1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Expr nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "llvm/ADT/Hashing.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/MatrixBuilder.h" 39 #include "llvm/Support/ConvertUTF.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/Path.h" 42 #include "llvm/Support/SaveAndRestore.h" 43 #include "llvm/Transforms/Utils/SanitizerStats.h" 44 45 #include <string> 46 47 using namespace clang; 48 using namespace CodeGen; 49 50 //===--------------------------------------------------------------------===// 51 // Miscellaneous Helper Methods 52 //===--------------------------------------------------------------------===// 53 54 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 55 unsigned addressSpace = 56 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 57 58 llvm::PointerType *destType = Int8PtrTy; 59 if (addressSpace) 60 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 61 62 if (value->getType() == destType) return value; 63 return Builder.CreateBitCast(value, destType); 64 } 65 66 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 67 /// block. 68 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty, 69 CharUnits Align, 70 const Twine &Name, 71 llvm::Value *ArraySize) { 72 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 73 Alloca->setAlignment(Align.getAsAlign()); 74 return Address(Alloca, Ty, Align); 75 } 76 77 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 78 /// block. The alloca is casted to default address space if necessary. 79 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 80 const Twine &Name, 81 llvm::Value *ArraySize, 82 Address *AllocaAddr) { 83 auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize); 84 if (AllocaAddr) 85 *AllocaAddr = Alloca; 86 llvm::Value *V = Alloca.getPointer(); 87 // Alloca always returns a pointer in alloca address space, which may 88 // be different from the type defined by the language. For example, 89 // in C++ the auto variables are in the default address space. Therefore 90 // cast alloca to the default address space when necessary. 91 if (getASTAllocaAddressSpace() != LangAS::Default) { 92 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 93 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 94 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 95 // otherwise alloca is inserted at the current insertion point of the 96 // builder. 97 if (!ArraySize) 98 Builder.SetInsertPoint(getPostAllocaInsertPoint()); 99 V = getTargetHooks().performAddrSpaceCast( 100 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 101 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 102 } 103 104 return Address(V, Ty, Align); 105 } 106 107 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 108 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 109 /// insertion point of the builder. 110 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 111 const Twine &Name, 112 llvm::Value *ArraySize) { 113 if (ArraySize) 114 return Builder.CreateAlloca(Ty, ArraySize, Name); 115 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 116 ArraySize, Name, AllocaInsertPt); 117 } 118 119 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 120 /// default alignment of the corresponding LLVM type, which is *not* 121 /// guaranteed to be related in any way to the expected alignment of 122 /// an AST type that might have been lowered to Ty. 123 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 124 const Twine &Name) { 125 CharUnits Align = 126 CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlignment(Ty)); 127 return CreateTempAlloca(Ty, Align, Name); 128 } 129 130 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 131 CharUnits Align = getContext().getTypeAlignInChars(Ty); 132 return CreateTempAlloca(ConvertType(Ty), Align, Name); 133 } 134 135 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 136 Address *Alloca) { 137 // FIXME: Should we prefer the preferred type alignment here? 138 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca); 139 } 140 141 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 142 const Twine &Name, Address *Alloca) { 143 Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, 144 /*ArraySize=*/nullptr, Alloca); 145 146 if (Ty->isConstantMatrixType()) { 147 auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType()); 148 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 149 ArrayTy->getNumElements()); 150 151 Result = Address( 152 Builder.CreateBitCast(Result.getPointer(), VectorTy->getPointerTo()), 153 Result.getAlignment()); 154 } 155 return Result; 156 } 157 158 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align, 159 const Twine &Name) { 160 return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name); 161 } 162 163 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, 164 const Twine &Name) { 165 return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty), 166 Name); 167 } 168 169 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 170 /// expression and compare the result against zero, returning an Int1Ty value. 171 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 172 PGO.setCurrentStmt(E); 173 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 174 llvm::Value *MemPtr = EmitScalarExpr(E); 175 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 176 } 177 178 QualType BoolTy = getContext().BoolTy; 179 SourceLocation Loc = E->getExprLoc(); 180 CGFPOptionsRAII FPOptsRAII(*this, E); 181 if (!E->getType()->isAnyComplexType()) 182 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 183 184 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 185 Loc); 186 } 187 188 /// EmitIgnoredExpr - Emit code to compute the specified expression, 189 /// ignoring the result. 190 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 191 if (E->isPRValue()) 192 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 193 194 // Just emit it as an l-value and drop the result. 195 EmitLValue(E); 196 } 197 198 /// EmitAnyExpr - Emit code to compute the specified expression which 199 /// can have any type. The result is returned as an RValue struct. 200 /// If this is an aggregate expression, AggSlot indicates where the 201 /// result should be returned. 202 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 203 AggValueSlot aggSlot, 204 bool ignoreResult) { 205 switch (getEvaluationKind(E->getType())) { 206 case TEK_Scalar: 207 return RValue::get(EmitScalarExpr(E, ignoreResult)); 208 case TEK_Complex: 209 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 210 case TEK_Aggregate: 211 if (!ignoreResult && aggSlot.isIgnored()) 212 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 213 EmitAggExpr(E, aggSlot); 214 return aggSlot.asRValue(); 215 } 216 llvm_unreachable("bad evaluation kind"); 217 } 218 219 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will 220 /// always be accessible even if no aggregate location is provided. 221 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 222 AggValueSlot AggSlot = AggValueSlot::ignored(); 223 224 if (hasAggregateEvaluationKind(E->getType())) 225 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 226 return EmitAnyExpr(E, AggSlot); 227 } 228 229 /// EmitAnyExprToMem - Evaluate an expression into a given memory 230 /// location. 231 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 232 Address Location, 233 Qualifiers Quals, 234 bool IsInit) { 235 // FIXME: This function should take an LValue as an argument. 236 switch (getEvaluationKind(E->getType())) { 237 case TEK_Complex: 238 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 239 /*isInit*/ false); 240 return; 241 242 case TEK_Aggregate: { 243 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 244 AggValueSlot::IsDestructed_t(IsInit), 245 AggValueSlot::DoesNotNeedGCBarriers, 246 AggValueSlot::IsAliased_t(!IsInit), 247 AggValueSlot::MayOverlap)); 248 return; 249 } 250 251 case TEK_Scalar: { 252 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 253 LValue LV = MakeAddrLValue(Location, E->getType()); 254 EmitStoreThroughLValue(RV, LV); 255 return; 256 } 257 } 258 llvm_unreachable("bad evaluation kind"); 259 } 260 261 static void 262 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 263 const Expr *E, Address ReferenceTemporary) { 264 // Objective-C++ ARC: 265 // If we are binding a reference to a temporary that has ownership, we 266 // need to perform retain/release operations on the temporary. 267 // 268 // FIXME: This should be looking at E, not M. 269 if (auto Lifetime = M->getType().getObjCLifetime()) { 270 switch (Lifetime) { 271 case Qualifiers::OCL_None: 272 case Qualifiers::OCL_ExplicitNone: 273 // Carry on to normal cleanup handling. 274 break; 275 276 case Qualifiers::OCL_Autoreleasing: 277 // Nothing to do; cleaned up by an autorelease pool. 278 return; 279 280 case Qualifiers::OCL_Strong: 281 case Qualifiers::OCL_Weak: 282 switch (StorageDuration Duration = M->getStorageDuration()) { 283 case SD_Static: 284 // Note: we intentionally do not register a cleanup to release 285 // the object on program termination. 286 return; 287 288 case SD_Thread: 289 // FIXME: We should probably register a cleanup in this case. 290 return; 291 292 case SD_Automatic: 293 case SD_FullExpression: 294 CodeGenFunction::Destroyer *Destroy; 295 CleanupKind CleanupKind; 296 if (Lifetime == Qualifiers::OCL_Strong) { 297 const ValueDecl *VD = M->getExtendingDecl(); 298 bool Precise = 299 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 300 CleanupKind = CGF.getARCCleanupKind(); 301 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 302 : &CodeGenFunction::destroyARCStrongImprecise; 303 } else { 304 // __weak objects always get EH cleanups; otherwise, exceptions 305 // could cause really nasty crashes instead of mere leaks. 306 CleanupKind = NormalAndEHCleanup; 307 Destroy = &CodeGenFunction::destroyARCWeak; 308 } 309 if (Duration == SD_FullExpression) 310 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 311 M->getType(), *Destroy, 312 CleanupKind & EHCleanup); 313 else 314 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 315 M->getType(), 316 *Destroy, CleanupKind & EHCleanup); 317 return; 318 319 case SD_Dynamic: 320 llvm_unreachable("temporary cannot have dynamic storage duration"); 321 } 322 llvm_unreachable("unknown storage duration"); 323 } 324 } 325 326 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 327 if (const RecordType *RT = 328 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 329 // Get the destructor for the reference temporary. 330 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 331 if (!ClassDecl->hasTrivialDestructor()) 332 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 333 } 334 335 if (!ReferenceTemporaryDtor) 336 return; 337 338 // Call the destructor for the temporary. 339 switch (M->getStorageDuration()) { 340 case SD_Static: 341 case SD_Thread: { 342 llvm::FunctionCallee CleanupFn; 343 llvm::Constant *CleanupArg; 344 if (E->getType()->isArrayType()) { 345 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 346 ReferenceTemporary, E->getType(), 347 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 348 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 349 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 350 } else { 351 CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor( 352 GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete)); 353 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 354 } 355 CGF.CGM.getCXXABI().registerGlobalDtor( 356 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 357 break; 358 } 359 360 case SD_FullExpression: 361 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 362 CodeGenFunction::destroyCXXObject, 363 CGF.getLangOpts().Exceptions); 364 break; 365 366 case SD_Automatic: 367 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 368 ReferenceTemporary, E->getType(), 369 CodeGenFunction::destroyCXXObject, 370 CGF.getLangOpts().Exceptions); 371 break; 372 373 case SD_Dynamic: 374 llvm_unreachable("temporary cannot have dynamic storage duration"); 375 } 376 } 377 378 static Address createReferenceTemporary(CodeGenFunction &CGF, 379 const MaterializeTemporaryExpr *M, 380 const Expr *Inner, 381 Address *Alloca = nullptr) { 382 auto &TCG = CGF.getTargetHooks(); 383 switch (M->getStorageDuration()) { 384 case SD_FullExpression: 385 case SD_Automatic: { 386 // If we have a constant temporary array or record try to promote it into a 387 // constant global under the same rules a normal constant would've been 388 // promoted. This is easier on the optimizer and generally emits fewer 389 // instructions. 390 QualType Ty = Inner->getType(); 391 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 392 (Ty->isArrayType() || Ty->isRecordType()) && 393 CGF.CGM.isTypeConstant(Ty, true)) 394 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 395 auto AS = CGF.CGM.GetGlobalConstantAddressSpace(); 396 auto *GV = new llvm::GlobalVariable( 397 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 398 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 399 llvm::GlobalValue::NotThreadLocal, 400 CGF.getContext().getTargetAddressSpace(AS)); 401 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 402 GV->setAlignment(alignment.getAsAlign()); 403 llvm::Constant *C = GV; 404 if (AS != LangAS::Default) 405 C = TCG.performAddrSpaceCast( 406 CGF.CGM, GV, AS, LangAS::Default, 407 GV->getValueType()->getPointerTo( 408 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 409 // FIXME: Should we put the new global into a COMDAT? 410 return Address(C, alignment); 411 } 412 return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca); 413 } 414 case SD_Thread: 415 case SD_Static: 416 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 417 418 case SD_Dynamic: 419 llvm_unreachable("temporary can't have dynamic storage duration"); 420 } 421 llvm_unreachable("unknown storage duration"); 422 } 423 424 /// Helper method to check if the underlying ABI is AAPCS 425 static bool isAAPCS(const TargetInfo &TargetInfo) { 426 return TargetInfo.getABI().startswith("aapcs"); 427 } 428 429 LValue CodeGenFunction:: 430 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 431 const Expr *E = M->getSubExpr(); 432 433 assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) || 434 !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) && 435 "Reference should never be pseudo-strong!"); 436 437 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 438 // as that will cause the lifetime adjustment to be lost for ARC 439 auto ownership = M->getType().getObjCLifetime(); 440 if (ownership != Qualifiers::OCL_None && 441 ownership != Qualifiers::OCL_ExplicitNone) { 442 Address Object = createReferenceTemporary(*this, M, E); 443 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 444 Object = Address(llvm::ConstantExpr::getBitCast(Var, 445 ConvertTypeForMem(E->getType()) 446 ->getPointerTo(Object.getAddressSpace())), 447 Object.getAlignment()); 448 449 // createReferenceTemporary will promote the temporary to a global with a 450 // constant initializer if it can. It can only do this to a value of 451 // ARC-manageable type if the value is global and therefore "immune" to 452 // ref-counting operations. Therefore we have no need to emit either a 453 // dynamic initialization or a cleanup and we can just return the address 454 // of the temporary. 455 if (Var->hasInitializer()) 456 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 457 458 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 459 } 460 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 461 AlignmentSource::Decl); 462 463 switch (getEvaluationKind(E->getType())) { 464 default: llvm_unreachable("expected scalar or aggregate expression"); 465 case TEK_Scalar: 466 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 467 break; 468 case TEK_Aggregate: { 469 EmitAggExpr(E, AggValueSlot::forAddr(Object, 470 E->getType().getQualifiers(), 471 AggValueSlot::IsDestructed, 472 AggValueSlot::DoesNotNeedGCBarriers, 473 AggValueSlot::IsNotAliased, 474 AggValueSlot::DoesNotOverlap)); 475 break; 476 } 477 } 478 479 pushTemporaryCleanup(*this, M, E, Object); 480 return RefTempDst; 481 } 482 483 SmallVector<const Expr *, 2> CommaLHSs; 484 SmallVector<SubobjectAdjustment, 2> Adjustments; 485 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 486 487 for (const auto &Ignored : CommaLHSs) 488 EmitIgnoredExpr(Ignored); 489 490 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 491 if (opaque->getType()->isRecordType()) { 492 assert(Adjustments.empty()); 493 return EmitOpaqueValueLValue(opaque); 494 } 495 } 496 497 // Create and initialize the reference temporary. 498 Address Alloca = Address::invalid(); 499 Address Object = createReferenceTemporary(*this, M, E, &Alloca); 500 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 501 Object.getPointer()->stripPointerCasts())) { 502 Object = Address(llvm::ConstantExpr::getBitCast( 503 cast<llvm::Constant>(Object.getPointer()), 504 ConvertTypeForMem(E->getType())->getPointerTo()), 505 Object.getAlignment()); 506 // If the temporary is a global and has a constant initializer or is a 507 // constant temporary that we promoted to a global, we may have already 508 // initialized it. 509 if (!Var->hasInitializer()) { 510 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 511 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 512 } 513 } else { 514 switch (M->getStorageDuration()) { 515 case SD_Automatic: 516 if (auto *Size = EmitLifetimeStart( 517 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 518 Alloca.getPointer())) { 519 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 520 Alloca, Size); 521 } 522 break; 523 524 case SD_FullExpression: { 525 if (!ShouldEmitLifetimeMarkers) 526 break; 527 528 // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end 529 // marker. Instead, start the lifetime of a conditional temporary earlier 530 // so that it's unconditional. Don't do this with sanitizers which need 531 // more precise lifetime marks. 532 ConditionalEvaluation *OldConditional = nullptr; 533 CGBuilderTy::InsertPoint OldIP; 534 if (isInConditionalBranch() && !E->getType().isDestructedType() && 535 !SanOpts.has(SanitizerKind::HWAddress) && 536 !SanOpts.has(SanitizerKind::Memory) && 537 !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) { 538 OldConditional = OutermostConditional; 539 OutermostConditional = nullptr; 540 541 OldIP = Builder.saveIP(); 542 llvm::BasicBlock *Block = OldConditional->getStartingBlock(); 543 Builder.restoreIP(CGBuilderTy::InsertPoint( 544 Block, llvm::BasicBlock::iterator(Block->back()))); 545 } 546 547 if (auto *Size = EmitLifetimeStart( 548 CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()), 549 Alloca.getPointer())) { 550 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca, 551 Size); 552 } 553 554 if (OldConditional) { 555 OutermostConditional = OldConditional; 556 Builder.restoreIP(OldIP); 557 } 558 break; 559 } 560 561 default: 562 break; 563 } 564 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 565 } 566 pushTemporaryCleanup(*this, M, E, Object); 567 568 // Perform derived-to-base casts and/or field accesses, to get from the 569 // temporary object we created (and, potentially, for which we extended 570 // the lifetime) to the subobject we're binding the reference to. 571 for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) { 572 switch (Adjustment.Kind) { 573 case SubobjectAdjustment::DerivedToBaseAdjustment: 574 Object = 575 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 576 Adjustment.DerivedToBase.BasePath->path_begin(), 577 Adjustment.DerivedToBase.BasePath->path_end(), 578 /*NullCheckValue=*/ false, E->getExprLoc()); 579 break; 580 581 case SubobjectAdjustment::FieldAdjustment: { 582 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 583 LV = EmitLValueForField(LV, Adjustment.Field); 584 assert(LV.isSimple() && 585 "materialized temporary field is not a simple lvalue"); 586 Object = LV.getAddress(*this); 587 break; 588 } 589 590 case SubobjectAdjustment::MemberPointerAdjustment: { 591 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 592 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 593 Adjustment.Ptr.MPT); 594 break; 595 } 596 } 597 } 598 599 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 600 } 601 602 RValue 603 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 604 // Emit the expression as an lvalue. 605 LValue LV = EmitLValue(E); 606 assert(LV.isSimple()); 607 llvm::Value *Value = LV.getPointer(*this); 608 609 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 610 // C++11 [dcl.ref]p5 (as amended by core issue 453): 611 // If a glvalue to which a reference is directly bound designates neither 612 // an existing object or function of an appropriate type nor a region of 613 // storage of suitable size and alignment to contain an object of the 614 // reference's type, the behavior is undefined. 615 QualType Ty = E->getType(); 616 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 617 } 618 619 return RValue::get(Value); 620 } 621 622 623 /// getAccessedFieldNo - Given an encoded value and a result number, return the 624 /// input field number being accessed. 625 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 626 const llvm::Constant *Elts) { 627 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 628 ->getZExtValue(); 629 } 630 631 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 632 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 633 llvm::Value *High) { 634 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 635 llvm::Value *K47 = Builder.getInt64(47); 636 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 637 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 638 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 639 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 640 return Builder.CreateMul(B1, KMul); 641 } 642 643 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 644 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 645 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation; 646 } 647 648 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 649 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 650 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 651 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 652 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 653 TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation); 654 } 655 656 bool CodeGenFunction::sanitizePerformTypeCheck() const { 657 return SanOpts.has(SanitizerKind::Null) || 658 SanOpts.has(SanitizerKind::Alignment) || 659 SanOpts.has(SanitizerKind::ObjectSize) || 660 SanOpts.has(SanitizerKind::Vptr); 661 } 662 663 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 664 llvm::Value *Ptr, QualType Ty, 665 CharUnits Alignment, 666 SanitizerSet SkippedChecks, 667 llvm::Value *ArraySize) { 668 if (!sanitizePerformTypeCheck()) 669 return; 670 671 // Don't check pointers outside the default address space. The null check 672 // isn't correct, the object-size check isn't supported by LLVM, and we can't 673 // communicate the addresses to the runtime handler for the vptr check. 674 if (Ptr->getType()->getPointerAddressSpace()) 675 return; 676 677 // Don't check pointers to volatile data. The behavior here is implementation- 678 // defined. 679 if (Ty.isVolatileQualified()) 680 return; 681 682 SanitizerScope SanScope(this); 683 684 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 685 llvm::BasicBlock *Done = nullptr; 686 687 // Quickly determine whether we have a pointer to an alloca. It's possible 688 // to skip null checks, and some alignment checks, for these pointers. This 689 // can reduce compile-time significantly. 690 auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts()); 691 692 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 693 llvm::Value *IsNonNull = nullptr; 694 bool IsGuaranteedNonNull = 695 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 696 bool AllowNullPointers = isNullPointerAllowed(TCK); 697 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 698 !IsGuaranteedNonNull) { 699 // The glvalue must not be an empty glvalue. 700 IsNonNull = Builder.CreateIsNotNull(Ptr); 701 702 // The IR builder can constant-fold the null check if the pointer points to 703 // a constant. 704 IsGuaranteedNonNull = IsNonNull == True; 705 706 // Skip the null check if the pointer is known to be non-null. 707 if (!IsGuaranteedNonNull) { 708 if (AllowNullPointers) { 709 // When performing pointer casts, it's OK if the value is null. 710 // Skip the remaining checks in that case. 711 Done = createBasicBlock("null"); 712 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 713 Builder.CreateCondBr(IsNonNull, Rest, Done); 714 EmitBlock(Rest); 715 } else { 716 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 717 } 718 } 719 } 720 721 if (SanOpts.has(SanitizerKind::ObjectSize) && 722 !SkippedChecks.has(SanitizerKind::ObjectSize) && 723 !Ty->isIncompleteType()) { 724 uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity(); 725 llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize); 726 if (ArraySize) 727 Size = Builder.CreateMul(Size, ArraySize); 728 729 // Degenerate case: new X[0] does not need an objectsize check. 730 llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size); 731 if (!ConstantSize || !ConstantSize->isNullValue()) { 732 // The glvalue must refer to a large enough storage region. 733 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 734 // to check this. 735 // FIXME: Get object address space 736 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 737 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 738 llvm::Value *Min = Builder.getFalse(); 739 llvm::Value *NullIsUnknown = Builder.getFalse(); 740 llvm::Value *Dynamic = Builder.getFalse(); 741 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 742 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 743 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size); 744 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 745 } 746 } 747 748 uint64_t AlignVal = 0; 749 llvm::Value *PtrAsInt = nullptr; 750 751 if (SanOpts.has(SanitizerKind::Alignment) && 752 !SkippedChecks.has(SanitizerKind::Alignment)) { 753 AlignVal = Alignment.getQuantity(); 754 if (!Ty->isIncompleteType() && !AlignVal) 755 AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr, 756 /*ForPointeeType=*/true) 757 .getQuantity(); 758 759 // The glvalue must be suitably aligned. 760 if (AlignVal > 1 && 761 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 762 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 763 llvm::Value *Align = Builder.CreateAnd( 764 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 765 llvm::Value *Aligned = 766 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 767 if (Aligned != True) 768 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 769 } 770 } 771 772 if (Checks.size() > 0) { 773 // Make sure we're not losing information. Alignment needs to be a power of 774 // 2 775 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 776 llvm::Constant *StaticData[] = { 777 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 778 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 779 llvm::ConstantInt::get(Int8Ty, TCK)}; 780 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 781 PtrAsInt ? PtrAsInt : Ptr); 782 } 783 784 // If possible, check that the vptr indicates that there is a subobject of 785 // type Ty at offset zero within this object. 786 // 787 // C++11 [basic.life]p5,6: 788 // [For storage which does not refer to an object within its lifetime] 789 // The program has undefined behavior if: 790 // -- the [pointer or glvalue] is used to access a non-static data member 791 // or call a non-static member function 792 if (SanOpts.has(SanitizerKind::Vptr) && 793 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 794 // Ensure that the pointer is non-null before loading it. If there is no 795 // compile-time guarantee, reuse the run-time null check or emit a new one. 796 if (!IsGuaranteedNonNull) { 797 if (!IsNonNull) 798 IsNonNull = Builder.CreateIsNotNull(Ptr); 799 if (!Done) 800 Done = createBasicBlock("vptr.null"); 801 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 802 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 803 EmitBlock(VptrNotNull); 804 } 805 806 // Compute a hash of the mangled name of the type. 807 // 808 // FIXME: This is not guaranteed to be deterministic! Move to a 809 // fingerprinting mechanism once LLVM provides one. For the time 810 // being the implementation happens to be deterministic. 811 SmallString<64> MangledName; 812 llvm::raw_svector_ostream Out(MangledName); 813 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 814 Out); 815 816 // Contained in NoSanitizeList based on the mangled type. 817 if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr, 818 Out.str())) { 819 llvm::hash_code TypeHash = hash_value(Out.str()); 820 821 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 822 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 823 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 824 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 825 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 826 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 827 828 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 829 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 830 831 // Look the hash up in our cache. 832 const int CacheSize = 128; 833 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 834 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 835 "__ubsan_vptr_type_cache"); 836 llvm::Value *Slot = Builder.CreateAnd(Hash, 837 llvm::ConstantInt::get(IntPtrTy, 838 CacheSize-1)); 839 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 840 llvm::Value *CacheVal = Builder.CreateAlignedLoad( 841 IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices), 842 getPointerAlign()); 843 844 // If the hash isn't in the cache, call a runtime handler to perform the 845 // hard work of checking whether the vptr is for an object of the right 846 // type. This will either fill in the cache and return, or produce a 847 // diagnostic. 848 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 849 llvm::Constant *StaticData[] = { 850 EmitCheckSourceLocation(Loc), 851 EmitCheckTypeDescriptor(Ty), 852 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 853 llvm::ConstantInt::get(Int8Ty, TCK) 854 }; 855 llvm::Value *DynamicData[] = { Ptr, Hash }; 856 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 857 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 858 DynamicData); 859 } 860 } 861 862 if (Done) { 863 Builder.CreateBr(Done); 864 EmitBlock(Done); 865 } 866 } 867 868 /// Determine whether this expression refers to a flexible array member in a 869 /// struct. We disable array bounds checks for such members. 870 static bool isFlexibleArrayMemberExpr(const Expr *E) { 871 // For compatibility with existing code, we treat arrays of length 0 or 872 // 1 as flexible array members. 873 // FIXME: This is inconsistent with the warning code in SemaChecking. Unify 874 // the two mechanisms. 875 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 876 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 877 // FIXME: Sema doesn't treat [1] as a flexible array member if the bound 878 // was produced by macro expansion. 879 if (CAT->getSize().ugt(1)) 880 return false; 881 } else if (!isa<IncompleteArrayType>(AT)) 882 return false; 883 884 E = E->IgnoreParens(); 885 886 // A flexible array member must be the last member in the class. 887 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 888 // FIXME: If the base type of the member expr is not FD->getParent(), 889 // this should not be treated as a flexible array member access. 890 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 891 // FIXME: Sema doesn't treat a T[1] union member as a flexible array 892 // member, only a T[0] or T[] member gets that treatment. 893 if (FD->getParent()->isUnion()) 894 return true; 895 RecordDecl::field_iterator FI( 896 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 897 return ++FI == FD->getParent()->field_end(); 898 } 899 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 900 return IRE->getDecl()->getNextIvar() == nullptr; 901 } 902 903 return false; 904 } 905 906 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 907 QualType EltTy) { 908 ASTContext &C = getContext(); 909 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 910 if (!EltSize) 911 return nullptr; 912 913 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 914 if (!ArrayDeclRef) 915 return nullptr; 916 917 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 918 if (!ParamDecl) 919 return nullptr; 920 921 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 922 if (!POSAttr) 923 return nullptr; 924 925 // Don't load the size if it's a lower bound. 926 int POSType = POSAttr->getType(); 927 if (POSType != 0 && POSType != 1) 928 return nullptr; 929 930 // Find the implicit size parameter. 931 auto PassedSizeIt = SizeArguments.find(ParamDecl); 932 if (PassedSizeIt == SizeArguments.end()) 933 return nullptr; 934 935 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 936 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 937 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 938 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 939 C.getSizeType(), E->getExprLoc()); 940 llvm::Value *SizeOfElement = 941 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 942 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 943 } 944 945 /// If Base is known to point to the start of an array, return the length of 946 /// that array. Return 0 if the length cannot be determined. 947 static llvm::Value *getArrayIndexingBound( 948 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 949 // For the vector indexing extension, the bound is the number of elements. 950 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 951 IndexedType = Base->getType(); 952 return CGF.Builder.getInt32(VT->getNumElements()); 953 } 954 955 Base = Base->IgnoreParens(); 956 957 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 958 if (CE->getCastKind() == CK_ArrayToPointerDecay && 959 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 960 IndexedType = CE->getSubExpr()->getType(); 961 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 962 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 963 return CGF.Builder.getInt(CAT->getSize()); 964 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 965 return CGF.getVLASize(VAT).NumElts; 966 // Ignore pass_object_size here. It's not applicable on decayed pointers. 967 } 968 } 969 970 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 971 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 972 IndexedType = Base->getType(); 973 return POS; 974 } 975 976 return nullptr; 977 } 978 979 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 980 llvm::Value *Index, QualType IndexType, 981 bool Accessed) { 982 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 983 "should not be called unless adding bounds checks"); 984 SanitizerScope SanScope(this); 985 986 QualType IndexedType; 987 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 988 if (!Bound) 989 return; 990 991 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 992 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 993 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 994 995 llvm::Constant *StaticData[] = { 996 EmitCheckSourceLocation(E->getExprLoc()), 997 EmitCheckTypeDescriptor(IndexedType), 998 EmitCheckTypeDescriptor(IndexType) 999 }; 1000 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 1001 : Builder.CreateICmpULE(IndexVal, BoundVal); 1002 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 1003 SanitizerHandler::OutOfBounds, StaticData, Index); 1004 } 1005 1006 1007 CodeGenFunction::ComplexPairTy CodeGenFunction:: 1008 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1009 bool isInc, bool isPre) { 1010 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 1011 1012 llvm::Value *NextVal; 1013 if (isa<llvm::IntegerType>(InVal.first->getType())) { 1014 uint64_t AmountVal = isInc ? 1 : -1; 1015 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 1016 1017 // Add the inc/dec to the real part. 1018 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1019 } else { 1020 QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); 1021 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 1022 if (!isInc) 1023 FVal.changeSign(); 1024 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 1025 1026 // Add the inc/dec to the real part. 1027 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 1028 } 1029 1030 ComplexPairTy IncVal(NextVal, InVal.second); 1031 1032 // Store the updated result through the lvalue. 1033 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 1034 if (getLangOpts().OpenMP) 1035 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 1036 E->getSubExpr()); 1037 1038 // If this is a postinc, return the value read from memory, otherwise use the 1039 // updated value. 1040 return isPre ? IncVal : InVal; 1041 } 1042 1043 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 1044 CodeGenFunction *CGF) { 1045 // Bind VLAs in the cast type. 1046 if (CGF && E->getType()->isVariablyModifiedType()) 1047 CGF->EmitVariablyModifiedType(E->getType()); 1048 1049 if (CGDebugInfo *DI = getModuleDebugInfo()) 1050 DI->EmitExplicitCastType(E->getType()); 1051 } 1052 1053 //===----------------------------------------------------------------------===// 1054 // LValue Expression Emission 1055 //===----------------------------------------------------------------------===// 1056 1057 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 1058 /// derive a more accurate bound on the alignment of the pointer. 1059 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 1060 LValueBaseInfo *BaseInfo, 1061 TBAAAccessInfo *TBAAInfo) { 1062 // We allow this with ObjC object pointers because of fragile ABIs. 1063 assert(E->getType()->isPointerType() || 1064 E->getType()->isObjCObjectPointerType()); 1065 E = E->IgnoreParens(); 1066 1067 // Casts: 1068 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 1069 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 1070 CGM.EmitExplicitCastExprType(ECE, this); 1071 1072 switch (CE->getCastKind()) { 1073 // Non-converting casts (but not C's implicit conversion from void*). 1074 case CK_BitCast: 1075 case CK_NoOp: 1076 case CK_AddressSpaceConversion: 1077 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 1078 if (PtrTy->getPointeeType()->isVoidType()) 1079 break; 1080 1081 LValueBaseInfo InnerBaseInfo; 1082 TBAAAccessInfo InnerTBAAInfo; 1083 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1084 &InnerBaseInfo, 1085 &InnerTBAAInfo); 1086 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1087 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1088 1089 if (isa<ExplicitCastExpr>(CE)) { 1090 LValueBaseInfo TargetTypeBaseInfo; 1091 TBAAAccessInfo TargetTypeTBAAInfo; 1092 CharUnits Align = CGM.getNaturalPointeeTypeAlignment( 1093 E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo); 1094 if (TBAAInfo) 1095 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1096 TargetTypeTBAAInfo); 1097 // If the source l-value is opaque, honor the alignment of the 1098 // casted-to type. 1099 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1100 if (BaseInfo) 1101 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1102 Addr = Address(Addr.getPointer(), Addr.getElementType(), Align); 1103 } 1104 } 1105 1106 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1107 CE->getCastKind() == CK_BitCast) { 1108 if (auto PT = E->getType()->getAs<PointerType>()) 1109 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1110 /*MayBeNull=*/true, 1111 CodeGenFunction::CFITCK_UnrelatedCast, 1112 CE->getBeginLoc()); 1113 } 1114 1115 if (CE->getCastKind() == CK_AddressSpaceConversion) 1116 return Builder.CreateAddrSpaceCast(Addr, ConvertType(E->getType())); 1117 1118 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType()); 1119 return Builder.CreateElementBitCast(Addr, ElemTy); 1120 } 1121 break; 1122 1123 // Array-to-pointer decay. 1124 case CK_ArrayToPointerDecay: 1125 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1126 1127 // Derived-to-base conversions. 1128 case CK_UncheckedDerivedToBase: 1129 case CK_DerivedToBase: { 1130 // TODO: Support accesses to members of base classes in TBAA. For now, we 1131 // conservatively pretend that the complete object is of the base class 1132 // type. 1133 if (TBAAInfo) 1134 *TBAAInfo = CGM.getTBAAAccessInfo(E->getType()); 1135 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo); 1136 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1137 return GetAddressOfBaseClass(Addr, Derived, 1138 CE->path_begin(), CE->path_end(), 1139 ShouldNullCheckClassCastValue(CE), 1140 CE->getExprLoc()); 1141 } 1142 1143 // TODO: Is there any reason to treat base-to-derived conversions 1144 // specially? 1145 default: 1146 break; 1147 } 1148 } 1149 1150 // Unary &. 1151 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1152 if (UO->getOpcode() == UO_AddrOf) { 1153 LValue LV = EmitLValue(UO->getSubExpr()); 1154 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1155 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1156 return LV.getAddress(*this); 1157 } 1158 } 1159 1160 // TODO: conditional operators, comma. 1161 1162 // Otherwise, use the alignment of the type. 1163 CharUnits Align = 1164 CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo); 1165 llvm::Type *ElemTy = ConvertTypeForMem(E->getType()->getPointeeType()); 1166 return Address(EmitScalarExpr(E), ElemTy, Align); 1167 } 1168 1169 llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) { 1170 llvm::Value *V = RV.getScalarVal(); 1171 if (auto MPT = T->getAs<MemberPointerType>()) 1172 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT); 1173 return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 1174 } 1175 1176 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1177 if (Ty->isVoidType()) 1178 return RValue::get(nullptr); 1179 1180 switch (getEvaluationKind(Ty)) { 1181 case TEK_Complex: { 1182 llvm::Type *EltTy = 1183 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1184 llvm::Value *U = llvm::UndefValue::get(EltTy); 1185 return RValue::getComplex(std::make_pair(U, U)); 1186 } 1187 1188 // If this is a use of an undefined aggregate type, the aggregate must have an 1189 // identifiable address. Just because the contents of the value are undefined 1190 // doesn't mean that the address can't be taken and compared. 1191 case TEK_Aggregate: { 1192 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1193 return RValue::getAggregate(DestPtr); 1194 } 1195 1196 case TEK_Scalar: 1197 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1198 } 1199 llvm_unreachable("bad evaluation kind"); 1200 } 1201 1202 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1203 const char *Name) { 1204 ErrorUnsupported(E, Name); 1205 return GetUndefRValue(E->getType()); 1206 } 1207 1208 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1209 const char *Name) { 1210 ErrorUnsupported(E, Name); 1211 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1212 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1213 E->getType()); 1214 } 1215 1216 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1217 const Expr *Base = Obj; 1218 while (!isa<CXXThisExpr>(Base)) { 1219 // The result of a dynamic_cast can be null. 1220 if (isa<CXXDynamicCastExpr>(Base)) 1221 return false; 1222 1223 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1224 Base = CE->getSubExpr(); 1225 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1226 Base = PE->getSubExpr(); 1227 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1228 if (UO->getOpcode() == UO_Extension) 1229 Base = UO->getSubExpr(); 1230 else 1231 return false; 1232 } else { 1233 return false; 1234 } 1235 } 1236 return true; 1237 } 1238 1239 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1240 LValue LV; 1241 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1242 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1243 else 1244 LV = EmitLValue(E); 1245 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1246 SanitizerSet SkippedChecks; 1247 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1248 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1249 if (IsBaseCXXThis) 1250 SkippedChecks.set(SanitizerKind::Alignment, true); 1251 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1252 SkippedChecks.set(SanitizerKind::Null, true); 1253 } 1254 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(), 1255 LV.getAlignment(), SkippedChecks); 1256 } 1257 return LV; 1258 } 1259 1260 /// EmitLValue - Emit code to compute a designator that specifies the location 1261 /// of the expression. 1262 /// 1263 /// This can return one of two things: a simple address or a bitfield reference. 1264 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1265 /// an LLVM pointer type. 1266 /// 1267 /// If this returns a bitfield reference, nothing about the pointee type of the 1268 /// LLVM value is known: For example, it may not be a pointer to an integer. 1269 /// 1270 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1271 /// this method guarantees that the returned pointer type will point to an LLVM 1272 /// type of the same size of the lvalue's type. If the lvalue has a variable 1273 /// length type, this is not possible. 1274 /// 1275 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1276 ApplyDebugLocation DL(*this, E); 1277 switch (E->getStmtClass()) { 1278 default: return EmitUnsupportedLValue(E, "l-value expression"); 1279 1280 case Expr::ObjCPropertyRefExprClass: 1281 llvm_unreachable("cannot emit a property reference directly"); 1282 1283 case Expr::ObjCSelectorExprClass: 1284 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1285 case Expr::ObjCIsaExprClass: 1286 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1287 case Expr::BinaryOperatorClass: 1288 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1289 case Expr::CompoundAssignOperatorClass: { 1290 QualType Ty = E->getType(); 1291 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1292 Ty = AT->getValueType(); 1293 if (!Ty->isAnyComplexType()) 1294 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1295 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1296 } 1297 case Expr::CallExprClass: 1298 case Expr::CXXMemberCallExprClass: 1299 case Expr::CXXOperatorCallExprClass: 1300 case Expr::UserDefinedLiteralClass: 1301 return EmitCallExprLValue(cast<CallExpr>(E)); 1302 case Expr::CXXRewrittenBinaryOperatorClass: 1303 return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); 1304 case Expr::VAArgExprClass: 1305 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1306 case Expr::DeclRefExprClass: 1307 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1308 case Expr::ConstantExprClass: { 1309 const ConstantExpr *CE = cast<ConstantExpr>(E); 1310 if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) { 1311 QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit()) 1312 ->getCallReturnType(getContext()); 1313 return MakeNaturalAlignAddrLValue(Result, RetType); 1314 } 1315 return EmitLValue(cast<ConstantExpr>(E)->getSubExpr()); 1316 } 1317 case Expr::ParenExprClass: 1318 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1319 case Expr::GenericSelectionExprClass: 1320 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1321 case Expr::PredefinedExprClass: 1322 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1323 case Expr::StringLiteralClass: 1324 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1325 case Expr::ObjCEncodeExprClass: 1326 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1327 case Expr::PseudoObjectExprClass: 1328 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1329 case Expr::InitListExprClass: 1330 return EmitInitListLValue(cast<InitListExpr>(E)); 1331 case Expr::CXXTemporaryObjectExprClass: 1332 case Expr::CXXConstructExprClass: 1333 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1334 case Expr::CXXBindTemporaryExprClass: 1335 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1336 case Expr::CXXUuidofExprClass: 1337 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1338 case Expr::LambdaExprClass: 1339 return EmitAggExprToLValue(E); 1340 1341 case Expr::ExprWithCleanupsClass: { 1342 const auto *cleanups = cast<ExprWithCleanups>(E); 1343 RunCleanupsScope Scope(*this); 1344 LValue LV = EmitLValue(cleanups->getSubExpr()); 1345 if (LV.isSimple()) { 1346 // Defend against branches out of gnu statement expressions surrounded by 1347 // cleanups. 1348 Address Addr = LV.getAddress(*this); 1349 llvm::Value *V = Addr.getPointer(); 1350 Scope.ForceCleanup({&V}); 1351 return LValue::MakeAddr(Addr.withPointer(V), LV.getType(), getContext(), 1352 LV.getBaseInfo(), LV.getTBAAInfo()); 1353 } 1354 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1355 // bitfield lvalue or some other non-simple lvalue? 1356 return LV; 1357 } 1358 1359 case Expr::CXXDefaultArgExprClass: { 1360 auto *DAE = cast<CXXDefaultArgExpr>(E); 1361 CXXDefaultArgExprScope Scope(*this, DAE); 1362 return EmitLValue(DAE->getExpr()); 1363 } 1364 case Expr::CXXDefaultInitExprClass: { 1365 auto *DIE = cast<CXXDefaultInitExpr>(E); 1366 CXXDefaultInitExprScope Scope(*this, DIE); 1367 return EmitLValue(DIE->getExpr()); 1368 } 1369 case Expr::CXXTypeidExprClass: 1370 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1371 1372 case Expr::ObjCMessageExprClass: 1373 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1374 case Expr::ObjCIvarRefExprClass: 1375 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1376 case Expr::StmtExprClass: 1377 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1378 case Expr::UnaryOperatorClass: 1379 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1380 case Expr::ArraySubscriptExprClass: 1381 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1382 case Expr::MatrixSubscriptExprClass: 1383 return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E)); 1384 case Expr::OMPArraySectionExprClass: 1385 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1386 case Expr::ExtVectorElementExprClass: 1387 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1388 case Expr::MemberExprClass: 1389 return EmitMemberExpr(cast<MemberExpr>(E)); 1390 case Expr::CompoundLiteralExprClass: 1391 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1392 case Expr::ConditionalOperatorClass: 1393 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1394 case Expr::BinaryConditionalOperatorClass: 1395 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1396 case Expr::ChooseExprClass: 1397 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1398 case Expr::OpaqueValueExprClass: 1399 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1400 case Expr::SubstNonTypeTemplateParmExprClass: 1401 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1402 case Expr::ImplicitCastExprClass: 1403 case Expr::CStyleCastExprClass: 1404 case Expr::CXXFunctionalCastExprClass: 1405 case Expr::CXXStaticCastExprClass: 1406 case Expr::CXXDynamicCastExprClass: 1407 case Expr::CXXReinterpretCastExprClass: 1408 case Expr::CXXConstCastExprClass: 1409 case Expr::CXXAddrspaceCastExprClass: 1410 case Expr::ObjCBridgedCastExprClass: 1411 return EmitCastLValue(cast<CastExpr>(E)); 1412 1413 case Expr::MaterializeTemporaryExprClass: 1414 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1415 1416 case Expr::CoawaitExprClass: 1417 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1418 case Expr::CoyieldExprClass: 1419 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1420 } 1421 } 1422 1423 /// Given an object of the given canonical type, can we safely copy a 1424 /// value out of it based on its initializer? 1425 static bool isConstantEmittableObjectType(QualType type) { 1426 assert(type.isCanonical()); 1427 assert(!type->isReferenceType()); 1428 1429 // Must be const-qualified but non-volatile. 1430 Qualifiers qs = type.getLocalQualifiers(); 1431 if (!qs.hasConst() || qs.hasVolatile()) return false; 1432 1433 // Otherwise, all object types satisfy this except C++ classes with 1434 // mutable subobjects or non-trivial copy/destroy behavior. 1435 if (const auto *RT = dyn_cast<RecordType>(type)) 1436 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1437 if (RD->hasMutableFields() || !RD->isTrivial()) 1438 return false; 1439 1440 return true; 1441 } 1442 1443 /// Can we constant-emit a load of a reference to a variable of the 1444 /// given type? This is different from predicates like 1445 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply 1446 /// in situations that don't necessarily satisfy the language's rules 1447 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1448 /// to do this with const float variables even if those variables 1449 /// aren't marked 'constexpr'. 1450 enum ConstantEmissionKind { 1451 CEK_None, 1452 CEK_AsReferenceOnly, 1453 CEK_AsValueOrReference, 1454 CEK_AsValueOnly 1455 }; 1456 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1457 type = type.getCanonicalType(); 1458 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1459 if (isConstantEmittableObjectType(ref->getPointeeType())) 1460 return CEK_AsValueOrReference; 1461 return CEK_AsReferenceOnly; 1462 } 1463 if (isConstantEmittableObjectType(type)) 1464 return CEK_AsValueOnly; 1465 return CEK_None; 1466 } 1467 1468 /// Try to emit a reference to the given value without producing it as 1469 /// an l-value. This is just an optimization, but it avoids us needing 1470 /// to emit global copies of variables if they're named without triggering 1471 /// a formal use in a context where we can't emit a direct reference to them, 1472 /// for instance if a block or lambda or a member of a local class uses a 1473 /// const int variable or constexpr variable from an enclosing function. 1474 CodeGenFunction::ConstantEmission 1475 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1476 ValueDecl *value = refExpr->getDecl(); 1477 1478 // The value needs to be an enum constant or a constant variable. 1479 ConstantEmissionKind CEK; 1480 if (isa<ParmVarDecl>(value)) { 1481 CEK = CEK_None; 1482 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1483 CEK = checkVarTypeForConstantEmission(var->getType()); 1484 } else if (isa<EnumConstantDecl>(value)) { 1485 CEK = CEK_AsValueOnly; 1486 } else { 1487 CEK = CEK_None; 1488 } 1489 if (CEK == CEK_None) return ConstantEmission(); 1490 1491 Expr::EvalResult result; 1492 bool resultIsReference; 1493 QualType resultType; 1494 1495 // It's best to evaluate all the way as an r-value if that's permitted. 1496 if (CEK != CEK_AsReferenceOnly && 1497 refExpr->EvaluateAsRValue(result, getContext())) { 1498 resultIsReference = false; 1499 resultType = refExpr->getType(); 1500 1501 // Otherwise, try to evaluate as an l-value. 1502 } else if (CEK != CEK_AsValueOnly && 1503 refExpr->EvaluateAsLValue(result, getContext())) { 1504 resultIsReference = true; 1505 resultType = value->getType(); 1506 1507 // Failure. 1508 } else { 1509 return ConstantEmission(); 1510 } 1511 1512 // In any case, if the initializer has side-effects, abandon ship. 1513 if (result.HasSideEffects) 1514 return ConstantEmission(); 1515 1516 // In CUDA/HIP device compilation, a lambda may capture a reference variable 1517 // referencing a global host variable by copy. In this case the lambda should 1518 // make a copy of the value of the global host variable. The DRE of the 1519 // captured reference variable cannot be emitted as load from the host 1520 // global variable as compile time constant, since the host variable is not 1521 // accessible on device. The DRE of the captured reference variable has to be 1522 // loaded from captures. 1523 if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() && 1524 refExpr->refersToEnclosingVariableOrCapture()) { 1525 auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl); 1526 if (MD && MD->getParent()->isLambda() && 1527 MD->getOverloadedOperator() == OO_Call) { 1528 const APValue::LValueBase &base = result.Val.getLValueBase(); 1529 if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) { 1530 if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) { 1531 if (!VD->hasAttr<CUDADeviceAttr>()) { 1532 return ConstantEmission(); 1533 } 1534 } 1535 } 1536 } 1537 } 1538 1539 // Emit as a constant. 1540 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1541 result.Val, resultType); 1542 1543 // Make sure we emit a debug reference to the global variable. 1544 // This should probably fire even for 1545 if (isa<VarDecl>(value)) { 1546 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1547 EmitDeclRefExprDbgValue(refExpr, result.Val); 1548 } else { 1549 assert(isa<EnumConstantDecl>(value)); 1550 EmitDeclRefExprDbgValue(refExpr, result.Val); 1551 } 1552 1553 // If we emitted a reference constant, we need to dereference that. 1554 if (resultIsReference) 1555 return ConstantEmission::forReference(C); 1556 1557 return ConstantEmission::forValue(C); 1558 } 1559 1560 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1561 const MemberExpr *ME) { 1562 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1563 // Try to emit static variable member expressions as DREs. 1564 return DeclRefExpr::Create( 1565 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1566 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1567 ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse()); 1568 } 1569 return nullptr; 1570 } 1571 1572 CodeGenFunction::ConstantEmission 1573 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1574 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1575 return tryEmitAsConstant(DRE); 1576 return ConstantEmission(); 1577 } 1578 1579 llvm::Value *CodeGenFunction::emitScalarConstant( 1580 const CodeGenFunction::ConstantEmission &Constant, Expr *E) { 1581 assert(Constant && "not a constant"); 1582 if (Constant.isReference()) 1583 return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E), 1584 E->getExprLoc()) 1585 .getScalarVal(); 1586 return Constant.getValue(); 1587 } 1588 1589 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1590 SourceLocation Loc) { 1591 return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(), 1592 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1593 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1594 } 1595 1596 static bool hasBooleanRepresentation(QualType Ty) { 1597 if (Ty->isBooleanType()) 1598 return true; 1599 1600 if (const EnumType *ET = Ty->getAs<EnumType>()) 1601 return ET->getDecl()->getIntegerType()->isBooleanType(); 1602 1603 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1604 return hasBooleanRepresentation(AT->getValueType()); 1605 1606 return false; 1607 } 1608 1609 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1610 llvm::APInt &Min, llvm::APInt &End, 1611 bool StrictEnums, bool IsBool) { 1612 const EnumType *ET = Ty->getAs<EnumType>(); 1613 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1614 ET && !ET->getDecl()->isFixed(); 1615 if (!IsBool && !IsRegularCPlusPlusEnum) 1616 return false; 1617 1618 if (IsBool) { 1619 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1620 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1621 } else { 1622 const EnumDecl *ED = ET->getDecl(); 1623 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1624 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1625 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1626 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1627 1628 if (NumNegativeBits) { 1629 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1630 assert(NumBits <= Bitwidth); 1631 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1632 Min = -End; 1633 } else { 1634 assert(NumPositiveBits <= Bitwidth); 1635 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1636 Min = llvm::APInt::getZero(Bitwidth); 1637 } 1638 } 1639 return true; 1640 } 1641 1642 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1643 llvm::APInt Min, End; 1644 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1645 hasBooleanRepresentation(Ty))) 1646 return nullptr; 1647 1648 llvm::MDBuilder MDHelper(getLLVMContext()); 1649 return MDHelper.createRange(Min, End); 1650 } 1651 1652 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1653 SourceLocation Loc) { 1654 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1655 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1656 if (!HasBoolCheck && !HasEnumCheck) 1657 return false; 1658 1659 bool IsBool = hasBooleanRepresentation(Ty) || 1660 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1661 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1662 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1663 if (!NeedsBoolCheck && !NeedsEnumCheck) 1664 return false; 1665 1666 // Single-bit booleans don't need to be checked. Special-case this to avoid 1667 // a bit width mismatch when handling bitfield values. This is handled by 1668 // EmitFromMemory for the non-bitfield case. 1669 if (IsBool && 1670 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1671 return false; 1672 1673 llvm::APInt Min, End; 1674 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1675 return true; 1676 1677 auto &Ctx = getLLVMContext(); 1678 SanitizerScope SanScope(this); 1679 llvm::Value *Check; 1680 --End; 1681 if (!Min) { 1682 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1683 } else { 1684 llvm::Value *Upper = 1685 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1686 llvm::Value *Lower = 1687 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1688 Check = Builder.CreateAnd(Upper, Lower); 1689 } 1690 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1691 EmitCheckTypeDescriptor(Ty)}; 1692 SanitizerMask Kind = 1693 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1694 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1695 StaticArgs, EmitCheckValue(Value)); 1696 return true; 1697 } 1698 1699 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1700 QualType Ty, 1701 SourceLocation Loc, 1702 LValueBaseInfo BaseInfo, 1703 TBAAAccessInfo TBAAInfo, 1704 bool isNontemporal) { 1705 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1706 // For better performance, handle vector loads differently. 1707 if (Ty->isVectorType()) { 1708 const llvm::Type *EltTy = Addr.getElementType(); 1709 1710 const auto *VTy = cast<llvm::FixedVectorType>(EltTy); 1711 1712 // Handle vectors of size 3 like size 4 for better performance. 1713 if (VTy->getNumElements() == 3) { 1714 1715 // Bitcast to vec4 type. 1716 auto *vec4Ty = llvm::FixedVectorType::get(VTy->getElementType(), 4); 1717 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1718 // Now load value. 1719 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1720 1721 // Shuffle vector to get vec3. 1722 V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, 1723 "extractVec"); 1724 return EmitFromMemory(V, Ty); 1725 } 1726 } 1727 } 1728 1729 // Atomic operations have to be done on integral types. 1730 LValue AtomicLValue = 1731 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1732 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1733 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1734 } 1735 1736 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1737 if (isNontemporal) { 1738 llvm::MDNode *Node = llvm::MDNode::get( 1739 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1740 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1741 } 1742 1743 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1744 1745 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1746 // In order to prevent the optimizer from throwing away the check, don't 1747 // attach range metadata to the load. 1748 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1749 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1750 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1751 1752 return EmitFromMemory(Load, Ty); 1753 } 1754 1755 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1756 // Bool has a different representation in memory than in registers. 1757 if (hasBooleanRepresentation(Ty)) { 1758 // This should really always be an i1, but sometimes it's already 1759 // an i8, and it's awkward to track those cases down. 1760 if (Value->getType()->isIntegerTy(1)) 1761 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1762 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1763 "wrong value rep of bool"); 1764 } 1765 1766 return Value; 1767 } 1768 1769 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1770 // Bool has a different representation in memory than in registers. 1771 if (hasBooleanRepresentation(Ty)) { 1772 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1773 "wrong value rep of bool"); 1774 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1775 } 1776 1777 return Value; 1778 } 1779 1780 // Convert the pointer of \p Addr to a pointer to a vector (the value type of 1781 // MatrixType), if it points to a array (the memory type of MatrixType). 1782 static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF, 1783 bool IsVector = true) { 1784 auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType()); 1785 if (ArrayTy && IsVector) { 1786 auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(), 1787 ArrayTy->getNumElements()); 1788 1789 return Address(CGF.Builder.CreateElementBitCast(Addr, VectorTy)); 1790 } 1791 auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType()); 1792 if (VectorTy && !IsVector) { 1793 auto *ArrayTy = llvm::ArrayType::get( 1794 VectorTy->getElementType(), 1795 cast<llvm::FixedVectorType>(VectorTy)->getNumElements()); 1796 1797 return Address(CGF.Builder.CreateElementBitCast(Addr, ArrayTy)); 1798 } 1799 1800 return Addr; 1801 } 1802 1803 // Emit a store of a matrix LValue. This may require casting the original 1804 // pointer to memory address (ArrayType) to a pointer to the value type 1805 // (VectorType). 1806 static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue, 1807 bool isInit, CodeGenFunction &CGF) { 1808 Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF, 1809 value->getType()->isVectorTy()); 1810 CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(), 1811 lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit, 1812 lvalue.isNontemporal()); 1813 } 1814 1815 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1816 bool Volatile, QualType Ty, 1817 LValueBaseInfo BaseInfo, 1818 TBAAAccessInfo TBAAInfo, 1819 bool isInit, bool isNontemporal) { 1820 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1821 // Handle vectors differently to get better performance. 1822 if (Ty->isVectorType()) { 1823 llvm::Type *SrcTy = Value->getType(); 1824 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1825 // Handle vec3 special. 1826 if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) { 1827 // Our source is a vec3, do a shuffle vector to make it a vec4. 1828 Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1}, 1829 "extractVec"); 1830 SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4); 1831 } 1832 if (Addr.getElementType() != SrcTy) { 1833 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1834 } 1835 } 1836 } 1837 1838 Value = EmitToMemory(Value, Ty); 1839 1840 LValue AtomicLValue = 1841 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1842 if (Ty->isAtomicType() || 1843 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1844 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1845 return; 1846 } 1847 1848 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1849 if (isNontemporal) { 1850 llvm::MDNode *Node = 1851 llvm::MDNode::get(Store->getContext(), 1852 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1853 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1854 } 1855 1856 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1857 } 1858 1859 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1860 bool isInit) { 1861 if (lvalue.getType()->isConstantMatrixType()) { 1862 EmitStoreOfMatrixScalar(value, lvalue, isInit, *this); 1863 return; 1864 } 1865 1866 EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(), 1867 lvalue.getType(), lvalue.getBaseInfo(), 1868 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1869 } 1870 1871 // Emit a load of a LValue of matrix type. This may require casting the pointer 1872 // to memory address (ArrayType) to a pointer to the value type (VectorType). 1873 static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc, 1874 CodeGenFunction &CGF) { 1875 assert(LV.getType()->isConstantMatrixType()); 1876 Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF); 1877 LV.setAddress(Addr); 1878 return RValue::get(CGF.EmitLoadOfScalar(LV, Loc)); 1879 } 1880 1881 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1882 /// method emits the address of the lvalue, then loads the result as an rvalue, 1883 /// returning the rvalue. 1884 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1885 if (LV.isObjCWeak()) { 1886 // load of a __weak object. 1887 Address AddrWeakObj = LV.getAddress(*this); 1888 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1889 AddrWeakObj)); 1890 } 1891 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1892 // In MRC mode, we do a load+autorelease. 1893 if (!getLangOpts().ObjCAutoRefCount) { 1894 return RValue::get(EmitARCLoadWeak(LV.getAddress(*this))); 1895 } 1896 1897 // In ARC mode, we load retained and then consume the value. 1898 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this)); 1899 Object = EmitObjCConsumeObject(LV.getType(), Object); 1900 return RValue::get(Object); 1901 } 1902 1903 if (LV.isSimple()) { 1904 assert(!LV.getType()->isFunctionType()); 1905 1906 if (LV.getType()->isConstantMatrixType()) 1907 return EmitLoadOfMatrixLValue(LV, Loc, *this); 1908 1909 // Everything needs a load. 1910 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1911 } 1912 1913 if (LV.isVectorElt()) { 1914 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1915 LV.isVolatileQualified()); 1916 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1917 "vecext")); 1918 } 1919 1920 // If this is a reference to a subset of the elements of a vector, either 1921 // shuffle the input or extract/insert them as appropriate. 1922 if (LV.isExtVectorElt()) { 1923 return EmitLoadOfExtVectorElementLValue(LV); 1924 } 1925 1926 // Global Register variables always invoke intrinsics 1927 if (LV.isGlobalReg()) 1928 return EmitLoadOfGlobalRegLValue(LV); 1929 1930 if (LV.isMatrixElt()) { 1931 llvm::Value *Idx = LV.getMatrixIdx(); 1932 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 1933 const auto *const MatTy = LV.getType()->getAs<ConstantMatrixType>(); 1934 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 1935 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 1936 } 1937 llvm::LoadInst *Load = 1938 Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified()); 1939 return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext")); 1940 } 1941 1942 assert(LV.isBitField() && "Unknown LValue type!"); 1943 return EmitLoadOfBitfieldLValue(LV, Loc); 1944 } 1945 1946 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1947 SourceLocation Loc) { 1948 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1949 1950 // Get the output type. 1951 llvm::Type *ResLTy = ConvertType(LV.getType()); 1952 1953 Address Ptr = LV.getBitFieldAddress(); 1954 llvm::Value *Val = 1955 Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1956 1957 bool UseVolatile = LV.isVolatileQualified() && 1958 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 1959 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 1960 const unsigned StorageSize = 1961 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 1962 if (Info.IsSigned) { 1963 assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize); 1964 unsigned HighBits = StorageSize - Offset - Info.Size; 1965 if (HighBits) 1966 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1967 if (Offset + HighBits) 1968 Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr"); 1969 } else { 1970 if (Offset) 1971 Val = Builder.CreateLShr(Val, Offset, "bf.lshr"); 1972 if (static_cast<unsigned>(Offset) + Info.Size < StorageSize) 1973 Val = Builder.CreateAnd( 1974 Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear"); 1975 } 1976 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1977 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1978 return RValue::get(Val); 1979 } 1980 1981 // If this is a reference to a subset of the elements of a vector, create an 1982 // appropriate shufflevector. 1983 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1984 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1985 LV.isVolatileQualified()); 1986 1987 const llvm::Constant *Elts = LV.getExtVectorElts(); 1988 1989 // If the result of the expression is a non-vector type, we must be extracting 1990 // a single element. Just codegen as an extractelement. 1991 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1992 if (!ExprVT) { 1993 unsigned InIdx = getAccessedFieldNo(0, Elts); 1994 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1995 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1996 } 1997 1998 // Always use shuffle vector to try to retain the original program structure 1999 unsigned NumResultElts = ExprVT->getNumElements(); 2000 2001 SmallVector<int, 4> Mask; 2002 for (unsigned i = 0; i != NumResultElts; ++i) 2003 Mask.push_back(getAccessedFieldNo(i, Elts)); 2004 2005 Vec = Builder.CreateShuffleVector(Vec, Mask); 2006 return RValue::get(Vec); 2007 } 2008 2009 /// Generates lvalue for partial ext_vector access. 2010 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 2011 Address VectorAddress = LV.getExtVectorAddress(); 2012 QualType EQT = LV.getType()->castAs<VectorType>()->getElementType(); 2013 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 2014 2015 Address CastToPointerElement = 2016 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 2017 "conv.ptr.element"); 2018 2019 const llvm::Constant *Elts = LV.getExtVectorElts(); 2020 unsigned ix = getAccessedFieldNo(0, Elts); 2021 2022 Address VectorBasePtrPlusIx = 2023 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 2024 "vector.elt"); 2025 2026 return VectorBasePtrPlusIx; 2027 } 2028 2029 /// Load of global gamed gegisters are always calls to intrinsics. 2030 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 2031 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 2032 "Bad type for register variable"); 2033 llvm::MDNode *RegName = cast<llvm::MDNode>( 2034 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 2035 2036 // We accept integer and pointer types only 2037 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 2038 llvm::Type *Ty = OrigTy; 2039 if (OrigTy->isPointerTy()) 2040 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2041 llvm::Type *Types[] = { Ty }; 2042 2043 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 2044 llvm::Value *Call = Builder.CreateCall( 2045 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 2046 if (OrigTy->isPointerTy()) 2047 Call = Builder.CreateIntToPtr(Call, OrigTy); 2048 return RValue::get(Call); 2049 } 2050 2051 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2052 /// lvalue, where both are guaranteed to the have the same type, and that type 2053 /// is 'Ty'. 2054 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 2055 bool isInit) { 2056 if (!Dst.isSimple()) { 2057 if (Dst.isVectorElt()) { 2058 // Read/modify/write the vector, inserting the new element. 2059 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 2060 Dst.isVolatileQualified()); 2061 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 2062 Dst.getVectorIdx(), "vecins"); 2063 Builder.CreateStore(Vec, Dst.getVectorAddress(), 2064 Dst.isVolatileQualified()); 2065 return; 2066 } 2067 2068 // If this is an update of extended vector elements, insert them as 2069 // appropriate. 2070 if (Dst.isExtVectorElt()) 2071 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 2072 2073 if (Dst.isGlobalReg()) 2074 return EmitStoreThroughGlobalRegLValue(Src, Dst); 2075 2076 if (Dst.isMatrixElt()) { 2077 llvm::Value *Idx = Dst.getMatrixIdx(); 2078 if (CGM.getCodeGenOpts().OptimizationLevel > 0) { 2079 const auto *const MatTy = Dst.getType()->getAs<ConstantMatrixType>(); 2080 llvm::MatrixBuilder<CGBuilderTy> MB(Builder); 2081 MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened()); 2082 } 2083 llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress()); 2084 llvm::Value *Vec = 2085 Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins"); 2086 Builder.CreateStore(Vec, Dst.getMatrixAddress(), 2087 Dst.isVolatileQualified()); 2088 return; 2089 } 2090 2091 assert(Dst.isBitField() && "Unknown LValue type"); 2092 return EmitStoreThroughBitfieldLValue(Src, Dst); 2093 } 2094 2095 // There's special magic for assigning into an ARC-qualified l-value. 2096 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 2097 switch (Lifetime) { 2098 case Qualifiers::OCL_None: 2099 llvm_unreachable("present but none"); 2100 2101 case Qualifiers::OCL_ExplicitNone: 2102 // nothing special 2103 break; 2104 2105 case Qualifiers::OCL_Strong: 2106 if (isInit) { 2107 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 2108 break; 2109 } 2110 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 2111 return; 2112 2113 case Qualifiers::OCL_Weak: 2114 if (isInit) 2115 // Initialize and then skip the primitive store. 2116 EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal()); 2117 else 2118 EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(), 2119 /*ignore*/ true); 2120 return; 2121 2122 case Qualifiers::OCL_Autoreleasing: 2123 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 2124 Src.getScalarVal())); 2125 // fall into the normal path 2126 break; 2127 } 2128 } 2129 2130 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 2131 // load of a __weak object. 2132 Address LvalueDst = Dst.getAddress(*this); 2133 llvm::Value *src = Src.getScalarVal(); 2134 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 2135 return; 2136 } 2137 2138 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 2139 // load of a __strong object. 2140 Address LvalueDst = Dst.getAddress(*this); 2141 llvm::Value *src = Src.getScalarVal(); 2142 if (Dst.isObjCIvar()) { 2143 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 2144 llvm::Type *ResultType = IntPtrTy; 2145 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 2146 llvm::Value *RHS = dst.getPointer(); 2147 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 2148 llvm::Value *LHS = 2149 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 2150 "sub.ptr.lhs.cast"); 2151 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 2152 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 2153 BytesBetween); 2154 } else if (Dst.isGlobalObjCRef()) { 2155 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 2156 Dst.isThreadLocalRef()); 2157 } 2158 else 2159 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 2160 return; 2161 } 2162 2163 assert(Src.isScalar() && "Can't emit an agg store with this method"); 2164 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 2165 } 2166 2167 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2168 llvm::Value **Result) { 2169 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 2170 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 2171 Address Ptr = Dst.getBitFieldAddress(); 2172 2173 // Get the source value, truncated to the width of the bit-field. 2174 llvm::Value *SrcVal = Src.getScalarVal(); 2175 2176 // Cast the source to the storage type and shift it into place. 2177 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 2178 /*isSigned=*/false); 2179 llvm::Value *MaskedVal = SrcVal; 2180 2181 const bool UseVolatile = 2182 CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() && 2183 Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget()); 2184 const unsigned StorageSize = 2185 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 2186 const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset; 2187 // See if there are other bits in the bitfield's storage we'll need to load 2188 // and mask together with source before storing. 2189 if (StorageSize != Info.Size) { 2190 assert(StorageSize > Info.Size && "Invalid bitfield size."); 2191 llvm::Value *Val = 2192 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 2193 2194 // Mask the source value as needed. 2195 if (!hasBooleanRepresentation(Dst.getType())) 2196 SrcVal = Builder.CreateAnd( 2197 SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), 2198 "bf.value"); 2199 MaskedVal = SrcVal; 2200 if (Offset) 2201 SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl"); 2202 2203 // Mask out the original value. 2204 Val = Builder.CreateAnd( 2205 Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size), 2206 "bf.clear"); 2207 2208 // Or together the unchanged values and the source value. 2209 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 2210 } else { 2211 assert(Offset == 0); 2212 // According to the AACPS: 2213 // When a volatile bit-field is written, and its container does not overlap 2214 // with any non-bit-field member, its container must be read exactly once 2215 // and written exactly once using the access width appropriate to the type 2216 // of the container. The two accesses are not atomic. 2217 if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) && 2218 CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad) 2219 Builder.CreateLoad(Ptr, true, "bf.load"); 2220 } 2221 2222 // Write the new value back out. 2223 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 2224 2225 // Return the new value of the bit-field, if requested. 2226 if (Result) { 2227 llvm::Value *ResultVal = MaskedVal; 2228 2229 // Sign extend the value if needed. 2230 if (Info.IsSigned) { 2231 assert(Info.Size <= StorageSize); 2232 unsigned HighBits = StorageSize - Info.Size; 2233 if (HighBits) { 2234 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 2235 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 2236 } 2237 } 2238 2239 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2240 "bf.result.cast"); 2241 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2242 } 2243 } 2244 2245 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2246 LValue Dst) { 2247 // This access turns into a read/modify/write of the vector. Load the input 2248 // value now. 2249 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2250 Dst.isVolatileQualified()); 2251 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2252 2253 llvm::Value *SrcVal = Src.getScalarVal(); 2254 2255 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2256 unsigned NumSrcElts = VTy->getNumElements(); 2257 unsigned NumDstElts = 2258 cast<llvm::FixedVectorType>(Vec->getType())->getNumElements(); 2259 if (NumDstElts == NumSrcElts) { 2260 // Use shuffle vector is the src and destination are the same number of 2261 // elements and restore the vector mask since it is on the side it will be 2262 // stored. 2263 SmallVector<int, 4> Mask(NumDstElts); 2264 for (unsigned i = 0; i != NumSrcElts; ++i) 2265 Mask[getAccessedFieldNo(i, Elts)] = i; 2266 2267 Vec = Builder.CreateShuffleVector(SrcVal, Mask); 2268 } else if (NumDstElts > NumSrcElts) { 2269 // Extended the source vector to the same length and then shuffle it 2270 // into the destination. 2271 // FIXME: since we're shuffling with undef, can we just use the indices 2272 // into that? This could be simpler. 2273 SmallVector<int, 4> ExtMask; 2274 for (unsigned i = 0; i != NumSrcElts; ++i) 2275 ExtMask.push_back(i); 2276 ExtMask.resize(NumDstElts, -1); 2277 llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask); 2278 // build identity 2279 SmallVector<int, 4> Mask; 2280 for (unsigned i = 0; i != NumDstElts; ++i) 2281 Mask.push_back(i); 2282 2283 // When the vector size is odd and .odd or .hi is used, the last element 2284 // of the Elts constant array will be one past the size of the vector. 2285 // Ignore the last element here, if it is greater than the mask size. 2286 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2287 NumSrcElts--; 2288 2289 // modify when what gets shuffled in 2290 for (unsigned i = 0; i != NumSrcElts; ++i) 2291 Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts; 2292 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask); 2293 } else { 2294 // We should never shorten the vector 2295 llvm_unreachable("unexpected shorten vector length"); 2296 } 2297 } else { 2298 // If the Src is a scalar (not a vector) it must be updating one element. 2299 unsigned InIdx = getAccessedFieldNo(0, Elts); 2300 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2301 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2302 } 2303 2304 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2305 Dst.isVolatileQualified()); 2306 } 2307 2308 /// Store of global named registers are always calls to intrinsics. 2309 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2310 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2311 "Bad type for register variable"); 2312 llvm::MDNode *RegName = cast<llvm::MDNode>( 2313 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2314 assert(RegName && "Register LValue is not metadata"); 2315 2316 // We accept integer and pointer types only 2317 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2318 llvm::Type *Ty = OrigTy; 2319 if (OrigTy->isPointerTy()) 2320 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2321 llvm::Type *Types[] = { Ty }; 2322 2323 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2324 llvm::Value *Value = Src.getScalarVal(); 2325 if (OrigTy->isPointerTy()) 2326 Value = Builder.CreatePtrToInt(Value, Ty); 2327 Builder.CreateCall( 2328 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2329 } 2330 2331 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2332 // generating write-barries API. It is currently a global, ivar, 2333 // or neither. 2334 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2335 LValue &LV, 2336 bool IsMemberAccess=false) { 2337 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2338 return; 2339 2340 if (isa<ObjCIvarRefExpr>(E)) { 2341 QualType ExpTy = E->getType(); 2342 if (IsMemberAccess && ExpTy->isPointerType()) { 2343 // If ivar is a structure pointer, assigning to field of 2344 // this struct follows gcc's behavior and makes it a non-ivar 2345 // writer-barrier conservatively. 2346 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2347 if (ExpTy->isRecordType()) { 2348 LV.setObjCIvar(false); 2349 return; 2350 } 2351 } 2352 LV.setObjCIvar(true); 2353 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2354 LV.setBaseIvarExp(Exp->getBase()); 2355 LV.setObjCArray(E->getType()->isArrayType()); 2356 return; 2357 } 2358 2359 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2360 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2361 if (VD->hasGlobalStorage()) { 2362 LV.setGlobalObjCRef(true); 2363 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2364 } 2365 } 2366 LV.setObjCArray(E->getType()->isArrayType()); 2367 return; 2368 } 2369 2370 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2371 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2372 return; 2373 } 2374 2375 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2376 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2377 if (LV.isObjCIvar()) { 2378 // If cast is to a structure pointer, follow gcc's behavior and make it 2379 // a non-ivar write-barrier. 2380 QualType ExpTy = E->getType(); 2381 if (ExpTy->isPointerType()) 2382 ExpTy = ExpTy->castAs<PointerType>()->getPointeeType(); 2383 if (ExpTy->isRecordType()) 2384 LV.setObjCIvar(false); 2385 } 2386 return; 2387 } 2388 2389 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2390 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2391 return; 2392 } 2393 2394 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2395 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2396 return; 2397 } 2398 2399 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2400 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2401 return; 2402 } 2403 2404 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2405 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2406 return; 2407 } 2408 2409 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2410 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2411 if (LV.isObjCIvar() && !LV.isObjCArray()) 2412 // Using array syntax to assigning to what an ivar points to is not 2413 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2414 LV.setObjCIvar(false); 2415 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2416 // Using array syntax to assigning to what global points to is not 2417 // same as assigning to the global itself. {id *G;} G[i] = 0; 2418 LV.setGlobalObjCRef(false); 2419 return; 2420 } 2421 2422 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2423 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2424 // We don't know if member is an 'ivar', but this flag is looked at 2425 // only in the context of LV.isObjCIvar(). 2426 LV.setObjCArray(E->getType()->isArrayType()); 2427 return; 2428 } 2429 } 2430 2431 static llvm::Value * 2432 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2433 llvm::Value *V, llvm::Type *IRType, 2434 StringRef Name = StringRef()) { 2435 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2436 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2437 } 2438 2439 static LValue EmitThreadPrivateVarDeclLValue( 2440 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2441 llvm::Type *RealVarTy, SourceLocation Loc) { 2442 if (CGF.CGM.getLangOpts().OpenMPIRBuilder) 2443 Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate( 2444 CGF, VD, Addr, Loc); 2445 else 2446 Addr = 2447 CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2448 2449 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2450 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2451 } 2452 2453 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF, 2454 const VarDecl *VD, QualType T) { 2455 llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2456 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); 2457 // Return an invalid address if variable is MT_To and unified 2458 // memory is not enabled. For all other cases: MT_Link and 2459 // MT_To with unified memory, return a valid address. 2460 if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To && 2461 !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) 2462 return Address::invalid(); 2463 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2464 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2465 CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) && 2466 "Expected link clause OR to clause with unified memory enabled."); 2467 QualType PtrTy = CGF.getContext().getPointerType(VD->getType()); 2468 Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2469 return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>()); 2470 } 2471 2472 Address 2473 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2474 LValueBaseInfo *PointeeBaseInfo, 2475 TBAAAccessInfo *PointeeTBAAInfo) { 2476 llvm::LoadInst *Load = 2477 Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile()); 2478 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2479 2480 QualType PointeeType = RefLVal.getType()->getPointeeType(); 2481 CharUnits Align = CGM.getNaturalTypeAlignment( 2482 PointeeType, PointeeBaseInfo, PointeeTBAAInfo, 2483 /* forPointeeType= */ true); 2484 return Address(Load, ConvertTypeForMem(PointeeType), Align); 2485 } 2486 2487 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2488 LValueBaseInfo PointeeBaseInfo; 2489 TBAAAccessInfo PointeeTBAAInfo; 2490 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2491 &PointeeTBAAInfo); 2492 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2493 PointeeBaseInfo, PointeeTBAAInfo); 2494 } 2495 2496 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2497 const PointerType *PtrTy, 2498 LValueBaseInfo *BaseInfo, 2499 TBAAAccessInfo *TBAAInfo) { 2500 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2501 return Address(Addr, CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), 2502 BaseInfo, TBAAInfo, 2503 /*forPointeeType=*/true)); 2504 } 2505 2506 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2507 const PointerType *PtrTy) { 2508 LValueBaseInfo BaseInfo; 2509 TBAAAccessInfo TBAAInfo; 2510 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2511 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2512 } 2513 2514 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2515 const Expr *E, const VarDecl *VD) { 2516 QualType T = E->getType(); 2517 2518 // If it's thread_local, emit a call to its wrapper function instead. 2519 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2520 CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD)) 2521 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2522 // Check if the variable is marked as declare target with link clause in 2523 // device codegen. 2524 if (CGF.getLangOpts().OpenMPIsDevice) { 2525 Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T); 2526 if (Addr.isValid()) 2527 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2528 } 2529 2530 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2531 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2532 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2533 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2534 Address Addr(V, RealVarTy, Alignment); 2535 // Emit reference to the private copy of the variable if it is an OpenMP 2536 // threadprivate variable. 2537 if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd && 2538 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2539 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2540 E->getExprLoc()); 2541 } 2542 LValue LV = VD->getType()->isReferenceType() ? 2543 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2544 AlignmentSource::Decl) : 2545 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2546 setObjCGCLValueClass(CGF.getContext(), E, LV); 2547 return LV; 2548 } 2549 2550 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2551 GlobalDecl GD) { 2552 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2553 if (FD->hasAttr<WeakRefAttr>()) { 2554 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2555 return aliasee.getPointer(); 2556 } 2557 2558 llvm::Constant *V = CGM.GetAddrOfFunction(GD); 2559 if (!FD->hasPrototype()) { 2560 if (const FunctionProtoType *Proto = 2561 FD->getType()->getAs<FunctionProtoType>()) { 2562 // Ugly case: for a K&R-style definition, the type of the definition 2563 // isn't the same as the type of a use. Correct for this with a 2564 // bitcast. 2565 QualType NoProtoType = 2566 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2567 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2568 V = llvm::ConstantExpr::getBitCast(V, 2569 CGM.getTypes().ConvertType(NoProtoType)); 2570 } 2571 } 2572 return V; 2573 } 2574 2575 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E, 2576 GlobalDecl GD) { 2577 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2578 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD); 2579 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2580 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2581 AlignmentSource::Decl); 2582 } 2583 2584 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2585 llvm::Value *ThisValue) { 2586 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2587 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2588 return CGF.EmitLValueForField(LV, FD); 2589 } 2590 2591 /// Named Registers are named metadata pointing to the register name 2592 /// which will be read from/written to as an argument to the intrinsic 2593 /// @llvm.read/write_register. 2594 /// So far, only the name is being passed down, but other options such as 2595 /// register type, allocation type or even optimization options could be 2596 /// passed down via the metadata node. 2597 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2598 SmallString<64> Name("llvm.named.register."); 2599 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2600 assert(Asm->getLabel().size() < 64-Name.size() && 2601 "Register name too big"); 2602 Name.append(Asm->getLabel()); 2603 llvm::NamedMDNode *M = 2604 CGM.getModule().getOrInsertNamedMetadata(Name); 2605 if (M->getNumOperands() == 0) { 2606 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2607 Asm->getLabel()); 2608 llvm::Metadata *Ops[] = {Str}; 2609 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2610 } 2611 2612 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2613 2614 llvm::Value *Ptr = 2615 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2616 return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType()); 2617 } 2618 2619 /// Determine whether we can emit a reference to \p VD from the current 2620 /// context, despite not necessarily having seen an odr-use of the variable in 2621 /// this context. 2622 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF, 2623 const DeclRefExpr *E, 2624 const VarDecl *VD, 2625 bool IsConstant) { 2626 // For a variable declared in an enclosing scope, do not emit a spurious 2627 // reference even if we have a capture, as that will emit an unwarranted 2628 // reference to our capture state, and will likely generate worse code than 2629 // emitting a local copy. 2630 if (E->refersToEnclosingVariableOrCapture()) 2631 return false; 2632 2633 // For a local declaration declared in this function, we can always reference 2634 // it even if we don't have an odr-use. 2635 if (VD->hasLocalStorage()) { 2636 return VD->getDeclContext() == 2637 dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl); 2638 } 2639 2640 // For a global declaration, we can emit a reference to it if we know 2641 // for sure that we are able to emit a definition of it. 2642 VD = VD->getDefinition(CGF.getContext()); 2643 if (!VD) 2644 return false; 2645 2646 // Don't emit a spurious reference if it might be to a variable that only 2647 // exists on a different device / target. 2648 // FIXME: This is unnecessarily broad. Check whether this would actually be a 2649 // cross-target reference. 2650 if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA || 2651 CGF.getLangOpts().OpenCL) { 2652 return false; 2653 } 2654 2655 // We can emit a spurious reference only if the linkage implies that we'll 2656 // be emitting a non-interposable symbol that will be retained until link 2657 // time. 2658 switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) { 2659 case llvm::GlobalValue::ExternalLinkage: 2660 case llvm::GlobalValue::LinkOnceODRLinkage: 2661 case llvm::GlobalValue::WeakODRLinkage: 2662 case llvm::GlobalValue::InternalLinkage: 2663 case llvm::GlobalValue::PrivateLinkage: 2664 return true; 2665 default: 2666 return false; 2667 } 2668 } 2669 2670 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2671 const NamedDecl *ND = E->getDecl(); 2672 QualType T = E->getType(); 2673 2674 assert(E->isNonOdrUse() != NOUR_Unevaluated && 2675 "should not emit an unevaluated operand"); 2676 2677 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2678 // Global Named registers access via intrinsics only 2679 if (VD->getStorageClass() == SC_Register && 2680 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2681 return EmitGlobalNamedRegister(VD, CGM); 2682 2683 // If this DeclRefExpr does not constitute an odr-use of the variable, 2684 // we're not permitted to emit a reference to it in general, and it might 2685 // not be captured if capture would be necessary for a use. Emit the 2686 // constant value directly instead. 2687 if (E->isNonOdrUse() == NOUR_Constant && 2688 (VD->getType()->isReferenceType() || 2689 !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) { 2690 VD->getAnyInitializer(VD); 2691 llvm::Constant *Val = ConstantEmitter(*this).emitAbstract( 2692 E->getLocation(), *VD->evaluateValue(), VD->getType()); 2693 assert(Val && "failed to emit constant expression"); 2694 2695 Address Addr = Address::invalid(); 2696 if (!VD->getType()->isReferenceType()) { 2697 // Spill the constant value to a global. 2698 Addr = CGM.createUnnamedGlobalFrom(*VD, Val, 2699 getContext().getDeclAlign(VD)); 2700 llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType()); 2701 auto *PTy = llvm::PointerType::get( 2702 VarTy, getContext().getTargetAddressSpace(VD->getType())); 2703 if (PTy != Addr.getType()) 2704 Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy); 2705 } else { 2706 // Should we be using the alignment of the constant pointer we emitted? 2707 CharUnits Alignment = 2708 CGM.getNaturalTypeAlignment(E->getType(), 2709 /* BaseInfo= */ nullptr, 2710 /* TBAAInfo= */ nullptr, 2711 /* forPointeeType= */ true); 2712 Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment); 2713 } 2714 return MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2715 } 2716 2717 // FIXME: Handle other kinds of non-odr-use DeclRefExprs. 2718 2719 // Check for captured variables. 2720 if (E->refersToEnclosingVariableOrCapture()) { 2721 VD = VD->getCanonicalDecl(); 2722 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2723 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2724 if (CapturedStmtInfo) { 2725 auto I = LocalDeclMap.find(VD); 2726 if (I != LocalDeclMap.end()) { 2727 LValue CapLVal; 2728 if (VD->getType()->isReferenceType()) 2729 CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(), 2730 AlignmentSource::Decl); 2731 else 2732 CapLVal = MakeAddrLValue(I->second, T); 2733 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2734 // in simd context. 2735 if (getLangOpts().OpenMP && 2736 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2737 CapLVal.setNontemporal(/*Value=*/true); 2738 return CapLVal; 2739 } 2740 LValue CapLVal = 2741 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2742 CapturedStmtInfo->getContextValue()); 2743 CapLVal = MakeAddrLValue( 2744 Address(CapLVal.getPointer(*this), getContext().getDeclAlign(VD)), 2745 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2746 CapLVal.getTBAAInfo()); 2747 // Mark lvalue as nontemporal if the variable is marked as nontemporal 2748 // in simd context. 2749 if (getLangOpts().OpenMP && 2750 CGM.getOpenMPRuntime().isNontemporalDecl(VD)) 2751 CapLVal.setNontemporal(/*Value=*/true); 2752 return CapLVal; 2753 } 2754 2755 assert(isa<BlockDecl>(CurCodeDecl)); 2756 Address addr = GetAddrOfBlockDecl(VD); 2757 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2758 } 2759 } 2760 2761 // FIXME: We should be able to assert this for FunctionDecls as well! 2762 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2763 // those with a valid source location. 2764 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() || 2765 !E->getLocation().isValid()) && 2766 "Should not use decl without marking it used!"); 2767 2768 if (ND->hasAttr<WeakRefAttr>()) { 2769 const auto *VD = cast<ValueDecl>(ND); 2770 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2771 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2772 } 2773 2774 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2775 // Check if this is a global variable. 2776 if (VD->hasLinkage() || VD->isStaticDataMember()) 2777 return EmitGlobalVarDeclLValue(*this, E, VD); 2778 2779 Address addr = Address::invalid(); 2780 2781 // The variable should generally be present in the local decl map. 2782 auto iter = LocalDeclMap.find(VD); 2783 if (iter != LocalDeclMap.end()) { 2784 addr = iter->second; 2785 2786 // Otherwise, it might be static local we haven't emitted yet for 2787 // some reason; most likely, because it's in an outer function. 2788 } else if (VD->isStaticLocal()) { 2789 llvm::Constant *var = CGM.getOrCreateStaticVarDecl( 2790 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)); 2791 addr = Address( 2792 var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD)); 2793 2794 // No other cases for now. 2795 } else { 2796 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2797 } 2798 2799 2800 // Check for OpenMP threadprivate variables. 2801 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && 2802 VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2803 return EmitThreadPrivateVarDeclLValue( 2804 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2805 E->getExprLoc()); 2806 } 2807 2808 // Drill into block byref variables. 2809 bool isBlockByref = VD->isEscapingByref(); 2810 if (isBlockByref) { 2811 addr = emitBlockByrefAddress(addr, VD); 2812 } 2813 2814 // Drill into reference types. 2815 LValue LV = VD->getType()->isReferenceType() ? 2816 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2817 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2818 2819 bool isLocalStorage = VD->hasLocalStorage(); 2820 2821 bool NonGCable = isLocalStorage && 2822 !VD->getType()->isReferenceType() && 2823 !isBlockByref; 2824 if (NonGCable) { 2825 LV.getQuals().removeObjCGCAttr(); 2826 LV.setNonGC(true); 2827 } 2828 2829 bool isImpreciseLifetime = 2830 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2831 if (isImpreciseLifetime) 2832 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2833 setObjCGCLValueClass(getContext(), E, LV); 2834 return LV; 2835 } 2836 2837 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 2838 LValue LV = EmitFunctionDeclLValue(*this, E, FD); 2839 2840 // Emit debuginfo for the function declaration if the target wants to. 2841 if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) { 2842 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) { 2843 auto *Fn = 2844 cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts()); 2845 if (!Fn->getSubprogram()) 2846 DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn); 2847 } 2848 } 2849 2850 return LV; 2851 } 2852 2853 // FIXME: While we're emitting a binding from an enclosing scope, all other 2854 // DeclRefExprs we see should be implicitly treated as if they also refer to 2855 // an enclosing scope. 2856 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2857 return EmitLValue(BD->getBinding()); 2858 2859 // We can form DeclRefExprs naming GUID declarations when reconstituting 2860 // non-type template parameters into expressions. 2861 if (const auto *GD = dyn_cast<MSGuidDecl>(ND)) 2862 return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T, 2863 AlignmentSource::Decl); 2864 2865 if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) 2866 return MakeAddrLValue(CGM.GetAddrOfTemplateParamObject(TPO), T, 2867 AlignmentSource::Decl); 2868 2869 llvm_unreachable("Unhandled DeclRefExpr"); 2870 } 2871 2872 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2873 // __extension__ doesn't affect lvalue-ness. 2874 if (E->getOpcode() == UO_Extension) 2875 return EmitLValue(E->getSubExpr()); 2876 2877 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2878 switch (E->getOpcode()) { 2879 default: llvm_unreachable("Unknown unary operator lvalue!"); 2880 case UO_Deref: { 2881 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2882 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2883 2884 LValueBaseInfo BaseInfo; 2885 TBAAAccessInfo TBAAInfo; 2886 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2887 &TBAAInfo); 2888 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2889 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2890 2891 // We should not generate __weak write barrier on indirect reference 2892 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2893 // But, we continue to generate __strong write barrier on indirect write 2894 // into a pointer to object. 2895 if (getLangOpts().ObjC && 2896 getLangOpts().getGC() != LangOptions::NonGC && 2897 LV.isObjCWeak()) 2898 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2899 return LV; 2900 } 2901 case UO_Real: 2902 case UO_Imag: { 2903 LValue LV = EmitLValue(E->getSubExpr()); 2904 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2905 2906 // __real is valid on scalars. This is a faster way of testing that. 2907 // __imag can only produce an rvalue on scalars. 2908 if (E->getOpcode() == UO_Real && 2909 !LV.getAddress(*this).getElementType()->isStructTy()) { 2910 assert(E->getSubExpr()->getType()->isArithmeticType()); 2911 return LV; 2912 } 2913 2914 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2915 2916 Address Component = 2917 (E->getOpcode() == UO_Real 2918 ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType()) 2919 : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType())); 2920 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2921 CGM.getTBAAInfoForSubobject(LV, T)); 2922 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2923 return ElemLV; 2924 } 2925 case UO_PreInc: 2926 case UO_PreDec: { 2927 LValue LV = EmitLValue(E->getSubExpr()); 2928 bool isInc = E->getOpcode() == UO_PreInc; 2929 2930 if (E->getType()->isAnyComplexType()) 2931 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2932 else 2933 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2934 return LV; 2935 } 2936 } 2937 } 2938 2939 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2940 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2941 E->getType(), AlignmentSource::Decl); 2942 } 2943 2944 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2945 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2946 E->getType(), AlignmentSource::Decl); 2947 } 2948 2949 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2950 auto SL = E->getFunctionName(); 2951 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2952 StringRef FnName = CurFn->getName(); 2953 if (FnName.startswith("\01")) 2954 FnName = FnName.substr(1); 2955 StringRef NameItems[] = { 2956 PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName}; 2957 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2958 if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) { 2959 std::string Name = std::string(SL->getString()); 2960 if (!Name.empty()) { 2961 unsigned Discriminator = 2962 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2963 if (Discriminator) 2964 Name += "_" + Twine(Discriminator + 1).str(); 2965 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2966 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2967 } else { 2968 auto C = 2969 CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str()); 2970 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2971 } 2972 } 2973 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2974 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2975 } 2976 2977 /// Emit a type description suitable for use by a runtime sanitizer library. The 2978 /// format of a type descriptor is 2979 /// 2980 /// \code 2981 /// { i16 TypeKind, i16 TypeInfo } 2982 /// \endcode 2983 /// 2984 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2985 /// integer, 1 for a floating point value, and -1 for anything else. 2986 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2987 // Only emit each type's descriptor once. 2988 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2989 return C; 2990 2991 uint16_t TypeKind = -1; 2992 uint16_t TypeInfo = 0; 2993 2994 if (T->isIntegerType()) { 2995 TypeKind = 0; 2996 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2997 (T->isSignedIntegerType() ? 1 : 0); 2998 } else if (T->isFloatingType()) { 2999 TypeKind = 1; 3000 TypeInfo = getContext().getTypeSize(T); 3001 } 3002 3003 // Format the type name as if for a diagnostic, including quotes and 3004 // optionally an 'aka'. 3005 SmallString<32> Buffer; 3006 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 3007 (intptr_t)T.getAsOpaquePtr(), 3008 StringRef(), StringRef(), None, Buffer, 3009 None); 3010 3011 llvm::Constant *Components[] = { 3012 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 3013 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 3014 }; 3015 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 3016 3017 auto *GV = new llvm::GlobalVariable( 3018 CGM.getModule(), Descriptor->getType(), 3019 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 3020 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3021 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 3022 3023 // Remember the descriptor for this type. 3024 CGM.setTypeDescriptorInMap(T, GV); 3025 3026 return GV; 3027 } 3028 3029 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 3030 llvm::Type *TargetTy = IntPtrTy; 3031 3032 if (V->getType() == TargetTy) 3033 return V; 3034 3035 // Floating-point types which fit into intptr_t are bitcast to integers 3036 // and then passed directly (after zero-extension, if necessary). 3037 if (V->getType()->isFloatingPointTy()) { 3038 unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedSize(); 3039 if (Bits <= TargetTy->getIntegerBitWidth()) 3040 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 3041 Bits)); 3042 } 3043 3044 // Integers which fit in intptr_t are zero-extended and passed directly. 3045 if (V->getType()->isIntegerTy() && 3046 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 3047 return Builder.CreateZExt(V, TargetTy); 3048 3049 // Pointers are passed directly, everything else is passed by address. 3050 if (!V->getType()->isPointerTy()) { 3051 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 3052 Builder.CreateStore(V, Ptr); 3053 V = Ptr.getPointer(); 3054 } 3055 return Builder.CreatePtrToInt(V, TargetTy); 3056 } 3057 3058 /// Emit a representation of a SourceLocation for passing to a handler 3059 /// in a sanitizer runtime library. The format for this data is: 3060 /// \code 3061 /// struct SourceLocation { 3062 /// const char *Filename; 3063 /// int32_t Line, Column; 3064 /// }; 3065 /// \endcode 3066 /// For an invalid SourceLocation, the Filename pointer is null. 3067 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 3068 llvm::Constant *Filename; 3069 int Line, Column; 3070 3071 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 3072 if (PLoc.isValid()) { 3073 StringRef FilenameString = PLoc.getFilename(); 3074 3075 int PathComponentsToStrip = 3076 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 3077 if (PathComponentsToStrip < 0) { 3078 assert(PathComponentsToStrip != INT_MIN); 3079 int PathComponentsToKeep = -PathComponentsToStrip; 3080 auto I = llvm::sys::path::rbegin(FilenameString); 3081 auto E = llvm::sys::path::rend(FilenameString); 3082 while (I != E && --PathComponentsToKeep) 3083 ++I; 3084 3085 FilenameString = FilenameString.substr(I - E); 3086 } else if (PathComponentsToStrip > 0) { 3087 auto I = llvm::sys::path::begin(FilenameString); 3088 auto E = llvm::sys::path::end(FilenameString); 3089 while (I != E && PathComponentsToStrip--) 3090 ++I; 3091 3092 if (I != E) 3093 FilenameString = 3094 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 3095 else 3096 FilenameString = llvm::sys::path::filename(FilenameString); 3097 } 3098 3099 auto FilenameGV = 3100 CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src"); 3101 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 3102 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 3103 Filename = FilenameGV.getPointer(); 3104 Line = PLoc.getLine(); 3105 Column = PLoc.getColumn(); 3106 } else { 3107 Filename = llvm::Constant::getNullValue(Int8PtrTy); 3108 Line = Column = 0; 3109 } 3110 3111 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 3112 Builder.getInt32(Column)}; 3113 3114 return llvm::ConstantStruct::getAnon(Data); 3115 } 3116 3117 namespace { 3118 /// Specify under what conditions this check can be recovered 3119 enum class CheckRecoverableKind { 3120 /// Always terminate program execution if this check fails. 3121 Unrecoverable, 3122 /// Check supports recovering, runtime has both fatal (noreturn) and 3123 /// non-fatal handlers for this check. 3124 Recoverable, 3125 /// Runtime conditionally aborts, always need to support recovery. 3126 AlwaysRecoverable 3127 }; 3128 } 3129 3130 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 3131 assert(Kind.countPopulation() == 1); 3132 if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr) 3133 return CheckRecoverableKind::AlwaysRecoverable; 3134 else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable) 3135 return CheckRecoverableKind::Unrecoverable; 3136 else 3137 return CheckRecoverableKind::Recoverable; 3138 } 3139 3140 namespace { 3141 struct SanitizerHandlerInfo { 3142 char const *const Name; 3143 unsigned Version; 3144 }; 3145 } 3146 3147 const SanitizerHandlerInfo SanitizerHandlers[] = { 3148 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 3149 LIST_SANITIZER_CHECKS 3150 #undef SANITIZER_CHECK 3151 }; 3152 3153 static void emitCheckHandlerCall(CodeGenFunction &CGF, 3154 llvm::FunctionType *FnType, 3155 ArrayRef<llvm::Value *> FnArgs, 3156 SanitizerHandler CheckHandler, 3157 CheckRecoverableKind RecoverKind, bool IsFatal, 3158 llvm::BasicBlock *ContBB) { 3159 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 3160 Optional<ApplyDebugLocation> DL; 3161 if (!CGF.Builder.getCurrentDebugLocation()) { 3162 // Ensure that the call has at least an artificial debug location. 3163 DL.emplace(CGF, SourceLocation()); 3164 } 3165 bool NeedsAbortSuffix = 3166 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 3167 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 3168 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 3169 const StringRef CheckName = CheckInfo.Name; 3170 std::string FnName = "__ubsan_handle_" + CheckName.str(); 3171 if (CheckInfo.Version && !MinimalRuntime) 3172 FnName += "_v" + llvm::utostr(CheckInfo.Version); 3173 if (MinimalRuntime) 3174 FnName += "_minimal"; 3175 if (NeedsAbortSuffix) 3176 FnName += "_abort"; 3177 bool MayReturn = 3178 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 3179 3180 llvm::AttrBuilder B; 3181 if (!MayReturn) { 3182 B.addAttribute(llvm::Attribute::NoReturn) 3183 .addAttribute(llvm::Attribute::NoUnwind); 3184 } 3185 B.addAttribute(llvm::Attribute::UWTable); 3186 3187 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction( 3188 FnType, FnName, 3189 llvm::AttributeList::get(CGF.getLLVMContext(), 3190 llvm::AttributeList::FunctionIndex, B), 3191 /*Local=*/true); 3192 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 3193 if (!MayReturn) { 3194 HandlerCall->setDoesNotReturn(); 3195 CGF.Builder.CreateUnreachable(); 3196 } else { 3197 CGF.Builder.CreateBr(ContBB); 3198 } 3199 } 3200 3201 void CodeGenFunction::EmitCheck( 3202 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3203 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 3204 ArrayRef<llvm::Value *> DynamicArgs) { 3205 assert(IsSanitizerScope); 3206 assert(Checked.size() > 0); 3207 assert(CheckHandler >= 0 && 3208 size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers)); 3209 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 3210 3211 llvm::Value *FatalCond = nullptr; 3212 llvm::Value *RecoverableCond = nullptr; 3213 llvm::Value *TrapCond = nullptr; 3214 for (int i = 0, n = Checked.size(); i < n; ++i) { 3215 llvm::Value *Check = Checked[i].first; 3216 // -fsanitize-trap= overrides -fsanitize-recover=. 3217 llvm::Value *&Cond = 3218 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 3219 ? TrapCond 3220 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 3221 ? RecoverableCond 3222 : FatalCond; 3223 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 3224 } 3225 3226 if (TrapCond) 3227 EmitTrapCheck(TrapCond, CheckHandler); 3228 if (!FatalCond && !RecoverableCond) 3229 return; 3230 3231 llvm::Value *JointCond; 3232 if (FatalCond && RecoverableCond) 3233 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 3234 else 3235 JointCond = FatalCond ? FatalCond : RecoverableCond; 3236 assert(JointCond); 3237 3238 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 3239 assert(SanOpts.has(Checked[0].second)); 3240 #ifndef NDEBUG 3241 for (int i = 1, n = Checked.size(); i < n; ++i) { 3242 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 3243 "All recoverable kinds in a single check must be same!"); 3244 assert(SanOpts.has(Checked[i].second)); 3245 } 3246 #endif 3247 3248 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3249 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 3250 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 3251 // Give hint that we very much don't expect to execute the handler 3252 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 3253 llvm::MDBuilder MDHelper(getLLVMContext()); 3254 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3255 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 3256 EmitBlock(Handlers); 3257 3258 // Handler functions take an i8* pointing to the (handler-specific) static 3259 // information block, followed by a sequence of intptr_t arguments 3260 // representing operand values. 3261 SmallVector<llvm::Value *, 4> Args; 3262 SmallVector<llvm::Type *, 4> ArgTypes; 3263 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 3264 Args.reserve(DynamicArgs.size() + 1); 3265 ArgTypes.reserve(DynamicArgs.size() + 1); 3266 3267 // Emit handler arguments and create handler function type. 3268 if (!StaticArgs.empty()) { 3269 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3270 auto *InfoPtr = 3271 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3272 llvm::GlobalVariable::PrivateLinkage, Info); 3273 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3274 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3275 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 3276 ArgTypes.push_back(Int8PtrTy); 3277 } 3278 3279 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 3280 Args.push_back(EmitCheckValue(DynamicArgs[i])); 3281 ArgTypes.push_back(IntPtrTy); 3282 } 3283 } 3284 3285 llvm::FunctionType *FnType = 3286 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 3287 3288 if (!FatalCond || !RecoverableCond) { 3289 // Simple case: we need to generate a single handler call, either 3290 // fatal, or non-fatal. 3291 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 3292 (FatalCond != nullptr), Cont); 3293 } else { 3294 // Emit two handler calls: first one for set of unrecoverable checks, 3295 // another one for recoverable. 3296 llvm::BasicBlock *NonFatalHandlerBB = 3297 createBasicBlock("non_fatal." + CheckName); 3298 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 3299 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 3300 EmitBlock(FatalHandlerBB); 3301 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 3302 NonFatalHandlerBB); 3303 EmitBlock(NonFatalHandlerBB); 3304 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 3305 Cont); 3306 } 3307 3308 EmitBlock(Cont); 3309 } 3310 3311 void CodeGenFunction::EmitCfiSlowPathCheck( 3312 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 3313 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 3314 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 3315 3316 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 3317 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 3318 3319 llvm::MDBuilder MDHelper(getLLVMContext()); 3320 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 3321 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 3322 3323 EmitBlock(CheckBB); 3324 3325 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 3326 3327 llvm::CallInst *CheckCall; 3328 llvm::FunctionCallee SlowPathFn; 3329 if (WithDiag) { 3330 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 3331 auto *InfoPtr = 3332 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 3333 llvm::GlobalVariable::PrivateLinkage, Info); 3334 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3335 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 3336 3337 SlowPathFn = CGM.getModule().getOrInsertFunction( 3338 "__cfi_slowpath_diag", 3339 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 3340 false)); 3341 CheckCall = Builder.CreateCall( 3342 SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 3343 } else { 3344 SlowPathFn = CGM.getModule().getOrInsertFunction( 3345 "__cfi_slowpath", 3346 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 3347 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 3348 } 3349 3350 CGM.setDSOLocal( 3351 cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts())); 3352 CheckCall->setDoesNotThrow(); 3353 3354 EmitBlock(Cont); 3355 } 3356 3357 // Emit a stub for __cfi_check function so that the linker knows about this 3358 // symbol in LTO mode. 3359 void CodeGenFunction::EmitCfiCheckStub() { 3360 llvm::Module *M = &CGM.getModule(); 3361 auto &Ctx = M->getContext(); 3362 llvm::Function *F = llvm::Function::Create( 3363 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 3364 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 3365 CGM.setDSOLocal(F); 3366 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 3367 // FIXME: consider emitting an intrinsic call like 3368 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 3369 // which can be lowered in CrossDSOCFI pass to the actual contents of 3370 // __cfi_check. This would allow inlining of __cfi_check calls. 3371 llvm::CallInst::Create( 3372 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 3373 llvm::ReturnInst::Create(Ctx, nullptr, BB); 3374 } 3375 3376 // This function is basically a switch over the CFI failure kind, which is 3377 // extracted from CFICheckFailData (1st function argument). Each case is either 3378 // llvm.trap or a call to one of the two runtime handlers, based on 3379 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3380 // failure kind) traps, but this should really never happen. CFICheckFailData 3381 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3382 // check kind; in this case __cfi_check_fail traps as well. 3383 void CodeGenFunction::EmitCfiCheckFail() { 3384 SanitizerScope SanScope(this); 3385 FunctionArgList Args; 3386 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3387 ImplicitParamDecl::Other); 3388 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3389 ImplicitParamDecl::Other); 3390 Args.push_back(&ArgData); 3391 Args.push_back(&ArgAddr); 3392 3393 const CGFunctionInfo &FI = 3394 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3395 3396 llvm::Function *F = llvm::Function::Create( 3397 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3398 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3399 3400 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false); 3401 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F); 3402 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3403 3404 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3405 SourceLocation()); 3406 3407 // This function is not affected by NoSanitizeList. This function does 3408 // not have a source location, but "src:*" would still apply. Revert any 3409 // changes to SanOpts made in StartFunction. 3410 SanOpts = CGM.getLangOpts().Sanitize; 3411 3412 llvm::Value *Data = 3413 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3414 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3415 llvm::Value *Addr = 3416 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3417 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3418 3419 // Data == nullptr means the calling module has trap behaviour for this check. 3420 llvm::Value *DataIsNotNullPtr = 3421 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3422 EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail); 3423 3424 llvm::StructType *SourceLocationTy = 3425 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3426 llvm::StructType *CfiCheckFailDataTy = 3427 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3428 3429 llvm::Value *V = Builder.CreateConstGEP2_32( 3430 CfiCheckFailDataTy, 3431 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3432 0); 3433 Address CheckKindAddr(V, getIntAlign()); 3434 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3435 3436 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3437 CGM.getLLVMContext(), 3438 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3439 llvm::Value *ValidVtable = Builder.CreateZExt( 3440 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3441 {Addr, AllVtables}), 3442 IntPtrTy); 3443 3444 const std::pair<int, SanitizerMask> CheckKinds[] = { 3445 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3446 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3447 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3448 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3449 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3450 3451 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3452 for (auto CheckKindMaskPair : CheckKinds) { 3453 int Kind = CheckKindMaskPair.first; 3454 SanitizerMask Mask = CheckKindMaskPair.second; 3455 llvm::Value *Cond = 3456 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3457 if (CGM.getLangOpts().Sanitize.has(Mask)) 3458 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3459 {Data, Addr, ValidVtable}); 3460 else 3461 EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail); 3462 } 3463 3464 FinishFunction(); 3465 // The only reference to this function will be created during LTO link. 3466 // Make sure it survives until then. 3467 CGM.addUsedGlobal(F); 3468 } 3469 3470 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) { 3471 if (SanOpts.has(SanitizerKind::Unreachable)) { 3472 SanitizerScope SanScope(this); 3473 EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()), 3474 SanitizerKind::Unreachable), 3475 SanitizerHandler::BuiltinUnreachable, 3476 EmitCheckSourceLocation(Loc), None); 3477 } 3478 Builder.CreateUnreachable(); 3479 } 3480 3481 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked, 3482 SanitizerHandler CheckHandlerID) { 3483 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3484 3485 // If we're optimizing, collapse all calls to trap down to just one per 3486 // check-type per function to save on code size. 3487 if (TrapBBs.size() <= CheckHandlerID) 3488 TrapBBs.resize(CheckHandlerID + 1); 3489 llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID]; 3490 3491 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3492 TrapBB = createBasicBlock("trap"); 3493 Builder.CreateCondBr(Checked, Cont, TrapBB); 3494 EmitBlock(TrapBB); 3495 3496 llvm::CallInst *TrapCall = 3497 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::ubsantrap), 3498 llvm::ConstantInt::get(CGM.Int8Ty, CheckHandlerID)); 3499 3500 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3501 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3502 CGM.getCodeGenOpts().TrapFuncName); 3503 TrapCall->addFnAttr(A); 3504 } 3505 TrapCall->setDoesNotReturn(); 3506 TrapCall->setDoesNotThrow(); 3507 Builder.CreateUnreachable(); 3508 } else { 3509 auto Call = TrapBB->begin(); 3510 assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB"); 3511 3512 Call->applyMergedLocation(Call->getDebugLoc(), 3513 Builder.getCurrentDebugLocation()); 3514 Builder.CreateCondBr(Checked, Cont, TrapBB); 3515 } 3516 3517 EmitBlock(Cont); 3518 } 3519 3520 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3521 llvm::CallInst *TrapCall = 3522 Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3523 3524 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3525 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3526 CGM.getCodeGenOpts().TrapFuncName); 3527 TrapCall->addFnAttr(A); 3528 } 3529 3530 return TrapCall; 3531 } 3532 3533 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3534 LValueBaseInfo *BaseInfo, 3535 TBAAAccessInfo *TBAAInfo) { 3536 assert(E->getType()->isArrayType() && 3537 "Array to pointer decay must have array source type!"); 3538 3539 // Expressions of array type can't be bitfields or vector elements. 3540 LValue LV = EmitLValue(E); 3541 Address Addr = LV.getAddress(*this); 3542 3543 // If the array type was an incomplete type, we need to make sure 3544 // the decay ends up being the right type. 3545 llvm::Type *NewTy = ConvertType(E->getType()); 3546 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3547 3548 // Note that VLA pointers are always decayed, so we don't need to do 3549 // anything here. 3550 if (!E->getType()->isVariableArrayType()) { 3551 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3552 "Expected pointer to array"); 3553 Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3554 } 3555 3556 // The result of this decay conversion points to an array element within the 3557 // base lvalue. However, since TBAA currently does not support representing 3558 // accesses to elements of member arrays, we conservatively represent accesses 3559 // to the pointee object as if it had no any base lvalue specified. 3560 // TODO: Support TBAA for member arrays. 3561 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3562 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3563 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3564 3565 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3566 } 3567 3568 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3569 /// array to pointer, return the array subexpression. 3570 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3571 // If this isn't just an array->pointer decay, bail out. 3572 const auto *CE = dyn_cast<CastExpr>(E); 3573 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3574 return nullptr; 3575 3576 // If this is a decay from variable width array, bail out. 3577 const Expr *SubExpr = CE->getSubExpr(); 3578 if (SubExpr->getType()->isVariableArrayType()) 3579 return nullptr; 3580 3581 return SubExpr; 3582 } 3583 3584 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3585 llvm::Type *elemType, 3586 llvm::Value *ptr, 3587 ArrayRef<llvm::Value*> indices, 3588 bool inbounds, 3589 bool signedIndices, 3590 SourceLocation loc, 3591 const llvm::Twine &name = "arrayidx") { 3592 if (inbounds) { 3593 return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices, 3594 CodeGenFunction::NotSubtraction, loc, 3595 name); 3596 } else { 3597 return CGF.Builder.CreateGEP(elemType, ptr, indices, name); 3598 } 3599 } 3600 3601 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3602 llvm::Value *idx, 3603 CharUnits eltSize) { 3604 // If we have a constant index, we can use the exact offset of the 3605 // element we're accessing. 3606 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3607 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3608 return arrayAlign.alignmentAtOffset(offset); 3609 3610 // Otherwise, use the worst-case alignment for any element. 3611 } else { 3612 return arrayAlign.alignmentOfArrayElement(eltSize); 3613 } 3614 } 3615 3616 static QualType getFixedSizeElementType(const ASTContext &ctx, 3617 const VariableArrayType *vla) { 3618 QualType eltType; 3619 do { 3620 eltType = vla->getElementType(); 3621 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3622 return eltType; 3623 } 3624 3625 /// Given an array base, check whether its member access belongs to a record 3626 /// with preserve_access_index attribute or not. 3627 static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) { 3628 if (!ArrayBase || !CGF.getDebugInfo()) 3629 return false; 3630 3631 // Only support base as either a MemberExpr or DeclRefExpr. 3632 // DeclRefExpr to cover cases like: 3633 // struct s { int a; int b[10]; }; 3634 // struct s *p; 3635 // p[1].a 3636 // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr. 3637 // p->b[5] is a MemberExpr example. 3638 const Expr *E = ArrayBase->IgnoreImpCasts(); 3639 if (const auto *ME = dyn_cast<MemberExpr>(E)) 3640 return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3641 3642 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 3643 const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl()); 3644 if (!VarDef) 3645 return false; 3646 3647 const auto *PtrT = VarDef->getType()->getAs<PointerType>(); 3648 if (!PtrT) 3649 return false; 3650 3651 const auto *PointeeT = PtrT->getPointeeType() 3652 ->getUnqualifiedDesugaredType(); 3653 if (const auto *RecT = dyn_cast<RecordType>(PointeeT)) 3654 return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>(); 3655 return false; 3656 } 3657 3658 return false; 3659 } 3660 3661 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3662 ArrayRef<llvm::Value *> indices, 3663 QualType eltType, bool inbounds, 3664 bool signedIndices, SourceLocation loc, 3665 QualType *arrayType = nullptr, 3666 const Expr *Base = nullptr, 3667 const llvm::Twine &name = "arrayidx") { 3668 // All the indices except that last must be zero. 3669 #ifndef NDEBUG 3670 for (auto idx : indices.drop_back()) 3671 assert(isa<llvm::ConstantInt>(idx) && 3672 cast<llvm::ConstantInt>(idx)->isZero()); 3673 #endif 3674 3675 // Determine the element size of the statically-sized base. This is 3676 // the thing that the indices are expressed in terms of. 3677 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3678 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3679 } 3680 3681 // We can use that to compute the best alignment of the element. 3682 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3683 CharUnits eltAlign = 3684 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3685 3686 llvm::Value *eltPtr; 3687 auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back()); 3688 if (!LastIndex || 3689 (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) { 3690 eltPtr = emitArraySubscriptGEP( 3691 CGF, addr.getElementType(), addr.getPointer(), indices, inbounds, 3692 signedIndices, loc, name); 3693 } else { 3694 // Remember the original array subscript for bpf target 3695 unsigned idx = LastIndex->getZExtValue(); 3696 llvm::DIType *DbgInfo = nullptr; 3697 if (arrayType) 3698 DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc); 3699 eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(), 3700 addr.getPointer(), 3701 indices.size() - 1, 3702 idx, DbgInfo); 3703 } 3704 3705 return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign); 3706 } 3707 3708 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3709 bool Accessed) { 3710 // The index must always be an integer, which is not an aggregate. Emit it 3711 // in lexical order (this complexity is, sadly, required by C++17). 3712 llvm::Value *IdxPre = 3713 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3714 bool SignedIndices = false; 3715 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3716 auto *Idx = IdxPre; 3717 if (E->getLHS() != E->getIdx()) { 3718 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3719 Idx = EmitScalarExpr(E->getIdx()); 3720 } 3721 3722 QualType IdxTy = E->getIdx()->getType(); 3723 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3724 SignedIndices |= IdxSigned; 3725 3726 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3727 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3728 3729 // Extend or truncate the index type to 32 or 64-bits. 3730 if (Promote && Idx->getType() != IntPtrTy) 3731 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3732 3733 return Idx; 3734 }; 3735 IdxPre = nullptr; 3736 3737 // If the base is a vector type, then we are forming a vector element lvalue 3738 // with this subscript. 3739 if (E->getBase()->getType()->isVectorType() && 3740 !isa<ExtVectorElementExpr>(E->getBase())) { 3741 // Emit the vector as an lvalue to get its address. 3742 LValue LHS = EmitLValue(E->getBase()); 3743 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3744 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3745 return LValue::MakeVectorElt(LHS.getAddress(*this), Idx, 3746 E->getBase()->getType(), LHS.getBaseInfo(), 3747 TBAAAccessInfo()); 3748 } 3749 3750 // All the other cases basically behave like simple offsetting. 3751 3752 // Handle the extvector case we ignored above. 3753 if (isa<ExtVectorElementExpr>(E->getBase())) { 3754 LValue LV = EmitLValue(E->getBase()); 3755 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3756 Address Addr = EmitExtVectorElementLValue(LV); 3757 3758 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3759 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3760 SignedIndices, E->getExprLoc()); 3761 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3762 CGM.getTBAAInfoForSubobject(LV, EltType)); 3763 } 3764 3765 LValueBaseInfo EltBaseInfo; 3766 TBAAAccessInfo EltTBAAInfo; 3767 Address Addr = Address::invalid(); 3768 if (const VariableArrayType *vla = 3769 getContext().getAsVariableArrayType(E->getType())) { 3770 // The base must be a pointer, which is not an aggregate. Emit 3771 // it. It needs to be emitted first in case it's what captures 3772 // the VLA bounds. 3773 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3774 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3775 3776 // The element count here is the total number of non-VLA elements. 3777 llvm::Value *numElements = getVLASize(vla).NumElts; 3778 3779 // Effectively, the multiply by the VLA size is part of the GEP. 3780 // GEP indexes are signed, and scaling an index isn't permitted to 3781 // signed-overflow, so we use the same semantics for our explicit 3782 // multiply. We suppress this if overflow is not undefined behavior. 3783 if (getLangOpts().isSignedOverflowDefined()) { 3784 Idx = Builder.CreateMul(Idx, numElements); 3785 } else { 3786 Idx = Builder.CreateNSWMul(Idx, numElements); 3787 } 3788 3789 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3790 !getLangOpts().isSignedOverflowDefined(), 3791 SignedIndices, E->getExprLoc()); 3792 3793 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3794 // Indexing over an interface, as in "NSString *P; P[4];" 3795 3796 // Emit the base pointer. 3797 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3798 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3799 3800 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3801 llvm::Value *InterfaceSizeVal = 3802 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3803 3804 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3805 3806 // We don't necessarily build correct LLVM struct types for ObjC 3807 // interfaces, so we can't rely on GEP to do this scaling 3808 // correctly, so we need to cast to i8*. FIXME: is this actually 3809 // true? A lot of other things in the fragile ABI would break... 3810 llvm::Type *OrigBaseTy = Addr.getType(); 3811 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3812 3813 // Do the GEP. 3814 CharUnits EltAlign = 3815 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3816 llvm::Value *EltPtr = 3817 emitArraySubscriptGEP(*this, Addr.getElementType(), Addr.getPointer(), 3818 ScaledIdx, false, SignedIndices, E->getExprLoc()); 3819 Addr = Address(EltPtr, EltAlign); 3820 3821 // Cast back. 3822 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3823 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3824 // If this is A[i] where A is an array, the frontend will have decayed the 3825 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3826 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3827 // "gep x, i" here. Emit one "gep A, 0, i". 3828 assert(Array->getType()->isArrayType() && 3829 "Array to pointer decay must have array source type!"); 3830 LValue ArrayLV; 3831 // For simple multidimensional array indexing, set the 'accessed' flag for 3832 // better bounds-checking of the base expression. 3833 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3834 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3835 else 3836 ArrayLV = EmitLValue(Array); 3837 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3838 3839 // Propagate the alignment from the array itself to the result. 3840 QualType arrayType = Array->getType(); 3841 Addr = emitArraySubscriptGEP( 3842 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 3843 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3844 E->getExprLoc(), &arrayType, E->getBase()); 3845 EltBaseInfo = ArrayLV.getBaseInfo(); 3846 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3847 } else { 3848 // The base must be a pointer; emit it with an estimate of its alignment. 3849 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3850 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3851 QualType ptrType = E->getBase()->getType(); 3852 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3853 !getLangOpts().isSignedOverflowDefined(), 3854 SignedIndices, E->getExprLoc(), &ptrType, 3855 E->getBase()); 3856 } 3857 3858 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3859 3860 if (getLangOpts().ObjC && 3861 getLangOpts().getGC() != LangOptions::NonGC) { 3862 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3863 setObjCGCLValueClass(getContext(), E, LV); 3864 } 3865 return LV; 3866 } 3867 3868 LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) { 3869 assert( 3870 !E->isIncomplete() && 3871 "incomplete matrix subscript expressions should be rejected during Sema"); 3872 LValue Base = EmitLValue(E->getBase()); 3873 llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx()); 3874 llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx()); 3875 llvm::Value *NumRows = Builder.getIntN( 3876 RowIdx->getType()->getScalarSizeInBits(), 3877 E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows()); 3878 llvm::Value *FinalIdx = 3879 Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx); 3880 return LValue::MakeMatrixElt( 3881 MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx, 3882 E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo()); 3883 } 3884 3885 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3886 LValueBaseInfo &BaseInfo, 3887 TBAAAccessInfo &TBAAInfo, 3888 QualType BaseTy, QualType ElTy, 3889 bool IsLowerBound) { 3890 LValue BaseLVal; 3891 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3892 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3893 if (BaseTy->isArrayType()) { 3894 Address Addr = BaseLVal.getAddress(CGF); 3895 BaseInfo = BaseLVal.getBaseInfo(); 3896 3897 // If the array type was an incomplete type, we need to make sure 3898 // the decay ends up being the right type. 3899 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3900 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3901 3902 // Note that VLA pointers are always decayed, so we don't need to do 3903 // anything here. 3904 if (!BaseTy->isVariableArrayType()) { 3905 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3906 "Expected pointer to array"); 3907 Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay"); 3908 } 3909 3910 return CGF.Builder.CreateElementBitCast(Addr, 3911 CGF.ConvertTypeForMem(ElTy)); 3912 } 3913 LValueBaseInfo TypeBaseInfo; 3914 TBAAAccessInfo TypeTBAAInfo; 3915 CharUnits Align = 3916 CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo); 3917 BaseInfo.mergeForCast(TypeBaseInfo); 3918 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3919 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)), Align); 3920 } 3921 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3922 } 3923 3924 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3925 bool IsLowerBound) { 3926 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3927 QualType ResultExprTy; 3928 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3929 ResultExprTy = AT->getElementType(); 3930 else 3931 ResultExprTy = BaseTy->getPointeeType(); 3932 llvm::Value *Idx = nullptr; 3933 if (IsLowerBound || E->getColonLocFirst().isInvalid()) { 3934 // Requesting lower bound or upper bound, but without provided length and 3935 // without ':' symbol for the default length -> length = 1. 3936 // Idx = LowerBound ?: 0; 3937 if (auto *LowerBound = E->getLowerBound()) { 3938 Idx = Builder.CreateIntCast( 3939 EmitScalarExpr(LowerBound), IntPtrTy, 3940 LowerBound->getType()->hasSignedIntegerRepresentation()); 3941 } else 3942 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3943 } else { 3944 // Try to emit length or lower bound as constant. If this is possible, 1 3945 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3946 // IR (LB + Len) - 1. 3947 auto &C = CGM.getContext(); 3948 auto *Length = E->getLength(); 3949 llvm::APSInt ConstLength; 3950 if (Length) { 3951 // Idx = LowerBound + Length - 1; 3952 if (Optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) { 3953 ConstLength = CL->zextOrTrunc(PointerWidthInBits); 3954 Length = nullptr; 3955 } 3956 auto *LowerBound = E->getLowerBound(); 3957 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3958 if (LowerBound) { 3959 if (Optional<llvm::APSInt> LB = LowerBound->getIntegerConstantExpr(C)) { 3960 ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits); 3961 LowerBound = nullptr; 3962 } 3963 } 3964 if (!Length) 3965 --ConstLength; 3966 else if (!LowerBound) 3967 --ConstLowerBound; 3968 3969 if (Length || LowerBound) { 3970 auto *LowerBoundVal = 3971 LowerBound 3972 ? Builder.CreateIntCast( 3973 EmitScalarExpr(LowerBound), IntPtrTy, 3974 LowerBound->getType()->hasSignedIntegerRepresentation()) 3975 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3976 auto *LengthVal = 3977 Length 3978 ? Builder.CreateIntCast( 3979 EmitScalarExpr(Length), IntPtrTy, 3980 Length->getType()->hasSignedIntegerRepresentation()) 3981 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3982 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3983 /*HasNUW=*/false, 3984 !getLangOpts().isSignedOverflowDefined()); 3985 if (Length && LowerBound) { 3986 Idx = Builder.CreateSub( 3987 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3988 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3989 } 3990 } else 3991 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3992 } else { 3993 // Idx = ArraySize - 1; 3994 QualType ArrayTy = BaseTy->isPointerType() 3995 ? E->getBase()->IgnoreParenImpCasts()->getType() 3996 : BaseTy; 3997 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3998 Length = VAT->getSizeExpr(); 3999 if (Optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) { 4000 ConstLength = *L; 4001 Length = nullptr; 4002 } 4003 } else { 4004 auto *CAT = C.getAsConstantArrayType(ArrayTy); 4005 ConstLength = CAT->getSize(); 4006 } 4007 if (Length) { 4008 auto *LengthVal = Builder.CreateIntCast( 4009 EmitScalarExpr(Length), IntPtrTy, 4010 Length->getType()->hasSignedIntegerRepresentation()); 4011 Idx = Builder.CreateSub( 4012 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 4013 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 4014 } else { 4015 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 4016 --ConstLength; 4017 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 4018 } 4019 } 4020 } 4021 assert(Idx); 4022 4023 Address EltPtr = Address::invalid(); 4024 LValueBaseInfo BaseInfo; 4025 TBAAAccessInfo TBAAInfo; 4026 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 4027 // The base must be a pointer, which is not an aggregate. Emit 4028 // it. It needs to be emitted first in case it's what captures 4029 // the VLA bounds. 4030 Address Base = 4031 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 4032 BaseTy, VLA->getElementType(), IsLowerBound); 4033 // The element count here is the total number of non-VLA elements. 4034 llvm::Value *NumElements = getVLASize(VLA).NumElts; 4035 4036 // Effectively, the multiply by the VLA size is part of the GEP. 4037 // GEP indexes are signed, and scaling an index isn't permitted to 4038 // signed-overflow, so we use the same semantics for our explicit 4039 // multiply. We suppress this if overflow is not undefined behavior. 4040 if (getLangOpts().isSignedOverflowDefined()) 4041 Idx = Builder.CreateMul(Idx, NumElements); 4042 else 4043 Idx = Builder.CreateNSWMul(Idx, NumElements); 4044 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 4045 !getLangOpts().isSignedOverflowDefined(), 4046 /*signedIndices=*/false, E->getExprLoc()); 4047 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 4048 // If this is A[i] where A is an array, the frontend will have decayed the 4049 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 4050 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 4051 // "gep x, i" here. Emit one "gep A, 0, i". 4052 assert(Array->getType()->isArrayType() && 4053 "Array to pointer decay must have array source type!"); 4054 LValue ArrayLV; 4055 // For simple multidimensional array indexing, set the 'accessed' flag for 4056 // better bounds-checking of the base expression. 4057 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 4058 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 4059 else 4060 ArrayLV = EmitLValue(Array); 4061 4062 // Propagate the alignment from the array itself to the result. 4063 EltPtr = emitArraySubscriptGEP( 4064 *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx}, 4065 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 4066 /*signedIndices=*/false, E->getExprLoc()); 4067 BaseInfo = ArrayLV.getBaseInfo(); 4068 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 4069 } else { 4070 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 4071 TBAAInfo, BaseTy, ResultExprTy, 4072 IsLowerBound); 4073 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 4074 !getLangOpts().isSignedOverflowDefined(), 4075 /*signedIndices=*/false, E->getExprLoc()); 4076 } 4077 4078 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 4079 } 4080 4081 LValue CodeGenFunction:: 4082 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 4083 // Emit the base vector as an l-value. 4084 LValue Base; 4085 4086 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 4087 if (E->isArrow()) { 4088 // If it is a pointer to a vector, emit the address and form an lvalue with 4089 // it. 4090 LValueBaseInfo BaseInfo; 4091 TBAAAccessInfo TBAAInfo; 4092 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 4093 const auto *PT = E->getBase()->getType()->castAs<PointerType>(); 4094 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 4095 Base.getQuals().removeObjCGCAttr(); 4096 } else if (E->getBase()->isGLValue()) { 4097 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 4098 // emit the base as an lvalue. 4099 assert(E->getBase()->getType()->isVectorType()); 4100 Base = EmitLValue(E->getBase()); 4101 } else { 4102 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 4103 assert(E->getBase()->getType()->isVectorType() && 4104 "Result must be a vector"); 4105 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 4106 4107 // Store the vector to memory (because LValue wants an address). 4108 Address VecMem = CreateMemTemp(E->getBase()->getType()); 4109 Builder.CreateStore(Vec, VecMem); 4110 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 4111 AlignmentSource::Decl); 4112 } 4113 4114 QualType type = 4115 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 4116 4117 // Encode the element access list into a vector of unsigned indices. 4118 SmallVector<uint32_t, 4> Indices; 4119 E->getEncodedElementAccess(Indices); 4120 4121 if (Base.isSimple()) { 4122 llvm::Constant *CV = 4123 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 4124 return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type, 4125 Base.getBaseInfo(), TBAAAccessInfo()); 4126 } 4127 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 4128 4129 llvm::Constant *BaseElts = Base.getExtVectorElts(); 4130 SmallVector<llvm::Constant *, 4> CElts; 4131 4132 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 4133 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 4134 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 4135 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 4136 Base.getBaseInfo(), TBAAAccessInfo()); 4137 } 4138 4139 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 4140 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 4141 EmitIgnoredExpr(E->getBase()); 4142 return EmitDeclRefLValue(DRE); 4143 } 4144 4145 Expr *BaseExpr = E->getBase(); 4146 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 4147 LValue BaseLV; 4148 if (E->isArrow()) { 4149 LValueBaseInfo BaseInfo; 4150 TBAAAccessInfo TBAAInfo; 4151 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 4152 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 4153 SanitizerSet SkippedChecks; 4154 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 4155 if (IsBaseCXXThis) 4156 SkippedChecks.set(SanitizerKind::Alignment, true); 4157 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 4158 SkippedChecks.set(SanitizerKind::Null, true); 4159 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 4160 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 4161 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 4162 } else 4163 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 4164 4165 NamedDecl *ND = E->getMemberDecl(); 4166 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 4167 LValue LV = EmitLValueForField(BaseLV, Field); 4168 setObjCGCLValueClass(getContext(), E, LV); 4169 if (getLangOpts().OpenMP) { 4170 // If the member was explicitly marked as nontemporal, mark it as 4171 // nontemporal. If the base lvalue is marked as nontemporal, mark access 4172 // to children as nontemporal too. 4173 if ((IsWrappedCXXThis(BaseExpr) && 4174 CGM.getOpenMPRuntime().isNontemporalDecl(Field)) || 4175 BaseLV.isNontemporal()) 4176 LV.setNontemporal(/*Value=*/true); 4177 } 4178 return LV; 4179 } 4180 4181 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 4182 return EmitFunctionDeclLValue(*this, E, FD); 4183 4184 llvm_unreachable("Unhandled member declaration!"); 4185 } 4186 4187 /// Given that we are currently emitting a lambda, emit an l-value for 4188 /// one of its members. 4189 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 4190 if (CurCodeDecl) { 4191 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 4192 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 4193 } 4194 QualType LambdaTagType = 4195 getContext().getTagDeclType(Field->getParent()); 4196 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 4197 return EmitLValueForField(LambdaLV, Field); 4198 } 4199 4200 /// Get the field index in the debug info. The debug info structure/union 4201 /// will ignore the unnamed bitfields. 4202 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec, 4203 unsigned FieldIndex) { 4204 unsigned I = 0, Skipped = 0; 4205 4206 for (auto F : Rec->getDefinition()->fields()) { 4207 if (I == FieldIndex) 4208 break; 4209 if (F->isUnnamedBitfield()) 4210 Skipped++; 4211 I++; 4212 } 4213 4214 return FieldIndex - Skipped; 4215 } 4216 4217 /// Get the address of a zero-sized field within a record. The resulting 4218 /// address doesn't necessarily have the right type. 4219 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base, 4220 const FieldDecl *Field) { 4221 CharUnits Offset = CGF.getContext().toCharUnitsFromBits( 4222 CGF.getContext().getFieldOffset(Field)); 4223 if (Offset.isZero()) 4224 return Base; 4225 Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty); 4226 return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset); 4227 } 4228 4229 /// Drill down to the storage of a field without walking into 4230 /// reference types. 4231 /// 4232 /// The resulting address doesn't necessarily have the right type. 4233 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 4234 const FieldDecl *field) { 4235 if (field->isZeroSize(CGF.getContext())) 4236 return emitAddrOfZeroSizeField(CGF, base, field); 4237 4238 const RecordDecl *rec = field->getParent(); 4239 4240 unsigned idx = 4241 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4242 4243 return CGF.Builder.CreateStructGEP(base, idx, field->getName()); 4244 } 4245 4246 static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base, 4247 Address addr, const FieldDecl *field) { 4248 const RecordDecl *rec = field->getParent(); 4249 llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType( 4250 base.getType(), rec->getLocation()); 4251 4252 unsigned idx = 4253 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 4254 4255 return CGF.Builder.CreatePreserveStructAccessIndex( 4256 addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo); 4257 } 4258 4259 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 4260 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 4261 if (!RD) 4262 return false; 4263 4264 if (RD->isDynamicClass()) 4265 return true; 4266 4267 for (const auto &Base : RD->bases()) 4268 if (hasAnyVptr(Base.getType(), Context)) 4269 return true; 4270 4271 for (const FieldDecl *Field : RD->fields()) 4272 if (hasAnyVptr(Field->getType(), Context)) 4273 return true; 4274 4275 return false; 4276 } 4277 4278 LValue CodeGenFunction::EmitLValueForField(LValue base, 4279 const FieldDecl *field) { 4280 LValueBaseInfo BaseInfo = base.getBaseInfo(); 4281 4282 if (field->isBitField()) { 4283 const CGRecordLayout &RL = 4284 CGM.getTypes().getCGRecordLayout(field->getParent()); 4285 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 4286 const bool UseVolatile = isAAPCS(CGM.getTarget()) && 4287 CGM.getCodeGenOpts().AAPCSBitfieldWidth && 4288 Info.VolatileStorageSize != 0 && 4289 field->getType() 4290 .withCVRQualifiers(base.getVRQualifiers()) 4291 .isVolatileQualified(); 4292 Address Addr = base.getAddress(*this); 4293 unsigned Idx = RL.getLLVMFieldNo(field); 4294 const RecordDecl *rec = field->getParent(); 4295 if (!UseVolatile) { 4296 if (!IsInPreservedAIRegion && 4297 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4298 if (Idx != 0) 4299 // For structs, we GEP to the field that the record layout suggests. 4300 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 4301 } else { 4302 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType( 4303 getContext().getRecordType(rec), rec->getLocation()); 4304 Addr = Builder.CreatePreserveStructAccessIndex( 4305 Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()), 4306 DbgInfo); 4307 } 4308 } 4309 const unsigned SS = 4310 UseVolatile ? Info.VolatileStorageSize : Info.StorageSize; 4311 // Get the access type. 4312 llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS); 4313 if (Addr.getElementType() != FieldIntTy) 4314 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 4315 if (UseVolatile) { 4316 const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity(); 4317 if (VolatileOffset) 4318 Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset); 4319 } 4320 4321 QualType fieldType = 4322 field->getType().withCVRQualifiers(base.getVRQualifiers()); 4323 // TODO: Support TBAA for bit fields. 4324 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 4325 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 4326 TBAAAccessInfo()); 4327 } 4328 4329 // Fields of may-alias structures are may-alias themselves. 4330 // FIXME: this should get propagated down through anonymous structs 4331 // and unions. 4332 QualType FieldType = field->getType(); 4333 const RecordDecl *rec = field->getParent(); 4334 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 4335 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 4336 TBAAAccessInfo FieldTBAAInfo; 4337 if (base.getTBAAInfo().isMayAlias() || 4338 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 4339 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4340 } else if (rec->isUnion()) { 4341 // TODO: Support TBAA for unions. 4342 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 4343 } else { 4344 // If no base type been assigned for the base access, then try to generate 4345 // one for this base lvalue. 4346 FieldTBAAInfo = base.getTBAAInfo(); 4347 if (!FieldTBAAInfo.BaseType) { 4348 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 4349 assert(!FieldTBAAInfo.Offset && 4350 "Nonzero offset for an access with no base type!"); 4351 } 4352 4353 // Adjust offset to be relative to the base type. 4354 const ASTRecordLayout &Layout = 4355 getContext().getASTRecordLayout(field->getParent()); 4356 unsigned CharWidth = getContext().getCharWidth(); 4357 if (FieldTBAAInfo.BaseType) 4358 FieldTBAAInfo.Offset += 4359 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 4360 4361 // Update the final access type and size. 4362 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 4363 FieldTBAAInfo.Size = 4364 getContext().getTypeSizeInChars(FieldType).getQuantity(); 4365 } 4366 4367 Address addr = base.getAddress(*this); 4368 if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) { 4369 if (CGM.getCodeGenOpts().StrictVTablePointers && 4370 ClassDef->isDynamicClass()) { 4371 // Getting to any field of dynamic object requires stripping dynamic 4372 // information provided by invariant.group. This is because accessing 4373 // fields may leak the real address of dynamic object, which could result 4374 // in miscompilation when leaked pointer would be compared. 4375 auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer()); 4376 addr = Address(stripped, addr.getAlignment()); 4377 } 4378 } 4379 4380 unsigned RecordCVR = base.getVRQualifiers(); 4381 if (rec->isUnion()) { 4382 // For unions, there is no pointer adjustment. 4383 if (CGM.getCodeGenOpts().StrictVTablePointers && 4384 hasAnyVptr(FieldType, getContext())) 4385 // Because unions can easily skip invariant.barriers, we need to add 4386 // a barrier every time CXXRecord field with vptr is referenced. 4387 addr = Builder.CreateLaunderInvariantGroup(addr); 4388 4389 if (IsInPreservedAIRegion || 4390 (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) { 4391 // Remember the original union field index 4392 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(), 4393 rec->getLocation()); 4394 addr = Address( 4395 Builder.CreatePreserveUnionAccessIndex( 4396 addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo), 4397 addr.getAlignment()); 4398 } 4399 4400 if (FieldType->isReferenceType()) 4401 addr = Builder.CreateElementBitCast( 4402 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4403 } else { 4404 if (!IsInPreservedAIRegion && 4405 (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) 4406 // For structs, we GEP to the field that the record layout suggests. 4407 addr = emitAddrOfFieldStorage(*this, addr, field); 4408 else 4409 // Remember the original struct field index 4410 addr = emitPreserveStructAccess(*this, base, addr, field); 4411 } 4412 4413 // If this is a reference field, load the reference right now. 4414 if (FieldType->isReferenceType()) { 4415 LValue RefLVal = 4416 MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4417 if (RecordCVR & Qualifiers::Volatile) 4418 RefLVal.getQuals().addVolatile(); 4419 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 4420 4421 // Qualifiers on the struct don't apply to the referencee. 4422 RecordCVR = 0; 4423 FieldType = FieldType->getPointeeType(); 4424 } 4425 4426 // Make sure that the address is pointing to the right type. This is critical 4427 // for both unions and structs. A union needs a bitcast, a struct element 4428 // will need a bitcast if the LLVM type laid out doesn't match the desired 4429 // type. 4430 addr = Builder.CreateElementBitCast( 4431 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 4432 4433 if (field->hasAttr<AnnotateAttr>()) 4434 addr = EmitFieldAnnotations(field, addr); 4435 4436 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 4437 LV.getQuals().addCVRQualifiers(RecordCVR); 4438 4439 // __weak attribute on a field is ignored. 4440 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 4441 LV.getQuals().removeObjCGCAttr(); 4442 4443 return LV; 4444 } 4445 4446 LValue 4447 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 4448 const FieldDecl *Field) { 4449 QualType FieldType = Field->getType(); 4450 4451 if (!FieldType->isReferenceType()) 4452 return EmitLValueForField(Base, Field); 4453 4454 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field); 4455 4456 // Make sure that the address is pointing to the right type. 4457 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 4458 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 4459 4460 // TODO: Generate TBAA information that describes this access as a structure 4461 // member access and not just an access to an object of the field's type. This 4462 // should be similar to what we do in EmitLValueForField(). 4463 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 4464 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 4465 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 4466 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 4467 CGM.getTBAAInfoForSubobject(Base, FieldType)); 4468 } 4469 4470 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 4471 if (E->isFileScope()) { 4472 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 4473 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 4474 } 4475 if (E->getType()->isVariablyModifiedType()) 4476 // make sure to emit the VLA size. 4477 EmitVariablyModifiedType(E->getType()); 4478 4479 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 4480 const Expr *InitExpr = E->getInitializer(); 4481 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 4482 4483 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 4484 /*Init*/ true); 4485 4486 // Block-scope compound literals are destroyed at the end of the enclosing 4487 // scope in C. 4488 if (!getLangOpts().CPlusPlus) 4489 if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) 4490 pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr, 4491 E->getType(), getDestroyer(DtorKind), 4492 DtorKind & EHCleanup); 4493 4494 return Result; 4495 } 4496 4497 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 4498 if (!E->isGLValue()) 4499 // Initializing an aggregate temporary in C++11: T{...}. 4500 return EmitAggExprToLValue(E); 4501 4502 // An lvalue initializer list must be initializing a reference. 4503 assert(E->isTransparent() && "non-transparent glvalue init list"); 4504 return EmitLValue(E->getInit(0)); 4505 } 4506 4507 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 4508 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 4509 /// LValue is returned and the current block has been terminated. 4510 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 4511 const Expr *Operand) { 4512 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 4513 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 4514 return None; 4515 } 4516 4517 return CGF.EmitLValue(Operand); 4518 } 4519 4520 LValue CodeGenFunction:: 4521 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 4522 if (!expr->isGLValue()) { 4523 // ?: here should be an aggregate. 4524 assert(hasAggregateEvaluationKind(expr->getType()) && 4525 "Unexpected conditional operator!"); 4526 return EmitAggExprToLValue(expr); 4527 } 4528 4529 OpaqueValueMapping binding(*this, expr); 4530 4531 const Expr *condExpr = expr->getCond(); 4532 bool CondExprBool; 4533 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4534 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 4535 if (!CondExprBool) std::swap(live, dead); 4536 4537 if (!ContainsLabel(dead)) { 4538 // If the true case is live, we need to track its region. 4539 if (CondExprBool) 4540 incrementProfileCounter(expr); 4541 // If a throw expression we emit it and return an undefined lvalue 4542 // because it can't be used. 4543 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(live->IgnoreParens())) { 4544 EmitCXXThrowExpr(ThrowExpr); 4545 llvm::Type *ElemTy = ConvertType(dead->getType()); 4546 llvm::Type *Ty = llvm::PointerType::getUnqual(ElemTy); 4547 return MakeAddrLValue( 4548 Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()), 4549 dead->getType()); 4550 } 4551 return EmitLValue(live); 4552 } 4553 } 4554 4555 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 4556 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 4557 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 4558 4559 ConditionalEvaluation eval(*this); 4560 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 4561 4562 // Any temporaries created here are conditional. 4563 EmitBlock(lhsBlock); 4564 incrementProfileCounter(expr); 4565 eval.begin(*this); 4566 Optional<LValue> lhs = 4567 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 4568 eval.end(*this); 4569 4570 if (lhs && !lhs->isSimple()) 4571 return EmitUnsupportedLValue(expr, "conditional operator"); 4572 4573 lhsBlock = Builder.GetInsertBlock(); 4574 if (lhs) 4575 Builder.CreateBr(contBlock); 4576 4577 // Any temporaries created here are conditional. 4578 EmitBlock(rhsBlock); 4579 eval.begin(*this); 4580 Optional<LValue> rhs = 4581 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 4582 eval.end(*this); 4583 if (rhs && !rhs->isSimple()) 4584 return EmitUnsupportedLValue(expr, "conditional operator"); 4585 rhsBlock = Builder.GetInsertBlock(); 4586 4587 EmitBlock(contBlock); 4588 4589 if (lhs && rhs) { 4590 Address lhsAddr = lhs->getAddress(*this); 4591 Address rhsAddr = rhs->getAddress(*this); 4592 llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue"); 4593 phi->addIncoming(lhsAddr.getPointer(), lhsBlock); 4594 phi->addIncoming(rhsAddr.getPointer(), rhsBlock); 4595 Address result(phi, lhsAddr.getElementType(), 4596 std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment())); 4597 AlignmentSource alignSource = 4598 std::max(lhs->getBaseInfo().getAlignmentSource(), 4599 rhs->getBaseInfo().getAlignmentSource()); 4600 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 4601 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 4602 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 4603 TBAAInfo); 4604 } else { 4605 assert((lhs || rhs) && 4606 "both operands of glvalue conditional are throw-expressions?"); 4607 return lhs ? *lhs : *rhs; 4608 } 4609 } 4610 4611 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4612 /// type. If the cast is to a reference, we can have the usual lvalue result, 4613 /// otherwise if a cast is needed by the code generator in an lvalue context, 4614 /// then it must mean that we need the address of an aggregate in order to 4615 /// access one of its members. This can happen for all the reasons that casts 4616 /// are permitted with aggregate result, including noop aggregate casts, and 4617 /// cast from scalar to union. 4618 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4619 switch (E->getCastKind()) { 4620 case CK_ToVoid: 4621 case CK_BitCast: 4622 case CK_LValueToRValueBitCast: 4623 case CK_ArrayToPointerDecay: 4624 case CK_FunctionToPointerDecay: 4625 case CK_NullToMemberPointer: 4626 case CK_NullToPointer: 4627 case CK_IntegralToPointer: 4628 case CK_PointerToIntegral: 4629 case CK_PointerToBoolean: 4630 case CK_VectorSplat: 4631 case CK_IntegralCast: 4632 case CK_BooleanToSignedIntegral: 4633 case CK_IntegralToBoolean: 4634 case CK_IntegralToFloating: 4635 case CK_FloatingToIntegral: 4636 case CK_FloatingToBoolean: 4637 case CK_FloatingCast: 4638 case CK_FloatingRealToComplex: 4639 case CK_FloatingComplexToReal: 4640 case CK_FloatingComplexToBoolean: 4641 case CK_FloatingComplexCast: 4642 case CK_FloatingComplexToIntegralComplex: 4643 case CK_IntegralRealToComplex: 4644 case CK_IntegralComplexToReal: 4645 case CK_IntegralComplexToBoolean: 4646 case CK_IntegralComplexCast: 4647 case CK_IntegralComplexToFloatingComplex: 4648 case CK_DerivedToBaseMemberPointer: 4649 case CK_BaseToDerivedMemberPointer: 4650 case CK_MemberPointerToBoolean: 4651 case CK_ReinterpretMemberPointer: 4652 case CK_AnyPointerToBlockPointerCast: 4653 case CK_ARCProduceObject: 4654 case CK_ARCConsumeObject: 4655 case CK_ARCReclaimReturnedObject: 4656 case CK_ARCExtendBlockObject: 4657 case CK_CopyAndAutoreleaseBlockObject: 4658 case CK_IntToOCLSampler: 4659 case CK_FloatingToFixedPoint: 4660 case CK_FixedPointToFloating: 4661 case CK_FixedPointCast: 4662 case CK_FixedPointToBoolean: 4663 case CK_FixedPointToIntegral: 4664 case CK_IntegralToFixedPoint: 4665 case CK_MatrixCast: 4666 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4667 4668 case CK_Dependent: 4669 llvm_unreachable("dependent cast kind in IR gen!"); 4670 4671 case CK_BuiltinFnToFnPtr: 4672 llvm_unreachable("builtin functions are handled elsewhere"); 4673 4674 // These are never l-values; just use the aggregate emission code. 4675 case CK_NonAtomicToAtomic: 4676 case CK_AtomicToNonAtomic: 4677 return EmitAggExprToLValue(E); 4678 4679 case CK_Dynamic: { 4680 LValue LV = EmitLValue(E->getSubExpr()); 4681 Address V = LV.getAddress(*this); 4682 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4683 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4684 } 4685 4686 case CK_ConstructorConversion: 4687 case CK_UserDefinedConversion: 4688 case CK_CPointerToObjCPointerCast: 4689 case CK_BlockPointerToObjCPointerCast: 4690 case CK_LValueToRValue: 4691 return EmitLValue(E->getSubExpr()); 4692 4693 case CK_NoOp: { 4694 // CK_NoOp can model a qualification conversion, which can remove an array 4695 // bound and change the IR type. 4696 // FIXME: Once pointee types are removed from IR, remove this. 4697 LValue LV = EmitLValue(E->getSubExpr()); 4698 if (LV.isSimple()) { 4699 Address V = LV.getAddress(*this); 4700 if (V.isValid()) { 4701 llvm::Type *T = 4702 ConvertTypeForMem(E->getType()) 4703 ->getPointerTo( 4704 cast<llvm::PointerType>(V.getType())->getAddressSpace()); 4705 if (V.getType() != T) 4706 LV.setAddress(Builder.CreateBitCast(V, T)); 4707 } 4708 } 4709 return LV; 4710 } 4711 4712 case CK_UncheckedDerivedToBase: 4713 case CK_DerivedToBase: { 4714 const auto *DerivedClassTy = 4715 E->getSubExpr()->getType()->castAs<RecordType>(); 4716 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4717 4718 LValue LV = EmitLValue(E->getSubExpr()); 4719 Address This = LV.getAddress(*this); 4720 4721 // Perform the derived-to-base conversion 4722 Address Base = GetAddressOfBaseClass( 4723 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4724 /*NullCheckValue=*/false, E->getExprLoc()); 4725 4726 // TODO: Support accesses to members of base classes in TBAA. For now, we 4727 // conservatively pretend that the complete object is of the base class 4728 // type. 4729 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4730 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4731 } 4732 case CK_ToUnion: 4733 return EmitAggExprToLValue(E); 4734 case CK_BaseToDerived: { 4735 const auto *DerivedClassTy = E->getType()->castAs<RecordType>(); 4736 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4737 4738 LValue LV = EmitLValue(E->getSubExpr()); 4739 4740 // Perform the base-to-derived conversion 4741 Address Derived = GetAddressOfDerivedClass( 4742 LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(), 4743 /*NullCheckValue=*/false); 4744 4745 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4746 // performed and the object is not of the derived type. 4747 if (sanitizePerformTypeCheck()) 4748 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4749 Derived.getPointer(), E->getType()); 4750 4751 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4752 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4753 /*MayBeNull=*/false, CFITCK_DerivedCast, 4754 E->getBeginLoc()); 4755 4756 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4757 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4758 } 4759 case CK_LValueBitCast: { 4760 // This must be a reinterpret_cast (or c-style equivalent). 4761 const auto *CE = cast<ExplicitCastExpr>(E); 4762 4763 CGM.EmitExplicitCastExprType(CE, this); 4764 LValue LV = EmitLValue(E->getSubExpr()); 4765 Address V = Builder.CreateBitCast(LV.getAddress(*this), 4766 ConvertType(CE->getTypeAsWritten())); 4767 4768 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4769 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4770 /*MayBeNull=*/false, CFITCK_UnrelatedCast, 4771 E->getBeginLoc()); 4772 4773 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4774 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4775 } 4776 case CK_AddressSpaceConversion: { 4777 LValue LV = EmitLValue(E->getSubExpr()); 4778 QualType DestTy = getContext().getPointerType(E->getType()); 4779 llvm::Value *V = getTargetHooks().performAddrSpaceCast( 4780 *this, LV.getPointer(*this), 4781 E->getSubExpr()->getType().getAddressSpace(), 4782 E->getType().getAddressSpace(), ConvertType(DestTy)); 4783 return MakeAddrLValue(Address(V, LV.getAddress(*this).getAlignment()), 4784 E->getType(), LV.getBaseInfo(), LV.getTBAAInfo()); 4785 } 4786 case CK_ObjCObjectLValueCast: { 4787 LValue LV = EmitLValue(E->getSubExpr()); 4788 Address V = Builder.CreateElementBitCast(LV.getAddress(*this), 4789 ConvertType(E->getType())); 4790 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4791 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4792 } 4793 case CK_ZeroToOCLOpaqueType: 4794 llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid"); 4795 } 4796 4797 llvm_unreachable("Unhandled lvalue cast kind?"); 4798 } 4799 4800 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4801 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4802 return getOrCreateOpaqueLValueMapping(e); 4803 } 4804 4805 LValue 4806 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) { 4807 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 4808 4809 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 4810 it = OpaqueLValues.find(e); 4811 4812 if (it != OpaqueLValues.end()) 4813 return it->second; 4814 4815 assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted"); 4816 return EmitLValue(e->getSourceExpr()); 4817 } 4818 4819 RValue 4820 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) { 4821 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 4822 4823 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 4824 it = OpaqueRValues.find(e); 4825 4826 if (it != OpaqueRValues.end()) 4827 return it->second; 4828 4829 assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted"); 4830 return EmitAnyExpr(e->getSourceExpr()); 4831 } 4832 4833 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4834 const FieldDecl *FD, 4835 SourceLocation Loc) { 4836 QualType FT = FD->getType(); 4837 LValue FieldLV = EmitLValueForField(LV, FD); 4838 switch (getEvaluationKind(FT)) { 4839 case TEK_Complex: 4840 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4841 case TEK_Aggregate: 4842 return FieldLV.asAggregateRValue(*this); 4843 case TEK_Scalar: 4844 // This routine is used to load fields one-by-one to perform a copy, so 4845 // don't load reference fields. 4846 if (FD->getType()->isReferenceType()) 4847 return RValue::get(FieldLV.getPointer(*this)); 4848 // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a 4849 // primitive load. 4850 if (FieldLV.isBitField()) 4851 return EmitLoadOfLValue(FieldLV, Loc); 4852 return RValue::get(EmitLoadOfScalar(FieldLV, Loc)); 4853 } 4854 llvm_unreachable("bad evaluation kind"); 4855 } 4856 4857 //===--------------------------------------------------------------------===// 4858 // Expression Emission 4859 //===--------------------------------------------------------------------===// 4860 4861 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4862 ReturnValueSlot ReturnValue) { 4863 // Builtins never have block type. 4864 if (E->getCallee()->getType()->isBlockPointerType()) 4865 return EmitBlockCallExpr(E, ReturnValue); 4866 4867 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4868 return EmitCXXMemberCallExpr(CE, ReturnValue); 4869 4870 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4871 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4872 4873 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4874 if (const CXXMethodDecl *MD = 4875 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4876 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4877 4878 CGCallee callee = EmitCallee(E->getCallee()); 4879 4880 if (callee.isBuiltin()) { 4881 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4882 E, ReturnValue); 4883 } 4884 4885 if (callee.isPseudoDestructor()) { 4886 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4887 } 4888 4889 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4890 } 4891 4892 /// Emit a CallExpr without considering whether it might be a subclass. 4893 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4894 ReturnValueSlot ReturnValue) { 4895 CGCallee Callee = EmitCallee(E->getCallee()); 4896 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4897 } 4898 4899 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) { 4900 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4901 4902 if (auto builtinID = FD->getBuiltinID()) { 4903 std::string FDInlineName = (FD->getName() + ".inline").str(); 4904 // When directing calling an inline builtin, call it through it's mangled 4905 // name to make it clear it's not the actual builtin. 4906 if (FD->isInlineBuiltinDeclaration() && 4907 CGF.CurFn->getName() != FDInlineName) { 4908 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 4909 llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr); 4910 llvm::Module *M = Fn->getParent(); 4911 llvm::Function *Clone = M->getFunction(FDInlineName); 4912 if (!Clone) { 4913 Clone = llvm::Function::Create(Fn->getFunctionType(), 4914 llvm::GlobalValue::InternalLinkage, 4915 Fn->getAddressSpace(), FDInlineName, M); 4916 Clone->addFnAttr(llvm::Attribute::AlwaysInline); 4917 } 4918 return CGCallee::forDirect(Clone, GD); 4919 } 4920 4921 // Replaceable builtins provide their own implementation of a builtin. If we 4922 // are in an inline builtin implementation, avoid trivial infinite 4923 // recursion. 4924 else 4925 return CGCallee::forBuiltin(builtinID, FD); 4926 } 4927 4928 llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD); 4929 if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice && 4930 FD->hasAttr<CUDAGlobalAttr>()) 4931 CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub( 4932 cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts())); 4933 4934 return CGCallee::forDirect(CalleePtr, GD); 4935 } 4936 4937 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4938 E = E->IgnoreParens(); 4939 4940 // Look through function-to-pointer decay. 4941 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4942 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4943 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4944 return EmitCallee(ICE->getSubExpr()); 4945 } 4946 4947 // Resolve direct calls. 4948 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4949 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4950 return EmitDirectCallee(*this, FD); 4951 } 4952 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4953 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4954 EmitIgnoredExpr(ME->getBase()); 4955 return EmitDirectCallee(*this, FD); 4956 } 4957 4958 // Look through template substitutions. 4959 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4960 return EmitCallee(NTTP->getReplacement()); 4961 4962 // Treat pseudo-destructor calls differently. 4963 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4964 return CGCallee::forPseudoDestructor(PDE); 4965 } 4966 4967 // Otherwise, we have an indirect reference. 4968 llvm::Value *calleePtr; 4969 QualType functionType; 4970 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4971 calleePtr = EmitScalarExpr(E); 4972 functionType = ptrType->getPointeeType(); 4973 } else { 4974 functionType = E->getType(); 4975 calleePtr = EmitLValue(E).getPointer(*this); 4976 } 4977 assert(functionType->isFunctionType()); 4978 4979 GlobalDecl GD; 4980 if (const auto *VD = 4981 dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee())) 4982 GD = GlobalDecl(VD); 4983 4984 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD); 4985 CGCallee callee(calleeInfo, calleePtr); 4986 return callee; 4987 } 4988 4989 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4990 // Comma expressions just emit their LHS then their RHS as an l-value. 4991 if (E->getOpcode() == BO_Comma) { 4992 EmitIgnoredExpr(E->getLHS()); 4993 EnsureInsertPoint(); 4994 return EmitLValue(E->getRHS()); 4995 } 4996 4997 if (E->getOpcode() == BO_PtrMemD || 4998 E->getOpcode() == BO_PtrMemI) 4999 return EmitPointerToDataMemberBinaryExpr(E); 5000 5001 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 5002 5003 // Note that in all of these cases, __block variables need the RHS 5004 // evaluated first just in case the variable gets moved by the RHS. 5005 5006 switch (getEvaluationKind(E->getType())) { 5007 case TEK_Scalar: { 5008 switch (E->getLHS()->getType().getObjCLifetime()) { 5009 case Qualifiers::OCL_Strong: 5010 return EmitARCStoreStrong(E, /*ignored*/ false).first; 5011 5012 case Qualifiers::OCL_Autoreleasing: 5013 return EmitARCStoreAutoreleasing(E).first; 5014 5015 // No reason to do any of these differently. 5016 case Qualifiers::OCL_None: 5017 case Qualifiers::OCL_ExplicitNone: 5018 case Qualifiers::OCL_Weak: 5019 break; 5020 } 5021 5022 RValue RV = EmitAnyExpr(E->getRHS()); 5023 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 5024 if (RV.isScalar()) 5025 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 5026 EmitStoreThroughLValue(RV, LV); 5027 if (getLangOpts().OpenMP) 5028 CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, 5029 E->getLHS()); 5030 return LV; 5031 } 5032 5033 case TEK_Complex: 5034 return EmitComplexAssignmentLValue(E); 5035 5036 case TEK_Aggregate: 5037 return EmitAggExprToLValue(E); 5038 } 5039 llvm_unreachable("bad evaluation kind"); 5040 } 5041 5042 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 5043 RValue RV = EmitCallExpr(E); 5044 5045 if (!RV.isScalar()) 5046 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5047 AlignmentSource::Decl); 5048 5049 assert(E->getCallReturnType(getContext())->isReferenceType() && 5050 "Can't have a scalar return unless the return type is a " 5051 "reference type!"); 5052 5053 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5054 } 5055 5056 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 5057 // FIXME: This shouldn't require another copy. 5058 return EmitAggExprToLValue(E); 5059 } 5060 5061 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 5062 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 5063 && "binding l-value to type which needs a temporary"); 5064 AggValueSlot Slot = CreateAggTemp(E->getType()); 5065 EmitCXXConstructExpr(E, Slot); 5066 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5067 } 5068 5069 LValue 5070 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 5071 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 5072 } 5073 5074 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 5075 return Builder.CreateElementBitCast(CGM.GetAddrOfMSGuidDecl(E->getGuidDecl()), 5076 ConvertType(E->getType())); 5077 } 5078 5079 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 5080 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 5081 AlignmentSource::Decl); 5082 } 5083 5084 LValue 5085 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 5086 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 5087 Slot.setExternallyDestructed(); 5088 EmitAggExpr(E->getSubExpr(), Slot); 5089 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 5090 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 5091 } 5092 5093 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 5094 RValue RV = EmitObjCMessageExpr(E); 5095 5096 if (!RV.isScalar()) 5097 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5098 AlignmentSource::Decl); 5099 5100 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 5101 "Can't have a scalar return unless the return type is a " 5102 "reference type!"); 5103 5104 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 5105 } 5106 5107 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 5108 Address V = 5109 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 5110 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 5111 } 5112 5113 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 5114 const ObjCIvarDecl *Ivar) { 5115 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 5116 } 5117 5118 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 5119 llvm::Value *BaseValue, 5120 const ObjCIvarDecl *Ivar, 5121 unsigned CVRQualifiers) { 5122 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 5123 Ivar, CVRQualifiers); 5124 } 5125 5126 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 5127 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 5128 llvm::Value *BaseValue = nullptr; 5129 const Expr *BaseExpr = E->getBase(); 5130 Qualifiers BaseQuals; 5131 QualType ObjectTy; 5132 if (E->isArrow()) { 5133 BaseValue = EmitScalarExpr(BaseExpr); 5134 ObjectTy = BaseExpr->getType()->getPointeeType(); 5135 BaseQuals = ObjectTy.getQualifiers(); 5136 } else { 5137 LValue BaseLV = EmitLValue(BaseExpr); 5138 BaseValue = BaseLV.getPointer(*this); 5139 ObjectTy = BaseExpr->getType(); 5140 BaseQuals = ObjectTy.getQualifiers(); 5141 } 5142 5143 LValue LV = 5144 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 5145 BaseQuals.getCVRQualifiers()); 5146 setObjCGCLValueClass(getContext(), E, LV); 5147 return LV; 5148 } 5149 5150 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 5151 // Can only get l-value for message expression returning aggregate type 5152 RValue RV = EmitAnyExprToTemp(E); 5153 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 5154 AlignmentSource::Decl); 5155 } 5156 5157 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 5158 const CallExpr *E, ReturnValueSlot ReturnValue, 5159 llvm::Value *Chain) { 5160 // Get the actual function type. The callee type will always be a pointer to 5161 // function type or a block pointer type. 5162 assert(CalleeType->isFunctionPointerType() && 5163 "Call must have function pointer type!"); 5164 5165 const Decl *TargetDecl = 5166 OrigCallee.getAbstractInfo().getCalleeDecl().getDecl(); 5167 5168 CalleeType = getContext().getCanonicalType(CalleeType); 5169 5170 auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType(); 5171 5172 CGCallee Callee = OrigCallee; 5173 5174 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 5175 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5176 if (llvm::Constant *PrefixSig = 5177 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 5178 SanitizerScope SanScope(this); 5179 // Remove any (C++17) exception specifications, to allow calling e.g. a 5180 // noexcept function through a non-noexcept pointer. 5181 auto ProtoTy = 5182 getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None); 5183 llvm::Constant *FTRTTIConst = 5184 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 5185 llvm::Type *PrefixSigType = PrefixSig->getType(); 5186 llvm::StructType *PrefixStructTy = llvm::StructType::get( 5187 CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true); 5188 5189 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5190 5191 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 5192 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 5193 llvm::Value *CalleeSigPtr = 5194 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 5195 llvm::Value *CalleeSig = 5196 Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign()); 5197 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 5198 5199 llvm::BasicBlock *Cont = createBasicBlock("cont"); 5200 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 5201 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 5202 5203 EmitBlock(TypeCheck); 5204 llvm::Value *CalleeRTTIPtr = 5205 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 5206 llvm::Value *CalleeRTTIEncoded = 5207 Builder.CreateAlignedLoad(Int32Ty, CalleeRTTIPtr, getPointerAlign()); 5208 llvm::Value *CalleeRTTI = 5209 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 5210 llvm::Value *CalleeRTTIMatch = 5211 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 5212 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()), 5213 EmitCheckTypeDescriptor(CalleeType)}; 5214 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 5215 SanitizerHandler::FunctionTypeMismatch, StaticData, 5216 {CalleePtr, CalleeRTTI, FTRTTIConst}); 5217 5218 Builder.CreateBr(Cont); 5219 EmitBlock(Cont); 5220 } 5221 } 5222 5223 const auto *FnType = cast<FunctionType>(PointeeType); 5224 5225 // If we are checking indirect calls and this call is indirect, check that the 5226 // function pointer is a member of the bit set for the function type. 5227 if (SanOpts.has(SanitizerKind::CFIICall) && 5228 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5229 SanitizerScope SanScope(this); 5230 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 5231 5232 llvm::Metadata *MD; 5233 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 5234 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 5235 else 5236 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 5237 5238 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 5239 5240 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5241 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 5242 llvm::Value *TypeTest = Builder.CreateCall( 5243 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 5244 5245 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 5246 llvm::Constant *StaticData[] = { 5247 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 5248 EmitCheckSourceLocation(E->getBeginLoc()), 5249 EmitCheckTypeDescriptor(QualType(FnType, 0)), 5250 }; 5251 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 5252 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 5253 CastedCallee, StaticData); 5254 } else { 5255 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 5256 SanitizerHandler::CFICheckFail, StaticData, 5257 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 5258 } 5259 } 5260 5261 CallArgList Args; 5262 if (Chain) 5263 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 5264 CGM.getContext().VoidPtrTy); 5265 5266 // C++17 requires that we evaluate arguments to a call using assignment syntax 5267 // right-to-left, and that we evaluate arguments to certain other operators 5268 // left-to-right. Note that we allow this to override the order dictated by 5269 // the calling convention on the MS ABI, which means that parameter 5270 // destruction order is not necessarily reverse construction order. 5271 // FIXME: Revisit this based on C++ committee response to unimplementability. 5272 EvaluationOrder Order = EvaluationOrder::Default; 5273 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 5274 if (OCE->isAssignmentOp()) 5275 Order = EvaluationOrder::ForceRightToLeft; 5276 else { 5277 switch (OCE->getOperator()) { 5278 case OO_LessLess: 5279 case OO_GreaterGreater: 5280 case OO_AmpAmp: 5281 case OO_PipePipe: 5282 case OO_Comma: 5283 case OO_ArrowStar: 5284 Order = EvaluationOrder::ForceLeftToRight; 5285 break; 5286 default: 5287 break; 5288 } 5289 } 5290 } 5291 5292 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 5293 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 5294 5295 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 5296 Args, FnType, /*ChainCall=*/Chain); 5297 5298 // C99 6.5.2.2p6: 5299 // If the expression that denotes the called function has a type 5300 // that does not include a prototype, [the default argument 5301 // promotions are performed]. If the number of arguments does not 5302 // equal the number of parameters, the behavior is undefined. If 5303 // the function is defined with a type that includes a prototype, 5304 // and either the prototype ends with an ellipsis (, ...) or the 5305 // types of the arguments after promotion are not compatible with 5306 // the types of the parameters, the behavior is undefined. If the 5307 // function is defined with a type that does not include a 5308 // prototype, and the types of the arguments after promotion are 5309 // not compatible with those of the parameters after promotion, 5310 // the behavior is undefined [except in some trivial cases]. 5311 // That is, in the general case, we should assume that a call 5312 // through an unprototyped function type works like a *non-variadic* 5313 // call. The way we make this work is to cast to the exact type 5314 // of the promoted arguments. 5315 // 5316 // Chain calls use this same code path to add the invisible chain parameter 5317 // to the function type. 5318 if (isa<FunctionNoProtoType>(FnType) || Chain) { 5319 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 5320 int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace(); 5321 CalleeTy = CalleeTy->getPointerTo(AS); 5322 5323 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 5324 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 5325 Callee.setFunctionPointer(CalleePtr); 5326 } 5327 5328 // HIP function pointer contains kernel handle when it is used in triple 5329 // chevron. The kernel stub needs to be loaded from kernel handle and used 5330 // as callee. 5331 if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice && 5332 isa<CUDAKernelCallExpr>(E) && 5333 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 5334 llvm::Value *Handle = Callee.getFunctionPointer(); 5335 auto *Cast = 5336 Builder.CreateBitCast(Handle, Handle->getType()->getPointerTo()); 5337 auto *Stub = Builder.CreateLoad(Address(Cast, CGM.getPointerAlign())); 5338 Callee.setFunctionPointer(Stub); 5339 } 5340 llvm::CallBase *CallOrInvoke = nullptr; 5341 RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke, 5342 E == MustTailCall, E->getExprLoc()); 5343 5344 // Generate function declaration DISuprogram in order to be used 5345 // in debug info about call sites. 5346 if (CGDebugInfo *DI = getDebugInfo()) { 5347 if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 5348 FunctionArgList Args; 5349 QualType ResTy = BuildFunctionArgList(CalleeDecl, Args); 5350 DI->EmitFuncDeclForCallSite(CallOrInvoke, 5351 DI->getFunctionType(CalleeDecl, ResTy, Args), 5352 CalleeDecl); 5353 } 5354 } 5355 5356 return Call; 5357 } 5358 5359 LValue CodeGenFunction:: 5360 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 5361 Address BaseAddr = Address::invalid(); 5362 if (E->getOpcode() == BO_PtrMemI) { 5363 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 5364 } else { 5365 BaseAddr = EmitLValue(E->getLHS()).getAddress(*this); 5366 } 5367 5368 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 5369 const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>(); 5370 5371 LValueBaseInfo BaseInfo; 5372 TBAAAccessInfo TBAAInfo; 5373 Address MemberAddr = 5374 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 5375 &TBAAInfo); 5376 5377 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 5378 } 5379 5380 /// Given the address of a temporary variable, produce an r-value of 5381 /// its type. 5382 RValue CodeGenFunction::convertTempToRValue(Address addr, 5383 QualType type, 5384 SourceLocation loc) { 5385 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 5386 switch (getEvaluationKind(type)) { 5387 case TEK_Complex: 5388 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 5389 case TEK_Aggregate: 5390 return lvalue.asAggregateRValue(*this); 5391 case TEK_Scalar: 5392 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 5393 } 5394 llvm_unreachable("bad evaluation kind"); 5395 } 5396 5397 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 5398 assert(Val->getType()->isFPOrFPVectorTy()); 5399 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 5400 return; 5401 5402 llvm::MDBuilder MDHelper(getLLVMContext()); 5403 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 5404 5405 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 5406 } 5407 5408 namespace { 5409 struct LValueOrRValue { 5410 LValue LV; 5411 RValue RV; 5412 }; 5413 } 5414 5415 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 5416 const PseudoObjectExpr *E, 5417 bool forLValue, 5418 AggValueSlot slot) { 5419 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 5420 5421 // Find the result expression, if any. 5422 const Expr *resultExpr = E->getResultExpr(); 5423 LValueOrRValue result; 5424 5425 for (PseudoObjectExpr::const_semantics_iterator 5426 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 5427 const Expr *semantic = *i; 5428 5429 // If this semantic expression is an opaque value, bind it 5430 // to the result of its source expression. 5431 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 5432 // Skip unique OVEs. 5433 if (ov->isUnique()) { 5434 assert(ov != resultExpr && 5435 "A unique OVE cannot be used as the result expression"); 5436 continue; 5437 } 5438 5439 // If this is the result expression, we may need to evaluate 5440 // directly into the slot. 5441 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 5442 OVMA opaqueData; 5443 if (ov == resultExpr && ov->isPRValue() && !forLValue && 5444 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 5445 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 5446 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 5447 AlignmentSource::Decl); 5448 opaqueData = OVMA::bind(CGF, ov, LV); 5449 result.RV = slot.asRValue(); 5450 5451 // Otherwise, emit as normal. 5452 } else { 5453 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 5454 5455 // If this is the result, also evaluate the result now. 5456 if (ov == resultExpr) { 5457 if (forLValue) 5458 result.LV = CGF.EmitLValue(ov); 5459 else 5460 result.RV = CGF.EmitAnyExpr(ov, slot); 5461 } 5462 } 5463 5464 opaques.push_back(opaqueData); 5465 5466 // Otherwise, if the expression is the result, evaluate it 5467 // and remember the result. 5468 } else if (semantic == resultExpr) { 5469 if (forLValue) 5470 result.LV = CGF.EmitLValue(semantic); 5471 else 5472 result.RV = CGF.EmitAnyExpr(semantic, slot); 5473 5474 // Otherwise, evaluate the expression in an ignored context. 5475 } else { 5476 CGF.EmitIgnoredExpr(semantic); 5477 } 5478 } 5479 5480 // Unbind all the opaques now. 5481 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 5482 opaques[i].unbind(CGF); 5483 5484 return result; 5485 } 5486 5487 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 5488 AggValueSlot slot) { 5489 return emitPseudoObjectExpr(*this, E, false, slot).RV; 5490 } 5491 5492 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 5493 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 5494 } 5495