4338 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4339 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4340 llvm::Value *BaseValue = nullptr; 4341 const Expr *BaseExpr = E->getBase(); 4342 Qualifiers BaseQuals; 4343 QualType ObjectTy; 4344 if (E->isArrow()) { 4345 BaseValue = EmitScalarExpr(BaseExpr); 4346 ObjectTy = BaseExpr->getType()->getPointeeType(); 4347 BaseQuals = ObjectTy.getQualifiers(); 4348 } else { 4349 LValue BaseLV = EmitLValue(BaseExpr); 4350 BaseValue = BaseLV.getPointer(); 4351 ObjectTy = BaseExpr->getType(); 4352 BaseQuals = ObjectTy.getQualifiers(); 4353 } 4354 4355 LValue LV = 4356 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4357 BaseQuals.getCVRQualifiers()); 4358 setObjCGCLValueClass(getContext(), E, LV); 4359 return LV; 4360 } 4361 4362 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4363 // Can only get l-value for message expression returning aggregate type 4364 RValue RV = EmitAnyExprToTemp(E); 4365 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4366 AlignmentSource::Decl); 4367 } 4368 4369 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4370 const CallExpr *E, ReturnValueSlot ReturnValue, 4371 llvm::Value *Chain) { 4372 // Get the actual function type. The callee type will always be a pointer to 4373 // function type or a block pointer type. 4374 assert(CalleeType->isFunctionPointerType() && 4375 "Call must have function pointer type!"); 4376 4377 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4378 4379 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4380 // We can only guarantee that a function is called from the correct 4381 // context/function based on the appropriate target attributes, 4382 // so only check in the case where we have both always_inline and target 4383 // since otherwise we could be making a conditional call after a check for 4384 // the proper cpu features (and it won't cause code generation issues due to 4385 // function based code generation). 4386 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4387 TargetDecl->hasAttr<TargetAttr>()) 4388 checkTargetFeatures(E, FD); 4389 4390 CalleeType = getContext().getCanonicalType(CalleeType); 4391 4392 const auto *FnType = 4393 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4394 4395 CGCallee Callee = OrigCallee; 4396 4397 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4398 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4399 if (llvm::Constant *PrefixSig = 4400 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4401 SanitizerScope SanScope(this); 4402 llvm::Constant *FTRTTIConst = 4403 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4404 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4405 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4406 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4407 4408 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4409 4410 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4411 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4412 llvm::Value *CalleeSigPtr = 4413 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4414 llvm::Value *CalleeSig = 4415 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4416 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4417 4418 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4419 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4420 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4421 4422 EmitBlock(TypeCheck); 4423 llvm::Value *CalleeRTTIPtr = 4424 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4425 llvm::Value *CalleeRTTIEncoded = 4426 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4427 llvm::Value *CalleeRTTI = 4428 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4429 llvm::Value *CalleeRTTIMatch = 4430 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4431 llvm::Constant *StaticData[] = { 4432 EmitCheckSourceLocation(E->getLocStart()), 4433 EmitCheckTypeDescriptor(CalleeType) 4434 }; 4435 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4436 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4437 4438 Builder.CreateBr(Cont); 4439 EmitBlock(Cont); 4440 } 4441 } 4442 4443 // If we are checking indirect calls and this call is indirect, check that the 4444 // function pointer is a member of the bit set for the function type. 4445 if (SanOpts.has(SanitizerKind::CFIICall) && 4446 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4447 SanitizerScope SanScope(this); 4448 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4449 4450 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4451 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4452 4453 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4454 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4455 llvm::Value *TypeTest = Builder.CreateCall( 4456 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4457 4458 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4459 llvm::Constant *StaticData[] = { 4460 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4461 EmitCheckSourceLocation(E->getLocStart()), 4462 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4463 }; 4464 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4465 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4466 CastedCallee, StaticData); 4467 } else { 4468 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4469 SanitizerHandler::CFICheckFail, StaticData, 4470 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4471 } 4472 } 4473 4474 CallArgList Args; 4475 if (Chain) 4476 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4477 CGM.getContext().VoidPtrTy); 4478 4479 // C++17 requires that we evaluate arguments to a call using assignment syntax 4480 // right-to-left, and that we evaluate arguments to certain other operators 4481 // left-to-right. Note that we allow this to override the order dictated by 4482 // the calling convention on the MS ABI, which means that parameter 4483 // destruction order is not necessarily reverse construction order. 4484 // FIXME: Revisit this based on C++ committee response to unimplementability. 4485 EvaluationOrder Order = EvaluationOrder::Default; 4486 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4487 if (OCE->isAssignmentOp()) 4488 Order = EvaluationOrder::ForceRightToLeft; 4489 else { 4490 switch (OCE->getOperator()) { 4491 case OO_LessLess: 4492 case OO_GreaterGreater: 4493 case OO_AmpAmp: 4494 case OO_PipePipe: 4495 case OO_Comma: 4496 case OO_ArrowStar: 4497 Order = EvaluationOrder::ForceLeftToRight; 4498 break; 4499 default: 4500 break; 4501 } 4502 } 4503 } 4504 4505 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4506 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4507 4508 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4509 Args, FnType, /*isChainCall=*/Chain); 4510 4511 // C99 6.5.2.2p6: 4512 // If the expression that denotes the called function has a type 4513 // that does not include a prototype, [the default argument 4514 // promotions are performed]. If the number of arguments does not 4515 // equal the number of parameters, the behavior is undefined. If 4516 // the function is defined with a type that includes a prototype, 4517 // and either the prototype ends with an ellipsis (, ...) or the 4518 // types of the arguments after promotion are not compatible with 4519 // the types of the parameters, the behavior is undefined. If the 4520 // function is defined with a type that does not include a 4521 // prototype, and the types of the arguments after promotion are 4522 // not compatible with those of the parameters after promotion, 4523 // the behavior is undefined [except in some trivial cases]. 4524 // That is, in the general case, we should assume that a call 4525 // through an unprototyped function type works like a *non-variadic* 4526 // call. The way we make this work is to cast to the exact type 4527 // of the promoted arguments. 4528 // 4529 // Chain calls use this same code path to add the invisible chain parameter 4530 // to the function type. 4531 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4532 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4533 CalleeTy = CalleeTy->getPointerTo(); 4534 4535 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4536 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4537 Callee.setFunctionPointer(CalleePtr); 4538 } 4539 4540 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4541 } 4542 4543 LValue CodeGenFunction:: 4544 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4545 Address BaseAddr = Address::invalid(); 4546 if (E->getOpcode() == BO_PtrMemI) { 4547 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4548 } else { 4549 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4550 } 4551 4552 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4553 4554 const MemberPointerType *MPT 4555 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4556 4557 LValueBaseInfo BaseInfo; 4558 Address MemberAddr = 4559 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo); 4560 4561 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo); 4562 } 4563 4564 /// Given the address of a temporary variable, produce an r-value of 4565 /// its type. 4566 RValue CodeGenFunction::convertTempToRValue(Address addr, 4567 QualType type, 4568 SourceLocation loc) { 4569 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4570 switch (getEvaluationKind(type)) { 4571 case TEK_Complex: 4572 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4573 case TEK_Aggregate: 4574 return lvalue.asAggregateRValue(); 4575 case TEK_Scalar: 4576 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4577 } 4578 llvm_unreachable("bad evaluation kind"); 4579 } 4580 4581 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4582 assert(Val->getType()->isFPOrFPVectorTy()); 4583 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4584 return; 4585 4586 llvm::MDBuilder MDHelper(getLLVMContext()); 4587 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4588 4589 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4590 } 4591 4592 namespace { 4593 struct LValueOrRValue { 4594 LValue LV; 4595 RValue RV; 4596 }; 4597 } 4598 4599 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4600 const PseudoObjectExpr *E, 4601 bool forLValue, 4602 AggValueSlot slot) { 4603 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4604 4605 // Find the result expression, if any. 4606 const Expr *resultExpr = E->getResultExpr(); 4607 LValueOrRValue result; 4608 4609 for (PseudoObjectExpr::const_semantics_iterator 4610 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4611 const Expr *semantic = *i; 4612 4613 // If this semantic expression is an opaque value, bind it 4614 // to the result of its source expression. 4615 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4616 4617 // If this is the result expression, we may need to evaluate 4618 // directly into the slot. 4619 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4620 OVMA opaqueData; 4621 if (ov == resultExpr && ov->isRValue() && !forLValue && 4622 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4623 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4624 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4625 AlignmentSource::Decl); 4626 opaqueData = OVMA::bind(CGF, ov, LV); 4627 result.RV = slot.asRValue(); 4628 4629 // Otherwise, emit as normal. 4630 } else { 4631 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4632 4633 // If this is the result, also evaluate the result now. 4634 if (ov == resultExpr) { 4635 if (forLValue) 4636 result.LV = CGF.EmitLValue(ov); 4637 else 4638 result.RV = CGF.EmitAnyExpr(ov, slot); 4639 } 4640 } 4641 4642 opaques.push_back(opaqueData); 4643 4644 // Otherwise, if the expression is the result, evaluate it 4645 // and remember the result. 4646 } else if (semantic == resultExpr) { 4647 if (forLValue) 4648 result.LV = CGF.EmitLValue(semantic); 4649 else 4650 result.RV = CGF.EmitAnyExpr(semantic, slot); 4651 4652 // Otherwise, evaluate the expression in an ignored context. 4653 } else { 4654 CGF.EmitIgnoredExpr(semantic); 4655 } 4656 } 4657 4658 // Unbind all the opaques now. 4659 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4660 opaques[i].unbind(CGF); 4661 4662 return result; 4663 } 4664 4665 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4666 AggValueSlot slot) { 4667 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4668 } 4669 4670 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4671 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4672 } 4673