1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/NSAPI.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/ADT/Hashing.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/Support/ConvertUTF.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Transforms/Utils/SanitizerStats.h" 39 40 #include <string> 41 42 using namespace clang; 43 using namespace CodeGen; 44 45 //===--------------------------------------------------------------------===// 46 // Miscellaneous Helper Methods 47 //===--------------------------------------------------------------------===// 48 49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 50 unsigned addressSpace = 51 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 52 53 llvm::PointerType *destType = Int8PtrTy; 54 if (addressSpace) 55 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 56 57 if (value->getType() == destType) return value; 58 return Builder.CreateBitCast(value, destType); 59 } 60 61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 62 /// block. 63 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 64 const Twine &Name) { 65 auto Alloca = CreateTempAlloca(Ty, Name); 66 Alloca->setAlignment(Align.getQuantity()); 67 return Address(Alloca, Align); 68 } 69 70 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 71 /// block. 72 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 73 const Twine &Name) { 74 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 75 nullptr, Name, AllocaInsertPt); 76 } 77 78 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 79 /// default alignment of the corresponding LLVM type, which is *not* 80 /// guaranteed to be related in any way to the expected alignment of 81 /// an AST type that might have been lowered to Ty. 82 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 83 const Twine &Name) { 84 CharUnits Align = 85 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 86 return CreateTempAlloca(Ty, Align, Name); 87 } 88 89 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 90 assert(isa<llvm::AllocaInst>(Var.getPointer())); 91 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 92 Store->setAlignment(Var.getAlignment().getQuantity()); 93 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 94 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 95 } 96 97 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 98 CharUnits Align = getContext().getTypeAlignInChars(Ty); 99 return CreateTempAlloca(ConvertType(Ty), Align, Name); 100 } 101 102 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) { 103 // FIXME: Should we prefer the preferred type alignment here? 104 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name); 105 } 106 107 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 108 const Twine &Name) { 109 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name); 110 } 111 112 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 113 /// expression and compare the result against zero, returning an Int1Ty value. 114 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 115 PGO.setCurrentStmt(E); 116 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 117 llvm::Value *MemPtr = EmitScalarExpr(E); 118 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 119 } 120 121 QualType BoolTy = getContext().BoolTy; 122 SourceLocation Loc = E->getExprLoc(); 123 if (!E->getType()->isAnyComplexType()) 124 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 125 126 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 127 Loc); 128 } 129 130 /// EmitIgnoredExpr - Emit code to compute the specified expression, 131 /// ignoring the result. 132 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 133 if (E->isRValue()) 134 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 135 136 // Just emit it as an l-value and drop the result. 137 EmitLValue(E); 138 } 139 140 /// EmitAnyExpr - Emit code to compute the specified expression which 141 /// can have any type. The result is returned as an RValue struct. 142 /// If this is an aggregate expression, AggSlot indicates where the 143 /// result should be returned. 144 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 145 AggValueSlot aggSlot, 146 bool ignoreResult) { 147 switch (getEvaluationKind(E->getType())) { 148 case TEK_Scalar: 149 return RValue::get(EmitScalarExpr(E, ignoreResult)); 150 case TEK_Complex: 151 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 152 case TEK_Aggregate: 153 if (!ignoreResult && aggSlot.isIgnored()) 154 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 155 EmitAggExpr(E, aggSlot); 156 return aggSlot.asRValue(); 157 } 158 llvm_unreachable("bad evaluation kind"); 159 } 160 161 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 162 /// always be accessible even if no aggregate location is provided. 163 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 164 AggValueSlot AggSlot = AggValueSlot::ignored(); 165 166 if (hasAggregateEvaluationKind(E->getType())) 167 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 168 return EmitAnyExpr(E, AggSlot); 169 } 170 171 /// EmitAnyExprToMem - Evaluate an expression into a given memory 172 /// location. 173 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 174 Address Location, 175 Qualifiers Quals, 176 bool IsInit) { 177 // FIXME: This function should take an LValue as an argument. 178 switch (getEvaluationKind(E->getType())) { 179 case TEK_Complex: 180 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 181 /*isInit*/ false); 182 return; 183 184 case TEK_Aggregate: { 185 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 186 AggValueSlot::IsDestructed_t(IsInit), 187 AggValueSlot::DoesNotNeedGCBarriers, 188 AggValueSlot::IsAliased_t(!IsInit))); 189 return; 190 } 191 192 case TEK_Scalar: { 193 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 194 LValue LV = MakeAddrLValue(Location, E->getType()); 195 EmitStoreThroughLValue(RV, LV); 196 return; 197 } 198 } 199 llvm_unreachable("bad evaluation kind"); 200 } 201 202 static void 203 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 204 const Expr *E, Address ReferenceTemporary) { 205 // Objective-C++ ARC: 206 // If we are binding a reference to a temporary that has ownership, we 207 // need to perform retain/release operations on the temporary. 208 // 209 // FIXME: This should be looking at E, not M. 210 if (auto Lifetime = M->getType().getObjCLifetime()) { 211 switch (Lifetime) { 212 case Qualifiers::OCL_None: 213 case Qualifiers::OCL_ExplicitNone: 214 // Carry on to normal cleanup handling. 215 break; 216 217 case Qualifiers::OCL_Autoreleasing: 218 // Nothing to do; cleaned up by an autorelease pool. 219 return; 220 221 case Qualifiers::OCL_Strong: 222 case Qualifiers::OCL_Weak: 223 switch (StorageDuration Duration = M->getStorageDuration()) { 224 case SD_Static: 225 // Note: we intentionally do not register a cleanup to release 226 // the object on program termination. 227 return; 228 229 case SD_Thread: 230 // FIXME: We should probably register a cleanup in this case. 231 return; 232 233 case SD_Automatic: 234 case SD_FullExpression: 235 CodeGenFunction::Destroyer *Destroy; 236 CleanupKind CleanupKind; 237 if (Lifetime == Qualifiers::OCL_Strong) { 238 const ValueDecl *VD = M->getExtendingDecl(); 239 bool Precise = 240 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 241 CleanupKind = CGF.getARCCleanupKind(); 242 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 243 : &CodeGenFunction::destroyARCStrongImprecise; 244 } else { 245 // __weak objects always get EH cleanups; otherwise, exceptions 246 // could cause really nasty crashes instead of mere leaks. 247 CleanupKind = NormalAndEHCleanup; 248 Destroy = &CodeGenFunction::destroyARCWeak; 249 } 250 if (Duration == SD_FullExpression) 251 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 252 M->getType(), *Destroy, 253 CleanupKind & EHCleanup); 254 else 255 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 256 M->getType(), 257 *Destroy, CleanupKind & EHCleanup); 258 return; 259 260 case SD_Dynamic: 261 llvm_unreachable("temporary cannot have dynamic storage duration"); 262 } 263 llvm_unreachable("unknown storage duration"); 264 } 265 } 266 267 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 268 if (const RecordType *RT = 269 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 270 // Get the destructor for the reference temporary. 271 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 272 if (!ClassDecl->hasTrivialDestructor()) 273 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 274 } 275 276 if (!ReferenceTemporaryDtor) 277 return; 278 279 // Call the destructor for the temporary. 280 switch (M->getStorageDuration()) { 281 case SD_Static: 282 case SD_Thread: { 283 llvm::Constant *CleanupFn; 284 llvm::Constant *CleanupArg; 285 if (E->getType()->isArrayType()) { 286 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 287 ReferenceTemporary, E->getType(), 288 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 289 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 290 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 291 } else { 292 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 293 StructorType::Complete); 294 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 295 } 296 CGF.CGM.getCXXABI().registerGlobalDtor( 297 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 298 break; 299 } 300 301 case SD_FullExpression: 302 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 303 CodeGenFunction::destroyCXXObject, 304 CGF.getLangOpts().Exceptions); 305 break; 306 307 case SD_Automatic: 308 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 309 ReferenceTemporary, E->getType(), 310 CodeGenFunction::destroyCXXObject, 311 CGF.getLangOpts().Exceptions); 312 break; 313 314 case SD_Dynamic: 315 llvm_unreachable("temporary cannot have dynamic storage duration"); 316 } 317 } 318 319 static Address 320 createReferenceTemporary(CodeGenFunction &CGF, 321 const MaterializeTemporaryExpr *M, const Expr *Inner) { 322 switch (M->getStorageDuration()) { 323 case SD_FullExpression: 324 case SD_Automatic: { 325 // If we have a constant temporary array or record try to promote it into a 326 // constant global under the same rules a normal constant would've been 327 // promoted. This is easier on the optimizer and generally emits fewer 328 // instructions. 329 QualType Ty = Inner->getType(); 330 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 331 (Ty->isArrayType() || Ty->isRecordType()) && 332 CGF.CGM.isTypeConstant(Ty, true)) 333 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) { 334 auto *GV = new llvm::GlobalVariable( 335 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 336 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp"); 337 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 338 GV->setAlignment(alignment.getQuantity()); 339 // FIXME: Should we put the new global into a COMDAT? 340 return Address(GV, alignment); 341 } 342 return CGF.CreateMemTemp(Ty, "ref.tmp"); 343 } 344 case SD_Thread: 345 case SD_Static: 346 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 347 348 case SD_Dynamic: 349 llvm_unreachable("temporary can't have dynamic storage duration"); 350 } 351 llvm_unreachable("unknown storage duration"); 352 } 353 354 LValue CodeGenFunction:: 355 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 356 const Expr *E = M->GetTemporaryExpr(); 357 358 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 359 // as that will cause the lifetime adjustment to be lost for ARC 360 auto ownership = M->getType().getObjCLifetime(); 361 if (ownership != Qualifiers::OCL_None && 362 ownership != Qualifiers::OCL_ExplicitNone) { 363 Address Object = createReferenceTemporary(*this, M, E); 364 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 365 Object = Address(llvm::ConstantExpr::getBitCast(Var, 366 ConvertTypeForMem(E->getType()) 367 ->getPointerTo(Object.getAddressSpace())), 368 Object.getAlignment()); 369 370 // createReferenceTemporary will promote the temporary to a global with a 371 // constant initializer if it can. It can only do this to a value of 372 // ARC-manageable type if the value is global and therefore "immune" to 373 // ref-counting operations. Therefore we have no need to emit either a 374 // dynamic initialization or a cleanup and we can just return the address 375 // of the temporary. 376 if (Var->hasInitializer()) 377 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 378 379 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 380 } 381 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 382 AlignmentSource::Decl); 383 384 switch (getEvaluationKind(E->getType())) { 385 default: llvm_unreachable("expected scalar or aggregate expression"); 386 case TEK_Scalar: 387 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 388 break; 389 case TEK_Aggregate: { 390 EmitAggExpr(E, AggValueSlot::forAddr(Object, 391 E->getType().getQualifiers(), 392 AggValueSlot::IsDestructed, 393 AggValueSlot::DoesNotNeedGCBarriers, 394 AggValueSlot::IsNotAliased)); 395 break; 396 } 397 } 398 399 pushTemporaryCleanup(*this, M, E, Object); 400 return RefTempDst; 401 } 402 403 SmallVector<const Expr *, 2> CommaLHSs; 404 SmallVector<SubobjectAdjustment, 2> Adjustments; 405 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 406 407 for (const auto &Ignored : CommaLHSs) 408 EmitIgnoredExpr(Ignored); 409 410 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 411 if (opaque->getType()->isRecordType()) { 412 assert(Adjustments.empty()); 413 return EmitOpaqueValueLValue(opaque); 414 } 415 } 416 417 // Create and initialize the reference temporary. 418 Address Object = createReferenceTemporary(*this, M, E); 419 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 420 Object = Address(llvm::ConstantExpr::getBitCast( 421 Var, ConvertTypeForMem(E->getType())->getPointerTo()), 422 Object.getAlignment()); 423 // If the temporary is a global and has a constant initializer or is a 424 // constant temporary that we promoted to a global, we may have already 425 // initialized it. 426 if (!Var->hasInitializer()) { 427 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 428 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 429 } 430 } else { 431 switch (M->getStorageDuration()) { 432 case SD_Automatic: 433 case SD_FullExpression: 434 if (auto *Size = EmitLifetimeStart( 435 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 436 Object.getPointer())) { 437 if (M->getStorageDuration() == SD_Automatic) 438 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 439 Object, Size); 440 else 441 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 442 Size); 443 } 444 break; 445 default: 446 break; 447 } 448 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 449 } 450 pushTemporaryCleanup(*this, M, E, Object); 451 452 // Perform derived-to-base casts and/or field accesses, to get from the 453 // temporary object we created (and, potentially, for which we extended 454 // the lifetime) to the subobject we're binding the reference to. 455 for (unsigned I = Adjustments.size(); I != 0; --I) { 456 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 457 switch (Adjustment.Kind) { 458 case SubobjectAdjustment::DerivedToBaseAdjustment: 459 Object = 460 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 461 Adjustment.DerivedToBase.BasePath->path_begin(), 462 Adjustment.DerivedToBase.BasePath->path_end(), 463 /*NullCheckValue=*/ false, E->getExprLoc()); 464 break; 465 466 case SubobjectAdjustment::FieldAdjustment: { 467 LValue LV = MakeAddrLValue(Object, E->getType(), 468 AlignmentSource::Decl); 469 LV = EmitLValueForField(LV, Adjustment.Field); 470 assert(LV.isSimple() && 471 "materialized temporary field is not a simple lvalue"); 472 Object = LV.getAddress(); 473 break; 474 } 475 476 case SubobjectAdjustment::MemberPointerAdjustment: { 477 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 478 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 479 Adjustment.Ptr.MPT); 480 break; 481 } 482 } 483 } 484 485 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 486 } 487 488 RValue 489 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 490 // Emit the expression as an lvalue. 491 LValue LV = EmitLValue(E); 492 assert(LV.isSimple()); 493 llvm::Value *Value = LV.getPointer(); 494 495 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 496 // C++11 [dcl.ref]p5 (as amended by core issue 453): 497 // If a glvalue to which a reference is directly bound designates neither 498 // an existing object or function of an appropriate type nor a region of 499 // storage of suitable size and alignment to contain an object of the 500 // reference's type, the behavior is undefined. 501 QualType Ty = E->getType(); 502 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 503 } 504 505 return RValue::get(Value); 506 } 507 508 509 /// getAccessedFieldNo - Given an encoded value and a result number, return the 510 /// input field number being accessed. 511 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 512 const llvm::Constant *Elts) { 513 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 514 ->getZExtValue(); 515 } 516 517 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 518 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 519 llvm::Value *High) { 520 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 521 llvm::Value *K47 = Builder.getInt64(47); 522 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 523 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 524 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 525 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 526 return Builder.CreateMul(B1, KMul); 527 } 528 529 bool CodeGenFunction::sanitizePerformTypeCheck() const { 530 return SanOpts.has(SanitizerKind::Null) | 531 SanOpts.has(SanitizerKind::Alignment) | 532 SanOpts.has(SanitizerKind::ObjectSize) | 533 SanOpts.has(SanitizerKind::Vptr); 534 } 535 536 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 537 llvm::Value *Ptr, QualType Ty, 538 CharUnits Alignment, 539 SanitizerSet SkippedChecks) { 540 if (!sanitizePerformTypeCheck()) 541 return; 542 543 // Don't check pointers outside the default address space. The null check 544 // isn't correct, the object-size check isn't supported by LLVM, and we can't 545 // communicate the addresses to the runtime handler for the vptr check. 546 if (Ptr->getType()->getPointerAddressSpace()) 547 return; 548 549 SanitizerScope SanScope(this); 550 551 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 552 llvm::BasicBlock *Done = nullptr; 553 554 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 555 TCK == TCK_UpcastToVirtualBase; 556 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 557 !SkippedChecks.has(SanitizerKind::Null)) { 558 // The glvalue must not be an empty glvalue. 559 llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr); 560 561 if (AllowNullPointers) { 562 // When performing pointer casts, it's OK if the value is null. 563 // Skip the remaining checks in that case. 564 Done = createBasicBlock("null"); 565 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 566 Builder.CreateCondBr(IsNonNull, Rest, Done); 567 EmitBlock(Rest); 568 } else { 569 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 570 } 571 } 572 573 if (SanOpts.has(SanitizerKind::ObjectSize) && 574 !SkippedChecks.has(SanitizerKind::ObjectSize) && 575 !Ty->isIncompleteType()) { 576 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 577 578 // The glvalue must refer to a large enough storage region. 579 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 580 // to check this. 581 // FIXME: Get object address space 582 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 583 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 584 llvm::Value *Min = Builder.getFalse(); 585 llvm::Value *NullIsUnknown = Builder.getFalse(); 586 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 587 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 588 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 589 llvm::ConstantInt::get(IntPtrTy, Size)); 590 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 591 } 592 593 uint64_t AlignVal = 0; 594 595 if (SanOpts.has(SanitizerKind::Alignment) && 596 !SkippedChecks.has(SanitizerKind::Alignment)) { 597 AlignVal = Alignment.getQuantity(); 598 if (!Ty->isIncompleteType() && !AlignVal) 599 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 600 601 // The glvalue must be suitably aligned. 602 if (AlignVal) { 603 llvm::Value *Align = 604 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy), 605 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 606 llvm::Value *Aligned = 607 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 608 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 609 } 610 } 611 612 if (Checks.size() > 0) { 613 // Make sure we're not losing information. Alignment needs to be a power of 614 // 2 615 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 616 llvm::Constant *StaticData[] = { 617 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 618 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 619 llvm::ConstantInt::get(Int8Ty, TCK)}; 620 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, Ptr); 621 } 622 623 // If possible, check that the vptr indicates that there is a subobject of 624 // type Ty at offset zero within this object. 625 // 626 // C++11 [basic.life]p5,6: 627 // [For storage which does not refer to an object within its lifetime] 628 // The program has undefined behavior if: 629 // -- the [pointer or glvalue] is used to access a non-static data member 630 // or call a non-static member function 631 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 632 if (SanOpts.has(SanitizerKind::Vptr) && 633 !SkippedChecks.has(SanitizerKind::Vptr) && 634 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 635 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 636 TCK == TCK_UpcastToVirtualBase) && 637 RD && RD->hasDefinition() && RD->isDynamicClass()) { 638 // Compute a hash of the mangled name of the type. 639 // 640 // FIXME: This is not guaranteed to be deterministic! Move to a 641 // fingerprinting mechanism once LLVM provides one. For the time 642 // being the implementation happens to be deterministic. 643 SmallString<64> MangledName; 644 llvm::raw_svector_ostream Out(MangledName); 645 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 646 Out); 647 648 // Blacklist based on the mangled type. 649 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 650 Out.str())) { 651 llvm::hash_code TypeHash = hash_value(Out.str()); 652 653 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 654 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 655 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 656 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 657 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 658 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 659 660 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 661 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 662 663 // Look the hash up in our cache. 664 const int CacheSize = 128; 665 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 666 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 667 "__ubsan_vptr_type_cache"); 668 llvm::Value *Slot = Builder.CreateAnd(Hash, 669 llvm::ConstantInt::get(IntPtrTy, 670 CacheSize-1)); 671 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 672 llvm::Value *CacheVal = 673 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 674 getPointerAlign()); 675 676 // If the hash isn't in the cache, call a runtime handler to perform the 677 // hard work of checking whether the vptr is for an object of the right 678 // type. This will either fill in the cache and return, or produce a 679 // diagnostic. 680 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 681 llvm::Constant *StaticData[] = { 682 EmitCheckSourceLocation(Loc), 683 EmitCheckTypeDescriptor(Ty), 684 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 685 llvm::ConstantInt::get(Int8Ty, TCK) 686 }; 687 llvm::Value *DynamicData[] = { Ptr, Hash }; 688 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 689 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 690 DynamicData); 691 } 692 } 693 694 if (Done) { 695 Builder.CreateBr(Done); 696 EmitBlock(Done); 697 } 698 } 699 700 /// Determine whether this expression refers to a flexible array member in a 701 /// struct. We disable array bounds checks for such members. 702 static bool isFlexibleArrayMemberExpr(const Expr *E) { 703 // For compatibility with existing code, we treat arrays of length 0 or 704 // 1 as flexible array members. 705 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 706 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 707 if (CAT->getSize().ugt(1)) 708 return false; 709 } else if (!isa<IncompleteArrayType>(AT)) 710 return false; 711 712 E = E->IgnoreParens(); 713 714 // A flexible array member must be the last member in the class. 715 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 716 // FIXME: If the base type of the member expr is not FD->getParent(), 717 // this should not be treated as a flexible array member access. 718 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 719 RecordDecl::field_iterator FI( 720 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 721 return ++FI == FD->getParent()->field_end(); 722 } 723 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 724 return IRE->getDecl()->getNextIvar() == nullptr; 725 } 726 727 return false; 728 } 729 730 /// If Base is known to point to the start of an array, return the length of 731 /// that array. Return 0 if the length cannot be determined. 732 static llvm::Value *getArrayIndexingBound( 733 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 734 // For the vector indexing extension, the bound is the number of elements. 735 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 736 IndexedType = Base->getType(); 737 return CGF.Builder.getInt32(VT->getNumElements()); 738 } 739 740 Base = Base->IgnoreParens(); 741 742 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 743 if (CE->getCastKind() == CK_ArrayToPointerDecay && 744 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 745 IndexedType = CE->getSubExpr()->getType(); 746 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 747 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 748 return CGF.Builder.getInt(CAT->getSize()); 749 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 750 return CGF.getVLASize(VAT).first; 751 } 752 } 753 754 return nullptr; 755 } 756 757 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 758 llvm::Value *Index, QualType IndexType, 759 bool Accessed) { 760 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 761 "should not be called unless adding bounds checks"); 762 SanitizerScope SanScope(this); 763 764 QualType IndexedType; 765 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 766 if (!Bound) 767 return; 768 769 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 770 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 771 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 772 773 llvm::Constant *StaticData[] = { 774 EmitCheckSourceLocation(E->getExprLoc()), 775 EmitCheckTypeDescriptor(IndexedType), 776 EmitCheckTypeDescriptor(IndexType) 777 }; 778 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 779 : Builder.CreateICmpULE(IndexVal, BoundVal); 780 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 781 SanitizerHandler::OutOfBounds, StaticData, Index); 782 } 783 784 785 CodeGenFunction::ComplexPairTy CodeGenFunction:: 786 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 787 bool isInc, bool isPre) { 788 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 789 790 llvm::Value *NextVal; 791 if (isa<llvm::IntegerType>(InVal.first->getType())) { 792 uint64_t AmountVal = isInc ? 1 : -1; 793 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 794 795 // Add the inc/dec to the real part. 796 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 797 } else { 798 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 799 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 800 if (!isInc) 801 FVal.changeSign(); 802 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 803 804 // Add the inc/dec to the real part. 805 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 806 } 807 808 ComplexPairTy IncVal(NextVal, InVal.second); 809 810 // Store the updated result through the lvalue. 811 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 812 813 // If this is a postinc, return the value read from memory, otherwise use the 814 // updated value. 815 return isPre ? IncVal : InVal; 816 } 817 818 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 819 CodeGenFunction *CGF) { 820 // Bind VLAs in the cast type. 821 if (CGF && E->getType()->isVariablyModifiedType()) 822 CGF->EmitVariablyModifiedType(E->getType()); 823 824 if (CGDebugInfo *DI = getModuleDebugInfo()) 825 DI->EmitExplicitCastType(E->getType()); 826 } 827 828 //===----------------------------------------------------------------------===// 829 // LValue Expression Emission 830 //===----------------------------------------------------------------------===// 831 832 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 833 /// derive a more accurate bound on the alignment of the pointer. 834 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 835 AlignmentSource *Source) { 836 // We allow this with ObjC object pointers because of fragile ABIs. 837 assert(E->getType()->isPointerType() || 838 E->getType()->isObjCObjectPointerType()); 839 E = E->IgnoreParens(); 840 841 // Casts: 842 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 843 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 844 CGM.EmitExplicitCastExprType(ECE, this); 845 846 switch (CE->getCastKind()) { 847 // Non-converting casts (but not C's implicit conversion from void*). 848 case CK_BitCast: 849 case CK_NoOp: 850 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 851 if (PtrTy->getPointeeType()->isVoidType()) 852 break; 853 854 AlignmentSource InnerSource; 855 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource); 856 if (Source) *Source = InnerSource; 857 858 // If this is an explicit bitcast, and the source l-value is 859 // opaque, honor the alignment of the casted-to type. 860 if (isa<ExplicitCastExpr>(CE) && 861 InnerSource != AlignmentSource::Decl) { 862 Addr = Address(Addr.getPointer(), 863 getNaturalPointeeTypeAlignment(E->getType(), Source)); 864 } 865 866 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 867 CE->getCastKind() == CK_BitCast) { 868 if (auto PT = E->getType()->getAs<PointerType>()) 869 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 870 /*MayBeNull=*/true, 871 CodeGenFunction::CFITCK_UnrelatedCast, 872 CE->getLocStart()); 873 } 874 875 return Builder.CreateBitCast(Addr, ConvertType(E->getType())); 876 } 877 break; 878 879 // Array-to-pointer decay. 880 case CK_ArrayToPointerDecay: 881 return EmitArrayToPointerDecay(CE->getSubExpr(), Source); 882 883 // Derived-to-base conversions. 884 case CK_UncheckedDerivedToBase: 885 case CK_DerivedToBase: { 886 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source); 887 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 888 return GetAddressOfBaseClass(Addr, Derived, 889 CE->path_begin(), CE->path_end(), 890 ShouldNullCheckClassCastValue(CE), 891 CE->getExprLoc()); 892 } 893 894 // TODO: Is there any reason to treat base-to-derived conversions 895 // specially? 896 default: 897 break; 898 } 899 } 900 901 // Unary &. 902 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 903 if (UO->getOpcode() == UO_AddrOf) { 904 LValue LV = EmitLValue(UO->getSubExpr()); 905 if (Source) *Source = LV.getAlignmentSource(); 906 return LV.getAddress(); 907 } 908 } 909 910 // TODO: conditional operators, comma. 911 912 // Otherwise, use the alignment of the type. 913 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source); 914 return Address(EmitScalarExpr(E), Align); 915 } 916 917 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 918 if (Ty->isVoidType()) 919 return RValue::get(nullptr); 920 921 switch (getEvaluationKind(Ty)) { 922 case TEK_Complex: { 923 llvm::Type *EltTy = 924 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 925 llvm::Value *U = llvm::UndefValue::get(EltTy); 926 return RValue::getComplex(std::make_pair(U, U)); 927 } 928 929 // If this is a use of an undefined aggregate type, the aggregate must have an 930 // identifiable address. Just because the contents of the value are undefined 931 // doesn't mean that the address can't be taken and compared. 932 case TEK_Aggregate: { 933 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 934 return RValue::getAggregate(DestPtr); 935 } 936 937 case TEK_Scalar: 938 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 939 } 940 llvm_unreachable("bad evaluation kind"); 941 } 942 943 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 944 const char *Name) { 945 ErrorUnsupported(E, Name); 946 return GetUndefRValue(E->getType()); 947 } 948 949 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 950 const char *Name) { 951 ErrorUnsupported(E, Name); 952 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 953 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 954 E->getType()); 955 } 956 957 bool CodeGenFunction::IsDeclRefOrWrappedCXXThis(const Expr *Obj) { 958 if (isa<DeclRefExpr>(Obj)) 959 return true; 960 961 const Expr *Base = Obj; 962 while (!isa<CXXThisExpr>(Base)) { 963 // The result of a dynamic_cast can be null. 964 if (isa<CXXDynamicCastExpr>(Base)) 965 return false; 966 967 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 968 Base = CE->getSubExpr(); 969 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 970 Base = PE->getSubExpr(); 971 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 972 if (UO->getOpcode() == UO_Extension) 973 Base = UO->getSubExpr(); 974 else 975 return false; 976 } else { 977 return false; 978 } 979 } 980 return true; 981 } 982 983 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 984 LValue LV; 985 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 986 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 987 else 988 LV = EmitLValue(E); 989 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 990 SanitizerSet SkippedChecks; 991 if (const auto *ME = dyn_cast<MemberExpr>(E)) 992 if (IsDeclRefOrWrappedCXXThis(ME->getBase())) 993 SkippedChecks.set(SanitizerKind::Null, true); 994 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 995 E->getType(), LV.getAlignment(), SkippedChecks); 996 } 997 return LV; 998 } 999 1000 /// EmitLValue - Emit code to compute a designator that specifies the location 1001 /// of the expression. 1002 /// 1003 /// This can return one of two things: a simple address or a bitfield reference. 1004 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1005 /// an LLVM pointer type. 1006 /// 1007 /// If this returns a bitfield reference, nothing about the pointee type of the 1008 /// LLVM value is known: For example, it may not be a pointer to an integer. 1009 /// 1010 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1011 /// this method guarantees that the returned pointer type will point to an LLVM 1012 /// type of the same size of the lvalue's type. If the lvalue has a variable 1013 /// length type, this is not possible. 1014 /// 1015 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1016 ApplyDebugLocation DL(*this, E); 1017 switch (E->getStmtClass()) { 1018 default: return EmitUnsupportedLValue(E, "l-value expression"); 1019 1020 case Expr::ObjCPropertyRefExprClass: 1021 llvm_unreachable("cannot emit a property reference directly"); 1022 1023 case Expr::ObjCSelectorExprClass: 1024 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1025 case Expr::ObjCIsaExprClass: 1026 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1027 case Expr::BinaryOperatorClass: 1028 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1029 case Expr::CompoundAssignOperatorClass: { 1030 QualType Ty = E->getType(); 1031 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1032 Ty = AT->getValueType(); 1033 if (!Ty->isAnyComplexType()) 1034 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1035 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1036 } 1037 case Expr::CallExprClass: 1038 case Expr::CXXMemberCallExprClass: 1039 case Expr::CXXOperatorCallExprClass: 1040 case Expr::UserDefinedLiteralClass: 1041 return EmitCallExprLValue(cast<CallExpr>(E)); 1042 case Expr::VAArgExprClass: 1043 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1044 case Expr::DeclRefExprClass: 1045 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1046 case Expr::ParenExprClass: 1047 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1048 case Expr::GenericSelectionExprClass: 1049 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1050 case Expr::PredefinedExprClass: 1051 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1052 case Expr::StringLiteralClass: 1053 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1054 case Expr::ObjCEncodeExprClass: 1055 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1056 case Expr::PseudoObjectExprClass: 1057 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1058 case Expr::InitListExprClass: 1059 return EmitInitListLValue(cast<InitListExpr>(E)); 1060 case Expr::CXXTemporaryObjectExprClass: 1061 case Expr::CXXConstructExprClass: 1062 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1063 case Expr::CXXBindTemporaryExprClass: 1064 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1065 case Expr::CXXUuidofExprClass: 1066 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1067 case Expr::LambdaExprClass: 1068 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1069 1070 case Expr::ExprWithCleanupsClass: { 1071 const auto *cleanups = cast<ExprWithCleanups>(E); 1072 enterFullExpression(cleanups); 1073 RunCleanupsScope Scope(*this); 1074 LValue LV = EmitLValue(cleanups->getSubExpr()); 1075 if (LV.isSimple()) { 1076 // Defend against branches out of gnu statement expressions surrounded by 1077 // cleanups. 1078 llvm::Value *V = LV.getPointer(); 1079 Scope.ForceCleanup({&V}); 1080 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1081 getContext(), LV.getAlignmentSource(), 1082 LV.getTBAAInfo()); 1083 } 1084 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1085 // bitfield lvalue or some other non-simple lvalue? 1086 return LV; 1087 } 1088 1089 case Expr::CXXDefaultArgExprClass: 1090 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1091 case Expr::CXXDefaultInitExprClass: { 1092 CXXDefaultInitExprScope Scope(*this); 1093 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1094 } 1095 case Expr::CXXTypeidExprClass: 1096 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1097 1098 case Expr::ObjCMessageExprClass: 1099 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1100 case Expr::ObjCIvarRefExprClass: 1101 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1102 case Expr::StmtExprClass: 1103 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1104 case Expr::UnaryOperatorClass: 1105 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1106 case Expr::ArraySubscriptExprClass: 1107 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1108 case Expr::OMPArraySectionExprClass: 1109 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1110 case Expr::ExtVectorElementExprClass: 1111 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1112 case Expr::MemberExprClass: 1113 return EmitMemberExpr(cast<MemberExpr>(E)); 1114 case Expr::CompoundLiteralExprClass: 1115 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1116 case Expr::ConditionalOperatorClass: 1117 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1118 case Expr::BinaryConditionalOperatorClass: 1119 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1120 case Expr::ChooseExprClass: 1121 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1122 case Expr::OpaqueValueExprClass: 1123 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1124 case Expr::SubstNonTypeTemplateParmExprClass: 1125 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1126 case Expr::ImplicitCastExprClass: 1127 case Expr::CStyleCastExprClass: 1128 case Expr::CXXFunctionalCastExprClass: 1129 case Expr::CXXStaticCastExprClass: 1130 case Expr::CXXDynamicCastExprClass: 1131 case Expr::CXXReinterpretCastExprClass: 1132 case Expr::CXXConstCastExprClass: 1133 case Expr::ObjCBridgedCastExprClass: 1134 return EmitCastLValue(cast<CastExpr>(E)); 1135 1136 case Expr::MaterializeTemporaryExprClass: 1137 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1138 } 1139 } 1140 1141 /// Given an object of the given canonical type, can we safely copy a 1142 /// value out of it based on its initializer? 1143 static bool isConstantEmittableObjectType(QualType type) { 1144 assert(type.isCanonical()); 1145 assert(!type->isReferenceType()); 1146 1147 // Must be const-qualified but non-volatile. 1148 Qualifiers qs = type.getLocalQualifiers(); 1149 if (!qs.hasConst() || qs.hasVolatile()) return false; 1150 1151 // Otherwise, all object types satisfy this except C++ classes with 1152 // mutable subobjects or non-trivial copy/destroy behavior. 1153 if (const auto *RT = dyn_cast<RecordType>(type)) 1154 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1155 if (RD->hasMutableFields() || !RD->isTrivial()) 1156 return false; 1157 1158 return true; 1159 } 1160 1161 /// Can we constant-emit a load of a reference to a variable of the 1162 /// given type? This is different from predicates like 1163 /// Decl::isUsableInConstantExpressions because we do want it to apply 1164 /// in situations that don't necessarily satisfy the language's rules 1165 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1166 /// to do this with const float variables even if those variables 1167 /// aren't marked 'constexpr'. 1168 enum ConstantEmissionKind { 1169 CEK_None, 1170 CEK_AsReferenceOnly, 1171 CEK_AsValueOrReference, 1172 CEK_AsValueOnly 1173 }; 1174 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1175 type = type.getCanonicalType(); 1176 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1177 if (isConstantEmittableObjectType(ref->getPointeeType())) 1178 return CEK_AsValueOrReference; 1179 return CEK_AsReferenceOnly; 1180 } 1181 if (isConstantEmittableObjectType(type)) 1182 return CEK_AsValueOnly; 1183 return CEK_None; 1184 } 1185 1186 /// Try to emit a reference to the given value without producing it as 1187 /// an l-value. This is actually more than an optimization: we can't 1188 /// produce an l-value for variables that we never actually captured 1189 /// in a block or lambda, which means const int variables or constexpr 1190 /// literals or similar. 1191 CodeGenFunction::ConstantEmission 1192 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1193 ValueDecl *value = refExpr->getDecl(); 1194 1195 // The value needs to be an enum constant or a constant variable. 1196 ConstantEmissionKind CEK; 1197 if (isa<ParmVarDecl>(value)) { 1198 CEK = CEK_None; 1199 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1200 CEK = checkVarTypeForConstantEmission(var->getType()); 1201 } else if (isa<EnumConstantDecl>(value)) { 1202 CEK = CEK_AsValueOnly; 1203 } else { 1204 CEK = CEK_None; 1205 } 1206 if (CEK == CEK_None) return ConstantEmission(); 1207 1208 Expr::EvalResult result; 1209 bool resultIsReference; 1210 QualType resultType; 1211 1212 // It's best to evaluate all the way as an r-value if that's permitted. 1213 if (CEK != CEK_AsReferenceOnly && 1214 refExpr->EvaluateAsRValue(result, getContext())) { 1215 resultIsReference = false; 1216 resultType = refExpr->getType(); 1217 1218 // Otherwise, try to evaluate as an l-value. 1219 } else if (CEK != CEK_AsValueOnly && 1220 refExpr->EvaluateAsLValue(result, getContext())) { 1221 resultIsReference = true; 1222 resultType = value->getType(); 1223 1224 // Failure. 1225 } else { 1226 return ConstantEmission(); 1227 } 1228 1229 // In any case, if the initializer has side-effects, abandon ship. 1230 if (result.HasSideEffects) 1231 return ConstantEmission(); 1232 1233 // Emit as a constant. 1234 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this); 1235 1236 // Make sure we emit a debug reference to the global variable. 1237 // This should probably fire even for 1238 if (isa<VarDecl>(value)) { 1239 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1240 EmitDeclRefExprDbgValue(refExpr, result.Val); 1241 } else { 1242 assert(isa<EnumConstantDecl>(value)); 1243 EmitDeclRefExprDbgValue(refExpr, result.Val); 1244 } 1245 1246 // If we emitted a reference constant, we need to dereference that. 1247 if (resultIsReference) 1248 return ConstantEmission::forReference(C); 1249 1250 return ConstantEmission::forValue(C); 1251 } 1252 1253 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1254 SourceLocation Loc) { 1255 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1256 lvalue.getType(), Loc, lvalue.getAlignmentSource(), 1257 lvalue.getTBAAInfo(), 1258 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(), 1259 lvalue.isNontemporal()); 1260 } 1261 1262 static bool hasBooleanRepresentation(QualType Ty) { 1263 if (Ty->isBooleanType()) 1264 return true; 1265 1266 if (const EnumType *ET = Ty->getAs<EnumType>()) 1267 return ET->getDecl()->getIntegerType()->isBooleanType(); 1268 1269 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1270 return hasBooleanRepresentation(AT->getValueType()); 1271 1272 return false; 1273 } 1274 1275 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1276 llvm::APInt &Min, llvm::APInt &End, 1277 bool StrictEnums, bool IsBool) { 1278 const EnumType *ET = Ty->getAs<EnumType>(); 1279 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1280 ET && !ET->getDecl()->isFixed(); 1281 if (!IsBool && !IsRegularCPlusPlusEnum) 1282 return false; 1283 1284 if (IsBool) { 1285 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1286 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1287 } else { 1288 const EnumDecl *ED = ET->getDecl(); 1289 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1290 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1291 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1292 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1293 1294 if (NumNegativeBits) { 1295 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1296 assert(NumBits <= Bitwidth); 1297 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1298 Min = -End; 1299 } else { 1300 assert(NumPositiveBits <= Bitwidth); 1301 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1302 Min = llvm::APInt(Bitwidth, 0); 1303 } 1304 } 1305 return true; 1306 } 1307 1308 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1309 llvm::APInt Min, End; 1310 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1311 hasBooleanRepresentation(Ty))) 1312 return nullptr; 1313 1314 llvm::MDBuilder MDHelper(getLLVMContext()); 1315 return MDHelper.createRange(Min, End); 1316 } 1317 1318 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1319 SourceLocation Loc) { 1320 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1321 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1322 if (!HasBoolCheck && !HasEnumCheck) 1323 return false; 1324 1325 bool IsBool = hasBooleanRepresentation(Ty) || 1326 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1327 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1328 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1329 if (!NeedsBoolCheck && !NeedsEnumCheck) 1330 return false; 1331 1332 // Single-bit booleans don't need to be checked. Special-case this to avoid 1333 // a bit width mismatch when handling bitfield values. This is handled by 1334 // EmitFromMemory for the non-bitfield case. 1335 if (IsBool && 1336 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1337 return false; 1338 1339 llvm::APInt Min, End; 1340 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1341 return true; 1342 1343 SanitizerScope SanScope(this); 1344 llvm::Value *Check; 1345 --End; 1346 if (!Min) { 1347 Check = Builder.CreateICmpULE( 1348 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1349 } else { 1350 llvm::Value *Upper = Builder.CreateICmpSLE( 1351 Value, llvm::ConstantInt::get(getLLVMContext(), End)); 1352 llvm::Value *Lower = Builder.CreateICmpSGE( 1353 Value, llvm::ConstantInt::get(getLLVMContext(), Min)); 1354 Check = Builder.CreateAnd(Upper, Lower); 1355 } 1356 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1357 EmitCheckTypeDescriptor(Ty)}; 1358 SanitizerMask Kind = 1359 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1360 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1361 StaticArgs, EmitCheckValue(Value)); 1362 return true; 1363 } 1364 1365 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1366 QualType Ty, 1367 SourceLocation Loc, 1368 AlignmentSource AlignSource, 1369 llvm::MDNode *TBAAInfo, 1370 QualType TBAABaseType, 1371 uint64_t TBAAOffset, 1372 bool isNontemporal) { 1373 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1374 // For better performance, handle vector loads differently. 1375 if (Ty->isVectorType()) { 1376 const llvm::Type *EltTy = Addr.getElementType(); 1377 1378 const auto *VTy = cast<llvm::VectorType>(EltTy); 1379 1380 // Handle vectors of size 3 like size 4 for better performance. 1381 if (VTy->getNumElements() == 3) { 1382 1383 // Bitcast to vec4 type. 1384 llvm::VectorType *vec4Ty = 1385 llvm::VectorType::get(VTy->getElementType(), 4); 1386 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1387 // Now load value. 1388 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1389 1390 // Shuffle vector to get vec3. 1391 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1392 {0, 1, 2}, "extractVec"); 1393 return EmitFromMemory(V, Ty); 1394 } 1395 } 1396 } 1397 1398 // Atomic operations have to be done on integral types. 1399 LValue AtomicLValue = 1400 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1401 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1402 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1403 } 1404 1405 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1406 if (isNontemporal) { 1407 llvm::MDNode *Node = llvm::MDNode::get( 1408 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1409 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1410 } 1411 if (TBAAInfo) { 1412 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1413 TBAAOffset); 1414 if (TBAAPath) 1415 CGM.DecorateInstructionWithTBAA(Load, TBAAPath, 1416 false /*ConvertTypeToTag*/); 1417 } 1418 1419 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1420 // In order to prevent the optimizer from throwing away the check, don't 1421 // attach range metadata to the load. 1422 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1423 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1424 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1425 1426 return EmitFromMemory(Load, Ty); 1427 } 1428 1429 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1430 // Bool has a different representation in memory than in registers. 1431 if (hasBooleanRepresentation(Ty)) { 1432 // This should really always be an i1, but sometimes it's already 1433 // an i8, and it's awkward to track those cases down. 1434 if (Value->getType()->isIntegerTy(1)) 1435 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1436 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1437 "wrong value rep of bool"); 1438 } 1439 1440 return Value; 1441 } 1442 1443 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1444 // Bool has a different representation in memory than in registers. 1445 if (hasBooleanRepresentation(Ty)) { 1446 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1447 "wrong value rep of bool"); 1448 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1449 } 1450 1451 return Value; 1452 } 1453 1454 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1455 bool Volatile, QualType Ty, 1456 AlignmentSource AlignSource, 1457 llvm::MDNode *TBAAInfo, 1458 bool isInit, QualType TBAABaseType, 1459 uint64_t TBAAOffset, 1460 bool isNontemporal) { 1461 1462 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1463 // Handle vectors differently to get better performance. 1464 if (Ty->isVectorType()) { 1465 llvm::Type *SrcTy = Value->getType(); 1466 auto *VecTy = cast<llvm::VectorType>(SrcTy); 1467 // Handle vec3 special. 1468 if (VecTy->getNumElements() == 3) { 1469 // Our source is a vec3, do a shuffle vector to make it a vec4. 1470 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1471 Builder.getInt32(2), 1472 llvm::UndefValue::get(Builder.getInt32Ty())}; 1473 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1474 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1475 MaskV, "extractVec"); 1476 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1477 } 1478 if (Addr.getElementType() != SrcTy) { 1479 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1480 } 1481 } 1482 } 1483 1484 Value = EmitToMemory(Value, Ty); 1485 1486 LValue AtomicLValue = 1487 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo); 1488 if (Ty->isAtomicType() || 1489 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1490 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1491 return; 1492 } 1493 1494 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1495 if (isNontemporal) { 1496 llvm::MDNode *Node = 1497 llvm::MDNode::get(Store->getContext(), 1498 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1499 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1500 } 1501 if (TBAAInfo) { 1502 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo, 1503 TBAAOffset); 1504 if (TBAAPath) 1505 CGM.DecorateInstructionWithTBAA(Store, TBAAPath, 1506 false /*ConvertTypeToTag*/); 1507 } 1508 } 1509 1510 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1511 bool isInit) { 1512 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1513 lvalue.getType(), lvalue.getAlignmentSource(), 1514 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(), 1515 lvalue.getTBAAOffset(), lvalue.isNontemporal()); 1516 } 1517 1518 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1519 /// method emits the address of the lvalue, then loads the result as an rvalue, 1520 /// returning the rvalue. 1521 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1522 if (LV.isObjCWeak()) { 1523 // load of a __weak object. 1524 Address AddrWeakObj = LV.getAddress(); 1525 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1526 AddrWeakObj)); 1527 } 1528 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1529 // In MRC mode, we do a load+autorelease. 1530 if (!getLangOpts().ObjCAutoRefCount) { 1531 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1532 } 1533 1534 // In ARC mode, we load retained and then consume the value. 1535 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1536 Object = EmitObjCConsumeObject(LV.getType(), Object); 1537 return RValue::get(Object); 1538 } 1539 1540 if (LV.isSimple()) { 1541 assert(!LV.getType()->isFunctionType()); 1542 1543 // Everything needs a load. 1544 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1545 } 1546 1547 if (LV.isVectorElt()) { 1548 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1549 LV.isVolatileQualified()); 1550 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1551 "vecext")); 1552 } 1553 1554 // If this is a reference to a subset of the elements of a vector, either 1555 // shuffle the input or extract/insert them as appropriate. 1556 if (LV.isExtVectorElt()) 1557 return EmitLoadOfExtVectorElementLValue(LV); 1558 1559 // Global Register variables always invoke intrinsics 1560 if (LV.isGlobalReg()) 1561 return EmitLoadOfGlobalRegLValue(LV); 1562 1563 assert(LV.isBitField() && "Unknown LValue type!"); 1564 return EmitLoadOfBitfieldLValue(LV, Loc); 1565 } 1566 1567 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1568 SourceLocation Loc) { 1569 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1570 1571 // Get the output type. 1572 llvm::Type *ResLTy = ConvertType(LV.getType()); 1573 1574 Address Ptr = LV.getBitFieldAddress(); 1575 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1576 1577 if (Info.IsSigned) { 1578 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1579 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1580 if (HighBits) 1581 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1582 if (Info.Offset + HighBits) 1583 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1584 } else { 1585 if (Info.Offset) 1586 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1587 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1588 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1589 Info.Size), 1590 "bf.clear"); 1591 } 1592 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1593 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1594 return RValue::get(Val); 1595 } 1596 1597 // If this is a reference to a subset of the elements of a vector, create an 1598 // appropriate shufflevector. 1599 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1600 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1601 LV.isVolatileQualified()); 1602 1603 const llvm::Constant *Elts = LV.getExtVectorElts(); 1604 1605 // If the result of the expression is a non-vector type, we must be extracting 1606 // a single element. Just codegen as an extractelement. 1607 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1608 if (!ExprVT) { 1609 unsigned InIdx = getAccessedFieldNo(0, Elts); 1610 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1611 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1612 } 1613 1614 // Always use shuffle vector to try to retain the original program structure 1615 unsigned NumResultElts = ExprVT->getNumElements(); 1616 1617 SmallVector<llvm::Constant*, 4> Mask; 1618 for (unsigned i = 0; i != NumResultElts; ++i) 1619 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1620 1621 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1622 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1623 MaskV); 1624 return RValue::get(Vec); 1625 } 1626 1627 /// @brief Generates lvalue for partial ext_vector access. 1628 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1629 Address VectorAddress = LV.getExtVectorAddress(); 1630 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1631 QualType EQT = ExprVT->getElementType(); 1632 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1633 1634 Address CastToPointerElement = 1635 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1636 "conv.ptr.element"); 1637 1638 const llvm::Constant *Elts = LV.getExtVectorElts(); 1639 unsigned ix = getAccessedFieldNo(0, Elts); 1640 1641 Address VectorBasePtrPlusIx = 1642 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1643 getContext().getTypeSizeInChars(EQT), 1644 "vector.elt"); 1645 1646 return VectorBasePtrPlusIx; 1647 } 1648 1649 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1650 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1651 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1652 "Bad type for register variable"); 1653 llvm::MDNode *RegName = cast<llvm::MDNode>( 1654 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1655 1656 // We accept integer and pointer types only 1657 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1658 llvm::Type *Ty = OrigTy; 1659 if (OrigTy->isPointerTy()) 1660 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1661 llvm::Type *Types[] = { Ty }; 1662 1663 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1664 llvm::Value *Call = Builder.CreateCall( 1665 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1666 if (OrigTy->isPointerTy()) 1667 Call = Builder.CreateIntToPtr(Call, OrigTy); 1668 return RValue::get(Call); 1669 } 1670 1671 1672 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1673 /// lvalue, where both are guaranteed to the have the same type, and that type 1674 /// is 'Ty'. 1675 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1676 bool isInit) { 1677 if (!Dst.isSimple()) { 1678 if (Dst.isVectorElt()) { 1679 // Read/modify/write the vector, inserting the new element. 1680 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1681 Dst.isVolatileQualified()); 1682 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1683 Dst.getVectorIdx(), "vecins"); 1684 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1685 Dst.isVolatileQualified()); 1686 return; 1687 } 1688 1689 // If this is an update of extended vector elements, insert them as 1690 // appropriate. 1691 if (Dst.isExtVectorElt()) 1692 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1693 1694 if (Dst.isGlobalReg()) 1695 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1696 1697 assert(Dst.isBitField() && "Unknown LValue type"); 1698 return EmitStoreThroughBitfieldLValue(Src, Dst); 1699 } 1700 1701 // There's special magic for assigning into an ARC-qualified l-value. 1702 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1703 switch (Lifetime) { 1704 case Qualifiers::OCL_None: 1705 llvm_unreachable("present but none"); 1706 1707 case Qualifiers::OCL_ExplicitNone: 1708 // nothing special 1709 break; 1710 1711 case Qualifiers::OCL_Strong: 1712 if (isInit) { 1713 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1714 break; 1715 } 1716 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1717 return; 1718 1719 case Qualifiers::OCL_Weak: 1720 if (isInit) 1721 // Initialize and then skip the primitive store. 1722 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1723 else 1724 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1725 return; 1726 1727 case Qualifiers::OCL_Autoreleasing: 1728 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1729 Src.getScalarVal())); 1730 // fall into the normal path 1731 break; 1732 } 1733 } 1734 1735 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1736 // load of a __weak object. 1737 Address LvalueDst = Dst.getAddress(); 1738 llvm::Value *src = Src.getScalarVal(); 1739 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1740 return; 1741 } 1742 1743 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1744 // load of a __strong object. 1745 Address LvalueDst = Dst.getAddress(); 1746 llvm::Value *src = Src.getScalarVal(); 1747 if (Dst.isObjCIvar()) { 1748 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1749 llvm::Type *ResultType = IntPtrTy; 1750 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1751 llvm::Value *RHS = dst.getPointer(); 1752 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1753 llvm::Value *LHS = 1754 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1755 "sub.ptr.lhs.cast"); 1756 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1757 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1758 BytesBetween); 1759 } else if (Dst.isGlobalObjCRef()) { 1760 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1761 Dst.isThreadLocalRef()); 1762 } 1763 else 1764 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1765 return; 1766 } 1767 1768 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1769 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1770 } 1771 1772 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1773 llvm::Value **Result) { 1774 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1775 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1776 Address Ptr = Dst.getBitFieldAddress(); 1777 1778 // Get the source value, truncated to the width of the bit-field. 1779 llvm::Value *SrcVal = Src.getScalarVal(); 1780 1781 // Cast the source to the storage type and shift it into place. 1782 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1783 /*IsSigned=*/false); 1784 llvm::Value *MaskedVal = SrcVal; 1785 1786 // See if there are other bits in the bitfield's storage we'll need to load 1787 // and mask together with source before storing. 1788 if (Info.StorageSize != Info.Size) { 1789 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1790 llvm::Value *Val = 1791 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1792 1793 // Mask the source value as needed. 1794 if (!hasBooleanRepresentation(Dst.getType())) 1795 SrcVal = Builder.CreateAnd(SrcVal, 1796 llvm::APInt::getLowBitsSet(Info.StorageSize, 1797 Info.Size), 1798 "bf.value"); 1799 MaskedVal = SrcVal; 1800 if (Info.Offset) 1801 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1802 1803 // Mask out the original value. 1804 Val = Builder.CreateAnd(Val, 1805 ~llvm::APInt::getBitsSet(Info.StorageSize, 1806 Info.Offset, 1807 Info.Offset + Info.Size), 1808 "bf.clear"); 1809 1810 // Or together the unchanged values and the source value. 1811 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1812 } else { 1813 assert(Info.Offset == 0); 1814 } 1815 1816 // Write the new value back out. 1817 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1818 1819 // Return the new value of the bit-field, if requested. 1820 if (Result) { 1821 llvm::Value *ResultVal = MaskedVal; 1822 1823 // Sign extend the value if needed. 1824 if (Info.IsSigned) { 1825 assert(Info.Size <= Info.StorageSize); 1826 unsigned HighBits = Info.StorageSize - Info.Size; 1827 if (HighBits) { 1828 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1829 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1830 } 1831 } 1832 1833 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 1834 "bf.result.cast"); 1835 *Result = EmitFromMemory(ResultVal, Dst.getType()); 1836 } 1837 } 1838 1839 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 1840 LValue Dst) { 1841 // This access turns into a read/modify/write of the vector. Load the input 1842 // value now. 1843 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 1844 Dst.isVolatileQualified()); 1845 const llvm::Constant *Elts = Dst.getExtVectorElts(); 1846 1847 llvm::Value *SrcVal = Src.getScalarVal(); 1848 1849 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 1850 unsigned NumSrcElts = VTy->getNumElements(); 1851 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 1852 if (NumDstElts == NumSrcElts) { 1853 // Use shuffle vector is the src and destination are the same number of 1854 // elements and restore the vector mask since it is on the side it will be 1855 // stored. 1856 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 1857 for (unsigned i = 0; i != NumSrcElts; ++i) 1858 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 1859 1860 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1861 Vec = Builder.CreateShuffleVector(SrcVal, 1862 llvm::UndefValue::get(Vec->getType()), 1863 MaskV); 1864 } else if (NumDstElts > NumSrcElts) { 1865 // Extended the source vector to the same length and then shuffle it 1866 // into the destination. 1867 // FIXME: since we're shuffling with undef, can we just use the indices 1868 // into that? This could be simpler. 1869 SmallVector<llvm::Constant*, 4> ExtMask; 1870 for (unsigned i = 0; i != NumSrcElts; ++i) 1871 ExtMask.push_back(Builder.getInt32(i)); 1872 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 1873 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 1874 llvm::Value *ExtSrcVal = 1875 Builder.CreateShuffleVector(SrcVal, 1876 llvm::UndefValue::get(SrcVal->getType()), 1877 ExtMaskV); 1878 // build identity 1879 SmallVector<llvm::Constant*, 4> Mask; 1880 for (unsigned i = 0; i != NumDstElts; ++i) 1881 Mask.push_back(Builder.getInt32(i)); 1882 1883 // When the vector size is odd and .odd or .hi is used, the last element 1884 // of the Elts constant array will be one past the size of the vector. 1885 // Ignore the last element here, if it is greater than the mask size. 1886 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 1887 NumSrcElts--; 1888 1889 // modify when what gets shuffled in 1890 for (unsigned i = 0; i != NumSrcElts; ++i) 1891 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 1892 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1893 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 1894 } else { 1895 // We should never shorten the vector 1896 llvm_unreachable("unexpected shorten vector length"); 1897 } 1898 } else { 1899 // If the Src is a scalar (not a vector) it must be updating one element. 1900 unsigned InIdx = getAccessedFieldNo(0, Elts); 1901 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1902 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 1903 } 1904 1905 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 1906 Dst.isVolatileQualified()); 1907 } 1908 1909 /// @brief Store of global named registers are always calls to intrinsics. 1910 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 1911 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 1912 "Bad type for register variable"); 1913 llvm::MDNode *RegName = cast<llvm::MDNode>( 1914 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 1915 assert(RegName && "Register LValue is not metadata"); 1916 1917 // We accept integer and pointer types only 1918 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 1919 llvm::Type *Ty = OrigTy; 1920 if (OrigTy->isPointerTy()) 1921 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1922 llvm::Type *Types[] = { Ty }; 1923 1924 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 1925 llvm::Value *Value = Src.getScalarVal(); 1926 if (OrigTy->isPointerTy()) 1927 Value = Builder.CreatePtrToInt(Value, Ty); 1928 Builder.CreateCall( 1929 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 1930 } 1931 1932 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 1933 // generating write-barries API. It is currently a global, ivar, 1934 // or neither. 1935 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 1936 LValue &LV, 1937 bool IsMemberAccess=false) { 1938 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 1939 return; 1940 1941 if (isa<ObjCIvarRefExpr>(E)) { 1942 QualType ExpTy = E->getType(); 1943 if (IsMemberAccess && ExpTy->isPointerType()) { 1944 // If ivar is a structure pointer, assigning to field of 1945 // this struct follows gcc's behavior and makes it a non-ivar 1946 // writer-barrier conservatively. 1947 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1948 if (ExpTy->isRecordType()) { 1949 LV.setObjCIvar(false); 1950 return; 1951 } 1952 } 1953 LV.setObjCIvar(true); 1954 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 1955 LV.setBaseIvarExp(Exp->getBase()); 1956 LV.setObjCArray(E->getType()->isArrayType()); 1957 return; 1958 } 1959 1960 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 1961 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 1962 if (VD->hasGlobalStorage()) { 1963 LV.setGlobalObjCRef(true); 1964 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 1965 } 1966 } 1967 LV.setObjCArray(E->getType()->isArrayType()); 1968 return; 1969 } 1970 1971 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 1972 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1973 return; 1974 } 1975 1976 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 1977 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1978 if (LV.isObjCIvar()) { 1979 // If cast is to a structure pointer, follow gcc's behavior and make it 1980 // a non-ivar write-barrier. 1981 QualType ExpTy = E->getType(); 1982 if (ExpTy->isPointerType()) 1983 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 1984 if (ExpTy->isRecordType()) 1985 LV.setObjCIvar(false); 1986 } 1987 return; 1988 } 1989 1990 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 1991 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 1992 return; 1993 } 1994 1995 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 1996 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 1997 return; 1998 } 1999 2000 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2001 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2002 return; 2003 } 2004 2005 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2006 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2007 return; 2008 } 2009 2010 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2011 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2012 if (LV.isObjCIvar() && !LV.isObjCArray()) 2013 // Using array syntax to assigning to what an ivar points to is not 2014 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2015 LV.setObjCIvar(false); 2016 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2017 // Using array syntax to assigning to what global points to is not 2018 // same as assigning to the global itself. {id *G;} G[i] = 0; 2019 LV.setGlobalObjCRef(false); 2020 return; 2021 } 2022 2023 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2024 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2025 // We don't know if member is an 'ivar', but this flag is looked at 2026 // only in the context of LV.isObjCIvar(). 2027 LV.setObjCArray(E->getType()->isArrayType()); 2028 return; 2029 } 2030 } 2031 2032 static llvm::Value * 2033 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2034 llvm::Value *V, llvm::Type *IRType, 2035 StringRef Name = StringRef()) { 2036 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2037 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2038 } 2039 2040 static LValue EmitThreadPrivateVarDeclLValue( 2041 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2042 llvm::Type *RealVarTy, SourceLocation Loc) { 2043 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2044 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2045 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2046 } 2047 2048 Address CodeGenFunction::EmitLoadOfReference(Address Addr, 2049 const ReferenceType *RefTy, 2050 AlignmentSource *Source) { 2051 llvm::Value *Ptr = Builder.CreateLoad(Addr); 2052 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(), 2053 Source, /*forPointee*/ true)); 2054 2055 } 2056 2057 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr, 2058 const ReferenceType *RefTy) { 2059 AlignmentSource Source; 2060 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source); 2061 return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source); 2062 } 2063 2064 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2065 const PointerType *PtrTy, 2066 AlignmentSource *Source) { 2067 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2068 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), Source, 2069 /*forPointeeType=*/true)); 2070 } 2071 2072 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2073 const PointerType *PtrTy) { 2074 AlignmentSource Source; 2075 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &Source); 2076 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), Source); 2077 } 2078 2079 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2080 const Expr *E, const VarDecl *VD) { 2081 QualType T = E->getType(); 2082 2083 // If it's thread_local, emit a call to its wrapper function instead. 2084 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2085 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2086 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2087 2088 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2089 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2090 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2091 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2092 Address Addr(V, Alignment); 2093 LValue LV; 2094 // Emit reference to the private copy of the variable if it is an OpenMP 2095 // threadprivate variable. 2096 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2097 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2098 E->getExprLoc()); 2099 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2100 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy); 2101 } else { 2102 LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2103 } 2104 setObjCGCLValueClass(CGF.getContext(), E, LV); 2105 return LV; 2106 } 2107 2108 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2109 const FunctionDecl *FD) { 2110 if (FD->hasAttr<WeakRefAttr>()) { 2111 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2112 return aliasee.getPointer(); 2113 } 2114 2115 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2116 if (!FD->hasPrototype()) { 2117 if (const FunctionProtoType *Proto = 2118 FD->getType()->getAs<FunctionProtoType>()) { 2119 // Ugly case: for a K&R-style definition, the type of the definition 2120 // isn't the same as the type of a use. Correct for this with a 2121 // bitcast. 2122 QualType NoProtoType = 2123 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2124 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2125 V = llvm::ConstantExpr::getBitCast(V, 2126 CGM.getTypes().ConvertType(NoProtoType)); 2127 } 2128 } 2129 return V; 2130 } 2131 2132 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2133 const Expr *E, const FunctionDecl *FD) { 2134 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2135 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2136 return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl); 2137 } 2138 2139 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2140 llvm::Value *ThisValue) { 2141 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2142 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2143 return CGF.EmitLValueForField(LV, FD); 2144 } 2145 2146 /// Named Registers are named metadata pointing to the register name 2147 /// which will be read from/written to as an argument to the intrinsic 2148 /// @llvm.read/write_register. 2149 /// So far, only the name is being passed down, but other options such as 2150 /// register type, allocation type or even optimization options could be 2151 /// passed down via the metadata node. 2152 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2153 SmallString<64> Name("llvm.named.register."); 2154 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2155 assert(Asm->getLabel().size() < 64-Name.size() && 2156 "Register name too big"); 2157 Name.append(Asm->getLabel()); 2158 llvm::NamedMDNode *M = 2159 CGM.getModule().getOrInsertNamedMetadata(Name); 2160 if (M->getNumOperands() == 0) { 2161 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2162 Asm->getLabel()); 2163 llvm::Metadata *Ops[] = {Str}; 2164 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2165 } 2166 2167 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2168 2169 llvm::Value *Ptr = 2170 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2171 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2172 } 2173 2174 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2175 const NamedDecl *ND = E->getDecl(); 2176 QualType T = E->getType(); 2177 2178 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2179 // Global Named registers access via intrinsics only 2180 if (VD->getStorageClass() == SC_Register && 2181 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2182 return EmitGlobalNamedRegister(VD, CGM); 2183 2184 // A DeclRefExpr for a reference initialized by a constant expression can 2185 // appear without being odr-used. Directly emit the constant initializer. 2186 const Expr *Init = VD->getAnyInitializer(VD); 2187 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2188 VD->isUsableInConstantExpressions(getContext()) && 2189 VD->checkInitIsICE() && 2190 // Do not emit if it is private OpenMP variable. 2191 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo && 2192 LocalDeclMap.count(VD))) { 2193 llvm::Constant *Val = 2194 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this); 2195 assert(Val && "failed to emit reference constant expression"); 2196 // FIXME: Eventually we will want to emit vector element references. 2197 2198 // Should we be using the alignment of the constant pointer we emitted? 2199 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr, 2200 /*pointee*/ true); 2201 2202 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2203 } 2204 2205 // Check for captured variables. 2206 if (E->refersToEnclosingVariableOrCapture()) { 2207 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2208 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2209 else if (CapturedStmtInfo) { 2210 auto I = LocalDeclMap.find(VD); 2211 if (I != LocalDeclMap.end()) { 2212 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) 2213 return EmitLoadOfReferenceLValue(I->second, RefTy); 2214 return MakeAddrLValue(I->second, T); 2215 } 2216 LValue CapLVal = 2217 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2218 CapturedStmtInfo->getContextValue()); 2219 return MakeAddrLValue( 2220 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2221 CapLVal.getType(), AlignmentSource::Decl); 2222 } 2223 2224 assert(isa<BlockDecl>(CurCodeDecl)); 2225 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2226 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2227 } 2228 } 2229 2230 // FIXME: We should be able to assert this for FunctionDecls as well! 2231 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2232 // those with a valid source location. 2233 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2234 !E->getLocation().isValid()) && 2235 "Should not use decl without marking it used!"); 2236 2237 if (ND->hasAttr<WeakRefAttr>()) { 2238 const auto *VD = cast<ValueDecl>(ND); 2239 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2240 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2241 } 2242 2243 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2244 // Check if this is a global variable. 2245 if (VD->hasLinkage() || VD->isStaticDataMember()) 2246 return EmitGlobalVarDeclLValue(*this, E, VD); 2247 2248 Address addr = Address::invalid(); 2249 2250 // The variable should generally be present in the local decl map. 2251 auto iter = LocalDeclMap.find(VD); 2252 if (iter != LocalDeclMap.end()) { 2253 addr = iter->second; 2254 2255 // Otherwise, it might be static local we haven't emitted yet for 2256 // some reason; most likely, because it's in an outer function. 2257 } else if (VD->isStaticLocal()) { 2258 addr = Address(CGM.getOrCreateStaticVarDecl( 2259 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2260 getContext().getDeclAlign(VD)); 2261 2262 // No other cases for now. 2263 } else { 2264 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2265 } 2266 2267 2268 // Check for OpenMP threadprivate variables. 2269 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2270 return EmitThreadPrivateVarDeclLValue( 2271 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2272 E->getExprLoc()); 2273 } 2274 2275 // Drill into block byref variables. 2276 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2277 if (isBlockByref) { 2278 addr = emitBlockByrefAddress(addr, VD); 2279 } 2280 2281 // Drill into reference types. 2282 LValue LV; 2283 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) { 2284 LV = EmitLoadOfReferenceLValue(addr, RefTy); 2285 } else { 2286 LV = MakeAddrLValue(addr, T, AlignmentSource::Decl); 2287 } 2288 2289 bool isLocalStorage = VD->hasLocalStorage(); 2290 2291 bool NonGCable = isLocalStorage && 2292 !VD->getType()->isReferenceType() && 2293 !isBlockByref; 2294 if (NonGCable) { 2295 LV.getQuals().removeObjCGCAttr(); 2296 LV.setNonGC(true); 2297 } 2298 2299 bool isImpreciseLifetime = 2300 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2301 if (isImpreciseLifetime) 2302 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2303 setObjCGCLValueClass(getContext(), E, LV); 2304 return LV; 2305 } 2306 2307 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2308 return EmitFunctionDeclLValue(*this, E, FD); 2309 2310 // FIXME: While we're emitting a binding from an enclosing scope, all other 2311 // DeclRefExprs we see should be implicitly treated as if they also refer to 2312 // an enclosing scope. 2313 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2314 return EmitLValue(BD->getBinding()); 2315 2316 llvm_unreachable("Unhandled DeclRefExpr"); 2317 } 2318 2319 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2320 // __extension__ doesn't affect lvalue-ness. 2321 if (E->getOpcode() == UO_Extension) 2322 return EmitLValue(E->getSubExpr()); 2323 2324 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2325 switch (E->getOpcode()) { 2326 default: llvm_unreachable("Unknown unary operator lvalue!"); 2327 case UO_Deref: { 2328 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2329 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2330 2331 AlignmentSource AlignSource; 2332 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource); 2333 LValue LV = MakeAddrLValue(Addr, T, AlignSource); 2334 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2335 2336 // We should not generate __weak write barrier on indirect reference 2337 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2338 // But, we continue to generate __strong write barrier on indirect write 2339 // into a pointer to object. 2340 if (getLangOpts().ObjC1 && 2341 getLangOpts().getGC() != LangOptions::NonGC && 2342 LV.isObjCWeak()) 2343 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2344 return LV; 2345 } 2346 case UO_Real: 2347 case UO_Imag: { 2348 LValue LV = EmitLValue(E->getSubExpr()); 2349 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2350 2351 // __real is valid on scalars. This is a faster way of testing that. 2352 // __imag can only produce an rvalue on scalars. 2353 if (E->getOpcode() == UO_Real && 2354 !LV.getAddress().getElementType()->isStructTy()) { 2355 assert(E->getSubExpr()->getType()->isArithmeticType()); 2356 return LV; 2357 } 2358 2359 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2360 2361 Address Component = 2362 (E->getOpcode() == UO_Real 2363 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2364 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2365 LValue ElemLV = MakeAddrLValue(Component, T, LV.getAlignmentSource()); 2366 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2367 return ElemLV; 2368 } 2369 case UO_PreInc: 2370 case UO_PreDec: { 2371 LValue LV = EmitLValue(E->getSubExpr()); 2372 bool isInc = E->getOpcode() == UO_PreInc; 2373 2374 if (E->getType()->isAnyComplexType()) 2375 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2376 else 2377 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2378 return LV; 2379 } 2380 } 2381 } 2382 2383 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2384 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2385 E->getType(), AlignmentSource::Decl); 2386 } 2387 2388 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2389 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2390 E->getType(), AlignmentSource::Decl); 2391 } 2392 2393 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2394 auto SL = E->getFunctionName(); 2395 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2396 StringRef FnName = CurFn->getName(); 2397 if (FnName.startswith("\01")) 2398 FnName = FnName.substr(1); 2399 StringRef NameItems[] = { 2400 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2401 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2402 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2403 std::string Name = SL->getString(); 2404 if (!Name.empty()) { 2405 unsigned Discriminator = 2406 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2407 if (Discriminator) 2408 Name += "_" + Twine(Discriminator + 1).str(); 2409 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2410 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2411 } else { 2412 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2413 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2414 } 2415 } 2416 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2417 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2418 } 2419 2420 /// Emit a type description suitable for use by a runtime sanitizer library. The 2421 /// format of a type descriptor is 2422 /// 2423 /// \code 2424 /// { i16 TypeKind, i16 TypeInfo } 2425 /// \endcode 2426 /// 2427 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2428 /// integer, 1 for a floating point value, and -1 for anything else. 2429 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2430 // Only emit each type's descriptor once. 2431 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2432 return C; 2433 2434 uint16_t TypeKind = -1; 2435 uint16_t TypeInfo = 0; 2436 2437 if (T->isIntegerType()) { 2438 TypeKind = 0; 2439 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2440 (T->isSignedIntegerType() ? 1 : 0); 2441 } else if (T->isFloatingType()) { 2442 TypeKind = 1; 2443 TypeInfo = getContext().getTypeSize(T); 2444 } 2445 2446 // Format the type name as if for a diagnostic, including quotes and 2447 // optionally an 'aka'. 2448 SmallString<32> Buffer; 2449 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2450 (intptr_t)T.getAsOpaquePtr(), 2451 StringRef(), StringRef(), None, Buffer, 2452 None); 2453 2454 llvm::Constant *Components[] = { 2455 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2456 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2457 }; 2458 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2459 2460 auto *GV = new llvm::GlobalVariable( 2461 CGM.getModule(), Descriptor->getType(), 2462 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2463 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2464 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2465 2466 // Remember the descriptor for this type. 2467 CGM.setTypeDescriptorInMap(T, GV); 2468 2469 return GV; 2470 } 2471 2472 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2473 llvm::Type *TargetTy = IntPtrTy; 2474 2475 // Floating-point types which fit into intptr_t are bitcast to integers 2476 // and then passed directly (after zero-extension, if necessary). 2477 if (V->getType()->isFloatingPointTy()) { 2478 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2479 if (Bits <= TargetTy->getIntegerBitWidth()) 2480 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2481 Bits)); 2482 } 2483 2484 // Integers which fit in intptr_t are zero-extended and passed directly. 2485 if (V->getType()->isIntegerTy() && 2486 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2487 return Builder.CreateZExt(V, TargetTy); 2488 2489 // Pointers are passed directly, everything else is passed by address. 2490 if (!V->getType()->isPointerTy()) { 2491 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2492 Builder.CreateStore(V, Ptr); 2493 V = Ptr.getPointer(); 2494 } 2495 return Builder.CreatePtrToInt(V, TargetTy); 2496 } 2497 2498 /// \brief Emit a representation of a SourceLocation for passing to a handler 2499 /// in a sanitizer runtime library. The format for this data is: 2500 /// \code 2501 /// struct SourceLocation { 2502 /// const char *Filename; 2503 /// int32_t Line, Column; 2504 /// }; 2505 /// \endcode 2506 /// For an invalid SourceLocation, the Filename pointer is null. 2507 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2508 llvm::Constant *Filename; 2509 int Line, Column; 2510 2511 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2512 if (PLoc.isValid()) { 2513 StringRef FilenameString = PLoc.getFilename(); 2514 2515 int PathComponentsToStrip = 2516 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2517 if (PathComponentsToStrip < 0) { 2518 assert(PathComponentsToStrip != INT_MIN); 2519 int PathComponentsToKeep = -PathComponentsToStrip; 2520 auto I = llvm::sys::path::rbegin(FilenameString); 2521 auto E = llvm::sys::path::rend(FilenameString); 2522 while (I != E && --PathComponentsToKeep) 2523 ++I; 2524 2525 FilenameString = FilenameString.substr(I - E); 2526 } else if (PathComponentsToStrip > 0) { 2527 auto I = llvm::sys::path::begin(FilenameString); 2528 auto E = llvm::sys::path::end(FilenameString); 2529 while (I != E && PathComponentsToStrip--) 2530 ++I; 2531 2532 if (I != E) 2533 FilenameString = 2534 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2535 else 2536 FilenameString = llvm::sys::path::filename(FilenameString); 2537 } 2538 2539 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2540 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2541 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2542 Filename = FilenameGV.getPointer(); 2543 Line = PLoc.getLine(); 2544 Column = PLoc.getColumn(); 2545 } else { 2546 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2547 Line = Column = 0; 2548 } 2549 2550 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2551 Builder.getInt32(Column)}; 2552 2553 return llvm::ConstantStruct::getAnon(Data); 2554 } 2555 2556 namespace { 2557 /// \brief Specify under what conditions this check can be recovered 2558 enum class CheckRecoverableKind { 2559 /// Always terminate program execution if this check fails. 2560 Unrecoverable, 2561 /// Check supports recovering, runtime has both fatal (noreturn) and 2562 /// non-fatal handlers for this check. 2563 Recoverable, 2564 /// Runtime conditionally aborts, always need to support recovery. 2565 AlwaysRecoverable 2566 }; 2567 } 2568 2569 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2570 assert(llvm::countPopulation(Kind) == 1); 2571 switch (Kind) { 2572 case SanitizerKind::Vptr: 2573 return CheckRecoverableKind::AlwaysRecoverable; 2574 case SanitizerKind::Return: 2575 case SanitizerKind::Unreachable: 2576 return CheckRecoverableKind::Unrecoverable; 2577 default: 2578 return CheckRecoverableKind::Recoverable; 2579 } 2580 } 2581 2582 namespace { 2583 struct SanitizerHandlerInfo { 2584 char const *const Name; 2585 unsigned Version; 2586 }; 2587 } 2588 2589 const SanitizerHandlerInfo SanitizerHandlers[] = { 2590 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2591 LIST_SANITIZER_CHECKS 2592 #undef SANITIZER_CHECK 2593 }; 2594 2595 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2596 llvm::FunctionType *FnType, 2597 ArrayRef<llvm::Value *> FnArgs, 2598 SanitizerHandler CheckHandler, 2599 CheckRecoverableKind RecoverKind, bool IsFatal, 2600 llvm::BasicBlock *ContBB) { 2601 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2602 bool NeedsAbortSuffix = 2603 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2604 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2605 const StringRef CheckName = CheckInfo.Name; 2606 std::string FnName = 2607 ("__ubsan_handle_" + CheckName + 2608 (CheckInfo.Version ? "_v" + llvm::utostr(CheckInfo.Version) : "") + 2609 (NeedsAbortSuffix ? "_abort" : "")) 2610 .str(); 2611 bool MayReturn = 2612 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2613 2614 llvm::AttrBuilder B; 2615 if (!MayReturn) { 2616 B.addAttribute(llvm::Attribute::NoReturn) 2617 .addAttribute(llvm::Attribute::NoUnwind); 2618 } 2619 B.addAttribute(llvm::Attribute::UWTable); 2620 2621 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2622 FnType, FnName, 2623 llvm::AttributeList::get(CGF.getLLVMContext(), 2624 llvm::AttributeList::FunctionIndex, B), 2625 /*Local=*/true); 2626 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2627 if (!MayReturn) { 2628 HandlerCall->setDoesNotReturn(); 2629 CGF.Builder.CreateUnreachable(); 2630 } else { 2631 CGF.Builder.CreateBr(ContBB); 2632 } 2633 } 2634 2635 void CodeGenFunction::EmitCheck( 2636 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2637 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2638 ArrayRef<llvm::Value *> DynamicArgs) { 2639 assert(IsSanitizerScope); 2640 assert(Checked.size() > 0); 2641 assert(CheckHandler >= 0 && 2642 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2643 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2644 2645 llvm::Value *FatalCond = nullptr; 2646 llvm::Value *RecoverableCond = nullptr; 2647 llvm::Value *TrapCond = nullptr; 2648 for (int i = 0, n = Checked.size(); i < n; ++i) { 2649 llvm::Value *Check = Checked[i].first; 2650 // -fsanitize-trap= overrides -fsanitize-recover=. 2651 llvm::Value *&Cond = 2652 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2653 ? TrapCond 2654 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2655 ? RecoverableCond 2656 : FatalCond; 2657 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2658 } 2659 2660 if (TrapCond) 2661 EmitTrapCheck(TrapCond); 2662 if (!FatalCond && !RecoverableCond) 2663 return; 2664 2665 llvm::Value *JointCond; 2666 if (FatalCond && RecoverableCond) 2667 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2668 else 2669 JointCond = FatalCond ? FatalCond : RecoverableCond; 2670 assert(JointCond); 2671 2672 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2673 assert(SanOpts.has(Checked[0].second)); 2674 #ifndef NDEBUG 2675 for (int i = 1, n = Checked.size(); i < n; ++i) { 2676 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2677 "All recoverable kinds in a single check must be same!"); 2678 assert(SanOpts.has(Checked[i].second)); 2679 } 2680 #endif 2681 2682 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2683 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2684 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2685 // Give hint that we very much don't expect to execute the handler 2686 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2687 llvm::MDBuilder MDHelper(getLLVMContext()); 2688 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2689 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2690 EmitBlock(Handlers); 2691 2692 // Handler functions take an i8* pointing to the (handler-specific) static 2693 // information block, followed by a sequence of intptr_t arguments 2694 // representing operand values. 2695 SmallVector<llvm::Value *, 4> Args; 2696 SmallVector<llvm::Type *, 4> ArgTypes; 2697 Args.reserve(DynamicArgs.size() + 1); 2698 ArgTypes.reserve(DynamicArgs.size() + 1); 2699 2700 // Emit handler arguments and create handler function type. 2701 if (!StaticArgs.empty()) { 2702 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2703 auto *InfoPtr = 2704 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2705 llvm::GlobalVariable::PrivateLinkage, Info); 2706 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2707 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2708 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2709 ArgTypes.push_back(Int8PtrTy); 2710 } 2711 2712 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2713 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2714 ArgTypes.push_back(IntPtrTy); 2715 } 2716 2717 llvm::FunctionType *FnType = 2718 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2719 2720 if (!FatalCond || !RecoverableCond) { 2721 // Simple case: we need to generate a single handler call, either 2722 // fatal, or non-fatal. 2723 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2724 (FatalCond != nullptr), Cont); 2725 } else { 2726 // Emit two handler calls: first one for set of unrecoverable checks, 2727 // another one for recoverable. 2728 llvm::BasicBlock *NonFatalHandlerBB = 2729 createBasicBlock("non_fatal." + CheckName); 2730 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2731 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2732 EmitBlock(FatalHandlerBB); 2733 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2734 NonFatalHandlerBB); 2735 EmitBlock(NonFatalHandlerBB); 2736 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2737 Cont); 2738 } 2739 2740 EmitBlock(Cont); 2741 } 2742 2743 void CodeGenFunction::EmitCfiSlowPathCheck( 2744 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2745 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2746 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2747 2748 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2749 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2750 2751 llvm::MDBuilder MDHelper(getLLVMContext()); 2752 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2753 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2754 2755 EmitBlock(CheckBB); 2756 2757 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2758 2759 llvm::CallInst *CheckCall; 2760 if (WithDiag) { 2761 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2762 auto *InfoPtr = 2763 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2764 llvm::GlobalVariable::PrivateLinkage, Info); 2765 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2766 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2767 2768 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2769 "__cfi_slowpath_diag", 2770 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2771 false)); 2772 CheckCall = Builder.CreateCall( 2773 SlowPathDiagFn, 2774 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2775 } else { 2776 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2777 "__cfi_slowpath", 2778 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2779 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2780 } 2781 2782 CheckCall->setDoesNotThrow(); 2783 2784 EmitBlock(Cont); 2785 } 2786 2787 // Emit a stub for __cfi_check function so that the linker knows about this 2788 // symbol in LTO mode. 2789 void CodeGenFunction::EmitCfiCheckStub() { 2790 llvm::Module *M = &CGM.getModule(); 2791 auto &Ctx = M->getContext(); 2792 llvm::Function *F = llvm::Function::Create( 2793 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 2794 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 2795 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 2796 // FIXME: consider emitting an intrinsic call like 2797 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 2798 // which can be lowered in CrossDSOCFI pass to the actual contents of 2799 // __cfi_check. This would allow inlining of __cfi_check calls. 2800 llvm::CallInst::Create( 2801 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 2802 llvm::ReturnInst::Create(Ctx, nullptr, BB); 2803 } 2804 2805 // This function is basically a switch over the CFI failure kind, which is 2806 // extracted from CFICheckFailData (1st function argument). Each case is either 2807 // llvm.trap or a call to one of the two runtime handlers, based on 2808 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 2809 // failure kind) traps, but this should really never happen. CFICheckFailData 2810 // can be nullptr if the calling module has -fsanitize-trap behavior for this 2811 // check kind; in this case __cfi_check_fail traps as well. 2812 void CodeGenFunction::EmitCfiCheckFail() { 2813 SanitizerScope SanScope(this); 2814 FunctionArgList Args; 2815 ImplicitParamDecl ArgData(getContext(), nullptr, SourceLocation(), nullptr, 2816 getContext().VoidPtrTy); 2817 ImplicitParamDecl ArgAddr(getContext(), nullptr, SourceLocation(), nullptr, 2818 getContext().VoidPtrTy); 2819 Args.push_back(&ArgData); 2820 Args.push_back(&ArgAddr); 2821 2822 const CGFunctionInfo &FI = 2823 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 2824 2825 llvm::Function *F = llvm::Function::Create( 2826 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 2827 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 2828 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 2829 2830 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 2831 SourceLocation()); 2832 2833 llvm::Value *Data = 2834 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 2835 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 2836 llvm::Value *Addr = 2837 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 2838 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 2839 2840 // Data == nullptr means the calling module has trap behaviour for this check. 2841 llvm::Value *DataIsNotNullPtr = 2842 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 2843 EmitTrapCheck(DataIsNotNullPtr); 2844 2845 llvm::StructType *SourceLocationTy = 2846 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty, nullptr); 2847 llvm::StructType *CfiCheckFailDataTy = 2848 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy, nullptr); 2849 2850 llvm::Value *V = Builder.CreateConstGEP2_32( 2851 CfiCheckFailDataTy, 2852 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 2853 0); 2854 Address CheckKindAddr(V, getIntAlign()); 2855 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 2856 2857 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 2858 CGM.getLLVMContext(), 2859 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 2860 llvm::Value *ValidVtable = Builder.CreateZExt( 2861 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 2862 {Addr, AllVtables}), 2863 IntPtrTy); 2864 2865 const std::pair<int, SanitizerMask> CheckKinds[] = { 2866 {CFITCK_VCall, SanitizerKind::CFIVCall}, 2867 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 2868 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 2869 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 2870 {CFITCK_ICall, SanitizerKind::CFIICall}}; 2871 2872 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 2873 for (auto CheckKindMaskPair : CheckKinds) { 2874 int Kind = CheckKindMaskPair.first; 2875 SanitizerMask Mask = CheckKindMaskPair.second; 2876 llvm::Value *Cond = 2877 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 2878 if (CGM.getLangOpts().Sanitize.has(Mask)) 2879 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 2880 {Data, Addr, ValidVtable}); 2881 else 2882 EmitTrapCheck(Cond); 2883 } 2884 2885 FinishFunction(); 2886 // The only reference to this function will be created during LTO link. 2887 // Make sure it survives until then. 2888 CGM.addUsedGlobal(F); 2889 } 2890 2891 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 2892 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2893 2894 // If we're optimizing, collapse all calls to trap down to just one per 2895 // function to save on code size. 2896 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 2897 TrapBB = createBasicBlock("trap"); 2898 Builder.CreateCondBr(Checked, Cont, TrapBB); 2899 EmitBlock(TrapBB); 2900 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2901 TrapCall->setDoesNotReturn(); 2902 TrapCall->setDoesNotThrow(); 2903 Builder.CreateUnreachable(); 2904 } else { 2905 Builder.CreateCondBr(Checked, Cont, TrapBB); 2906 } 2907 2908 EmitBlock(Cont); 2909 } 2910 2911 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 2912 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 2913 2914 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 2915 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 2916 CGM.getCodeGenOpts().TrapFuncName); 2917 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 2918 } 2919 2920 return TrapCall; 2921 } 2922 2923 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 2924 AlignmentSource *AlignSource) { 2925 assert(E->getType()->isArrayType() && 2926 "Array to pointer decay must have array source type!"); 2927 2928 // Expressions of array type can't be bitfields or vector elements. 2929 LValue LV = EmitLValue(E); 2930 Address Addr = LV.getAddress(); 2931 if (AlignSource) *AlignSource = LV.getAlignmentSource(); 2932 2933 // If the array type was an incomplete type, we need to make sure 2934 // the decay ends up being the right type. 2935 llvm::Type *NewTy = ConvertType(E->getType()); 2936 Addr = Builder.CreateElementBitCast(Addr, NewTy); 2937 2938 // Note that VLA pointers are always decayed, so we don't need to do 2939 // anything here. 2940 if (!E->getType()->isVariableArrayType()) { 2941 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 2942 "Expected pointer to array"); 2943 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 2944 } 2945 2946 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 2947 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 2948 } 2949 2950 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 2951 /// array to pointer, return the array subexpression. 2952 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 2953 // If this isn't just an array->pointer decay, bail out. 2954 const auto *CE = dyn_cast<CastExpr>(E); 2955 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 2956 return nullptr; 2957 2958 // If this is a decay from variable width array, bail out. 2959 const Expr *SubExpr = CE->getSubExpr(); 2960 if (SubExpr->getType()->isVariableArrayType()) 2961 return nullptr; 2962 2963 return SubExpr; 2964 } 2965 2966 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 2967 llvm::Value *ptr, 2968 ArrayRef<llvm::Value*> indices, 2969 bool inbounds, 2970 const llvm::Twine &name = "arrayidx") { 2971 if (inbounds) { 2972 return CGF.Builder.CreateInBoundsGEP(ptr, indices, name); 2973 } else { 2974 return CGF.Builder.CreateGEP(ptr, indices, name); 2975 } 2976 } 2977 2978 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 2979 llvm::Value *idx, 2980 CharUnits eltSize) { 2981 // If we have a constant index, we can use the exact offset of the 2982 // element we're accessing. 2983 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 2984 CharUnits offset = constantIdx->getZExtValue() * eltSize; 2985 return arrayAlign.alignmentAtOffset(offset); 2986 2987 // Otherwise, use the worst-case alignment for any element. 2988 } else { 2989 return arrayAlign.alignmentOfArrayElement(eltSize); 2990 } 2991 } 2992 2993 static QualType getFixedSizeElementType(const ASTContext &ctx, 2994 const VariableArrayType *vla) { 2995 QualType eltType; 2996 do { 2997 eltType = vla->getElementType(); 2998 } while ((vla = ctx.getAsVariableArrayType(eltType))); 2999 return eltType; 3000 } 3001 3002 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3003 ArrayRef<llvm::Value*> indices, 3004 QualType eltType, bool inbounds, 3005 const llvm::Twine &name = "arrayidx") { 3006 // All the indices except that last must be zero. 3007 #ifndef NDEBUG 3008 for (auto idx : indices.drop_back()) 3009 assert(isa<llvm::ConstantInt>(idx) && 3010 cast<llvm::ConstantInt>(idx)->isZero()); 3011 #endif 3012 3013 // Determine the element size of the statically-sized base. This is 3014 // the thing that the indices are expressed in terms of. 3015 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3016 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3017 } 3018 3019 // We can use that to compute the best alignment of the element. 3020 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3021 CharUnits eltAlign = 3022 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3023 3024 llvm::Value *eltPtr = 3025 emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name); 3026 return Address(eltPtr, eltAlign); 3027 } 3028 3029 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3030 bool Accessed) { 3031 // The index must always be an integer, which is not an aggregate. Emit it 3032 // in lexical order (this complexity is, sadly, required by C++17). 3033 llvm::Value *IdxPre = 3034 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3035 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3036 auto *Idx = IdxPre; 3037 if (E->getLHS() != E->getIdx()) { 3038 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3039 Idx = EmitScalarExpr(E->getIdx()); 3040 } 3041 3042 QualType IdxTy = E->getIdx()->getType(); 3043 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3044 3045 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3046 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3047 3048 // Extend or truncate the index type to 32 or 64-bits. 3049 if (Promote && Idx->getType() != IntPtrTy) 3050 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3051 3052 return Idx; 3053 }; 3054 IdxPre = nullptr; 3055 3056 // If the base is a vector type, then we are forming a vector element lvalue 3057 // with this subscript. 3058 if (E->getBase()->getType()->isVectorType() && 3059 !isa<ExtVectorElementExpr>(E->getBase())) { 3060 // Emit the vector as an lvalue to get its address. 3061 LValue LHS = EmitLValue(E->getBase()); 3062 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3063 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3064 return LValue::MakeVectorElt(LHS.getAddress(), Idx, 3065 E->getBase()->getType(), 3066 LHS.getAlignmentSource()); 3067 } 3068 3069 // All the other cases basically behave like simple offsetting. 3070 3071 // Handle the extvector case we ignored above. 3072 if (isa<ExtVectorElementExpr>(E->getBase())) { 3073 LValue LV = EmitLValue(E->getBase()); 3074 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3075 Address Addr = EmitExtVectorElementLValue(LV); 3076 3077 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3078 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true); 3079 return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource()); 3080 } 3081 3082 AlignmentSource AlignSource; 3083 Address Addr = Address::invalid(); 3084 if (const VariableArrayType *vla = 3085 getContext().getAsVariableArrayType(E->getType())) { 3086 // The base must be a pointer, which is not an aggregate. Emit 3087 // it. It needs to be emitted first in case it's what captures 3088 // the VLA bounds. 3089 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3090 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3091 3092 // The element count here is the total number of non-VLA elements. 3093 llvm::Value *numElements = getVLASize(vla).first; 3094 3095 // Effectively, the multiply by the VLA size is part of the GEP. 3096 // GEP indexes are signed, and scaling an index isn't permitted to 3097 // signed-overflow, so we use the same semantics for our explicit 3098 // multiply. We suppress this if overflow is not undefined behavior. 3099 if (getLangOpts().isSignedOverflowDefined()) { 3100 Idx = Builder.CreateMul(Idx, numElements); 3101 } else { 3102 Idx = Builder.CreateNSWMul(Idx, numElements); 3103 } 3104 3105 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3106 !getLangOpts().isSignedOverflowDefined()); 3107 3108 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3109 // Indexing over an interface, as in "NSString *P; P[4];" 3110 3111 // Emit the base pointer. 3112 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3113 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3114 3115 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3116 llvm::Value *InterfaceSizeVal = 3117 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3118 3119 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3120 3121 // We don't necessarily build correct LLVM struct types for ObjC 3122 // interfaces, so we can't rely on GEP to do this scaling 3123 // correctly, so we need to cast to i8*. FIXME: is this actually 3124 // true? A lot of other things in the fragile ABI would break... 3125 llvm::Type *OrigBaseTy = Addr.getType(); 3126 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3127 3128 // Do the GEP. 3129 CharUnits EltAlign = 3130 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3131 llvm::Value *EltPtr = 3132 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false); 3133 Addr = Address(EltPtr, EltAlign); 3134 3135 // Cast back. 3136 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3137 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3138 // If this is A[i] where A is an array, the frontend will have decayed the 3139 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3140 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3141 // "gep x, i" here. Emit one "gep A, 0, i". 3142 assert(Array->getType()->isArrayType() && 3143 "Array to pointer decay must have array source type!"); 3144 LValue ArrayLV; 3145 // For simple multidimensional array indexing, set the 'accessed' flag for 3146 // better bounds-checking of the base expression. 3147 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3148 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3149 else 3150 ArrayLV = EmitLValue(Array); 3151 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3152 3153 // Propagate the alignment from the array itself to the result. 3154 Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(), 3155 {CGM.getSize(CharUnits::Zero()), Idx}, 3156 E->getType(), 3157 !getLangOpts().isSignedOverflowDefined()); 3158 AlignSource = ArrayLV.getAlignmentSource(); 3159 } else { 3160 // The base must be a pointer; emit it with an estimate of its alignment. 3161 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3162 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3163 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3164 !getLangOpts().isSignedOverflowDefined()); 3165 } 3166 3167 LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource); 3168 3169 // TODO: Preserve/extend path TBAA metadata? 3170 3171 if (getLangOpts().ObjC1 && 3172 getLangOpts().getGC() != LangOptions::NonGC) { 3173 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3174 setObjCGCLValueClass(getContext(), E, LV); 3175 } 3176 return LV; 3177 } 3178 3179 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3180 AlignmentSource &AlignSource, 3181 QualType BaseTy, QualType ElTy, 3182 bool IsLowerBound) { 3183 LValue BaseLVal; 3184 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3185 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3186 if (BaseTy->isArrayType()) { 3187 Address Addr = BaseLVal.getAddress(); 3188 AlignSource = BaseLVal.getAlignmentSource(); 3189 3190 // If the array type was an incomplete type, we need to make sure 3191 // the decay ends up being the right type. 3192 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3193 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3194 3195 // Note that VLA pointers are always decayed, so we don't need to do 3196 // anything here. 3197 if (!BaseTy->isVariableArrayType()) { 3198 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3199 "Expected pointer to array"); 3200 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3201 "arraydecay"); 3202 } 3203 3204 return CGF.Builder.CreateElementBitCast(Addr, 3205 CGF.ConvertTypeForMem(ElTy)); 3206 } 3207 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &AlignSource); 3208 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3209 } 3210 return CGF.EmitPointerWithAlignment(Base, &AlignSource); 3211 } 3212 3213 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3214 bool IsLowerBound) { 3215 QualType BaseTy; 3216 if (auto *ASE = 3217 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts())) 3218 BaseTy = OMPArraySectionExpr::getBaseOriginalType(ASE); 3219 else 3220 BaseTy = E->getBase()->getType(); 3221 QualType ResultExprTy; 3222 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3223 ResultExprTy = AT->getElementType(); 3224 else 3225 ResultExprTy = BaseTy->getPointeeType(); 3226 llvm::Value *Idx = nullptr; 3227 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3228 // Requesting lower bound or upper bound, but without provided length and 3229 // without ':' symbol for the default length -> length = 1. 3230 // Idx = LowerBound ?: 0; 3231 if (auto *LowerBound = E->getLowerBound()) { 3232 Idx = Builder.CreateIntCast( 3233 EmitScalarExpr(LowerBound), IntPtrTy, 3234 LowerBound->getType()->hasSignedIntegerRepresentation()); 3235 } else 3236 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3237 } else { 3238 // Try to emit length or lower bound as constant. If this is possible, 1 3239 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3240 // IR (LB + Len) - 1. 3241 auto &C = CGM.getContext(); 3242 auto *Length = E->getLength(); 3243 llvm::APSInt ConstLength; 3244 if (Length) { 3245 // Idx = LowerBound + Length - 1; 3246 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3247 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3248 Length = nullptr; 3249 } 3250 auto *LowerBound = E->getLowerBound(); 3251 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3252 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3253 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3254 LowerBound = nullptr; 3255 } 3256 if (!Length) 3257 --ConstLength; 3258 else if (!LowerBound) 3259 --ConstLowerBound; 3260 3261 if (Length || LowerBound) { 3262 auto *LowerBoundVal = 3263 LowerBound 3264 ? Builder.CreateIntCast( 3265 EmitScalarExpr(LowerBound), IntPtrTy, 3266 LowerBound->getType()->hasSignedIntegerRepresentation()) 3267 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3268 auto *LengthVal = 3269 Length 3270 ? Builder.CreateIntCast( 3271 EmitScalarExpr(Length), IntPtrTy, 3272 Length->getType()->hasSignedIntegerRepresentation()) 3273 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3274 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3275 /*HasNUW=*/false, 3276 !getLangOpts().isSignedOverflowDefined()); 3277 if (Length && LowerBound) { 3278 Idx = Builder.CreateSub( 3279 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3280 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3281 } 3282 } else 3283 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3284 } else { 3285 // Idx = ArraySize - 1; 3286 QualType ArrayTy = BaseTy->isPointerType() 3287 ? E->getBase()->IgnoreParenImpCasts()->getType() 3288 : BaseTy; 3289 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3290 Length = VAT->getSizeExpr(); 3291 if (Length->isIntegerConstantExpr(ConstLength, C)) 3292 Length = nullptr; 3293 } else { 3294 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3295 ConstLength = CAT->getSize(); 3296 } 3297 if (Length) { 3298 auto *LengthVal = Builder.CreateIntCast( 3299 EmitScalarExpr(Length), IntPtrTy, 3300 Length->getType()->hasSignedIntegerRepresentation()); 3301 Idx = Builder.CreateSub( 3302 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3303 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3304 } else { 3305 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3306 --ConstLength; 3307 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3308 } 3309 } 3310 } 3311 assert(Idx); 3312 3313 Address EltPtr = Address::invalid(); 3314 AlignmentSource AlignSource; 3315 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3316 // The base must be a pointer, which is not an aggregate. Emit 3317 // it. It needs to be emitted first in case it's what captures 3318 // the VLA bounds. 3319 Address Base = 3320 emitOMPArraySectionBase(*this, E->getBase(), AlignSource, BaseTy, 3321 VLA->getElementType(), IsLowerBound); 3322 // The element count here is the total number of non-VLA elements. 3323 llvm::Value *NumElements = getVLASize(VLA).first; 3324 3325 // Effectively, the multiply by the VLA size is part of the GEP. 3326 // GEP indexes are signed, and scaling an index isn't permitted to 3327 // signed-overflow, so we use the same semantics for our explicit 3328 // multiply. We suppress this if overflow is not undefined behavior. 3329 if (getLangOpts().isSignedOverflowDefined()) 3330 Idx = Builder.CreateMul(Idx, NumElements); 3331 else 3332 Idx = Builder.CreateNSWMul(Idx, NumElements); 3333 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3334 !getLangOpts().isSignedOverflowDefined()); 3335 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3336 // If this is A[i] where A is an array, the frontend will have decayed the 3337 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3338 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3339 // "gep x, i" here. Emit one "gep A, 0, i". 3340 assert(Array->getType()->isArrayType() && 3341 "Array to pointer decay must have array source type!"); 3342 LValue ArrayLV; 3343 // For simple multidimensional array indexing, set the 'accessed' flag for 3344 // better bounds-checking of the base expression. 3345 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3346 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3347 else 3348 ArrayLV = EmitLValue(Array); 3349 3350 // Propagate the alignment from the array itself to the result. 3351 EltPtr = emitArraySubscriptGEP( 3352 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3353 ResultExprTy, !getLangOpts().isSignedOverflowDefined()); 3354 AlignSource = ArrayLV.getAlignmentSource(); 3355 } else { 3356 Address Base = emitOMPArraySectionBase(*this, E->getBase(), AlignSource, 3357 BaseTy, ResultExprTy, IsLowerBound); 3358 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3359 !getLangOpts().isSignedOverflowDefined()); 3360 } 3361 3362 return MakeAddrLValue(EltPtr, ResultExprTy, AlignSource); 3363 } 3364 3365 LValue CodeGenFunction:: 3366 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3367 // Emit the base vector as an l-value. 3368 LValue Base; 3369 3370 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3371 if (E->isArrow()) { 3372 // If it is a pointer to a vector, emit the address and form an lvalue with 3373 // it. 3374 AlignmentSource AlignSource; 3375 Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource); 3376 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3377 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource); 3378 Base.getQuals().removeObjCGCAttr(); 3379 } else if (E->getBase()->isGLValue()) { 3380 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3381 // emit the base as an lvalue. 3382 assert(E->getBase()->getType()->isVectorType()); 3383 Base = EmitLValue(E->getBase()); 3384 } else { 3385 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3386 assert(E->getBase()->getType()->isVectorType() && 3387 "Result must be a vector"); 3388 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3389 3390 // Store the vector to memory (because LValue wants an address). 3391 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3392 Builder.CreateStore(Vec, VecMem); 3393 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3394 AlignmentSource::Decl); 3395 } 3396 3397 QualType type = 3398 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3399 3400 // Encode the element access list into a vector of unsigned indices. 3401 SmallVector<uint32_t, 4> Indices; 3402 E->getEncodedElementAccess(Indices); 3403 3404 if (Base.isSimple()) { 3405 llvm::Constant *CV = 3406 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3407 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3408 Base.getAlignmentSource()); 3409 } 3410 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3411 3412 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3413 SmallVector<llvm::Constant *, 4> CElts; 3414 3415 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3416 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3417 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3418 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3419 Base.getAlignmentSource()); 3420 } 3421 3422 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3423 Expr *BaseExpr = E->getBase(); 3424 3425 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3426 LValue BaseLV; 3427 if (E->isArrow()) { 3428 AlignmentSource AlignSource; 3429 Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource); 3430 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3431 SanitizerSet SkippedChecks; 3432 if (IsDeclRefOrWrappedCXXThis(BaseExpr)) 3433 SkippedChecks.set(SanitizerKind::Null, true); 3434 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3435 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3436 BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource); 3437 } else 3438 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3439 3440 NamedDecl *ND = E->getMemberDecl(); 3441 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3442 LValue LV = EmitLValueForField(BaseLV, Field); 3443 setObjCGCLValueClass(getContext(), E, LV); 3444 return LV; 3445 } 3446 3447 if (auto *VD = dyn_cast<VarDecl>(ND)) 3448 return EmitGlobalVarDeclLValue(*this, E, VD); 3449 3450 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3451 return EmitFunctionDeclLValue(*this, E, FD); 3452 3453 llvm_unreachable("Unhandled member declaration!"); 3454 } 3455 3456 /// Given that we are currently emitting a lambda, emit an l-value for 3457 /// one of its members. 3458 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3459 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3460 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3461 QualType LambdaTagType = 3462 getContext().getTagDeclType(Field->getParent()); 3463 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3464 return EmitLValueForField(LambdaLV, Field); 3465 } 3466 3467 /// Drill down to the storage of a field without walking into 3468 /// reference types. 3469 /// 3470 /// The resulting address doesn't necessarily have the right type. 3471 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3472 const FieldDecl *field) { 3473 const RecordDecl *rec = field->getParent(); 3474 3475 unsigned idx = 3476 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3477 3478 CharUnits offset; 3479 // Adjust the alignment down to the given offset. 3480 // As a special case, if the LLVM field index is 0, we know that this 3481 // is zero. 3482 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3483 .getFieldOffset(field->getFieldIndex()) == 0) && 3484 "LLVM field at index zero had non-zero offset?"); 3485 if (idx != 0) { 3486 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3487 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3488 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3489 } 3490 3491 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3492 } 3493 3494 LValue CodeGenFunction::EmitLValueForField(LValue base, 3495 const FieldDecl *field) { 3496 AlignmentSource fieldAlignSource = 3497 getFieldAlignmentSource(base.getAlignmentSource()); 3498 3499 if (field->isBitField()) { 3500 const CGRecordLayout &RL = 3501 CGM.getTypes().getCGRecordLayout(field->getParent()); 3502 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3503 Address Addr = base.getAddress(); 3504 unsigned Idx = RL.getLLVMFieldNo(field); 3505 if (Idx != 0) 3506 // For structs, we GEP to the field that the record layout suggests. 3507 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3508 field->getName()); 3509 // Get the access type. 3510 llvm::Type *FieldIntTy = 3511 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3512 if (Addr.getElementType() != FieldIntTy) 3513 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3514 3515 QualType fieldType = 3516 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3517 return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource); 3518 } 3519 3520 const RecordDecl *rec = field->getParent(); 3521 QualType type = field->getType(); 3522 3523 bool mayAlias = rec->hasAttr<MayAliasAttr>(); 3524 3525 Address addr = base.getAddress(); 3526 unsigned cvr = base.getVRQualifiers(); 3527 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA; 3528 if (rec->isUnion()) { 3529 // For unions, there is no pointer adjustment. 3530 assert(!type->isReferenceType() && "union has reference member"); 3531 // TODO: handle path-aware TBAA for union. 3532 TBAAPath = false; 3533 } else { 3534 // For structs, we GEP to the field that the record layout suggests. 3535 addr = emitAddrOfFieldStorage(*this, addr, field); 3536 3537 // If this is a reference field, load the reference right now. 3538 if (const ReferenceType *refType = type->getAs<ReferenceType>()) { 3539 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref"); 3540 if (cvr & Qualifiers::Volatile) load->setVolatile(true); 3541 3542 // Loading the reference will disable path-aware TBAA. 3543 TBAAPath = false; 3544 if (CGM.shouldUseTBAA()) { 3545 llvm::MDNode *tbaa; 3546 if (mayAlias) 3547 tbaa = CGM.getTBAAInfo(getContext().CharTy); 3548 else 3549 tbaa = CGM.getTBAAInfo(type); 3550 if (tbaa) 3551 CGM.DecorateInstructionWithTBAA(load, tbaa); 3552 } 3553 3554 mayAlias = false; 3555 type = refType->getPointeeType(); 3556 3557 CharUnits alignment = 3558 getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true); 3559 addr = Address(load, alignment); 3560 3561 // Qualifiers on the struct don't apply to the referencee, and 3562 // we'll pick up CVR from the actual type later, so reset these 3563 // additional qualifiers now. 3564 cvr = 0; 3565 } 3566 } 3567 3568 // Make sure that the address is pointing to the right type. This is critical 3569 // for both unions and structs. A union needs a bitcast, a struct element 3570 // will need a bitcast if the LLVM type laid out doesn't match the desired 3571 // type. 3572 addr = Builder.CreateElementBitCast(addr, 3573 CGM.getTypes().ConvertTypeForMem(type), 3574 field->getName()); 3575 3576 if (field->hasAttr<AnnotateAttr>()) 3577 addr = EmitFieldAnnotations(field, addr); 3578 3579 LValue LV = MakeAddrLValue(addr, type, fieldAlignSource); 3580 LV.getQuals().addCVRQualifiers(cvr); 3581 if (TBAAPath) { 3582 const ASTRecordLayout &Layout = 3583 getContext().getASTRecordLayout(field->getParent()); 3584 // Set the base type to be the base type of the base LValue and 3585 // update offset to be relative to the base type. 3586 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType()); 3587 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() + 3588 Layout.getFieldOffset(field->getFieldIndex()) / 3589 getContext().getCharWidth()); 3590 } 3591 3592 // __weak attribute on a field is ignored. 3593 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3594 LV.getQuals().removeObjCGCAttr(); 3595 3596 // Fields of may_alias structs act like 'char' for TBAA purposes. 3597 // FIXME: this should get propagated down through anonymous structs 3598 // and unions. 3599 if (mayAlias && LV.getTBAAInfo()) 3600 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy)); 3601 3602 return LV; 3603 } 3604 3605 LValue 3606 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3607 const FieldDecl *Field) { 3608 QualType FieldType = Field->getType(); 3609 3610 if (!FieldType->isReferenceType()) 3611 return EmitLValueForField(Base, Field); 3612 3613 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3614 3615 // Make sure that the address is pointing to the right type. 3616 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3617 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3618 3619 // TODO: access-path TBAA? 3620 auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource()); 3621 return MakeAddrLValue(V, FieldType, FieldAlignSource); 3622 } 3623 3624 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3625 if (E->isFileScope()) { 3626 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3627 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3628 } 3629 if (E->getType()->isVariablyModifiedType()) 3630 // make sure to emit the VLA size. 3631 EmitVariablyModifiedType(E->getType()); 3632 3633 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3634 const Expr *InitExpr = E->getInitializer(); 3635 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3636 3637 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3638 /*Init*/ true); 3639 3640 return Result; 3641 } 3642 3643 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3644 if (!E->isGLValue()) 3645 // Initializing an aggregate temporary in C++11: T{...}. 3646 return EmitAggExprToLValue(E); 3647 3648 // An lvalue initializer list must be initializing a reference. 3649 assert(E->isTransparent() && "non-transparent glvalue init list"); 3650 return EmitLValue(E->getInit(0)); 3651 } 3652 3653 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3654 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3655 /// LValue is returned and the current block has been terminated. 3656 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3657 const Expr *Operand) { 3658 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3659 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3660 return None; 3661 } 3662 3663 return CGF.EmitLValue(Operand); 3664 } 3665 3666 LValue CodeGenFunction:: 3667 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3668 if (!expr->isGLValue()) { 3669 // ?: here should be an aggregate. 3670 assert(hasAggregateEvaluationKind(expr->getType()) && 3671 "Unexpected conditional operator!"); 3672 return EmitAggExprToLValue(expr); 3673 } 3674 3675 OpaqueValueMapping binding(*this, expr); 3676 3677 const Expr *condExpr = expr->getCond(); 3678 bool CondExprBool; 3679 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3680 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3681 if (!CondExprBool) std::swap(live, dead); 3682 3683 if (!ContainsLabel(dead)) { 3684 // If the true case is live, we need to track its region. 3685 if (CondExprBool) 3686 incrementProfileCounter(expr); 3687 return EmitLValue(live); 3688 } 3689 } 3690 3691 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3692 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3693 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3694 3695 ConditionalEvaluation eval(*this); 3696 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3697 3698 // Any temporaries created here are conditional. 3699 EmitBlock(lhsBlock); 3700 incrementProfileCounter(expr); 3701 eval.begin(*this); 3702 Optional<LValue> lhs = 3703 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3704 eval.end(*this); 3705 3706 if (lhs && !lhs->isSimple()) 3707 return EmitUnsupportedLValue(expr, "conditional operator"); 3708 3709 lhsBlock = Builder.GetInsertBlock(); 3710 if (lhs) 3711 Builder.CreateBr(contBlock); 3712 3713 // Any temporaries created here are conditional. 3714 EmitBlock(rhsBlock); 3715 eval.begin(*this); 3716 Optional<LValue> rhs = 3717 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3718 eval.end(*this); 3719 if (rhs && !rhs->isSimple()) 3720 return EmitUnsupportedLValue(expr, "conditional operator"); 3721 rhsBlock = Builder.GetInsertBlock(); 3722 3723 EmitBlock(contBlock); 3724 3725 if (lhs && rhs) { 3726 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3727 2, "cond-lvalue"); 3728 phi->addIncoming(lhs->getPointer(), lhsBlock); 3729 phi->addIncoming(rhs->getPointer(), rhsBlock); 3730 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3731 AlignmentSource alignSource = 3732 std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource()); 3733 return MakeAddrLValue(result, expr->getType(), alignSource); 3734 } else { 3735 assert((lhs || rhs) && 3736 "both operands of glvalue conditional are throw-expressions?"); 3737 return lhs ? *lhs : *rhs; 3738 } 3739 } 3740 3741 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 3742 /// type. If the cast is to a reference, we can have the usual lvalue result, 3743 /// otherwise if a cast is needed by the code generator in an lvalue context, 3744 /// then it must mean that we need the address of an aggregate in order to 3745 /// access one of its members. This can happen for all the reasons that casts 3746 /// are permitted with aggregate result, including noop aggregate casts, and 3747 /// cast from scalar to union. 3748 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 3749 switch (E->getCastKind()) { 3750 case CK_ToVoid: 3751 case CK_BitCast: 3752 case CK_ArrayToPointerDecay: 3753 case CK_FunctionToPointerDecay: 3754 case CK_NullToMemberPointer: 3755 case CK_NullToPointer: 3756 case CK_IntegralToPointer: 3757 case CK_PointerToIntegral: 3758 case CK_PointerToBoolean: 3759 case CK_VectorSplat: 3760 case CK_IntegralCast: 3761 case CK_BooleanToSignedIntegral: 3762 case CK_IntegralToBoolean: 3763 case CK_IntegralToFloating: 3764 case CK_FloatingToIntegral: 3765 case CK_FloatingToBoolean: 3766 case CK_FloatingCast: 3767 case CK_FloatingRealToComplex: 3768 case CK_FloatingComplexToReal: 3769 case CK_FloatingComplexToBoolean: 3770 case CK_FloatingComplexCast: 3771 case CK_FloatingComplexToIntegralComplex: 3772 case CK_IntegralRealToComplex: 3773 case CK_IntegralComplexToReal: 3774 case CK_IntegralComplexToBoolean: 3775 case CK_IntegralComplexCast: 3776 case CK_IntegralComplexToFloatingComplex: 3777 case CK_DerivedToBaseMemberPointer: 3778 case CK_BaseToDerivedMemberPointer: 3779 case CK_MemberPointerToBoolean: 3780 case CK_ReinterpretMemberPointer: 3781 case CK_AnyPointerToBlockPointerCast: 3782 case CK_ARCProduceObject: 3783 case CK_ARCConsumeObject: 3784 case CK_ARCReclaimReturnedObject: 3785 case CK_ARCExtendBlockObject: 3786 case CK_CopyAndAutoreleaseBlockObject: 3787 case CK_AddressSpaceConversion: 3788 case CK_IntToOCLSampler: 3789 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 3790 3791 case CK_Dependent: 3792 llvm_unreachable("dependent cast kind in IR gen!"); 3793 3794 case CK_BuiltinFnToFnPtr: 3795 llvm_unreachable("builtin functions are handled elsewhere"); 3796 3797 // These are never l-values; just use the aggregate emission code. 3798 case CK_NonAtomicToAtomic: 3799 case CK_AtomicToNonAtomic: 3800 return EmitAggExprToLValue(E); 3801 3802 case CK_Dynamic: { 3803 LValue LV = EmitLValue(E->getSubExpr()); 3804 Address V = LV.getAddress(); 3805 const auto *DCE = cast<CXXDynamicCastExpr>(E); 3806 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 3807 } 3808 3809 case CK_ConstructorConversion: 3810 case CK_UserDefinedConversion: 3811 case CK_CPointerToObjCPointerCast: 3812 case CK_BlockPointerToObjCPointerCast: 3813 case CK_NoOp: 3814 case CK_LValueToRValue: 3815 return EmitLValue(E->getSubExpr()); 3816 3817 case CK_UncheckedDerivedToBase: 3818 case CK_DerivedToBase: { 3819 const RecordType *DerivedClassTy = 3820 E->getSubExpr()->getType()->getAs<RecordType>(); 3821 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3822 3823 LValue LV = EmitLValue(E->getSubExpr()); 3824 Address This = LV.getAddress(); 3825 3826 // Perform the derived-to-base conversion 3827 Address Base = GetAddressOfBaseClass( 3828 This, DerivedClassDecl, E->path_begin(), E->path_end(), 3829 /*NullCheckValue=*/false, E->getExprLoc()); 3830 3831 return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource()); 3832 } 3833 case CK_ToUnion: 3834 return EmitAggExprToLValue(E); 3835 case CK_BaseToDerived: { 3836 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 3837 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 3838 3839 LValue LV = EmitLValue(E->getSubExpr()); 3840 3841 // Perform the base-to-derived conversion 3842 Address Derived = 3843 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 3844 E->path_begin(), E->path_end(), 3845 /*NullCheckValue=*/false); 3846 3847 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 3848 // performed and the object is not of the derived type. 3849 if (sanitizePerformTypeCheck()) 3850 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 3851 Derived.getPointer(), E->getType()); 3852 3853 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 3854 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 3855 /*MayBeNull=*/false, 3856 CFITCK_DerivedCast, E->getLocStart()); 3857 3858 return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource()); 3859 } 3860 case CK_LValueBitCast: { 3861 // This must be a reinterpret_cast (or c-style equivalent). 3862 const auto *CE = cast<ExplicitCastExpr>(E); 3863 3864 CGM.EmitExplicitCastExprType(CE, this); 3865 LValue LV = EmitLValue(E->getSubExpr()); 3866 Address V = Builder.CreateBitCast(LV.getAddress(), 3867 ConvertType(CE->getTypeAsWritten())); 3868 3869 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 3870 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 3871 /*MayBeNull=*/false, 3872 CFITCK_UnrelatedCast, E->getLocStart()); 3873 3874 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3875 } 3876 case CK_ObjCObjectLValueCast: { 3877 LValue LV = EmitLValue(E->getSubExpr()); 3878 Address V = Builder.CreateElementBitCast(LV.getAddress(), 3879 ConvertType(E->getType())); 3880 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource()); 3881 } 3882 case CK_ZeroToOCLQueue: 3883 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 3884 case CK_ZeroToOCLEvent: 3885 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 3886 } 3887 3888 llvm_unreachable("Unhandled lvalue cast kind?"); 3889 } 3890 3891 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 3892 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 3893 return getOpaqueLValueMapping(e); 3894 } 3895 3896 RValue CodeGenFunction::EmitRValueForField(LValue LV, 3897 const FieldDecl *FD, 3898 SourceLocation Loc) { 3899 QualType FT = FD->getType(); 3900 LValue FieldLV = EmitLValueForField(LV, FD); 3901 switch (getEvaluationKind(FT)) { 3902 case TEK_Complex: 3903 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 3904 case TEK_Aggregate: 3905 return FieldLV.asAggregateRValue(); 3906 case TEK_Scalar: 3907 // This routine is used to load fields one-by-one to perform a copy, so 3908 // don't load reference fields. 3909 if (FD->getType()->isReferenceType()) 3910 return RValue::get(FieldLV.getPointer()); 3911 return EmitLoadOfLValue(FieldLV, Loc); 3912 } 3913 llvm_unreachable("bad evaluation kind"); 3914 } 3915 3916 //===--------------------------------------------------------------------===// 3917 // Expression Emission 3918 //===--------------------------------------------------------------------===// 3919 3920 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 3921 ReturnValueSlot ReturnValue) { 3922 // Builtins never have block type. 3923 if (E->getCallee()->getType()->isBlockPointerType()) 3924 return EmitBlockCallExpr(E, ReturnValue); 3925 3926 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 3927 return EmitCXXMemberCallExpr(CE, ReturnValue); 3928 3929 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 3930 return EmitCUDAKernelCallExpr(CE, ReturnValue); 3931 3932 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 3933 if (const CXXMethodDecl *MD = 3934 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 3935 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 3936 3937 CGCallee callee = EmitCallee(E->getCallee()); 3938 3939 if (callee.isBuiltin()) { 3940 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 3941 E, ReturnValue); 3942 } 3943 3944 if (callee.isPseudoDestructor()) { 3945 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 3946 } 3947 3948 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 3949 } 3950 3951 /// Emit a CallExpr without considering whether it might be a subclass. 3952 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 3953 ReturnValueSlot ReturnValue) { 3954 CGCallee Callee = EmitCallee(E->getCallee()); 3955 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 3956 } 3957 3958 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 3959 if (auto builtinID = FD->getBuiltinID()) { 3960 return CGCallee::forBuiltin(builtinID, FD); 3961 } 3962 3963 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 3964 return CGCallee::forDirect(calleePtr, FD); 3965 } 3966 3967 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 3968 E = E->IgnoreParens(); 3969 3970 // Look through function-to-pointer decay. 3971 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 3972 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 3973 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 3974 return EmitCallee(ICE->getSubExpr()); 3975 } 3976 3977 // Resolve direct calls. 3978 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 3979 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 3980 return EmitDirectCallee(*this, FD); 3981 } 3982 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 3983 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 3984 EmitIgnoredExpr(ME->getBase()); 3985 return EmitDirectCallee(*this, FD); 3986 } 3987 3988 // Look through template substitutions. 3989 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 3990 return EmitCallee(NTTP->getReplacement()); 3991 3992 // Treat pseudo-destructor calls differently. 3993 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 3994 return CGCallee::forPseudoDestructor(PDE); 3995 } 3996 3997 // Otherwise, we have an indirect reference. 3998 llvm::Value *calleePtr; 3999 QualType functionType; 4000 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4001 calleePtr = EmitScalarExpr(E); 4002 functionType = ptrType->getPointeeType(); 4003 } else { 4004 functionType = E->getType(); 4005 calleePtr = EmitLValue(E).getPointer(); 4006 } 4007 assert(functionType->isFunctionType()); 4008 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4009 E->getReferencedDeclOfCallee()); 4010 CGCallee callee(calleeInfo, calleePtr); 4011 return callee; 4012 } 4013 4014 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4015 // Comma expressions just emit their LHS then their RHS as an l-value. 4016 if (E->getOpcode() == BO_Comma) { 4017 EmitIgnoredExpr(E->getLHS()); 4018 EnsureInsertPoint(); 4019 return EmitLValue(E->getRHS()); 4020 } 4021 4022 if (E->getOpcode() == BO_PtrMemD || 4023 E->getOpcode() == BO_PtrMemI) 4024 return EmitPointerToDataMemberBinaryExpr(E); 4025 4026 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4027 4028 // Note that in all of these cases, __block variables need the RHS 4029 // evaluated first just in case the variable gets moved by the RHS. 4030 4031 switch (getEvaluationKind(E->getType())) { 4032 case TEK_Scalar: { 4033 switch (E->getLHS()->getType().getObjCLifetime()) { 4034 case Qualifiers::OCL_Strong: 4035 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4036 4037 case Qualifiers::OCL_Autoreleasing: 4038 return EmitARCStoreAutoreleasing(E).first; 4039 4040 // No reason to do any of these differently. 4041 case Qualifiers::OCL_None: 4042 case Qualifiers::OCL_ExplicitNone: 4043 case Qualifiers::OCL_Weak: 4044 break; 4045 } 4046 4047 RValue RV = EmitAnyExpr(E->getRHS()); 4048 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4049 EmitStoreThroughLValue(RV, LV); 4050 return LV; 4051 } 4052 4053 case TEK_Complex: 4054 return EmitComplexAssignmentLValue(E); 4055 4056 case TEK_Aggregate: 4057 return EmitAggExprToLValue(E); 4058 } 4059 llvm_unreachable("bad evaluation kind"); 4060 } 4061 4062 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4063 RValue RV = EmitCallExpr(E); 4064 4065 if (!RV.isScalar()) 4066 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4067 AlignmentSource::Decl); 4068 4069 assert(E->getCallReturnType(getContext())->isReferenceType() && 4070 "Can't have a scalar return unless the return type is a " 4071 "reference type!"); 4072 4073 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4074 } 4075 4076 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4077 // FIXME: This shouldn't require another copy. 4078 return EmitAggExprToLValue(E); 4079 } 4080 4081 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4082 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4083 && "binding l-value to type which needs a temporary"); 4084 AggValueSlot Slot = CreateAggTemp(E->getType()); 4085 EmitCXXConstructExpr(E, Slot); 4086 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4087 AlignmentSource::Decl); 4088 } 4089 4090 LValue 4091 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4092 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4093 } 4094 4095 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4096 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4097 ConvertType(E->getType())); 4098 } 4099 4100 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4101 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4102 AlignmentSource::Decl); 4103 } 4104 4105 LValue 4106 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4107 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4108 Slot.setExternallyDestructed(); 4109 EmitAggExpr(E->getSubExpr(), Slot); 4110 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4111 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4112 AlignmentSource::Decl); 4113 } 4114 4115 LValue 4116 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4117 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4118 EmitLambdaExpr(E, Slot); 4119 return MakeAddrLValue(Slot.getAddress(), E->getType(), 4120 AlignmentSource::Decl); 4121 } 4122 4123 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4124 RValue RV = EmitObjCMessageExpr(E); 4125 4126 if (!RV.isScalar()) 4127 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4128 AlignmentSource::Decl); 4129 4130 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4131 "Can't have a scalar return unless the return type is a " 4132 "reference type!"); 4133 4134 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4135 } 4136 4137 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4138 Address V = 4139 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4140 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4141 } 4142 4143 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4144 const ObjCIvarDecl *Ivar) { 4145 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4146 } 4147 4148 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4149 llvm::Value *BaseValue, 4150 const ObjCIvarDecl *Ivar, 4151 unsigned CVRQualifiers) { 4152 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4153 Ivar, CVRQualifiers); 4154 } 4155 4156 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4157 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4158 llvm::Value *BaseValue = nullptr; 4159 const Expr *BaseExpr = E->getBase(); 4160 Qualifiers BaseQuals; 4161 QualType ObjectTy; 4162 if (E->isArrow()) { 4163 BaseValue = EmitScalarExpr(BaseExpr); 4164 ObjectTy = BaseExpr->getType()->getPointeeType(); 4165 BaseQuals = ObjectTy.getQualifiers(); 4166 } else { 4167 LValue BaseLV = EmitLValue(BaseExpr); 4168 BaseValue = BaseLV.getPointer(); 4169 ObjectTy = BaseExpr->getType(); 4170 BaseQuals = ObjectTy.getQualifiers(); 4171 } 4172 4173 LValue LV = 4174 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4175 BaseQuals.getCVRQualifiers()); 4176 setObjCGCLValueClass(getContext(), E, LV); 4177 return LV; 4178 } 4179 4180 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4181 // Can only get l-value for message expression returning aggregate type 4182 RValue RV = EmitAnyExprToTemp(E); 4183 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4184 AlignmentSource::Decl); 4185 } 4186 4187 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4188 const CallExpr *E, ReturnValueSlot ReturnValue, 4189 llvm::Value *Chain) { 4190 // Get the actual function type. The callee type will always be a pointer to 4191 // function type or a block pointer type. 4192 assert(CalleeType->isFunctionPointerType() && 4193 "Call must have function pointer type!"); 4194 4195 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4196 4197 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4198 // We can only guarantee that a function is called from the correct 4199 // context/function based on the appropriate target attributes, 4200 // so only check in the case where we have both always_inline and target 4201 // since otherwise we could be making a conditional call after a check for 4202 // the proper cpu features (and it won't cause code generation issues due to 4203 // function based code generation). 4204 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4205 TargetDecl->hasAttr<TargetAttr>()) 4206 checkTargetFeatures(E, FD); 4207 4208 CalleeType = getContext().getCanonicalType(CalleeType); 4209 4210 const auto *FnType = 4211 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4212 4213 CGCallee Callee = OrigCallee; 4214 4215 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4216 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4217 if (llvm::Constant *PrefixSig = 4218 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4219 SanitizerScope SanScope(this); 4220 llvm::Constant *FTRTTIConst = 4221 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4222 llvm::Type *PrefixStructTyElems[] = { 4223 PrefixSig->getType(), 4224 FTRTTIConst->getType() 4225 }; 4226 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4227 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4228 4229 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4230 4231 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4232 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4233 llvm::Value *CalleeSigPtr = 4234 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4235 llvm::Value *CalleeSig = 4236 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4237 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4238 4239 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4240 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4241 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4242 4243 EmitBlock(TypeCheck); 4244 llvm::Value *CalleeRTTIPtr = 4245 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4246 llvm::Value *CalleeRTTI = 4247 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4248 llvm::Value *CalleeRTTIMatch = 4249 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4250 llvm::Constant *StaticData[] = { 4251 EmitCheckSourceLocation(E->getLocStart()), 4252 EmitCheckTypeDescriptor(CalleeType) 4253 }; 4254 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4255 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4256 4257 Builder.CreateBr(Cont); 4258 EmitBlock(Cont); 4259 } 4260 } 4261 4262 // If we are checking indirect calls and this call is indirect, check that the 4263 // function pointer is a member of the bit set for the function type. 4264 if (SanOpts.has(SanitizerKind::CFIICall) && 4265 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4266 SanitizerScope SanScope(this); 4267 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4268 4269 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4270 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4271 4272 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4273 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4274 llvm::Value *TypeTest = Builder.CreateCall( 4275 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4276 4277 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4278 llvm::Constant *StaticData[] = { 4279 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4280 EmitCheckSourceLocation(E->getLocStart()), 4281 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4282 }; 4283 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4284 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4285 CastedCallee, StaticData); 4286 } else { 4287 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4288 SanitizerHandler::CFICheckFail, StaticData, 4289 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4290 } 4291 } 4292 4293 CallArgList Args; 4294 if (Chain) 4295 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4296 CGM.getContext().VoidPtrTy); 4297 4298 // C++17 requires that we evaluate arguments to a call using assignment syntax 4299 // right-to-left, and that we evaluate arguments to certain other operators 4300 // left-to-right. Note that we allow this to override the order dictated by 4301 // the calling convention on the MS ABI, which means that parameter 4302 // destruction order is not necessarily reverse construction order. 4303 // FIXME: Revisit this based on C++ committee response to unimplementability. 4304 EvaluationOrder Order = EvaluationOrder::Default; 4305 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4306 if (OCE->isAssignmentOp()) 4307 Order = EvaluationOrder::ForceRightToLeft; 4308 else { 4309 switch (OCE->getOperator()) { 4310 case OO_LessLess: 4311 case OO_GreaterGreater: 4312 case OO_AmpAmp: 4313 case OO_PipePipe: 4314 case OO_Comma: 4315 case OO_ArrowStar: 4316 Order = EvaluationOrder::ForceLeftToRight; 4317 break; 4318 default: 4319 break; 4320 } 4321 } 4322 } 4323 4324 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4325 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4326 4327 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4328 Args, FnType, /*isChainCall=*/Chain); 4329 4330 // C99 6.5.2.2p6: 4331 // If the expression that denotes the called function has a type 4332 // that does not include a prototype, [the default argument 4333 // promotions are performed]. If the number of arguments does not 4334 // equal the number of parameters, the behavior is undefined. If 4335 // the function is defined with a type that includes a prototype, 4336 // and either the prototype ends with an ellipsis (, ...) or the 4337 // types of the arguments after promotion are not compatible with 4338 // the types of the parameters, the behavior is undefined. If the 4339 // function is defined with a type that does not include a 4340 // prototype, and the types of the arguments after promotion are 4341 // not compatible with those of the parameters after promotion, 4342 // the behavior is undefined [except in some trivial cases]. 4343 // That is, in the general case, we should assume that a call 4344 // through an unprototyped function type works like a *non-variadic* 4345 // call. The way we make this work is to cast to the exact type 4346 // of the promoted arguments. 4347 // 4348 // Chain calls use this same code path to add the invisible chain parameter 4349 // to the function type. 4350 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4351 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4352 CalleeTy = CalleeTy->getPointerTo(); 4353 4354 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4355 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4356 Callee.setFunctionPointer(CalleePtr); 4357 } 4358 4359 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4360 } 4361 4362 LValue CodeGenFunction:: 4363 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4364 Address BaseAddr = Address::invalid(); 4365 if (E->getOpcode() == BO_PtrMemI) { 4366 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4367 } else { 4368 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4369 } 4370 4371 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4372 4373 const MemberPointerType *MPT 4374 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4375 4376 AlignmentSource AlignSource; 4377 Address MemberAddr = 4378 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, 4379 &AlignSource); 4380 4381 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource); 4382 } 4383 4384 /// Given the address of a temporary variable, produce an r-value of 4385 /// its type. 4386 RValue CodeGenFunction::convertTempToRValue(Address addr, 4387 QualType type, 4388 SourceLocation loc) { 4389 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4390 switch (getEvaluationKind(type)) { 4391 case TEK_Complex: 4392 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4393 case TEK_Aggregate: 4394 return lvalue.asAggregateRValue(); 4395 case TEK_Scalar: 4396 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4397 } 4398 llvm_unreachable("bad evaluation kind"); 4399 } 4400 4401 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4402 assert(Val->getType()->isFPOrFPVectorTy()); 4403 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4404 return; 4405 4406 llvm::MDBuilder MDHelper(getLLVMContext()); 4407 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4408 4409 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4410 } 4411 4412 namespace { 4413 struct LValueOrRValue { 4414 LValue LV; 4415 RValue RV; 4416 }; 4417 } 4418 4419 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4420 const PseudoObjectExpr *E, 4421 bool forLValue, 4422 AggValueSlot slot) { 4423 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4424 4425 // Find the result expression, if any. 4426 const Expr *resultExpr = E->getResultExpr(); 4427 LValueOrRValue result; 4428 4429 for (PseudoObjectExpr::const_semantics_iterator 4430 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4431 const Expr *semantic = *i; 4432 4433 // If this semantic expression is an opaque value, bind it 4434 // to the result of its source expression. 4435 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4436 4437 // If this is the result expression, we may need to evaluate 4438 // directly into the slot. 4439 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4440 OVMA opaqueData; 4441 if (ov == resultExpr && ov->isRValue() && !forLValue && 4442 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4443 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4444 4445 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4446 AlignmentSource::Decl); 4447 opaqueData = OVMA::bind(CGF, ov, LV); 4448 result.RV = slot.asRValue(); 4449 4450 // Otherwise, emit as normal. 4451 } else { 4452 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4453 4454 // If this is the result, also evaluate the result now. 4455 if (ov == resultExpr) { 4456 if (forLValue) 4457 result.LV = CGF.EmitLValue(ov); 4458 else 4459 result.RV = CGF.EmitAnyExpr(ov, slot); 4460 } 4461 } 4462 4463 opaques.push_back(opaqueData); 4464 4465 // Otherwise, if the expression is the result, evaluate it 4466 // and remember the result. 4467 } else if (semantic == resultExpr) { 4468 if (forLValue) 4469 result.LV = CGF.EmitLValue(semantic); 4470 else 4471 result.RV = CGF.EmitAnyExpr(semantic, slot); 4472 4473 // Otherwise, evaluate the expression in an ignored context. 4474 } else { 4475 CGF.EmitIgnoredExpr(semantic); 4476 } 4477 } 4478 4479 // Unbind all the opaques now. 4480 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4481 opaques[i].unbind(CGF); 4482 4483 return result; 4484 } 4485 4486 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4487 AggValueSlot slot) { 4488 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4489 } 4490 4491 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4492 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4493 } 4494