1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenModule.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/ADT/Hashing.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/Support/ConvertUTF.h" 31 32 using namespace clang; 33 using namespace CodeGen; 34 35 //===--------------------------------------------------------------------===// 36 // Miscellaneous Helper Methods 37 //===--------------------------------------------------------------------===// 38 39 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 40 unsigned addressSpace = 41 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 42 43 llvm::PointerType *destType = Int8PtrTy; 44 if (addressSpace) 45 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 46 47 if (value->getType() == destType) return value; 48 return Builder.CreateBitCast(value, destType); 49 } 50 51 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 52 /// block. 53 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 54 const Twine &Name) { 55 if (!Builder.isNamePreserving()) 56 return new llvm::AllocaInst(Ty, 0, "", AllocaInsertPt); 57 return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); 58 } 59 60 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var, 61 llvm::Value *Init) { 62 auto *Store = new llvm::StoreInst(Init, Var); 63 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 64 Block->getInstList().insertAfter(&*AllocaInsertPt, Store); 65 } 66 67 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty, 68 const Twine &Name) { 69 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name); 70 // FIXME: Should we prefer the preferred type alignment here? 71 CharUnits Align = getContext().getTypeAlignInChars(Ty); 72 Alloc->setAlignment(Align.getQuantity()); 73 return Alloc; 74 } 75 76 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty, 77 const Twine &Name) { 78 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name); 79 // FIXME: Should we prefer the preferred type alignment here? 80 CharUnits Align = getContext().getTypeAlignInChars(Ty); 81 Alloc->setAlignment(Align.getQuantity()); 82 return Alloc; 83 } 84 85 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 86 /// expression and compare the result against zero, returning an Int1Ty value. 87 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 88 PGO.setCurrentStmt(E); 89 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 90 llvm::Value *MemPtr = EmitScalarExpr(E); 91 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 92 } 93 94 QualType BoolTy = getContext().BoolTy; 95 if (!E->getType()->isAnyComplexType()) 96 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); 97 98 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); 99 } 100 101 /// EmitIgnoredExpr - Emit code to compute the specified expression, 102 /// ignoring the result. 103 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 104 if (E->isRValue()) 105 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 106 107 // Just emit it as an l-value and drop the result. 108 EmitLValue(E); 109 } 110 111 /// EmitAnyExpr - Emit code to compute the specified expression which 112 /// can have any type. The result is returned as an RValue struct. 113 /// If this is an aggregate expression, AggSlot indicates where the 114 /// result should be returned. 115 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 116 AggValueSlot aggSlot, 117 bool ignoreResult) { 118 switch (getEvaluationKind(E->getType())) { 119 case TEK_Scalar: 120 return RValue::get(EmitScalarExpr(E, ignoreResult)); 121 case TEK_Complex: 122 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 123 case TEK_Aggregate: 124 if (!ignoreResult && aggSlot.isIgnored()) 125 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 126 EmitAggExpr(E, aggSlot); 127 return aggSlot.asRValue(); 128 } 129 llvm_unreachable("bad evaluation kind"); 130 } 131 132 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 133 /// always be accessible even if no aggregate location is provided. 134 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 135 AggValueSlot AggSlot = AggValueSlot::ignored(); 136 137 if (hasAggregateEvaluationKind(E->getType())) 138 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 139 return EmitAnyExpr(E, AggSlot); 140 } 141 142 /// EmitAnyExprToMem - Evaluate an expression into a given memory 143 /// location. 144 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 145 llvm::Value *Location, 146 Qualifiers Quals, 147 bool IsInit) { 148 // FIXME: This function should take an LValue as an argument. 149 switch (getEvaluationKind(E->getType())) { 150 case TEK_Complex: 151 EmitComplexExprIntoLValue(E, 152 MakeNaturalAlignAddrLValue(Location, E->getType()), 153 /*isInit*/ false); 154 return; 155 156 case TEK_Aggregate: { 157 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType()); 158 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals, 159 AggValueSlot::IsDestructed_t(IsInit), 160 AggValueSlot::DoesNotNeedGCBarriers, 161 AggValueSlot::IsAliased_t(!IsInit))); 162 return; 163 } 164 165 case TEK_Scalar: { 166 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 167 LValue LV = MakeAddrLValue(Location, E->getType()); 168 EmitStoreThroughLValue(RV, LV); 169 return; 170 } 171 } 172 llvm_unreachable("bad evaluation kind"); 173 } 174 175 static void 176 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 177 const Expr *E, llvm::Value *ReferenceTemporary) { 178 // Objective-C++ ARC: 179 // If we are binding a reference to a temporary that has ownership, we 180 // need to perform retain/release operations on the temporary. 181 // 182 // FIXME: This should be looking at E, not M. 183 if (CGF.getLangOpts().ObjCAutoRefCount && 184 M->getType()->isObjCLifetimeType()) { 185 QualType ObjCARCReferenceLifetimeType = M->getType(); 186 switch (Qualifiers::ObjCLifetime Lifetime = 187 ObjCARCReferenceLifetimeType.getObjCLifetime()) { 188 case Qualifiers::OCL_None: 189 case Qualifiers::OCL_ExplicitNone: 190 // Carry on to normal cleanup handling. 191 break; 192 193 case Qualifiers::OCL_Autoreleasing: 194 // Nothing to do; cleaned up by an autorelease pool. 195 return; 196 197 case Qualifiers::OCL_Strong: 198 case Qualifiers::OCL_Weak: 199 switch (StorageDuration Duration = M->getStorageDuration()) { 200 case SD_Static: 201 // Note: we intentionally do not register a cleanup to release 202 // the object on program termination. 203 return; 204 205 case SD_Thread: 206 // FIXME: We should probably register a cleanup in this case. 207 return; 208 209 case SD_Automatic: 210 case SD_FullExpression: 211 assert(!ObjCARCReferenceLifetimeType->isArrayType()); 212 CodeGenFunction::Destroyer *Destroy; 213 CleanupKind CleanupKind; 214 if (Lifetime == Qualifiers::OCL_Strong) { 215 const ValueDecl *VD = M->getExtendingDecl(); 216 bool Precise = 217 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 218 CleanupKind = CGF.getARCCleanupKind(); 219 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 220 : &CodeGenFunction::destroyARCStrongImprecise; 221 } else { 222 // __weak objects always get EH cleanups; otherwise, exceptions 223 // could cause really nasty crashes instead of mere leaks. 224 CleanupKind = NormalAndEHCleanup; 225 Destroy = &CodeGenFunction::destroyARCWeak; 226 } 227 if (Duration == SD_FullExpression) 228 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 229 ObjCARCReferenceLifetimeType, *Destroy, 230 CleanupKind & EHCleanup); 231 else 232 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 233 ObjCARCReferenceLifetimeType, 234 *Destroy, CleanupKind & EHCleanup); 235 return; 236 237 case SD_Dynamic: 238 llvm_unreachable("temporary cannot have dynamic storage duration"); 239 } 240 llvm_unreachable("unknown storage duration"); 241 } 242 } 243 244 CXXDestructorDecl *ReferenceTemporaryDtor = 0; 245 if (const RecordType *RT = 246 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 247 // Get the destructor for the reference temporary. 248 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 249 if (!ClassDecl->hasTrivialDestructor()) 250 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 251 } 252 253 if (!ReferenceTemporaryDtor) 254 return; 255 256 // Call the destructor for the temporary. 257 switch (M->getStorageDuration()) { 258 case SD_Static: 259 case SD_Thread: { 260 llvm::Constant *CleanupFn; 261 llvm::Constant *CleanupArg; 262 if (E->getType()->isArrayType()) { 263 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 264 cast<llvm::Constant>(ReferenceTemporary), E->getType(), 265 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 266 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 267 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 268 } else { 269 CleanupFn = 270 CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete); 271 CleanupArg = cast<llvm::Constant>(ReferenceTemporary); 272 } 273 CGF.CGM.getCXXABI().registerGlobalDtor( 274 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 275 break; 276 } 277 278 case SD_FullExpression: 279 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 280 CodeGenFunction::destroyCXXObject, 281 CGF.getLangOpts().Exceptions); 282 break; 283 284 case SD_Automatic: 285 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 286 ReferenceTemporary, E->getType(), 287 CodeGenFunction::destroyCXXObject, 288 CGF.getLangOpts().Exceptions); 289 break; 290 291 case SD_Dynamic: 292 llvm_unreachable("temporary cannot have dynamic storage duration"); 293 } 294 } 295 296 static llvm::Value * 297 createReferenceTemporary(CodeGenFunction &CGF, 298 const MaterializeTemporaryExpr *M, const Expr *Inner) { 299 switch (M->getStorageDuration()) { 300 case SD_FullExpression: 301 case SD_Automatic: 302 return CGF.CreateMemTemp(Inner->getType(), "ref.tmp"); 303 304 case SD_Thread: 305 case SD_Static: 306 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 307 308 case SD_Dynamic: 309 llvm_unreachable("temporary can't have dynamic storage duration"); 310 } 311 llvm_unreachable("unknown storage duration"); 312 } 313 314 LValue CodeGenFunction::EmitMaterializeTemporaryExpr( 315 const MaterializeTemporaryExpr *M) { 316 const Expr *E = M->GetTemporaryExpr(); 317 318 if (getLangOpts().ObjCAutoRefCount && 319 M->getType()->isObjCLifetimeType() && 320 M->getType().getObjCLifetime() != Qualifiers::OCL_None && 321 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) { 322 // FIXME: Fold this into the general case below. 323 llvm::Value *Object = createReferenceTemporary(*this, M, E); 324 LValue RefTempDst = MakeAddrLValue(Object, M->getType()); 325 326 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 327 // We should not have emitted the initializer for this temporary as a 328 // constant. 329 assert(!Var->hasInitializer()); 330 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 331 } 332 333 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 334 335 pushTemporaryCleanup(*this, M, E, Object); 336 return RefTempDst; 337 } 338 339 SmallVector<const Expr *, 2> CommaLHSs; 340 SmallVector<SubobjectAdjustment, 2> Adjustments; 341 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 342 343 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I) 344 EmitIgnoredExpr(CommaLHSs[I]); 345 346 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 347 if (opaque->getType()->isRecordType()) { 348 assert(Adjustments.empty()); 349 return EmitOpaqueValueLValue(opaque); 350 } 351 } 352 353 // Create and initialize the reference temporary. 354 llvm::Value *Object = createReferenceTemporary(*this, M, E); 355 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) { 356 // If the temporary is a global and has a constant initializer, we may 357 // have already initialized it. 358 if (!Var->hasInitializer()) { 359 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 360 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 361 } 362 } else { 363 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 364 } 365 pushTemporaryCleanup(*this, M, E, Object); 366 367 // Perform derived-to-base casts and/or field accesses, to get from the 368 // temporary object we created (and, potentially, for which we extended 369 // the lifetime) to the subobject we're binding the reference to. 370 for (unsigned I = Adjustments.size(); I != 0; --I) { 371 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 372 switch (Adjustment.Kind) { 373 case SubobjectAdjustment::DerivedToBaseAdjustment: 374 Object = 375 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 376 Adjustment.DerivedToBase.BasePath->path_begin(), 377 Adjustment.DerivedToBase.BasePath->path_end(), 378 /*NullCheckValue=*/ false); 379 break; 380 381 case SubobjectAdjustment::FieldAdjustment: { 382 LValue LV = MakeAddrLValue(Object, E->getType()); 383 LV = EmitLValueForField(LV, Adjustment.Field); 384 assert(LV.isSimple() && 385 "materialized temporary field is not a simple lvalue"); 386 Object = LV.getAddress(); 387 break; 388 } 389 390 case SubobjectAdjustment::MemberPointerAdjustment: { 391 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 392 Object = CGM.getCXXABI().EmitMemberDataPointerAddress( 393 *this, E, Object, Ptr, Adjustment.Ptr.MPT); 394 break; 395 } 396 } 397 } 398 399 return MakeAddrLValue(Object, M->getType()); 400 } 401 402 RValue 403 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 404 // Emit the expression as an lvalue. 405 LValue LV = EmitLValue(E); 406 assert(LV.isSimple()); 407 llvm::Value *Value = LV.getAddress(); 408 409 if (SanitizePerformTypeCheck && !E->getType()->isFunctionType()) { 410 // C++11 [dcl.ref]p5 (as amended by core issue 453): 411 // If a glvalue to which a reference is directly bound designates neither 412 // an existing object or function of an appropriate type nor a region of 413 // storage of suitable size and alignment to contain an object of the 414 // reference's type, the behavior is undefined. 415 QualType Ty = E->getType(); 416 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 417 } 418 419 return RValue::get(Value); 420 } 421 422 423 /// getAccessedFieldNo - Given an encoded value and a result number, return the 424 /// input field number being accessed. 425 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 426 const llvm::Constant *Elts) { 427 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 428 ->getZExtValue(); 429 } 430 431 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 432 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 433 llvm::Value *High) { 434 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 435 llvm::Value *K47 = Builder.getInt64(47); 436 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 437 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 438 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 439 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 440 return Builder.CreateMul(B1, KMul); 441 } 442 443 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 444 llvm::Value *Address, 445 QualType Ty, CharUnits Alignment) { 446 if (!SanitizePerformTypeCheck) 447 return; 448 449 // Don't check pointers outside the default address space. The null check 450 // isn't correct, the object-size check isn't supported by LLVM, and we can't 451 // communicate the addresses to the runtime handler for the vptr check. 452 if (Address->getType()->getPointerAddressSpace()) 453 return; 454 455 llvm::Value *Cond = 0; 456 llvm::BasicBlock *Done = 0; 457 458 if (SanOpts->Null) { 459 // The glvalue must not be an empty glvalue. 460 Cond = Builder.CreateICmpNE( 461 Address, llvm::Constant::getNullValue(Address->getType())); 462 463 if (TCK == TCK_DowncastPointer) { 464 // When performing a pointer downcast, it's OK if the value is null. 465 // Skip the remaining checks in that case. 466 Done = createBasicBlock("null"); 467 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 468 Builder.CreateCondBr(Cond, Rest, Done); 469 EmitBlock(Rest); 470 Cond = 0; 471 } 472 } 473 474 if (SanOpts->ObjectSize && !Ty->isIncompleteType()) { 475 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 476 477 // The glvalue must refer to a large enough storage region. 478 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 479 // to check this. 480 // FIXME: Get object address space 481 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 482 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 483 llvm::Value *Min = Builder.getFalse(); 484 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy); 485 llvm::Value *LargeEnough = 486 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min), 487 llvm::ConstantInt::get(IntPtrTy, Size)); 488 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough; 489 } 490 491 uint64_t AlignVal = 0; 492 493 if (SanOpts->Alignment) { 494 AlignVal = Alignment.getQuantity(); 495 if (!Ty->isIncompleteType() && !AlignVal) 496 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 497 498 // The glvalue must be suitably aligned. 499 if (AlignVal) { 500 llvm::Value *Align = 501 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy), 502 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 503 llvm::Value *Aligned = 504 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 505 Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned; 506 } 507 } 508 509 if (Cond) { 510 llvm::Constant *StaticData[] = { 511 EmitCheckSourceLocation(Loc), 512 EmitCheckTypeDescriptor(Ty), 513 llvm::ConstantInt::get(SizeTy, AlignVal), 514 llvm::ConstantInt::get(Int8Ty, TCK) 515 }; 516 EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable); 517 } 518 519 // If possible, check that the vptr indicates that there is a subobject of 520 // type Ty at offset zero within this object. 521 // 522 // C++11 [basic.life]p5,6: 523 // [For storage which does not refer to an object within its lifetime] 524 // The program has undefined behavior if: 525 // -- the [pointer or glvalue] is used to access a non-static data member 526 // or call a non-static member function 527 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 528 if (SanOpts->Vptr && 529 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 530 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) && 531 RD && RD->hasDefinition() && RD->isDynamicClass()) { 532 // Compute a hash of the mangled name of the type. 533 // 534 // FIXME: This is not guaranteed to be deterministic! Move to a 535 // fingerprinting mechanism once LLVM provides one. For the time 536 // being the implementation happens to be deterministic. 537 SmallString<64> MangledName; 538 llvm::raw_svector_ostream Out(MangledName); 539 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 540 Out); 541 llvm::hash_code TypeHash = hash_value(Out.str()); 542 543 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 544 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 545 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 546 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy); 547 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 548 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 549 550 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 551 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 552 553 // Look the hash up in our cache. 554 const int CacheSize = 128; 555 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 556 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 557 "__ubsan_vptr_type_cache"); 558 llvm::Value *Slot = Builder.CreateAnd(Hash, 559 llvm::ConstantInt::get(IntPtrTy, 560 CacheSize-1)); 561 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 562 llvm::Value *CacheVal = 563 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices)); 564 565 // If the hash isn't in the cache, call a runtime handler to perform the 566 // hard work of checking whether the vptr is for an object of the right 567 // type. This will either fill in the cache and return, or produce a 568 // diagnostic. 569 llvm::Constant *StaticData[] = { 570 EmitCheckSourceLocation(Loc), 571 EmitCheckTypeDescriptor(Ty), 572 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 573 llvm::ConstantInt::get(Int8Ty, TCK) 574 }; 575 llvm::Value *DynamicData[] = { Address, Hash }; 576 EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash), 577 "dynamic_type_cache_miss", StaticData, DynamicData, 578 CRK_AlwaysRecoverable); 579 } 580 581 if (Done) { 582 Builder.CreateBr(Done); 583 EmitBlock(Done); 584 } 585 } 586 587 /// Determine whether this expression refers to a flexible array member in a 588 /// struct. We disable array bounds checks for such members. 589 static bool isFlexibleArrayMemberExpr(const Expr *E) { 590 // For compatibility with existing code, we treat arrays of length 0 or 591 // 1 as flexible array members. 592 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 593 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 594 if (CAT->getSize().ugt(1)) 595 return false; 596 } else if (!isa<IncompleteArrayType>(AT)) 597 return false; 598 599 E = E->IgnoreParens(); 600 601 // A flexible array member must be the last member in the class. 602 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 603 // FIXME: If the base type of the member expr is not FD->getParent(), 604 // this should not be treated as a flexible array member access. 605 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 606 RecordDecl::field_iterator FI( 607 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 608 return ++FI == FD->getParent()->field_end(); 609 } 610 } 611 612 return false; 613 } 614 615 /// If Base is known to point to the start of an array, return the length of 616 /// that array. Return 0 if the length cannot be determined. 617 static llvm::Value *getArrayIndexingBound( 618 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 619 // For the vector indexing extension, the bound is the number of elements. 620 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 621 IndexedType = Base->getType(); 622 return CGF.Builder.getInt32(VT->getNumElements()); 623 } 624 625 Base = Base->IgnoreParens(); 626 627 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 628 if (CE->getCastKind() == CK_ArrayToPointerDecay && 629 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 630 IndexedType = CE->getSubExpr()->getType(); 631 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 632 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 633 return CGF.Builder.getInt(CAT->getSize()); 634 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 635 return CGF.getVLASize(VAT).first; 636 } 637 } 638 639 return 0; 640 } 641 642 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 643 llvm::Value *Index, QualType IndexType, 644 bool Accessed) { 645 assert(SanOpts->ArrayBounds && 646 "should not be called unless adding bounds checks"); 647 648 QualType IndexedType; 649 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 650 if (!Bound) 651 return; 652 653 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 654 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 655 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 656 657 llvm::Constant *StaticData[] = { 658 EmitCheckSourceLocation(E->getExprLoc()), 659 EmitCheckTypeDescriptor(IndexedType), 660 EmitCheckTypeDescriptor(IndexType) 661 }; 662 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 663 : Builder.CreateICmpULE(IndexVal, BoundVal); 664 EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable); 665 } 666 667 668 CodeGenFunction::ComplexPairTy CodeGenFunction:: 669 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 670 bool isInc, bool isPre) { 671 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 672 673 llvm::Value *NextVal; 674 if (isa<llvm::IntegerType>(InVal.first->getType())) { 675 uint64_t AmountVal = isInc ? 1 : -1; 676 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 677 678 // Add the inc/dec to the real part. 679 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 680 } else { 681 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 682 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 683 if (!isInc) 684 FVal.changeSign(); 685 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 686 687 // Add the inc/dec to the real part. 688 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 689 } 690 691 ComplexPairTy IncVal(NextVal, InVal.second); 692 693 // Store the updated result through the lvalue. 694 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 695 696 // If this is a postinc, return the value read from memory, otherwise use the 697 // updated value. 698 return isPre ? IncVal : InVal; 699 } 700 701 702 //===----------------------------------------------------------------------===// 703 // LValue Expression Emission 704 //===----------------------------------------------------------------------===// 705 706 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 707 if (Ty->isVoidType()) 708 return RValue::get(0); 709 710 switch (getEvaluationKind(Ty)) { 711 case TEK_Complex: { 712 llvm::Type *EltTy = 713 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 714 llvm::Value *U = llvm::UndefValue::get(EltTy); 715 return RValue::getComplex(std::make_pair(U, U)); 716 } 717 718 // If this is a use of an undefined aggregate type, the aggregate must have an 719 // identifiable address. Just because the contents of the value are undefined 720 // doesn't mean that the address can't be taken and compared. 721 case TEK_Aggregate: { 722 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 723 return RValue::getAggregate(DestPtr); 724 } 725 726 case TEK_Scalar: 727 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 728 } 729 llvm_unreachable("bad evaluation kind"); 730 } 731 732 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 733 const char *Name) { 734 ErrorUnsupported(E, Name); 735 return GetUndefRValue(E->getType()); 736 } 737 738 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 739 const char *Name) { 740 ErrorUnsupported(E, Name); 741 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 742 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType()); 743 } 744 745 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 746 LValue LV; 747 if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E)) 748 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 749 else 750 LV = EmitLValue(E); 751 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) 752 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(), 753 E->getType(), LV.getAlignment()); 754 return LV; 755 } 756 757 /// EmitLValue - Emit code to compute a designator that specifies the location 758 /// of the expression. 759 /// 760 /// This can return one of two things: a simple address or a bitfield reference. 761 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 762 /// an LLVM pointer type. 763 /// 764 /// If this returns a bitfield reference, nothing about the pointee type of the 765 /// LLVM value is known: For example, it may not be a pointer to an integer. 766 /// 767 /// If this returns a normal address, and if the lvalue's C type is fixed size, 768 /// this method guarantees that the returned pointer type will point to an LLVM 769 /// type of the same size of the lvalue's type. If the lvalue has a variable 770 /// length type, this is not possible. 771 /// 772 LValue CodeGenFunction::EmitLValue(const Expr *E) { 773 switch (E->getStmtClass()) { 774 default: return EmitUnsupportedLValue(E, "l-value expression"); 775 776 case Expr::ObjCPropertyRefExprClass: 777 llvm_unreachable("cannot emit a property reference directly"); 778 779 case Expr::ObjCSelectorExprClass: 780 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 781 case Expr::ObjCIsaExprClass: 782 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 783 case Expr::BinaryOperatorClass: 784 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 785 case Expr::CompoundAssignOperatorClass: 786 if (!E->getType()->isAnyComplexType()) 787 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 788 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 789 case Expr::CallExprClass: 790 case Expr::CXXMemberCallExprClass: 791 case Expr::CXXOperatorCallExprClass: 792 case Expr::UserDefinedLiteralClass: 793 return EmitCallExprLValue(cast<CallExpr>(E)); 794 case Expr::VAArgExprClass: 795 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 796 case Expr::DeclRefExprClass: 797 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 798 case Expr::ParenExprClass: 799 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 800 case Expr::GenericSelectionExprClass: 801 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 802 case Expr::PredefinedExprClass: 803 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 804 case Expr::StringLiteralClass: 805 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 806 case Expr::ObjCEncodeExprClass: 807 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 808 case Expr::PseudoObjectExprClass: 809 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 810 case Expr::InitListExprClass: 811 return EmitInitListLValue(cast<InitListExpr>(E)); 812 case Expr::CXXTemporaryObjectExprClass: 813 case Expr::CXXConstructExprClass: 814 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 815 case Expr::CXXBindTemporaryExprClass: 816 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 817 case Expr::CXXUuidofExprClass: 818 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 819 case Expr::LambdaExprClass: 820 return EmitLambdaLValue(cast<LambdaExpr>(E)); 821 822 case Expr::ExprWithCleanupsClass: { 823 const auto *cleanups = cast<ExprWithCleanups>(E); 824 enterFullExpression(cleanups); 825 RunCleanupsScope Scope(*this); 826 return EmitLValue(cleanups->getSubExpr()); 827 } 828 829 case Expr::CXXDefaultArgExprClass: 830 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 831 case Expr::CXXDefaultInitExprClass: { 832 CXXDefaultInitExprScope Scope(*this); 833 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 834 } 835 case Expr::CXXTypeidExprClass: 836 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 837 838 case Expr::ObjCMessageExprClass: 839 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 840 case Expr::ObjCIvarRefExprClass: 841 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 842 case Expr::StmtExprClass: 843 return EmitStmtExprLValue(cast<StmtExpr>(E)); 844 case Expr::UnaryOperatorClass: 845 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 846 case Expr::ArraySubscriptExprClass: 847 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 848 case Expr::ExtVectorElementExprClass: 849 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 850 case Expr::MemberExprClass: 851 return EmitMemberExpr(cast<MemberExpr>(E)); 852 case Expr::CompoundLiteralExprClass: 853 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 854 case Expr::ConditionalOperatorClass: 855 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 856 case Expr::BinaryConditionalOperatorClass: 857 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 858 case Expr::ChooseExprClass: 859 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 860 case Expr::OpaqueValueExprClass: 861 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 862 case Expr::SubstNonTypeTemplateParmExprClass: 863 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 864 case Expr::ImplicitCastExprClass: 865 case Expr::CStyleCastExprClass: 866 case Expr::CXXFunctionalCastExprClass: 867 case Expr::CXXStaticCastExprClass: 868 case Expr::CXXDynamicCastExprClass: 869 case Expr::CXXReinterpretCastExprClass: 870 case Expr::CXXConstCastExprClass: 871 case Expr::ObjCBridgedCastExprClass: 872 return EmitCastLValue(cast<CastExpr>(E)); 873 874 case Expr::MaterializeTemporaryExprClass: 875 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 876 } 877 } 878 879 /// Given an object of the given canonical type, can we safely copy a 880 /// value out of it based on its initializer? 881 static bool isConstantEmittableObjectType(QualType type) { 882 assert(type.isCanonical()); 883 assert(!type->isReferenceType()); 884 885 // Must be const-qualified but non-volatile. 886 Qualifiers qs = type.getLocalQualifiers(); 887 if (!qs.hasConst() || qs.hasVolatile()) return false; 888 889 // Otherwise, all object types satisfy this except C++ classes with 890 // mutable subobjects or non-trivial copy/destroy behavior. 891 if (const auto *RT = dyn_cast<RecordType>(type)) 892 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 893 if (RD->hasMutableFields() || !RD->isTrivial()) 894 return false; 895 896 return true; 897 } 898 899 /// Can we constant-emit a load of a reference to a variable of the 900 /// given type? This is different from predicates like 901 /// Decl::isUsableInConstantExpressions because we do want it to apply 902 /// in situations that don't necessarily satisfy the language's rules 903 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 904 /// to do this with const float variables even if those variables 905 /// aren't marked 'constexpr'. 906 enum ConstantEmissionKind { 907 CEK_None, 908 CEK_AsReferenceOnly, 909 CEK_AsValueOrReference, 910 CEK_AsValueOnly 911 }; 912 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 913 type = type.getCanonicalType(); 914 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 915 if (isConstantEmittableObjectType(ref->getPointeeType())) 916 return CEK_AsValueOrReference; 917 return CEK_AsReferenceOnly; 918 } 919 if (isConstantEmittableObjectType(type)) 920 return CEK_AsValueOnly; 921 return CEK_None; 922 } 923 924 /// Try to emit a reference to the given value without producing it as 925 /// an l-value. This is actually more than an optimization: we can't 926 /// produce an l-value for variables that we never actually captured 927 /// in a block or lambda, which means const int variables or constexpr 928 /// literals or similar. 929 CodeGenFunction::ConstantEmission 930 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 931 ValueDecl *value = refExpr->getDecl(); 932 933 // The value needs to be an enum constant or a constant variable. 934 ConstantEmissionKind CEK; 935 if (isa<ParmVarDecl>(value)) { 936 CEK = CEK_None; 937 } else if (auto *var = dyn_cast<VarDecl>(value)) { 938 CEK = checkVarTypeForConstantEmission(var->getType()); 939 } else if (isa<EnumConstantDecl>(value)) { 940 CEK = CEK_AsValueOnly; 941 } else { 942 CEK = CEK_None; 943 } 944 if (CEK == CEK_None) return ConstantEmission(); 945 946 Expr::EvalResult result; 947 bool resultIsReference; 948 QualType resultType; 949 950 // It's best to evaluate all the way as an r-value if that's permitted. 951 if (CEK != CEK_AsReferenceOnly && 952 refExpr->EvaluateAsRValue(result, getContext())) { 953 resultIsReference = false; 954 resultType = refExpr->getType(); 955 956 // Otherwise, try to evaluate as an l-value. 957 } else if (CEK != CEK_AsValueOnly && 958 refExpr->EvaluateAsLValue(result, getContext())) { 959 resultIsReference = true; 960 resultType = value->getType(); 961 962 // Failure. 963 } else { 964 return ConstantEmission(); 965 } 966 967 // In any case, if the initializer has side-effects, abandon ship. 968 if (result.HasSideEffects) 969 return ConstantEmission(); 970 971 // Emit as a constant. 972 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 973 974 // Make sure we emit a debug reference to the global variable. 975 // This should probably fire even for 976 if (isa<VarDecl>(value)) { 977 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 978 EmitDeclRefExprDbgValue(refExpr, C); 979 } else { 980 assert(isa<EnumConstantDecl>(value)); 981 EmitDeclRefExprDbgValue(refExpr, C); 982 } 983 984 // If we emitted a reference constant, we need to dereference that. 985 if (resultIsReference) 986 return ConstantEmission::forReference(C); 987 988 return ConstantEmission::forValue(C); 989 } 990 991 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 992 SourceLocation Loc) { 993 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 994 lvalue.getAlignment().getQuantity(), 995 lvalue.getType(), Loc, lvalue.getTBAAInfo(), 996 lvalue.getTBAABaseType(), lvalue.getTBAAOffset()); 997 } 998 999 static bool hasBooleanRepresentation(QualType Ty) { 1000 if (Ty->isBooleanType()) 1001 return true; 1002 1003 if (const EnumType *ET = Ty->getAs<EnumType>()) 1004 return ET->getDecl()->getIntegerType()->isBooleanType(); 1005 1006 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1007 return hasBooleanRepresentation(AT->getValueType()); 1008 1009 return false; 1010 } 1011 1012 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1013 llvm::APInt &Min, llvm::APInt &End, 1014 bool StrictEnums) { 1015 const EnumType *ET = Ty->getAs<EnumType>(); 1016 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1017 ET && !ET->getDecl()->isFixed(); 1018 bool IsBool = hasBooleanRepresentation(Ty); 1019 if (!IsBool && !IsRegularCPlusPlusEnum) 1020 return false; 1021 1022 if (IsBool) { 1023 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1024 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1025 } else { 1026 const EnumDecl *ED = ET->getDecl(); 1027 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1028 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1029 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1030 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1031 1032 if (NumNegativeBits) { 1033 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1034 assert(NumBits <= Bitwidth); 1035 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1036 Min = -End; 1037 } else { 1038 assert(NumPositiveBits <= Bitwidth); 1039 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1040 Min = llvm::APInt(Bitwidth, 0); 1041 } 1042 } 1043 return true; 1044 } 1045 1046 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1047 llvm::APInt Min, End; 1048 if (!getRangeForType(*this, Ty, Min, End, 1049 CGM.getCodeGenOpts().StrictEnums)) 1050 return 0; 1051 1052 llvm::MDBuilder MDHelper(getLLVMContext()); 1053 return MDHelper.createRange(Min, End); 1054 } 1055 1056 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1057 unsigned Alignment, QualType Ty, 1058 SourceLocation Loc, 1059 llvm::MDNode *TBAAInfo, 1060 QualType TBAABaseType, 1061 uint64_t TBAAOffset) { 1062 // For better performance, handle vector loads differently. 1063 if (Ty->isVectorType()) { 1064 llvm::Value *V; 1065 const llvm::Type *EltTy = 1066 cast<llvm::PointerType>(Addr->getType())->getElementType(); 1067 1068 const auto *VTy = cast<llvm::VectorType>(EltTy); 1069 1070 // Handle vectors of size 3, like size 4 for better performance. 1071 if (VTy->getNumElements() == 3) { 1072 1073 // Bitcast to vec4 type. 1074 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(), 1075 4); 1076 llvm::PointerType *ptVec4Ty = 1077 llvm::PointerType::get(vec4Ty, 1078 (cast<llvm::PointerType>( 1079 Addr->getType()))->getAddressSpace()); 1080 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty, 1081 "castToVec4"); 1082 // Now load value. 1083 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1084 1085 // Shuffle vector to get vec3. 1086 llvm::Constant *Mask[] = { 1087 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0), 1088 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1), 1089 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2) 1090 }; 1091 1092 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1093 V = Builder.CreateShuffleVector(LoadVal, 1094 llvm::UndefValue::get(vec4Ty), 1095 MaskV, "extractVec"); 1096 return EmitFromMemory(V, Ty); 1097 } 1098 } 1099 1100 // Atomic operations have to be done on integral types. 1101 if (Ty->isAtomicType()) { 1102 LValue lvalue = LValue::MakeAddr(Addr, Ty, 1103 CharUnits::fromQuantity(Alignment), 1104 getContext(), TBAAInfo); 1105 return EmitAtomicLoad(lvalue, Loc).getScalarVal(); 1106 } 1107 1108 llvm::LoadInst *Load = Builder.CreateLoad(Addr); 1109 if (Volatile) 1110 Load->setVolatile(true); 1111 if (Alignment) 1112 Load->setAlignment(Alignment); 1113 if (TBAAInfo) { 1114 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1115 TBAAOffset); 1116 if (TBAAPath) 1117 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/); 1118 } 1119 1120 if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) || 1121 (SanOpts->Enum && Ty->getAs<EnumType>())) { 1122 llvm::APInt Min, End; 1123 if (getRangeForType(*this, Ty, Min, End, true)) { 1124 --End; 1125 llvm::Value *Check; 1126 if (!Min) 1127 Check = Builder.CreateICmpULE( 1128 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1129 else { 1130 llvm::Value *Upper = Builder.CreateICmpSLE( 1131 Load, llvm::ConstantInt::get(getLLVMContext(), End)); 1132 llvm::Value *Lower = Builder.CreateICmpSGE( 1133 Load, llvm::ConstantInt::get(getLLVMContext(), Min)); 1134 Check = Builder.CreateAnd(Upper, Lower); 1135 } 1136 llvm::Constant *StaticArgs[] = { 1137 EmitCheckSourceLocation(Loc), 1138 EmitCheckTypeDescriptor(Ty) 1139 }; 1140 EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load), 1141 CRK_Recoverable); 1142 } 1143 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1144 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1145 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1146 1147 return EmitFromMemory(Load, Ty); 1148 } 1149 1150 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1151 // Bool has a different representation in memory than in registers. 1152 if (hasBooleanRepresentation(Ty)) { 1153 // This should really always be an i1, but sometimes it's already 1154 // an i8, and it's awkward to track those cases down. 1155 if (Value->getType()->isIntegerTy(1)) 1156 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1157 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1158 "wrong value rep of bool"); 1159 } 1160 1161 return Value; 1162 } 1163 1164 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1165 // Bool has a different representation in memory than in registers. 1166 if (hasBooleanRepresentation(Ty)) { 1167 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1168 "wrong value rep of bool"); 1169 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1170 } 1171 1172 return Value; 1173 } 1174 1175 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1176 bool Volatile, unsigned Alignment, 1177 QualType Ty, llvm::MDNode *TBAAInfo, 1178 bool isInit, QualType TBAABaseType, 1179 uint64_t TBAAOffset) { 1180 1181 // Handle vectors differently to get better performance. 1182 if (Ty->isVectorType()) { 1183 llvm::Type *SrcTy = Value->getType(); 1184 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1185 // Handle vec3 special. 1186 if (VecTy->getNumElements() == 3) { 1187 llvm::LLVMContext &VMContext = getLLVMContext(); 1188 1189 // Our source is a vec3, do a shuffle vector to make it a vec4. 1190 SmallVector<llvm::Constant*, 4> Mask; 1191 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1192 0)); 1193 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1194 1)); 1195 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1196 2)); 1197 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext))); 1198 1199 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1200 Value = Builder.CreateShuffleVector(Value, 1201 llvm::UndefValue::get(VecTy), 1202 MaskV, "extractVec"); 1203 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1204 } 1205 auto *DstPtr = cast<llvm::PointerType>(Addr->getType()); 1206 if (DstPtr->getElementType() != SrcTy) { 1207 llvm::Type *MemTy = 1208 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace()); 1209 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp"); 1210 } 1211 } 1212 1213 Value = EmitToMemory(Value, Ty); 1214 1215 if (Ty->isAtomicType()) { 1216 EmitAtomicStore(RValue::get(Value), 1217 LValue::MakeAddr(Addr, Ty, 1218 CharUnits::fromQuantity(Alignment), 1219 getContext(), TBAAInfo), 1220 isInit); 1221 return; 1222 } 1223 1224 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1225 if (Alignment) 1226 Store->setAlignment(Alignment); 1227 if (TBAAInfo) { 1228 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1229 TBAAOffset); 1230 if (TBAAPath) 1231 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/); 1232 } 1233 } 1234 1235 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1236 bool isInit) { 1237 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1238 lvalue.getAlignment().getQuantity(), lvalue.getType(), 1239 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1240 lvalue.getTBAAOffset()); 1241 } 1242 1243 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1244 /// method emits the address of the lvalue, then loads the result as an rvalue, 1245 /// returning the rvalue. 1246 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1247 if (LV.isObjCWeak()) { 1248 // load of a __weak object. 1249 llvm::Value *AddrWeakObj = LV.getAddress(); 1250 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1251 AddrWeakObj)); 1252 } 1253 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1254 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1255 Object = EmitObjCConsumeObject(LV.getType(), Object); 1256 return RValue::get(Object); 1257 } 1258 1259 if (LV.isSimple()) { 1260 assert(!LV.getType()->isFunctionType()); 1261 1262 // Everything needs a load. 1263 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1264 } 1265 1266 if (LV.isVectorElt()) { 1267 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(), 1268 LV.isVolatileQualified()); 1269 Load->setAlignment(LV.getAlignment().getQuantity()); 1270 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1271 "vecext")); 1272 } 1273 1274 // If this is a reference to a subset of the elements of a vector, either 1275 // shuffle the input or extract/insert them as appropriate. 1276 if (LV.isExtVectorElt()) 1277 return EmitLoadOfExtVectorElementLValue(LV); 1278 1279 assert(LV.isBitField() && "Unknown LValue type!"); 1280 return EmitLoadOfBitfieldLValue(LV); 1281 } 1282 1283 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) { 1284 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1285 1286 // Get the output type. 1287 llvm::Type *ResLTy = ConvertType(LV.getType()); 1288 1289 llvm::Value *Ptr = LV.getBitFieldAddr(); 1290 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), 1291 "bf.load"); 1292 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1293 1294 if (Info.IsSigned) { 1295 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1296 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1297 if (HighBits) 1298 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1299 if (Info.Offset + HighBits) 1300 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1301 } else { 1302 if (Info.Offset) 1303 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1304 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1305 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1306 Info.Size), 1307 "bf.clear"); 1308 } 1309 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1310 1311 return RValue::get(Val); 1312 } 1313 1314 // If this is a reference to a subset of the elements of a vector, create an 1315 // appropriate shufflevector. 1316 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1317 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(), 1318 LV.isVolatileQualified()); 1319 Load->setAlignment(LV.getAlignment().getQuantity()); 1320 llvm::Value *Vec = Load; 1321 1322 const llvm::Constant *Elts = LV.getExtVectorElts(); 1323 1324 // If the result of the expression is a non-vector type, we must be extracting 1325 // a single element. Just codegen as an extractelement. 1326 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1327 if (!ExprVT) { 1328 unsigned InIdx = getAccessedFieldNo(0, Elts); 1329 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1330 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1331 } 1332 1333 // Always use shuffle vector to try to retain the original program structure 1334 unsigned NumResultElts = ExprVT->getNumElements(); 1335 1336 SmallVector<llvm::Constant*, 4> Mask; 1337 for (unsigned i = 0; i != NumResultElts; ++i) 1338 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1339 1340 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1341 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1342 MaskV); 1343 return RValue::get(Vec); 1344 } 1345 1346 1347 1348 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1349 /// lvalue, where both are guaranteed to the have the same type, and that type 1350 /// is 'Ty'. 1351 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1352 bool isInit) { 1353 if (!Dst.isSimple()) { 1354 if (Dst.isVectorElt()) { 1355 // Read/modify/write the vector, inserting the new element. 1356 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(), 1357 Dst.isVolatileQualified()); 1358 Load->setAlignment(Dst.getAlignment().getQuantity()); 1359 llvm::Value *Vec = Load; 1360 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1361 Dst.getVectorIdx(), "vecins"); 1362 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(), 1363 Dst.isVolatileQualified()); 1364 Store->setAlignment(Dst.getAlignment().getQuantity()); 1365 return; 1366 } 1367 1368 // If this is an update of extended vector elements, insert them as 1369 // appropriate. 1370 if (Dst.isExtVectorElt()) 1371 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1372 1373 assert(Dst.isBitField() && "Unknown LValue type"); 1374 return EmitStoreThroughBitfieldLValue(Src, Dst); 1375 } 1376 1377 // There's special magic for assigning into an ARC-qualified l-value. 1378 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1379 switch (Lifetime) { 1380 case Qualifiers::OCL_None: 1381 llvm_unreachable("present but none"); 1382 1383 case Qualifiers::OCL_ExplicitNone: 1384 // nothing special 1385 break; 1386 1387 case Qualifiers::OCL_Strong: 1388 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1389 return; 1390 1391 case Qualifiers::OCL_Weak: 1392 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1393 return; 1394 1395 case Qualifiers::OCL_Autoreleasing: 1396 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1397 Src.getScalarVal())); 1398 // fall into the normal path 1399 break; 1400 } 1401 } 1402 1403 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1404 // load of a __weak object. 1405 llvm::Value *LvalueDst = Dst.getAddress(); 1406 llvm::Value *src = Src.getScalarVal(); 1407 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1408 return; 1409 } 1410 1411 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1412 // load of a __strong object. 1413 llvm::Value *LvalueDst = Dst.getAddress(); 1414 llvm::Value *src = Src.getScalarVal(); 1415 if (Dst.isObjCIvar()) { 1416 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1417 llvm::Type *ResultType = ConvertType(getContext().LongTy); 1418 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp()); 1419 llvm::Value *dst = RHS; 1420 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1421 llvm::Value *LHS = 1422 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast"); 1423 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1424 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1425 BytesBetween); 1426 } else if (Dst.isGlobalObjCRef()) { 1427 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1428 Dst.isThreadLocalRef()); 1429 } 1430 else 1431 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1432 return; 1433 } 1434 1435 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1436 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1437 } 1438 1439 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1440 llvm::Value **Result) { 1441 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1442 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1443 llvm::Value *Ptr = Dst.getBitFieldAddr(); 1444 1445 // Get the source value, truncated to the width of the bit-field. 1446 llvm::Value *SrcVal = Src.getScalarVal(); 1447 1448 // Cast the source to the storage type and shift it into place. 1449 SrcVal = Builder.CreateIntCast(SrcVal, 1450 Ptr->getType()->getPointerElementType(), 1451 /*IsSigned=*/false); 1452 llvm::Value *MaskedVal = SrcVal; 1453 1454 // See if there are other bits in the bitfield's storage we'll need to load 1455 // and mask together with source before storing. 1456 if (Info.StorageSize != Info.Size) { 1457 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1458 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), 1459 "bf.load"); 1460 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment); 1461 1462 // Mask the source value as needed. 1463 if (!hasBooleanRepresentation(Dst.getType())) 1464 SrcVal = Builder.CreateAnd(SrcVal, 1465 llvm::APInt::getLowBitsSet(Info.StorageSize, 1466 Info.Size), 1467 "bf.value"); 1468 MaskedVal = SrcVal; 1469 if (Info.Offset) 1470 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1471 1472 // Mask out the original value. 1473 Val = Builder.CreateAnd(Val, 1474 ~llvm::APInt::getBitsSet(Info.StorageSize, 1475 Info.Offset, 1476 Info.Offset + Info.Size), 1477 "bf.clear"); 1478 1479 // Or together the unchanged values and the source value. 1480 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1481 } else { 1482 assert(Info.Offset == 0); 1483 } 1484 1485 // Write the new value back out. 1486 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr, 1487 Dst.isVolatileQualified()); 1488 Store->setAlignment(Info.StorageAlignment); 1489 1490 // Return the new value of the bit-field, if requested. 1491 if (Result) { 1492 llvm::Value *ResultVal = MaskedVal; 1493 1494 // Sign extend the value if needed. 1495 if (Info.IsSigned) { 1496 assert(Info.Size <= Info.StorageSize); 1497 unsigned HighBits = Info.StorageSize - Info.Size; 1498 if (HighBits) { 1499 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1500 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1501 } 1502 } 1503 1504 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1505 "bf.result.cast"); 1506 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1507 } 1508 } 1509 1510 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1511 LValue Dst) { 1512 // This access turns into a read/modify/write of the vector. Load the input 1513 // value now. 1514 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(), 1515 Dst.isVolatileQualified()); 1516 Load->setAlignment(Dst.getAlignment().getQuantity()); 1517 llvm::Value *Vec = Load; 1518 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1519 1520 llvm::Value *SrcVal = Src.getScalarVal(); 1521 1522 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1523 unsigned NumSrcElts = VTy->getNumElements(); 1524 unsigned NumDstElts = 1525 cast<llvm::VectorType>(Vec->getType())->getNumElements(); 1526 if (NumDstElts == NumSrcElts) { 1527 // Use shuffle vector is the src and destination are the same number of 1528 // elements and restore the vector mask since it is on the side it will be 1529 // stored. 1530 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1531 for (unsigned i = 0; i != NumSrcElts; ++i) 1532 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1533 1534 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1535 Vec = Builder.CreateShuffleVector(SrcVal, 1536 llvm::UndefValue::get(Vec->getType()), 1537 MaskV); 1538 } else if (NumDstElts > NumSrcElts) { 1539 // Extended the source vector to the same length and then shuffle it 1540 // into the destination. 1541 // FIXME: since we're shuffling with undef, can we just use the indices 1542 // into that? This could be simpler. 1543 SmallVector<llvm::Constant*, 4> ExtMask; 1544 for (unsigned i = 0; i != NumSrcElts; ++i) 1545 ExtMask.push_back(Builder.getInt32(i)); 1546 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1547 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1548 llvm::Value *ExtSrcVal = 1549 Builder.CreateShuffleVector(SrcVal, 1550 llvm::UndefValue::get(SrcVal->getType()), 1551 ExtMaskV); 1552 // build identity 1553 SmallVector<llvm::Constant*, 4> Mask; 1554 for (unsigned i = 0; i != NumDstElts; ++i) 1555 Mask.push_back(Builder.getInt32(i)); 1556 1557 // When the vector size is odd and .odd or .hi is used, the last element 1558 // of the Elts constant array will be one past the size of the vector. 1559 // Ignore the last element here, if it is greater than the mask size. 1560 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1561 NumSrcElts--; 1562 1563 // modify when what gets shuffled in 1564 for (unsigned i = 0; i != NumSrcElts; ++i) 1565 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1566 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1567 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1568 } else { 1569 // We should never shorten the vector 1570 llvm_unreachable("unexpected shorten vector length"); 1571 } 1572 } else { 1573 // If the Src is a scalar (not a vector) it must be updating one element. 1574 unsigned InIdx = getAccessedFieldNo(0, Elts); 1575 llvm::Value *Elt = llvm::ConstantInt::get(Int32Ty, InIdx); 1576 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1577 } 1578 1579 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(), 1580 Dst.isVolatileQualified()); 1581 Store->setAlignment(Dst.getAlignment().getQuantity()); 1582 } 1583 1584 // setObjCGCLValueClass - sets class of he lvalue for the purpose of 1585 // generating write-barries API. It is currently a global, ivar, 1586 // or neither. 1587 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1588 LValue &LV, 1589 bool IsMemberAccess=false) { 1590 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1591 return; 1592 1593 if (isa<ObjCIvarRefExpr>(E)) { 1594 QualType ExpTy = E->getType(); 1595 if (IsMemberAccess && ExpTy->isPointerType()) { 1596 // If ivar is a structure pointer, assigning to field of 1597 // this struct follows gcc's behavior and makes it a non-ivar 1598 // writer-barrier conservatively. 1599 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1600 if (ExpTy->isRecordType()) { 1601 LV.setObjCIvar(false); 1602 return; 1603 } 1604 } 1605 LV.setObjCIvar(true); 1606 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1607 LV.setBaseIvarExp(Exp->getBase()); 1608 LV.setObjCArray(E->getType()->isArrayType()); 1609 return; 1610 } 1611 1612 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1613 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1614 if (VD->hasGlobalStorage()) { 1615 LV.setGlobalObjCRef(true); 1616 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1617 } 1618 } 1619 LV.setObjCArray(E->getType()->isArrayType()); 1620 return; 1621 } 1622 1623 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1624 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1625 return; 1626 } 1627 1628 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1629 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1630 if (LV.isObjCIvar()) { 1631 // If cast is to a structure pointer, follow gcc's behavior and make it 1632 // a non-ivar write-barrier. 1633 QualType ExpTy = E->getType(); 1634 if (ExpTy->isPointerType()) 1635 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1636 if (ExpTy->isRecordType()) 1637 LV.setObjCIvar(false); 1638 } 1639 return; 1640 } 1641 1642 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1643 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1644 return; 1645 } 1646 1647 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1648 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1649 return; 1650 } 1651 1652 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 1653 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1654 return; 1655 } 1656 1657 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 1658 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1659 return; 1660 } 1661 1662 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 1663 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 1664 if (LV.isObjCIvar() && !LV.isObjCArray()) 1665 // Using array syntax to assigning to what an ivar points to is not 1666 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 1667 LV.setObjCIvar(false); 1668 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 1669 // Using array syntax to assigning to what global points to is not 1670 // same as assigning to the global itself. {id *G;} G[i] = 0; 1671 LV.setGlobalObjCRef(false); 1672 return; 1673 } 1674 1675 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 1676 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 1677 // We don't know if member is an 'ivar', but this flag is looked at 1678 // only in the context of LV.isObjCIvar(). 1679 LV.setObjCArray(E->getType()->isArrayType()); 1680 return; 1681 } 1682 } 1683 1684 static llvm::Value * 1685 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 1686 llvm::Value *V, llvm::Type *IRType, 1687 StringRef Name = StringRef()) { 1688 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 1689 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 1690 } 1691 1692 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 1693 const Expr *E, const VarDecl *VD) { 1694 QualType T = E->getType(); 1695 1696 // If it's thread_local, emit a call to its wrapper function instead. 1697 if (VD->getTLSKind() == VarDecl::TLS_Dynamic) 1698 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 1699 1700 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 1701 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 1702 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 1703 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 1704 LValue LV; 1705 if (VD->getType()->isReferenceType()) { 1706 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V); 1707 LI->setAlignment(Alignment.getQuantity()); 1708 V = LI; 1709 LV = CGF.MakeNaturalAlignAddrLValue(V, T); 1710 } else { 1711 LV = CGF.MakeAddrLValue(V, T, Alignment); 1712 } 1713 setObjCGCLValueClass(CGF.getContext(), E, LV); 1714 return LV; 1715 } 1716 1717 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 1718 const Expr *E, const FunctionDecl *FD) { 1719 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD); 1720 if (!FD->hasPrototype()) { 1721 if (const FunctionProtoType *Proto = 1722 FD->getType()->getAs<FunctionProtoType>()) { 1723 // Ugly case: for a K&R-style definition, the type of the definition 1724 // isn't the same as the type of a use. Correct for this with a 1725 // bitcast. 1726 QualType NoProtoType = 1727 CGF.getContext().getFunctionNoProtoType(Proto->getReturnType()); 1728 NoProtoType = CGF.getContext().getPointerType(NoProtoType); 1729 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType)); 1730 } 1731 } 1732 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 1733 return CGF.MakeAddrLValue(V, E->getType(), Alignment); 1734 } 1735 1736 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 1737 llvm::Value *ThisValue) { 1738 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 1739 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 1740 return CGF.EmitLValueForField(LV, FD); 1741 } 1742 1743 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 1744 const NamedDecl *ND = E->getDecl(); 1745 CharUnits Alignment = getContext().getDeclAlign(ND); 1746 QualType T = E->getType(); 1747 1748 // A DeclRefExpr for a reference initialized by a constant expression can 1749 // appear without being odr-used. Directly emit the constant initializer. 1750 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1751 const Expr *Init = VD->getAnyInitializer(VD); 1752 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 1753 VD->isUsableInConstantExpressions(getContext()) && 1754 VD->checkInitIsICE()) { 1755 llvm::Constant *Val = 1756 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 1757 assert(Val && "failed to emit reference constant expression"); 1758 // FIXME: Eventually we will want to emit vector element references. 1759 return MakeAddrLValue(Val, T, Alignment); 1760 } 1761 } 1762 1763 // FIXME: We should be able to assert this for FunctionDecls as well! 1764 // FIXME: We should be able to assert this for all DeclRefExprs, not just 1765 // those with a valid source location. 1766 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 1767 !E->getLocation().isValid()) && 1768 "Should not use decl without marking it used!"); 1769 1770 if (ND->hasAttr<WeakRefAttr>()) { 1771 const auto *VD = cast<ValueDecl>(ND); 1772 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD); 1773 return MakeAddrLValue(Aliasee, T, Alignment); 1774 } 1775 1776 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 1777 // Check if this is a global variable. 1778 if (VD->hasLinkage() || VD->isStaticDataMember()) 1779 return EmitGlobalVarDeclLValue(*this, E, VD); 1780 1781 bool isBlockVariable = VD->hasAttr<BlocksAttr>(); 1782 1783 llvm::Value *V = LocalDeclMap.lookup(VD); 1784 if (!V && VD->isStaticLocal()) 1785 V = CGM.getStaticLocalDeclAddress(VD); 1786 1787 // Use special handling for lambdas. 1788 if (!V) { 1789 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) { 1790 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 1791 } else if (CapturedStmtInfo) { 1792 if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD)) 1793 return EmitCapturedFieldLValue(*this, FD, 1794 CapturedStmtInfo->getContextValue()); 1795 } 1796 1797 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal()); 1798 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable), 1799 T, Alignment); 1800 } 1801 1802 assert(V && "DeclRefExpr not entered in LocalDeclMap?"); 1803 1804 if (isBlockVariable) 1805 V = BuildBlockByrefAddress(V, VD); 1806 1807 LValue LV; 1808 if (VD->getType()->isReferenceType()) { 1809 llvm::LoadInst *LI = Builder.CreateLoad(V); 1810 LI->setAlignment(Alignment.getQuantity()); 1811 V = LI; 1812 LV = MakeNaturalAlignAddrLValue(V, T); 1813 } else { 1814 LV = MakeAddrLValue(V, T, Alignment); 1815 } 1816 1817 bool isLocalStorage = VD->hasLocalStorage(); 1818 1819 bool NonGCable = isLocalStorage && 1820 !VD->getType()->isReferenceType() && 1821 !isBlockVariable; 1822 if (NonGCable) { 1823 LV.getQuals().removeObjCGCAttr(); 1824 LV.setNonGC(true); 1825 } 1826 1827 bool isImpreciseLifetime = 1828 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 1829 if (isImpreciseLifetime) 1830 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 1831 setObjCGCLValueClass(getContext(), E, LV); 1832 return LV; 1833 } 1834 1835 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1836 return EmitFunctionDeclLValue(*this, E, FD); 1837 1838 llvm_unreachable("Unhandled DeclRefExpr"); 1839 } 1840 1841 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 1842 // __extension__ doesn't affect lvalue-ness. 1843 if (E->getOpcode() == UO_Extension) 1844 return EmitLValue(E->getSubExpr()); 1845 1846 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 1847 switch (E->getOpcode()) { 1848 default: llvm_unreachable("Unknown unary operator lvalue!"); 1849 case UO_Deref: { 1850 QualType T = E->getSubExpr()->getType()->getPointeeType(); 1851 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 1852 1853 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T); 1854 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 1855 1856 // We should not generate __weak write barrier on indirect reference 1857 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 1858 // But, we continue to generate __strong write barrier on indirect write 1859 // into a pointer to object. 1860 if (getLangOpts().ObjC1 && 1861 getLangOpts().getGC() != LangOptions::NonGC && 1862 LV.isObjCWeak()) 1863 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 1864 return LV; 1865 } 1866 case UO_Real: 1867 case UO_Imag: { 1868 LValue LV = EmitLValue(E->getSubExpr()); 1869 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 1870 llvm::Value *Addr = LV.getAddress(); 1871 1872 // __real is valid on scalars. This is a faster way of testing that. 1873 // __imag can only produce an rvalue on scalars. 1874 if (E->getOpcode() == UO_Real && 1875 !cast<llvm::PointerType>(Addr->getType()) 1876 ->getElementType()->isStructTy()) { 1877 assert(E->getSubExpr()->getType()->isArithmeticType()); 1878 return LV; 1879 } 1880 1881 assert(E->getSubExpr()->getType()->isAnyComplexType()); 1882 1883 unsigned Idx = E->getOpcode() == UO_Imag; 1884 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(), 1885 Idx, "idx"), 1886 ExprTy); 1887 } 1888 case UO_PreInc: 1889 case UO_PreDec: { 1890 LValue LV = EmitLValue(E->getSubExpr()); 1891 bool isInc = E->getOpcode() == UO_PreInc; 1892 1893 if (E->getType()->isAnyComplexType()) 1894 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 1895 else 1896 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 1897 return LV; 1898 } 1899 } 1900 } 1901 1902 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 1903 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 1904 E->getType()); 1905 } 1906 1907 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 1908 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 1909 E->getType()); 1910 } 1911 1912 static llvm::Constant* 1913 GetAddrOfConstantWideString(StringRef Str, 1914 const char *GlobalName, 1915 ASTContext &Context, 1916 QualType Ty, SourceLocation Loc, 1917 CodeGenModule &CGM) { 1918 1919 StringLiteral *SL = StringLiteral::Create(Context, 1920 Str, 1921 StringLiteral::Wide, 1922 /*Pascal = */false, 1923 Ty, Loc); 1924 llvm::Constant *C = CGM.GetConstantArrayFromStringLiteral(SL); 1925 auto *GV = new llvm::GlobalVariable( 1926 CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, 1927 llvm::GlobalValue::PrivateLinkage, C, GlobalName); 1928 const unsigned WideAlignment = 1929 Context.getTypeAlignInChars(Ty).getQuantity(); 1930 GV->setAlignment(WideAlignment); 1931 return GV; 1932 } 1933 1934 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, 1935 SmallString<32>& Target) { 1936 Target.resize(CharByteWidth * (Source.size() + 1)); 1937 char *ResultPtr = &Target[0]; 1938 const UTF8 *ErrorPtr; 1939 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); 1940 (void)success; 1941 assert(success); 1942 Target.resize(ResultPtr - &Target[0]); 1943 } 1944 1945 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 1946 switch (E->getIdentType()) { 1947 default: 1948 return EmitUnsupportedLValue(E, "predefined expression"); 1949 1950 case PredefinedExpr::Func: 1951 case PredefinedExpr::Function: 1952 case PredefinedExpr::LFunction: 1953 case PredefinedExpr::FuncDName: 1954 case PredefinedExpr::FuncSig: 1955 case PredefinedExpr::PrettyFunction: { 1956 PredefinedExpr::IdentType IdentType = E->getIdentType(); 1957 std::string GVName; 1958 1959 // FIXME: We should use the string literal mangling for the Microsoft C++ 1960 // ABI so that strings get merged. 1961 switch (IdentType) { 1962 default: llvm_unreachable("Invalid type"); 1963 case PredefinedExpr::Func: GVName = "__func__."; break; 1964 case PredefinedExpr::Function: GVName = "__FUNCTION__."; break; 1965 case PredefinedExpr::FuncDName: GVName = "__FUNCDNAME__."; break; 1966 case PredefinedExpr::FuncSig: GVName = "__FUNCSIG__."; break; 1967 case PredefinedExpr::LFunction: GVName = "L__FUNCTION__."; break; 1968 case PredefinedExpr::PrettyFunction: GVName = "__PRETTY_FUNCTION__."; break; 1969 } 1970 1971 StringRef FnName = CurFn->getName(); 1972 if (FnName.startswith("\01")) 1973 FnName = FnName.substr(1); 1974 GVName += FnName; 1975 1976 // If this is outside of a function use the top level decl. 1977 const Decl *CurDecl = CurCodeDecl; 1978 if (CurDecl == 0 || isa<VarDecl>(CurDecl)) 1979 CurDecl = getContext().getTranslationUnitDecl(); 1980 1981 const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual(); 1982 std::string FunctionName; 1983 if (isa<BlockDecl>(CurDecl)) { 1984 // Blocks use the mangled function name. 1985 // FIXME: ComputeName should handle blocks. 1986 FunctionName = FnName.str(); 1987 } else if (isa<CapturedDecl>(CurDecl)) { 1988 // For a captured statement, the function name is its enclosing 1989 // function name not the one compiler generated. 1990 FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl); 1991 } else { 1992 FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl); 1993 assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 == 1994 FunctionName.size() && 1995 "Computed __func__ length differs from type!"); 1996 } 1997 1998 llvm::Constant *C; 1999 if (ElemType->isWideCharType()) { 2000 SmallString<32> RawChars; 2001 ConvertUTF8ToWideString( 2002 getContext().getTypeSizeInChars(ElemType).getQuantity(), 2003 FunctionName, RawChars); 2004 C = GetAddrOfConstantWideString(RawChars, 2005 GVName.c_str(), 2006 getContext(), 2007 E->getType(), 2008 E->getLocation(), 2009 CGM); 2010 } else { 2011 C = CGM.GetAddrOfConstantCString(FunctionName, GVName.c_str(), 1); 2012 } 2013 return MakeAddrLValue(C, E->getType()); 2014 } 2015 } 2016 } 2017 2018 /// Emit a type description suitable for use by a runtime sanitizer library. The 2019 /// format of a type descriptor is 2020 /// 2021 /// \code 2022 /// { i16 TypeKind, i16 TypeInfo } 2023 /// \endcode 2024 /// 2025 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2026 /// integer, 1 for a floating point value, and -1 for anything else. 2027 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2028 // Only emit each type's descriptor once. 2029 if (llvm::Constant *C = CGM.getTypeDescriptor(T)) 2030 return C; 2031 2032 uint16_t TypeKind = -1; 2033 uint16_t TypeInfo = 0; 2034 2035 if (T->isIntegerType()) { 2036 TypeKind = 0; 2037 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2038 (T->isSignedIntegerType() ? 1 : 0); 2039 } else if (T->isFloatingType()) { 2040 TypeKind = 1; 2041 TypeInfo = getContext().getTypeSize(T); 2042 } 2043 2044 // Format the type name as if for a diagnostic, including quotes and 2045 // optionally an 'aka'. 2046 SmallString<32> Buffer; 2047 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2048 (intptr_t)T.getAsOpaquePtr(), 2049 0, 0, 0, 0, 0, 0, Buffer, 2050 ArrayRef<intptr_t>()); 2051 2052 llvm::Constant *Components[] = { 2053 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2054 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2055 }; 2056 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2057 2058 auto *GV = new llvm::GlobalVariable( 2059 CGM.getModule(), Descriptor->getType(), 2060 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2061 GV->setUnnamedAddr(true); 2062 2063 // Remember the descriptor for this type. 2064 CGM.setTypeDescriptor(T, GV); 2065 2066 return GV; 2067 } 2068 2069 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2070 llvm::Type *TargetTy = IntPtrTy; 2071 2072 // Floating-point types which fit into intptr_t are bitcast to integers 2073 // and then passed directly (after zero-extension, if necessary). 2074 if (V->getType()->isFloatingPointTy()) { 2075 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2076 if (Bits <= TargetTy->getIntegerBitWidth()) 2077 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2078 Bits)); 2079 } 2080 2081 // Integers which fit in intptr_t are zero-extended and passed directly. 2082 if (V->getType()->isIntegerTy() && 2083 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2084 return Builder.CreateZExt(V, TargetTy); 2085 2086 // Pointers are passed directly, everything else is passed by address. 2087 if (!V->getType()->isPointerTy()) { 2088 llvm::Value *Ptr = CreateTempAlloca(V->getType()); 2089 Builder.CreateStore(V, Ptr); 2090 V = Ptr; 2091 } 2092 return Builder.CreatePtrToInt(V, TargetTy); 2093 } 2094 2095 /// \brief Emit a representation of a SourceLocation for passing to a handler 2096 /// in a sanitizer runtime library. The format for this data is: 2097 /// \code 2098 /// struct SourceLocation { 2099 /// const char *Filename; 2100 /// int32_t Line, Column; 2101 /// }; 2102 /// \endcode 2103 /// For an invalid SourceLocation, the Filename pointer is null. 2104 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2105 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2106 2107 llvm::Constant *Data[] = { 2108 PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src") 2109 : llvm::Constant::getNullValue(Int8PtrTy), 2110 Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0), 2111 Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0) 2112 }; 2113 2114 return llvm::ConstantStruct::getAnon(Data); 2115 } 2116 2117 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName, 2118 ArrayRef<llvm::Constant *> StaticArgs, 2119 ArrayRef<llvm::Value *> DynamicArgs, 2120 CheckRecoverableKind RecoverKind) { 2121 assert(SanOpts != &SanitizerOptions::Disabled); 2122 2123 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) { 2124 assert (RecoverKind != CRK_AlwaysRecoverable && 2125 "Runtime call required for AlwaysRecoverable kind!"); 2126 return EmitTrapCheck(Checked); 2127 } 2128 2129 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2130 2131 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName); 2132 2133 llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler); 2134 2135 // Give hint that we very much don't expect to execute the handler 2136 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2137 llvm::MDBuilder MDHelper(getLLVMContext()); 2138 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2139 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2140 2141 EmitBlock(Handler); 2142 2143 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2144 auto *InfoPtr = 2145 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2146 llvm::GlobalVariable::PrivateLinkage, Info); 2147 InfoPtr->setUnnamedAddr(true); 2148 2149 SmallVector<llvm::Value *, 4> Args; 2150 SmallVector<llvm::Type *, 4> ArgTypes; 2151 Args.reserve(DynamicArgs.size() + 1); 2152 ArgTypes.reserve(DynamicArgs.size() + 1); 2153 2154 // Handler functions take an i8* pointing to the (handler-specific) static 2155 // information block, followed by a sequence of intptr_t arguments 2156 // representing operand values. 2157 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2158 ArgTypes.push_back(Int8PtrTy); 2159 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2160 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2161 ArgTypes.push_back(IntPtrTy); 2162 } 2163 2164 bool Recover = (RecoverKind == CRK_AlwaysRecoverable) || 2165 ((RecoverKind == CRK_Recoverable) && 2166 CGM.getCodeGenOpts().SanitizeRecover); 2167 2168 llvm::FunctionType *FnType = 2169 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2170 llvm::AttrBuilder B; 2171 if (!Recover) { 2172 B.addAttribute(llvm::Attribute::NoReturn) 2173 .addAttribute(llvm::Attribute::NoUnwind); 2174 } 2175 B.addAttribute(llvm::Attribute::UWTable); 2176 2177 // Checks that have two variants use a suffix to differentiate them 2178 bool NeedsAbortSuffix = (RecoverKind != CRK_Unrecoverable) && 2179 !CGM.getCodeGenOpts().SanitizeRecover; 2180 std::string FunctionName = ("__ubsan_handle_" + CheckName + 2181 (NeedsAbortSuffix? "_abort" : "")).str(); 2182 llvm::Value *Fn = 2183 CGM.CreateRuntimeFunction(FnType, FunctionName, 2184 llvm::AttributeSet::get(getLLVMContext(), 2185 llvm::AttributeSet::FunctionIndex, 2186 B)); 2187 llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args); 2188 if (Recover) { 2189 Builder.CreateBr(Cont); 2190 } else { 2191 HandlerCall->setDoesNotReturn(); 2192 Builder.CreateUnreachable(); 2193 } 2194 2195 EmitBlock(Cont); 2196 } 2197 2198 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2199 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2200 2201 // If we're optimizing, collapse all calls to trap down to just one per 2202 // function to save on code size. 2203 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2204 TrapBB = createBasicBlock("trap"); 2205 Builder.CreateCondBr(Checked, Cont, TrapBB); 2206 EmitBlock(TrapBB); 2207 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap); 2208 llvm::CallInst *TrapCall = Builder.CreateCall(F); 2209 TrapCall->setDoesNotReturn(); 2210 TrapCall->setDoesNotThrow(); 2211 Builder.CreateUnreachable(); 2212 } else { 2213 Builder.CreateCondBr(Checked, Cont, TrapBB); 2214 } 2215 2216 EmitBlock(Cont); 2217 } 2218 2219 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2220 /// array to pointer, return the array subexpression. 2221 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2222 // If this isn't just an array->pointer decay, bail out. 2223 const auto *CE = dyn_cast<CastExpr>(E); 2224 if (CE == 0 || CE->getCastKind() != CK_ArrayToPointerDecay) 2225 return 0; 2226 2227 // If this is a decay from variable width array, bail out. 2228 const Expr *SubExpr = CE->getSubExpr(); 2229 if (SubExpr->getType()->isVariableArrayType()) 2230 return 0; 2231 2232 return SubExpr; 2233 } 2234 2235 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2236 bool Accessed) { 2237 // The index must always be an integer, which is not an aggregate. Emit it. 2238 llvm::Value *Idx = EmitScalarExpr(E->getIdx()); 2239 QualType IdxTy = E->getIdx()->getType(); 2240 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 2241 2242 if (SanOpts->ArrayBounds) 2243 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 2244 2245 // If the base is a vector type, then we are forming a vector element lvalue 2246 // with this subscript. 2247 if (E->getBase()->getType()->isVectorType()) { 2248 // Emit the vector as an lvalue to get its address. 2249 LValue LHS = EmitLValue(E->getBase()); 2250 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 2251 Idx = Builder.CreateIntCast(Idx, Int32Ty, IdxSigned, "vidx"); 2252 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 2253 E->getBase()->getType(), LHS.getAlignment()); 2254 } 2255 2256 // Extend or truncate the index type to 32 or 64-bits. 2257 if (Idx->getType() != IntPtrTy) 2258 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 2259 2260 // We know that the pointer points to a type of the correct size, unless the 2261 // size is a VLA or Objective-C interface. 2262 llvm::Value *Address = 0; 2263 CharUnits ArrayAlignment; 2264 if (const VariableArrayType *vla = 2265 getContext().getAsVariableArrayType(E->getType())) { 2266 // The base must be a pointer, which is not an aggregate. Emit 2267 // it. It needs to be emitted first in case it's what captures 2268 // the VLA bounds. 2269 Address = EmitScalarExpr(E->getBase()); 2270 2271 // The element count here is the total number of non-VLA elements. 2272 llvm::Value *numElements = getVLASize(vla).first; 2273 2274 // Effectively, the multiply by the VLA size is part of the GEP. 2275 // GEP indexes are signed, and scaling an index isn't permitted to 2276 // signed-overflow, so we use the same semantics for our explicit 2277 // multiply. We suppress this if overflow is not undefined behavior. 2278 if (getLangOpts().isSignedOverflowDefined()) { 2279 Idx = Builder.CreateMul(Idx, numElements); 2280 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2281 } else { 2282 Idx = Builder.CreateNSWMul(Idx, numElements); 2283 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx"); 2284 } 2285 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 2286 // Indexing over an interface, as in "NSString *P; P[4];" 2287 llvm::Value *InterfaceSize = 2288 llvm::ConstantInt::get(Idx->getType(), 2289 getContext().getTypeSizeInChars(OIT).getQuantity()); 2290 2291 Idx = Builder.CreateMul(Idx, InterfaceSize); 2292 2293 // The base must be a pointer, which is not an aggregate. Emit it. 2294 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2295 Address = EmitCastToVoidPtr(Base); 2296 Address = Builder.CreateGEP(Address, Idx, "arrayidx"); 2297 Address = Builder.CreateBitCast(Address, Base->getType()); 2298 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 2299 // If this is A[i] where A is an array, the frontend will have decayed the 2300 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 2301 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 2302 // "gep x, i" here. Emit one "gep A, 0, i". 2303 assert(Array->getType()->isArrayType() && 2304 "Array to pointer decay must have array source type!"); 2305 LValue ArrayLV; 2306 // For simple multidimensional array indexing, set the 'accessed' flag for 2307 // better bounds-checking of the base expression. 2308 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 2309 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 2310 else 2311 ArrayLV = EmitLValue(Array); 2312 llvm::Value *ArrayPtr = ArrayLV.getAddress(); 2313 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0); 2314 llvm::Value *Args[] = { Zero, Idx }; 2315 2316 // Propagate the alignment from the array itself to the result. 2317 ArrayAlignment = ArrayLV.getAlignment(); 2318 2319 if (getLangOpts().isSignedOverflowDefined()) 2320 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx"); 2321 else 2322 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx"); 2323 } else { 2324 // The base must be a pointer, which is not an aggregate. Emit it. 2325 llvm::Value *Base = EmitScalarExpr(E->getBase()); 2326 if (getLangOpts().isSignedOverflowDefined()) 2327 Address = Builder.CreateGEP(Base, Idx, "arrayidx"); 2328 else 2329 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx"); 2330 } 2331 2332 QualType T = E->getBase()->getType()->getPointeeType(); 2333 assert(!T.isNull() && 2334 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type"); 2335 2336 2337 // Limit the alignment to that of the result type. 2338 LValue LV; 2339 if (!ArrayAlignment.isZero()) { 2340 CharUnits Align = getContext().getTypeAlignInChars(T); 2341 ArrayAlignment = std::min(Align, ArrayAlignment); 2342 LV = MakeAddrLValue(Address, T, ArrayAlignment); 2343 } else { 2344 LV = MakeNaturalAlignAddrLValue(Address, T); 2345 } 2346 2347 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace()); 2348 2349 if (getLangOpts().ObjC1 && 2350 getLangOpts().getGC() != LangOptions::NonGC) { 2351 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2352 setObjCGCLValueClass(getContext(), E, LV); 2353 } 2354 return LV; 2355 } 2356 2357 static 2358 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder, 2359 SmallVectorImpl<unsigned> &Elts) { 2360 SmallVector<llvm::Constant*, 4> CElts; 2361 for (unsigned i = 0, e = Elts.size(); i != e; ++i) 2362 CElts.push_back(Builder.getInt32(Elts[i])); 2363 2364 return llvm::ConstantVector::get(CElts); 2365 } 2366 2367 LValue CodeGenFunction:: 2368 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 2369 // Emit the base vector as an l-value. 2370 LValue Base; 2371 2372 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 2373 if (E->isArrow()) { 2374 // If it is a pointer to a vector, emit the address and form an lvalue with 2375 // it. 2376 llvm::Value *Ptr = EmitScalarExpr(E->getBase()); 2377 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 2378 Base = MakeAddrLValue(Ptr, PT->getPointeeType()); 2379 Base.getQuals().removeObjCGCAttr(); 2380 } else if (E->getBase()->isGLValue()) { 2381 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 2382 // emit the base as an lvalue. 2383 assert(E->getBase()->getType()->isVectorType()); 2384 Base = EmitLValue(E->getBase()); 2385 } else { 2386 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 2387 assert(E->getBase()->getType()->isVectorType() && 2388 "Result must be a vector"); 2389 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 2390 2391 // Store the vector to memory (because LValue wants an address). 2392 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType()); 2393 Builder.CreateStore(Vec, VecMem); 2394 Base = MakeAddrLValue(VecMem, E->getBase()->getType()); 2395 } 2396 2397 QualType type = 2398 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 2399 2400 // Encode the element access list into a vector of unsigned indices. 2401 SmallVector<unsigned, 4> Indices; 2402 E->getEncodedElementAccess(Indices); 2403 2404 if (Base.isSimple()) { 2405 llvm::Constant *CV = GenerateConstantVector(Builder, Indices); 2406 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 2407 Base.getAlignment()); 2408 } 2409 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 2410 2411 llvm::Constant *BaseElts = Base.getExtVectorElts(); 2412 SmallVector<llvm::Constant *, 4> CElts; 2413 2414 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 2415 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 2416 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 2417 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type, 2418 Base.getAlignment()); 2419 } 2420 2421 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 2422 Expr *BaseExpr = E->getBase(); 2423 2424 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2425 LValue BaseLV; 2426 if (E->isArrow()) { 2427 llvm::Value *Ptr = EmitScalarExpr(BaseExpr); 2428 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 2429 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy); 2430 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy); 2431 } else 2432 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 2433 2434 NamedDecl *ND = E->getMemberDecl(); 2435 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 2436 LValue LV = EmitLValueForField(BaseLV, Field); 2437 setObjCGCLValueClass(getContext(), E, LV); 2438 return LV; 2439 } 2440 2441 if (auto *VD = dyn_cast<VarDecl>(ND)) 2442 return EmitGlobalVarDeclLValue(*this, E, VD); 2443 2444 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2445 return EmitFunctionDeclLValue(*this, E, FD); 2446 2447 llvm_unreachable("Unhandled member declaration!"); 2448 } 2449 2450 /// Given that we are currently emitting a lambda, emit an l-value for 2451 /// one of its members. 2452 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 2453 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 2454 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 2455 QualType LambdaTagType = 2456 getContext().getTagDeclType(Field->getParent()); 2457 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 2458 return EmitLValueForField(LambdaLV, Field); 2459 } 2460 2461 LValue CodeGenFunction::EmitLValueForField(LValue base, 2462 const FieldDecl *field) { 2463 if (field->isBitField()) { 2464 const CGRecordLayout &RL = 2465 CGM.getTypes().getCGRecordLayout(field->getParent()); 2466 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 2467 llvm::Value *Addr = base.getAddress(); 2468 unsigned Idx = RL.getLLVMFieldNo(field); 2469 if (Idx != 0) 2470 // For structs, we GEP to the field that the record layout suggests. 2471 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName()); 2472 // Get the access type. 2473 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy( 2474 getLLVMContext(), Info.StorageSize, 2475 CGM.getContext().getTargetAddressSpace(base.getType())); 2476 if (Addr->getType() != PtrTy) 2477 Addr = Builder.CreateBitCast(Addr, PtrTy); 2478 2479 QualType fieldType = 2480 field->getType().withCVRQualifiers(base.getVRQualifiers()); 2481 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment()); 2482 } 2483 2484 const RecordDecl *rec = field->getParent(); 2485 QualType type = field->getType(); 2486 CharUnits alignment = getContext().getDeclAlign(field); 2487 2488 // FIXME: It should be impossible to have an LValue without alignment for a 2489 // complete type. 2490 if (!base.getAlignment().isZero()) 2491 alignment = std::min(alignment, base.getAlignment()); 2492 2493 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 2494 2495 llvm::Value *addr = base.getAddress(); 2496 unsigned cvr = base.getVRQualifiers(); 2497 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 2498 if (rec->isUnion()) { 2499 // For unions, there is no pointer adjustment. 2500 assert(!type->isReferenceType() && "union has reference member"); 2501 // TODO: handle path-aware TBAA for union. 2502 TBAAPath = false; 2503 } else { 2504 // For structs, we GEP to the field that the record layout suggests. 2505 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 2506 addr = Builder.CreateStructGEP(addr, idx, field->getName()); 2507 2508 // If this is a reference field, load the reference right now. 2509 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 2510 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 2511 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 2512 load->setAlignment(alignment.getQuantity()); 2513 2514 // Loading the reference will disable path-aware TBAA. 2515 TBAAPath = false; 2516 if (CGM.shouldUseTBAA()) { 2517 llvm::MDNode *tbaa; 2518 if (mayAlias) 2519 tbaa = CGM.getTBAAInfo(getContext().CharTy); 2520 else 2521 tbaa = CGM.getTBAAInfo(type); 2522 if (tbaa) 2523 CGM.DecorateInstruction(load, tbaa); 2524 } 2525 2526 addr = load; 2527 mayAlias = false; 2528 type = refType->getPointeeType(); 2529 if (type->isIncompleteType()) 2530 alignment = CharUnits(); 2531 else 2532 alignment = getContext().getTypeAlignInChars(type); 2533 cvr = 0; // qualifiers don't recursively apply to referencee 2534 } 2535 } 2536 2537 // Make sure that the address is pointing to the right type. This is critical 2538 // for both unions and structs. A union needs a bitcast, a struct element 2539 // will need a bitcast if the LLVM type laid out doesn't match the desired 2540 // type. 2541 addr = EmitBitCastOfLValueToProperType(*this, addr, 2542 CGM.getTypes().ConvertTypeForMem(type), 2543 field->getName()); 2544 2545 if (field->hasAttr<AnnotateAttr>()) 2546 addr = EmitFieldAnnotations(field, addr); 2547 2548 LValue LV = MakeAddrLValue(addr, type, alignment); 2549 LV.getQuals().addCVRQualifiers(cvr); 2550 if (TBAAPath) { 2551 const ASTRecordLayout &Layout = 2552 getContext().getASTRecordLayout(field->getParent()); 2553 // Set the base type to be the base type of the base LValue and 2554 // update offset to be relative to the base type. 2555 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 2556 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 2557 Layout.getFieldOffset(field->getFieldIndex()) / 2558 getContext().getCharWidth()); 2559 } 2560 2561 // __weak attribute on a field is ignored. 2562 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 2563 LV.getQuals().removeObjCGCAttr(); 2564 2565 // Fields of may_alias structs act like 'char' for TBAA purposes. 2566 // FIXME: this should get propagated down through anonymous structs 2567 // and unions. 2568 if (mayAlias && LV.getTBAAInfo()) 2569 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 2570 2571 return LV; 2572 } 2573 2574 LValue 2575 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 2576 const FieldDecl *Field) { 2577 QualType FieldType = Field->getType(); 2578 2579 if (!FieldType->isReferenceType()) 2580 return EmitLValueForField(Base, Field); 2581 2582 const CGRecordLayout &RL = 2583 CGM.getTypes().getCGRecordLayout(Field->getParent()); 2584 unsigned idx = RL.getLLVMFieldNo(Field); 2585 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx); 2586 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs"); 2587 2588 // Make sure that the address is pointing to the right type. This is critical 2589 // for both unions and structs. A union needs a bitcast, a struct element 2590 // will need a bitcast if the LLVM type laid out doesn't match the desired 2591 // type. 2592 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 2593 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName()); 2594 2595 CharUnits Alignment = getContext().getDeclAlign(Field); 2596 2597 // FIXME: It should be impossible to have an LValue without alignment for a 2598 // complete type. 2599 if (!Base.getAlignment().isZero()) 2600 Alignment = std::min(Alignment, Base.getAlignment()); 2601 2602 return MakeAddrLValue(V, FieldType, Alignment); 2603 } 2604 2605 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 2606 if (E->isFileScope()) { 2607 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 2608 return MakeAddrLValue(GlobalPtr, E->getType()); 2609 } 2610 if (E->getType()->isVariablyModifiedType()) 2611 // make sure to emit the VLA size. 2612 EmitVariablyModifiedType(E->getType()); 2613 2614 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 2615 const Expr *InitExpr = E->getInitializer(); 2616 LValue Result = MakeAddrLValue(DeclPtr, E->getType()); 2617 2618 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 2619 /*Init*/ true); 2620 2621 return Result; 2622 } 2623 2624 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 2625 if (!E->isGLValue()) 2626 // Initializing an aggregate temporary in C++11: T{...}. 2627 return EmitAggExprToLValue(E); 2628 2629 // An lvalue initializer list must be initializing a reference. 2630 assert(E->getNumInits() == 1 && "reference init with multiple values"); 2631 return EmitLValue(E->getInit(0)); 2632 } 2633 2634 LValue CodeGenFunction:: 2635 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 2636 if (!expr->isGLValue()) { 2637 // ?: here should be an aggregate. 2638 assert(hasAggregateEvaluationKind(expr->getType()) && 2639 "Unexpected conditional operator!"); 2640 return EmitAggExprToLValue(expr); 2641 } 2642 2643 OpaqueValueMapping binding(*this, expr); 2644 RegionCounter Cnt = getPGORegionCounter(expr); 2645 2646 const Expr *condExpr = expr->getCond(); 2647 bool CondExprBool; 2648 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 2649 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 2650 if (!CondExprBool) std::swap(live, dead); 2651 2652 if (!ContainsLabel(dead)) { 2653 // If the true case is live, we need to track its region. 2654 if (CondExprBool) 2655 Cnt.beginRegion(Builder); 2656 return EmitLValue(live); 2657 } 2658 } 2659 2660 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 2661 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 2662 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 2663 2664 ConditionalEvaluation eval(*this); 2665 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount()); 2666 2667 // Any temporaries created here are conditional. 2668 EmitBlock(lhsBlock); 2669 Cnt.beginRegion(Builder); 2670 eval.begin(*this); 2671 LValue lhs = EmitLValue(expr->getTrueExpr()); 2672 eval.end(*this); 2673 2674 if (!lhs.isSimple()) 2675 return EmitUnsupportedLValue(expr, "conditional operator"); 2676 2677 lhsBlock = Builder.GetInsertBlock(); 2678 Builder.CreateBr(contBlock); 2679 2680 // Any temporaries created here are conditional. 2681 EmitBlock(rhsBlock); 2682 eval.begin(*this); 2683 LValue rhs = EmitLValue(expr->getFalseExpr()); 2684 eval.end(*this); 2685 if (!rhs.isSimple()) 2686 return EmitUnsupportedLValue(expr, "conditional operator"); 2687 rhsBlock = Builder.GetInsertBlock(); 2688 2689 EmitBlock(contBlock); 2690 2691 llvm::PHINode *phi = Builder.CreatePHI(lhs.getAddress()->getType(), 2, 2692 "cond-lvalue"); 2693 phi->addIncoming(lhs.getAddress(), lhsBlock); 2694 phi->addIncoming(rhs.getAddress(), rhsBlock); 2695 return MakeAddrLValue(phi, expr->getType()); 2696 } 2697 2698 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 2699 /// type. If the cast is to a reference, we can have the usual lvalue result, 2700 /// otherwise if a cast is needed by the code generator in an lvalue context, 2701 /// then it must mean that we need the address of an aggregate in order to 2702 /// access one of its members. This can happen for all the reasons that casts 2703 /// are permitted with aggregate result, including noop aggregate casts, and 2704 /// cast from scalar to union. 2705 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 2706 switch (E->getCastKind()) { 2707 case CK_ToVoid: 2708 case CK_BitCast: 2709 case CK_ArrayToPointerDecay: 2710 case CK_FunctionToPointerDecay: 2711 case CK_NullToMemberPointer: 2712 case CK_NullToPointer: 2713 case CK_IntegralToPointer: 2714 case CK_PointerToIntegral: 2715 case CK_PointerToBoolean: 2716 case CK_VectorSplat: 2717 case CK_IntegralCast: 2718 case CK_IntegralToBoolean: 2719 case CK_IntegralToFloating: 2720 case CK_FloatingToIntegral: 2721 case CK_FloatingToBoolean: 2722 case CK_FloatingCast: 2723 case CK_FloatingRealToComplex: 2724 case CK_FloatingComplexToReal: 2725 case CK_FloatingComplexToBoolean: 2726 case CK_FloatingComplexCast: 2727 case CK_FloatingComplexToIntegralComplex: 2728 case CK_IntegralRealToComplex: 2729 case CK_IntegralComplexToReal: 2730 case CK_IntegralComplexToBoolean: 2731 case CK_IntegralComplexCast: 2732 case CK_IntegralComplexToFloatingComplex: 2733 case CK_DerivedToBaseMemberPointer: 2734 case CK_BaseToDerivedMemberPointer: 2735 case CK_MemberPointerToBoolean: 2736 case CK_ReinterpretMemberPointer: 2737 case CK_AnyPointerToBlockPointerCast: 2738 case CK_ARCProduceObject: 2739 case CK_ARCConsumeObject: 2740 case CK_ARCReclaimReturnedObject: 2741 case CK_ARCExtendBlockObject: 2742 case CK_CopyAndAutoreleaseBlockObject: 2743 case CK_AddressSpaceConversion: 2744 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 2745 2746 case CK_Dependent: 2747 llvm_unreachable("dependent cast kind in IR gen!"); 2748 2749 case CK_BuiltinFnToFnPtr: 2750 llvm_unreachable("builtin functions are handled elsewhere"); 2751 2752 // These are never l-values; just use the aggregate emission code. 2753 case CK_NonAtomicToAtomic: 2754 case CK_AtomicToNonAtomic: 2755 return EmitAggExprToLValue(E); 2756 2757 case CK_Dynamic: { 2758 LValue LV = EmitLValue(E->getSubExpr()); 2759 llvm::Value *V = LV.getAddress(); 2760 const auto *DCE = cast<CXXDynamicCastExpr>(E); 2761 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 2762 } 2763 2764 case CK_ConstructorConversion: 2765 case CK_UserDefinedConversion: 2766 case CK_CPointerToObjCPointerCast: 2767 case CK_BlockPointerToObjCPointerCast: 2768 case CK_NoOp: 2769 case CK_LValueToRValue: 2770 return EmitLValue(E->getSubExpr()); 2771 2772 case CK_UncheckedDerivedToBase: 2773 case CK_DerivedToBase: { 2774 const RecordType *DerivedClassTy = 2775 E->getSubExpr()->getType()->getAs<RecordType>(); 2776 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2777 2778 LValue LV = EmitLValue(E->getSubExpr()); 2779 llvm::Value *This = LV.getAddress(); 2780 2781 // Perform the derived-to-base conversion 2782 llvm::Value *Base = 2783 GetAddressOfBaseClass(This, DerivedClassDecl, 2784 E->path_begin(), E->path_end(), 2785 /*NullCheckValue=*/false); 2786 2787 return MakeAddrLValue(Base, E->getType()); 2788 } 2789 case CK_ToUnion: 2790 return EmitAggExprToLValue(E); 2791 case CK_BaseToDerived: { 2792 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 2793 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 2794 2795 LValue LV = EmitLValue(E->getSubExpr()); 2796 2797 // Perform the base-to-derived conversion 2798 llvm::Value *Derived = 2799 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 2800 E->path_begin(), E->path_end(), 2801 /*NullCheckValue=*/false); 2802 2803 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 2804 // performed and the object is not of the derived type. 2805 if (SanitizePerformTypeCheck) 2806 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 2807 Derived, E->getType()); 2808 2809 return MakeAddrLValue(Derived, E->getType()); 2810 } 2811 case CK_LValueBitCast: { 2812 // This must be a reinterpret_cast (or c-style equivalent). 2813 const auto *CE = cast<ExplicitCastExpr>(E); 2814 2815 LValue LV = EmitLValue(E->getSubExpr()); 2816 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2817 ConvertType(CE->getTypeAsWritten())); 2818 return MakeAddrLValue(V, E->getType()); 2819 } 2820 case CK_ObjCObjectLValueCast: { 2821 LValue LV = EmitLValue(E->getSubExpr()); 2822 QualType ToType = getContext().getLValueReferenceType(E->getType()); 2823 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(), 2824 ConvertType(ToType)); 2825 return MakeAddrLValue(V, E->getType()); 2826 } 2827 case CK_ZeroToOCLEvent: 2828 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 2829 } 2830 2831 llvm_unreachable("Unhandled lvalue cast kind?"); 2832 } 2833 2834 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 2835 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 2836 return getOpaqueLValueMapping(e); 2837 } 2838 2839 RValue CodeGenFunction::EmitRValueForField(LValue LV, 2840 const FieldDecl *FD, 2841 SourceLocation Loc) { 2842 QualType FT = FD->getType(); 2843 LValue FieldLV = EmitLValueForField(LV, FD); 2844 switch (getEvaluationKind(FT)) { 2845 case TEK_Complex: 2846 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 2847 case TEK_Aggregate: 2848 return FieldLV.asAggregateRValue(); 2849 case TEK_Scalar: 2850 return EmitLoadOfLValue(FieldLV, Loc); 2851 } 2852 llvm_unreachable("bad evaluation kind"); 2853 } 2854 2855 //===--------------------------------------------------------------------===// 2856 // Expression Emission 2857 //===--------------------------------------------------------------------===// 2858 2859 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 2860 ReturnValueSlot ReturnValue) { 2861 if (CGDebugInfo *DI = getDebugInfo()) { 2862 SourceLocation Loc = E->getLocStart(); 2863 // Force column info to be generated so we can differentiate 2864 // multiple call sites on the same line in the debug info. 2865 // FIXME: This is insufficient. Two calls coming from the same macro 2866 // expansion will still get the same line/column and break debug info. It's 2867 // possible that LLVM can be fixed to not rely on this uniqueness, at which 2868 // point this workaround can be removed. 2869 const FunctionDecl* Callee = E->getDirectCallee(); 2870 bool ForceColumnInfo = Callee && Callee->isInlineSpecified(); 2871 DI->EmitLocation(Builder, Loc, ForceColumnInfo); 2872 } 2873 2874 // Builtins never have block type. 2875 if (E->getCallee()->getType()->isBlockPointerType()) 2876 return EmitBlockCallExpr(E, ReturnValue); 2877 2878 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 2879 return EmitCXXMemberCallExpr(CE, ReturnValue); 2880 2881 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 2882 return EmitCUDAKernelCallExpr(CE, ReturnValue); 2883 2884 const Decl *TargetDecl = E->getCalleeDecl(); 2885 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 2886 if (unsigned builtinID = FD->getBuiltinID()) 2887 return EmitBuiltinExpr(FD, builtinID, E); 2888 } 2889 2890 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 2891 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl)) 2892 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 2893 2894 if (const auto *PseudoDtor = 2895 dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) { 2896 QualType DestroyedType = PseudoDtor->getDestroyedType(); 2897 if (getLangOpts().ObjCAutoRefCount && 2898 DestroyedType->isObjCLifetimeType() && 2899 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong || 2900 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) { 2901 // Automatic Reference Counting: 2902 // If the pseudo-expression names a retainable object with weak or 2903 // strong lifetime, the object shall be released. 2904 Expr *BaseExpr = PseudoDtor->getBase(); 2905 llvm::Value *BaseValue = NULL; 2906 Qualifiers BaseQuals; 2907 2908 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 2909 if (PseudoDtor->isArrow()) { 2910 BaseValue = EmitScalarExpr(BaseExpr); 2911 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>(); 2912 BaseQuals = PTy->getPointeeType().getQualifiers(); 2913 } else { 2914 LValue BaseLV = EmitLValue(BaseExpr); 2915 BaseValue = BaseLV.getAddress(); 2916 QualType BaseTy = BaseExpr->getType(); 2917 BaseQuals = BaseTy.getQualifiers(); 2918 } 2919 2920 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) { 2921 case Qualifiers::OCL_None: 2922 case Qualifiers::OCL_ExplicitNone: 2923 case Qualifiers::OCL_Autoreleasing: 2924 break; 2925 2926 case Qualifiers::OCL_Strong: 2927 EmitARCRelease(Builder.CreateLoad(BaseValue, 2928 PseudoDtor->getDestroyedType().isVolatileQualified()), 2929 ARCPreciseLifetime); 2930 break; 2931 2932 case Qualifiers::OCL_Weak: 2933 EmitARCDestroyWeak(BaseValue); 2934 break; 2935 } 2936 } else { 2937 // C++ [expr.pseudo]p1: 2938 // The result shall only be used as the operand for the function call 2939 // operator (), and the result of such a call has type void. The only 2940 // effect is the evaluation of the postfix-expression before the dot or 2941 // arrow. 2942 EmitScalarExpr(E->getCallee()); 2943 } 2944 2945 return RValue::get(0); 2946 } 2947 2948 llvm::Value *Callee = EmitScalarExpr(E->getCallee()); 2949 return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(), 2950 ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl); 2951 } 2952 2953 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 2954 // Comma expressions just emit their LHS then their RHS as an l-value. 2955 if (E->getOpcode() == BO_Comma) { 2956 EmitIgnoredExpr(E->getLHS()); 2957 EnsureInsertPoint(); 2958 return EmitLValue(E->getRHS()); 2959 } 2960 2961 if (E->getOpcode() == BO_PtrMemD || 2962 E->getOpcode() == BO_PtrMemI) 2963 return EmitPointerToDataMemberBinaryExpr(E); 2964 2965 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 2966 2967 // Note that in all of these cases, __block variables need the RHS 2968 // evaluated first just in case the variable gets moved by the RHS. 2969 2970 switch (getEvaluationKind(E->getType())) { 2971 case TEK_Scalar: { 2972 switch (E->getLHS()->getType().getObjCLifetime()) { 2973 case Qualifiers::OCL_Strong: 2974 return EmitARCStoreStrong(E, /*ignored*/ false).first; 2975 2976 case Qualifiers::OCL_Autoreleasing: 2977 return EmitARCStoreAutoreleasing(E).first; 2978 2979 // No reason to do any of these differently. 2980 case Qualifiers::OCL_None: 2981 case Qualifiers::OCL_ExplicitNone: 2982 case Qualifiers::OCL_Weak: 2983 break; 2984 } 2985 2986 RValue RV = EmitAnyExpr(E->getRHS()); 2987 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 2988 EmitStoreThroughLValue(RV, LV); 2989 return LV; 2990 } 2991 2992 case TEK_Complex: 2993 return EmitComplexAssignmentLValue(E); 2994 2995 case TEK_Aggregate: 2996 return EmitAggExprToLValue(E); 2997 } 2998 llvm_unreachable("bad evaluation kind"); 2999 } 3000 3001 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 3002 RValue RV = EmitCallExpr(E); 3003 3004 if (!RV.isScalar()) 3005 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3006 3007 assert(E->getCallReturnType()->isReferenceType() && 3008 "Can't have a scalar return unless the return type is a " 3009 "reference type!"); 3010 3011 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3012 } 3013 3014 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 3015 // FIXME: This shouldn't require another copy. 3016 return EmitAggExprToLValue(E); 3017 } 3018 3019 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 3020 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 3021 && "binding l-value to type which needs a temporary"); 3022 AggValueSlot Slot = CreateAggTemp(E->getType()); 3023 EmitCXXConstructExpr(E, Slot); 3024 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3025 } 3026 3027 LValue 3028 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 3029 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 3030 } 3031 3032 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 3033 return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E), 3034 ConvertType(E->getType())->getPointerTo()); 3035 } 3036 3037 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 3038 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType()); 3039 } 3040 3041 LValue 3042 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 3043 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3044 Slot.setExternallyDestructed(); 3045 EmitAggExpr(E->getSubExpr(), Slot); 3046 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr()); 3047 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3048 } 3049 3050 LValue 3051 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 3052 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 3053 EmitLambdaExpr(E, Slot); 3054 return MakeAddrLValue(Slot.getAddr(), E->getType()); 3055 } 3056 3057 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 3058 RValue RV = EmitObjCMessageExpr(E); 3059 3060 if (!RV.isScalar()) 3061 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3062 3063 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 3064 "Can't have a scalar return unless the return type is a " 3065 "reference type!"); 3066 3067 return MakeAddrLValue(RV.getScalarVal(), E->getType()); 3068 } 3069 3070 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 3071 llvm::Value *V = 3072 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true); 3073 return MakeAddrLValue(V, E->getType()); 3074 } 3075 3076 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 3077 const ObjCIvarDecl *Ivar) { 3078 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 3079 } 3080 3081 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 3082 llvm::Value *BaseValue, 3083 const ObjCIvarDecl *Ivar, 3084 unsigned CVRQualifiers) { 3085 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 3086 Ivar, CVRQualifiers); 3087 } 3088 3089 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 3090 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 3091 llvm::Value *BaseValue = 0; 3092 const Expr *BaseExpr = E->getBase(); 3093 Qualifiers BaseQuals; 3094 QualType ObjectTy; 3095 if (E->isArrow()) { 3096 BaseValue = EmitScalarExpr(BaseExpr); 3097 ObjectTy = BaseExpr->getType()->getPointeeType(); 3098 BaseQuals = ObjectTy.getQualifiers(); 3099 } else { 3100 LValue BaseLV = EmitLValue(BaseExpr); 3101 // FIXME: this isn't right for bitfields. 3102 BaseValue = BaseLV.getAddress(); 3103 ObjectTy = BaseExpr->getType(); 3104 BaseQuals = ObjectTy.getQualifiers(); 3105 } 3106 3107 LValue LV = 3108 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 3109 BaseQuals.getCVRQualifiers()); 3110 setObjCGCLValueClass(getContext(), E, LV); 3111 return LV; 3112 } 3113 3114 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 3115 // Can only get l-value for message expression returning aggregate type 3116 RValue RV = EmitAnyExprToTemp(E); 3117 return MakeAddrLValue(RV.getAggregateAddr(), E->getType()); 3118 } 3119 3120 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee, 3121 SourceLocation CallLoc, 3122 ReturnValueSlot ReturnValue, 3123 CallExpr::const_arg_iterator ArgBeg, 3124 CallExpr::const_arg_iterator ArgEnd, 3125 const Decl *TargetDecl) { 3126 // Get the actual function type. The callee type will always be a pointer to 3127 // function type or a block pointer type. 3128 assert(CalleeType->isFunctionPointerType() && 3129 "Call must have function pointer type!"); 3130 3131 CalleeType = getContext().getCanonicalType(CalleeType); 3132 3133 const auto *FnType = 3134 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 3135 3136 // Force column info to differentiate multiple inlined call sites on 3137 // the same line, analoguous to EmitCallExpr. 3138 // FIXME: This is insufficient. Two calls coming from the same macro expansion 3139 // will still get the same line/column and break debug info. It's possible 3140 // that LLVM can be fixed to not rely on this uniqueness, at which point this 3141 // workaround can be removed. 3142 bool ForceColumnInfo = false; 3143 if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl)) 3144 ForceColumnInfo = FD->isInlineSpecified(); 3145 3146 if (getLangOpts().CPlusPlus && SanOpts->Function && 3147 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 3148 if (llvm::Constant *PrefixSig = 3149 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 3150 llvm::Constant *FTRTTIConst = 3151 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 3152 llvm::Type *PrefixStructTyElems[] = { 3153 PrefixSig->getType(), 3154 FTRTTIConst->getType() 3155 }; 3156 llvm::StructType *PrefixStructTy = llvm::StructType::get( 3157 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 3158 3159 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 3160 Callee, llvm::PointerType::getUnqual(PrefixStructTy)); 3161 llvm::Value *CalleeSigPtr = 3162 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0); 3163 llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr); 3164 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 3165 3166 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3167 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 3168 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 3169 3170 EmitBlock(TypeCheck); 3171 llvm::Value *CalleeRTTIPtr = 3172 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1); 3173 llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr); 3174 llvm::Value *CalleeRTTIMatch = 3175 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 3176 llvm::Constant *StaticData[] = { 3177 EmitCheckSourceLocation(CallLoc), 3178 EmitCheckTypeDescriptor(CalleeType) 3179 }; 3180 EmitCheck(CalleeRTTIMatch, 3181 "function_type_mismatch", 3182 StaticData, 3183 Callee, 3184 CRK_Recoverable); 3185 3186 Builder.CreateBr(Cont); 3187 EmitBlock(Cont); 3188 } 3189 } 3190 3191 CallArgList Args; 3192 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd, 3193 ForceColumnInfo); 3194 3195 const CGFunctionInfo &FnInfo = 3196 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType); 3197 3198 // C99 6.5.2.2p6: 3199 // If the expression that denotes the called function has a type 3200 // that does not include a prototype, [the default argument 3201 // promotions are performed]. If the number of arguments does not 3202 // equal the number of parameters, the behavior is undefined. If 3203 // the function is defined with a type that includes a prototype, 3204 // and either the prototype ends with an ellipsis (, ...) or the 3205 // types of the arguments after promotion are not compatible with 3206 // the types of the parameters, the behavior is undefined. If the 3207 // function is defined with a type that does not include a 3208 // prototype, and the types of the arguments after promotion are 3209 // not compatible with those of the parameters after promotion, 3210 // the behavior is undefined [except in some trivial cases]. 3211 // That is, in the general case, we should assume that a call 3212 // through an unprototyped function type works like a *non-variadic* 3213 // call. The way we make this work is to cast to the exact type 3214 // of the promoted arguments. 3215 if (isa<FunctionNoProtoType>(FnType)) { 3216 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 3217 CalleeTy = CalleeTy->getPointerTo(); 3218 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast"); 3219 } 3220 3221 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl); 3222 } 3223 3224 LValue CodeGenFunction:: 3225 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 3226 llvm::Value *BaseV; 3227 if (E->getOpcode() == BO_PtrMemI) 3228 BaseV = EmitScalarExpr(E->getLHS()); 3229 else 3230 BaseV = EmitLValue(E->getLHS()).getAddress(); 3231 3232 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 3233 3234 const MemberPointerType *MPT 3235 = E->getRHS()->getType()->getAs<MemberPointerType>(); 3236 3237 llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress( 3238 *this, E, BaseV, OffsetV, MPT); 3239 3240 return MakeAddrLValue(AddV, MPT->getPointeeType()); 3241 } 3242 3243 /// Given the address of a temporary variable, produce an r-value of 3244 /// its type. 3245 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr, 3246 QualType type, 3247 SourceLocation loc) { 3248 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type); 3249 switch (getEvaluationKind(type)) { 3250 case TEK_Complex: 3251 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 3252 case TEK_Aggregate: 3253 return lvalue.asAggregateRValue(); 3254 case TEK_Scalar: 3255 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 3256 } 3257 llvm_unreachable("bad evaluation kind"); 3258 } 3259 3260 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 3261 assert(Val->getType()->isFPOrFPVectorTy()); 3262 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 3263 return; 3264 3265 llvm::MDBuilder MDHelper(getLLVMContext()); 3266 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 3267 3268 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 3269 } 3270 3271 namespace { 3272 struct LValueOrRValue { 3273 LValue LV; 3274 RValue RV; 3275 }; 3276 } 3277 3278 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 3279 const PseudoObjectExpr *E, 3280 bool forLValue, 3281 AggValueSlot slot) { 3282 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 3283 3284 // Find the result expression, if any. 3285 const Expr *resultExpr = E->getResultExpr(); 3286 LValueOrRValue result; 3287 3288 for (PseudoObjectExpr::const_semantics_iterator 3289 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 3290 const Expr *semantic = *i; 3291 3292 // If this semantic expression is an opaque value, bind it 3293 // to the result of its source expression. 3294 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 3295 3296 // If this is the result expression, we may need to evaluate 3297 // directly into the slot. 3298 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 3299 OVMA opaqueData; 3300 if (ov == resultExpr && ov->isRValue() && !forLValue && 3301 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 3302 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 3303 3304 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType()); 3305 opaqueData = OVMA::bind(CGF, ov, LV); 3306 result.RV = slot.asRValue(); 3307 3308 // Otherwise, emit as normal. 3309 } else { 3310 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 3311 3312 // If this is the result, also evaluate the result now. 3313 if (ov == resultExpr) { 3314 if (forLValue) 3315 result.LV = CGF.EmitLValue(ov); 3316 else 3317 result.RV = CGF.EmitAnyExpr(ov, slot); 3318 } 3319 } 3320 3321 opaques.push_back(opaqueData); 3322 3323 // Otherwise, if the expression is the result, evaluate it 3324 // and remember the result. 3325 } else if (semantic == resultExpr) { 3326 if (forLValue) 3327 result.LV = CGF.EmitLValue(semantic); 3328 else 3329 result.RV = CGF.EmitAnyExpr(semantic, slot); 3330 3331 // Otherwise, evaluate the expression in an ignored context. 3332 } else { 3333 CGF.EmitIgnoredExpr(semantic); 3334 } 3335 } 3336 3337 // Unbind all the opaques now. 3338 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 3339 opaques[i].unbind(CGF); 3340 3341 return result; 3342 } 3343 3344 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 3345 AggValueSlot slot) { 3346 return emitPseudoObjectExpr(*this, E, false, slot).RV; 3347 } 3348 3349 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 3350 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 3351 } 3352