1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGCleanup.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CGRecordLayout.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenModule.h" 23 #include "ConstantEmitter.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/NSAPI.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/ADT/Hashing.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/Path.h" 39 #include "llvm/Transforms/Utils/SanitizerStats.h" 40 41 #include <string> 42 43 using namespace clang; 44 using namespace CodeGen; 45 46 //===--------------------------------------------------------------------===// 47 // Miscellaneous Helper Methods 48 //===--------------------------------------------------------------------===// 49 50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) { 51 unsigned addressSpace = 52 cast<llvm::PointerType>(value->getType())->getAddressSpace(); 53 54 llvm::PointerType *destType = Int8PtrTy; 55 if (addressSpace) 56 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace); 57 58 if (value->getType() == destType) return value; 59 return Builder.CreateBitCast(value, destType); 60 } 61 62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 63 /// block. 64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align, 65 const Twine &Name, 66 llvm::Value *ArraySize, 67 bool CastToDefaultAddrSpace) { 68 auto Alloca = CreateTempAlloca(Ty, Name, ArraySize); 69 Alloca->setAlignment(Align.getQuantity()); 70 llvm::Value *V = Alloca; 71 // Alloca always returns a pointer in alloca address space, which may 72 // be different from the type defined by the language. For example, 73 // in C++ the auto variables are in the default address space. Therefore 74 // cast alloca to the default address space when necessary. 75 if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) { 76 auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default); 77 llvm::IRBuilderBase::InsertPointGuard IPG(Builder); 78 // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt, 79 // otherwise alloca is inserted at the current insertion point of the 80 // builder. 81 if (!ArraySize) 82 Builder.SetInsertPoint(AllocaInsertPt); 83 V = getTargetHooks().performAddrSpaceCast( 84 *this, V, getASTAllocaAddressSpace(), LangAS::Default, 85 Ty->getPointerTo(DestAddrSpace), /*non-null*/ true); 86 } 87 88 return Address(V, Align); 89 } 90 91 /// CreateTempAlloca - This creates an alloca and inserts it into the entry 92 /// block if \p ArraySize is nullptr, otherwise inserts it at the current 93 /// insertion point of the builder. 94 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, 95 const Twine &Name, 96 llvm::Value *ArraySize) { 97 if (ArraySize) 98 return Builder.CreateAlloca(Ty, ArraySize, Name); 99 return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(), 100 ArraySize, Name, AllocaInsertPt); 101 } 102 103 /// CreateDefaultAlignTempAlloca - This creates an alloca with the 104 /// default alignment of the corresponding LLVM type, which is *not* 105 /// guaranteed to be related in any way to the expected alignment of 106 /// an AST type that might have been lowered to Ty. 107 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty, 108 const Twine &Name) { 109 CharUnits Align = 110 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty)); 111 return CreateTempAlloca(Ty, Align, Name); 112 } 113 114 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) { 115 assert(isa<llvm::AllocaInst>(Var.getPointer())); 116 auto *Store = new llvm::StoreInst(Init, Var.getPointer()); 117 Store->setAlignment(Var.getAlignment().getQuantity()); 118 llvm::BasicBlock *Block = AllocaInsertPt->getParent(); 119 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store); 120 } 121 122 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) { 123 CharUnits Align = getContext().getTypeAlignInChars(Ty); 124 return CreateTempAlloca(ConvertType(Ty), Align, Name); 125 } 126 127 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name, 128 bool CastToDefaultAddrSpace) { 129 // FIXME: Should we prefer the preferred type alignment here? 130 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, 131 CastToDefaultAddrSpace); 132 } 133 134 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align, 135 const Twine &Name, 136 bool CastToDefaultAddrSpace) { 137 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr, 138 CastToDefaultAddrSpace); 139 } 140 141 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 142 /// expression and compare the result against zero, returning an Int1Ty value. 143 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { 144 PGO.setCurrentStmt(E); 145 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) { 146 llvm::Value *MemPtr = EmitScalarExpr(E); 147 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT); 148 } 149 150 QualType BoolTy = getContext().BoolTy; 151 SourceLocation Loc = E->getExprLoc(); 152 if (!E->getType()->isAnyComplexType()) 153 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc); 154 155 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy, 156 Loc); 157 } 158 159 /// EmitIgnoredExpr - Emit code to compute the specified expression, 160 /// ignoring the result. 161 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) { 162 if (E->isRValue()) 163 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true); 164 165 // Just emit it as an l-value and drop the result. 166 EmitLValue(E); 167 } 168 169 /// EmitAnyExpr - Emit code to compute the specified expression which 170 /// can have any type. The result is returned as an RValue struct. 171 /// If this is an aggregate expression, AggSlot indicates where the 172 /// result should be returned. 173 RValue CodeGenFunction::EmitAnyExpr(const Expr *E, 174 AggValueSlot aggSlot, 175 bool ignoreResult) { 176 switch (getEvaluationKind(E->getType())) { 177 case TEK_Scalar: 178 return RValue::get(EmitScalarExpr(E, ignoreResult)); 179 case TEK_Complex: 180 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult)); 181 case TEK_Aggregate: 182 if (!ignoreResult && aggSlot.isIgnored()) 183 aggSlot = CreateAggTemp(E->getType(), "agg-temp"); 184 EmitAggExpr(E, aggSlot); 185 return aggSlot.asRValue(); 186 } 187 llvm_unreachable("bad evaluation kind"); 188 } 189 190 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 191 /// always be accessible even if no aggregate location is provided. 192 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) { 193 AggValueSlot AggSlot = AggValueSlot::ignored(); 194 195 if (hasAggregateEvaluationKind(E->getType())) 196 AggSlot = CreateAggTemp(E->getType(), "agg.tmp"); 197 return EmitAnyExpr(E, AggSlot); 198 } 199 200 /// EmitAnyExprToMem - Evaluate an expression into a given memory 201 /// location. 202 void CodeGenFunction::EmitAnyExprToMem(const Expr *E, 203 Address Location, 204 Qualifiers Quals, 205 bool IsInit) { 206 // FIXME: This function should take an LValue as an argument. 207 switch (getEvaluationKind(E->getType())) { 208 case TEK_Complex: 209 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()), 210 /*isInit*/ false); 211 return; 212 213 case TEK_Aggregate: { 214 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals, 215 AggValueSlot::IsDestructed_t(IsInit), 216 AggValueSlot::DoesNotNeedGCBarriers, 217 AggValueSlot::IsAliased_t(!IsInit))); 218 return; 219 } 220 221 case TEK_Scalar: { 222 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false)); 223 LValue LV = MakeAddrLValue(Location, E->getType()); 224 EmitStoreThroughLValue(RV, LV); 225 return; 226 } 227 } 228 llvm_unreachable("bad evaluation kind"); 229 } 230 231 static void 232 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M, 233 const Expr *E, Address ReferenceTemporary) { 234 // Objective-C++ ARC: 235 // If we are binding a reference to a temporary that has ownership, we 236 // need to perform retain/release operations on the temporary. 237 // 238 // FIXME: This should be looking at E, not M. 239 if (auto Lifetime = M->getType().getObjCLifetime()) { 240 switch (Lifetime) { 241 case Qualifiers::OCL_None: 242 case Qualifiers::OCL_ExplicitNone: 243 // Carry on to normal cleanup handling. 244 break; 245 246 case Qualifiers::OCL_Autoreleasing: 247 // Nothing to do; cleaned up by an autorelease pool. 248 return; 249 250 case Qualifiers::OCL_Strong: 251 case Qualifiers::OCL_Weak: 252 switch (StorageDuration Duration = M->getStorageDuration()) { 253 case SD_Static: 254 // Note: we intentionally do not register a cleanup to release 255 // the object on program termination. 256 return; 257 258 case SD_Thread: 259 // FIXME: We should probably register a cleanup in this case. 260 return; 261 262 case SD_Automatic: 263 case SD_FullExpression: 264 CodeGenFunction::Destroyer *Destroy; 265 CleanupKind CleanupKind; 266 if (Lifetime == Qualifiers::OCL_Strong) { 267 const ValueDecl *VD = M->getExtendingDecl(); 268 bool Precise = 269 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>(); 270 CleanupKind = CGF.getARCCleanupKind(); 271 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise 272 : &CodeGenFunction::destroyARCStrongImprecise; 273 } else { 274 // __weak objects always get EH cleanups; otherwise, exceptions 275 // could cause really nasty crashes instead of mere leaks. 276 CleanupKind = NormalAndEHCleanup; 277 Destroy = &CodeGenFunction::destroyARCWeak; 278 } 279 if (Duration == SD_FullExpression) 280 CGF.pushDestroy(CleanupKind, ReferenceTemporary, 281 M->getType(), *Destroy, 282 CleanupKind & EHCleanup); 283 else 284 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary, 285 M->getType(), 286 *Destroy, CleanupKind & EHCleanup); 287 return; 288 289 case SD_Dynamic: 290 llvm_unreachable("temporary cannot have dynamic storage duration"); 291 } 292 llvm_unreachable("unknown storage duration"); 293 } 294 } 295 296 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr; 297 if (const RecordType *RT = 298 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) { 299 // Get the destructor for the reference temporary. 300 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 301 if (!ClassDecl->hasTrivialDestructor()) 302 ReferenceTemporaryDtor = ClassDecl->getDestructor(); 303 } 304 305 if (!ReferenceTemporaryDtor) 306 return; 307 308 // Call the destructor for the temporary. 309 switch (M->getStorageDuration()) { 310 case SD_Static: 311 case SD_Thread: { 312 llvm::Constant *CleanupFn; 313 llvm::Constant *CleanupArg; 314 if (E->getType()->isArrayType()) { 315 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper( 316 ReferenceTemporary, E->getType(), 317 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions, 318 dyn_cast_or_null<VarDecl>(M->getExtendingDecl())); 319 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy); 320 } else { 321 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor, 322 StructorType::Complete); 323 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer()); 324 } 325 CGF.CGM.getCXXABI().registerGlobalDtor( 326 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg); 327 break; 328 } 329 330 case SD_FullExpression: 331 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(), 332 CodeGenFunction::destroyCXXObject, 333 CGF.getLangOpts().Exceptions); 334 break; 335 336 case SD_Automatic: 337 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup, 338 ReferenceTemporary, E->getType(), 339 CodeGenFunction::destroyCXXObject, 340 CGF.getLangOpts().Exceptions); 341 break; 342 343 case SD_Dynamic: 344 llvm_unreachable("temporary cannot have dynamic storage duration"); 345 } 346 } 347 348 static Address createReferenceTemporary(CodeGenFunction &CGF, 349 const MaterializeTemporaryExpr *M, 350 const Expr *Inner) { 351 auto &TCG = CGF.getTargetHooks(); 352 switch (M->getStorageDuration()) { 353 case SD_FullExpression: 354 case SD_Automatic: { 355 // If we have a constant temporary array or record try to promote it into a 356 // constant global under the same rules a normal constant would've been 357 // promoted. This is easier on the optimizer and generally emits fewer 358 // instructions. 359 QualType Ty = Inner->getType(); 360 if (CGF.CGM.getCodeGenOpts().MergeAllConstants && 361 (Ty->isArrayType() || Ty->isRecordType()) && 362 CGF.CGM.isTypeConstant(Ty, true)) 363 if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) { 364 if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) { 365 auto AS = AddrSpace.getValue(); 366 auto *GV = new llvm::GlobalVariable( 367 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, 368 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr, 369 llvm::GlobalValue::NotThreadLocal, 370 CGF.getContext().getTargetAddressSpace(AS)); 371 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty); 372 GV->setAlignment(alignment.getQuantity()); 373 llvm::Constant *C = GV; 374 if (AS != LangAS::Default) 375 C = TCG.performAddrSpaceCast( 376 CGF.CGM, GV, AS, LangAS::Default, 377 GV->getValueType()->getPointerTo( 378 CGF.getContext().getTargetAddressSpace(LangAS::Default))); 379 // FIXME: Should we put the new global into a COMDAT? 380 return Address(C, alignment); 381 } 382 } 383 return CGF.CreateMemTemp(Ty, "ref.tmp"); 384 } 385 case SD_Thread: 386 case SD_Static: 387 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner); 388 389 case SD_Dynamic: 390 llvm_unreachable("temporary can't have dynamic storage duration"); 391 } 392 llvm_unreachable("unknown storage duration"); 393 } 394 395 LValue CodeGenFunction:: 396 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) { 397 const Expr *E = M->GetTemporaryExpr(); 398 399 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so 400 // as that will cause the lifetime adjustment to be lost for ARC 401 auto ownership = M->getType().getObjCLifetime(); 402 if (ownership != Qualifiers::OCL_None && 403 ownership != Qualifiers::OCL_ExplicitNone) { 404 Address Object = createReferenceTemporary(*this, M, E); 405 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) { 406 Object = Address(llvm::ConstantExpr::getBitCast(Var, 407 ConvertTypeForMem(E->getType()) 408 ->getPointerTo(Object.getAddressSpace())), 409 Object.getAlignment()); 410 411 // createReferenceTemporary will promote the temporary to a global with a 412 // constant initializer if it can. It can only do this to a value of 413 // ARC-manageable type if the value is global and therefore "immune" to 414 // ref-counting operations. Therefore we have no need to emit either a 415 // dynamic initialization or a cleanup and we can just return the address 416 // of the temporary. 417 if (Var->hasInitializer()) 418 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 419 420 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 421 } 422 LValue RefTempDst = MakeAddrLValue(Object, M->getType(), 423 AlignmentSource::Decl); 424 425 switch (getEvaluationKind(E->getType())) { 426 default: llvm_unreachable("expected scalar or aggregate expression"); 427 case TEK_Scalar: 428 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false); 429 break; 430 case TEK_Aggregate: { 431 EmitAggExpr(E, AggValueSlot::forAddr(Object, 432 E->getType().getQualifiers(), 433 AggValueSlot::IsDestructed, 434 AggValueSlot::DoesNotNeedGCBarriers, 435 AggValueSlot::IsNotAliased)); 436 break; 437 } 438 } 439 440 pushTemporaryCleanup(*this, M, E, Object); 441 return RefTempDst; 442 } 443 444 SmallVector<const Expr *, 2> CommaLHSs; 445 SmallVector<SubobjectAdjustment, 2> Adjustments; 446 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 447 448 for (const auto &Ignored : CommaLHSs) 449 EmitIgnoredExpr(Ignored); 450 451 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) { 452 if (opaque->getType()->isRecordType()) { 453 assert(Adjustments.empty()); 454 return EmitOpaqueValueLValue(opaque); 455 } 456 } 457 458 // Create and initialize the reference temporary. 459 Address Object = createReferenceTemporary(*this, M, E); 460 if (auto *Var = dyn_cast<llvm::GlobalVariable>( 461 Object.getPointer()->stripPointerCasts())) { 462 Object = Address(llvm::ConstantExpr::getBitCast( 463 cast<llvm::Constant>(Object.getPointer()), 464 ConvertTypeForMem(E->getType())->getPointerTo()), 465 Object.getAlignment()); 466 // If the temporary is a global and has a constant initializer or is a 467 // constant temporary that we promoted to a global, we may have already 468 // initialized it. 469 if (!Var->hasInitializer()) { 470 Var->setInitializer(CGM.EmitNullConstant(E->getType())); 471 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 472 } 473 } else { 474 switch (M->getStorageDuration()) { 475 case SD_Automatic: 476 case SD_FullExpression: 477 if (auto *Size = EmitLifetimeStart( 478 CGM.getDataLayout().getTypeAllocSize(Object.getElementType()), 479 Object.getPointer())) { 480 if (M->getStorageDuration() == SD_Automatic) 481 pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker, 482 Object, Size); 483 else 484 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object, 485 Size); 486 } 487 break; 488 default: 489 break; 490 } 491 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true); 492 } 493 pushTemporaryCleanup(*this, M, E, Object); 494 495 // Perform derived-to-base casts and/or field accesses, to get from the 496 // temporary object we created (and, potentially, for which we extended 497 // the lifetime) to the subobject we're binding the reference to. 498 for (unsigned I = Adjustments.size(); I != 0; --I) { 499 SubobjectAdjustment &Adjustment = Adjustments[I-1]; 500 switch (Adjustment.Kind) { 501 case SubobjectAdjustment::DerivedToBaseAdjustment: 502 Object = 503 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass, 504 Adjustment.DerivedToBase.BasePath->path_begin(), 505 Adjustment.DerivedToBase.BasePath->path_end(), 506 /*NullCheckValue=*/ false, E->getExprLoc()); 507 break; 508 509 case SubobjectAdjustment::FieldAdjustment: { 510 LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl); 511 LV = EmitLValueForField(LV, Adjustment.Field); 512 assert(LV.isSimple() && 513 "materialized temporary field is not a simple lvalue"); 514 Object = LV.getAddress(); 515 break; 516 } 517 518 case SubobjectAdjustment::MemberPointerAdjustment: { 519 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS); 520 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr, 521 Adjustment.Ptr.MPT); 522 break; 523 } 524 } 525 } 526 527 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl); 528 } 529 530 RValue 531 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) { 532 // Emit the expression as an lvalue. 533 LValue LV = EmitLValue(E); 534 assert(LV.isSimple()); 535 llvm::Value *Value = LV.getPointer(); 536 537 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) { 538 // C++11 [dcl.ref]p5 (as amended by core issue 453): 539 // If a glvalue to which a reference is directly bound designates neither 540 // an existing object or function of an appropriate type nor a region of 541 // storage of suitable size and alignment to contain an object of the 542 // reference's type, the behavior is undefined. 543 QualType Ty = E->getType(); 544 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty); 545 } 546 547 return RValue::get(Value); 548 } 549 550 551 /// getAccessedFieldNo - Given an encoded value and a result number, return the 552 /// input field number being accessed. 553 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, 554 const llvm::Constant *Elts) { 555 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx)) 556 ->getZExtValue(); 557 } 558 559 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h. 560 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low, 561 llvm::Value *High) { 562 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL); 563 llvm::Value *K47 = Builder.getInt64(47); 564 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul); 565 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0); 566 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul); 567 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0); 568 return Builder.CreateMul(B1, KMul); 569 } 570 571 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) { 572 return TCK == TCK_DowncastPointer || TCK == TCK_Upcast || 573 TCK == TCK_UpcastToVirtualBase; 574 } 575 576 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) { 577 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 578 return (RD && RD->hasDefinition() && RD->isDynamicClass()) && 579 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall || 580 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference || 581 TCK == TCK_UpcastToVirtualBase); 582 } 583 584 bool CodeGenFunction::sanitizePerformTypeCheck() const { 585 return SanOpts.has(SanitizerKind::Null) | 586 SanOpts.has(SanitizerKind::Alignment) | 587 SanOpts.has(SanitizerKind::ObjectSize) | 588 SanOpts.has(SanitizerKind::Vptr); 589 } 590 591 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, 592 llvm::Value *Ptr, QualType Ty, 593 CharUnits Alignment, 594 SanitizerSet SkippedChecks) { 595 if (!sanitizePerformTypeCheck()) 596 return; 597 598 // Don't check pointers outside the default address space. The null check 599 // isn't correct, the object-size check isn't supported by LLVM, and we can't 600 // communicate the addresses to the runtime handler for the vptr check. 601 if (Ptr->getType()->getPointerAddressSpace()) 602 return; 603 604 // Don't check pointers to volatile data. The behavior here is implementation- 605 // defined. 606 if (Ty.isVolatileQualified()) 607 return; 608 609 SanitizerScope SanScope(this); 610 611 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks; 612 llvm::BasicBlock *Done = nullptr; 613 614 // Quickly determine whether we have a pointer to an alloca. It's possible 615 // to skip null checks, and some alignment checks, for these pointers. This 616 // can reduce compile-time significantly. 617 auto PtrToAlloca = 618 dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases()); 619 620 llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext()); 621 llvm::Value *IsNonNull = nullptr; 622 bool IsGuaranteedNonNull = 623 SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca; 624 bool AllowNullPointers = isNullPointerAllowed(TCK); 625 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) && 626 !IsGuaranteedNonNull) { 627 // The glvalue must not be an empty glvalue. 628 IsNonNull = Builder.CreateIsNotNull(Ptr); 629 630 // The IR builder can constant-fold the null check if the pointer points to 631 // a constant. 632 IsGuaranteedNonNull = IsNonNull == True; 633 634 // Skip the null check if the pointer is known to be non-null. 635 if (!IsGuaranteedNonNull) { 636 if (AllowNullPointers) { 637 // When performing pointer casts, it's OK if the value is null. 638 // Skip the remaining checks in that case. 639 Done = createBasicBlock("null"); 640 llvm::BasicBlock *Rest = createBasicBlock("not.null"); 641 Builder.CreateCondBr(IsNonNull, Rest, Done); 642 EmitBlock(Rest); 643 } else { 644 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null)); 645 } 646 } 647 } 648 649 if (SanOpts.has(SanitizerKind::ObjectSize) && 650 !SkippedChecks.has(SanitizerKind::ObjectSize) && 651 !Ty->isIncompleteType()) { 652 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity(); 653 654 // The glvalue must refer to a large enough storage region. 655 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation 656 // to check this. 657 // FIXME: Get object address space 658 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy }; 659 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys); 660 llvm::Value *Min = Builder.getFalse(); 661 llvm::Value *NullIsUnknown = Builder.getFalse(); 662 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy); 663 llvm::Value *LargeEnough = Builder.CreateICmpUGE( 664 Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}), 665 llvm::ConstantInt::get(IntPtrTy, Size)); 666 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize)); 667 } 668 669 uint64_t AlignVal = 0; 670 llvm::Value *PtrAsInt = nullptr; 671 672 if (SanOpts.has(SanitizerKind::Alignment) && 673 !SkippedChecks.has(SanitizerKind::Alignment)) { 674 AlignVal = Alignment.getQuantity(); 675 if (!Ty->isIncompleteType() && !AlignVal) 676 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity(); 677 678 // The glvalue must be suitably aligned. 679 if (AlignVal > 1 && 680 (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) { 681 PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy); 682 llvm::Value *Align = Builder.CreateAnd( 683 PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1)); 684 llvm::Value *Aligned = 685 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0)); 686 if (Aligned != True) 687 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment)); 688 } 689 } 690 691 if (Checks.size() > 0) { 692 // Make sure we're not losing information. Alignment needs to be a power of 693 // 2 694 assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal); 695 llvm::Constant *StaticData[] = { 696 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty), 697 llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1), 698 llvm::ConstantInt::get(Int8Ty, TCK)}; 699 EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData, 700 PtrAsInt ? PtrAsInt : Ptr); 701 } 702 703 // If possible, check that the vptr indicates that there is a subobject of 704 // type Ty at offset zero within this object. 705 // 706 // C++11 [basic.life]p5,6: 707 // [For storage which does not refer to an object within its lifetime] 708 // The program has undefined behavior if: 709 // -- the [pointer or glvalue] is used to access a non-static data member 710 // or call a non-static member function 711 if (SanOpts.has(SanitizerKind::Vptr) && 712 !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) { 713 // Ensure that the pointer is non-null before loading it. If there is no 714 // compile-time guarantee, reuse the run-time null check or emit a new one. 715 if (!IsGuaranteedNonNull) { 716 if (!IsNonNull) 717 IsNonNull = Builder.CreateIsNotNull(Ptr); 718 if (!Done) 719 Done = createBasicBlock("vptr.null"); 720 llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null"); 721 Builder.CreateCondBr(IsNonNull, VptrNotNull, Done); 722 EmitBlock(VptrNotNull); 723 } 724 725 // Compute a hash of the mangled name of the type. 726 // 727 // FIXME: This is not guaranteed to be deterministic! Move to a 728 // fingerprinting mechanism once LLVM provides one. For the time 729 // being the implementation happens to be deterministic. 730 SmallString<64> MangledName; 731 llvm::raw_svector_ostream Out(MangledName); 732 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(), 733 Out); 734 735 // Blacklist based on the mangled type. 736 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType( 737 SanitizerKind::Vptr, Out.str())) { 738 llvm::hash_code TypeHash = hash_value(Out.str()); 739 740 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr). 741 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash); 742 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0); 743 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign()); 744 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr); 745 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty); 746 747 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High); 748 Hash = Builder.CreateTrunc(Hash, IntPtrTy); 749 750 // Look the hash up in our cache. 751 const int CacheSize = 128; 752 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize); 753 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable, 754 "__ubsan_vptr_type_cache"); 755 llvm::Value *Slot = Builder.CreateAnd(Hash, 756 llvm::ConstantInt::get(IntPtrTy, 757 CacheSize-1)); 758 llvm::Value *Indices[] = { Builder.getInt32(0), Slot }; 759 llvm::Value *CacheVal = 760 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices), 761 getPointerAlign()); 762 763 // If the hash isn't in the cache, call a runtime handler to perform the 764 // hard work of checking whether the vptr is for an object of the right 765 // type. This will either fill in the cache and return, or produce a 766 // diagnostic. 767 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash); 768 llvm::Constant *StaticData[] = { 769 EmitCheckSourceLocation(Loc), 770 EmitCheckTypeDescriptor(Ty), 771 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()), 772 llvm::ConstantInt::get(Int8Ty, TCK) 773 }; 774 llvm::Value *DynamicData[] = { Ptr, Hash }; 775 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr), 776 SanitizerHandler::DynamicTypeCacheMiss, StaticData, 777 DynamicData); 778 } 779 } 780 781 if (Done) { 782 Builder.CreateBr(Done); 783 EmitBlock(Done); 784 } 785 } 786 787 /// Determine whether this expression refers to a flexible array member in a 788 /// struct. We disable array bounds checks for such members. 789 static bool isFlexibleArrayMemberExpr(const Expr *E) { 790 // For compatibility with existing code, we treat arrays of length 0 or 791 // 1 as flexible array members. 792 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe(); 793 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { 794 if (CAT->getSize().ugt(1)) 795 return false; 796 } else if (!isa<IncompleteArrayType>(AT)) 797 return false; 798 799 E = E->IgnoreParens(); 800 801 // A flexible array member must be the last member in the class. 802 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 803 // FIXME: If the base type of the member expr is not FD->getParent(), 804 // this should not be treated as a flexible array member access. 805 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { 806 RecordDecl::field_iterator FI( 807 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD))); 808 return ++FI == FD->getParent()->field_end(); 809 } 810 } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) { 811 return IRE->getDecl()->getNextIvar() == nullptr; 812 } 813 814 return false; 815 } 816 817 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E, 818 QualType EltTy) { 819 ASTContext &C = getContext(); 820 uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity(); 821 if (!EltSize) 822 return nullptr; 823 824 auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()); 825 if (!ArrayDeclRef) 826 return nullptr; 827 828 auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl()); 829 if (!ParamDecl) 830 return nullptr; 831 832 // Arrays don't have pass_object_size attributes, but if they have a constant 833 // size modifier it's the array size (C99 6.5.7.2p1). 834 if (auto *DecayedArrayTy = dyn_cast<DecayedType>(ParamDecl->getType())) 835 if (auto *ArrayTy = 836 dyn_cast<ConstantArrayType>(DecayedArrayTy->getOriginalType())) 837 return llvm::ConstantInt::get(SizeTy, 838 ArrayTy->getSize().getLimitedValue()); 839 840 auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>(); 841 if (!POSAttr) 842 return nullptr; 843 844 // Don't load the size if it's a lower bound. 845 int POSType = POSAttr->getType(); 846 if (POSType != 0 && POSType != 1) 847 return nullptr; 848 849 // Find the implicit size parameter. 850 auto PassedSizeIt = SizeArguments.find(ParamDecl); 851 if (PassedSizeIt == SizeArguments.end()) 852 return nullptr; 853 854 const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second; 855 assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable"); 856 Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second; 857 llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false, 858 C.getSizeType(), E->getExprLoc()); 859 llvm::Value *SizeOfElement = 860 llvm::ConstantInt::get(SizeInBytes->getType(), EltSize); 861 return Builder.CreateUDiv(SizeInBytes, SizeOfElement); 862 } 863 864 /// If Base is known to point to the start of an array, return the length of 865 /// that array. Return 0 if the length cannot be determined. 866 static llvm::Value *getArrayIndexingBound( 867 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) { 868 // For the vector indexing extension, the bound is the number of elements. 869 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) { 870 IndexedType = Base->getType(); 871 return CGF.Builder.getInt32(VT->getNumElements()); 872 } 873 874 Base = Base->IgnoreParens(); 875 876 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 877 if (CE->getCastKind() == CK_ArrayToPointerDecay && 878 !isFlexibleArrayMemberExpr(CE->getSubExpr())) { 879 IndexedType = CE->getSubExpr()->getType(); 880 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe(); 881 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 882 return CGF.Builder.getInt(CAT->getSize()); 883 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) 884 return CGF.getVLASize(VAT).first; 885 // Ignore pass_object_size here. It's not applicable on decayed pointers. 886 } 887 } 888 889 QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0}; 890 if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) { 891 IndexedType = Base->getType(); 892 return POS; 893 } 894 895 return nullptr; 896 } 897 898 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base, 899 llvm::Value *Index, QualType IndexType, 900 bool Accessed) { 901 assert(SanOpts.has(SanitizerKind::ArrayBounds) && 902 "should not be called unless adding bounds checks"); 903 SanitizerScope SanScope(this); 904 905 QualType IndexedType; 906 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType); 907 if (!Bound) 908 return; 909 910 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType(); 911 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned); 912 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false); 913 914 llvm::Constant *StaticData[] = { 915 EmitCheckSourceLocation(E->getExprLoc()), 916 EmitCheckTypeDescriptor(IndexedType), 917 EmitCheckTypeDescriptor(IndexType) 918 }; 919 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal) 920 : Builder.CreateICmpULE(IndexVal, BoundVal); 921 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), 922 SanitizerHandler::OutOfBounds, StaticData, Index); 923 } 924 925 926 CodeGenFunction::ComplexPairTy CodeGenFunction:: 927 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 928 bool isInc, bool isPre) { 929 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc()); 930 931 llvm::Value *NextVal; 932 if (isa<llvm::IntegerType>(InVal.first->getType())) { 933 uint64_t AmountVal = isInc ? 1 : -1; 934 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true); 935 936 // Add the inc/dec to the real part. 937 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 938 } else { 939 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType(); 940 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1); 941 if (!isInc) 942 FVal.changeSign(); 943 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal); 944 945 // Add the inc/dec to the real part. 946 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec"); 947 } 948 949 ComplexPairTy IncVal(NextVal, InVal.second); 950 951 // Store the updated result through the lvalue. 952 EmitStoreOfComplex(IncVal, LV, /*init*/ false); 953 954 // If this is a postinc, return the value read from memory, otherwise use the 955 // updated value. 956 return isPre ? IncVal : InVal; 957 } 958 959 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E, 960 CodeGenFunction *CGF) { 961 // Bind VLAs in the cast type. 962 if (CGF && E->getType()->isVariablyModifiedType()) 963 CGF->EmitVariablyModifiedType(E->getType()); 964 965 if (CGDebugInfo *DI = getModuleDebugInfo()) 966 DI->EmitExplicitCastType(E->getType()); 967 } 968 969 //===----------------------------------------------------------------------===// 970 // LValue Expression Emission 971 //===----------------------------------------------------------------------===// 972 973 /// EmitPointerWithAlignment - Given an expression of pointer type, try to 974 /// derive a more accurate bound on the alignment of the pointer. 975 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E, 976 LValueBaseInfo *BaseInfo, 977 TBAAAccessInfo *TBAAInfo) { 978 // We allow this with ObjC object pointers because of fragile ABIs. 979 assert(E->getType()->isPointerType() || 980 E->getType()->isObjCObjectPointerType()); 981 E = E->IgnoreParens(); 982 983 // Casts: 984 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 985 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE)) 986 CGM.EmitExplicitCastExprType(ECE, this); 987 988 switch (CE->getCastKind()) { 989 // Non-converting casts (but not C's implicit conversion from void*). 990 case CK_BitCast: 991 case CK_NoOp: 992 case CK_AddressSpaceConversion: 993 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) { 994 if (PtrTy->getPointeeType()->isVoidType()) 995 break; 996 997 LValueBaseInfo InnerBaseInfo; 998 TBAAAccessInfo InnerTBAAInfo; 999 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), 1000 &InnerBaseInfo, 1001 &InnerTBAAInfo); 1002 if (BaseInfo) *BaseInfo = InnerBaseInfo; 1003 if (TBAAInfo) *TBAAInfo = InnerTBAAInfo; 1004 1005 if (isa<ExplicitCastExpr>(CE)) { 1006 LValueBaseInfo TargetTypeBaseInfo; 1007 TBAAAccessInfo TargetTypeTBAAInfo; 1008 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), 1009 &TargetTypeBaseInfo, 1010 &TargetTypeTBAAInfo); 1011 if (TBAAInfo) 1012 *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo, 1013 TargetTypeTBAAInfo); 1014 // If the source l-value is opaque, honor the alignment of the 1015 // casted-to type. 1016 if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) { 1017 if (BaseInfo) 1018 BaseInfo->mergeForCast(TargetTypeBaseInfo); 1019 Addr = Address(Addr.getPointer(), Align); 1020 } 1021 } 1022 1023 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) && 1024 CE->getCastKind() == CK_BitCast) { 1025 if (auto PT = E->getType()->getAs<PointerType>()) 1026 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(), 1027 /*MayBeNull=*/true, 1028 CodeGenFunction::CFITCK_UnrelatedCast, 1029 CE->getLocStart()); 1030 } 1031 return CE->getCastKind() != CK_AddressSpaceConversion 1032 ? Builder.CreateBitCast(Addr, ConvertType(E->getType())) 1033 : Builder.CreateAddrSpaceCast(Addr, 1034 ConvertType(E->getType())); 1035 } 1036 break; 1037 1038 // Array-to-pointer decay. 1039 case CK_ArrayToPointerDecay: 1040 return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo); 1041 1042 // Derived-to-base conversions. 1043 case CK_UncheckedDerivedToBase: 1044 case CK_DerivedToBase: { 1045 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo, 1046 TBAAInfo); 1047 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl(); 1048 return GetAddressOfBaseClass(Addr, Derived, 1049 CE->path_begin(), CE->path_end(), 1050 ShouldNullCheckClassCastValue(CE), 1051 CE->getExprLoc()); 1052 } 1053 1054 // TODO: Is there any reason to treat base-to-derived conversions 1055 // specially? 1056 default: 1057 break; 1058 } 1059 } 1060 1061 // Unary &. 1062 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 1063 if (UO->getOpcode() == UO_AddrOf) { 1064 LValue LV = EmitLValue(UO->getSubExpr()); 1065 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 1066 if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo(); 1067 return LV.getAddress(); 1068 } 1069 } 1070 1071 // TODO: conditional operators, comma. 1072 1073 // Otherwise, use the alignment of the type. 1074 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, 1075 TBAAInfo); 1076 return Address(EmitScalarExpr(E), Align); 1077 } 1078 1079 RValue CodeGenFunction::GetUndefRValue(QualType Ty) { 1080 if (Ty->isVoidType()) 1081 return RValue::get(nullptr); 1082 1083 switch (getEvaluationKind(Ty)) { 1084 case TEK_Complex: { 1085 llvm::Type *EltTy = 1086 ConvertType(Ty->castAs<ComplexType>()->getElementType()); 1087 llvm::Value *U = llvm::UndefValue::get(EltTy); 1088 return RValue::getComplex(std::make_pair(U, U)); 1089 } 1090 1091 // If this is a use of an undefined aggregate type, the aggregate must have an 1092 // identifiable address. Just because the contents of the value are undefined 1093 // doesn't mean that the address can't be taken and compared. 1094 case TEK_Aggregate: { 1095 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp"); 1096 return RValue::getAggregate(DestPtr); 1097 } 1098 1099 case TEK_Scalar: 1100 return RValue::get(llvm::UndefValue::get(ConvertType(Ty))); 1101 } 1102 llvm_unreachable("bad evaluation kind"); 1103 } 1104 1105 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E, 1106 const char *Name) { 1107 ErrorUnsupported(E, Name); 1108 return GetUndefRValue(E->getType()); 1109 } 1110 1111 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, 1112 const char *Name) { 1113 ErrorUnsupported(E, Name); 1114 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); 1115 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()), 1116 E->getType()); 1117 } 1118 1119 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) { 1120 const Expr *Base = Obj; 1121 while (!isa<CXXThisExpr>(Base)) { 1122 // The result of a dynamic_cast can be null. 1123 if (isa<CXXDynamicCastExpr>(Base)) 1124 return false; 1125 1126 if (const auto *CE = dyn_cast<CastExpr>(Base)) { 1127 Base = CE->getSubExpr(); 1128 } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) { 1129 Base = PE->getSubExpr(); 1130 } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) { 1131 if (UO->getOpcode() == UO_Extension) 1132 Base = UO->getSubExpr(); 1133 else 1134 return false; 1135 } else { 1136 return false; 1137 } 1138 } 1139 return true; 1140 } 1141 1142 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) { 1143 LValue LV; 1144 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E)) 1145 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true); 1146 else 1147 LV = EmitLValue(E); 1148 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) { 1149 SanitizerSet SkippedChecks; 1150 if (const auto *ME = dyn_cast<MemberExpr>(E)) { 1151 bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase()); 1152 if (IsBaseCXXThis) 1153 SkippedChecks.set(SanitizerKind::Alignment, true); 1154 if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase())) 1155 SkippedChecks.set(SanitizerKind::Null, true); 1156 } 1157 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(), 1158 E->getType(), LV.getAlignment(), SkippedChecks); 1159 } 1160 return LV; 1161 } 1162 1163 /// EmitLValue - Emit code to compute a designator that specifies the location 1164 /// of the expression. 1165 /// 1166 /// This can return one of two things: a simple address or a bitfield reference. 1167 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be 1168 /// an LLVM pointer type. 1169 /// 1170 /// If this returns a bitfield reference, nothing about the pointee type of the 1171 /// LLVM value is known: For example, it may not be a pointer to an integer. 1172 /// 1173 /// If this returns a normal address, and if the lvalue's C type is fixed size, 1174 /// this method guarantees that the returned pointer type will point to an LLVM 1175 /// type of the same size of the lvalue's type. If the lvalue has a variable 1176 /// length type, this is not possible. 1177 /// 1178 LValue CodeGenFunction::EmitLValue(const Expr *E) { 1179 ApplyDebugLocation DL(*this, E); 1180 switch (E->getStmtClass()) { 1181 default: return EmitUnsupportedLValue(E, "l-value expression"); 1182 1183 case Expr::ObjCPropertyRefExprClass: 1184 llvm_unreachable("cannot emit a property reference directly"); 1185 1186 case Expr::ObjCSelectorExprClass: 1187 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E)); 1188 case Expr::ObjCIsaExprClass: 1189 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E)); 1190 case Expr::BinaryOperatorClass: 1191 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); 1192 case Expr::CompoundAssignOperatorClass: { 1193 QualType Ty = E->getType(); 1194 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1195 Ty = AT->getValueType(); 1196 if (!Ty->isAnyComplexType()) 1197 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1198 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E)); 1199 } 1200 case Expr::CallExprClass: 1201 case Expr::CXXMemberCallExprClass: 1202 case Expr::CXXOperatorCallExprClass: 1203 case Expr::UserDefinedLiteralClass: 1204 return EmitCallExprLValue(cast<CallExpr>(E)); 1205 case Expr::VAArgExprClass: 1206 return EmitVAArgExprLValue(cast<VAArgExpr>(E)); 1207 case Expr::DeclRefExprClass: 1208 return EmitDeclRefLValue(cast<DeclRefExpr>(E)); 1209 case Expr::ParenExprClass: 1210 return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); 1211 case Expr::GenericSelectionExprClass: 1212 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr()); 1213 case Expr::PredefinedExprClass: 1214 return EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1215 case Expr::StringLiteralClass: 1216 return EmitStringLiteralLValue(cast<StringLiteral>(E)); 1217 case Expr::ObjCEncodeExprClass: 1218 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E)); 1219 case Expr::PseudoObjectExprClass: 1220 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E)); 1221 case Expr::InitListExprClass: 1222 return EmitInitListLValue(cast<InitListExpr>(E)); 1223 case Expr::CXXTemporaryObjectExprClass: 1224 case Expr::CXXConstructExprClass: 1225 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E)); 1226 case Expr::CXXBindTemporaryExprClass: 1227 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E)); 1228 case Expr::CXXUuidofExprClass: 1229 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E)); 1230 case Expr::LambdaExprClass: 1231 return EmitLambdaLValue(cast<LambdaExpr>(E)); 1232 1233 case Expr::ExprWithCleanupsClass: { 1234 const auto *cleanups = cast<ExprWithCleanups>(E); 1235 enterFullExpression(cleanups); 1236 RunCleanupsScope Scope(*this); 1237 LValue LV = EmitLValue(cleanups->getSubExpr()); 1238 if (LV.isSimple()) { 1239 // Defend against branches out of gnu statement expressions surrounded by 1240 // cleanups. 1241 llvm::Value *V = LV.getPointer(); 1242 Scope.ForceCleanup({&V}); 1243 return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(), 1244 getContext(), LV.getBaseInfo(), LV.getTBAAInfo()); 1245 } 1246 // FIXME: Is it possible to create an ExprWithCleanups that produces a 1247 // bitfield lvalue or some other non-simple lvalue? 1248 return LV; 1249 } 1250 1251 case Expr::CXXDefaultArgExprClass: 1252 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr()); 1253 case Expr::CXXDefaultInitExprClass: { 1254 CXXDefaultInitExprScope Scope(*this); 1255 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr()); 1256 } 1257 case Expr::CXXTypeidExprClass: 1258 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E)); 1259 1260 case Expr::ObjCMessageExprClass: 1261 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); 1262 case Expr::ObjCIvarRefExprClass: 1263 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); 1264 case Expr::StmtExprClass: 1265 return EmitStmtExprLValue(cast<StmtExpr>(E)); 1266 case Expr::UnaryOperatorClass: 1267 return EmitUnaryOpLValue(cast<UnaryOperator>(E)); 1268 case Expr::ArraySubscriptExprClass: 1269 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); 1270 case Expr::OMPArraySectionExprClass: 1271 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E)); 1272 case Expr::ExtVectorElementExprClass: 1273 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); 1274 case Expr::MemberExprClass: 1275 return EmitMemberExpr(cast<MemberExpr>(E)); 1276 case Expr::CompoundLiteralExprClass: 1277 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); 1278 case Expr::ConditionalOperatorClass: 1279 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E)); 1280 case Expr::BinaryConditionalOperatorClass: 1281 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E)); 1282 case Expr::ChooseExprClass: 1283 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr()); 1284 case Expr::OpaqueValueExprClass: 1285 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E)); 1286 case Expr::SubstNonTypeTemplateParmExprClass: 1287 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); 1288 case Expr::ImplicitCastExprClass: 1289 case Expr::CStyleCastExprClass: 1290 case Expr::CXXFunctionalCastExprClass: 1291 case Expr::CXXStaticCastExprClass: 1292 case Expr::CXXDynamicCastExprClass: 1293 case Expr::CXXReinterpretCastExprClass: 1294 case Expr::CXXConstCastExprClass: 1295 case Expr::ObjCBridgedCastExprClass: 1296 return EmitCastLValue(cast<CastExpr>(E)); 1297 1298 case Expr::MaterializeTemporaryExprClass: 1299 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E)); 1300 1301 case Expr::CoawaitExprClass: 1302 return EmitCoawaitLValue(cast<CoawaitExpr>(E)); 1303 case Expr::CoyieldExprClass: 1304 return EmitCoyieldLValue(cast<CoyieldExpr>(E)); 1305 } 1306 } 1307 1308 /// Given an object of the given canonical type, can we safely copy a 1309 /// value out of it based on its initializer? 1310 static bool isConstantEmittableObjectType(QualType type) { 1311 assert(type.isCanonical()); 1312 assert(!type->isReferenceType()); 1313 1314 // Must be const-qualified but non-volatile. 1315 Qualifiers qs = type.getLocalQualifiers(); 1316 if (!qs.hasConst() || qs.hasVolatile()) return false; 1317 1318 // Otherwise, all object types satisfy this except C++ classes with 1319 // mutable subobjects or non-trivial copy/destroy behavior. 1320 if (const auto *RT = dyn_cast<RecordType>(type)) 1321 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1322 if (RD->hasMutableFields() || !RD->isTrivial()) 1323 return false; 1324 1325 return true; 1326 } 1327 1328 /// Can we constant-emit a load of a reference to a variable of the 1329 /// given type? This is different from predicates like 1330 /// Decl::isUsableInConstantExpressions because we do want it to apply 1331 /// in situations that don't necessarily satisfy the language's rules 1332 /// for this (e.g. C++'s ODR-use rules). For example, we want to able 1333 /// to do this with const float variables even if those variables 1334 /// aren't marked 'constexpr'. 1335 enum ConstantEmissionKind { 1336 CEK_None, 1337 CEK_AsReferenceOnly, 1338 CEK_AsValueOrReference, 1339 CEK_AsValueOnly 1340 }; 1341 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) { 1342 type = type.getCanonicalType(); 1343 if (const auto *ref = dyn_cast<ReferenceType>(type)) { 1344 if (isConstantEmittableObjectType(ref->getPointeeType())) 1345 return CEK_AsValueOrReference; 1346 return CEK_AsReferenceOnly; 1347 } 1348 if (isConstantEmittableObjectType(type)) 1349 return CEK_AsValueOnly; 1350 return CEK_None; 1351 } 1352 1353 /// Try to emit a reference to the given value without producing it as 1354 /// an l-value. This is actually more than an optimization: we can't 1355 /// produce an l-value for variables that we never actually captured 1356 /// in a block or lambda, which means const int variables or constexpr 1357 /// literals or similar. 1358 CodeGenFunction::ConstantEmission 1359 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) { 1360 ValueDecl *value = refExpr->getDecl(); 1361 1362 // The value needs to be an enum constant or a constant variable. 1363 ConstantEmissionKind CEK; 1364 if (isa<ParmVarDecl>(value)) { 1365 CEK = CEK_None; 1366 } else if (auto *var = dyn_cast<VarDecl>(value)) { 1367 CEK = checkVarTypeForConstantEmission(var->getType()); 1368 } else if (isa<EnumConstantDecl>(value)) { 1369 CEK = CEK_AsValueOnly; 1370 } else { 1371 CEK = CEK_None; 1372 } 1373 if (CEK == CEK_None) return ConstantEmission(); 1374 1375 Expr::EvalResult result; 1376 bool resultIsReference; 1377 QualType resultType; 1378 1379 // It's best to evaluate all the way as an r-value if that's permitted. 1380 if (CEK != CEK_AsReferenceOnly && 1381 refExpr->EvaluateAsRValue(result, getContext())) { 1382 resultIsReference = false; 1383 resultType = refExpr->getType(); 1384 1385 // Otherwise, try to evaluate as an l-value. 1386 } else if (CEK != CEK_AsValueOnly && 1387 refExpr->EvaluateAsLValue(result, getContext())) { 1388 resultIsReference = true; 1389 resultType = value->getType(); 1390 1391 // Failure. 1392 } else { 1393 return ConstantEmission(); 1394 } 1395 1396 // In any case, if the initializer has side-effects, abandon ship. 1397 if (result.HasSideEffects) 1398 return ConstantEmission(); 1399 1400 // Emit as a constant. 1401 auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(), 1402 result.Val, resultType); 1403 1404 // Make sure we emit a debug reference to the global variable. 1405 // This should probably fire even for 1406 if (isa<VarDecl>(value)) { 1407 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value))) 1408 EmitDeclRefExprDbgValue(refExpr, result.Val); 1409 } else { 1410 assert(isa<EnumConstantDecl>(value)); 1411 EmitDeclRefExprDbgValue(refExpr, result.Val); 1412 } 1413 1414 // If we emitted a reference constant, we need to dereference that. 1415 if (resultIsReference) 1416 return ConstantEmission::forReference(C); 1417 1418 return ConstantEmission::forValue(C); 1419 } 1420 1421 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF, 1422 const MemberExpr *ME) { 1423 if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { 1424 // Try to emit static variable member expressions as DREs. 1425 return DeclRefExpr::Create( 1426 CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD, 1427 /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(), 1428 ME->getType(), ME->getValueKind()); 1429 } 1430 return nullptr; 1431 } 1432 1433 CodeGenFunction::ConstantEmission 1434 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) { 1435 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME)) 1436 return tryEmitAsConstant(DRE); 1437 return ConstantEmission(); 1438 } 1439 1440 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue, 1441 SourceLocation Loc) { 1442 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(), 1443 lvalue.getType(), Loc, lvalue.getBaseInfo(), 1444 lvalue.getTBAAInfo(), lvalue.isNontemporal()); 1445 } 1446 1447 static bool hasBooleanRepresentation(QualType Ty) { 1448 if (Ty->isBooleanType()) 1449 return true; 1450 1451 if (const EnumType *ET = Ty->getAs<EnumType>()) 1452 return ET->getDecl()->getIntegerType()->isBooleanType(); 1453 1454 if (const AtomicType *AT = Ty->getAs<AtomicType>()) 1455 return hasBooleanRepresentation(AT->getValueType()); 1456 1457 return false; 1458 } 1459 1460 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty, 1461 llvm::APInt &Min, llvm::APInt &End, 1462 bool StrictEnums, bool IsBool) { 1463 const EnumType *ET = Ty->getAs<EnumType>(); 1464 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums && 1465 ET && !ET->getDecl()->isFixed(); 1466 if (!IsBool && !IsRegularCPlusPlusEnum) 1467 return false; 1468 1469 if (IsBool) { 1470 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0); 1471 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2); 1472 } else { 1473 const EnumDecl *ED = ET->getDecl(); 1474 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType()); 1475 unsigned Bitwidth = LTy->getScalarSizeInBits(); 1476 unsigned NumNegativeBits = ED->getNumNegativeBits(); 1477 unsigned NumPositiveBits = ED->getNumPositiveBits(); 1478 1479 if (NumNegativeBits) { 1480 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1); 1481 assert(NumBits <= Bitwidth); 1482 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1); 1483 Min = -End; 1484 } else { 1485 assert(NumPositiveBits <= Bitwidth); 1486 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits; 1487 Min = llvm::APInt(Bitwidth, 0); 1488 } 1489 } 1490 return true; 1491 } 1492 1493 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) { 1494 llvm::APInt Min, End; 1495 if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums, 1496 hasBooleanRepresentation(Ty))) 1497 return nullptr; 1498 1499 llvm::MDBuilder MDHelper(getLLVMContext()); 1500 return MDHelper.createRange(Min, End); 1501 } 1502 1503 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, 1504 SourceLocation Loc) { 1505 bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool); 1506 bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum); 1507 if (!HasBoolCheck && !HasEnumCheck) 1508 return false; 1509 1510 bool IsBool = hasBooleanRepresentation(Ty) || 1511 NSAPI(CGM.getContext()).isObjCBOOLType(Ty); 1512 bool NeedsBoolCheck = HasBoolCheck && IsBool; 1513 bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>(); 1514 if (!NeedsBoolCheck && !NeedsEnumCheck) 1515 return false; 1516 1517 // Single-bit booleans don't need to be checked. Special-case this to avoid 1518 // a bit width mismatch when handling bitfield values. This is handled by 1519 // EmitFromMemory for the non-bitfield case. 1520 if (IsBool && 1521 cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1) 1522 return false; 1523 1524 llvm::APInt Min, End; 1525 if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool)) 1526 return true; 1527 1528 auto &Ctx = getLLVMContext(); 1529 SanitizerScope SanScope(this); 1530 llvm::Value *Check; 1531 --End; 1532 if (!Min) { 1533 Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End)); 1534 } else { 1535 llvm::Value *Upper = 1536 Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End)); 1537 llvm::Value *Lower = 1538 Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min)); 1539 Check = Builder.CreateAnd(Upper, Lower); 1540 } 1541 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc), 1542 EmitCheckTypeDescriptor(Ty)}; 1543 SanitizerMask Kind = 1544 NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool; 1545 EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue, 1546 StaticArgs, EmitCheckValue(Value)); 1547 return true; 1548 } 1549 1550 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile, 1551 QualType Ty, 1552 SourceLocation Loc, 1553 LValueBaseInfo BaseInfo, 1554 TBAAAccessInfo TBAAInfo, 1555 bool isNontemporal) { 1556 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1557 // For better performance, handle vector loads differently. 1558 if (Ty->isVectorType()) { 1559 const llvm::Type *EltTy = Addr.getElementType(); 1560 1561 const auto *VTy = cast<llvm::VectorType>(EltTy); 1562 1563 // Handle vectors of size 3 like size 4 for better performance. 1564 if (VTy->getNumElements() == 3) { 1565 1566 // Bitcast to vec4 type. 1567 llvm::VectorType *vec4Ty = 1568 llvm::VectorType::get(VTy->getElementType(), 4); 1569 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4"); 1570 // Now load value. 1571 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4"); 1572 1573 // Shuffle vector to get vec3. 1574 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty), 1575 {0, 1, 2}, "extractVec"); 1576 return EmitFromMemory(V, Ty); 1577 } 1578 } 1579 } 1580 1581 // Atomic operations have to be done on integral types. 1582 LValue AtomicLValue = 1583 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1584 if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) { 1585 return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal(); 1586 } 1587 1588 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile); 1589 if (isNontemporal) { 1590 llvm::MDNode *Node = llvm::MDNode::get( 1591 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1592 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1593 } 1594 1595 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo); 1596 1597 if (EmitScalarRangeCheck(Load, Ty, Loc)) { 1598 // In order to prevent the optimizer from throwing away the check, don't 1599 // attach range metadata to the load. 1600 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0) 1601 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) 1602 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo); 1603 1604 return EmitFromMemory(Load, Ty); 1605 } 1606 1607 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) { 1608 // Bool has a different representation in memory than in registers. 1609 if (hasBooleanRepresentation(Ty)) { 1610 // This should really always be an i1, but sometimes it's already 1611 // an i8, and it's awkward to track those cases down. 1612 if (Value->getType()->isIntegerTy(1)) 1613 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool"); 1614 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1615 "wrong value rep of bool"); 1616 } 1617 1618 return Value; 1619 } 1620 1621 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) { 1622 // Bool has a different representation in memory than in registers. 1623 if (hasBooleanRepresentation(Ty)) { 1624 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) && 1625 "wrong value rep of bool"); 1626 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool"); 1627 } 1628 1629 return Value; 1630 } 1631 1632 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr, 1633 bool Volatile, QualType Ty, 1634 LValueBaseInfo BaseInfo, 1635 TBAAAccessInfo TBAAInfo, 1636 bool isInit, bool isNontemporal) { 1637 if (!CGM.getCodeGenOpts().PreserveVec3Type) { 1638 // Handle vectors differently to get better performance. 1639 if (Ty->isVectorType()) { 1640 llvm::Type *SrcTy = Value->getType(); 1641 auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy); 1642 // Handle vec3 special. 1643 if (VecTy && VecTy->getNumElements() == 3) { 1644 // Our source is a vec3, do a shuffle vector to make it a vec4. 1645 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1), 1646 Builder.getInt32(2), 1647 llvm::UndefValue::get(Builder.getInt32Ty())}; 1648 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1649 Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy), 1650 MaskV, "extractVec"); 1651 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4); 1652 } 1653 if (Addr.getElementType() != SrcTy) { 1654 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp"); 1655 } 1656 } 1657 } 1658 1659 Value = EmitToMemory(Value, Ty); 1660 1661 LValue AtomicLValue = 1662 LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo); 1663 if (Ty->isAtomicType() || 1664 (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) { 1665 EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit); 1666 return; 1667 } 1668 1669 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile); 1670 if (isNontemporal) { 1671 llvm::MDNode *Node = 1672 llvm::MDNode::get(Store->getContext(), 1673 llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 1674 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 1675 } 1676 1677 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo); 1678 } 1679 1680 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue, 1681 bool isInit) { 1682 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(), 1683 lvalue.getType(), lvalue.getBaseInfo(), 1684 lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal()); 1685 } 1686 1687 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this 1688 /// method emits the address of the lvalue, then loads the result as an rvalue, 1689 /// returning the rvalue. 1690 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 1691 if (LV.isObjCWeak()) { 1692 // load of a __weak object. 1693 Address AddrWeakObj = LV.getAddress(); 1694 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this, 1695 AddrWeakObj)); 1696 } 1697 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) { 1698 // In MRC mode, we do a load+autorelease. 1699 if (!getLangOpts().ObjCAutoRefCount) { 1700 return RValue::get(EmitARCLoadWeak(LV.getAddress())); 1701 } 1702 1703 // In ARC mode, we load retained and then consume the value. 1704 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress()); 1705 Object = EmitObjCConsumeObject(LV.getType(), Object); 1706 return RValue::get(Object); 1707 } 1708 1709 if (LV.isSimple()) { 1710 assert(!LV.getType()->isFunctionType()); 1711 1712 // Everything needs a load. 1713 return RValue::get(EmitLoadOfScalar(LV, Loc)); 1714 } 1715 1716 if (LV.isVectorElt()) { 1717 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(), 1718 LV.isVolatileQualified()); 1719 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(), 1720 "vecext")); 1721 } 1722 1723 // If this is a reference to a subset of the elements of a vector, either 1724 // shuffle the input or extract/insert them as appropriate. 1725 if (LV.isExtVectorElt()) 1726 return EmitLoadOfExtVectorElementLValue(LV); 1727 1728 // Global Register variables always invoke intrinsics 1729 if (LV.isGlobalReg()) 1730 return EmitLoadOfGlobalRegLValue(LV); 1731 1732 assert(LV.isBitField() && "Unknown LValue type!"); 1733 return EmitLoadOfBitfieldLValue(LV, Loc); 1734 } 1735 1736 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, 1737 SourceLocation Loc) { 1738 const CGBitFieldInfo &Info = LV.getBitFieldInfo(); 1739 1740 // Get the output type. 1741 llvm::Type *ResLTy = ConvertType(LV.getType()); 1742 1743 Address Ptr = LV.getBitFieldAddress(); 1744 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load"); 1745 1746 if (Info.IsSigned) { 1747 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize); 1748 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size; 1749 if (HighBits) 1750 Val = Builder.CreateShl(Val, HighBits, "bf.shl"); 1751 if (Info.Offset + HighBits) 1752 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr"); 1753 } else { 1754 if (Info.Offset) 1755 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr"); 1756 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize) 1757 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize, 1758 Info.Size), 1759 "bf.clear"); 1760 } 1761 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast"); 1762 EmitScalarRangeCheck(Val, LV.getType(), Loc); 1763 return RValue::get(Val); 1764 } 1765 1766 // If this is a reference to a subset of the elements of a vector, create an 1767 // appropriate shufflevector. 1768 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) { 1769 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(), 1770 LV.isVolatileQualified()); 1771 1772 const llvm::Constant *Elts = LV.getExtVectorElts(); 1773 1774 // If the result of the expression is a non-vector type, we must be extracting 1775 // a single element. Just codegen as an extractelement. 1776 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1777 if (!ExprVT) { 1778 unsigned InIdx = getAccessedFieldNo(0, Elts); 1779 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 1780 return RValue::get(Builder.CreateExtractElement(Vec, Elt)); 1781 } 1782 1783 // Always use shuffle vector to try to retain the original program structure 1784 unsigned NumResultElts = ExprVT->getNumElements(); 1785 1786 SmallVector<llvm::Constant*, 4> Mask; 1787 for (unsigned i = 0; i != NumResultElts; ++i) 1788 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts))); 1789 1790 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 1791 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()), 1792 MaskV); 1793 return RValue::get(Vec); 1794 } 1795 1796 /// @brief Generates lvalue for partial ext_vector access. 1797 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) { 1798 Address VectorAddress = LV.getExtVectorAddress(); 1799 const VectorType *ExprVT = LV.getType()->getAs<VectorType>(); 1800 QualType EQT = ExprVT->getElementType(); 1801 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT); 1802 1803 Address CastToPointerElement = 1804 Builder.CreateElementBitCast(VectorAddress, VectorElementTy, 1805 "conv.ptr.element"); 1806 1807 const llvm::Constant *Elts = LV.getExtVectorElts(); 1808 unsigned ix = getAccessedFieldNo(0, Elts); 1809 1810 Address VectorBasePtrPlusIx = 1811 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix, 1812 getContext().getTypeSizeInChars(EQT), 1813 "vector.elt"); 1814 1815 return VectorBasePtrPlusIx; 1816 } 1817 1818 /// @brief Load of global gamed gegisters are always calls to intrinsics. 1819 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) { 1820 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) && 1821 "Bad type for register variable"); 1822 llvm::MDNode *RegName = cast<llvm::MDNode>( 1823 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata()); 1824 1825 // We accept integer and pointer types only 1826 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType()); 1827 llvm::Type *Ty = OrigTy; 1828 if (OrigTy->isPointerTy()) 1829 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 1830 llvm::Type *Types[] = { Ty }; 1831 1832 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 1833 llvm::Value *Call = Builder.CreateCall( 1834 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName)); 1835 if (OrigTy->isPointerTy()) 1836 Call = Builder.CreateIntToPtr(Call, OrigTy); 1837 return RValue::get(Call); 1838 } 1839 1840 1841 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1842 /// lvalue, where both are guaranteed to the have the same type, and that type 1843 /// is 'Ty'. 1844 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, 1845 bool isInit) { 1846 if (!Dst.isSimple()) { 1847 if (Dst.isVectorElt()) { 1848 // Read/modify/write the vector, inserting the new element. 1849 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(), 1850 Dst.isVolatileQualified()); 1851 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), 1852 Dst.getVectorIdx(), "vecins"); 1853 Builder.CreateStore(Vec, Dst.getVectorAddress(), 1854 Dst.isVolatileQualified()); 1855 return; 1856 } 1857 1858 // If this is an update of extended vector elements, insert them as 1859 // appropriate. 1860 if (Dst.isExtVectorElt()) 1861 return EmitStoreThroughExtVectorComponentLValue(Src, Dst); 1862 1863 if (Dst.isGlobalReg()) 1864 return EmitStoreThroughGlobalRegLValue(Src, Dst); 1865 1866 assert(Dst.isBitField() && "Unknown LValue type"); 1867 return EmitStoreThroughBitfieldLValue(Src, Dst); 1868 } 1869 1870 // There's special magic for assigning into an ARC-qualified l-value. 1871 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) { 1872 switch (Lifetime) { 1873 case Qualifiers::OCL_None: 1874 llvm_unreachable("present but none"); 1875 1876 case Qualifiers::OCL_ExplicitNone: 1877 // nothing special 1878 break; 1879 1880 case Qualifiers::OCL_Strong: 1881 if (isInit) { 1882 Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal())); 1883 break; 1884 } 1885 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true); 1886 return; 1887 1888 case Qualifiers::OCL_Weak: 1889 if (isInit) 1890 // Initialize and then skip the primitive store. 1891 EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal()); 1892 else 1893 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true); 1894 return; 1895 1896 case Qualifiers::OCL_Autoreleasing: 1897 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(), 1898 Src.getScalarVal())); 1899 // fall into the normal path 1900 break; 1901 } 1902 } 1903 1904 if (Dst.isObjCWeak() && !Dst.isNonGC()) { 1905 // load of a __weak object. 1906 Address LvalueDst = Dst.getAddress(); 1907 llvm::Value *src = Src.getScalarVal(); 1908 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst); 1909 return; 1910 } 1911 1912 if (Dst.isObjCStrong() && !Dst.isNonGC()) { 1913 // load of a __strong object. 1914 Address LvalueDst = Dst.getAddress(); 1915 llvm::Value *src = Src.getScalarVal(); 1916 if (Dst.isObjCIvar()) { 1917 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL"); 1918 llvm::Type *ResultType = IntPtrTy; 1919 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp()); 1920 llvm::Value *RHS = dst.getPointer(); 1921 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast"); 1922 llvm::Value *LHS = 1923 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType, 1924 "sub.ptr.lhs.cast"); 1925 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset"); 1926 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst, 1927 BytesBetween); 1928 } else if (Dst.isGlobalObjCRef()) { 1929 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst, 1930 Dst.isThreadLocalRef()); 1931 } 1932 else 1933 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst); 1934 return; 1935 } 1936 1937 assert(Src.isScalar() && "Can't emit an agg store with this method"); 1938 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit); 1939 } 1940 1941 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1942 llvm::Value **Result) { 1943 const CGBitFieldInfo &Info = Dst.getBitFieldInfo(); 1944 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType()); 1945 Address Ptr = Dst.getBitFieldAddress(); 1946 1947 // Get the source value, truncated to the width of the bit-field. 1948 llvm::Value *SrcVal = Src.getScalarVal(); 1949 1950 // Cast the source to the storage type and shift it into place. 1951 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(), 1952 /*IsSigned=*/false); 1953 llvm::Value *MaskedVal = SrcVal; 1954 1955 // See if there are other bits in the bitfield's storage we'll need to load 1956 // and mask together with source before storing. 1957 if (Info.StorageSize != Info.Size) { 1958 assert(Info.StorageSize > Info.Size && "Invalid bitfield size."); 1959 llvm::Value *Val = 1960 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load"); 1961 1962 // Mask the source value as needed. 1963 if (!hasBooleanRepresentation(Dst.getType())) 1964 SrcVal = Builder.CreateAnd(SrcVal, 1965 llvm::APInt::getLowBitsSet(Info.StorageSize, 1966 Info.Size), 1967 "bf.value"); 1968 MaskedVal = SrcVal; 1969 if (Info.Offset) 1970 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl"); 1971 1972 // Mask out the original value. 1973 Val = Builder.CreateAnd(Val, 1974 ~llvm::APInt::getBitsSet(Info.StorageSize, 1975 Info.Offset, 1976 Info.Offset + Info.Size), 1977 "bf.clear"); 1978 1979 // Or together the unchanged values and the source value. 1980 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set"); 1981 } else { 1982 assert(Info.Offset == 0); 1983 } 1984 1985 // Write the new value back out. 1986 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified()); 1987 1988 // Return the new value of the bit-field, if requested. 1989 if (Result) { 1990 llvm::Value *ResultVal = MaskedVal; 1991 1992 // Sign extend the value if needed. 1993 if (Info.IsSigned) { 1994 assert(Info.Size <= Info.StorageSize); 1995 unsigned HighBits = Info.StorageSize - Info.Size; 1996 if (HighBits) { 1997 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl"); 1998 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr"); 1999 } 2000 } 2001 2002 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned, 2003 "bf.result.cast"); 2004 *Result = EmitFromMemory(ResultVal, Dst.getType()); 2005 } 2006 } 2007 2008 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, 2009 LValue Dst) { 2010 // This access turns into a read/modify/write of the vector. Load the input 2011 // value now. 2012 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(), 2013 Dst.isVolatileQualified()); 2014 const llvm::Constant *Elts = Dst.getExtVectorElts(); 2015 2016 llvm::Value *SrcVal = Src.getScalarVal(); 2017 2018 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) { 2019 unsigned NumSrcElts = VTy->getNumElements(); 2020 unsigned NumDstElts = Vec->getType()->getVectorNumElements(); 2021 if (NumDstElts == NumSrcElts) { 2022 // Use shuffle vector is the src and destination are the same number of 2023 // elements and restore the vector mask since it is on the side it will be 2024 // stored. 2025 SmallVector<llvm::Constant*, 4> Mask(NumDstElts); 2026 for (unsigned i = 0; i != NumSrcElts; ++i) 2027 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i); 2028 2029 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2030 Vec = Builder.CreateShuffleVector(SrcVal, 2031 llvm::UndefValue::get(Vec->getType()), 2032 MaskV); 2033 } else if (NumDstElts > NumSrcElts) { 2034 // Extended the source vector to the same length and then shuffle it 2035 // into the destination. 2036 // FIXME: since we're shuffling with undef, can we just use the indices 2037 // into that? This could be simpler. 2038 SmallVector<llvm::Constant*, 4> ExtMask; 2039 for (unsigned i = 0; i != NumSrcElts; ++i) 2040 ExtMask.push_back(Builder.getInt32(i)); 2041 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty)); 2042 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask); 2043 llvm::Value *ExtSrcVal = 2044 Builder.CreateShuffleVector(SrcVal, 2045 llvm::UndefValue::get(SrcVal->getType()), 2046 ExtMaskV); 2047 // build identity 2048 SmallVector<llvm::Constant*, 4> Mask; 2049 for (unsigned i = 0; i != NumDstElts; ++i) 2050 Mask.push_back(Builder.getInt32(i)); 2051 2052 // When the vector size is odd and .odd or .hi is used, the last element 2053 // of the Elts constant array will be one past the size of the vector. 2054 // Ignore the last element here, if it is greater than the mask size. 2055 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size()) 2056 NumSrcElts--; 2057 2058 // modify when what gets shuffled in 2059 for (unsigned i = 0; i != NumSrcElts; ++i) 2060 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts); 2061 llvm::Value *MaskV = llvm::ConstantVector::get(Mask); 2062 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV); 2063 } else { 2064 // We should never shorten the vector 2065 llvm_unreachable("unexpected shorten vector length"); 2066 } 2067 } else { 2068 // If the Src is a scalar (not a vector) it must be updating one element. 2069 unsigned InIdx = getAccessedFieldNo(0, Elts); 2070 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx); 2071 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt); 2072 } 2073 2074 Builder.CreateStore(Vec, Dst.getExtVectorAddress(), 2075 Dst.isVolatileQualified()); 2076 } 2077 2078 /// @brief Store of global named registers are always calls to intrinsics. 2079 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) { 2080 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) && 2081 "Bad type for register variable"); 2082 llvm::MDNode *RegName = cast<llvm::MDNode>( 2083 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata()); 2084 assert(RegName && "Register LValue is not metadata"); 2085 2086 // We accept integer and pointer types only 2087 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType()); 2088 llvm::Type *Ty = OrigTy; 2089 if (OrigTy->isPointerTy()) 2090 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy); 2091 llvm::Type *Types[] = { Ty }; 2092 2093 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 2094 llvm::Value *Value = Src.getScalarVal(); 2095 if (OrigTy->isPointerTy()) 2096 Value = Builder.CreatePtrToInt(Value, Ty); 2097 Builder.CreateCall( 2098 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value}); 2099 } 2100 2101 // setObjCGCLValueClass - sets class of the lvalue for the purpose of 2102 // generating write-barries API. It is currently a global, ivar, 2103 // or neither. 2104 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E, 2105 LValue &LV, 2106 bool IsMemberAccess=false) { 2107 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC) 2108 return; 2109 2110 if (isa<ObjCIvarRefExpr>(E)) { 2111 QualType ExpTy = E->getType(); 2112 if (IsMemberAccess && ExpTy->isPointerType()) { 2113 // If ivar is a structure pointer, assigning to field of 2114 // this struct follows gcc's behavior and makes it a non-ivar 2115 // writer-barrier conservatively. 2116 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2117 if (ExpTy->isRecordType()) { 2118 LV.setObjCIvar(false); 2119 return; 2120 } 2121 } 2122 LV.setObjCIvar(true); 2123 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E)); 2124 LV.setBaseIvarExp(Exp->getBase()); 2125 LV.setObjCArray(E->getType()->isArrayType()); 2126 return; 2127 } 2128 2129 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) { 2130 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) { 2131 if (VD->hasGlobalStorage()) { 2132 LV.setGlobalObjCRef(true); 2133 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None); 2134 } 2135 } 2136 LV.setObjCArray(E->getType()->isArrayType()); 2137 return; 2138 } 2139 2140 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) { 2141 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2142 return; 2143 } 2144 2145 if (const auto *Exp = dyn_cast<ParenExpr>(E)) { 2146 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2147 if (LV.isObjCIvar()) { 2148 // If cast is to a structure pointer, follow gcc's behavior and make it 2149 // a non-ivar write-barrier. 2150 QualType ExpTy = E->getType(); 2151 if (ExpTy->isPointerType()) 2152 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType(); 2153 if (ExpTy->isRecordType()) 2154 LV.setObjCIvar(false); 2155 } 2156 return; 2157 } 2158 2159 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) { 2160 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV); 2161 return; 2162 } 2163 2164 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) { 2165 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2166 return; 2167 } 2168 2169 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) { 2170 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2171 return; 2172 } 2173 2174 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) { 2175 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess); 2176 return; 2177 } 2178 2179 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) { 2180 setObjCGCLValueClass(Ctx, Exp->getBase(), LV); 2181 if (LV.isObjCIvar() && !LV.isObjCArray()) 2182 // Using array syntax to assigning to what an ivar points to is not 2183 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0; 2184 LV.setObjCIvar(false); 2185 else if (LV.isGlobalObjCRef() && !LV.isObjCArray()) 2186 // Using array syntax to assigning to what global points to is not 2187 // same as assigning to the global itself. {id *G;} G[i] = 0; 2188 LV.setGlobalObjCRef(false); 2189 return; 2190 } 2191 2192 if (const auto *Exp = dyn_cast<MemberExpr>(E)) { 2193 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true); 2194 // We don't know if member is an 'ivar', but this flag is looked at 2195 // only in the context of LV.isObjCIvar(). 2196 LV.setObjCArray(E->getType()->isArrayType()); 2197 return; 2198 } 2199 } 2200 2201 static llvm::Value * 2202 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF, 2203 llvm::Value *V, llvm::Type *IRType, 2204 StringRef Name = StringRef()) { 2205 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace(); 2206 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name); 2207 } 2208 2209 static LValue EmitThreadPrivateVarDeclLValue( 2210 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr, 2211 llvm::Type *RealVarTy, SourceLocation Loc) { 2212 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc); 2213 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy); 2214 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2215 } 2216 2217 Address 2218 CodeGenFunction::EmitLoadOfReference(LValue RefLVal, 2219 LValueBaseInfo *PointeeBaseInfo, 2220 TBAAAccessInfo *PointeeTBAAInfo) { 2221 llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(), 2222 RefLVal.isVolatile()); 2223 CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo()); 2224 2225 CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(), 2226 PointeeBaseInfo, PointeeTBAAInfo, 2227 /* forPointeeType= */ true); 2228 return Address(Load, Align); 2229 } 2230 2231 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) { 2232 LValueBaseInfo PointeeBaseInfo; 2233 TBAAAccessInfo PointeeTBAAInfo; 2234 Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo, 2235 &PointeeTBAAInfo); 2236 return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(), 2237 PointeeBaseInfo, PointeeTBAAInfo); 2238 } 2239 2240 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr, 2241 const PointerType *PtrTy, 2242 LValueBaseInfo *BaseInfo, 2243 TBAAAccessInfo *TBAAInfo) { 2244 llvm::Value *Addr = Builder.CreateLoad(Ptr); 2245 return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(), 2246 BaseInfo, TBAAInfo, 2247 /*forPointeeType=*/true)); 2248 } 2249 2250 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr, 2251 const PointerType *PtrTy) { 2252 LValueBaseInfo BaseInfo; 2253 TBAAAccessInfo TBAAInfo; 2254 Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo); 2255 return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo); 2256 } 2257 2258 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF, 2259 const Expr *E, const VarDecl *VD) { 2260 QualType T = E->getType(); 2261 2262 // If it's thread_local, emit a call to its wrapper function instead. 2263 if (VD->getTLSKind() == VarDecl::TLS_Dynamic && 2264 CGF.CGM.getCXXABI().usesThreadWrapperFunction()) 2265 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T); 2266 2267 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD); 2268 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType()); 2269 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy); 2270 CharUnits Alignment = CGF.getContext().getDeclAlign(VD); 2271 Address Addr(V, Alignment); 2272 // Emit reference to the private copy of the variable if it is an OpenMP 2273 // threadprivate variable. 2274 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) 2275 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy, 2276 E->getExprLoc()); 2277 LValue LV = VD->getType()->isReferenceType() ? 2278 CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(), 2279 AlignmentSource::Decl) : 2280 CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl); 2281 setObjCGCLValueClass(CGF.getContext(), E, LV); 2282 return LV; 2283 } 2284 2285 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM, 2286 const FunctionDecl *FD) { 2287 if (FD->hasAttr<WeakRefAttr>()) { 2288 ConstantAddress aliasee = CGM.GetWeakRefReference(FD); 2289 return aliasee.getPointer(); 2290 } 2291 2292 llvm::Constant *V = CGM.GetAddrOfFunction(FD); 2293 if (!FD->hasPrototype()) { 2294 if (const FunctionProtoType *Proto = 2295 FD->getType()->getAs<FunctionProtoType>()) { 2296 // Ugly case: for a K&R-style definition, the type of the definition 2297 // isn't the same as the type of a use. Correct for this with a 2298 // bitcast. 2299 QualType NoProtoType = 2300 CGM.getContext().getFunctionNoProtoType(Proto->getReturnType()); 2301 NoProtoType = CGM.getContext().getPointerType(NoProtoType); 2302 V = llvm::ConstantExpr::getBitCast(V, 2303 CGM.getTypes().ConvertType(NoProtoType)); 2304 } 2305 } 2306 return V; 2307 } 2308 2309 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, 2310 const Expr *E, const FunctionDecl *FD) { 2311 llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD); 2312 CharUnits Alignment = CGF.getContext().getDeclAlign(FD); 2313 return CGF.MakeAddrLValue(V, E->getType(), Alignment, 2314 AlignmentSource::Decl); 2315 } 2316 2317 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD, 2318 llvm::Value *ThisValue) { 2319 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent()); 2320 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType); 2321 return CGF.EmitLValueForField(LV, FD); 2322 } 2323 2324 /// Named Registers are named metadata pointing to the register name 2325 /// which will be read from/written to as an argument to the intrinsic 2326 /// @llvm.read/write_register. 2327 /// So far, only the name is being passed down, but other options such as 2328 /// register type, allocation type or even optimization options could be 2329 /// passed down via the metadata node. 2330 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) { 2331 SmallString<64> Name("llvm.named.register."); 2332 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>(); 2333 assert(Asm->getLabel().size() < 64-Name.size() && 2334 "Register name too big"); 2335 Name.append(Asm->getLabel()); 2336 llvm::NamedMDNode *M = 2337 CGM.getModule().getOrInsertNamedMetadata(Name); 2338 if (M->getNumOperands() == 0) { 2339 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(), 2340 Asm->getLabel()); 2341 llvm::Metadata *Ops[] = {Str}; 2342 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2343 } 2344 2345 CharUnits Alignment = CGM.getContext().getDeclAlign(VD); 2346 2347 llvm::Value *Ptr = 2348 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)); 2349 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType()); 2350 } 2351 2352 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { 2353 const NamedDecl *ND = E->getDecl(); 2354 QualType T = E->getType(); 2355 2356 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2357 // Global Named registers access via intrinsics only 2358 if (VD->getStorageClass() == SC_Register && 2359 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) 2360 return EmitGlobalNamedRegister(VD, CGM); 2361 2362 // A DeclRefExpr for a reference initialized by a constant expression can 2363 // appear without being odr-used. Directly emit the constant initializer. 2364 const Expr *Init = VD->getAnyInitializer(VD); 2365 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() && 2366 VD->isUsableInConstantExpressions(getContext()) && 2367 VD->checkInitIsICE() && 2368 // Do not emit if it is private OpenMP variable. 2369 !(E->refersToEnclosingVariableOrCapture() && 2370 ((CapturedStmtInfo && 2371 (LocalDeclMap.count(VD->getCanonicalDecl()) || 2372 CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) || 2373 LambdaCaptureFields.lookup(VD->getCanonicalDecl()) || 2374 isa<BlockDecl>(CurCodeDecl)))) { 2375 llvm::Constant *Val = 2376 ConstantEmitter(*this).emitAbstract(E->getLocation(), 2377 *VD->evaluateValue(), 2378 VD->getType()); 2379 assert(Val && "failed to emit reference constant expression"); 2380 // FIXME: Eventually we will want to emit vector element references. 2381 2382 // Should we be using the alignment of the constant pointer we emitted? 2383 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), 2384 /* BaseInfo= */ nullptr, 2385 /* TBAAInfo= */ nullptr, 2386 /* forPointeeType= */ true); 2387 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl); 2388 } 2389 2390 // Check for captured variables. 2391 if (E->refersToEnclosingVariableOrCapture()) { 2392 VD = VD->getCanonicalDecl(); 2393 if (auto *FD = LambdaCaptureFields.lookup(VD)) 2394 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue); 2395 else if (CapturedStmtInfo) { 2396 auto I = LocalDeclMap.find(VD); 2397 if (I != LocalDeclMap.end()) { 2398 if (VD->getType()->isReferenceType()) 2399 return EmitLoadOfReferenceLValue(I->second, VD->getType(), 2400 AlignmentSource::Decl); 2401 return MakeAddrLValue(I->second, T); 2402 } 2403 LValue CapLVal = 2404 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD), 2405 CapturedStmtInfo->getContextValue()); 2406 return MakeAddrLValue( 2407 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)), 2408 CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl), 2409 CapLVal.getTBAAInfo()); 2410 } 2411 2412 assert(isa<BlockDecl>(CurCodeDecl)); 2413 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()); 2414 return MakeAddrLValue(addr, T, AlignmentSource::Decl); 2415 } 2416 } 2417 2418 // FIXME: We should be able to assert this for FunctionDecls as well! 2419 // FIXME: We should be able to assert this for all DeclRefExprs, not just 2420 // those with a valid source location. 2421 assert((ND->isUsed(false) || !isa<VarDecl>(ND) || 2422 !E->getLocation().isValid()) && 2423 "Should not use decl without marking it used!"); 2424 2425 if (ND->hasAttr<WeakRefAttr>()) { 2426 const auto *VD = cast<ValueDecl>(ND); 2427 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD); 2428 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl); 2429 } 2430 2431 if (const auto *VD = dyn_cast<VarDecl>(ND)) { 2432 // Check if this is a global variable. 2433 if (VD->hasLinkage() || VD->isStaticDataMember()) 2434 return EmitGlobalVarDeclLValue(*this, E, VD); 2435 2436 Address addr = Address::invalid(); 2437 2438 // The variable should generally be present in the local decl map. 2439 auto iter = LocalDeclMap.find(VD); 2440 if (iter != LocalDeclMap.end()) { 2441 addr = iter->second; 2442 2443 // Otherwise, it might be static local we haven't emitted yet for 2444 // some reason; most likely, because it's in an outer function. 2445 } else if (VD->isStaticLocal()) { 2446 addr = Address(CGM.getOrCreateStaticVarDecl( 2447 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)), 2448 getContext().getDeclAlign(VD)); 2449 2450 // No other cases for now. 2451 } else { 2452 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?"); 2453 } 2454 2455 2456 // Check for OpenMP threadprivate variables. 2457 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { 2458 return EmitThreadPrivateVarDeclLValue( 2459 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()), 2460 E->getExprLoc()); 2461 } 2462 2463 // Drill into block byref variables. 2464 bool isBlockByref = VD->hasAttr<BlocksAttr>(); 2465 if (isBlockByref) { 2466 addr = emitBlockByrefAddress(addr, VD); 2467 } 2468 2469 // Drill into reference types. 2470 LValue LV = VD->getType()->isReferenceType() ? 2471 EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) : 2472 MakeAddrLValue(addr, T, AlignmentSource::Decl); 2473 2474 bool isLocalStorage = VD->hasLocalStorage(); 2475 2476 bool NonGCable = isLocalStorage && 2477 !VD->getType()->isReferenceType() && 2478 !isBlockByref; 2479 if (NonGCable) { 2480 LV.getQuals().removeObjCGCAttr(); 2481 LV.setNonGC(true); 2482 } 2483 2484 bool isImpreciseLifetime = 2485 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>()); 2486 if (isImpreciseLifetime) 2487 LV.setARCPreciseLifetime(ARCImpreciseLifetime); 2488 setObjCGCLValueClass(getContext(), E, LV); 2489 return LV; 2490 } 2491 2492 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 2493 return EmitFunctionDeclLValue(*this, E, FD); 2494 2495 // FIXME: While we're emitting a binding from an enclosing scope, all other 2496 // DeclRefExprs we see should be implicitly treated as if they also refer to 2497 // an enclosing scope. 2498 if (const auto *BD = dyn_cast<BindingDecl>(ND)) 2499 return EmitLValue(BD->getBinding()); 2500 2501 llvm_unreachable("Unhandled DeclRefExpr"); 2502 } 2503 2504 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { 2505 // __extension__ doesn't affect lvalue-ness. 2506 if (E->getOpcode() == UO_Extension) 2507 return EmitLValue(E->getSubExpr()); 2508 2509 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); 2510 switch (E->getOpcode()) { 2511 default: llvm_unreachable("Unknown unary operator lvalue!"); 2512 case UO_Deref: { 2513 QualType T = E->getSubExpr()->getType()->getPointeeType(); 2514 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type"); 2515 2516 LValueBaseInfo BaseInfo; 2517 TBAAAccessInfo TBAAInfo; 2518 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo, 2519 &TBAAInfo); 2520 LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); 2521 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace()); 2522 2523 // We should not generate __weak write barrier on indirect reference 2524 // of a pointer to object; as in void foo (__weak id *param); *param = 0; 2525 // But, we continue to generate __strong write barrier on indirect write 2526 // into a pointer to object. 2527 if (getLangOpts().ObjC1 && 2528 getLangOpts().getGC() != LangOptions::NonGC && 2529 LV.isObjCWeak()) 2530 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 2531 return LV; 2532 } 2533 case UO_Real: 2534 case UO_Imag: { 2535 LValue LV = EmitLValue(E->getSubExpr()); 2536 assert(LV.isSimple() && "real/imag on non-ordinary l-value"); 2537 2538 // __real is valid on scalars. This is a faster way of testing that. 2539 // __imag can only produce an rvalue on scalars. 2540 if (E->getOpcode() == UO_Real && 2541 !LV.getAddress().getElementType()->isStructTy()) { 2542 assert(E->getSubExpr()->getType()->isArithmeticType()); 2543 return LV; 2544 } 2545 2546 QualType T = ExprTy->castAs<ComplexType>()->getElementType(); 2547 2548 Address Component = 2549 (E->getOpcode() == UO_Real 2550 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType()) 2551 : emitAddrOfImagComponent(LV.getAddress(), LV.getType())); 2552 LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(), 2553 CGM.getTBAAInfoForSubobject(LV, T)); 2554 ElemLV.getQuals().addQualifiers(LV.getQuals()); 2555 return ElemLV; 2556 } 2557 case UO_PreInc: 2558 case UO_PreDec: { 2559 LValue LV = EmitLValue(E->getSubExpr()); 2560 bool isInc = E->getOpcode() == UO_PreInc; 2561 2562 if (E->getType()->isAnyComplexType()) 2563 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/); 2564 else 2565 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/); 2566 return LV; 2567 } 2568 } 2569 } 2570 2571 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { 2572 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E), 2573 E->getType(), AlignmentSource::Decl); 2574 } 2575 2576 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) { 2577 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E), 2578 E->getType(), AlignmentSource::Decl); 2579 } 2580 2581 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { 2582 auto SL = E->getFunctionName(); 2583 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr"); 2584 StringRef FnName = CurFn->getName(); 2585 if (FnName.startswith("\01")) 2586 FnName = FnName.substr(1); 2587 StringRef NameItems[] = { 2588 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName}; 2589 std::string GVName = llvm::join(NameItems, NameItems + 2, "."); 2590 if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) { 2591 std::string Name = SL->getString(); 2592 if (!Name.empty()) { 2593 unsigned Discriminator = 2594 CGM.getCXXABI().getMangleContext().getBlockId(BD, true); 2595 if (Discriminator) 2596 Name += "_" + Twine(Discriminator + 1).str(); 2597 auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str()); 2598 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2599 } else { 2600 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str()); 2601 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2602 } 2603 } 2604 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName); 2605 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl); 2606 } 2607 2608 /// Emit a type description suitable for use by a runtime sanitizer library. The 2609 /// format of a type descriptor is 2610 /// 2611 /// \code 2612 /// { i16 TypeKind, i16 TypeInfo } 2613 /// \endcode 2614 /// 2615 /// followed by an array of i8 containing the type name. TypeKind is 0 for an 2616 /// integer, 1 for a floating point value, and -1 for anything else. 2617 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) { 2618 // Only emit each type's descriptor once. 2619 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T)) 2620 return C; 2621 2622 uint16_t TypeKind = -1; 2623 uint16_t TypeInfo = 0; 2624 2625 if (T->isIntegerType()) { 2626 TypeKind = 0; 2627 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) | 2628 (T->isSignedIntegerType() ? 1 : 0); 2629 } else if (T->isFloatingType()) { 2630 TypeKind = 1; 2631 TypeInfo = getContext().getTypeSize(T); 2632 } 2633 2634 // Format the type name as if for a diagnostic, including quotes and 2635 // optionally an 'aka'. 2636 SmallString<32> Buffer; 2637 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype, 2638 (intptr_t)T.getAsOpaquePtr(), 2639 StringRef(), StringRef(), None, Buffer, 2640 None); 2641 2642 llvm::Constant *Components[] = { 2643 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo), 2644 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer) 2645 }; 2646 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components); 2647 2648 auto *GV = new llvm::GlobalVariable( 2649 CGM.getModule(), Descriptor->getType(), 2650 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor); 2651 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2652 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV); 2653 2654 // Remember the descriptor for this type. 2655 CGM.setTypeDescriptorInMap(T, GV); 2656 2657 return GV; 2658 } 2659 2660 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) { 2661 llvm::Type *TargetTy = IntPtrTy; 2662 2663 if (V->getType() == TargetTy) 2664 return V; 2665 2666 // Floating-point types which fit into intptr_t are bitcast to integers 2667 // and then passed directly (after zero-extension, if necessary). 2668 if (V->getType()->isFloatingPointTy()) { 2669 unsigned Bits = V->getType()->getPrimitiveSizeInBits(); 2670 if (Bits <= TargetTy->getIntegerBitWidth()) 2671 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(), 2672 Bits)); 2673 } 2674 2675 // Integers which fit in intptr_t are zero-extended and passed directly. 2676 if (V->getType()->isIntegerTy() && 2677 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth()) 2678 return Builder.CreateZExt(V, TargetTy); 2679 2680 // Pointers are passed directly, everything else is passed by address. 2681 if (!V->getType()->isPointerTy()) { 2682 Address Ptr = CreateDefaultAlignTempAlloca(V->getType()); 2683 Builder.CreateStore(V, Ptr); 2684 V = Ptr.getPointer(); 2685 } 2686 return Builder.CreatePtrToInt(V, TargetTy); 2687 } 2688 2689 /// \brief Emit a representation of a SourceLocation for passing to a handler 2690 /// in a sanitizer runtime library. The format for this data is: 2691 /// \code 2692 /// struct SourceLocation { 2693 /// const char *Filename; 2694 /// int32_t Line, Column; 2695 /// }; 2696 /// \endcode 2697 /// For an invalid SourceLocation, the Filename pointer is null. 2698 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) { 2699 llvm::Constant *Filename; 2700 int Line, Column; 2701 2702 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc); 2703 if (PLoc.isValid()) { 2704 StringRef FilenameString = PLoc.getFilename(); 2705 2706 int PathComponentsToStrip = 2707 CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip; 2708 if (PathComponentsToStrip < 0) { 2709 assert(PathComponentsToStrip != INT_MIN); 2710 int PathComponentsToKeep = -PathComponentsToStrip; 2711 auto I = llvm::sys::path::rbegin(FilenameString); 2712 auto E = llvm::sys::path::rend(FilenameString); 2713 while (I != E && --PathComponentsToKeep) 2714 ++I; 2715 2716 FilenameString = FilenameString.substr(I - E); 2717 } else if (PathComponentsToStrip > 0) { 2718 auto I = llvm::sys::path::begin(FilenameString); 2719 auto E = llvm::sys::path::end(FilenameString); 2720 while (I != E && PathComponentsToStrip--) 2721 ++I; 2722 2723 if (I != E) 2724 FilenameString = 2725 FilenameString.substr(I - llvm::sys::path::begin(FilenameString)); 2726 else 2727 FilenameString = llvm::sys::path::filename(FilenameString); 2728 } 2729 2730 auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src"); 2731 CGM.getSanitizerMetadata()->disableSanitizerForGlobal( 2732 cast<llvm::GlobalVariable>(FilenameGV.getPointer())); 2733 Filename = FilenameGV.getPointer(); 2734 Line = PLoc.getLine(); 2735 Column = PLoc.getColumn(); 2736 } else { 2737 Filename = llvm::Constant::getNullValue(Int8PtrTy); 2738 Line = Column = 0; 2739 } 2740 2741 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line), 2742 Builder.getInt32(Column)}; 2743 2744 return llvm::ConstantStruct::getAnon(Data); 2745 } 2746 2747 namespace { 2748 /// \brief Specify under what conditions this check can be recovered 2749 enum class CheckRecoverableKind { 2750 /// Always terminate program execution if this check fails. 2751 Unrecoverable, 2752 /// Check supports recovering, runtime has both fatal (noreturn) and 2753 /// non-fatal handlers for this check. 2754 Recoverable, 2755 /// Runtime conditionally aborts, always need to support recovery. 2756 AlwaysRecoverable 2757 }; 2758 } 2759 2760 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) { 2761 assert(llvm::countPopulation(Kind) == 1); 2762 switch (Kind) { 2763 case SanitizerKind::Vptr: 2764 return CheckRecoverableKind::AlwaysRecoverable; 2765 case SanitizerKind::Return: 2766 case SanitizerKind::Unreachable: 2767 return CheckRecoverableKind::Unrecoverable; 2768 default: 2769 return CheckRecoverableKind::Recoverable; 2770 } 2771 } 2772 2773 namespace { 2774 struct SanitizerHandlerInfo { 2775 char const *const Name; 2776 unsigned Version; 2777 }; 2778 } 2779 2780 const SanitizerHandlerInfo SanitizerHandlers[] = { 2781 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version}, 2782 LIST_SANITIZER_CHECKS 2783 #undef SANITIZER_CHECK 2784 }; 2785 2786 static void emitCheckHandlerCall(CodeGenFunction &CGF, 2787 llvm::FunctionType *FnType, 2788 ArrayRef<llvm::Value *> FnArgs, 2789 SanitizerHandler CheckHandler, 2790 CheckRecoverableKind RecoverKind, bool IsFatal, 2791 llvm::BasicBlock *ContBB) { 2792 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable); 2793 bool NeedsAbortSuffix = 2794 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable; 2795 bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime; 2796 const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler]; 2797 const StringRef CheckName = CheckInfo.Name; 2798 std::string FnName = "__ubsan_handle_" + CheckName.str(); 2799 if (CheckInfo.Version && !MinimalRuntime) 2800 FnName += "_v" + llvm::utostr(CheckInfo.Version); 2801 if (MinimalRuntime) 2802 FnName += "_minimal"; 2803 if (NeedsAbortSuffix) 2804 FnName += "_abort"; 2805 bool MayReturn = 2806 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable; 2807 2808 llvm::AttrBuilder B; 2809 if (!MayReturn) { 2810 B.addAttribute(llvm::Attribute::NoReturn) 2811 .addAttribute(llvm::Attribute::NoUnwind); 2812 } 2813 B.addAttribute(llvm::Attribute::UWTable); 2814 2815 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction( 2816 FnType, FnName, 2817 llvm::AttributeList::get(CGF.getLLVMContext(), 2818 llvm::AttributeList::FunctionIndex, B), 2819 /*Local=*/true); 2820 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs); 2821 if (!MayReturn) { 2822 HandlerCall->setDoesNotReturn(); 2823 CGF.Builder.CreateUnreachable(); 2824 } else { 2825 CGF.Builder.CreateBr(ContBB); 2826 } 2827 } 2828 2829 void CodeGenFunction::EmitCheck( 2830 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 2831 SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs, 2832 ArrayRef<llvm::Value *> DynamicArgs) { 2833 assert(IsSanitizerScope); 2834 assert(Checked.size() > 0); 2835 assert(CheckHandler >= 0 && 2836 CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers)); 2837 const StringRef CheckName = SanitizerHandlers[CheckHandler].Name; 2838 2839 llvm::Value *FatalCond = nullptr; 2840 llvm::Value *RecoverableCond = nullptr; 2841 llvm::Value *TrapCond = nullptr; 2842 for (int i = 0, n = Checked.size(); i < n; ++i) { 2843 llvm::Value *Check = Checked[i].first; 2844 // -fsanitize-trap= overrides -fsanitize-recover=. 2845 llvm::Value *&Cond = 2846 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second) 2847 ? TrapCond 2848 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second) 2849 ? RecoverableCond 2850 : FatalCond; 2851 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check; 2852 } 2853 2854 if (TrapCond) 2855 EmitTrapCheck(TrapCond); 2856 if (!FatalCond && !RecoverableCond) 2857 return; 2858 2859 llvm::Value *JointCond; 2860 if (FatalCond && RecoverableCond) 2861 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond); 2862 else 2863 JointCond = FatalCond ? FatalCond : RecoverableCond; 2864 assert(JointCond); 2865 2866 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second); 2867 assert(SanOpts.has(Checked[0].second)); 2868 #ifndef NDEBUG 2869 for (int i = 1, n = Checked.size(); i < n; ++i) { 2870 assert(RecoverKind == getRecoverableKind(Checked[i].second) && 2871 "All recoverable kinds in a single check must be same!"); 2872 assert(SanOpts.has(Checked[i].second)); 2873 } 2874 #endif 2875 2876 llvm::BasicBlock *Cont = createBasicBlock("cont"); 2877 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName); 2878 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers); 2879 // Give hint that we very much don't expect to execute the handler 2880 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 2881 llvm::MDBuilder MDHelper(getLLVMContext()); 2882 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2883 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node); 2884 EmitBlock(Handlers); 2885 2886 // Handler functions take an i8* pointing to the (handler-specific) static 2887 // information block, followed by a sequence of intptr_t arguments 2888 // representing operand values. 2889 SmallVector<llvm::Value *, 4> Args; 2890 SmallVector<llvm::Type *, 4> ArgTypes; 2891 if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) { 2892 Args.reserve(DynamicArgs.size() + 1); 2893 ArgTypes.reserve(DynamicArgs.size() + 1); 2894 2895 // Emit handler arguments and create handler function type. 2896 if (!StaticArgs.empty()) { 2897 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2898 auto *InfoPtr = 2899 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2900 llvm::GlobalVariable::PrivateLinkage, Info); 2901 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2902 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2903 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy)); 2904 ArgTypes.push_back(Int8PtrTy); 2905 } 2906 2907 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) { 2908 Args.push_back(EmitCheckValue(DynamicArgs[i])); 2909 ArgTypes.push_back(IntPtrTy); 2910 } 2911 } 2912 2913 llvm::FunctionType *FnType = 2914 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false); 2915 2916 if (!FatalCond || !RecoverableCond) { 2917 // Simple case: we need to generate a single handler call, either 2918 // fatal, or non-fatal. 2919 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, 2920 (FatalCond != nullptr), Cont); 2921 } else { 2922 // Emit two handler calls: first one for set of unrecoverable checks, 2923 // another one for recoverable. 2924 llvm::BasicBlock *NonFatalHandlerBB = 2925 createBasicBlock("non_fatal." + CheckName); 2926 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName); 2927 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB); 2928 EmitBlock(FatalHandlerBB); 2929 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true, 2930 NonFatalHandlerBB); 2931 EmitBlock(NonFatalHandlerBB); 2932 emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false, 2933 Cont); 2934 } 2935 2936 EmitBlock(Cont); 2937 } 2938 2939 void CodeGenFunction::EmitCfiSlowPathCheck( 2940 SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId, 2941 llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) { 2942 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont"); 2943 2944 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath"); 2945 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB); 2946 2947 llvm::MDBuilder MDHelper(getLLVMContext()); 2948 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1); 2949 BI->setMetadata(llvm::LLVMContext::MD_prof, Node); 2950 2951 EmitBlock(CheckBB); 2952 2953 bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind); 2954 2955 llvm::CallInst *CheckCall; 2956 if (WithDiag) { 2957 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs); 2958 auto *InfoPtr = 2959 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false, 2960 llvm::GlobalVariable::PrivateLinkage, Info); 2961 InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2962 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr); 2963 2964 llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction( 2965 "__cfi_slowpath_diag", 2966 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, 2967 false)); 2968 CheckCall = Builder.CreateCall( 2969 SlowPathDiagFn, 2970 {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)}); 2971 } else { 2972 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction( 2973 "__cfi_slowpath", 2974 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false)); 2975 CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr}); 2976 } 2977 2978 CheckCall->setDoesNotThrow(); 2979 2980 EmitBlock(Cont); 2981 } 2982 2983 // Emit a stub for __cfi_check function so that the linker knows about this 2984 // symbol in LTO mode. 2985 void CodeGenFunction::EmitCfiCheckStub() { 2986 llvm::Module *M = &CGM.getModule(); 2987 auto &Ctx = M->getContext(); 2988 llvm::Function *F = llvm::Function::Create( 2989 llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false), 2990 llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M); 2991 llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F); 2992 // FIXME: consider emitting an intrinsic call like 2993 // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2) 2994 // which can be lowered in CrossDSOCFI pass to the actual contents of 2995 // __cfi_check. This would allow inlining of __cfi_check calls. 2996 llvm::CallInst::Create( 2997 llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB); 2998 llvm::ReturnInst::Create(Ctx, nullptr, BB); 2999 } 3000 3001 // This function is basically a switch over the CFI failure kind, which is 3002 // extracted from CFICheckFailData (1st function argument). Each case is either 3003 // llvm.trap or a call to one of the two runtime handlers, based on 3004 // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid 3005 // failure kind) traps, but this should really never happen. CFICheckFailData 3006 // can be nullptr if the calling module has -fsanitize-trap behavior for this 3007 // check kind; in this case __cfi_check_fail traps as well. 3008 void CodeGenFunction::EmitCfiCheckFail() { 3009 SanitizerScope SanScope(this); 3010 FunctionArgList Args; 3011 ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy, 3012 ImplicitParamDecl::Other); 3013 ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy, 3014 ImplicitParamDecl::Other); 3015 Args.push_back(&ArgData); 3016 Args.push_back(&ArgAddr); 3017 3018 const CGFunctionInfo &FI = 3019 CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args); 3020 3021 llvm::Function *F = llvm::Function::Create( 3022 llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false), 3023 llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule()); 3024 F->setVisibility(llvm::GlobalValue::HiddenVisibility); 3025 3026 StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args, 3027 SourceLocation()); 3028 3029 llvm::Value *Data = 3030 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false, 3031 CGM.getContext().VoidPtrTy, ArgData.getLocation()); 3032 llvm::Value *Addr = 3033 EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false, 3034 CGM.getContext().VoidPtrTy, ArgAddr.getLocation()); 3035 3036 // Data == nullptr means the calling module has trap behaviour for this check. 3037 llvm::Value *DataIsNotNullPtr = 3038 Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy)); 3039 EmitTrapCheck(DataIsNotNullPtr); 3040 3041 llvm::StructType *SourceLocationTy = 3042 llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty); 3043 llvm::StructType *CfiCheckFailDataTy = 3044 llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy); 3045 3046 llvm::Value *V = Builder.CreateConstGEP2_32( 3047 CfiCheckFailDataTy, 3048 Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0, 3049 0); 3050 Address CheckKindAddr(V, getIntAlign()); 3051 llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr); 3052 3053 llvm::Value *AllVtables = llvm::MetadataAsValue::get( 3054 CGM.getLLVMContext(), 3055 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); 3056 llvm::Value *ValidVtable = Builder.CreateZExt( 3057 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), 3058 {Addr, AllVtables}), 3059 IntPtrTy); 3060 3061 const std::pair<int, SanitizerMask> CheckKinds[] = { 3062 {CFITCK_VCall, SanitizerKind::CFIVCall}, 3063 {CFITCK_NVCall, SanitizerKind::CFINVCall}, 3064 {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast}, 3065 {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast}, 3066 {CFITCK_ICall, SanitizerKind::CFIICall}}; 3067 3068 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks; 3069 for (auto CheckKindMaskPair : CheckKinds) { 3070 int Kind = CheckKindMaskPair.first; 3071 SanitizerMask Mask = CheckKindMaskPair.second; 3072 llvm::Value *Cond = 3073 Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind)); 3074 if (CGM.getLangOpts().Sanitize.has(Mask)) 3075 EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {}, 3076 {Data, Addr, ValidVtable}); 3077 else 3078 EmitTrapCheck(Cond); 3079 } 3080 3081 FinishFunction(); 3082 // The only reference to this function will be created during LTO link. 3083 // Make sure it survives until then. 3084 CGM.addUsedGlobal(F); 3085 } 3086 3087 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) { 3088 llvm::BasicBlock *Cont = createBasicBlock("cont"); 3089 3090 // If we're optimizing, collapse all calls to trap down to just one per 3091 // function to save on code size. 3092 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) { 3093 TrapBB = createBasicBlock("trap"); 3094 Builder.CreateCondBr(Checked, Cont, TrapBB); 3095 EmitBlock(TrapBB); 3096 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 3097 TrapCall->setDoesNotReturn(); 3098 TrapCall->setDoesNotThrow(); 3099 Builder.CreateUnreachable(); 3100 } else { 3101 Builder.CreateCondBr(Checked, Cont, TrapBB); 3102 } 3103 3104 EmitBlock(Cont); 3105 } 3106 3107 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) { 3108 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID)); 3109 3110 if (!CGM.getCodeGenOpts().TrapFuncName.empty()) { 3111 auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name", 3112 CGM.getCodeGenOpts().TrapFuncName); 3113 TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A); 3114 } 3115 3116 return TrapCall; 3117 } 3118 3119 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E, 3120 LValueBaseInfo *BaseInfo, 3121 TBAAAccessInfo *TBAAInfo) { 3122 assert(E->getType()->isArrayType() && 3123 "Array to pointer decay must have array source type!"); 3124 3125 // Expressions of array type can't be bitfields or vector elements. 3126 LValue LV = EmitLValue(E); 3127 Address Addr = LV.getAddress(); 3128 3129 // If the array type was an incomplete type, we need to make sure 3130 // the decay ends up being the right type. 3131 llvm::Type *NewTy = ConvertType(E->getType()); 3132 Addr = Builder.CreateElementBitCast(Addr, NewTy); 3133 3134 // Note that VLA pointers are always decayed, so we don't need to do 3135 // anything here. 3136 if (!E->getType()->isVariableArrayType()) { 3137 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3138 "Expected pointer to array"); 3139 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay"); 3140 } 3141 3142 // The result of this decay conversion points to an array element within the 3143 // base lvalue. However, since TBAA currently does not support representing 3144 // accesses to elements of member arrays, we conservatively represent accesses 3145 // to the pointee object as if it had no any base lvalue specified. 3146 // TODO: Support TBAA for member arrays. 3147 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType(); 3148 if (BaseInfo) *BaseInfo = LV.getBaseInfo(); 3149 if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType); 3150 3151 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType)); 3152 } 3153 3154 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an 3155 /// array to pointer, return the array subexpression. 3156 static const Expr *isSimpleArrayDecayOperand(const Expr *E) { 3157 // If this isn't just an array->pointer decay, bail out. 3158 const auto *CE = dyn_cast<CastExpr>(E); 3159 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay) 3160 return nullptr; 3161 3162 // If this is a decay from variable width array, bail out. 3163 const Expr *SubExpr = CE->getSubExpr(); 3164 if (SubExpr->getType()->isVariableArrayType()) 3165 return nullptr; 3166 3167 return SubExpr; 3168 } 3169 3170 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF, 3171 llvm::Value *ptr, 3172 ArrayRef<llvm::Value*> indices, 3173 bool inbounds, 3174 bool signedIndices, 3175 SourceLocation loc, 3176 const llvm::Twine &name = "arrayidx") { 3177 if (inbounds) { 3178 return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices, 3179 CodeGenFunction::NotSubtraction, loc, 3180 name); 3181 } else { 3182 return CGF.Builder.CreateGEP(ptr, indices, name); 3183 } 3184 } 3185 3186 static CharUnits getArrayElementAlign(CharUnits arrayAlign, 3187 llvm::Value *idx, 3188 CharUnits eltSize) { 3189 // If we have a constant index, we can use the exact offset of the 3190 // element we're accessing. 3191 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) { 3192 CharUnits offset = constantIdx->getZExtValue() * eltSize; 3193 return arrayAlign.alignmentAtOffset(offset); 3194 3195 // Otherwise, use the worst-case alignment for any element. 3196 } else { 3197 return arrayAlign.alignmentOfArrayElement(eltSize); 3198 } 3199 } 3200 3201 static QualType getFixedSizeElementType(const ASTContext &ctx, 3202 const VariableArrayType *vla) { 3203 QualType eltType; 3204 do { 3205 eltType = vla->getElementType(); 3206 } while ((vla = ctx.getAsVariableArrayType(eltType))); 3207 return eltType; 3208 } 3209 3210 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr, 3211 ArrayRef<llvm::Value *> indices, 3212 QualType eltType, bool inbounds, 3213 bool signedIndices, SourceLocation loc, 3214 const llvm::Twine &name = "arrayidx") { 3215 // All the indices except that last must be zero. 3216 #ifndef NDEBUG 3217 for (auto idx : indices.drop_back()) 3218 assert(isa<llvm::ConstantInt>(idx) && 3219 cast<llvm::ConstantInt>(idx)->isZero()); 3220 #endif 3221 3222 // Determine the element size of the statically-sized base. This is 3223 // the thing that the indices are expressed in terms of. 3224 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) { 3225 eltType = getFixedSizeElementType(CGF.getContext(), vla); 3226 } 3227 3228 // We can use that to compute the best alignment of the element. 3229 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 3230 CharUnits eltAlign = 3231 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize); 3232 3233 llvm::Value *eltPtr = emitArraySubscriptGEP( 3234 CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name); 3235 return Address(eltPtr, eltAlign); 3236 } 3237 3238 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 3239 bool Accessed) { 3240 // The index must always be an integer, which is not an aggregate. Emit it 3241 // in lexical order (this complexity is, sadly, required by C++17). 3242 llvm::Value *IdxPre = 3243 (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr; 3244 bool SignedIndices = false; 3245 auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * { 3246 auto *Idx = IdxPre; 3247 if (E->getLHS() != E->getIdx()) { 3248 assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS"); 3249 Idx = EmitScalarExpr(E->getIdx()); 3250 } 3251 3252 QualType IdxTy = E->getIdx()->getType(); 3253 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType(); 3254 SignedIndices |= IdxSigned; 3255 3256 if (SanOpts.has(SanitizerKind::ArrayBounds)) 3257 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed); 3258 3259 // Extend or truncate the index type to 32 or 64-bits. 3260 if (Promote && Idx->getType() != IntPtrTy) 3261 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom"); 3262 3263 return Idx; 3264 }; 3265 IdxPre = nullptr; 3266 3267 // If the base is a vector type, then we are forming a vector element lvalue 3268 // with this subscript. 3269 if (E->getBase()->getType()->isVectorType() && 3270 !isa<ExtVectorElementExpr>(E->getBase())) { 3271 // Emit the vector as an lvalue to get its address. 3272 LValue LHS = EmitLValue(E->getBase()); 3273 auto *Idx = EmitIdxAfterBase(/*Promote*/false); 3274 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); 3275 return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(), 3276 LHS.getBaseInfo(), TBAAAccessInfo()); 3277 } 3278 3279 // All the other cases basically behave like simple offsetting. 3280 3281 // Handle the extvector case we ignored above. 3282 if (isa<ExtVectorElementExpr>(E->getBase())) { 3283 LValue LV = EmitLValue(E->getBase()); 3284 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3285 Address Addr = EmitExtVectorElementLValue(LV); 3286 3287 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType(); 3288 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true, 3289 SignedIndices, E->getExprLoc()); 3290 return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(), 3291 CGM.getTBAAInfoForSubobject(LV, EltType)); 3292 } 3293 3294 LValueBaseInfo EltBaseInfo; 3295 TBAAAccessInfo EltTBAAInfo; 3296 Address Addr = Address::invalid(); 3297 if (const VariableArrayType *vla = 3298 getContext().getAsVariableArrayType(E->getType())) { 3299 // The base must be a pointer, which is not an aggregate. Emit 3300 // it. It needs to be emitted first in case it's what captures 3301 // the VLA bounds. 3302 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3303 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3304 3305 // The element count here is the total number of non-VLA elements. 3306 llvm::Value *numElements = getVLASize(vla).first; 3307 3308 // Effectively, the multiply by the VLA size is part of the GEP. 3309 // GEP indexes are signed, and scaling an index isn't permitted to 3310 // signed-overflow, so we use the same semantics for our explicit 3311 // multiply. We suppress this if overflow is not undefined behavior. 3312 if (getLangOpts().isSignedOverflowDefined()) { 3313 Idx = Builder.CreateMul(Idx, numElements); 3314 } else { 3315 Idx = Builder.CreateNSWMul(Idx, numElements); 3316 } 3317 3318 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(), 3319 !getLangOpts().isSignedOverflowDefined(), 3320 SignedIndices, E->getExprLoc()); 3321 3322 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){ 3323 // Indexing over an interface, as in "NSString *P; P[4];" 3324 3325 // Emit the base pointer. 3326 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3327 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3328 3329 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT); 3330 llvm::Value *InterfaceSizeVal = 3331 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity()); 3332 3333 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal); 3334 3335 // We don't necessarily build correct LLVM struct types for ObjC 3336 // interfaces, so we can't rely on GEP to do this scaling 3337 // correctly, so we need to cast to i8*. FIXME: is this actually 3338 // true? A lot of other things in the fragile ABI would break... 3339 llvm::Type *OrigBaseTy = Addr.getType(); 3340 Addr = Builder.CreateElementBitCast(Addr, Int8Ty); 3341 3342 // Do the GEP. 3343 CharUnits EltAlign = 3344 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize); 3345 llvm::Value *EltPtr = 3346 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false, 3347 SignedIndices, E->getExprLoc()); 3348 Addr = Address(EltPtr, EltAlign); 3349 3350 // Cast back. 3351 Addr = Builder.CreateBitCast(Addr, OrigBaseTy); 3352 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3353 // If this is A[i] where A is an array, the frontend will have decayed the 3354 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3355 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3356 // "gep x, i" here. Emit one "gep A, 0, i". 3357 assert(Array->getType()->isArrayType() && 3358 "Array to pointer decay must have array source type!"); 3359 LValue ArrayLV; 3360 // For simple multidimensional array indexing, set the 'accessed' flag for 3361 // better bounds-checking of the base expression. 3362 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3363 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3364 else 3365 ArrayLV = EmitLValue(Array); 3366 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3367 3368 // Propagate the alignment from the array itself to the result. 3369 Addr = emitArraySubscriptGEP( 3370 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3371 E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices, 3372 E->getExprLoc()); 3373 EltBaseInfo = ArrayLV.getBaseInfo(); 3374 EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType()); 3375 } else { 3376 // The base must be a pointer; emit it with an estimate of its alignment. 3377 Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo); 3378 auto *Idx = EmitIdxAfterBase(/*Promote*/true); 3379 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(), 3380 !getLangOpts().isSignedOverflowDefined(), 3381 SignedIndices, E->getExprLoc()); 3382 } 3383 3384 LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo); 3385 3386 if (getLangOpts().ObjC1 && 3387 getLangOpts().getGC() != LangOptions::NonGC) { 3388 LV.setNonGC(!E->isOBJCGCCandidate(getContext())); 3389 setObjCGCLValueClass(getContext(), E, LV); 3390 } 3391 return LV; 3392 } 3393 3394 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base, 3395 LValueBaseInfo &BaseInfo, 3396 TBAAAccessInfo &TBAAInfo, 3397 QualType BaseTy, QualType ElTy, 3398 bool IsLowerBound) { 3399 LValue BaseLVal; 3400 if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) { 3401 BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound); 3402 if (BaseTy->isArrayType()) { 3403 Address Addr = BaseLVal.getAddress(); 3404 BaseInfo = BaseLVal.getBaseInfo(); 3405 3406 // If the array type was an incomplete type, we need to make sure 3407 // the decay ends up being the right type. 3408 llvm::Type *NewTy = CGF.ConvertType(BaseTy); 3409 Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy); 3410 3411 // Note that VLA pointers are always decayed, so we don't need to do 3412 // anything here. 3413 if (!BaseTy->isVariableArrayType()) { 3414 assert(isa<llvm::ArrayType>(Addr.getElementType()) && 3415 "Expected pointer to array"); 3416 Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), 3417 "arraydecay"); 3418 } 3419 3420 return CGF.Builder.CreateElementBitCast(Addr, 3421 CGF.ConvertTypeForMem(ElTy)); 3422 } 3423 LValueBaseInfo TypeBaseInfo; 3424 TBAAAccessInfo TypeTBAAInfo; 3425 CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, 3426 &TypeTBAAInfo); 3427 BaseInfo.mergeForCast(TypeBaseInfo); 3428 TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo); 3429 return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align); 3430 } 3431 return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo); 3432 } 3433 3434 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 3435 bool IsLowerBound) { 3436 QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase()); 3437 QualType ResultExprTy; 3438 if (auto *AT = getContext().getAsArrayType(BaseTy)) 3439 ResultExprTy = AT->getElementType(); 3440 else 3441 ResultExprTy = BaseTy->getPointeeType(); 3442 llvm::Value *Idx = nullptr; 3443 if (IsLowerBound || E->getColonLoc().isInvalid()) { 3444 // Requesting lower bound or upper bound, but without provided length and 3445 // without ':' symbol for the default length -> length = 1. 3446 // Idx = LowerBound ?: 0; 3447 if (auto *LowerBound = E->getLowerBound()) { 3448 Idx = Builder.CreateIntCast( 3449 EmitScalarExpr(LowerBound), IntPtrTy, 3450 LowerBound->getType()->hasSignedIntegerRepresentation()); 3451 } else 3452 Idx = llvm::ConstantInt::getNullValue(IntPtrTy); 3453 } else { 3454 // Try to emit length or lower bound as constant. If this is possible, 1 3455 // is subtracted from constant length or lower bound. Otherwise, emit LLVM 3456 // IR (LB + Len) - 1. 3457 auto &C = CGM.getContext(); 3458 auto *Length = E->getLength(); 3459 llvm::APSInt ConstLength; 3460 if (Length) { 3461 // Idx = LowerBound + Length - 1; 3462 if (Length->isIntegerConstantExpr(ConstLength, C)) { 3463 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3464 Length = nullptr; 3465 } 3466 auto *LowerBound = E->getLowerBound(); 3467 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false); 3468 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) { 3469 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits); 3470 LowerBound = nullptr; 3471 } 3472 if (!Length) 3473 --ConstLength; 3474 else if (!LowerBound) 3475 --ConstLowerBound; 3476 3477 if (Length || LowerBound) { 3478 auto *LowerBoundVal = 3479 LowerBound 3480 ? Builder.CreateIntCast( 3481 EmitScalarExpr(LowerBound), IntPtrTy, 3482 LowerBound->getType()->hasSignedIntegerRepresentation()) 3483 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound); 3484 auto *LengthVal = 3485 Length 3486 ? Builder.CreateIntCast( 3487 EmitScalarExpr(Length), IntPtrTy, 3488 Length->getType()->hasSignedIntegerRepresentation()) 3489 : llvm::ConstantInt::get(IntPtrTy, ConstLength); 3490 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len", 3491 /*HasNUW=*/false, 3492 !getLangOpts().isSignedOverflowDefined()); 3493 if (Length && LowerBound) { 3494 Idx = Builder.CreateSub( 3495 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1", 3496 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3497 } 3498 } else 3499 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound); 3500 } else { 3501 // Idx = ArraySize - 1; 3502 QualType ArrayTy = BaseTy->isPointerType() 3503 ? E->getBase()->IgnoreParenImpCasts()->getType() 3504 : BaseTy; 3505 if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) { 3506 Length = VAT->getSizeExpr(); 3507 if (Length->isIntegerConstantExpr(ConstLength, C)) 3508 Length = nullptr; 3509 } else { 3510 auto *CAT = C.getAsConstantArrayType(ArrayTy); 3511 ConstLength = CAT->getSize(); 3512 } 3513 if (Length) { 3514 auto *LengthVal = Builder.CreateIntCast( 3515 EmitScalarExpr(Length), IntPtrTy, 3516 Length->getType()->hasSignedIntegerRepresentation()); 3517 Idx = Builder.CreateSub( 3518 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1", 3519 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined()); 3520 } else { 3521 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits); 3522 --ConstLength; 3523 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength); 3524 } 3525 } 3526 } 3527 assert(Idx); 3528 3529 Address EltPtr = Address::invalid(); 3530 LValueBaseInfo BaseInfo; 3531 TBAAAccessInfo TBAAInfo; 3532 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) { 3533 // The base must be a pointer, which is not an aggregate. Emit 3534 // it. It needs to be emitted first in case it's what captures 3535 // the VLA bounds. 3536 Address Base = 3537 emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo, 3538 BaseTy, VLA->getElementType(), IsLowerBound); 3539 // The element count here is the total number of non-VLA elements. 3540 llvm::Value *NumElements = getVLASize(VLA).first; 3541 3542 // Effectively, the multiply by the VLA size is part of the GEP. 3543 // GEP indexes are signed, and scaling an index isn't permitted to 3544 // signed-overflow, so we use the same semantics for our explicit 3545 // multiply. We suppress this if overflow is not undefined behavior. 3546 if (getLangOpts().isSignedOverflowDefined()) 3547 Idx = Builder.CreateMul(Idx, NumElements); 3548 else 3549 Idx = Builder.CreateNSWMul(Idx, NumElements); 3550 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(), 3551 !getLangOpts().isSignedOverflowDefined(), 3552 /*SignedIndices=*/false, E->getExprLoc()); 3553 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) { 3554 // If this is A[i] where A is an array, the frontend will have decayed the 3555 // base to be a ArrayToPointerDecay implicit cast. While correct, it is 3556 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a 3557 // "gep x, i" here. Emit one "gep A, 0, i". 3558 assert(Array->getType()->isArrayType() && 3559 "Array to pointer decay must have array source type!"); 3560 LValue ArrayLV; 3561 // For simple multidimensional array indexing, set the 'accessed' flag for 3562 // better bounds-checking of the base expression. 3563 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array)) 3564 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true); 3565 else 3566 ArrayLV = EmitLValue(Array); 3567 3568 // Propagate the alignment from the array itself to the result. 3569 EltPtr = emitArraySubscriptGEP( 3570 *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx}, 3571 ResultExprTy, !getLangOpts().isSignedOverflowDefined(), 3572 /*SignedIndices=*/false, E->getExprLoc()); 3573 BaseInfo = ArrayLV.getBaseInfo(); 3574 TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy); 3575 } else { 3576 Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, 3577 TBAAInfo, BaseTy, ResultExprTy, 3578 IsLowerBound); 3579 EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy, 3580 !getLangOpts().isSignedOverflowDefined(), 3581 /*SignedIndices=*/false, E->getExprLoc()); 3582 } 3583 3584 return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo); 3585 } 3586 3587 LValue CodeGenFunction:: 3588 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { 3589 // Emit the base vector as an l-value. 3590 LValue Base; 3591 3592 // ExtVectorElementExpr's base can either be a vector or pointer to vector. 3593 if (E->isArrow()) { 3594 // If it is a pointer to a vector, emit the address and form an lvalue with 3595 // it. 3596 LValueBaseInfo BaseInfo; 3597 TBAAAccessInfo TBAAInfo; 3598 Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo); 3599 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>(); 3600 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo); 3601 Base.getQuals().removeObjCGCAttr(); 3602 } else if (E->getBase()->isGLValue()) { 3603 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x), 3604 // emit the base as an lvalue. 3605 assert(E->getBase()->getType()->isVectorType()); 3606 Base = EmitLValue(E->getBase()); 3607 } else { 3608 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such. 3609 assert(E->getBase()->getType()->isVectorType() && 3610 "Result must be a vector"); 3611 llvm::Value *Vec = EmitScalarExpr(E->getBase()); 3612 3613 // Store the vector to memory (because LValue wants an address). 3614 Address VecMem = CreateMemTemp(E->getBase()->getType()); 3615 Builder.CreateStore(Vec, VecMem); 3616 Base = MakeAddrLValue(VecMem, E->getBase()->getType(), 3617 AlignmentSource::Decl); 3618 } 3619 3620 QualType type = 3621 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers()); 3622 3623 // Encode the element access list into a vector of unsigned indices. 3624 SmallVector<uint32_t, 4> Indices; 3625 E->getEncodedElementAccess(Indices); 3626 3627 if (Base.isSimple()) { 3628 llvm::Constant *CV = 3629 llvm::ConstantDataVector::get(getLLVMContext(), Indices); 3630 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type, 3631 Base.getBaseInfo(), TBAAAccessInfo()); 3632 } 3633 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); 3634 3635 llvm::Constant *BaseElts = Base.getExtVectorElts(); 3636 SmallVector<llvm::Constant *, 4> CElts; 3637 3638 for (unsigned i = 0, e = Indices.size(); i != e; ++i) 3639 CElts.push_back(BaseElts->getAggregateElement(Indices[i])); 3640 llvm::Constant *CV = llvm::ConstantVector::get(CElts); 3641 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type, 3642 Base.getBaseInfo(), TBAAAccessInfo()); 3643 } 3644 3645 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { 3646 if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) { 3647 EmitIgnoredExpr(E->getBase()); 3648 return EmitDeclRefLValue(DRE); 3649 } 3650 3651 Expr *BaseExpr = E->getBase(); 3652 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. 3653 LValue BaseLV; 3654 if (E->isArrow()) { 3655 LValueBaseInfo BaseInfo; 3656 TBAAAccessInfo TBAAInfo; 3657 Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo); 3658 QualType PtrTy = BaseExpr->getType()->getPointeeType(); 3659 SanitizerSet SkippedChecks; 3660 bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr); 3661 if (IsBaseCXXThis) 3662 SkippedChecks.set(SanitizerKind::Alignment, true); 3663 if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr)) 3664 SkippedChecks.set(SanitizerKind::Null, true); 3665 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy, 3666 /*Alignment=*/CharUnits::Zero(), SkippedChecks); 3667 BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo); 3668 } else 3669 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess); 3670 3671 NamedDecl *ND = E->getMemberDecl(); 3672 if (auto *Field = dyn_cast<FieldDecl>(ND)) { 3673 LValue LV = EmitLValueForField(BaseLV, Field); 3674 setObjCGCLValueClass(getContext(), E, LV); 3675 return LV; 3676 } 3677 3678 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 3679 return EmitFunctionDeclLValue(*this, E, FD); 3680 3681 llvm_unreachable("Unhandled member declaration!"); 3682 } 3683 3684 /// Given that we are currently emitting a lambda, emit an l-value for 3685 /// one of its members. 3686 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) { 3687 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda()); 3688 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent()); 3689 QualType LambdaTagType = 3690 getContext().getTagDeclType(Field->getParent()); 3691 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType); 3692 return EmitLValueForField(LambdaLV, Field); 3693 } 3694 3695 /// Drill down to the storage of a field without walking into 3696 /// reference types. 3697 /// 3698 /// The resulting address doesn't necessarily have the right type. 3699 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base, 3700 const FieldDecl *field) { 3701 const RecordDecl *rec = field->getParent(); 3702 3703 unsigned idx = 3704 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field); 3705 3706 CharUnits offset; 3707 // Adjust the alignment down to the given offset. 3708 // As a special case, if the LLVM field index is 0, we know that this 3709 // is zero. 3710 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec) 3711 .getFieldOffset(field->getFieldIndex()) == 0) && 3712 "LLVM field at index zero had non-zero offset?"); 3713 if (idx != 0) { 3714 auto &recLayout = CGF.getContext().getASTRecordLayout(rec); 3715 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex()); 3716 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits); 3717 } 3718 3719 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName()); 3720 } 3721 3722 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) { 3723 const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl(); 3724 if (!RD) 3725 return false; 3726 3727 if (RD->isDynamicClass()) 3728 return true; 3729 3730 for (const auto &Base : RD->bases()) 3731 if (hasAnyVptr(Base.getType(), Context)) 3732 return true; 3733 3734 for (const FieldDecl *Field : RD->fields()) 3735 if (hasAnyVptr(Field->getType(), Context)) 3736 return true; 3737 3738 return false; 3739 } 3740 3741 LValue CodeGenFunction::EmitLValueForField(LValue base, 3742 const FieldDecl *field) { 3743 LValueBaseInfo BaseInfo = base.getBaseInfo(); 3744 3745 if (field->isBitField()) { 3746 const CGRecordLayout &RL = 3747 CGM.getTypes().getCGRecordLayout(field->getParent()); 3748 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field); 3749 Address Addr = base.getAddress(); 3750 unsigned Idx = RL.getLLVMFieldNo(field); 3751 if (Idx != 0) 3752 // For structs, we GEP to the field that the record layout suggests. 3753 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset, 3754 field->getName()); 3755 // Get the access type. 3756 llvm::Type *FieldIntTy = 3757 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize); 3758 if (Addr.getElementType() != FieldIntTy) 3759 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy); 3760 3761 QualType fieldType = 3762 field->getType().withCVRQualifiers(base.getVRQualifiers()); 3763 // TODO: Support TBAA for bit fields. 3764 LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource()); 3765 return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo, 3766 TBAAAccessInfo()); 3767 } 3768 3769 // Fields of may-alias structures are may-alias themselves. 3770 // FIXME: this should get propagated down through anonymous structs 3771 // and unions. 3772 QualType FieldType = field->getType(); 3773 const RecordDecl *rec = field->getParent(); 3774 AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource(); 3775 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource)); 3776 TBAAAccessInfo FieldTBAAInfo; 3777 if (base.getTBAAInfo().isMayAlias() || 3778 rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) { 3779 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3780 } else if (rec->isUnion()) { 3781 // TODO: Support TBAA for unions. 3782 FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo(); 3783 } else { 3784 // If no base type been assigned for the base access, then try to generate 3785 // one for this base lvalue. 3786 FieldTBAAInfo = base.getTBAAInfo(); 3787 if (!FieldTBAAInfo.BaseType) { 3788 FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType()); 3789 assert(!FieldTBAAInfo.Offset && 3790 "Nonzero offset for an access with no base type!"); 3791 } 3792 3793 // Adjust offset to be relative to the base type. 3794 const ASTRecordLayout &Layout = 3795 getContext().getASTRecordLayout(field->getParent()); 3796 unsigned CharWidth = getContext().getCharWidth(); 3797 if (FieldTBAAInfo.BaseType) 3798 FieldTBAAInfo.Offset += 3799 Layout.getFieldOffset(field->getFieldIndex()) / CharWidth; 3800 3801 // Update the final access type. 3802 FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType); 3803 } 3804 3805 Address addr = base.getAddress(); 3806 unsigned RecordCVR = base.getVRQualifiers(); 3807 if (rec->isUnion()) { 3808 // For unions, there is no pointer adjustment. 3809 assert(!FieldType->isReferenceType() && "union has reference member"); 3810 if (CGM.getCodeGenOpts().StrictVTablePointers && 3811 hasAnyVptr(FieldType, getContext())) 3812 // Because unions can easily skip invariant.barriers, we need to add 3813 // a barrier every time CXXRecord field with vptr is referenced. 3814 addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()), 3815 addr.getAlignment()); 3816 } else { 3817 // For structs, we GEP to the field that the record layout suggests. 3818 addr = emitAddrOfFieldStorage(*this, addr, field); 3819 3820 // If this is a reference field, load the reference right now. 3821 if (FieldType->isReferenceType()) { 3822 LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo, 3823 FieldTBAAInfo); 3824 if (RecordCVR & Qualifiers::Volatile) 3825 RefLVal.getQuals().setVolatile(true); 3826 addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo); 3827 3828 // Qualifiers on the struct don't apply to the referencee. 3829 RecordCVR = 0; 3830 FieldType = FieldType->getPointeeType(); 3831 } 3832 } 3833 3834 // Make sure that the address is pointing to the right type. This is critical 3835 // for both unions and structs. A union needs a bitcast, a struct element 3836 // will need a bitcast if the LLVM type laid out doesn't match the desired 3837 // type. 3838 addr = Builder.CreateElementBitCast( 3839 addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName()); 3840 3841 if (field->hasAttr<AnnotateAttr>()) 3842 addr = EmitFieldAnnotations(field, addr); 3843 3844 LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo); 3845 LV.getQuals().addCVRQualifiers(RecordCVR); 3846 3847 // __weak attribute on a field is ignored. 3848 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak) 3849 LV.getQuals().removeObjCGCAttr(); 3850 3851 return LV; 3852 } 3853 3854 LValue 3855 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base, 3856 const FieldDecl *Field) { 3857 QualType FieldType = Field->getType(); 3858 3859 if (!FieldType->isReferenceType()) 3860 return EmitLValueForField(Base, Field); 3861 3862 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field); 3863 3864 // Make sure that the address is pointing to the right type. 3865 llvm::Type *llvmType = ConvertTypeForMem(FieldType); 3866 V = Builder.CreateElementBitCast(V, llvmType, Field->getName()); 3867 3868 // TODO: Generate TBAA information that describes this access as a structure 3869 // member access and not just an access to an object of the field's type. This 3870 // should be similar to what we do in EmitLValueForField(). 3871 LValueBaseInfo BaseInfo = Base.getBaseInfo(); 3872 AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource(); 3873 LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource)); 3874 return MakeAddrLValue(V, FieldType, FieldBaseInfo, 3875 CGM.getTBAAInfoForSubobject(Base, FieldType)); 3876 } 3877 3878 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){ 3879 if (E->isFileScope()) { 3880 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E); 3881 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl); 3882 } 3883 if (E->getType()->isVariablyModifiedType()) 3884 // make sure to emit the VLA size. 3885 EmitVariablyModifiedType(E->getType()); 3886 3887 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral"); 3888 const Expr *InitExpr = E->getInitializer(); 3889 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl); 3890 3891 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(), 3892 /*Init*/ true); 3893 3894 return Result; 3895 } 3896 3897 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) { 3898 if (!E->isGLValue()) 3899 // Initializing an aggregate temporary in C++11: T{...}. 3900 return EmitAggExprToLValue(E); 3901 3902 // An lvalue initializer list must be initializing a reference. 3903 assert(E->isTransparent() && "non-transparent glvalue init list"); 3904 return EmitLValue(E->getInit(0)); 3905 } 3906 3907 /// Emit the operand of a glvalue conditional operator. This is either a glvalue 3908 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no 3909 /// LValue is returned and the current block has been terminated. 3910 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF, 3911 const Expr *Operand) { 3912 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) { 3913 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false); 3914 return None; 3915 } 3916 3917 return CGF.EmitLValue(Operand); 3918 } 3919 3920 LValue CodeGenFunction:: 3921 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) { 3922 if (!expr->isGLValue()) { 3923 // ?: here should be an aggregate. 3924 assert(hasAggregateEvaluationKind(expr->getType()) && 3925 "Unexpected conditional operator!"); 3926 return EmitAggExprToLValue(expr); 3927 } 3928 3929 OpaqueValueMapping binding(*this, expr); 3930 3931 const Expr *condExpr = expr->getCond(); 3932 bool CondExprBool; 3933 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3934 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr(); 3935 if (!CondExprBool) std::swap(live, dead); 3936 3937 if (!ContainsLabel(dead)) { 3938 // If the true case is live, we need to track its region. 3939 if (CondExprBool) 3940 incrementProfileCounter(expr); 3941 return EmitLValue(live); 3942 } 3943 } 3944 3945 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true"); 3946 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false"); 3947 llvm::BasicBlock *contBlock = createBasicBlock("cond.end"); 3948 3949 ConditionalEvaluation eval(*this); 3950 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr)); 3951 3952 // Any temporaries created here are conditional. 3953 EmitBlock(lhsBlock); 3954 incrementProfileCounter(expr); 3955 eval.begin(*this); 3956 Optional<LValue> lhs = 3957 EmitLValueOrThrowExpression(*this, expr->getTrueExpr()); 3958 eval.end(*this); 3959 3960 if (lhs && !lhs->isSimple()) 3961 return EmitUnsupportedLValue(expr, "conditional operator"); 3962 3963 lhsBlock = Builder.GetInsertBlock(); 3964 if (lhs) 3965 Builder.CreateBr(contBlock); 3966 3967 // Any temporaries created here are conditional. 3968 EmitBlock(rhsBlock); 3969 eval.begin(*this); 3970 Optional<LValue> rhs = 3971 EmitLValueOrThrowExpression(*this, expr->getFalseExpr()); 3972 eval.end(*this); 3973 if (rhs && !rhs->isSimple()) 3974 return EmitUnsupportedLValue(expr, "conditional operator"); 3975 rhsBlock = Builder.GetInsertBlock(); 3976 3977 EmitBlock(contBlock); 3978 3979 if (lhs && rhs) { 3980 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(), 3981 2, "cond-lvalue"); 3982 phi->addIncoming(lhs->getPointer(), lhsBlock); 3983 phi->addIncoming(rhs->getPointer(), rhsBlock); 3984 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment())); 3985 AlignmentSource alignSource = 3986 std::max(lhs->getBaseInfo().getAlignmentSource(), 3987 rhs->getBaseInfo().getAlignmentSource()); 3988 TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator( 3989 lhs->getTBAAInfo(), rhs->getTBAAInfo()); 3990 return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource), 3991 TBAAInfo); 3992 } else { 3993 assert((lhs || rhs) && 3994 "both operands of glvalue conditional are throw-expressions?"); 3995 return lhs ? *lhs : *rhs; 3996 } 3997 } 3998 3999 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference 4000 /// type. If the cast is to a reference, we can have the usual lvalue result, 4001 /// otherwise if a cast is needed by the code generator in an lvalue context, 4002 /// then it must mean that we need the address of an aggregate in order to 4003 /// access one of its members. This can happen for all the reasons that casts 4004 /// are permitted with aggregate result, including noop aggregate casts, and 4005 /// cast from scalar to union. 4006 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) { 4007 switch (E->getCastKind()) { 4008 case CK_ToVoid: 4009 case CK_BitCast: 4010 case CK_ArrayToPointerDecay: 4011 case CK_FunctionToPointerDecay: 4012 case CK_NullToMemberPointer: 4013 case CK_NullToPointer: 4014 case CK_IntegralToPointer: 4015 case CK_PointerToIntegral: 4016 case CK_PointerToBoolean: 4017 case CK_VectorSplat: 4018 case CK_IntegralCast: 4019 case CK_BooleanToSignedIntegral: 4020 case CK_IntegralToBoolean: 4021 case CK_IntegralToFloating: 4022 case CK_FloatingToIntegral: 4023 case CK_FloatingToBoolean: 4024 case CK_FloatingCast: 4025 case CK_FloatingRealToComplex: 4026 case CK_FloatingComplexToReal: 4027 case CK_FloatingComplexToBoolean: 4028 case CK_FloatingComplexCast: 4029 case CK_FloatingComplexToIntegralComplex: 4030 case CK_IntegralRealToComplex: 4031 case CK_IntegralComplexToReal: 4032 case CK_IntegralComplexToBoolean: 4033 case CK_IntegralComplexCast: 4034 case CK_IntegralComplexToFloatingComplex: 4035 case CK_DerivedToBaseMemberPointer: 4036 case CK_BaseToDerivedMemberPointer: 4037 case CK_MemberPointerToBoolean: 4038 case CK_ReinterpretMemberPointer: 4039 case CK_AnyPointerToBlockPointerCast: 4040 case CK_ARCProduceObject: 4041 case CK_ARCConsumeObject: 4042 case CK_ARCReclaimReturnedObject: 4043 case CK_ARCExtendBlockObject: 4044 case CK_CopyAndAutoreleaseBlockObject: 4045 case CK_AddressSpaceConversion: 4046 case CK_IntToOCLSampler: 4047 return EmitUnsupportedLValue(E, "unexpected cast lvalue"); 4048 4049 case CK_Dependent: 4050 llvm_unreachable("dependent cast kind in IR gen!"); 4051 4052 case CK_BuiltinFnToFnPtr: 4053 llvm_unreachable("builtin functions are handled elsewhere"); 4054 4055 // These are never l-values; just use the aggregate emission code. 4056 case CK_NonAtomicToAtomic: 4057 case CK_AtomicToNonAtomic: 4058 return EmitAggExprToLValue(E); 4059 4060 case CK_Dynamic: { 4061 LValue LV = EmitLValue(E->getSubExpr()); 4062 Address V = LV.getAddress(); 4063 const auto *DCE = cast<CXXDynamicCastExpr>(E); 4064 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType()); 4065 } 4066 4067 case CK_ConstructorConversion: 4068 case CK_UserDefinedConversion: 4069 case CK_CPointerToObjCPointerCast: 4070 case CK_BlockPointerToObjCPointerCast: 4071 case CK_NoOp: 4072 case CK_LValueToRValue: 4073 return EmitLValue(E->getSubExpr()); 4074 4075 case CK_UncheckedDerivedToBase: 4076 case CK_DerivedToBase: { 4077 const RecordType *DerivedClassTy = 4078 E->getSubExpr()->getType()->getAs<RecordType>(); 4079 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4080 4081 LValue LV = EmitLValue(E->getSubExpr()); 4082 Address This = LV.getAddress(); 4083 4084 // Perform the derived-to-base conversion 4085 Address Base = GetAddressOfBaseClass( 4086 This, DerivedClassDecl, E->path_begin(), E->path_end(), 4087 /*NullCheckValue=*/false, E->getExprLoc()); 4088 4089 // TODO: Support accesses to members of base classes in TBAA. For now, we 4090 // conservatively pretend that the complete object is of the base class 4091 // type. 4092 return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(), 4093 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4094 } 4095 case CK_ToUnion: 4096 return EmitAggExprToLValue(E); 4097 case CK_BaseToDerived: { 4098 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>(); 4099 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl()); 4100 4101 LValue LV = EmitLValue(E->getSubExpr()); 4102 4103 // Perform the base-to-derived conversion 4104 Address Derived = 4105 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl, 4106 E->path_begin(), E->path_end(), 4107 /*NullCheckValue=*/false); 4108 4109 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is 4110 // performed and the object is not of the derived type. 4111 if (sanitizePerformTypeCheck()) 4112 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(), 4113 Derived.getPointer(), E->getType()); 4114 4115 if (SanOpts.has(SanitizerKind::CFIDerivedCast)) 4116 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(), 4117 /*MayBeNull=*/false, 4118 CFITCK_DerivedCast, E->getLocStart()); 4119 4120 return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(), 4121 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4122 } 4123 case CK_LValueBitCast: { 4124 // This must be a reinterpret_cast (or c-style equivalent). 4125 const auto *CE = cast<ExplicitCastExpr>(E); 4126 4127 CGM.EmitExplicitCastExprType(CE, this); 4128 LValue LV = EmitLValue(E->getSubExpr()); 4129 Address V = Builder.CreateBitCast(LV.getAddress(), 4130 ConvertType(CE->getTypeAsWritten())); 4131 4132 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) 4133 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(), 4134 /*MayBeNull=*/false, 4135 CFITCK_UnrelatedCast, E->getLocStart()); 4136 4137 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4138 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4139 } 4140 case CK_ObjCObjectLValueCast: { 4141 LValue LV = EmitLValue(E->getSubExpr()); 4142 Address V = Builder.CreateElementBitCast(LV.getAddress(), 4143 ConvertType(E->getType())); 4144 return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(), 4145 CGM.getTBAAInfoForSubobject(LV, E->getType())); 4146 } 4147 case CK_ZeroToOCLQueue: 4148 llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid"); 4149 case CK_ZeroToOCLEvent: 4150 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid"); 4151 } 4152 4153 llvm_unreachable("Unhandled lvalue cast kind?"); 4154 } 4155 4156 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) { 4157 assert(OpaqueValueMappingData::shouldBindAsLValue(e)); 4158 return getOpaqueLValueMapping(e); 4159 } 4160 4161 RValue CodeGenFunction::EmitRValueForField(LValue LV, 4162 const FieldDecl *FD, 4163 SourceLocation Loc) { 4164 QualType FT = FD->getType(); 4165 LValue FieldLV = EmitLValueForField(LV, FD); 4166 switch (getEvaluationKind(FT)) { 4167 case TEK_Complex: 4168 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc)); 4169 case TEK_Aggregate: 4170 return FieldLV.asAggregateRValue(); 4171 case TEK_Scalar: 4172 // This routine is used to load fields one-by-one to perform a copy, so 4173 // don't load reference fields. 4174 if (FD->getType()->isReferenceType()) 4175 return RValue::get(FieldLV.getPointer()); 4176 return EmitLoadOfLValue(FieldLV, Loc); 4177 } 4178 llvm_unreachable("bad evaluation kind"); 4179 } 4180 4181 //===--------------------------------------------------------------------===// 4182 // Expression Emission 4183 //===--------------------------------------------------------------------===// 4184 4185 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E, 4186 ReturnValueSlot ReturnValue) { 4187 // Builtins never have block type. 4188 if (E->getCallee()->getType()->isBlockPointerType()) 4189 return EmitBlockCallExpr(E, ReturnValue); 4190 4191 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E)) 4192 return EmitCXXMemberCallExpr(CE, ReturnValue); 4193 4194 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E)) 4195 return EmitCUDAKernelCallExpr(CE, ReturnValue); 4196 4197 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E)) 4198 if (const CXXMethodDecl *MD = 4199 dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl())) 4200 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue); 4201 4202 CGCallee callee = EmitCallee(E->getCallee()); 4203 4204 if (callee.isBuiltin()) { 4205 return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(), 4206 E, ReturnValue); 4207 } 4208 4209 if (callee.isPseudoDestructor()) { 4210 return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr()); 4211 } 4212 4213 return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue); 4214 } 4215 4216 /// Emit a CallExpr without considering whether it might be a subclass. 4217 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E, 4218 ReturnValueSlot ReturnValue) { 4219 CGCallee Callee = EmitCallee(E->getCallee()); 4220 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue); 4221 } 4222 4223 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) { 4224 if (auto builtinID = FD->getBuiltinID()) { 4225 return CGCallee::forBuiltin(builtinID, FD); 4226 } 4227 4228 llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD); 4229 return CGCallee::forDirect(calleePtr, FD); 4230 } 4231 4232 CGCallee CodeGenFunction::EmitCallee(const Expr *E) { 4233 E = E->IgnoreParens(); 4234 4235 // Look through function-to-pointer decay. 4236 if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) { 4237 if (ICE->getCastKind() == CK_FunctionToPointerDecay || 4238 ICE->getCastKind() == CK_BuiltinFnToFnPtr) { 4239 return EmitCallee(ICE->getSubExpr()); 4240 } 4241 4242 // Resolve direct calls. 4243 } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) { 4244 if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 4245 return EmitDirectCallee(*this, FD); 4246 } 4247 } else if (auto ME = dyn_cast<MemberExpr>(E)) { 4248 if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) { 4249 EmitIgnoredExpr(ME->getBase()); 4250 return EmitDirectCallee(*this, FD); 4251 } 4252 4253 // Look through template substitutions. 4254 } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) { 4255 return EmitCallee(NTTP->getReplacement()); 4256 4257 // Treat pseudo-destructor calls differently. 4258 } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) { 4259 return CGCallee::forPseudoDestructor(PDE); 4260 } 4261 4262 // Otherwise, we have an indirect reference. 4263 llvm::Value *calleePtr; 4264 QualType functionType; 4265 if (auto ptrType = E->getType()->getAs<PointerType>()) { 4266 calleePtr = EmitScalarExpr(E); 4267 functionType = ptrType->getPointeeType(); 4268 } else { 4269 functionType = E->getType(); 4270 calleePtr = EmitLValue(E).getPointer(); 4271 } 4272 assert(functionType->isFunctionType()); 4273 CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), 4274 E->getReferencedDeclOfCallee()); 4275 CGCallee callee(calleeInfo, calleePtr); 4276 return callee; 4277 } 4278 4279 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { 4280 // Comma expressions just emit their LHS then their RHS as an l-value. 4281 if (E->getOpcode() == BO_Comma) { 4282 EmitIgnoredExpr(E->getLHS()); 4283 EnsureInsertPoint(); 4284 return EmitLValue(E->getRHS()); 4285 } 4286 4287 if (E->getOpcode() == BO_PtrMemD || 4288 E->getOpcode() == BO_PtrMemI) 4289 return EmitPointerToDataMemberBinaryExpr(E); 4290 4291 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value"); 4292 4293 // Note that in all of these cases, __block variables need the RHS 4294 // evaluated first just in case the variable gets moved by the RHS. 4295 4296 switch (getEvaluationKind(E->getType())) { 4297 case TEK_Scalar: { 4298 switch (E->getLHS()->getType().getObjCLifetime()) { 4299 case Qualifiers::OCL_Strong: 4300 return EmitARCStoreStrong(E, /*ignored*/ false).first; 4301 4302 case Qualifiers::OCL_Autoreleasing: 4303 return EmitARCStoreAutoreleasing(E).first; 4304 4305 // No reason to do any of these differently. 4306 case Qualifiers::OCL_None: 4307 case Qualifiers::OCL_ExplicitNone: 4308 case Qualifiers::OCL_Weak: 4309 break; 4310 } 4311 4312 RValue RV = EmitAnyExpr(E->getRHS()); 4313 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store); 4314 if (RV.isScalar()) 4315 EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc()); 4316 EmitStoreThroughLValue(RV, LV); 4317 return LV; 4318 } 4319 4320 case TEK_Complex: 4321 return EmitComplexAssignmentLValue(E); 4322 4323 case TEK_Aggregate: 4324 return EmitAggExprToLValue(E); 4325 } 4326 llvm_unreachable("bad evaluation kind"); 4327 } 4328 4329 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { 4330 RValue RV = EmitCallExpr(E); 4331 4332 if (!RV.isScalar()) 4333 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4334 AlignmentSource::Decl); 4335 4336 assert(E->getCallReturnType(getContext())->isReferenceType() && 4337 "Can't have a scalar return unless the return type is a " 4338 "reference type!"); 4339 4340 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4341 } 4342 4343 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) { 4344 // FIXME: This shouldn't require another copy. 4345 return EmitAggExprToLValue(E); 4346 } 4347 4348 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) { 4349 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor() 4350 && "binding l-value to type which needs a temporary"); 4351 AggValueSlot Slot = CreateAggTemp(E->getType()); 4352 EmitCXXConstructExpr(E, Slot); 4353 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4354 } 4355 4356 LValue 4357 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) { 4358 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType()); 4359 } 4360 4361 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) { 4362 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E), 4363 ConvertType(E->getType())); 4364 } 4365 4366 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) { 4367 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(), 4368 AlignmentSource::Decl); 4369 } 4370 4371 LValue 4372 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) { 4373 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4374 Slot.setExternallyDestructed(); 4375 EmitAggExpr(E->getSubExpr(), Slot); 4376 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress()); 4377 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4378 } 4379 4380 LValue 4381 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) { 4382 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue"); 4383 EmitLambdaExpr(E, Slot); 4384 return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl); 4385 } 4386 4387 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { 4388 RValue RV = EmitObjCMessageExpr(E); 4389 4390 if (!RV.isScalar()) 4391 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4392 AlignmentSource::Decl); 4393 4394 assert(E->getMethodDecl()->getReturnType()->isReferenceType() && 4395 "Can't have a scalar return unless the return type is a " 4396 "reference type!"); 4397 4398 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType()); 4399 } 4400 4401 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) { 4402 Address V = 4403 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector()); 4404 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl); 4405 } 4406 4407 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface, 4408 const ObjCIvarDecl *Ivar) { 4409 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar); 4410 } 4411 4412 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy, 4413 llvm::Value *BaseValue, 4414 const ObjCIvarDecl *Ivar, 4415 unsigned CVRQualifiers) { 4416 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue, 4417 Ivar, CVRQualifiers); 4418 } 4419 4420 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { 4421 // FIXME: A lot of the code below could be shared with EmitMemberExpr. 4422 llvm::Value *BaseValue = nullptr; 4423 const Expr *BaseExpr = E->getBase(); 4424 Qualifiers BaseQuals; 4425 QualType ObjectTy; 4426 if (E->isArrow()) { 4427 BaseValue = EmitScalarExpr(BaseExpr); 4428 ObjectTy = BaseExpr->getType()->getPointeeType(); 4429 BaseQuals = ObjectTy.getQualifiers(); 4430 } else { 4431 LValue BaseLV = EmitLValue(BaseExpr); 4432 BaseValue = BaseLV.getPointer(); 4433 ObjectTy = BaseExpr->getType(); 4434 BaseQuals = ObjectTy.getQualifiers(); 4435 } 4436 4437 LValue LV = 4438 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), 4439 BaseQuals.getCVRQualifiers()); 4440 setObjCGCLValueClass(getContext(), E, LV); 4441 return LV; 4442 } 4443 4444 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) { 4445 // Can only get l-value for message expression returning aggregate type 4446 RValue RV = EmitAnyExprToTemp(E); 4447 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(), 4448 AlignmentSource::Decl); 4449 } 4450 4451 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee, 4452 const CallExpr *E, ReturnValueSlot ReturnValue, 4453 llvm::Value *Chain) { 4454 // Get the actual function type. The callee type will always be a pointer to 4455 // function type or a block pointer type. 4456 assert(CalleeType->isFunctionPointerType() && 4457 "Call must have function pointer type!"); 4458 4459 const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl(); 4460 4461 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 4462 // We can only guarantee that a function is called from the correct 4463 // context/function based on the appropriate target attributes, 4464 // so only check in the case where we have both always_inline and target 4465 // since otherwise we could be making a conditional call after a check for 4466 // the proper cpu features (and it won't cause code generation issues due to 4467 // function based code generation). 4468 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4469 TargetDecl->hasAttr<TargetAttr>()) 4470 checkTargetFeatures(E, FD); 4471 4472 CalleeType = getContext().getCanonicalType(CalleeType); 4473 4474 const auto *FnType = 4475 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType()); 4476 4477 CGCallee Callee = OrigCallee; 4478 4479 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) && 4480 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4481 if (llvm::Constant *PrefixSig = 4482 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 4483 SanitizerScope SanScope(this); 4484 llvm::Constant *FTRTTIConst = 4485 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true); 4486 llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty}; 4487 llvm::StructType *PrefixStructTy = llvm::StructType::get( 4488 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true); 4489 4490 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4491 4492 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast( 4493 CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy)); 4494 llvm::Value *CalleeSigPtr = 4495 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0); 4496 llvm::Value *CalleeSig = 4497 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign()); 4498 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig); 4499 4500 llvm::BasicBlock *Cont = createBasicBlock("cont"); 4501 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck"); 4502 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont); 4503 4504 EmitBlock(TypeCheck); 4505 llvm::Value *CalleeRTTIPtr = 4506 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1); 4507 llvm::Value *CalleeRTTIEncoded = 4508 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign()); 4509 llvm::Value *CalleeRTTI = 4510 DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded); 4511 llvm::Value *CalleeRTTIMatch = 4512 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst); 4513 llvm::Constant *StaticData[] = { 4514 EmitCheckSourceLocation(E->getLocStart()), 4515 EmitCheckTypeDescriptor(CalleeType) 4516 }; 4517 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function), 4518 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr); 4519 4520 Builder.CreateBr(Cont); 4521 EmitBlock(Cont); 4522 } 4523 } 4524 4525 // If we are checking indirect calls and this call is indirect, check that the 4526 // function pointer is a member of the bit set for the function type. 4527 if (SanOpts.has(SanitizerKind::CFIICall) && 4528 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) { 4529 SanitizerScope SanScope(this); 4530 EmitSanitizerStatReport(llvm::SanStat_CFI_ICall); 4531 4532 llvm::Metadata *MD; 4533 if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers) 4534 MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0)); 4535 else 4536 MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0)); 4537 4538 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD); 4539 4540 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4541 llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy); 4542 llvm::Value *TypeTest = Builder.CreateCall( 4543 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId}); 4544 4545 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD); 4546 llvm::Constant *StaticData[] = { 4547 llvm::ConstantInt::get(Int8Ty, CFITCK_ICall), 4548 EmitCheckSourceLocation(E->getLocStart()), 4549 EmitCheckTypeDescriptor(QualType(FnType, 0)), 4550 }; 4551 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) { 4552 EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId, 4553 CastedCallee, StaticData); 4554 } else { 4555 EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall), 4556 SanitizerHandler::CFICheckFail, StaticData, 4557 {CastedCallee, llvm::UndefValue::get(IntPtrTy)}); 4558 } 4559 } 4560 4561 CallArgList Args; 4562 if (Chain) 4563 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)), 4564 CGM.getContext().VoidPtrTy); 4565 4566 // C++17 requires that we evaluate arguments to a call using assignment syntax 4567 // right-to-left, and that we evaluate arguments to certain other operators 4568 // left-to-right. Note that we allow this to override the order dictated by 4569 // the calling convention on the MS ABI, which means that parameter 4570 // destruction order is not necessarily reverse construction order. 4571 // FIXME: Revisit this based on C++ committee response to unimplementability. 4572 EvaluationOrder Order = EvaluationOrder::Default; 4573 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) { 4574 if (OCE->isAssignmentOp()) 4575 Order = EvaluationOrder::ForceRightToLeft; 4576 else { 4577 switch (OCE->getOperator()) { 4578 case OO_LessLess: 4579 case OO_GreaterGreater: 4580 case OO_AmpAmp: 4581 case OO_PipePipe: 4582 case OO_Comma: 4583 case OO_ArrowStar: 4584 Order = EvaluationOrder::ForceLeftToRight; 4585 break; 4586 default: 4587 break; 4588 } 4589 } 4590 } 4591 4592 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(), 4593 E->getDirectCallee(), /*ParamsToSkip*/ 0, Order); 4594 4595 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall( 4596 Args, FnType, /*isChainCall=*/Chain); 4597 4598 // C99 6.5.2.2p6: 4599 // If the expression that denotes the called function has a type 4600 // that does not include a prototype, [the default argument 4601 // promotions are performed]. If the number of arguments does not 4602 // equal the number of parameters, the behavior is undefined. If 4603 // the function is defined with a type that includes a prototype, 4604 // and either the prototype ends with an ellipsis (, ...) or the 4605 // types of the arguments after promotion are not compatible with 4606 // the types of the parameters, the behavior is undefined. If the 4607 // function is defined with a type that does not include a 4608 // prototype, and the types of the arguments after promotion are 4609 // not compatible with those of the parameters after promotion, 4610 // the behavior is undefined [except in some trivial cases]. 4611 // That is, in the general case, we should assume that a call 4612 // through an unprototyped function type works like a *non-variadic* 4613 // call. The way we make this work is to cast to the exact type 4614 // of the promoted arguments. 4615 // 4616 // Chain calls use this same code path to add the invisible chain parameter 4617 // to the function type. 4618 if (isa<FunctionNoProtoType>(FnType) || Chain) { 4619 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo); 4620 CalleeTy = CalleeTy->getPointerTo(); 4621 4622 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4623 CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast"); 4624 Callee.setFunctionPointer(CalleePtr); 4625 } 4626 4627 return EmitCall(FnInfo, Callee, ReturnValue, Args); 4628 } 4629 4630 LValue CodeGenFunction:: 4631 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) { 4632 Address BaseAddr = Address::invalid(); 4633 if (E->getOpcode() == BO_PtrMemI) { 4634 BaseAddr = EmitPointerWithAlignment(E->getLHS()); 4635 } else { 4636 BaseAddr = EmitLValue(E->getLHS()).getAddress(); 4637 } 4638 4639 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS()); 4640 4641 const MemberPointerType *MPT 4642 = E->getRHS()->getType()->getAs<MemberPointerType>(); 4643 4644 LValueBaseInfo BaseInfo; 4645 TBAAAccessInfo TBAAInfo; 4646 Address MemberAddr = 4647 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo, 4648 &TBAAInfo); 4649 4650 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo); 4651 } 4652 4653 /// Given the address of a temporary variable, produce an r-value of 4654 /// its type. 4655 RValue CodeGenFunction::convertTempToRValue(Address addr, 4656 QualType type, 4657 SourceLocation loc) { 4658 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl); 4659 switch (getEvaluationKind(type)) { 4660 case TEK_Complex: 4661 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc)); 4662 case TEK_Aggregate: 4663 return lvalue.asAggregateRValue(); 4664 case TEK_Scalar: 4665 return RValue::get(EmitLoadOfScalar(lvalue, loc)); 4666 } 4667 llvm_unreachable("bad evaluation kind"); 4668 } 4669 4670 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) { 4671 assert(Val->getType()->isFPOrFPVectorTy()); 4672 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val)) 4673 return; 4674 4675 llvm::MDBuilder MDHelper(getLLVMContext()); 4676 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy); 4677 4678 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node); 4679 } 4680 4681 namespace { 4682 struct LValueOrRValue { 4683 LValue LV; 4684 RValue RV; 4685 }; 4686 } 4687 4688 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF, 4689 const PseudoObjectExpr *E, 4690 bool forLValue, 4691 AggValueSlot slot) { 4692 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques; 4693 4694 // Find the result expression, if any. 4695 const Expr *resultExpr = E->getResultExpr(); 4696 LValueOrRValue result; 4697 4698 for (PseudoObjectExpr::const_semantics_iterator 4699 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) { 4700 const Expr *semantic = *i; 4701 4702 // If this semantic expression is an opaque value, bind it 4703 // to the result of its source expression. 4704 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) { 4705 4706 // If this is the result expression, we may need to evaluate 4707 // directly into the slot. 4708 typedef CodeGenFunction::OpaqueValueMappingData OVMA; 4709 OVMA opaqueData; 4710 if (ov == resultExpr && ov->isRValue() && !forLValue && 4711 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) { 4712 CGF.EmitAggExpr(ov->getSourceExpr(), slot); 4713 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(), 4714 AlignmentSource::Decl); 4715 opaqueData = OVMA::bind(CGF, ov, LV); 4716 result.RV = slot.asRValue(); 4717 4718 // Otherwise, emit as normal. 4719 } else { 4720 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr()); 4721 4722 // If this is the result, also evaluate the result now. 4723 if (ov == resultExpr) { 4724 if (forLValue) 4725 result.LV = CGF.EmitLValue(ov); 4726 else 4727 result.RV = CGF.EmitAnyExpr(ov, slot); 4728 } 4729 } 4730 4731 opaques.push_back(opaqueData); 4732 4733 // Otherwise, if the expression is the result, evaluate it 4734 // and remember the result. 4735 } else if (semantic == resultExpr) { 4736 if (forLValue) 4737 result.LV = CGF.EmitLValue(semantic); 4738 else 4739 result.RV = CGF.EmitAnyExpr(semantic, slot); 4740 4741 // Otherwise, evaluate the expression in an ignored context. 4742 } else { 4743 CGF.EmitIgnoredExpr(semantic); 4744 } 4745 } 4746 4747 // Unbind all the opaques now. 4748 for (unsigned i = 0, e = opaques.size(); i != e; ++i) 4749 opaques[i].unbind(CGF); 4750 4751 return result; 4752 } 4753 4754 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E, 4755 AggValueSlot slot) { 4756 return emitPseudoObjectExpr(*this, E, false, slot).RV; 4757 } 4758 4759 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) { 4760 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV; 4761 } 4762