1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCall.h"
17 #include "CGCXXABI.h"
18 #include "CGDebugInfo.h"
19 #include "CGRecordLayout.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/Target/TargetData.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===--------------------------------------------------------------------===//
32 //                        Miscellaneous Helper Methods
33 //===--------------------------------------------------------------------===//
34 
35 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
36   unsigned addressSpace =
37     cast<llvm::PointerType>(value->getType())->getAddressSpace();
38 
39   llvm::PointerType *destType = Int8PtrTy;
40   if (addressSpace)
41     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
42 
43   if (value->getType() == destType) return value;
44   return Builder.CreateBitCast(value, destType);
45 }
46 
47 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
48 /// block.
49 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
50                                                     const Twine &Name) {
51   if (!Builder.isNamePreserving())
52     return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt);
53   return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
54 }
55 
56 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
57                                      llvm::Value *Init) {
58   llvm::StoreInst *Store = new llvm::StoreInst(Init, Var);
59   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
60   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
61 }
62 
63 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
64                                                 const Twine &Name) {
65   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
66   // FIXME: Should we prefer the preferred type alignment here?
67   CharUnits Align = getContext().getTypeAlignInChars(Ty);
68   Alloc->setAlignment(Align.getQuantity());
69   return Alloc;
70 }
71 
72 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
73                                                  const Twine &Name) {
74   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
75   // FIXME: Should we prefer the preferred type alignment here?
76   CharUnits Align = getContext().getTypeAlignInChars(Ty);
77   Alloc->setAlignment(Align.getQuantity());
78   return Alloc;
79 }
80 
81 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
82 /// expression and compare the result against zero, returning an Int1Ty value.
83 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
84   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
85     llvm::Value *MemPtr = EmitScalarExpr(E);
86     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
87   }
88 
89   QualType BoolTy = getContext().BoolTy;
90   if (!E->getType()->isAnyComplexType())
91     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
92 
93   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
94 }
95 
96 /// EmitIgnoredExpr - Emit code to compute the specified expression,
97 /// ignoring the result.
98 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
99   if (E->isRValue())
100     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
101 
102   // Just emit it as an l-value and drop the result.
103   EmitLValue(E);
104 }
105 
106 /// EmitAnyExpr - Emit code to compute the specified expression which
107 /// can have any type.  The result is returned as an RValue struct.
108 /// If this is an aggregate expression, AggSlot indicates where the
109 /// result should be returned.
110 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, AggValueSlot AggSlot,
111                                     bool IgnoreResult) {
112   if (!hasAggregateLLVMType(E->getType()))
113     return RValue::get(EmitScalarExpr(E, IgnoreResult));
114   else if (E->getType()->isAnyComplexType())
115     return RValue::getComplex(EmitComplexExpr(E, IgnoreResult, IgnoreResult));
116 
117   EmitAggExpr(E, AggSlot, IgnoreResult);
118   return AggSlot.asRValue();
119 }
120 
121 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
122 /// always be accessible even if no aggregate location is provided.
123 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
124   AggValueSlot AggSlot = AggValueSlot::ignored();
125 
126   if (hasAggregateLLVMType(E->getType()) &&
127       !E->getType()->isAnyComplexType())
128     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
129   return EmitAnyExpr(E, AggSlot);
130 }
131 
132 /// EmitAnyExprToMem - Evaluate an expression into a given memory
133 /// location.
134 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
135                                        llvm::Value *Location,
136                                        Qualifiers Quals,
137                                        bool IsInit) {
138   // FIXME: This function should take an LValue as an argument.
139   if (E->getType()->isAnyComplexType()) {
140     EmitComplexExprIntoAddr(E, Location, Quals.hasVolatile());
141   } else if (hasAggregateLLVMType(E->getType())) {
142     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
143     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
144                                          AggValueSlot::IsDestructed_t(IsInit),
145                                          AggValueSlot::DoesNotNeedGCBarriers,
146                                          AggValueSlot::IsAliased_t(!IsInit)));
147   } else {
148     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
149     LValue LV = MakeAddrLValue(Location, E->getType());
150     EmitStoreThroughLValue(RV, LV);
151   }
152 }
153 
154 namespace {
155 /// \brief An adjustment to be made to the temporary created when emitting a
156 /// reference binding, which accesses a particular subobject of that temporary.
157   struct SubobjectAdjustment {
158     enum { DerivedToBaseAdjustment, FieldAdjustment } Kind;
159 
160     union {
161       struct {
162         const CastExpr *BasePath;
163         const CXXRecordDecl *DerivedClass;
164       } DerivedToBase;
165 
166       FieldDecl *Field;
167     };
168 
169     SubobjectAdjustment(const CastExpr *BasePath,
170                         const CXXRecordDecl *DerivedClass)
171       : Kind(DerivedToBaseAdjustment) {
172       DerivedToBase.BasePath = BasePath;
173       DerivedToBase.DerivedClass = DerivedClass;
174     }
175 
176     SubobjectAdjustment(FieldDecl *Field)
177       : Kind(FieldAdjustment) {
178       this->Field = Field;
179     }
180   };
181 }
182 
183 static llvm::Value *
184 CreateReferenceTemporary(CodeGenFunction &CGF, QualType Type,
185                          const NamedDecl *InitializedDecl) {
186   if (const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
187     if (VD->hasGlobalStorage()) {
188       SmallString<256> Name;
189       llvm::raw_svector_ostream Out(Name);
190       CGF.CGM.getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
191       Out.flush();
192 
193       llvm::Type *RefTempTy = CGF.ConvertTypeForMem(Type);
194 
195       // Create the reference temporary.
196       llvm::GlobalValue *RefTemp =
197         new llvm::GlobalVariable(CGF.CGM.getModule(),
198                                  RefTempTy, /*isConstant=*/false,
199                                  llvm::GlobalValue::InternalLinkage,
200                                  llvm::Constant::getNullValue(RefTempTy),
201                                  Name.str());
202       return RefTemp;
203     }
204   }
205 
206   return CGF.CreateMemTemp(Type, "ref.tmp");
207 }
208 
209 static llvm::Value *
210 EmitExprForReferenceBinding(CodeGenFunction &CGF, const Expr *E,
211                             llvm::Value *&ReferenceTemporary,
212                             const CXXDestructorDecl *&ReferenceTemporaryDtor,
213                             QualType &ObjCARCReferenceLifetimeType,
214                             const NamedDecl *InitializedDecl) {
215   // Look through single-element init lists that claim to be lvalues. They're
216   // just syntactic wrappers in this case.
217   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
218     if (ILE->getNumInits() == 1 && ILE->isGLValue())
219       E = ILE->getInit(0);
220   }
221 
222   // Look through expressions for materialized temporaries (for now).
223   if (const MaterializeTemporaryExpr *M
224                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
225     // Objective-C++ ARC:
226     //   If we are binding a reference to a temporary that has ownership, we
227     //   need to perform retain/release operations on the temporary.
228     if (CGF.getContext().getLangOpts().ObjCAutoRefCount &&
229         E->getType()->isObjCLifetimeType() &&
230         (E->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
231          E->getType().getObjCLifetime() == Qualifiers::OCL_Weak ||
232          E->getType().getObjCLifetime() == Qualifiers::OCL_Autoreleasing))
233       ObjCARCReferenceLifetimeType = E->getType();
234 
235     E = M->GetTemporaryExpr();
236   }
237 
238   if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
239     E = DAE->getExpr();
240 
241   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(E)) {
242     CGF.enterFullExpression(EWC);
243     CodeGenFunction::RunCleanupsScope Scope(CGF);
244 
245     return EmitExprForReferenceBinding(CGF, EWC->getSubExpr(),
246                                        ReferenceTemporary,
247                                        ReferenceTemporaryDtor,
248                                        ObjCARCReferenceLifetimeType,
249                                        InitializedDecl);
250   }
251 
252   RValue RV;
253   if (E->isGLValue()) {
254     // Emit the expression as an lvalue.
255     LValue LV = CGF.EmitLValue(E);
256 
257     if (LV.isSimple())
258       return LV.getAddress();
259 
260     // We have to load the lvalue.
261     RV = CGF.EmitLoadOfLValue(LV);
262   } else {
263     if (!ObjCARCReferenceLifetimeType.isNull()) {
264       ReferenceTemporary = CreateReferenceTemporary(CGF,
265                                                   ObjCARCReferenceLifetimeType,
266                                                     InitializedDecl);
267 
268 
269       LValue RefTempDst = CGF.MakeAddrLValue(ReferenceTemporary,
270                                              ObjCARCReferenceLifetimeType);
271 
272       CGF.EmitScalarInit(E, dyn_cast_or_null<ValueDecl>(InitializedDecl),
273                          RefTempDst, false);
274 
275       bool ExtendsLifeOfTemporary = false;
276       if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(InitializedDecl)) {
277         if (Var->extendsLifetimeOfTemporary())
278           ExtendsLifeOfTemporary = true;
279       } else if (InitializedDecl && isa<FieldDecl>(InitializedDecl)) {
280         ExtendsLifeOfTemporary = true;
281       }
282 
283       if (!ExtendsLifeOfTemporary) {
284         // Since the lifetime of this temporary isn't going to be extended,
285         // we need to clean it up ourselves at the end of the full expression.
286         switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
287         case Qualifiers::OCL_None:
288         case Qualifiers::OCL_ExplicitNone:
289         case Qualifiers::OCL_Autoreleasing:
290           break;
291 
292         case Qualifiers::OCL_Strong: {
293           assert(!ObjCARCReferenceLifetimeType->isArrayType());
294           CleanupKind cleanupKind = CGF.getARCCleanupKind();
295           CGF.pushDestroy(cleanupKind,
296                           ReferenceTemporary,
297                           ObjCARCReferenceLifetimeType,
298                           CodeGenFunction::destroyARCStrongImprecise,
299                           cleanupKind & EHCleanup);
300           break;
301         }
302 
303         case Qualifiers::OCL_Weak:
304           assert(!ObjCARCReferenceLifetimeType->isArrayType());
305           CGF.pushDestroy(NormalAndEHCleanup,
306                           ReferenceTemporary,
307                           ObjCARCReferenceLifetimeType,
308                           CodeGenFunction::destroyARCWeak,
309                           /*useEHCleanupForArray*/ true);
310           break;
311         }
312 
313         ObjCARCReferenceLifetimeType = QualType();
314       }
315 
316       return ReferenceTemporary;
317     }
318 
319     SmallVector<SubobjectAdjustment, 2> Adjustments;
320     while (true) {
321       E = E->IgnoreParens();
322 
323       if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
324         if ((CE->getCastKind() == CK_DerivedToBase ||
325              CE->getCastKind() == CK_UncheckedDerivedToBase) &&
326             E->getType()->isRecordType()) {
327           E = CE->getSubExpr();
328           CXXRecordDecl *Derived
329             = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
330           Adjustments.push_back(SubobjectAdjustment(CE, Derived));
331           continue;
332         }
333 
334         if (CE->getCastKind() == CK_NoOp) {
335           E = CE->getSubExpr();
336           continue;
337         }
338       } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
339         if (!ME->isArrow() && ME->getBase()->isRValue()) {
340           assert(ME->getBase()->getType()->isRecordType());
341           if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
342             E = ME->getBase();
343             Adjustments.push_back(SubobjectAdjustment(Field));
344             continue;
345           }
346         }
347       }
348 
349       if (const OpaqueValueExpr *opaque = dyn_cast<OpaqueValueExpr>(E))
350         if (opaque->getType()->isRecordType())
351           return CGF.EmitOpaqueValueLValue(opaque).getAddress();
352 
353       // Nothing changed.
354       break;
355     }
356 
357     // Create a reference temporary if necessary.
358     AggValueSlot AggSlot = AggValueSlot::ignored();
359     if (CGF.hasAggregateLLVMType(E->getType()) &&
360         !E->getType()->isAnyComplexType()) {
361       ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
362                                                     InitializedDecl);
363       CharUnits Alignment = CGF.getContext().getTypeAlignInChars(E->getType());
364       AggValueSlot::IsDestructed_t isDestructed
365         = AggValueSlot::IsDestructed_t(InitializedDecl != 0);
366       AggSlot = AggValueSlot::forAddr(ReferenceTemporary, Alignment,
367                                       Qualifiers(), isDestructed,
368                                       AggValueSlot::DoesNotNeedGCBarriers,
369                                       AggValueSlot::IsNotAliased);
370     }
371 
372     if (InitializedDecl) {
373       // Get the destructor for the reference temporary.
374       if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
375         CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
376         if (!ClassDecl->hasTrivialDestructor())
377           ReferenceTemporaryDtor = ClassDecl->getDestructor();
378       }
379     }
380 
381     RV = CGF.EmitAnyExpr(E, AggSlot);
382 
383     // Check if need to perform derived-to-base casts and/or field accesses, to
384     // get from the temporary object we created (and, potentially, for which we
385     // extended the lifetime) to the subobject we're binding the reference to.
386     if (!Adjustments.empty()) {
387       llvm::Value *Object = RV.getAggregateAddr();
388       for (unsigned I = Adjustments.size(); I != 0; --I) {
389         SubobjectAdjustment &Adjustment = Adjustments[I-1];
390         switch (Adjustment.Kind) {
391         case SubobjectAdjustment::DerivedToBaseAdjustment:
392           Object =
393               CGF.GetAddressOfBaseClass(Object,
394                                         Adjustment.DerivedToBase.DerivedClass,
395                               Adjustment.DerivedToBase.BasePath->path_begin(),
396                               Adjustment.DerivedToBase.BasePath->path_end(),
397                                         /*NullCheckValue=*/false);
398           break;
399 
400         case SubobjectAdjustment::FieldAdjustment: {
401           LValue LV =
402             CGF.EmitLValueForField(Object, Adjustment.Field, 0);
403           if (LV.isSimple()) {
404             Object = LV.getAddress();
405             break;
406           }
407 
408           // For non-simple lvalues, we actually have to create a copy of
409           // the object we're binding to.
410           QualType T = Adjustment.Field->getType().getNonReferenceType()
411                                                   .getUnqualifiedType();
412           Object = CreateReferenceTemporary(CGF, T, InitializedDecl);
413           LValue TempLV = CGF.MakeAddrLValue(Object,
414                                              Adjustment.Field->getType());
415           CGF.EmitStoreThroughLValue(CGF.EmitLoadOfLValue(LV), TempLV);
416           break;
417         }
418 
419         }
420       }
421 
422       return Object;
423     }
424   }
425 
426   if (RV.isAggregate())
427     return RV.getAggregateAddr();
428 
429   // Create a temporary variable that we can bind the reference to.
430   ReferenceTemporary = CreateReferenceTemporary(CGF, E->getType(),
431                                                 InitializedDecl);
432 
433 
434   unsigned Alignment =
435     CGF.getContext().getTypeAlignInChars(E->getType()).getQuantity();
436   if (RV.isScalar())
437     CGF.EmitStoreOfScalar(RV.getScalarVal(), ReferenceTemporary,
438                           /*Volatile=*/false, Alignment, E->getType());
439   else
440     CGF.StoreComplexToAddr(RV.getComplexVal(), ReferenceTemporary,
441                            /*Volatile=*/false);
442   return ReferenceTemporary;
443 }
444 
445 RValue
446 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E,
447                                             const NamedDecl *InitializedDecl) {
448   llvm::Value *ReferenceTemporary = 0;
449   const CXXDestructorDecl *ReferenceTemporaryDtor = 0;
450   QualType ObjCARCReferenceLifetimeType;
451   llvm::Value *Value = EmitExprForReferenceBinding(*this, E, ReferenceTemporary,
452                                                    ReferenceTemporaryDtor,
453                                                    ObjCARCReferenceLifetimeType,
454                                                    InitializedDecl);
455   if (!ReferenceTemporaryDtor && ObjCARCReferenceLifetimeType.isNull())
456     return RValue::get(Value);
457 
458   // Make sure to call the destructor for the reference temporary.
459   const VarDecl *VD = dyn_cast_or_null<VarDecl>(InitializedDecl);
460   if (VD && VD->hasGlobalStorage()) {
461     if (ReferenceTemporaryDtor) {
462       llvm::Constant *DtorFn =
463         CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
464       EmitCXXGlobalDtorRegistration(DtorFn,
465                                     cast<llvm::Constant>(ReferenceTemporary));
466     } else {
467       assert(!ObjCARCReferenceLifetimeType.isNull());
468       // Note: We intentionally do not register a global "destructor" to
469       // release the object.
470     }
471 
472     return RValue::get(Value);
473   }
474 
475   if (ReferenceTemporaryDtor)
476     PushDestructorCleanup(ReferenceTemporaryDtor, ReferenceTemporary);
477   else {
478     switch (ObjCARCReferenceLifetimeType.getObjCLifetime()) {
479     case Qualifiers::OCL_None:
480       llvm_unreachable(
481                       "Not a reference temporary that needs to be deallocated");
482     case Qualifiers::OCL_ExplicitNone:
483     case Qualifiers::OCL_Autoreleasing:
484       // Nothing to do.
485       break;
486 
487     case Qualifiers::OCL_Strong: {
488       bool precise = VD && VD->hasAttr<ObjCPreciseLifetimeAttr>();
489       CleanupKind cleanupKind = getARCCleanupKind();
490       pushDestroy(cleanupKind, ReferenceTemporary, ObjCARCReferenceLifetimeType,
491                   precise ? destroyARCStrongPrecise : destroyARCStrongImprecise,
492                   cleanupKind & EHCleanup);
493       break;
494     }
495 
496     case Qualifiers::OCL_Weak: {
497       // __weak objects always get EH cleanups; otherwise, exceptions
498       // could cause really nasty crashes instead of mere leaks.
499       pushDestroy(NormalAndEHCleanup, ReferenceTemporary,
500                   ObjCARCReferenceLifetimeType, destroyARCWeak, true);
501       break;
502     }
503     }
504   }
505 
506   return RValue::get(Value);
507 }
508 
509 
510 /// getAccessedFieldNo - Given an encoded value and a result number, return the
511 /// input field number being accessed.
512 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
513                                              const llvm::Constant *Elts) {
514   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
515       ->getZExtValue();
516 }
517 
518 void CodeGenFunction::EmitCheck(llvm::Value *Address, unsigned Size) {
519   if (!CatchUndefined)
520     return;
521 
522   // This needs to be to the standard address space.
523   Address = Builder.CreateBitCast(Address, Int8PtrTy);
524 
525   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, IntPtrTy);
526 
527   // In time, people may want to control this and use a 1 here.
528   llvm::Value *Arg = Builder.getFalse();
529   llvm::Value *C = Builder.CreateCall2(F, Address, Arg);
530   llvm::BasicBlock *Cont = createBasicBlock();
531   llvm::BasicBlock *Check = createBasicBlock();
532   llvm::Value *NegativeOne = llvm::ConstantInt::get(IntPtrTy, -1ULL);
533   Builder.CreateCondBr(Builder.CreateICmpEQ(C, NegativeOne), Cont, Check);
534 
535   EmitBlock(Check);
536   Builder.CreateCondBr(Builder.CreateICmpUGE(C,
537                                         llvm::ConstantInt::get(IntPtrTy, Size)),
538                        Cont, getTrapBB());
539   EmitBlock(Cont);
540 }
541 
542 
543 CodeGenFunction::ComplexPairTy CodeGenFunction::
544 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
545                          bool isInc, bool isPre) {
546   ComplexPairTy InVal = LoadComplexFromAddr(LV.getAddress(),
547                                             LV.isVolatileQualified());
548 
549   llvm::Value *NextVal;
550   if (isa<llvm::IntegerType>(InVal.first->getType())) {
551     uint64_t AmountVal = isInc ? 1 : -1;
552     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
553 
554     // Add the inc/dec to the real part.
555     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
556   } else {
557     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
558     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
559     if (!isInc)
560       FVal.changeSign();
561     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
562 
563     // Add the inc/dec to the real part.
564     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
565   }
566 
567   ComplexPairTy IncVal(NextVal, InVal.second);
568 
569   // Store the updated result through the lvalue.
570   StoreComplexToAddr(IncVal, LV.getAddress(), LV.isVolatileQualified());
571 
572   // If this is a postinc, return the value read from memory, otherwise use the
573   // updated value.
574   return isPre ? IncVal : InVal;
575 }
576 
577 
578 //===----------------------------------------------------------------------===//
579 //                         LValue Expression Emission
580 //===----------------------------------------------------------------------===//
581 
582 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
583   if (Ty->isVoidType())
584     return RValue::get(0);
585 
586   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
587     llvm::Type *EltTy = ConvertType(CTy->getElementType());
588     llvm::Value *U = llvm::UndefValue::get(EltTy);
589     return RValue::getComplex(std::make_pair(U, U));
590   }
591 
592   // If this is a use of an undefined aggregate type, the aggregate must have an
593   // identifiable address.  Just because the contents of the value are undefined
594   // doesn't mean that the address can't be taken and compared.
595   if (hasAggregateLLVMType(Ty)) {
596     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
597     return RValue::getAggregate(DestPtr);
598   }
599 
600   return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
601 }
602 
603 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
604                                               const char *Name) {
605   ErrorUnsupported(E, Name);
606   return GetUndefRValue(E->getType());
607 }
608 
609 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
610                                               const char *Name) {
611   ErrorUnsupported(E, Name);
612   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
613   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
614 }
615 
616 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E) {
617   LValue LV = EmitLValue(E);
618   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
619     EmitCheck(LV.getAddress(),
620               getContext().getTypeSizeInChars(E->getType()).getQuantity());
621   return LV;
622 }
623 
624 /// EmitLValue - Emit code to compute a designator that specifies the location
625 /// of the expression.
626 ///
627 /// This can return one of two things: a simple address or a bitfield reference.
628 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
629 /// an LLVM pointer type.
630 ///
631 /// If this returns a bitfield reference, nothing about the pointee type of the
632 /// LLVM value is known: For example, it may not be a pointer to an integer.
633 ///
634 /// If this returns a normal address, and if the lvalue's C type is fixed size,
635 /// this method guarantees that the returned pointer type will point to an LLVM
636 /// type of the same size of the lvalue's type.  If the lvalue has a variable
637 /// length type, this is not possible.
638 ///
639 LValue CodeGenFunction::EmitLValue(const Expr *E) {
640   switch (E->getStmtClass()) {
641   default: return EmitUnsupportedLValue(E, "l-value expression");
642 
643   case Expr::ObjCPropertyRefExprClass:
644     llvm_unreachable("cannot emit a property reference directly");
645 
646   case Expr::ObjCSelectorExprClass:
647   return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
648   case Expr::ObjCIsaExprClass:
649     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
650   case Expr::BinaryOperatorClass:
651     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
652   case Expr::CompoundAssignOperatorClass:
653     if (!E->getType()->isAnyComplexType())
654       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
655     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
656   case Expr::CallExprClass:
657   case Expr::CXXMemberCallExprClass:
658   case Expr::CXXOperatorCallExprClass:
659   case Expr::UserDefinedLiteralClass:
660     return EmitCallExprLValue(cast<CallExpr>(E));
661   case Expr::VAArgExprClass:
662     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
663   case Expr::DeclRefExprClass:
664     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
665   case Expr::ParenExprClass:
666     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
667   case Expr::GenericSelectionExprClass:
668     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
669   case Expr::PredefinedExprClass:
670     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
671   case Expr::StringLiteralClass:
672     return EmitStringLiteralLValue(cast<StringLiteral>(E));
673   case Expr::ObjCEncodeExprClass:
674     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
675   case Expr::PseudoObjectExprClass:
676     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
677   case Expr::InitListExprClass:
678     assert(cast<InitListExpr>(E)->getNumInits() == 1 &&
679            "Only single-element init list can be lvalue.");
680     return EmitLValue(cast<InitListExpr>(E)->getInit(0));
681 
682   case Expr::CXXTemporaryObjectExprClass:
683   case Expr::CXXConstructExprClass:
684     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
685   case Expr::CXXBindTemporaryExprClass:
686     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
687   case Expr::LambdaExprClass:
688     return EmitLambdaLValue(cast<LambdaExpr>(E));
689 
690   case Expr::ExprWithCleanupsClass: {
691     const ExprWithCleanups *cleanups = cast<ExprWithCleanups>(E);
692     enterFullExpression(cleanups);
693     RunCleanupsScope Scope(*this);
694     return EmitLValue(cleanups->getSubExpr());
695   }
696 
697   case Expr::CXXScalarValueInitExprClass:
698     return EmitNullInitializationLValue(cast<CXXScalarValueInitExpr>(E));
699   case Expr::CXXDefaultArgExprClass:
700     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
701   case Expr::CXXTypeidExprClass:
702     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
703 
704   case Expr::ObjCMessageExprClass:
705     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
706   case Expr::ObjCIvarRefExprClass:
707     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
708   case Expr::StmtExprClass:
709     return EmitStmtExprLValue(cast<StmtExpr>(E));
710   case Expr::UnaryOperatorClass:
711     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
712   case Expr::ArraySubscriptExprClass:
713     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
714   case Expr::ExtVectorElementExprClass:
715     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
716   case Expr::MemberExprClass:
717     return EmitMemberExpr(cast<MemberExpr>(E));
718   case Expr::CompoundLiteralExprClass:
719     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
720   case Expr::ConditionalOperatorClass:
721     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
722   case Expr::BinaryConditionalOperatorClass:
723     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
724   case Expr::ChooseExprClass:
725     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
726   case Expr::OpaqueValueExprClass:
727     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
728   case Expr::SubstNonTypeTemplateParmExprClass:
729     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
730   case Expr::ImplicitCastExprClass:
731   case Expr::CStyleCastExprClass:
732   case Expr::CXXFunctionalCastExprClass:
733   case Expr::CXXStaticCastExprClass:
734   case Expr::CXXDynamicCastExprClass:
735   case Expr::CXXReinterpretCastExprClass:
736   case Expr::CXXConstCastExprClass:
737   case Expr::ObjCBridgedCastExprClass:
738     return EmitCastLValue(cast<CastExpr>(E));
739 
740   case Expr::MaterializeTemporaryExprClass:
741     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
742   }
743 }
744 
745 /// Given an object of the given canonical type, can we safely copy a
746 /// value out of it based on its initializer?
747 static bool isConstantEmittableObjectType(QualType type) {
748   assert(type.isCanonical());
749   assert(!type->isReferenceType());
750 
751   // Must be const-qualified but non-volatile.
752   Qualifiers qs = type.getLocalQualifiers();
753   if (!qs.hasConst() || qs.hasVolatile()) return false;
754 
755   // Otherwise, all object types satisfy this except C++ classes with
756   // mutable subobjects or non-trivial copy/destroy behavior.
757   if (const RecordType *RT = dyn_cast<RecordType>(type))
758     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
759       if (RD->hasMutableFields() || !RD->isTrivial())
760         return false;
761 
762   return true;
763 }
764 
765 /// Can we constant-emit a load of a reference to a variable of the
766 /// given type?  This is different from predicates like
767 /// Decl::isUsableInConstantExpressions because we do want it to apply
768 /// in situations that don't necessarily satisfy the language's rules
769 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
770 /// to do this with const float variables even if those variables
771 /// aren't marked 'constexpr'.
772 enum ConstantEmissionKind {
773   CEK_None,
774   CEK_AsReferenceOnly,
775   CEK_AsValueOrReference,
776   CEK_AsValueOnly
777 };
778 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
779   type = type.getCanonicalType();
780   if (const ReferenceType *ref = dyn_cast<ReferenceType>(type)) {
781     if (isConstantEmittableObjectType(ref->getPointeeType()))
782       return CEK_AsValueOrReference;
783     return CEK_AsReferenceOnly;
784   }
785   if (isConstantEmittableObjectType(type))
786     return CEK_AsValueOnly;
787   return CEK_None;
788 }
789 
790 /// Try to emit a reference to the given value without producing it as
791 /// an l-value.  This is actually more than an optimization: we can't
792 /// produce an l-value for variables that we never actually captured
793 /// in a block or lambda, which means const int variables or constexpr
794 /// literals or similar.
795 CodeGenFunction::ConstantEmission
796 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
797   ValueDecl *value = refExpr->getDecl();
798 
799   // The value needs to be an enum constant or a constant variable.
800   ConstantEmissionKind CEK;
801   if (isa<ParmVarDecl>(value)) {
802     CEK = CEK_None;
803   } else if (VarDecl *var = dyn_cast<VarDecl>(value)) {
804     CEK = checkVarTypeForConstantEmission(var->getType());
805   } else if (isa<EnumConstantDecl>(value)) {
806     CEK = CEK_AsValueOnly;
807   } else {
808     CEK = CEK_None;
809   }
810   if (CEK == CEK_None) return ConstantEmission();
811 
812   Expr::EvalResult result;
813   bool resultIsReference;
814   QualType resultType;
815 
816   // It's best to evaluate all the way as an r-value if that's permitted.
817   if (CEK != CEK_AsReferenceOnly &&
818       refExpr->EvaluateAsRValue(result, getContext())) {
819     resultIsReference = false;
820     resultType = refExpr->getType();
821 
822   // Otherwise, try to evaluate as an l-value.
823   } else if (CEK != CEK_AsValueOnly &&
824              refExpr->EvaluateAsLValue(result, getContext())) {
825     resultIsReference = true;
826     resultType = value->getType();
827 
828   // Failure.
829   } else {
830     return ConstantEmission();
831   }
832 
833   // In any case, if the initializer has side-effects, abandon ship.
834   if (result.HasSideEffects)
835     return ConstantEmission();
836 
837   // Emit as a constant.
838   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
839 
840   // Make sure we emit a debug reference to the global variable.
841   // This should probably fire even for
842   if (isa<VarDecl>(value)) {
843     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
844       EmitDeclRefExprDbgValue(refExpr, C);
845   } else {
846     assert(isa<EnumConstantDecl>(value));
847     EmitDeclRefExprDbgValue(refExpr, C);
848   }
849 
850   // If we emitted a reference constant, we need to dereference that.
851   if (resultIsReference)
852     return ConstantEmission::forReference(C);
853 
854   return ConstantEmission::forValue(C);
855 }
856 
857 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue) {
858   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
859                           lvalue.getAlignment().getQuantity(),
860                           lvalue.getType(), lvalue.getTBAAInfo());
861 }
862 
863 static bool hasBooleanRepresentation(QualType Ty) {
864   if (Ty->isBooleanType())
865     return true;
866 
867   if (const EnumType *ET = Ty->getAs<EnumType>())
868     return ET->getDecl()->getIntegerType()->isBooleanType();
869 
870   return false;
871 }
872 
873 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
874   const EnumType *ET = Ty->getAs<EnumType>();
875   bool IsRegularCPlusPlusEnum = (getLangOpts().CPlusPlus && ET &&
876                                  CGM.getCodeGenOpts().StrictEnums &&
877                                  !ET->getDecl()->isFixed());
878   bool IsBool = hasBooleanRepresentation(Ty);
879   llvm::Type *LTy;
880   if (!IsBool && !IsRegularCPlusPlusEnum)
881     return NULL;
882 
883   llvm::APInt Min;
884   llvm::APInt End;
885   if (IsBool) {
886     Min = llvm::APInt(8, 0);
887     End = llvm::APInt(8, 2);
888     LTy = Int8Ty;
889   } else {
890     const EnumDecl *ED = ET->getDecl();
891     LTy = ConvertTypeForMem(ED->getIntegerType());
892     unsigned Bitwidth = LTy->getScalarSizeInBits();
893     unsigned NumNegativeBits = ED->getNumNegativeBits();
894     unsigned NumPositiveBits = ED->getNumPositiveBits();
895 
896     if (NumNegativeBits) {
897       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
898       assert(NumBits <= Bitwidth);
899       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
900       Min = -End;
901     } else {
902       assert(NumPositiveBits <= Bitwidth);
903       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
904       Min = llvm::APInt(Bitwidth, 0);
905     }
906   }
907 
908   if (End == Min)
909     return NULL;
910 
911   llvm::Value *LowAndHigh[2];
912   LowAndHigh[0] = llvm::ConstantInt::get(LTy, Min);
913   LowAndHigh[1] = llvm::ConstantInt::get(LTy, End);
914 
915   llvm::LLVMContext &C = getLLVMContext();
916   llvm::MDNode *Range = llvm::MDNode::get(C, LowAndHigh);
917   return Range;
918 }
919 
920 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
921                                               unsigned Alignment, QualType Ty,
922                                               llvm::MDNode *TBAAInfo) {
923   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
924   if (Volatile)
925     Load->setVolatile(true);
926   if (Alignment)
927     Load->setAlignment(Alignment);
928   if (TBAAInfo)
929     CGM.DecorateInstruction(Load, TBAAInfo);
930   // If this is an atomic type, all normal reads must be atomic
931   if (Ty->isAtomicType())
932     Load->setAtomic(llvm::SequentiallyConsistent);
933 
934   if (CGM.getCodeGenOpts().OptimizationLevel > 0)
935     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
936       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
937 
938   return EmitFromMemory(Load, Ty);
939 }
940 
941 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
942   // Bool has a different representation in memory than in registers.
943   if (hasBooleanRepresentation(Ty)) {
944     // This should really always be an i1, but sometimes it's already
945     // an i8, and it's awkward to track those cases down.
946     if (Value->getType()->isIntegerTy(1))
947       return Builder.CreateZExt(Value, Builder.getInt8Ty(), "frombool");
948     assert(Value->getType()->isIntegerTy(8) && "value rep of bool not i1/i8");
949   }
950 
951   return Value;
952 }
953 
954 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
955   // Bool has a different representation in memory than in registers.
956   if (hasBooleanRepresentation(Ty)) {
957     assert(Value->getType()->isIntegerTy(8) && "memory rep of bool not i8");
958     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
959   }
960 
961   return Value;
962 }
963 
964 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
965                                         bool Volatile, unsigned Alignment,
966                                         QualType Ty,
967                                         llvm::MDNode *TBAAInfo,
968                                         bool isInit) {
969   Value = EmitToMemory(Value, Ty);
970 
971   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
972   if (Alignment)
973     Store->setAlignment(Alignment);
974   if (TBAAInfo)
975     CGM.DecorateInstruction(Store, TBAAInfo);
976   if (!isInit && Ty->isAtomicType())
977     Store->setAtomic(llvm::SequentiallyConsistent);
978 }
979 
980 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
981     bool isInit) {
982   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
983                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
984                     lvalue.getTBAAInfo(), isInit);
985 }
986 
987 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
988 /// method emits the address of the lvalue, then loads the result as an rvalue,
989 /// returning the rvalue.
990 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV) {
991   if (LV.isObjCWeak()) {
992     // load of a __weak object.
993     llvm::Value *AddrWeakObj = LV.getAddress();
994     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
995                                                              AddrWeakObj));
996   }
997   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak)
998     return RValue::get(EmitARCLoadWeak(LV.getAddress()));
999 
1000   if (LV.isSimple()) {
1001     assert(!LV.getType()->isFunctionType());
1002 
1003     // Everything needs a load.
1004     return RValue::get(EmitLoadOfScalar(LV));
1005   }
1006 
1007   if (LV.isVectorElt()) {
1008     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1009                                               LV.isVolatileQualified());
1010     Load->setAlignment(LV.getAlignment().getQuantity());
1011     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1012                                                     "vecext"));
1013   }
1014 
1015   // If this is a reference to a subset of the elements of a vector, either
1016   // shuffle the input or extract/insert them as appropriate.
1017   if (LV.isExtVectorElt())
1018     return EmitLoadOfExtVectorElementLValue(LV);
1019 
1020   assert(LV.isBitField() && "Unknown LValue type!");
1021   return EmitLoadOfBitfieldLValue(LV);
1022 }
1023 
1024 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1025   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1026 
1027   // Get the output type.
1028   llvm::Type *ResLTy = ConvertType(LV.getType());
1029   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1030 
1031   // Compute the result as an OR of all of the individual component accesses.
1032   llvm::Value *Res = 0;
1033   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1034     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1035 
1036     // Get the field pointer.
1037     llvm::Value *Ptr = LV.getBitFieldBaseAddr();
1038 
1039     // Only offset by the field index if used, so that incoming values are not
1040     // required to be structures.
1041     if (AI.FieldIndex)
1042       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1043 
1044     // Offset by the byte offset, if used.
1045     if (!AI.FieldByteOffset.isZero()) {
1046       Ptr = EmitCastToVoidPtr(Ptr);
1047       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1048                                        "bf.field.offs");
1049     }
1050 
1051     // Cast to the access type.
1052     llvm::Type *PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), AI.AccessWidth,
1053                        CGM.getContext().getTargetAddressSpace(LV.getType()));
1054     Ptr = Builder.CreateBitCast(Ptr, PTy);
1055 
1056     // Perform the load.
1057     llvm::LoadInst *Load = Builder.CreateLoad(Ptr, LV.isVolatileQualified());
1058     if (!AI.AccessAlignment.isZero())
1059       Load->setAlignment(AI.AccessAlignment.getQuantity());
1060 
1061     // Shift out unused low bits and mask out unused high bits.
1062     llvm::Value *Val = Load;
1063     if (AI.FieldBitStart)
1064       Val = Builder.CreateLShr(Load, AI.FieldBitStart);
1065     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(AI.AccessWidth,
1066                                                             AI.TargetBitWidth),
1067                             "bf.clear");
1068 
1069     // Extend or truncate to the target size.
1070     if (AI.AccessWidth < ResSizeInBits)
1071       Val = Builder.CreateZExt(Val, ResLTy);
1072     else if (AI.AccessWidth > ResSizeInBits)
1073       Val = Builder.CreateTrunc(Val, ResLTy);
1074 
1075     // Shift into place, and OR into the result.
1076     if (AI.TargetBitOffset)
1077       Val = Builder.CreateShl(Val, AI.TargetBitOffset);
1078     Res = Res ? Builder.CreateOr(Res, Val) : Val;
1079   }
1080 
1081   // If the bit-field is signed, perform the sign-extension.
1082   //
1083   // FIXME: This can easily be folded into the load of the high bits, which
1084   // could also eliminate the mask of high bits in some situations.
1085   if (Info.isSigned()) {
1086     unsigned ExtraBits = ResSizeInBits - Info.getSize();
1087     if (ExtraBits)
1088       Res = Builder.CreateAShr(Builder.CreateShl(Res, ExtraBits),
1089                                ExtraBits, "bf.val.sext");
1090   }
1091 
1092   return RValue::get(Res);
1093 }
1094 
1095 // If this is a reference to a subset of the elements of a vector, create an
1096 // appropriate shufflevector.
1097 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1098   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1099                                             LV.isVolatileQualified());
1100   Load->setAlignment(LV.getAlignment().getQuantity());
1101   llvm::Value *Vec = Load;
1102 
1103   const llvm::Constant *Elts = LV.getExtVectorElts();
1104 
1105   // If the result of the expression is a non-vector type, we must be extracting
1106   // a single element.  Just codegen as an extractelement.
1107   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1108   if (!ExprVT) {
1109     unsigned InIdx = getAccessedFieldNo(0, Elts);
1110     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1111     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1112   }
1113 
1114   // Always use shuffle vector to try to retain the original program structure
1115   unsigned NumResultElts = ExprVT->getNumElements();
1116 
1117   SmallVector<llvm::Constant*, 4> Mask;
1118   for (unsigned i = 0; i != NumResultElts; ++i)
1119     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1120 
1121   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1122   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1123                                     MaskV);
1124   return RValue::get(Vec);
1125 }
1126 
1127 
1128 
1129 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1130 /// lvalue, where both are guaranteed to the have the same type, and that type
1131 /// is 'Ty'.
1132 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit) {
1133   if (!Dst.isSimple()) {
1134     if (Dst.isVectorElt()) {
1135       // Read/modify/write the vector, inserting the new element.
1136       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1137                                                 Dst.isVolatileQualified());
1138       Load->setAlignment(Dst.getAlignment().getQuantity());
1139       llvm::Value *Vec = Load;
1140       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1141                                         Dst.getVectorIdx(), "vecins");
1142       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1143                                                    Dst.isVolatileQualified());
1144       Store->setAlignment(Dst.getAlignment().getQuantity());
1145       return;
1146     }
1147 
1148     // If this is an update of extended vector elements, insert them as
1149     // appropriate.
1150     if (Dst.isExtVectorElt())
1151       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1152 
1153     assert(Dst.isBitField() && "Unknown LValue type");
1154     return EmitStoreThroughBitfieldLValue(Src, Dst);
1155   }
1156 
1157   // There's special magic for assigning into an ARC-qualified l-value.
1158   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1159     switch (Lifetime) {
1160     case Qualifiers::OCL_None:
1161       llvm_unreachable("present but none");
1162 
1163     case Qualifiers::OCL_ExplicitNone:
1164       // nothing special
1165       break;
1166 
1167     case Qualifiers::OCL_Strong:
1168       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1169       return;
1170 
1171     case Qualifiers::OCL_Weak:
1172       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1173       return;
1174 
1175     case Qualifiers::OCL_Autoreleasing:
1176       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1177                                                      Src.getScalarVal()));
1178       // fall into the normal path
1179       break;
1180     }
1181   }
1182 
1183   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1184     // load of a __weak object.
1185     llvm::Value *LvalueDst = Dst.getAddress();
1186     llvm::Value *src = Src.getScalarVal();
1187      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1188     return;
1189   }
1190 
1191   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1192     // load of a __strong object.
1193     llvm::Value *LvalueDst = Dst.getAddress();
1194     llvm::Value *src = Src.getScalarVal();
1195     if (Dst.isObjCIvar()) {
1196       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1197       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1198       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1199       llvm::Value *dst = RHS;
1200       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1201       llvm::Value *LHS =
1202         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1203       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1204       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1205                                               BytesBetween);
1206     } else if (Dst.isGlobalObjCRef()) {
1207       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1208                                                 Dst.isThreadLocalRef());
1209     }
1210     else
1211       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1212     return;
1213   }
1214 
1215   assert(Src.isScalar() && "Can't emit an agg store with this method");
1216   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1217 }
1218 
1219 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1220                                                      llvm::Value **Result) {
1221   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1222 
1223   // Get the output type.
1224   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1225   unsigned ResSizeInBits = CGM.getTargetData().getTypeSizeInBits(ResLTy);
1226 
1227   // Get the source value, truncated to the width of the bit-field.
1228   llvm::Value *SrcVal = Src.getScalarVal();
1229 
1230   if (Dst.getType()->isBooleanType())
1231     SrcVal = Builder.CreateIntCast(SrcVal, ResLTy, /*IsSigned=*/false);
1232 
1233   SrcVal = Builder.CreateAnd(SrcVal, llvm::APInt::getLowBitsSet(ResSizeInBits,
1234                                                                 Info.getSize()),
1235                              "bf.value");
1236 
1237   // Return the new value of the bit-field, if requested.
1238   if (Result) {
1239     // Cast back to the proper type for result.
1240     llvm::Type *SrcTy = Src.getScalarVal()->getType();
1241     llvm::Value *ReloadVal = Builder.CreateIntCast(SrcVal, SrcTy, false,
1242                                                    "bf.reload.val");
1243 
1244     // Sign extend if necessary.
1245     if (Info.isSigned()) {
1246       unsigned ExtraBits = ResSizeInBits - Info.getSize();
1247       if (ExtraBits)
1248         ReloadVal = Builder.CreateAShr(Builder.CreateShl(ReloadVal, ExtraBits),
1249                                        ExtraBits, "bf.reload.sext");
1250     }
1251 
1252     *Result = ReloadVal;
1253   }
1254 
1255   // Iterate over the components, writing each piece to memory.
1256   for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
1257     const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
1258 
1259     // Get the field pointer.
1260     llvm::Value *Ptr = Dst.getBitFieldBaseAddr();
1261     unsigned addressSpace =
1262       cast<llvm::PointerType>(Ptr->getType())->getAddressSpace();
1263 
1264     // Only offset by the field index if used, so that incoming values are not
1265     // required to be structures.
1266     if (AI.FieldIndex)
1267       Ptr = Builder.CreateStructGEP(Ptr, AI.FieldIndex, "bf.field");
1268 
1269     // Offset by the byte offset, if used.
1270     if (!AI.FieldByteOffset.isZero()) {
1271       Ptr = EmitCastToVoidPtr(Ptr);
1272       Ptr = Builder.CreateConstGEP1_32(Ptr, AI.FieldByteOffset.getQuantity(),
1273                                        "bf.field.offs");
1274     }
1275 
1276     // Cast to the access type.
1277     llvm::Type *AccessLTy =
1278       llvm::Type::getIntNTy(getLLVMContext(), AI.AccessWidth);
1279 
1280     llvm::Type *PTy = AccessLTy->getPointerTo(addressSpace);
1281     Ptr = Builder.CreateBitCast(Ptr, PTy);
1282 
1283     // Extract the piece of the bit-field value to write in this access, limited
1284     // to the values that are part of this access.
1285     llvm::Value *Val = SrcVal;
1286     if (AI.TargetBitOffset)
1287       Val = Builder.CreateLShr(Val, AI.TargetBitOffset);
1288     Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(ResSizeInBits,
1289                                                             AI.TargetBitWidth));
1290 
1291     // Extend or truncate to the access size.
1292     if (ResSizeInBits < AI.AccessWidth)
1293       Val = Builder.CreateZExt(Val, AccessLTy);
1294     else if (ResSizeInBits > AI.AccessWidth)
1295       Val = Builder.CreateTrunc(Val, AccessLTy);
1296 
1297     // Shift into the position in memory.
1298     if (AI.FieldBitStart)
1299       Val = Builder.CreateShl(Val, AI.FieldBitStart);
1300 
1301     // If necessary, load and OR in bits that are outside of the bit-field.
1302     if (AI.TargetBitWidth != AI.AccessWidth) {
1303       llvm::LoadInst *Load = Builder.CreateLoad(Ptr, Dst.isVolatileQualified());
1304       if (!AI.AccessAlignment.isZero())
1305         Load->setAlignment(AI.AccessAlignment.getQuantity());
1306 
1307       // Compute the mask for zeroing the bits that are part of the bit-field.
1308       llvm::APInt InvMask =
1309         ~llvm::APInt::getBitsSet(AI.AccessWidth, AI.FieldBitStart,
1310                                  AI.FieldBitStart + AI.TargetBitWidth);
1311 
1312       // Apply the mask and OR in to the value to write.
1313       Val = Builder.CreateOr(Builder.CreateAnd(Load, InvMask), Val);
1314     }
1315 
1316     // Write the value.
1317     llvm::StoreInst *Store = Builder.CreateStore(Val, Ptr,
1318                                                  Dst.isVolatileQualified());
1319     if (!AI.AccessAlignment.isZero())
1320       Store->setAlignment(AI.AccessAlignment.getQuantity());
1321   }
1322 }
1323 
1324 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1325                                                                LValue Dst) {
1326   // This access turns into a read/modify/write of the vector.  Load the input
1327   // value now.
1328   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1329                                             Dst.isVolatileQualified());
1330   Load->setAlignment(Dst.getAlignment().getQuantity());
1331   llvm::Value *Vec = Load;
1332   const llvm::Constant *Elts = Dst.getExtVectorElts();
1333 
1334   llvm::Value *SrcVal = Src.getScalarVal();
1335 
1336   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1337     unsigned NumSrcElts = VTy->getNumElements();
1338     unsigned NumDstElts =
1339        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1340     if (NumDstElts == NumSrcElts) {
1341       // Use shuffle vector is the src and destination are the same number of
1342       // elements and restore the vector mask since it is on the side it will be
1343       // stored.
1344       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1345       for (unsigned i = 0; i != NumSrcElts; ++i)
1346         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1347 
1348       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1349       Vec = Builder.CreateShuffleVector(SrcVal,
1350                                         llvm::UndefValue::get(Vec->getType()),
1351                                         MaskV);
1352     } else if (NumDstElts > NumSrcElts) {
1353       // Extended the source vector to the same length and then shuffle it
1354       // into the destination.
1355       // FIXME: since we're shuffling with undef, can we just use the indices
1356       //        into that?  This could be simpler.
1357       SmallVector<llvm::Constant*, 4> ExtMask;
1358       for (unsigned i = 0; i != NumSrcElts; ++i)
1359         ExtMask.push_back(Builder.getInt32(i));
1360       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1361       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1362       llvm::Value *ExtSrcVal =
1363         Builder.CreateShuffleVector(SrcVal,
1364                                     llvm::UndefValue::get(SrcVal->getType()),
1365                                     ExtMaskV);
1366       // build identity
1367       SmallVector<llvm::Constant*, 4> Mask;
1368       for (unsigned i = 0; i != NumDstElts; ++i)
1369         Mask.push_back(Builder.getInt32(i));
1370 
1371       // modify when what gets shuffled in
1372       for (unsigned i = 0; i != NumSrcElts; ++i)
1373         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1374       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1375       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1376     } else {
1377       // We should never shorten the vector
1378       llvm_unreachable("unexpected shorten vector length");
1379     }
1380   } else {
1381     // If the Src is a scalar (not a vector) it must be updating one element.
1382     unsigned InIdx = getAccessedFieldNo(0, Elts);
1383     llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx);
1384     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1385   }
1386 
1387   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1388                                                Dst.isVolatileQualified());
1389   Store->setAlignment(Dst.getAlignment().getQuantity());
1390 }
1391 
1392 // setObjCGCLValueClass - sets class of he lvalue for the purpose of
1393 // generating write-barries API. It is currently a global, ivar,
1394 // or neither.
1395 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1396                                  LValue &LV,
1397                                  bool IsMemberAccess=false) {
1398   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1399     return;
1400 
1401   if (isa<ObjCIvarRefExpr>(E)) {
1402     QualType ExpTy = E->getType();
1403     if (IsMemberAccess && ExpTy->isPointerType()) {
1404       // If ivar is a structure pointer, assigning to field of
1405       // this struct follows gcc's behavior and makes it a non-ivar
1406       // writer-barrier conservatively.
1407       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1408       if (ExpTy->isRecordType()) {
1409         LV.setObjCIvar(false);
1410         return;
1411       }
1412     }
1413     LV.setObjCIvar(true);
1414     ObjCIvarRefExpr *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr*>(E));
1415     LV.setBaseIvarExp(Exp->getBase());
1416     LV.setObjCArray(E->getType()->isArrayType());
1417     return;
1418   }
1419 
1420   if (const DeclRefExpr *Exp = dyn_cast<DeclRefExpr>(E)) {
1421     if (const VarDecl *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1422       if (VD->hasGlobalStorage()) {
1423         LV.setGlobalObjCRef(true);
1424         LV.setThreadLocalRef(VD->isThreadSpecified());
1425       }
1426     }
1427     LV.setObjCArray(E->getType()->isArrayType());
1428     return;
1429   }
1430 
1431   if (const UnaryOperator *Exp = dyn_cast<UnaryOperator>(E)) {
1432     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1433     return;
1434   }
1435 
1436   if (const ParenExpr *Exp = dyn_cast<ParenExpr>(E)) {
1437     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1438     if (LV.isObjCIvar()) {
1439       // If cast is to a structure pointer, follow gcc's behavior and make it
1440       // a non-ivar write-barrier.
1441       QualType ExpTy = E->getType();
1442       if (ExpTy->isPointerType())
1443         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1444       if (ExpTy->isRecordType())
1445         LV.setObjCIvar(false);
1446     }
1447     return;
1448   }
1449 
1450   if (const GenericSelectionExpr *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1451     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1452     return;
1453   }
1454 
1455   if (const ImplicitCastExpr *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1456     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1457     return;
1458   }
1459 
1460   if (const CStyleCastExpr *Exp = dyn_cast<CStyleCastExpr>(E)) {
1461     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1462     return;
1463   }
1464 
1465   if (const ObjCBridgedCastExpr *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1466     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1467     return;
1468   }
1469 
1470   if (const ArraySubscriptExpr *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1471     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1472     if (LV.isObjCIvar() && !LV.isObjCArray())
1473       // Using array syntax to assigning to what an ivar points to is not
1474       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1475       LV.setObjCIvar(false);
1476     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1477       // Using array syntax to assigning to what global points to is not
1478       // same as assigning to the global itself. {id *G;} G[i] = 0;
1479       LV.setGlobalObjCRef(false);
1480     return;
1481   }
1482 
1483   if (const MemberExpr *Exp = dyn_cast<MemberExpr>(E)) {
1484     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1485     // We don't know if member is an 'ivar', but this flag is looked at
1486     // only in the context of LV.isObjCIvar().
1487     LV.setObjCArray(E->getType()->isArrayType());
1488     return;
1489   }
1490 }
1491 
1492 static llvm::Value *
1493 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1494                                 llvm::Value *V, llvm::Type *IRType,
1495                                 StringRef Name = StringRef()) {
1496   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1497   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1498 }
1499 
1500 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1501                                       const Expr *E, const VarDecl *VD) {
1502   assert((VD->hasExternalStorage() || VD->isFileVarDecl()) &&
1503          "Var decl must have external storage or be a file var decl!");
1504 
1505   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1506   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1507   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1508   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1509   QualType T = E->getType();
1510   LValue LV;
1511   if (VD->getType()->isReferenceType()) {
1512     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1513     LI->setAlignment(Alignment.getQuantity());
1514     V = LI;
1515     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1516   } else {
1517     LV = CGF.MakeAddrLValue(V, E->getType(), Alignment);
1518   }
1519   setObjCGCLValueClass(CGF.getContext(), E, LV);
1520   return LV;
1521 }
1522 
1523 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1524                                      const Expr *E, const FunctionDecl *FD) {
1525   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1526   if (!FD->hasPrototype()) {
1527     if (const FunctionProtoType *Proto =
1528             FD->getType()->getAs<FunctionProtoType>()) {
1529       // Ugly case: for a K&R-style definition, the type of the definition
1530       // isn't the same as the type of a use.  Correct for this with a
1531       // bitcast.
1532       QualType NoProtoType =
1533           CGF.getContext().getFunctionNoProtoType(Proto->getResultType());
1534       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1535       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1536     }
1537   }
1538   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1539   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1540 }
1541 
1542 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1543   const NamedDecl *ND = E->getDecl();
1544   CharUnits Alignment = getContext().getDeclAlign(ND);
1545   QualType T = E->getType();
1546 
1547   // FIXME: We should be able to assert this for FunctionDecls as well!
1548   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1549   // those with a valid source location.
1550   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1551           !E->getLocation().isValid()) &&
1552          "Should not use decl without marking it used!");
1553 
1554   if (ND->hasAttr<WeakRefAttr>()) {
1555     const ValueDecl *VD = cast<ValueDecl>(ND);
1556     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1557     return MakeAddrLValue(Aliasee, E->getType(), Alignment);
1558   }
1559 
1560   if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1561     // Check if this is a global variable.
1562     if (VD->hasExternalStorage() || VD->isFileVarDecl())
1563       return EmitGlobalVarDeclLValue(*this, E, VD);
1564 
1565     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1566 
1567     bool NonGCable = VD->hasLocalStorage() &&
1568                      !VD->getType()->isReferenceType() &&
1569                      !isBlockVariable;
1570 
1571     llvm::Value *V = LocalDeclMap[VD];
1572     if (!V && VD->isStaticLocal())
1573       V = CGM.getStaticLocalDeclAddress(VD);
1574 
1575     // Use special handling for lambdas.
1576     if (!V) {
1577       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD))
1578         return EmitLValueForField(CXXABIThisValue, FD, 0);
1579 
1580       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1581       CharUnits alignment = getContext().getDeclAlign(VD);
1582       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1583                             E->getType(), alignment);
1584     }
1585 
1586     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1587 
1588     if (isBlockVariable)
1589       V = BuildBlockByrefAddress(V, VD);
1590 
1591     LValue LV;
1592     if (VD->getType()->isReferenceType()) {
1593       llvm::LoadInst *LI = Builder.CreateLoad(V);
1594       LI->setAlignment(Alignment.getQuantity());
1595       V = LI;
1596       LV = MakeNaturalAlignAddrLValue(V, T);
1597     } else {
1598       LV = MakeAddrLValue(V, T, Alignment);
1599     }
1600 
1601     if (NonGCable) {
1602       LV.getQuals().removeObjCGCAttr();
1603       LV.setNonGC(true);
1604     }
1605     setObjCGCLValueClass(getContext(), E, LV);
1606     return LV;
1607   }
1608 
1609   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND))
1610     return EmitFunctionDeclLValue(*this, E, fn);
1611 
1612   llvm_unreachable("Unhandled DeclRefExpr");
1613 }
1614 
1615 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1616   // __extension__ doesn't affect lvalue-ness.
1617   if (E->getOpcode() == UO_Extension)
1618     return EmitLValue(E->getSubExpr());
1619 
1620   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1621   switch (E->getOpcode()) {
1622   default: llvm_unreachable("Unknown unary operator lvalue!");
1623   case UO_Deref: {
1624     QualType T = E->getSubExpr()->getType()->getPointeeType();
1625     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1626 
1627     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1628     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1629 
1630     // We should not generate __weak write barrier on indirect reference
1631     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1632     // But, we continue to generate __strong write barrier on indirect write
1633     // into a pointer to object.
1634     if (getContext().getLangOpts().ObjC1 &&
1635         getContext().getLangOpts().getGC() != LangOptions::NonGC &&
1636         LV.isObjCWeak())
1637       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1638     return LV;
1639   }
1640   case UO_Real:
1641   case UO_Imag: {
1642     LValue LV = EmitLValue(E->getSubExpr());
1643     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1644     llvm::Value *Addr = LV.getAddress();
1645 
1646     // __real is valid on scalars.  This is a faster way of testing that.
1647     // __imag can only produce an rvalue on scalars.
1648     if (E->getOpcode() == UO_Real &&
1649         !cast<llvm::PointerType>(Addr->getType())
1650            ->getElementType()->isStructTy()) {
1651       assert(E->getSubExpr()->getType()->isArithmeticType());
1652       return LV;
1653     }
1654 
1655     assert(E->getSubExpr()->getType()->isAnyComplexType());
1656 
1657     unsigned Idx = E->getOpcode() == UO_Imag;
1658     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1659                                                   Idx, "idx"),
1660                           ExprTy);
1661   }
1662   case UO_PreInc:
1663   case UO_PreDec: {
1664     LValue LV = EmitLValue(E->getSubExpr());
1665     bool isInc = E->getOpcode() == UO_PreInc;
1666 
1667     if (E->getType()->isAnyComplexType())
1668       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1669     else
1670       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1671     return LV;
1672   }
1673   }
1674 }
1675 
1676 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1677   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1678                         E->getType());
1679 }
1680 
1681 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1682   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1683                         E->getType());
1684 }
1685 
1686 
1687 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
1688   switch (E->getIdentType()) {
1689   default:
1690     return EmitUnsupportedLValue(E, "predefined expression");
1691 
1692   case PredefinedExpr::Func:
1693   case PredefinedExpr::Function:
1694   case PredefinedExpr::PrettyFunction: {
1695     unsigned Type = E->getIdentType();
1696     std::string GlobalVarName;
1697 
1698     switch (Type) {
1699     default: llvm_unreachable("Invalid type");
1700     case PredefinedExpr::Func:
1701       GlobalVarName = "__func__.";
1702       break;
1703     case PredefinedExpr::Function:
1704       GlobalVarName = "__FUNCTION__.";
1705       break;
1706     case PredefinedExpr::PrettyFunction:
1707       GlobalVarName = "__PRETTY_FUNCTION__.";
1708       break;
1709     }
1710 
1711     StringRef FnName = CurFn->getName();
1712     if (FnName.startswith("\01"))
1713       FnName = FnName.substr(1);
1714     GlobalVarName += FnName;
1715 
1716     const Decl *CurDecl = CurCodeDecl;
1717     if (CurDecl == 0)
1718       CurDecl = getContext().getTranslationUnitDecl();
1719 
1720     std::string FunctionName =
1721         (isa<BlockDecl>(CurDecl)
1722          ? FnName.str()
1723          : PredefinedExpr::ComputeName((PredefinedExpr::IdentType)Type, CurDecl));
1724 
1725     llvm::Constant *C =
1726       CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
1727     return MakeAddrLValue(C, E->getType());
1728   }
1729   }
1730 }
1731 
1732 llvm::BasicBlock *CodeGenFunction::getTrapBB() {
1733   const CodeGenOptions &GCO = CGM.getCodeGenOpts();
1734 
1735   // If we are not optimzing, don't collapse all calls to trap in the function
1736   // to the same call, that way, in the debugger they can see which operation
1737   // did in fact fail.  If we are optimizing, we collapse all calls to trap down
1738   // to just one per function to save on codesize.
1739   if (GCO.OptimizationLevel && TrapBB)
1740     return TrapBB;
1741 
1742   llvm::BasicBlock *Cont = 0;
1743   if (HaveInsertPoint()) {
1744     Cont = createBasicBlock("cont");
1745     EmitBranch(Cont);
1746   }
1747   TrapBB = createBasicBlock("trap");
1748   EmitBlock(TrapBB);
1749 
1750   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
1751   llvm::CallInst *TrapCall = Builder.CreateCall(F);
1752   TrapCall->setDoesNotReturn();
1753   TrapCall->setDoesNotThrow();
1754   Builder.CreateUnreachable();
1755 
1756   if (Cont)
1757     EmitBlock(Cont);
1758   return TrapBB;
1759 }
1760 
1761 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
1762 /// array to pointer, return the array subexpression.
1763 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
1764   // If this isn't just an array->pointer decay, bail out.
1765   const CastExpr *CE = dyn_cast<CastExpr>(E);
1766   if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay)
1767     return 0;
1768 
1769   // If this is a decay from variable width array, bail out.
1770   const Expr *SubExpr = CE->getSubExpr();
1771   if (SubExpr->getType()->isVariableArrayType())
1772     return 0;
1773 
1774   return SubExpr;
1775 }
1776 
1777 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1778   // The index must always be an integer, which is not an aggregate.  Emit it.
1779   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
1780   QualType IdxTy  = E->getIdx()->getType();
1781   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1782 
1783   // If the base is a vector type, then we are forming a vector element lvalue
1784   // with this subscript.
1785   if (E->getBase()->getType()->isVectorType()) {
1786     // Emit the vector as an lvalue to get its address.
1787     LValue LHS = EmitLValue(E->getBase());
1788     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
1789     Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx");
1790     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
1791                                  E->getBase()->getType(), LHS.getAlignment());
1792   }
1793 
1794   // Extend or truncate the index type to 32 or 64-bits.
1795   if (Idx->getType() != IntPtrTy)
1796     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
1797 
1798   // FIXME: As llvm implements the object size checking, this can come out.
1799   if (CatchUndefined) {
1800     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E->getBase())){
1801       if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
1802         if (ICE->getCastKind() == CK_ArrayToPointerDecay) {
1803           if (const ConstantArrayType *CAT
1804               = getContext().getAsConstantArrayType(DRE->getType())) {
1805             llvm::APInt Size = CAT->getSize();
1806             llvm::BasicBlock *Cont = createBasicBlock("cont");
1807             Builder.CreateCondBr(Builder.CreateICmpULE(Idx,
1808                                   llvm::ConstantInt::get(Idx->getType(), Size)),
1809                                  Cont, getTrapBB());
1810             EmitBlock(Cont);
1811           }
1812         }
1813       }
1814     }
1815   }
1816 
1817   // We know that the pointer points to a type of the correct size, unless the
1818   // size is a VLA or Objective-C interface.
1819   llvm::Value *Address = 0;
1820   CharUnits ArrayAlignment;
1821   if (const VariableArrayType *vla =
1822         getContext().getAsVariableArrayType(E->getType())) {
1823     // The base must be a pointer, which is not an aggregate.  Emit
1824     // it.  It needs to be emitted first in case it's what captures
1825     // the VLA bounds.
1826     Address = EmitScalarExpr(E->getBase());
1827 
1828     // The element count here is the total number of non-VLA elements.
1829     llvm::Value *numElements = getVLASize(vla).first;
1830 
1831     // Effectively, the multiply by the VLA size is part of the GEP.
1832     // GEP indexes are signed, and scaling an index isn't permitted to
1833     // signed-overflow, so we use the same semantics for our explicit
1834     // multiply.  We suppress this if overflow is not undefined behavior.
1835     if (getLangOpts().isSignedOverflowDefined()) {
1836       Idx = Builder.CreateMul(Idx, numElements);
1837       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1838     } else {
1839       Idx = Builder.CreateNSWMul(Idx, numElements);
1840       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
1841     }
1842   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
1843     // Indexing over an interface, as in "NSString *P; P[4];"
1844     llvm::Value *InterfaceSize =
1845       llvm::ConstantInt::get(Idx->getType(),
1846           getContext().getTypeSizeInChars(OIT).getQuantity());
1847 
1848     Idx = Builder.CreateMul(Idx, InterfaceSize);
1849 
1850     // The base must be a pointer, which is not an aggregate.  Emit it.
1851     llvm::Value *Base = EmitScalarExpr(E->getBase());
1852     Address = EmitCastToVoidPtr(Base);
1853     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
1854     Address = Builder.CreateBitCast(Address, Base->getType());
1855   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
1856     // If this is A[i] where A is an array, the frontend will have decayed the
1857     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
1858     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
1859     // "gep x, i" here.  Emit one "gep A, 0, i".
1860     assert(Array->getType()->isArrayType() &&
1861            "Array to pointer decay must have array source type!");
1862     LValue ArrayLV = EmitLValue(Array);
1863     llvm::Value *ArrayPtr = ArrayLV.getAddress();
1864     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
1865     llvm::Value *Args[] = { Zero, Idx };
1866 
1867     // Propagate the alignment from the array itself to the result.
1868     ArrayAlignment = ArrayLV.getAlignment();
1869 
1870     if (getContext().getLangOpts().isSignedOverflowDefined())
1871       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
1872     else
1873       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
1874   } else {
1875     // The base must be a pointer, which is not an aggregate.  Emit it.
1876     llvm::Value *Base = EmitScalarExpr(E->getBase());
1877     if (getContext().getLangOpts().isSignedOverflowDefined())
1878       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
1879     else
1880       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
1881   }
1882 
1883   QualType T = E->getBase()->getType()->getPointeeType();
1884   assert(!T.isNull() &&
1885          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
1886 
1887 
1888   // Limit the alignment to that of the result type.
1889   LValue LV;
1890   if (!ArrayAlignment.isZero()) {
1891     CharUnits Align = getContext().getTypeAlignInChars(T);
1892     ArrayAlignment = std::min(Align, ArrayAlignment);
1893     LV = MakeAddrLValue(Address, T, ArrayAlignment);
1894   } else {
1895     LV = MakeNaturalAlignAddrLValue(Address, T);
1896   }
1897 
1898   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
1899 
1900   if (getContext().getLangOpts().ObjC1 &&
1901       getContext().getLangOpts().getGC() != LangOptions::NonGC) {
1902     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1903     setObjCGCLValueClass(getContext(), E, LV);
1904   }
1905   return LV;
1906 }
1907 
1908 static
1909 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
1910                                        SmallVector<unsigned, 4> &Elts) {
1911   SmallVector<llvm::Constant*, 4> CElts;
1912   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
1913     CElts.push_back(Builder.getInt32(Elts[i]));
1914 
1915   return llvm::ConstantVector::get(CElts);
1916 }
1917 
1918 LValue CodeGenFunction::
1919 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
1920   // Emit the base vector as an l-value.
1921   LValue Base;
1922 
1923   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
1924   if (E->isArrow()) {
1925     // If it is a pointer to a vector, emit the address and form an lvalue with
1926     // it.
1927     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
1928     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
1929     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
1930     Base.getQuals().removeObjCGCAttr();
1931   } else if (E->getBase()->isGLValue()) {
1932     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
1933     // emit the base as an lvalue.
1934     assert(E->getBase()->getType()->isVectorType());
1935     Base = EmitLValue(E->getBase());
1936   } else {
1937     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
1938     assert(E->getBase()->getType()->isVectorType() &&
1939            "Result must be a vector");
1940     llvm::Value *Vec = EmitScalarExpr(E->getBase());
1941 
1942     // Store the vector to memory (because LValue wants an address).
1943     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
1944     Builder.CreateStore(Vec, VecMem);
1945     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
1946   }
1947 
1948   QualType type =
1949     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
1950 
1951   // Encode the element access list into a vector of unsigned indices.
1952   SmallVector<unsigned, 4> Indices;
1953   E->getEncodedElementAccess(Indices);
1954 
1955   if (Base.isSimple()) {
1956     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
1957     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
1958                                     Base.getAlignment());
1959   }
1960   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
1961 
1962   llvm::Constant *BaseElts = Base.getExtVectorElts();
1963   SmallVector<llvm::Constant *, 4> CElts;
1964 
1965   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1966     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
1967   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
1968   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
1969                                   Base.getAlignment());
1970 }
1971 
1972 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
1973   bool isNonGC = false;
1974   Expr *BaseExpr = E->getBase();
1975   llvm::Value *BaseValue = NULL;
1976   Qualifiers BaseQuals;
1977 
1978   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
1979   if (E->isArrow()) {
1980     BaseValue = EmitScalarExpr(BaseExpr);
1981     const PointerType *PTy =
1982       BaseExpr->getType()->getAs<PointerType>();
1983     BaseQuals = PTy->getPointeeType().getQualifiers();
1984   } else {
1985     LValue BaseLV = EmitLValue(BaseExpr);
1986     if (BaseLV.isNonGC())
1987       isNonGC = true;
1988     // FIXME: this isn't right for bitfields.
1989     BaseValue = BaseLV.getAddress();
1990     QualType BaseTy = BaseExpr->getType();
1991     BaseQuals = BaseTy.getQualifiers();
1992   }
1993 
1994   NamedDecl *ND = E->getMemberDecl();
1995   if (FieldDecl *Field = dyn_cast<FieldDecl>(ND)) {
1996     LValue LV = EmitLValueForField(BaseValue, Field,
1997                                    BaseQuals.getCVRQualifiers());
1998     LV.setNonGC(isNonGC);
1999     setObjCGCLValueClass(getContext(), E, LV);
2000     return LV;
2001   }
2002 
2003   if (VarDecl *VD = dyn_cast<VarDecl>(ND))
2004     return EmitGlobalVarDeclLValue(*this, E, VD);
2005 
2006   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND))
2007     return EmitFunctionDeclLValue(*this, E, FD);
2008 
2009   llvm_unreachable("Unhandled member declaration!");
2010 }
2011 
2012 LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value *BaseValue,
2013                                               const FieldDecl *Field,
2014                                               unsigned CVRQualifiers) {
2015   const CGRecordLayout &RL =
2016     CGM.getTypes().getCGRecordLayout(Field->getParent());
2017   const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
2018   return LValue::MakeBitfield(BaseValue, Info,
2019                           Field->getType().withCVRQualifiers(CVRQualifiers));
2020 }
2021 
2022 /// EmitLValueForAnonRecordField - Given that the field is a member of
2023 /// an anonymous struct or union buried inside a record, and given
2024 /// that the base value is a pointer to the enclosing record, derive
2025 /// an lvalue for the ultimate field.
2026 LValue CodeGenFunction::EmitLValueForAnonRecordField(llvm::Value *BaseValue,
2027                                              const IndirectFieldDecl *Field,
2028                                                      unsigned CVRQualifiers) {
2029   IndirectFieldDecl::chain_iterator I = Field->chain_begin(),
2030     IEnd = Field->chain_end();
2031   while (true) {
2032     LValue LV = EmitLValueForField(BaseValue, cast<FieldDecl>(*I),
2033                                    CVRQualifiers);
2034     if (++I == IEnd) return LV;
2035 
2036     assert(LV.isSimple());
2037     BaseValue = LV.getAddress();
2038     CVRQualifiers |= LV.getVRQualifiers();
2039   }
2040 }
2041 
2042 LValue CodeGenFunction::EmitLValueForField(llvm::Value *baseAddr,
2043                                            const FieldDecl *field,
2044                                            unsigned cvr) {
2045   if (field->isBitField())
2046     return EmitLValueForBitfield(baseAddr, field, cvr);
2047 
2048   const RecordDecl *rec = field->getParent();
2049   QualType type = field->getType();
2050   CharUnits alignment = getContext().getDeclAlign(field);
2051 
2052   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2053 
2054   llvm::Value *addr = baseAddr;
2055   if (rec->isUnion()) {
2056     // For unions, there is no pointer adjustment.
2057     assert(!type->isReferenceType() && "union has reference member");
2058   } else {
2059     // For structs, we GEP to the field that the record layout suggests.
2060     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2061     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2062 
2063     // If this is a reference field, load the reference right now.
2064     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2065       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2066       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2067       load->setAlignment(alignment.getQuantity());
2068 
2069       if (CGM.shouldUseTBAA()) {
2070         llvm::MDNode *tbaa;
2071         if (mayAlias)
2072           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2073         else
2074           tbaa = CGM.getTBAAInfo(type);
2075         CGM.DecorateInstruction(load, tbaa);
2076       }
2077 
2078       addr = load;
2079       mayAlias = false;
2080       type = refType->getPointeeType();
2081       if (type->isIncompleteType())
2082         alignment = CharUnits();
2083       else
2084         alignment = getContext().getTypeAlignInChars(type);
2085       cvr = 0; // qualifiers don't recursively apply to referencee
2086     }
2087   }
2088 
2089   // Make sure that the address is pointing to the right type.  This is critical
2090   // for both unions and structs.  A union needs a bitcast, a struct element
2091   // will need a bitcast if the LLVM type laid out doesn't match the desired
2092   // type.
2093   addr = EmitBitCastOfLValueToProperType(*this, addr,
2094                                          CGM.getTypes().ConvertTypeForMem(type),
2095                                          field->getName());
2096 
2097   if (field->hasAttr<AnnotateAttr>())
2098     addr = EmitFieldAnnotations(field, addr);
2099 
2100   LValue LV = MakeAddrLValue(addr, type, alignment);
2101   LV.getQuals().addCVRQualifiers(cvr);
2102 
2103   // __weak attribute on a field is ignored.
2104   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2105     LV.getQuals().removeObjCGCAttr();
2106 
2107   // Fields of may_alias structs act like 'char' for TBAA purposes.
2108   // FIXME: this should get propagated down through anonymous structs
2109   // and unions.
2110   if (mayAlias && LV.getTBAAInfo())
2111     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2112 
2113   return LV;
2114 }
2115 
2116 LValue
2117 CodeGenFunction::EmitLValueForFieldInitialization(llvm::Value *BaseValue,
2118                                                   const FieldDecl *Field,
2119                                                   unsigned CVRQualifiers) {
2120   QualType FieldType = Field->getType();
2121 
2122   if (!FieldType->isReferenceType())
2123     return EmitLValueForField(BaseValue, Field, CVRQualifiers);
2124 
2125   const CGRecordLayout &RL =
2126     CGM.getTypes().getCGRecordLayout(Field->getParent());
2127   unsigned idx = RL.getLLVMFieldNo(Field);
2128   llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx);
2129   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2130 
2131 
2132   // Make sure that the address is pointing to the right type.  This is critical
2133   // for both unions and structs.  A union needs a bitcast, a struct element
2134   // will need a bitcast if the LLVM type laid out doesn't match the desired
2135   // type.
2136   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2137   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2138   V = Builder.CreateBitCast(V, llvmType->getPointerTo(AS));
2139 
2140   CharUnits Alignment = getContext().getDeclAlign(Field);
2141   return MakeAddrLValue(V, FieldType, Alignment);
2142 }
2143 
2144 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2145   if (E->isFileScope()) {
2146     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2147     return MakeAddrLValue(GlobalPtr, E->getType());
2148   }
2149 
2150   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2151   const Expr *InitExpr = E->getInitializer();
2152   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2153 
2154   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2155                    /*Init*/ true);
2156 
2157   return Result;
2158 }
2159 
2160 LValue CodeGenFunction::
2161 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2162   if (!expr->isGLValue()) {
2163     // ?: here should be an aggregate.
2164     assert((hasAggregateLLVMType(expr->getType()) &&
2165             !expr->getType()->isAnyComplexType()) &&
2166            "Unexpected conditional operator!");
2167     return EmitAggExprToLValue(expr);
2168   }
2169 
2170   OpaqueValueMapping binding(*this, expr);
2171 
2172   const Expr *condExpr = expr->getCond();
2173   bool CondExprBool;
2174   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2175     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2176     if (!CondExprBool) std::swap(live, dead);
2177 
2178     if (!ContainsLabel(dead))
2179       return EmitLValue(live);
2180   }
2181 
2182   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2183   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2184   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2185 
2186   ConditionalEvaluation eval(*this);
2187   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock);
2188 
2189   // Any temporaries created here are conditional.
2190   EmitBlock(lhsBlock);
2191   eval.begin(*this);
2192   LValue lhs = EmitLValue(expr->getTrueExpr());
2193   eval.end(*this);
2194 
2195   if (!lhs.isSimple())
2196     return EmitUnsupportedLValue(expr, "conditional operator");
2197 
2198   lhsBlock = Builder.GetInsertBlock();
2199   Builder.CreateBr(contBlock);
2200 
2201   // Any temporaries created here are conditional.
2202   EmitBlock(rhsBlock);
2203   eval.begin(*this);
2204   LValue rhs = EmitLValue(expr->getFalseExpr());
2205   eval.end(*this);
2206   if (!rhs.isSimple())
2207     return EmitUnsupportedLValue(expr, "conditional operator");
2208   rhsBlock = Builder.GetInsertBlock();
2209 
2210   EmitBlock(contBlock);
2211 
2212   llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2,
2213                                          "cond-lvalue");
2214   phi->addIncoming(lhs.getAddress(), lhsBlock);
2215   phi->addIncoming(rhs.getAddress(), rhsBlock);
2216   return MakeAddrLValue(phi, expr->getType());
2217 }
2218 
2219 /// EmitCastLValue - Casts are never lvalues unless that cast is a dynamic_cast.
2220 /// If the cast is a dynamic_cast, we can have the usual lvalue result,
2221 /// otherwise if a cast is needed by the code generator in an lvalue context,
2222 /// then it must mean that we need the address of an aggregate in order to
2223 /// access one of its fields.  This can happen for all the reasons that casts
2224 /// are permitted with aggregate result, including noop aggregate casts, and
2225 /// cast from scalar to union.
2226 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2227   switch (E->getCastKind()) {
2228   case CK_ToVoid:
2229     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2230 
2231   case CK_Dependent:
2232     llvm_unreachable("dependent cast kind in IR gen!");
2233 
2234   // These two casts are currently treated as no-ops, although they could
2235   // potentially be real operations depending on the target's ABI.
2236   case CK_NonAtomicToAtomic:
2237   case CK_AtomicToNonAtomic:
2238 
2239   case CK_NoOp:
2240   case CK_LValueToRValue:
2241     if (!E->getSubExpr()->Classify(getContext()).isPRValue()
2242         || E->getType()->isRecordType())
2243       return EmitLValue(E->getSubExpr());
2244     // Fall through to synthesize a temporary.
2245 
2246   case CK_BitCast:
2247   case CK_ArrayToPointerDecay:
2248   case CK_FunctionToPointerDecay:
2249   case CK_NullToMemberPointer:
2250   case CK_NullToPointer:
2251   case CK_IntegralToPointer:
2252   case CK_PointerToIntegral:
2253   case CK_PointerToBoolean:
2254   case CK_VectorSplat:
2255   case CK_IntegralCast:
2256   case CK_IntegralToBoolean:
2257   case CK_IntegralToFloating:
2258   case CK_FloatingToIntegral:
2259   case CK_FloatingToBoolean:
2260   case CK_FloatingCast:
2261   case CK_FloatingRealToComplex:
2262   case CK_FloatingComplexToReal:
2263   case CK_FloatingComplexToBoolean:
2264   case CK_FloatingComplexCast:
2265   case CK_FloatingComplexToIntegralComplex:
2266   case CK_IntegralRealToComplex:
2267   case CK_IntegralComplexToReal:
2268   case CK_IntegralComplexToBoolean:
2269   case CK_IntegralComplexCast:
2270   case CK_IntegralComplexToFloatingComplex:
2271   case CK_DerivedToBaseMemberPointer:
2272   case CK_BaseToDerivedMemberPointer:
2273   case CK_MemberPointerToBoolean:
2274   case CK_ReinterpretMemberPointer:
2275   case CK_AnyPointerToBlockPointerCast:
2276   case CK_ARCProduceObject:
2277   case CK_ARCConsumeObject:
2278   case CK_ARCReclaimReturnedObject:
2279   case CK_ARCExtendBlockObject:
2280   case CK_CopyAndAutoreleaseBlockObject: {
2281     // These casts only produce lvalues when we're binding a reference to a
2282     // temporary realized from a (converted) pure rvalue. Emit the expression
2283     // as a value, copy it into a temporary, and return an lvalue referring to
2284     // that temporary.
2285     llvm::Value *V = CreateMemTemp(E->getType(), "ref.temp");
2286     EmitAnyExprToMem(E, V, E->getType().getQualifiers(), false);
2287     return MakeAddrLValue(V, E->getType());
2288   }
2289 
2290   case CK_Dynamic: {
2291     LValue LV = EmitLValue(E->getSubExpr());
2292     llvm::Value *V = LV.getAddress();
2293     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(E);
2294     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2295   }
2296 
2297   case CK_ConstructorConversion:
2298   case CK_UserDefinedConversion:
2299   case CK_CPointerToObjCPointerCast:
2300   case CK_BlockPointerToObjCPointerCast:
2301     return EmitLValue(E->getSubExpr());
2302 
2303   case CK_UncheckedDerivedToBase:
2304   case CK_DerivedToBase: {
2305     const RecordType *DerivedClassTy =
2306       E->getSubExpr()->getType()->getAs<RecordType>();
2307     CXXRecordDecl *DerivedClassDecl =
2308       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2309 
2310     LValue LV = EmitLValue(E->getSubExpr());
2311     llvm::Value *This = LV.getAddress();
2312 
2313     // Perform the derived-to-base conversion
2314     llvm::Value *Base =
2315       GetAddressOfBaseClass(This, DerivedClassDecl,
2316                             E->path_begin(), E->path_end(),
2317                             /*NullCheckValue=*/false);
2318 
2319     return MakeAddrLValue(Base, E->getType());
2320   }
2321   case CK_ToUnion:
2322     return EmitAggExprToLValue(E);
2323   case CK_BaseToDerived: {
2324     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2325     CXXRecordDecl *DerivedClassDecl =
2326       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2327 
2328     LValue LV = EmitLValue(E->getSubExpr());
2329 
2330     // Perform the base-to-derived conversion
2331     llvm::Value *Derived =
2332       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2333                                E->path_begin(), E->path_end(),
2334                                /*NullCheckValue=*/false);
2335 
2336     return MakeAddrLValue(Derived, E->getType());
2337   }
2338   case CK_LValueBitCast: {
2339     // This must be a reinterpret_cast (or c-style equivalent).
2340     const ExplicitCastExpr *CE = cast<ExplicitCastExpr>(E);
2341 
2342     LValue LV = EmitLValue(E->getSubExpr());
2343     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2344                                            ConvertType(CE->getTypeAsWritten()));
2345     return MakeAddrLValue(V, E->getType());
2346   }
2347   case CK_ObjCObjectLValueCast: {
2348     LValue LV = EmitLValue(E->getSubExpr());
2349     QualType ToType = getContext().getLValueReferenceType(E->getType());
2350     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2351                                            ConvertType(ToType));
2352     return MakeAddrLValue(V, E->getType());
2353   }
2354   }
2355 
2356   llvm_unreachable("Unhandled lvalue cast kind?");
2357 }
2358 
2359 LValue CodeGenFunction::EmitNullInitializationLValue(
2360                                               const CXXScalarValueInitExpr *E) {
2361   QualType Ty = E->getType();
2362   LValue LV = MakeAddrLValue(CreateMemTemp(Ty), Ty);
2363   EmitNullInitialization(LV.getAddress(), Ty);
2364   return LV;
2365 }
2366 
2367 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2368   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2369   return getOpaqueLValueMapping(e);
2370 }
2371 
2372 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
2373                                            const MaterializeTemporaryExpr *E) {
2374   RValue RV = EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
2375   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2376 }
2377 
2378 
2379 //===--------------------------------------------------------------------===//
2380 //                             Expression Emission
2381 //===--------------------------------------------------------------------===//
2382 
2383 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2384                                      ReturnValueSlot ReturnValue) {
2385   if (CGDebugInfo *DI = getDebugInfo())
2386     DI->EmitLocation(Builder, E->getLocStart());
2387 
2388   // Builtins never have block type.
2389   if (E->getCallee()->getType()->isBlockPointerType())
2390     return EmitBlockCallExpr(E, ReturnValue);
2391 
2392   if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
2393     return EmitCXXMemberCallExpr(CE, ReturnValue);
2394 
2395   if (const CUDAKernelCallExpr *CE = dyn_cast<CUDAKernelCallExpr>(E))
2396     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2397 
2398   const Decl *TargetDecl = E->getCalleeDecl();
2399   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2400     if (unsigned builtinID = FD->getBuiltinID())
2401       return EmitBuiltinExpr(FD, builtinID, E);
2402   }
2403 
2404   if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
2405     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2406       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2407 
2408   if (const CXXPseudoDestructorExpr *PseudoDtor
2409           = dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2410     QualType DestroyedType = PseudoDtor->getDestroyedType();
2411     if (getContext().getLangOpts().ObjCAutoRefCount &&
2412         DestroyedType->isObjCLifetimeType() &&
2413         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2414          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2415       // Automatic Reference Counting:
2416       //   If the pseudo-expression names a retainable object with weak or
2417       //   strong lifetime, the object shall be released.
2418       Expr *BaseExpr = PseudoDtor->getBase();
2419       llvm::Value *BaseValue = NULL;
2420       Qualifiers BaseQuals;
2421 
2422       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2423       if (PseudoDtor->isArrow()) {
2424         BaseValue = EmitScalarExpr(BaseExpr);
2425         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2426         BaseQuals = PTy->getPointeeType().getQualifiers();
2427       } else {
2428         LValue BaseLV = EmitLValue(BaseExpr);
2429         BaseValue = BaseLV.getAddress();
2430         QualType BaseTy = BaseExpr->getType();
2431         BaseQuals = BaseTy.getQualifiers();
2432       }
2433 
2434       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
2435       case Qualifiers::OCL_None:
2436       case Qualifiers::OCL_ExplicitNone:
2437       case Qualifiers::OCL_Autoreleasing:
2438         break;
2439 
2440       case Qualifiers::OCL_Strong:
2441         EmitARCRelease(Builder.CreateLoad(BaseValue,
2442                           PseudoDtor->getDestroyedType().isVolatileQualified()),
2443                        /*precise*/ true);
2444         break;
2445 
2446       case Qualifiers::OCL_Weak:
2447         EmitARCDestroyWeak(BaseValue);
2448         break;
2449       }
2450     } else {
2451       // C++ [expr.pseudo]p1:
2452       //   The result shall only be used as the operand for the function call
2453       //   operator (), and the result of such a call has type void. The only
2454       //   effect is the evaluation of the postfix-expression before the dot or
2455       //   arrow.
2456       EmitScalarExpr(E->getCallee());
2457     }
2458 
2459     return RValue::get(0);
2460   }
2461 
2462   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
2463   return EmitCall(E->getCallee()->getType(), Callee, ReturnValue,
2464                   E->arg_begin(), E->arg_end(), TargetDecl);
2465 }
2466 
2467 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
2468   // Comma expressions just emit their LHS then their RHS as an l-value.
2469   if (E->getOpcode() == BO_Comma) {
2470     EmitIgnoredExpr(E->getLHS());
2471     EnsureInsertPoint();
2472     return EmitLValue(E->getRHS());
2473   }
2474 
2475   if (E->getOpcode() == BO_PtrMemD ||
2476       E->getOpcode() == BO_PtrMemI)
2477     return EmitPointerToDataMemberBinaryExpr(E);
2478 
2479   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
2480 
2481   // Note that in all of these cases, __block variables need the RHS
2482   // evaluated first just in case the variable gets moved by the RHS.
2483 
2484   if (!hasAggregateLLVMType(E->getType())) {
2485     switch (E->getLHS()->getType().getObjCLifetime()) {
2486     case Qualifiers::OCL_Strong:
2487       return EmitARCStoreStrong(E, /*ignored*/ false).first;
2488 
2489     case Qualifiers::OCL_Autoreleasing:
2490       return EmitARCStoreAutoreleasing(E).first;
2491 
2492     // No reason to do any of these differently.
2493     case Qualifiers::OCL_None:
2494     case Qualifiers::OCL_ExplicitNone:
2495     case Qualifiers::OCL_Weak:
2496       break;
2497     }
2498 
2499     RValue RV = EmitAnyExpr(E->getRHS());
2500     LValue LV = EmitLValue(E->getLHS());
2501     EmitStoreThroughLValue(RV, LV);
2502     return LV;
2503   }
2504 
2505   if (E->getType()->isAnyComplexType())
2506     return EmitComplexAssignmentLValue(E);
2507 
2508   return EmitAggExprToLValue(E);
2509 }
2510 
2511 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
2512   RValue RV = EmitCallExpr(E);
2513 
2514   if (!RV.isScalar())
2515     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2516 
2517   assert(E->getCallReturnType()->isReferenceType() &&
2518          "Can't have a scalar return unless the return type is a "
2519          "reference type!");
2520 
2521   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2522 }
2523 
2524 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
2525   // FIXME: This shouldn't require another copy.
2526   return EmitAggExprToLValue(E);
2527 }
2528 
2529 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
2530   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
2531          && "binding l-value to type which needs a temporary");
2532   AggValueSlot Slot = CreateAggTemp(E->getType());
2533   EmitCXXConstructExpr(E, Slot);
2534   return MakeAddrLValue(Slot.getAddr(), E->getType());
2535 }
2536 
2537 LValue
2538 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
2539   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
2540 }
2541 
2542 LValue
2543 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
2544   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2545   Slot.setExternallyDestructed();
2546   EmitAggExpr(E->getSubExpr(), Slot);
2547   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
2548   return MakeAddrLValue(Slot.getAddr(), E->getType());
2549 }
2550 
2551 LValue
2552 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
2553   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
2554   EmitLambdaExpr(E, Slot);
2555   return MakeAddrLValue(Slot.getAddr(), E->getType());
2556 }
2557 
2558 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
2559   RValue RV = EmitObjCMessageExpr(E);
2560 
2561   if (!RV.isScalar())
2562     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2563 
2564   assert(E->getMethodDecl()->getResultType()->isReferenceType() &&
2565          "Can't have a scalar return unless the return type is a "
2566          "reference type!");
2567 
2568   return MakeAddrLValue(RV.getScalarVal(), E->getType());
2569 }
2570 
2571 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
2572   llvm::Value *V =
2573     CGM.getObjCRuntime().GetSelector(Builder, E->getSelector(), true);
2574   return MakeAddrLValue(V, E->getType());
2575 }
2576 
2577 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2578                                              const ObjCIvarDecl *Ivar) {
2579   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
2580 }
2581 
2582 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
2583                                           llvm::Value *BaseValue,
2584                                           const ObjCIvarDecl *Ivar,
2585                                           unsigned CVRQualifiers) {
2586   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
2587                                                    Ivar, CVRQualifiers);
2588 }
2589 
2590 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
2591   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
2592   llvm::Value *BaseValue = 0;
2593   const Expr *BaseExpr = E->getBase();
2594   Qualifiers BaseQuals;
2595   QualType ObjectTy;
2596   if (E->isArrow()) {
2597     BaseValue = EmitScalarExpr(BaseExpr);
2598     ObjectTy = BaseExpr->getType()->getPointeeType();
2599     BaseQuals = ObjectTy.getQualifiers();
2600   } else {
2601     LValue BaseLV = EmitLValue(BaseExpr);
2602     // FIXME: this isn't right for bitfields.
2603     BaseValue = BaseLV.getAddress();
2604     ObjectTy = BaseExpr->getType();
2605     BaseQuals = ObjectTy.getQualifiers();
2606   }
2607 
2608   LValue LV =
2609     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
2610                       BaseQuals.getCVRQualifiers());
2611   setObjCGCLValueClass(getContext(), E, LV);
2612   return LV;
2613 }
2614 
2615 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
2616   // Can only get l-value for message expression returning aggregate type
2617   RValue RV = EmitAnyExprToTemp(E);
2618   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
2619 }
2620 
2621 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
2622                                  ReturnValueSlot ReturnValue,
2623                                  CallExpr::const_arg_iterator ArgBeg,
2624                                  CallExpr::const_arg_iterator ArgEnd,
2625                                  const Decl *TargetDecl) {
2626   // Get the actual function type. The callee type will always be a pointer to
2627   // function type or a block pointer type.
2628   assert(CalleeType->isFunctionPointerType() &&
2629          "Call must have function pointer type!");
2630 
2631   CalleeType = getContext().getCanonicalType(CalleeType);
2632 
2633   const FunctionType *FnType
2634     = cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
2635 
2636   CallArgList Args;
2637   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd);
2638 
2639   const CGFunctionInfo &FnInfo =
2640     CGM.getTypes().arrangeFunctionCall(Args, FnType);
2641 
2642   // C99 6.5.2.2p6:
2643   //   If the expression that denotes the called function has a type
2644   //   that does not include a prototype, [the default argument
2645   //   promotions are performed]. If the number of arguments does not
2646   //   equal the number of parameters, the behavior is undefined. If
2647   //   the function is defined with a type that includes a prototype,
2648   //   and either the prototype ends with an ellipsis (, ...) or the
2649   //   types of the arguments after promotion are not compatible with
2650   //   the types of the parameters, the behavior is undefined. If the
2651   //   function is defined with a type that does not include a
2652   //   prototype, and the types of the arguments after promotion are
2653   //   not compatible with those of the parameters after promotion,
2654   //   the behavior is undefined [except in some trivial cases].
2655   // That is, in the general case, we should assume that a call
2656   // through an unprototyped function type works like a *non-variadic*
2657   // call.  The way we make this work is to cast to the exact type
2658   // of the promoted arguments.
2659   if (isa<FunctionNoProtoType>(FnType) && !FnInfo.isVariadic()) {
2660     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
2661     CalleeTy = CalleeTy->getPointerTo();
2662     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
2663   }
2664 
2665   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
2666 }
2667 
2668 LValue CodeGenFunction::
2669 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
2670   llvm::Value *BaseV;
2671   if (E->getOpcode() == BO_PtrMemI)
2672     BaseV = EmitScalarExpr(E->getLHS());
2673   else
2674     BaseV = EmitLValue(E->getLHS()).getAddress();
2675 
2676   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
2677 
2678   const MemberPointerType *MPT
2679     = E->getRHS()->getType()->getAs<MemberPointerType>();
2680 
2681   llvm::Value *AddV =
2682     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, BaseV, OffsetV, MPT);
2683 
2684   return MakeAddrLValue(AddV, MPT->getPointeeType());
2685 }
2686 
2687 static void
2688 EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
2689              llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
2690              uint64_t Size, unsigned Align, llvm::AtomicOrdering Order) {
2691   if (E->isCmpXChg()) {
2692     // Note that cmpxchg only supports specifying one ordering and
2693     // doesn't support weak cmpxchg, at least at the moment.
2694     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2695     LoadVal1->setAlignment(Align);
2696     llvm::LoadInst *LoadVal2 = CGF.Builder.CreateLoad(Val2);
2697     LoadVal2->setAlignment(Align);
2698     llvm::AtomicCmpXchgInst *CXI =
2699         CGF.Builder.CreateAtomicCmpXchg(Ptr, LoadVal1, LoadVal2, Order);
2700     CXI->setVolatile(E->isVolatile());
2701     llvm::StoreInst *StoreVal1 = CGF.Builder.CreateStore(CXI, Val1);
2702     StoreVal1->setAlignment(Align);
2703     llvm::Value *Cmp = CGF.Builder.CreateICmpEQ(CXI, LoadVal1);
2704     CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
2705     return;
2706   }
2707 
2708   if (E->getOp() == AtomicExpr::Load) {
2709     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
2710     Load->setAtomic(Order);
2711     Load->setAlignment(Size);
2712     Load->setVolatile(E->isVolatile());
2713     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
2714     StoreDest->setAlignment(Align);
2715     return;
2716   }
2717 
2718   if (E->getOp() == AtomicExpr::Store) {
2719     assert(!Dest && "Store does not return a value");
2720     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2721     LoadVal1->setAlignment(Align);
2722     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
2723     Store->setAtomic(Order);
2724     Store->setAlignment(Size);
2725     Store->setVolatile(E->isVolatile());
2726     return;
2727   }
2728 
2729   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
2730   switch (E->getOp()) {
2731     case AtomicExpr::CmpXchgWeak:
2732     case AtomicExpr::CmpXchgStrong:
2733     case AtomicExpr::Store:
2734     case AtomicExpr::Init:
2735     case AtomicExpr::Load:  assert(0 && "Already handled!");
2736     case AtomicExpr::Add:   Op = llvm::AtomicRMWInst::Add;  break;
2737     case AtomicExpr::Sub:   Op = llvm::AtomicRMWInst::Sub;  break;
2738     case AtomicExpr::And:   Op = llvm::AtomicRMWInst::And;  break;
2739     case AtomicExpr::Or:    Op = llvm::AtomicRMWInst::Or;   break;
2740     case AtomicExpr::Xor:   Op = llvm::AtomicRMWInst::Xor;  break;
2741     case AtomicExpr::Xchg:  Op = llvm::AtomicRMWInst::Xchg; break;
2742   }
2743   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
2744   LoadVal1->setAlignment(Align);
2745   llvm::AtomicRMWInst *RMWI =
2746       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
2747   RMWI->setVolatile(E->isVolatile());
2748   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(RMWI, Dest);
2749   StoreDest->setAlignment(Align);
2750 }
2751 
2752 // This function emits any expression (scalar, complex, or aggregate)
2753 // into a temporary alloca.
2754 static llvm::Value *
2755 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
2756   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
2757   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
2758                        /*Init*/ true);
2759   return DeclPtr;
2760 }
2761 
2762 static RValue ConvertTempToRValue(CodeGenFunction &CGF, QualType Ty,
2763                                   llvm::Value *Dest) {
2764   if (Ty->isAnyComplexType())
2765     return RValue::getComplex(CGF.LoadComplexFromAddr(Dest, false));
2766   if (CGF.hasAggregateLLVMType(Ty))
2767     return RValue::getAggregate(Dest);
2768   return RValue::get(CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(Dest, Ty)));
2769 }
2770 
2771 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
2772   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
2773   QualType MemTy = AtomicTy->getAs<AtomicType>()->getValueType();
2774   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
2775   uint64_t Size = sizeChars.getQuantity();
2776   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
2777   unsigned Align = alignChars.getQuantity();
2778   unsigned MaxInlineWidth =
2779       getContext().getTargetInfo().getMaxAtomicInlineWidth();
2780   bool UseLibcall = (Size != Align || Size > MaxInlineWidth);
2781 
2782 
2783 
2784   llvm::Value *Ptr, *Order, *OrderFail = 0, *Val1 = 0, *Val2 = 0;
2785   Ptr = EmitScalarExpr(E->getPtr());
2786 
2787   if (E->getOp() == AtomicExpr::Init) {
2788     assert(!Dest && "Init does not return a value");
2789     Val1 = EmitScalarExpr(E->getVal1());
2790     llvm::StoreInst *Store = Builder.CreateStore(Val1, Ptr);
2791     Store->setAlignment(Size);
2792     Store->setVolatile(E->isVolatile());
2793     return RValue::get(0);
2794   }
2795 
2796   Order = EmitScalarExpr(E->getOrder());
2797   if (E->isCmpXChg()) {
2798     Val1 = EmitScalarExpr(E->getVal1());
2799     Val2 = EmitValToTemp(*this, E->getVal2());
2800     OrderFail = EmitScalarExpr(E->getOrderFail());
2801   } else if ((E->getOp() == AtomicExpr::Add || E->getOp() == AtomicExpr::Sub) &&
2802              MemTy->isPointerType()) {
2803     // For pointers, we're required to do a bit of math: adding 1 to an int*
2804     // is not the same as adding 1 to a uintptr_t.
2805     QualType Val1Ty = E->getVal1()->getType();
2806     llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
2807     CharUnits PointeeIncAmt =
2808         getContext().getTypeSizeInChars(MemTy->getPointeeType());
2809     Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
2810     Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
2811     EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
2812   } else if (E->getOp() != AtomicExpr::Load) {
2813     Val1 = EmitValToTemp(*this, E->getVal1());
2814   }
2815 
2816   if (E->getOp() != AtomicExpr::Store && !Dest)
2817     Dest = CreateMemTemp(E->getType(), ".atomicdst");
2818 
2819   // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
2820   if (UseLibcall) {
2821 
2822     llvm::SmallVector<QualType, 5> Params;
2823     CallArgList Args;
2824     // Size is always the first parameter
2825     Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
2826              getContext().getSizeType());
2827     // Atomic address is always the second parameter
2828     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)),
2829              getContext().VoidPtrTy);
2830 
2831     const char* LibCallName;
2832     QualType RetTy = getContext().VoidTy;
2833     switch (E->getOp()) {
2834     // There is only one libcall for compare an exchange, because there is no
2835     // optimisation benefit possible from a libcall version of a weak compare
2836     // and exchange.
2837     // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
2838      //                               void *desired, int success, int failure)
2839     case AtomicExpr::CmpXchgWeak:
2840     case AtomicExpr::CmpXchgStrong:
2841       LibCallName = "__atomic_compare_exchange";
2842       RetTy = getContext().BoolTy;
2843       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2844                getContext().VoidPtrTy);
2845       Args.add(RValue::get(EmitCastToVoidPtr(Val2)),
2846                getContext().VoidPtrTy);
2847       Args.add(RValue::get(Order),
2848                getContext().IntTy);
2849       Order = OrderFail;
2850       break;
2851     // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
2852     //                        int order)
2853     case AtomicExpr::Xchg:
2854       LibCallName = "__atomic_exchange";
2855       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2856                getContext().VoidPtrTy);
2857       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
2858                getContext().VoidPtrTy);
2859       break;
2860     // void __atomic_store(size_t size, void *mem, void *val, int order)
2861     case AtomicExpr::Store:
2862       LibCallName = "__atomic_store";
2863       Args.add(RValue::get(EmitCastToVoidPtr(Val1)),
2864                getContext().VoidPtrTy);
2865       break;
2866     // void __atomic_load(size_t size, void *mem, void *return, int order)
2867     case AtomicExpr::Load:
2868       LibCallName = "__atomic_load";
2869       Args.add(RValue::get(EmitCastToVoidPtr(Dest)),
2870                getContext().VoidPtrTy);
2871       break;
2872 #if 0
2873     // These are only defined for 1-16 byte integers.  It is not clear what
2874     // their semantics would be on anything else...
2875     case AtomicExpr::Add:   LibCallName = "__atomic_fetch_add_generic"; break;
2876     case AtomicExpr::Sub:   LibCallName = "__atomic_fetch_sub_generic"; break;
2877     case AtomicExpr::And:   LibCallName = "__atomic_fetch_and_generic"; break;
2878     case AtomicExpr::Or:    LibCallName = "__atomic_fetch_or_generic"; break;
2879     case AtomicExpr::Xor:   LibCallName = "__atomic_fetch_xor_generic"; break;
2880 #endif
2881     default: return EmitUnsupportedRValue(E, "atomic library call");
2882     }
2883     // order is always the last parameter
2884     Args.add(RValue::get(Order),
2885              getContext().IntTy);
2886 
2887     const CGFunctionInfo &FuncInfo =
2888         CGM.getTypes().arrangeFunctionCall(RetTy, Args,
2889             FunctionType::ExtInfo(), RequiredArgs::All);
2890     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
2891     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2892     RValue Res = EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
2893     if (E->isCmpXChg())
2894       return Res;
2895     if (E->getOp() == AtomicExpr::Store)
2896       return RValue::get(0);
2897     return ConvertTempToRValue(*this, E->getType(), Dest);
2898   }
2899 
2900   llvm::Type *IPtrTy =
2901       llvm::IntegerType::get(getLLVMContext(), Size * 8)->getPointerTo();
2902   llvm::Value *OrigDest = Dest;
2903   Ptr = Builder.CreateBitCast(Ptr, IPtrTy);
2904   if (Val1) Val1 = Builder.CreateBitCast(Val1, IPtrTy);
2905   if (Val2) Val2 = Builder.CreateBitCast(Val2, IPtrTy);
2906   if (Dest && !E->isCmpXChg()) Dest = Builder.CreateBitCast(Dest, IPtrTy);
2907 
2908   if (isa<llvm::ConstantInt>(Order)) {
2909     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2910     switch (ord) {
2911     case 0:  // memory_order_relaxed
2912       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2913                    llvm::Monotonic);
2914       break;
2915     case 1:  // memory_order_consume
2916     case 2:  // memory_order_acquire
2917       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2918                    llvm::Acquire);
2919       break;
2920     case 3:  // memory_order_release
2921       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2922                    llvm::Release);
2923       break;
2924     case 4:  // memory_order_acq_rel
2925       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2926                    llvm::AcquireRelease);
2927       break;
2928     case 5:  // memory_order_seq_cst
2929       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2930                    llvm::SequentiallyConsistent);
2931       break;
2932     default: // invalid order
2933       // We should not ever get here normally, but it's hard to
2934       // enforce that in general.
2935       break;
2936     }
2937     if (E->getOp() == AtomicExpr::Store || E->getOp() == AtomicExpr::Init)
2938       return RValue::get(0);
2939     return ConvertTempToRValue(*this, E->getType(), OrigDest);
2940   }
2941 
2942   // Long case, when Order isn't obviously constant.
2943 
2944   // Create all the relevant BB's
2945   llvm::BasicBlock *MonotonicBB = 0, *AcquireBB = 0, *ReleaseBB = 0,
2946                    *AcqRelBB = 0, *SeqCstBB = 0;
2947   MonotonicBB = createBasicBlock("monotonic", CurFn);
2948   if (E->getOp() != AtomicExpr::Store)
2949     AcquireBB = createBasicBlock("acquire", CurFn);
2950   if (E->getOp() != AtomicExpr::Load)
2951     ReleaseBB = createBasicBlock("release", CurFn);
2952   if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store)
2953     AcqRelBB = createBasicBlock("acqrel", CurFn);
2954   SeqCstBB = createBasicBlock("seqcst", CurFn);
2955   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2956 
2957   // Create the switch for the split
2958   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
2959   // doesn't matter unless someone is crazy enough to use something that
2960   // doesn't fold to a constant for the ordering.
2961   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2962   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
2963 
2964   // Emit all the different atomics
2965   Builder.SetInsertPoint(MonotonicBB);
2966   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2967                llvm::Monotonic);
2968   Builder.CreateBr(ContBB);
2969   if (E->getOp() != AtomicExpr::Store) {
2970     Builder.SetInsertPoint(AcquireBB);
2971     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2972                  llvm::Acquire);
2973     Builder.CreateBr(ContBB);
2974     SI->addCase(Builder.getInt32(1), AcquireBB);
2975     SI->addCase(Builder.getInt32(2), AcquireBB);
2976   }
2977   if (E->getOp() != AtomicExpr::Load) {
2978     Builder.SetInsertPoint(ReleaseBB);
2979     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2980                  llvm::Release);
2981     Builder.CreateBr(ContBB);
2982     SI->addCase(Builder.getInt32(3), ReleaseBB);
2983   }
2984   if (E->getOp() != AtomicExpr::Load && E->getOp() != AtomicExpr::Store) {
2985     Builder.SetInsertPoint(AcqRelBB);
2986     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2987                  llvm::AcquireRelease);
2988     Builder.CreateBr(ContBB);
2989     SI->addCase(Builder.getInt32(4), AcqRelBB);
2990   }
2991   Builder.SetInsertPoint(SeqCstBB);
2992   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, Size, Align,
2993                llvm::SequentiallyConsistent);
2994   Builder.CreateBr(ContBB);
2995   SI->addCase(Builder.getInt32(5), SeqCstBB);
2996 
2997   // Cleanup and return
2998   Builder.SetInsertPoint(ContBB);
2999   if (E->getOp() == AtomicExpr::Store)
3000     return RValue::get(0);
3001   return ConvertTempToRValue(*this, E->getType(), OrigDest);
3002 }
3003 
3004 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN,
3005                                     unsigned AccuracyD) {
3006   assert(Val->getType()->isFPOrFPVectorTy());
3007   if (!AccuracyN || !isa<llvm::Instruction>(Val))
3008     return;
3009 
3010   llvm::Value *Vals[2];
3011   Vals[0] = llvm::ConstantInt::get(Int32Ty, AccuracyN);
3012   Vals[1] = llvm::ConstantInt::get(Int32Ty, AccuracyD);
3013   llvm::MDNode *Node = llvm::MDNode::get(getLLVMContext(), Vals);
3014 
3015   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpaccuracy,
3016                                             Node);
3017 }
3018 
3019 namespace {
3020   struct LValueOrRValue {
3021     LValue LV;
3022     RValue RV;
3023   };
3024 }
3025 
3026 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3027                                            const PseudoObjectExpr *E,
3028                                            bool forLValue,
3029                                            AggValueSlot slot) {
3030   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3031 
3032   // Find the result expression, if any.
3033   const Expr *resultExpr = E->getResultExpr();
3034   LValueOrRValue result;
3035 
3036   for (PseudoObjectExpr::const_semantics_iterator
3037          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3038     const Expr *semantic = *i;
3039 
3040     // If this semantic expression is an opaque value, bind it
3041     // to the result of its source expression.
3042     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3043 
3044       // If this is the result expression, we may need to evaluate
3045       // directly into the slot.
3046       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3047       OVMA opaqueData;
3048       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3049           CodeGenFunction::hasAggregateLLVMType(ov->getType()) &&
3050           !ov->getType()->isAnyComplexType()) {
3051         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3052 
3053         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3054         opaqueData = OVMA::bind(CGF, ov, LV);
3055         result.RV = slot.asRValue();
3056 
3057       // Otherwise, emit as normal.
3058       } else {
3059         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3060 
3061         // If this is the result, also evaluate the result now.
3062         if (ov == resultExpr) {
3063           if (forLValue)
3064             result.LV = CGF.EmitLValue(ov);
3065           else
3066             result.RV = CGF.EmitAnyExpr(ov, slot);
3067         }
3068       }
3069 
3070       opaques.push_back(opaqueData);
3071 
3072     // Otherwise, if the expression is the result, evaluate it
3073     // and remember the result.
3074     } else if (semantic == resultExpr) {
3075       if (forLValue)
3076         result.LV = CGF.EmitLValue(semantic);
3077       else
3078         result.RV = CGF.EmitAnyExpr(semantic, slot);
3079 
3080     // Otherwise, evaluate the expression in an ignored context.
3081     } else {
3082       CGF.EmitIgnoredExpr(semantic);
3083     }
3084   }
3085 
3086   // Unbind all the opaques now.
3087   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3088     opaques[i].unbind(CGF);
3089 
3090   return result;
3091 }
3092 
3093 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3094                                                AggValueSlot slot) {
3095   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3096 }
3097 
3098 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3099   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3100 }
3101