1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGCleanup.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenModule.h"
23 #include "ConstantEmitter.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/NSAPI.h"
29 #include "clang/Frontend/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
65                                           const Twine &Name,
66                                           llvm::Value *ArraySize,
67                                           bool CastToDefaultAddrSpace) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getQuantity());
70   llvm::Value *V = Alloca;
71   // Alloca always returns a pointer in alloca address space, which may
72   // be different from the type defined by the language. For example,
73   // in C++ the auto variables are in the default address space. Therefore
74   // cast alloca to the default address space when necessary.
75   if (CastToDefaultAddrSpace && getASTAllocaAddressSpace() != LangAS::Default) {
76     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
77     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
78     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
79     // otherwise alloca is inserted at the current insertion point of the
80     // builder.
81     if (!ArraySize)
82       Builder.SetInsertPoint(AllocaInsertPt);
83     V = getTargetHooks().performAddrSpaceCast(
84         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
85         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
86   }
87 
88   return Address(V, Align);
89 }
90 
91 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
92 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
93 /// insertion point of the builder.
94 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
95                                                     const Twine &Name,
96                                                     llvm::Value *ArraySize) {
97   if (ArraySize)
98     return Builder.CreateAlloca(Ty, ArraySize, Name);
99   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
100                               ArraySize, Name, AllocaInsertPt);
101 }
102 
103 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
104 /// default alignment of the corresponding LLVM type, which is *not*
105 /// guaranteed to be related in any way to the expected alignment of
106 /// an AST type that might have been lowered to Ty.
107 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
108                                                       const Twine &Name) {
109   CharUnits Align =
110     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
111   return CreateTempAlloca(Ty, Align, Name);
112 }
113 
114 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
115   assert(isa<llvm::AllocaInst>(Var.getPointer()));
116   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
117   Store->setAlignment(Var.getAlignment().getQuantity());
118   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
119   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
120 }
121 
122 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
123   CharUnits Align = getContext().getTypeAlignInChars(Ty);
124   return CreateTempAlloca(ConvertType(Ty), Align, Name);
125 }
126 
127 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
128                                        bool CastToDefaultAddrSpace) {
129   // FIXME: Should we prefer the preferred type alignment here?
130   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name,
131                        CastToDefaultAddrSpace);
132 }
133 
134 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
135                                        const Twine &Name,
136                                        bool CastToDefaultAddrSpace) {
137   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name, nullptr,
138                           CastToDefaultAddrSpace);
139 }
140 
141 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
142 /// expression and compare the result against zero, returning an Int1Ty value.
143 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
144   PGO.setCurrentStmt(E);
145   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
146     llvm::Value *MemPtr = EmitScalarExpr(E);
147     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
148   }
149 
150   QualType BoolTy = getContext().BoolTy;
151   SourceLocation Loc = E->getExprLoc();
152   if (!E->getType()->isAnyComplexType())
153     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
154 
155   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
156                                        Loc);
157 }
158 
159 /// EmitIgnoredExpr - Emit code to compute the specified expression,
160 /// ignoring the result.
161 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
162   if (E->isRValue())
163     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
164 
165   // Just emit it as an l-value and drop the result.
166   EmitLValue(E);
167 }
168 
169 /// EmitAnyExpr - Emit code to compute the specified expression which
170 /// can have any type.  The result is returned as an RValue struct.
171 /// If this is an aggregate expression, AggSlot indicates where the
172 /// result should be returned.
173 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
174                                     AggValueSlot aggSlot,
175                                     bool ignoreResult) {
176   switch (getEvaluationKind(E->getType())) {
177   case TEK_Scalar:
178     return RValue::get(EmitScalarExpr(E, ignoreResult));
179   case TEK_Complex:
180     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
181   case TEK_Aggregate:
182     if (!ignoreResult && aggSlot.isIgnored())
183       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
184     EmitAggExpr(E, aggSlot);
185     return aggSlot.asRValue();
186   }
187   llvm_unreachable("bad evaluation kind");
188 }
189 
190 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
191 /// always be accessible even if no aggregate location is provided.
192 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
193   AggValueSlot AggSlot = AggValueSlot::ignored();
194 
195   if (hasAggregateEvaluationKind(E->getType()))
196     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
197   return EmitAnyExpr(E, AggSlot);
198 }
199 
200 /// EmitAnyExprToMem - Evaluate an expression into a given memory
201 /// location.
202 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
203                                        Address Location,
204                                        Qualifiers Quals,
205                                        bool IsInit) {
206   // FIXME: This function should take an LValue as an argument.
207   switch (getEvaluationKind(E->getType())) {
208   case TEK_Complex:
209     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
210                               /*isInit*/ false);
211     return;
212 
213   case TEK_Aggregate: {
214     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
215                                          AggValueSlot::IsDestructed_t(IsInit),
216                                          AggValueSlot::DoesNotNeedGCBarriers,
217                                          AggValueSlot::IsAliased_t(!IsInit)));
218     return;
219   }
220 
221   case TEK_Scalar: {
222     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
223     LValue LV = MakeAddrLValue(Location, E->getType());
224     EmitStoreThroughLValue(RV, LV);
225     return;
226   }
227   }
228   llvm_unreachable("bad evaluation kind");
229 }
230 
231 static void
232 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
233                      const Expr *E, Address ReferenceTemporary) {
234   // Objective-C++ ARC:
235   //   If we are binding a reference to a temporary that has ownership, we
236   //   need to perform retain/release operations on the temporary.
237   //
238   // FIXME: This should be looking at E, not M.
239   if (auto Lifetime = M->getType().getObjCLifetime()) {
240     switch (Lifetime) {
241     case Qualifiers::OCL_None:
242     case Qualifiers::OCL_ExplicitNone:
243       // Carry on to normal cleanup handling.
244       break;
245 
246     case Qualifiers::OCL_Autoreleasing:
247       // Nothing to do; cleaned up by an autorelease pool.
248       return;
249 
250     case Qualifiers::OCL_Strong:
251     case Qualifiers::OCL_Weak:
252       switch (StorageDuration Duration = M->getStorageDuration()) {
253       case SD_Static:
254         // Note: we intentionally do not register a cleanup to release
255         // the object on program termination.
256         return;
257 
258       case SD_Thread:
259         // FIXME: We should probably register a cleanup in this case.
260         return;
261 
262       case SD_Automatic:
263       case SD_FullExpression:
264         CodeGenFunction::Destroyer *Destroy;
265         CleanupKind CleanupKind;
266         if (Lifetime == Qualifiers::OCL_Strong) {
267           const ValueDecl *VD = M->getExtendingDecl();
268           bool Precise =
269               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
270           CleanupKind = CGF.getARCCleanupKind();
271           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
272                             : &CodeGenFunction::destroyARCStrongImprecise;
273         } else {
274           // __weak objects always get EH cleanups; otherwise, exceptions
275           // could cause really nasty crashes instead of mere leaks.
276           CleanupKind = NormalAndEHCleanup;
277           Destroy = &CodeGenFunction::destroyARCWeak;
278         }
279         if (Duration == SD_FullExpression)
280           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
281                           M->getType(), *Destroy,
282                           CleanupKind & EHCleanup);
283         else
284           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
285                                           M->getType(),
286                                           *Destroy, CleanupKind & EHCleanup);
287         return;
288 
289       case SD_Dynamic:
290         llvm_unreachable("temporary cannot have dynamic storage duration");
291       }
292       llvm_unreachable("unknown storage duration");
293     }
294   }
295 
296   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
297   if (const RecordType *RT =
298           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
299     // Get the destructor for the reference temporary.
300     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
301     if (!ClassDecl->hasTrivialDestructor())
302       ReferenceTemporaryDtor = ClassDecl->getDestructor();
303   }
304 
305   if (!ReferenceTemporaryDtor)
306     return;
307 
308   // Call the destructor for the temporary.
309   switch (M->getStorageDuration()) {
310   case SD_Static:
311   case SD_Thread: {
312     llvm::Constant *CleanupFn;
313     llvm::Constant *CleanupArg;
314     if (E->getType()->isArrayType()) {
315       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
316           ReferenceTemporary, E->getType(),
317           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
318           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
319       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
320     } else {
321       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
322                                                StructorType::Complete);
323       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
324     }
325     CGF.CGM.getCXXABI().registerGlobalDtor(
326         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
327     break;
328   }
329 
330   case SD_FullExpression:
331     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
332                     CodeGenFunction::destroyCXXObject,
333                     CGF.getLangOpts().Exceptions);
334     break;
335 
336   case SD_Automatic:
337     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
338                                     ReferenceTemporary, E->getType(),
339                                     CodeGenFunction::destroyCXXObject,
340                                     CGF.getLangOpts().Exceptions);
341     break;
342 
343   case SD_Dynamic:
344     llvm_unreachable("temporary cannot have dynamic storage duration");
345   }
346 }
347 
348 static Address createReferenceTemporary(CodeGenFunction &CGF,
349                                         const MaterializeTemporaryExpr *M,
350                                         const Expr *Inner) {
351   auto &TCG = CGF.getTargetHooks();
352   switch (M->getStorageDuration()) {
353   case SD_FullExpression:
354   case SD_Automatic: {
355     // If we have a constant temporary array or record try to promote it into a
356     // constant global under the same rules a normal constant would've been
357     // promoted. This is easier on the optimizer and generally emits fewer
358     // instructions.
359     QualType Ty = Inner->getType();
360     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
361         (Ty->isArrayType() || Ty->isRecordType()) &&
362         CGF.CGM.isTypeConstant(Ty, true))
363       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
364         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
365           auto AS = AddrSpace.getValue();
366           auto *GV = new llvm::GlobalVariable(
367               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
368               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
369               llvm::GlobalValue::NotThreadLocal,
370               CGF.getContext().getTargetAddressSpace(AS));
371           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
372           GV->setAlignment(alignment.getQuantity());
373           llvm::Constant *C = GV;
374           if (AS != LangAS::Default)
375             C = TCG.performAddrSpaceCast(
376                 CGF.CGM, GV, AS, LangAS::Default,
377                 GV->getValueType()->getPointerTo(
378                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
379           // FIXME: Should we put the new global into a COMDAT?
380           return Address(C, alignment);
381         }
382       }
383     return CGF.CreateMemTemp(Ty, "ref.tmp");
384   }
385   case SD_Thread:
386   case SD_Static:
387     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
388 
389   case SD_Dynamic:
390     llvm_unreachable("temporary can't have dynamic storage duration");
391   }
392   llvm_unreachable("unknown storage duration");
393 }
394 
395 LValue CodeGenFunction::
396 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
397   const Expr *E = M->GetTemporaryExpr();
398 
399     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
400     // as that will cause the lifetime adjustment to be lost for ARC
401   auto ownership = M->getType().getObjCLifetime();
402   if (ownership != Qualifiers::OCL_None &&
403       ownership != Qualifiers::OCL_ExplicitNone) {
404     Address Object = createReferenceTemporary(*this, M, E);
405     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
406       Object = Address(llvm::ConstantExpr::getBitCast(Var,
407                            ConvertTypeForMem(E->getType())
408                              ->getPointerTo(Object.getAddressSpace())),
409                        Object.getAlignment());
410 
411       // createReferenceTemporary will promote the temporary to a global with a
412       // constant initializer if it can.  It can only do this to a value of
413       // ARC-manageable type if the value is global and therefore "immune" to
414       // ref-counting operations.  Therefore we have no need to emit either a
415       // dynamic initialization or a cleanup and we can just return the address
416       // of the temporary.
417       if (Var->hasInitializer())
418         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
419 
420       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
421     }
422     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
423                                        AlignmentSource::Decl);
424 
425     switch (getEvaluationKind(E->getType())) {
426     default: llvm_unreachable("expected scalar or aggregate expression");
427     case TEK_Scalar:
428       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
429       break;
430     case TEK_Aggregate: {
431       EmitAggExpr(E, AggValueSlot::forAddr(Object,
432                                            E->getType().getQualifiers(),
433                                            AggValueSlot::IsDestructed,
434                                            AggValueSlot::DoesNotNeedGCBarriers,
435                                            AggValueSlot::IsNotAliased));
436       break;
437     }
438     }
439 
440     pushTemporaryCleanup(*this, M, E, Object);
441     return RefTempDst;
442   }
443 
444   SmallVector<const Expr *, 2> CommaLHSs;
445   SmallVector<SubobjectAdjustment, 2> Adjustments;
446   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
447 
448   for (const auto &Ignored : CommaLHSs)
449     EmitIgnoredExpr(Ignored);
450 
451   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
452     if (opaque->getType()->isRecordType()) {
453       assert(Adjustments.empty());
454       return EmitOpaqueValueLValue(opaque);
455     }
456   }
457 
458   // Create and initialize the reference temporary.
459   Address Object = createReferenceTemporary(*this, M, E);
460   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
461           Object.getPointer()->stripPointerCasts())) {
462     Object = Address(llvm::ConstantExpr::getBitCast(
463                          cast<llvm::Constant>(Object.getPointer()),
464                          ConvertTypeForMem(E->getType())->getPointerTo()),
465                      Object.getAlignment());
466     // If the temporary is a global and has a constant initializer or is a
467     // constant temporary that we promoted to a global, we may have already
468     // initialized it.
469     if (!Var->hasInitializer()) {
470       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
471       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
472     }
473   } else {
474     switch (M->getStorageDuration()) {
475     case SD_Automatic:
476     case SD_FullExpression:
477       if (auto *Size = EmitLifetimeStart(
478               CGM.getDataLayout().getTypeAllocSize(Object.getElementType()),
479               Object.getPointer())) {
480         if (M->getStorageDuration() == SD_Automatic)
481           pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
482                                                     Object, Size);
483         else
484           pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Object,
485                                                Size);
486       }
487       break;
488     default:
489       break;
490     }
491     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
492   }
493   pushTemporaryCleanup(*this, M, E, Object);
494 
495   // Perform derived-to-base casts and/or field accesses, to get from the
496   // temporary object we created (and, potentially, for which we extended
497   // the lifetime) to the subobject we're binding the reference to.
498   for (unsigned I = Adjustments.size(); I != 0; --I) {
499     SubobjectAdjustment &Adjustment = Adjustments[I-1];
500     switch (Adjustment.Kind) {
501     case SubobjectAdjustment::DerivedToBaseAdjustment:
502       Object =
503           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
504                                 Adjustment.DerivedToBase.BasePath->path_begin(),
505                                 Adjustment.DerivedToBase.BasePath->path_end(),
506                                 /*NullCheckValue=*/ false, E->getExprLoc());
507       break;
508 
509     case SubobjectAdjustment::FieldAdjustment: {
510       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
511       LV = EmitLValueForField(LV, Adjustment.Field);
512       assert(LV.isSimple() &&
513              "materialized temporary field is not a simple lvalue");
514       Object = LV.getAddress();
515       break;
516     }
517 
518     case SubobjectAdjustment::MemberPointerAdjustment: {
519       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
520       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
521                                                Adjustment.Ptr.MPT);
522       break;
523     }
524     }
525   }
526 
527   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
528 }
529 
530 RValue
531 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
532   // Emit the expression as an lvalue.
533   LValue LV = EmitLValue(E);
534   assert(LV.isSimple());
535   llvm::Value *Value = LV.getPointer();
536 
537   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
538     // C++11 [dcl.ref]p5 (as amended by core issue 453):
539     //   If a glvalue to which a reference is directly bound designates neither
540     //   an existing object or function of an appropriate type nor a region of
541     //   storage of suitable size and alignment to contain an object of the
542     //   reference's type, the behavior is undefined.
543     QualType Ty = E->getType();
544     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
545   }
546 
547   return RValue::get(Value);
548 }
549 
550 
551 /// getAccessedFieldNo - Given an encoded value and a result number, return the
552 /// input field number being accessed.
553 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
554                                              const llvm::Constant *Elts) {
555   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
556       ->getZExtValue();
557 }
558 
559 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
560 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
561                                     llvm::Value *High) {
562   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
563   llvm::Value *K47 = Builder.getInt64(47);
564   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
565   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
566   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
567   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
568   return Builder.CreateMul(B1, KMul);
569 }
570 
571 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
572   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
573          TCK == TCK_UpcastToVirtualBase;
574 }
575 
576 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
577   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
578   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
579          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
580           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
581           TCK == TCK_UpcastToVirtualBase);
582 }
583 
584 bool CodeGenFunction::sanitizePerformTypeCheck() const {
585   return SanOpts.has(SanitizerKind::Null) |
586          SanOpts.has(SanitizerKind::Alignment) |
587          SanOpts.has(SanitizerKind::ObjectSize) |
588          SanOpts.has(SanitizerKind::Vptr);
589 }
590 
591 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
592                                     llvm::Value *Ptr, QualType Ty,
593                                     CharUnits Alignment,
594                                     SanitizerSet SkippedChecks) {
595   if (!sanitizePerformTypeCheck())
596     return;
597 
598   // Don't check pointers outside the default address space. The null check
599   // isn't correct, the object-size check isn't supported by LLVM, and we can't
600   // communicate the addresses to the runtime handler for the vptr check.
601   if (Ptr->getType()->getPointerAddressSpace())
602     return;
603 
604   // Don't check pointers to volatile data. The behavior here is implementation-
605   // defined.
606   if (Ty.isVolatileQualified())
607     return;
608 
609   SanitizerScope SanScope(this);
610 
611   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
612   llvm::BasicBlock *Done = nullptr;
613 
614   // Quickly determine whether we have a pointer to an alloca. It's possible
615   // to skip null checks, and some alignment checks, for these pointers. This
616   // can reduce compile-time significantly.
617   auto PtrToAlloca =
618       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
619 
620   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
621   llvm::Value *IsNonNull = nullptr;
622   bool IsGuaranteedNonNull =
623       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
624   bool AllowNullPointers = isNullPointerAllowed(TCK);
625   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
626       !IsGuaranteedNonNull) {
627     // The glvalue must not be an empty glvalue.
628     IsNonNull = Builder.CreateIsNotNull(Ptr);
629 
630     // The IR builder can constant-fold the null check if the pointer points to
631     // a constant.
632     IsGuaranteedNonNull = IsNonNull == True;
633 
634     // Skip the null check if the pointer is known to be non-null.
635     if (!IsGuaranteedNonNull) {
636       if (AllowNullPointers) {
637         // When performing pointer casts, it's OK if the value is null.
638         // Skip the remaining checks in that case.
639         Done = createBasicBlock("null");
640         llvm::BasicBlock *Rest = createBasicBlock("not.null");
641         Builder.CreateCondBr(IsNonNull, Rest, Done);
642         EmitBlock(Rest);
643       } else {
644         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
645       }
646     }
647   }
648 
649   if (SanOpts.has(SanitizerKind::ObjectSize) &&
650       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
651       !Ty->isIncompleteType()) {
652     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
653 
654     // The glvalue must refer to a large enough storage region.
655     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
656     //        to check this.
657     // FIXME: Get object address space
658     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
659     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
660     llvm::Value *Min = Builder.getFalse();
661     llvm::Value *NullIsUnknown = Builder.getFalse();
662     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
663     llvm::Value *LargeEnough = Builder.CreateICmpUGE(
664         Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown}),
665         llvm::ConstantInt::get(IntPtrTy, Size));
666     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
667   }
668 
669   uint64_t AlignVal = 0;
670   llvm::Value *PtrAsInt = nullptr;
671 
672   if (SanOpts.has(SanitizerKind::Alignment) &&
673       !SkippedChecks.has(SanitizerKind::Alignment)) {
674     AlignVal = Alignment.getQuantity();
675     if (!Ty->isIncompleteType() && !AlignVal)
676       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
677 
678     // The glvalue must be suitably aligned.
679     if (AlignVal > 1 &&
680         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
681       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
682       llvm::Value *Align = Builder.CreateAnd(
683           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
684       llvm::Value *Aligned =
685           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
686       if (Aligned != True)
687         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
688     }
689   }
690 
691   if (Checks.size() > 0) {
692     // Make sure we're not losing information. Alignment needs to be a power of
693     // 2
694     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
695     llvm::Constant *StaticData[] = {
696         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
697         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
698         llvm::ConstantInt::get(Int8Ty, TCK)};
699     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
700               PtrAsInt ? PtrAsInt : Ptr);
701   }
702 
703   // If possible, check that the vptr indicates that there is a subobject of
704   // type Ty at offset zero within this object.
705   //
706   // C++11 [basic.life]p5,6:
707   //   [For storage which does not refer to an object within its lifetime]
708   //   The program has undefined behavior if:
709   //    -- the [pointer or glvalue] is used to access a non-static data member
710   //       or call a non-static member function
711   if (SanOpts.has(SanitizerKind::Vptr) &&
712       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
713     // Ensure that the pointer is non-null before loading it. If there is no
714     // compile-time guarantee, reuse the run-time null check or emit a new one.
715     if (!IsGuaranteedNonNull) {
716       if (!IsNonNull)
717         IsNonNull = Builder.CreateIsNotNull(Ptr);
718       if (!Done)
719         Done = createBasicBlock("vptr.null");
720       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
721       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
722       EmitBlock(VptrNotNull);
723     }
724 
725     // Compute a hash of the mangled name of the type.
726     //
727     // FIXME: This is not guaranteed to be deterministic! Move to a
728     //        fingerprinting mechanism once LLVM provides one. For the time
729     //        being the implementation happens to be deterministic.
730     SmallString<64> MangledName;
731     llvm::raw_svector_ostream Out(MangledName);
732     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
733                                                      Out);
734 
735     // Blacklist based on the mangled type.
736     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
737             SanitizerKind::Vptr, Out.str())) {
738       llvm::hash_code TypeHash = hash_value(Out.str());
739 
740       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
741       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
742       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
743       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
744       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
745       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
746 
747       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
748       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
749 
750       // Look the hash up in our cache.
751       const int CacheSize = 128;
752       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
753       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
754                                                      "__ubsan_vptr_type_cache");
755       llvm::Value *Slot = Builder.CreateAnd(Hash,
756                                             llvm::ConstantInt::get(IntPtrTy,
757                                                                    CacheSize-1));
758       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
759       llvm::Value *CacheVal =
760         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
761                                   getPointerAlign());
762 
763       // If the hash isn't in the cache, call a runtime handler to perform the
764       // hard work of checking whether the vptr is for an object of the right
765       // type. This will either fill in the cache and return, or produce a
766       // diagnostic.
767       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
768       llvm::Constant *StaticData[] = {
769         EmitCheckSourceLocation(Loc),
770         EmitCheckTypeDescriptor(Ty),
771         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
772         llvm::ConstantInt::get(Int8Ty, TCK)
773       };
774       llvm::Value *DynamicData[] = { Ptr, Hash };
775       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
776                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
777                 DynamicData);
778     }
779   }
780 
781   if (Done) {
782     Builder.CreateBr(Done);
783     EmitBlock(Done);
784   }
785 }
786 
787 /// Determine whether this expression refers to a flexible array member in a
788 /// struct. We disable array bounds checks for such members.
789 static bool isFlexibleArrayMemberExpr(const Expr *E) {
790   // For compatibility with existing code, we treat arrays of length 0 or
791   // 1 as flexible array members.
792   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
793   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
794     if (CAT->getSize().ugt(1))
795       return false;
796   } else if (!isa<IncompleteArrayType>(AT))
797     return false;
798 
799   E = E->IgnoreParens();
800 
801   // A flexible array member must be the last member in the class.
802   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
803     // FIXME: If the base type of the member expr is not FD->getParent(),
804     // this should not be treated as a flexible array member access.
805     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
806       RecordDecl::field_iterator FI(
807           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
808       return ++FI == FD->getParent()->field_end();
809     }
810   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
811     return IRE->getDecl()->getNextIvar() == nullptr;
812   }
813 
814   return false;
815 }
816 
817 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
818                                                    QualType EltTy) {
819   ASTContext &C = getContext();
820   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
821   if (!EltSize)
822     return nullptr;
823 
824   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
825   if (!ArrayDeclRef)
826     return nullptr;
827 
828   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
829   if (!ParamDecl)
830     return nullptr;
831 
832   // Arrays don't have pass_object_size attributes, but if they have a constant
833   // size modifier it's the array size (C99 6.5.7.2p1).
834   if (auto *DecayedArrayTy = dyn_cast<DecayedType>(ParamDecl->getType()))
835     if (auto *ArrayTy =
836             dyn_cast<ConstantArrayType>(DecayedArrayTy->getOriginalType()))
837       return llvm::ConstantInt::get(SizeTy,
838                                     ArrayTy->getSize().getLimitedValue());
839 
840   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
841   if (!POSAttr)
842     return nullptr;
843 
844   // Don't load the size if it's a lower bound.
845   int POSType = POSAttr->getType();
846   if (POSType != 0 && POSType != 1)
847     return nullptr;
848 
849   // Find the implicit size parameter.
850   auto PassedSizeIt = SizeArguments.find(ParamDecl);
851   if (PassedSizeIt == SizeArguments.end())
852     return nullptr;
853 
854   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
855   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
856   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
857   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
858                                               C.getSizeType(), E->getExprLoc());
859   llvm::Value *SizeOfElement =
860       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
861   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
862 }
863 
864 /// If Base is known to point to the start of an array, return the length of
865 /// that array. Return 0 if the length cannot be determined.
866 static llvm::Value *getArrayIndexingBound(
867     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
868   // For the vector indexing extension, the bound is the number of elements.
869   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
870     IndexedType = Base->getType();
871     return CGF.Builder.getInt32(VT->getNumElements());
872   }
873 
874   Base = Base->IgnoreParens();
875 
876   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
877     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
878         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
879       IndexedType = CE->getSubExpr()->getType();
880       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
881       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
882         return CGF.Builder.getInt(CAT->getSize());
883       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
884         return CGF.getVLASize(VAT).first;
885       // Ignore pass_object_size here. It's not applicable on decayed pointers.
886     }
887   }
888 
889   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
890   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
891     IndexedType = Base->getType();
892     return POS;
893   }
894 
895   return nullptr;
896 }
897 
898 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
899                                       llvm::Value *Index, QualType IndexType,
900                                       bool Accessed) {
901   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
902          "should not be called unless adding bounds checks");
903   SanitizerScope SanScope(this);
904 
905   QualType IndexedType;
906   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
907   if (!Bound)
908     return;
909 
910   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
911   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
912   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
913 
914   llvm::Constant *StaticData[] = {
915     EmitCheckSourceLocation(E->getExprLoc()),
916     EmitCheckTypeDescriptor(IndexedType),
917     EmitCheckTypeDescriptor(IndexType)
918   };
919   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
920                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
921   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
922             SanitizerHandler::OutOfBounds, StaticData, Index);
923 }
924 
925 
926 CodeGenFunction::ComplexPairTy CodeGenFunction::
927 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
928                          bool isInc, bool isPre) {
929   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
930 
931   llvm::Value *NextVal;
932   if (isa<llvm::IntegerType>(InVal.first->getType())) {
933     uint64_t AmountVal = isInc ? 1 : -1;
934     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
935 
936     // Add the inc/dec to the real part.
937     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
938   } else {
939     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
940     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
941     if (!isInc)
942       FVal.changeSign();
943     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
944 
945     // Add the inc/dec to the real part.
946     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
947   }
948 
949   ComplexPairTy IncVal(NextVal, InVal.second);
950 
951   // Store the updated result through the lvalue.
952   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
953 
954   // If this is a postinc, return the value read from memory, otherwise use the
955   // updated value.
956   return isPre ? IncVal : InVal;
957 }
958 
959 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
960                                              CodeGenFunction *CGF) {
961   // Bind VLAs in the cast type.
962   if (CGF && E->getType()->isVariablyModifiedType())
963     CGF->EmitVariablyModifiedType(E->getType());
964 
965   if (CGDebugInfo *DI = getModuleDebugInfo())
966     DI->EmitExplicitCastType(E->getType());
967 }
968 
969 //===----------------------------------------------------------------------===//
970 //                         LValue Expression Emission
971 //===----------------------------------------------------------------------===//
972 
973 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
974 /// derive a more accurate bound on the alignment of the pointer.
975 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
976                                                   LValueBaseInfo *BaseInfo,
977                                                   TBAAAccessInfo *TBAAInfo) {
978   // We allow this with ObjC object pointers because of fragile ABIs.
979   assert(E->getType()->isPointerType() ||
980          E->getType()->isObjCObjectPointerType());
981   E = E->IgnoreParens();
982 
983   // Casts:
984   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
985     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
986       CGM.EmitExplicitCastExprType(ECE, this);
987 
988     switch (CE->getCastKind()) {
989     // Non-converting casts (but not C's implicit conversion from void*).
990     case CK_BitCast:
991     case CK_NoOp:
992     case CK_AddressSpaceConversion:
993       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
994         if (PtrTy->getPointeeType()->isVoidType())
995           break;
996 
997         LValueBaseInfo InnerBaseInfo;
998         TBAAAccessInfo InnerTBAAInfo;
999         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1000                                                 &InnerBaseInfo,
1001                                                 &InnerTBAAInfo);
1002         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1003         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1004 
1005         if (isa<ExplicitCastExpr>(CE)) {
1006           LValueBaseInfo TargetTypeBaseInfo;
1007           TBAAAccessInfo TargetTypeTBAAInfo;
1008           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1009                                                            &TargetTypeBaseInfo,
1010                                                            &TargetTypeTBAAInfo);
1011           if (TBAAInfo)
1012             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1013                                                  TargetTypeTBAAInfo);
1014           // If the source l-value is opaque, honor the alignment of the
1015           // casted-to type.
1016           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1017             if (BaseInfo)
1018               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1019             Addr = Address(Addr.getPointer(), Align);
1020           }
1021         }
1022 
1023         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1024             CE->getCastKind() == CK_BitCast) {
1025           if (auto PT = E->getType()->getAs<PointerType>())
1026             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1027                                       /*MayBeNull=*/true,
1028                                       CodeGenFunction::CFITCK_UnrelatedCast,
1029                                       CE->getLocStart());
1030         }
1031         return CE->getCastKind() != CK_AddressSpaceConversion
1032                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1033                    : Builder.CreateAddrSpaceCast(Addr,
1034                                                  ConvertType(E->getType()));
1035       }
1036       break;
1037 
1038     // Array-to-pointer decay.
1039     case CK_ArrayToPointerDecay:
1040       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1041 
1042     // Derived-to-base conversions.
1043     case CK_UncheckedDerivedToBase:
1044     case CK_DerivedToBase: {
1045       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo,
1046                                               TBAAInfo);
1047       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1048       return GetAddressOfBaseClass(Addr, Derived,
1049                                    CE->path_begin(), CE->path_end(),
1050                                    ShouldNullCheckClassCastValue(CE),
1051                                    CE->getExprLoc());
1052     }
1053 
1054     // TODO: Is there any reason to treat base-to-derived conversions
1055     // specially?
1056     default:
1057       break;
1058     }
1059   }
1060 
1061   // Unary &.
1062   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1063     if (UO->getOpcode() == UO_AddrOf) {
1064       LValue LV = EmitLValue(UO->getSubExpr());
1065       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1066       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1067       return LV.getAddress();
1068     }
1069   }
1070 
1071   // TODO: conditional operators, comma.
1072 
1073   // Otherwise, use the alignment of the type.
1074   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1075                                                    TBAAInfo);
1076   return Address(EmitScalarExpr(E), Align);
1077 }
1078 
1079 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1080   if (Ty->isVoidType())
1081     return RValue::get(nullptr);
1082 
1083   switch (getEvaluationKind(Ty)) {
1084   case TEK_Complex: {
1085     llvm::Type *EltTy =
1086       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1087     llvm::Value *U = llvm::UndefValue::get(EltTy);
1088     return RValue::getComplex(std::make_pair(U, U));
1089   }
1090 
1091   // If this is a use of an undefined aggregate type, the aggregate must have an
1092   // identifiable address.  Just because the contents of the value are undefined
1093   // doesn't mean that the address can't be taken and compared.
1094   case TEK_Aggregate: {
1095     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1096     return RValue::getAggregate(DestPtr);
1097   }
1098 
1099   case TEK_Scalar:
1100     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1101   }
1102   llvm_unreachable("bad evaluation kind");
1103 }
1104 
1105 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1106                                               const char *Name) {
1107   ErrorUnsupported(E, Name);
1108   return GetUndefRValue(E->getType());
1109 }
1110 
1111 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1112                                               const char *Name) {
1113   ErrorUnsupported(E, Name);
1114   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1115   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1116                         E->getType());
1117 }
1118 
1119 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1120   const Expr *Base = Obj;
1121   while (!isa<CXXThisExpr>(Base)) {
1122     // The result of a dynamic_cast can be null.
1123     if (isa<CXXDynamicCastExpr>(Base))
1124       return false;
1125 
1126     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1127       Base = CE->getSubExpr();
1128     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1129       Base = PE->getSubExpr();
1130     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1131       if (UO->getOpcode() == UO_Extension)
1132         Base = UO->getSubExpr();
1133       else
1134         return false;
1135     } else {
1136       return false;
1137     }
1138   }
1139   return true;
1140 }
1141 
1142 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1143   LValue LV;
1144   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1145     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1146   else
1147     LV = EmitLValue(E);
1148   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1149     SanitizerSet SkippedChecks;
1150     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1151       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1152       if (IsBaseCXXThis)
1153         SkippedChecks.set(SanitizerKind::Alignment, true);
1154       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1155         SkippedChecks.set(SanitizerKind::Null, true);
1156     }
1157     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1158                   E->getType(), LV.getAlignment(), SkippedChecks);
1159   }
1160   return LV;
1161 }
1162 
1163 /// EmitLValue - Emit code to compute a designator that specifies the location
1164 /// of the expression.
1165 ///
1166 /// This can return one of two things: a simple address or a bitfield reference.
1167 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1168 /// an LLVM pointer type.
1169 ///
1170 /// If this returns a bitfield reference, nothing about the pointee type of the
1171 /// LLVM value is known: For example, it may not be a pointer to an integer.
1172 ///
1173 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1174 /// this method guarantees that the returned pointer type will point to an LLVM
1175 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1176 /// length type, this is not possible.
1177 ///
1178 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1179   ApplyDebugLocation DL(*this, E);
1180   switch (E->getStmtClass()) {
1181   default: return EmitUnsupportedLValue(E, "l-value expression");
1182 
1183   case Expr::ObjCPropertyRefExprClass:
1184     llvm_unreachable("cannot emit a property reference directly");
1185 
1186   case Expr::ObjCSelectorExprClass:
1187     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1188   case Expr::ObjCIsaExprClass:
1189     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1190   case Expr::BinaryOperatorClass:
1191     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1192   case Expr::CompoundAssignOperatorClass: {
1193     QualType Ty = E->getType();
1194     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1195       Ty = AT->getValueType();
1196     if (!Ty->isAnyComplexType())
1197       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1198     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1199   }
1200   case Expr::CallExprClass:
1201   case Expr::CXXMemberCallExprClass:
1202   case Expr::CXXOperatorCallExprClass:
1203   case Expr::UserDefinedLiteralClass:
1204     return EmitCallExprLValue(cast<CallExpr>(E));
1205   case Expr::VAArgExprClass:
1206     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1207   case Expr::DeclRefExprClass:
1208     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1209   case Expr::ParenExprClass:
1210     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1211   case Expr::GenericSelectionExprClass:
1212     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1213   case Expr::PredefinedExprClass:
1214     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1215   case Expr::StringLiteralClass:
1216     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1217   case Expr::ObjCEncodeExprClass:
1218     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1219   case Expr::PseudoObjectExprClass:
1220     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1221   case Expr::InitListExprClass:
1222     return EmitInitListLValue(cast<InitListExpr>(E));
1223   case Expr::CXXTemporaryObjectExprClass:
1224   case Expr::CXXConstructExprClass:
1225     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1226   case Expr::CXXBindTemporaryExprClass:
1227     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1228   case Expr::CXXUuidofExprClass:
1229     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1230   case Expr::LambdaExprClass:
1231     return EmitLambdaLValue(cast<LambdaExpr>(E));
1232 
1233   case Expr::ExprWithCleanupsClass: {
1234     const auto *cleanups = cast<ExprWithCleanups>(E);
1235     enterFullExpression(cleanups);
1236     RunCleanupsScope Scope(*this);
1237     LValue LV = EmitLValue(cleanups->getSubExpr());
1238     if (LV.isSimple()) {
1239       // Defend against branches out of gnu statement expressions surrounded by
1240       // cleanups.
1241       llvm::Value *V = LV.getPointer();
1242       Scope.ForceCleanup({&V});
1243       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1244                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1245     }
1246     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1247     // bitfield lvalue or some other non-simple lvalue?
1248     return LV;
1249   }
1250 
1251   case Expr::CXXDefaultArgExprClass:
1252     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1253   case Expr::CXXDefaultInitExprClass: {
1254     CXXDefaultInitExprScope Scope(*this);
1255     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1256   }
1257   case Expr::CXXTypeidExprClass:
1258     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1259 
1260   case Expr::ObjCMessageExprClass:
1261     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1262   case Expr::ObjCIvarRefExprClass:
1263     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1264   case Expr::StmtExprClass:
1265     return EmitStmtExprLValue(cast<StmtExpr>(E));
1266   case Expr::UnaryOperatorClass:
1267     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1268   case Expr::ArraySubscriptExprClass:
1269     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1270   case Expr::OMPArraySectionExprClass:
1271     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1272   case Expr::ExtVectorElementExprClass:
1273     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1274   case Expr::MemberExprClass:
1275     return EmitMemberExpr(cast<MemberExpr>(E));
1276   case Expr::CompoundLiteralExprClass:
1277     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1278   case Expr::ConditionalOperatorClass:
1279     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1280   case Expr::BinaryConditionalOperatorClass:
1281     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1282   case Expr::ChooseExprClass:
1283     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1284   case Expr::OpaqueValueExprClass:
1285     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1286   case Expr::SubstNonTypeTemplateParmExprClass:
1287     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1288   case Expr::ImplicitCastExprClass:
1289   case Expr::CStyleCastExprClass:
1290   case Expr::CXXFunctionalCastExprClass:
1291   case Expr::CXXStaticCastExprClass:
1292   case Expr::CXXDynamicCastExprClass:
1293   case Expr::CXXReinterpretCastExprClass:
1294   case Expr::CXXConstCastExprClass:
1295   case Expr::ObjCBridgedCastExprClass:
1296     return EmitCastLValue(cast<CastExpr>(E));
1297 
1298   case Expr::MaterializeTemporaryExprClass:
1299     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1300 
1301   case Expr::CoawaitExprClass:
1302     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1303   case Expr::CoyieldExprClass:
1304     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1305   }
1306 }
1307 
1308 /// Given an object of the given canonical type, can we safely copy a
1309 /// value out of it based on its initializer?
1310 static bool isConstantEmittableObjectType(QualType type) {
1311   assert(type.isCanonical());
1312   assert(!type->isReferenceType());
1313 
1314   // Must be const-qualified but non-volatile.
1315   Qualifiers qs = type.getLocalQualifiers();
1316   if (!qs.hasConst() || qs.hasVolatile()) return false;
1317 
1318   // Otherwise, all object types satisfy this except C++ classes with
1319   // mutable subobjects or non-trivial copy/destroy behavior.
1320   if (const auto *RT = dyn_cast<RecordType>(type))
1321     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1322       if (RD->hasMutableFields() || !RD->isTrivial())
1323         return false;
1324 
1325   return true;
1326 }
1327 
1328 /// Can we constant-emit a load of a reference to a variable of the
1329 /// given type?  This is different from predicates like
1330 /// Decl::isUsableInConstantExpressions because we do want it to apply
1331 /// in situations that don't necessarily satisfy the language's rules
1332 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1333 /// to do this with const float variables even if those variables
1334 /// aren't marked 'constexpr'.
1335 enum ConstantEmissionKind {
1336   CEK_None,
1337   CEK_AsReferenceOnly,
1338   CEK_AsValueOrReference,
1339   CEK_AsValueOnly
1340 };
1341 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1342   type = type.getCanonicalType();
1343   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1344     if (isConstantEmittableObjectType(ref->getPointeeType()))
1345       return CEK_AsValueOrReference;
1346     return CEK_AsReferenceOnly;
1347   }
1348   if (isConstantEmittableObjectType(type))
1349     return CEK_AsValueOnly;
1350   return CEK_None;
1351 }
1352 
1353 /// Try to emit a reference to the given value without producing it as
1354 /// an l-value.  This is actually more than an optimization: we can't
1355 /// produce an l-value for variables that we never actually captured
1356 /// in a block or lambda, which means const int variables or constexpr
1357 /// literals or similar.
1358 CodeGenFunction::ConstantEmission
1359 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1360   ValueDecl *value = refExpr->getDecl();
1361 
1362   // The value needs to be an enum constant or a constant variable.
1363   ConstantEmissionKind CEK;
1364   if (isa<ParmVarDecl>(value)) {
1365     CEK = CEK_None;
1366   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1367     CEK = checkVarTypeForConstantEmission(var->getType());
1368   } else if (isa<EnumConstantDecl>(value)) {
1369     CEK = CEK_AsValueOnly;
1370   } else {
1371     CEK = CEK_None;
1372   }
1373   if (CEK == CEK_None) return ConstantEmission();
1374 
1375   Expr::EvalResult result;
1376   bool resultIsReference;
1377   QualType resultType;
1378 
1379   // It's best to evaluate all the way as an r-value if that's permitted.
1380   if (CEK != CEK_AsReferenceOnly &&
1381       refExpr->EvaluateAsRValue(result, getContext())) {
1382     resultIsReference = false;
1383     resultType = refExpr->getType();
1384 
1385   // Otherwise, try to evaluate as an l-value.
1386   } else if (CEK != CEK_AsValueOnly &&
1387              refExpr->EvaluateAsLValue(result, getContext())) {
1388     resultIsReference = true;
1389     resultType = value->getType();
1390 
1391   // Failure.
1392   } else {
1393     return ConstantEmission();
1394   }
1395 
1396   // In any case, if the initializer has side-effects, abandon ship.
1397   if (result.HasSideEffects)
1398     return ConstantEmission();
1399 
1400   // Emit as a constant.
1401   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1402                                                result.Val, resultType);
1403 
1404   // Make sure we emit a debug reference to the global variable.
1405   // This should probably fire even for
1406   if (isa<VarDecl>(value)) {
1407     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1408       EmitDeclRefExprDbgValue(refExpr, result.Val);
1409   } else {
1410     assert(isa<EnumConstantDecl>(value));
1411     EmitDeclRefExprDbgValue(refExpr, result.Val);
1412   }
1413 
1414   // If we emitted a reference constant, we need to dereference that.
1415   if (resultIsReference)
1416     return ConstantEmission::forReference(C);
1417 
1418   return ConstantEmission::forValue(C);
1419 }
1420 
1421 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1422                                                         const MemberExpr *ME) {
1423   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1424     // Try to emit static variable member expressions as DREs.
1425     return DeclRefExpr::Create(
1426         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1427         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1428         ME->getType(), ME->getValueKind());
1429   }
1430   return nullptr;
1431 }
1432 
1433 CodeGenFunction::ConstantEmission
1434 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1435   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1436     return tryEmitAsConstant(DRE);
1437   return ConstantEmission();
1438 }
1439 
1440 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1441                                                SourceLocation Loc) {
1442   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1443                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1444                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1445 }
1446 
1447 static bool hasBooleanRepresentation(QualType Ty) {
1448   if (Ty->isBooleanType())
1449     return true;
1450 
1451   if (const EnumType *ET = Ty->getAs<EnumType>())
1452     return ET->getDecl()->getIntegerType()->isBooleanType();
1453 
1454   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1455     return hasBooleanRepresentation(AT->getValueType());
1456 
1457   return false;
1458 }
1459 
1460 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1461                             llvm::APInt &Min, llvm::APInt &End,
1462                             bool StrictEnums, bool IsBool) {
1463   const EnumType *ET = Ty->getAs<EnumType>();
1464   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1465                                 ET && !ET->getDecl()->isFixed();
1466   if (!IsBool && !IsRegularCPlusPlusEnum)
1467     return false;
1468 
1469   if (IsBool) {
1470     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1471     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1472   } else {
1473     const EnumDecl *ED = ET->getDecl();
1474     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1475     unsigned Bitwidth = LTy->getScalarSizeInBits();
1476     unsigned NumNegativeBits = ED->getNumNegativeBits();
1477     unsigned NumPositiveBits = ED->getNumPositiveBits();
1478 
1479     if (NumNegativeBits) {
1480       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1481       assert(NumBits <= Bitwidth);
1482       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1483       Min = -End;
1484     } else {
1485       assert(NumPositiveBits <= Bitwidth);
1486       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1487       Min = llvm::APInt(Bitwidth, 0);
1488     }
1489   }
1490   return true;
1491 }
1492 
1493 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1494   llvm::APInt Min, End;
1495   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1496                        hasBooleanRepresentation(Ty)))
1497     return nullptr;
1498 
1499   llvm::MDBuilder MDHelper(getLLVMContext());
1500   return MDHelper.createRange(Min, End);
1501 }
1502 
1503 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1504                                            SourceLocation Loc) {
1505   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1506   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1507   if (!HasBoolCheck && !HasEnumCheck)
1508     return false;
1509 
1510   bool IsBool = hasBooleanRepresentation(Ty) ||
1511                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1512   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1513   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1514   if (!NeedsBoolCheck && !NeedsEnumCheck)
1515     return false;
1516 
1517   // Single-bit booleans don't need to be checked. Special-case this to avoid
1518   // a bit width mismatch when handling bitfield values. This is handled by
1519   // EmitFromMemory for the non-bitfield case.
1520   if (IsBool &&
1521       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1522     return false;
1523 
1524   llvm::APInt Min, End;
1525   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1526     return true;
1527 
1528   auto &Ctx = getLLVMContext();
1529   SanitizerScope SanScope(this);
1530   llvm::Value *Check;
1531   --End;
1532   if (!Min) {
1533     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1534   } else {
1535     llvm::Value *Upper =
1536         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1537     llvm::Value *Lower =
1538         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1539     Check = Builder.CreateAnd(Upper, Lower);
1540   }
1541   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1542                                   EmitCheckTypeDescriptor(Ty)};
1543   SanitizerMask Kind =
1544       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1545   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1546             StaticArgs, EmitCheckValue(Value));
1547   return true;
1548 }
1549 
1550 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1551                                                QualType Ty,
1552                                                SourceLocation Loc,
1553                                                LValueBaseInfo BaseInfo,
1554                                                TBAAAccessInfo TBAAInfo,
1555                                                bool isNontemporal) {
1556   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1557     // For better performance, handle vector loads differently.
1558     if (Ty->isVectorType()) {
1559       const llvm::Type *EltTy = Addr.getElementType();
1560 
1561       const auto *VTy = cast<llvm::VectorType>(EltTy);
1562 
1563       // Handle vectors of size 3 like size 4 for better performance.
1564       if (VTy->getNumElements() == 3) {
1565 
1566         // Bitcast to vec4 type.
1567         llvm::VectorType *vec4Ty =
1568             llvm::VectorType::get(VTy->getElementType(), 4);
1569         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1570         // Now load value.
1571         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1572 
1573         // Shuffle vector to get vec3.
1574         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1575                                         {0, 1, 2}, "extractVec");
1576         return EmitFromMemory(V, Ty);
1577       }
1578     }
1579   }
1580 
1581   // Atomic operations have to be done on integral types.
1582   LValue AtomicLValue =
1583       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1584   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1585     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1586   }
1587 
1588   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1589   if (isNontemporal) {
1590     llvm::MDNode *Node = llvm::MDNode::get(
1591         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1592     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1593   }
1594 
1595   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1596 
1597   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1598     // In order to prevent the optimizer from throwing away the check, don't
1599     // attach range metadata to the load.
1600   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1601     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1602       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1603 
1604   return EmitFromMemory(Load, Ty);
1605 }
1606 
1607 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1608   // Bool has a different representation in memory than in registers.
1609   if (hasBooleanRepresentation(Ty)) {
1610     // This should really always be an i1, but sometimes it's already
1611     // an i8, and it's awkward to track those cases down.
1612     if (Value->getType()->isIntegerTy(1))
1613       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1614     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1615            "wrong value rep of bool");
1616   }
1617 
1618   return Value;
1619 }
1620 
1621 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1622   // Bool has a different representation in memory than in registers.
1623   if (hasBooleanRepresentation(Ty)) {
1624     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1625            "wrong value rep of bool");
1626     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1627   }
1628 
1629   return Value;
1630 }
1631 
1632 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1633                                         bool Volatile, QualType Ty,
1634                                         LValueBaseInfo BaseInfo,
1635                                         TBAAAccessInfo TBAAInfo,
1636                                         bool isInit, bool isNontemporal) {
1637   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1638     // Handle vectors differently to get better performance.
1639     if (Ty->isVectorType()) {
1640       llvm::Type *SrcTy = Value->getType();
1641       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1642       // Handle vec3 special.
1643       if (VecTy && VecTy->getNumElements() == 3) {
1644         // Our source is a vec3, do a shuffle vector to make it a vec4.
1645         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1646                                   Builder.getInt32(2),
1647                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1648         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1649         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1650                                             MaskV, "extractVec");
1651         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1652       }
1653       if (Addr.getElementType() != SrcTy) {
1654         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1655       }
1656     }
1657   }
1658 
1659   Value = EmitToMemory(Value, Ty);
1660 
1661   LValue AtomicLValue =
1662       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1663   if (Ty->isAtomicType() ||
1664       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1665     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1666     return;
1667   }
1668 
1669   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1670   if (isNontemporal) {
1671     llvm::MDNode *Node =
1672         llvm::MDNode::get(Store->getContext(),
1673                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1674     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1675   }
1676 
1677   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1678 }
1679 
1680 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1681                                         bool isInit) {
1682   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1683                     lvalue.getType(), lvalue.getBaseInfo(),
1684                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1685 }
1686 
1687 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1688 /// method emits the address of the lvalue, then loads the result as an rvalue,
1689 /// returning the rvalue.
1690 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1691   if (LV.isObjCWeak()) {
1692     // load of a __weak object.
1693     Address AddrWeakObj = LV.getAddress();
1694     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1695                                                              AddrWeakObj));
1696   }
1697   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1698     // In MRC mode, we do a load+autorelease.
1699     if (!getLangOpts().ObjCAutoRefCount) {
1700       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1701     }
1702 
1703     // In ARC mode, we load retained and then consume the value.
1704     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1705     Object = EmitObjCConsumeObject(LV.getType(), Object);
1706     return RValue::get(Object);
1707   }
1708 
1709   if (LV.isSimple()) {
1710     assert(!LV.getType()->isFunctionType());
1711 
1712     // Everything needs a load.
1713     return RValue::get(EmitLoadOfScalar(LV, Loc));
1714   }
1715 
1716   if (LV.isVectorElt()) {
1717     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1718                                               LV.isVolatileQualified());
1719     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1720                                                     "vecext"));
1721   }
1722 
1723   // If this is a reference to a subset of the elements of a vector, either
1724   // shuffle the input or extract/insert them as appropriate.
1725   if (LV.isExtVectorElt())
1726     return EmitLoadOfExtVectorElementLValue(LV);
1727 
1728   // Global Register variables always invoke intrinsics
1729   if (LV.isGlobalReg())
1730     return EmitLoadOfGlobalRegLValue(LV);
1731 
1732   assert(LV.isBitField() && "Unknown LValue type!");
1733   return EmitLoadOfBitfieldLValue(LV, Loc);
1734 }
1735 
1736 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1737                                                  SourceLocation Loc) {
1738   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1739 
1740   // Get the output type.
1741   llvm::Type *ResLTy = ConvertType(LV.getType());
1742 
1743   Address Ptr = LV.getBitFieldAddress();
1744   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1745 
1746   if (Info.IsSigned) {
1747     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1748     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1749     if (HighBits)
1750       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1751     if (Info.Offset + HighBits)
1752       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1753   } else {
1754     if (Info.Offset)
1755       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1756     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1757       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1758                                                               Info.Size),
1759                               "bf.clear");
1760   }
1761   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1762   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1763   return RValue::get(Val);
1764 }
1765 
1766 // If this is a reference to a subset of the elements of a vector, create an
1767 // appropriate shufflevector.
1768 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1769   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1770                                         LV.isVolatileQualified());
1771 
1772   const llvm::Constant *Elts = LV.getExtVectorElts();
1773 
1774   // If the result of the expression is a non-vector type, we must be extracting
1775   // a single element.  Just codegen as an extractelement.
1776   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1777   if (!ExprVT) {
1778     unsigned InIdx = getAccessedFieldNo(0, Elts);
1779     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1780     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1781   }
1782 
1783   // Always use shuffle vector to try to retain the original program structure
1784   unsigned NumResultElts = ExprVT->getNumElements();
1785 
1786   SmallVector<llvm::Constant*, 4> Mask;
1787   for (unsigned i = 0; i != NumResultElts; ++i)
1788     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1789 
1790   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1791   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1792                                     MaskV);
1793   return RValue::get(Vec);
1794 }
1795 
1796 /// @brief Generates lvalue for partial ext_vector access.
1797 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1798   Address VectorAddress = LV.getExtVectorAddress();
1799   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1800   QualType EQT = ExprVT->getElementType();
1801   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1802 
1803   Address CastToPointerElement =
1804     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1805                                  "conv.ptr.element");
1806 
1807   const llvm::Constant *Elts = LV.getExtVectorElts();
1808   unsigned ix = getAccessedFieldNo(0, Elts);
1809 
1810   Address VectorBasePtrPlusIx =
1811     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1812                                    getContext().getTypeSizeInChars(EQT),
1813                                    "vector.elt");
1814 
1815   return VectorBasePtrPlusIx;
1816 }
1817 
1818 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1819 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1820   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1821          "Bad type for register variable");
1822   llvm::MDNode *RegName = cast<llvm::MDNode>(
1823       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1824 
1825   // We accept integer and pointer types only
1826   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1827   llvm::Type *Ty = OrigTy;
1828   if (OrigTy->isPointerTy())
1829     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1830   llvm::Type *Types[] = { Ty };
1831 
1832   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1833   llvm::Value *Call = Builder.CreateCall(
1834       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1835   if (OrigTy->isPointerTy())
1836     Call = Builder.CreateIntToPtr(Call, OrigTy);
1837   return RValue::get(Call);
1838 }
1839 
1840 
1841 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1842 /// lvalue, where both are guaranteed to the have the same type, and that type
1843 /// is 'Ty'.
1844 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1845                                              bool isInit) {
1846   if (!Dst.isSimple()) {
1847     if (Dst.isVectorElt()) {
1848       // Read/modify/write the vector, inserting the new element.
1849       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1850                                             Dst.isVolatileQualified());
1851       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1852                                         Dst.getVectorIdx(), "vecins");
1853       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1854                           Dst.isVolatileQualified());
1855       return;
1856     }
1857 
1858     // If this is an update of extended vector elements, insert them as
1859     // appropriate.
1860     if (Dst.isExtVectorElt())
1861       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1862 
1863     if (Dst.isGlobalReg())
1864       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1865 
1866     assert(Dst.isBitField() && "Unknown LValue type");
1867     return EmitStoreThroughBitfieldLValue(Src, Dst);
1868   }
1869 
1870   // There's special magic for assigning into an ARC-qualified l-value.
1871   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1872     switch (Lifetime) {
1873     case Qualifiers::OCL_None:
1874       llvm_unreachable("present but none");
1875 
1876     case Qualifiers::OCL_ExplicitNone:
1877       // nothing special
1878       break;
1879 
1880     case Qualifiers::OCL_Strong:
1881       if (isInit) {
1882         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1883         break;
1884       }
1885       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1886       return;
1887 
1888     case Qualifiers::OCL_Weak:
1889       if (isInit)
1890         // Initialize and then skip the primitive store.
1891         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1892       else
1893         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1894       return;
1895 
1896     case Qualifiers::OCL_Autoreleasing:
1897       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1898                                                      Src.getScalarVal()));
1899       // fall into the normal path
1900       break;
1901     }
1902   }
1903 
1904   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1905     // load of a __weak object.
1906     Address LvalueDst = Dst.getAddress();
1907     llvm::Value *src = Src.getScalarVal();
1908      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1909     return;
1910   }
1911 
1912   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1913     // load of a __strong object.
1914     Address LvalueDst = Dst.getAddress();
1915     llvm::Value *src = Src.getScalarVal();
1916     if (Dst.isObjCIvar()) {
1917       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1918       llvm::Type *ResultType = IntPtrTy;
1919       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1920       llvm::Value *RHS = dst.getPointer();
1921       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1922       llvm::Value *LHS =
1923         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1924                                "sub.ptr.lhs.cast");
1925       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1926       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1927                                               BytesBetween);
1928     } else if (Dst.isGlobalObjCRef()) {
1929       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1930                                                 Dst.isThreadLocalRef());
1931     }
1932     else
1933       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1934     return;
1935   }
1936 
1937   assert(Src.isScalar() && "Can't emit an agg store with this method");
1938   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1939 }
1940 
1941 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1942                                                      llvm::Value **Result) {
1943   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1944   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1945   Address Ptr = Dst.getBitFieldAddress();
1946 
1947   // Get the source value, truncated to the width of the bit-field.
1948   llvm::Value *SrcVal = Src.getScalarVal();
1949 
1950   // Cast the source to the storage type and shift it into place.
1951   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1952                                  /*IsSigned=*/false);
1953   llvm::Value *MaskedVal = SrcVal;
1954 
1955   // See if there are other bits in the bitfield's storage we'll need to load
1956   // and mask together with source before storing.
1957   if (Info.StorageSize != Info.Size) {
1958     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1959     llvm::Value *Val =
1960       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1961 
1962     // Mask the source value as needed.
1963     if (!hasBooleanRepresentation(Dst.getType()))
1964       SrcVal = Builder.CreateAnd(SrcVal,
1965                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1966                                                             Info.Size),
1967                                  "bf.value");
1968     MaskedVal = SrcVal;
1969     if (Info.Offset)
1970       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1971 
1972     // Mask out the original value.
1973     Val = Builder.CreateAnd(Val,
1974                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1975                                                      Info.Offset,
1976                                                      Info.Offset + Info.Size),
1977                             "bf.clear");
1978 
1979     // Or together the unchanged values and the source value.
1980     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1981   } else {
1982     assert(Info.Offset == 0);
1983   }
1984 
1985   // Write the new value back out.
1986   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1987 
1988   // Return the new value of the bit-field, if requested.
1989   if (Result) {
1990     llvm::Value *ResultVal = MaskedVal;
1991 
1992     // Sign extend the value if needed.
1993     if (Info.IsSigned) {
1994       assert(Info.Size <= Info.StorageSize);
1995       unsigned HighBits = Info.StorageSize - Info.Size;
1996       if (HighBits) {
1997         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1998         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1999       }
2000     }
2001 
2002     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2003                                       "bf.result.cast");
2004     *Result = EmitFromMemory(ResultVal, Dst.getType());
2005   }
2006 }
2007 
2008 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2009                                                                LValue Dst) {
2010   // This access turns into a read/modify/write of the vector.  Load the input
2011   // value now.
2012   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2013                                         Dst.isVolatileQualified());
2014   const llvm::Constant *Elts = Dst.getExtVectorElts();
2015 
2016   llvm::Value *SrcVal = Src.getScalarVal();
2017 
2018   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2019     unsigned NumSrcElts = VTy->getNumElements();
2020     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2021     if (NumDstElts == NumSrcElts) {
2022       // Use shuffle vector is the src and destination are the same number of
2023       // elements and restore the vector mask since it is on the side it will be
2024       // stored.
2025       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2026       for (unsigned i = 0; i != NumSrcElts; ++i)
2027         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2028 
2029       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2030       Vec = Builder.CreateShuffleVector(SrcVal,
2031                                         llvm::UndefValue::get(Vec->getType()),
2032                                         MaskV);
2033     } else if (NumDstElts > NumSrcElts) {
2034       // Extended the source vector to the same length and then shuffle it
2035       // into the destination.
2036       // FIXME: since we're shuffling with undef, can we just use the indices
2037       //        into that?  This could be simpler.
2038       SmallVector<llvm::Constant*, 4> ExtMask;
2039       for (unsigned i = 0; i != NumSrcElts; ++i)
2040         ExtMask.push_back(Builder.getInt32(i));
2041       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2042       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2043       llvm::Value *ExtSrcVal =
2044         Builder.CreateShuffleVector(SrcVal,
2045                                     llvm::UndefValue::get(SrcVal->getType()),
2046                                     ExtMaskV);
2047       // build identity
2048       SmallVector<llvm::Constant*, 4> Mask;
2049       for (unsigned i = 0; i != NumDstElts; ++i)
2050         Mask.push_back(Builder.getInt32(i));
2051 
2052       // When the vector size is odd and .odd or .hi is used, the last element
2053       // of the Elts constant array will be one past the size of the vector.
2054       // Ignore the last element here, if it is greater than the mask size.
2055       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2056         NumSrcElts--;
2057 
2058       // modify when what gets shuffled in
2059       for (unsigned i = 0; i != NumSrcElts; ++i)
2060         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2061       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2062       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2063     } else {
2064       // We should never shorten the vector
2065       llvm_unreachable("unexpected shorten vector length");
2066     }
2067   } else {
2068     // If the Src is a scalar (not a vector) it must be updating one element.
2069     unsigned InIdx = getAccessedFieldNo(0, Elts);
2070     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2071     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2072   }
2073 
2074   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2075                       Dst.isVolatileQualified());
2076 }
2077 
2078 /// @brief Store of global named registers are always calls to intrinsics.
2079 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2080   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2081          "Bad type for register variable");
2082   llvm::MDNode *RegName = cast<llvm::MDNode>(
2083       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2084   assert(RegName && "Register LValue is not metadata");
2085 
2086   // We accept integer and pointer types only
2087   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2088   llvm::Type *Ty = OrigTy;
2089   if (OrigTy->isPointerTy())
2090     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2091   llvm::Type *Types[] = { Ty };
2092 
2093   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2094   llvm::Value *Value = Src.getScalarVal();
2095   if (OrigTy->isPointerTy())
2096     Value = Builder.CreatePtrToInt(Value, Ty);
2097   Builder.CreateCall(
2098       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2099 }
2100 
2101 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2102 // generating write-barries API. It is currently a global, ivar,
2103 // or neither.
2104 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2105                                  LValue &LV,
2106                                  bool IsMemberAccess=false) {
2107   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2108     return;
2109 
2110   if (isa<ObjCIvarRefExpr>(E)) {
2111     QualType ExpTy = E->getType();
2112     if (IsMemberAccess && ExpTy->isPointerType()) {
2113       // If ivar is a structure pointer, assigning to field of
2114       // this struct follows gcc's behavior and makes it a non-ivar
2115       // writer-barrier conservatively.
2116       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2117       if (ExpTy->isRecordType()) {
2118         LV.setObjCIvar(false);
2119         return;
2120       }
2121     }
2122     LV.setObjCIvar(true);
2123     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2124     LV.setBaseIvarExp(Exp->getBase());
2125     LV.setObjCArray(E->getType()->isArrayType());
2126     return;
2127   }
2128 
2129   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2130     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2131       if (VD->hasGlobalStorage()) {
2132         LV.setGlobalObjCRef(true);
2133         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2134       }
2135     }
2136     LV.setObjCArray(E->getType()->isArrayType());
2137     return;
2138   }
2139 
2140   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2141     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2142     return;
2143   }
2144 
2145   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2146     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2147     if (LV.isObjCIvar()) {
2148       // If cast is to a structure pointer, follow gcc's behavior and make it
2149       // a non-ivar write-barrier.
2150       QualType ExpTy = E->getType();
2151       if (ExpTy->isPointerType())
2152         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2153       if (ExpTy->isRecordType())
2154         LV.setObjCIvar(false);
2155     }
2156     return;
2157   }
2158 
2159   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2160     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2161     return;
2162   }
2163 
2164   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2165     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2166     return;
2167   }
2168 
2169   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2170     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2171     return;
2172   }
2173 
2174   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2175     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2176     return;
2177   }
2178 
2179   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2180     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2181     if (LV.isObjCIvar() && !LV.isObjCArray())
2182       // Using array syntax to assigning to what an ivar points to is not
2183       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2184       LV.setObjCIvar(false);
2185     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2186       // Using array syntax to assigning to what global points to is not
2187       // same as assigning to the global itself. {id *G;} G[i] = 0;
2188       LV.setGlobalObjCRef(false);
2189     return;
2190   }
2191 
2192   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2193     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2194     // We don't know if member is an 'ivar', but this flag is looked at
2195     // only in the context of LV.isObjCIvar().
2196     LV.setObjCArray(E->getType()->isArrayType());
2197     return;
2198   }
2199 }
2200 
2201 static llvm::Value *
2202 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2203                                 llvm::Value *V, llvm::Type *IRType,
2204                                 StringRef Name = StringRef()) {
2205   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2206   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2207 }
2208 
2209 static LValue EmitThreadPrivateVarDeclLValue(
2210     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2211     llvm::Type *RealVarTy, SourceLocation Loc) {
2212   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2213   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2214   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2215 }
2216 
2217 Address
2218 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2219                                      LValueBaseInfo *PointeeBaseInfo,
2220                                      TBAAAccessInfo *PointeeTBAAInfo) {
2221   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2222                                             RefLVal.isVolatile());
2223   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2224 
2225   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2226                                             PointeeBaseInfo, PointeeTBAAInfo,
2227                                             /* forPointeeType= */ true);
2228   return Address(Load, Align);
2229 }
2230 
2231 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2232   LValueBaseInfo PointeeBaseInfo;
2233   TBAAAccessInfo PointeeTBAAInfo;
2234   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2235                                             &PointeeTBAAInfo);
2236   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2237                         PointeeBaseInfo, PointeeTBAAInfo);
2238 }
2239 
2240 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2241                                            const PointerType *PtrTy,
2242                                            LValueBaseInfo *BaseInfo,
2243                                            TBAAAccessInfo *TBAAInfo) {
2244   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2245   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2246                                                BaseInfo, TBAAInfo,
2247                                                /*forPointeeType=*/true));
2248 }
2249 
2250 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2251                                                 const PointerType *PtrTy) {
2252   LValueBaseInfo BaseInfo;
2253   TBAAAccessInfo TBAAInfo;
2254   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2255   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2256 }
2257 
2258 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2259                                       const Expr *E, const VarDecl *VD) {
2260   QualType T = E->getType();
2261 
2262   // If it's thread_local, emit a call to its wrapper function instead.
2263   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2264       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2265     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2266 
2267   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2268   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2269   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2270   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2271   Address Addr(V, Alignment);
2272   // Emit reference to the private copy of the variable if it is an OpenMP
2273   // threadprivate variable.
2274   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
2275     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2276                                           E->getExprLoc());
2277   LValue LV = VD->getType()->isReferenceType() ?
2278       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2279                                     AlignmentSource::Decl) :
2280       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2281   setObjCGCLValueClass(CGF.getContext(), E, LV);
2282   return LV;
2283 }
2284 
2285 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2286                                                const FunctionDecl *FD) {
2287   if (FD->hasAttr<WeakRefAttr>()) {
2288     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2289     return aliasee.getPointer();
2290   }
2291 
2292   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2293   if (!FD->hasPrototype()) {
2294     if (const FunctionProtoType *Proto =
2295             FD->getType()->getAs<FunctionProtoType>()) {
2296       // Ugly case: for a K&R-style definition, the type of the definition
2297       // isn't the same as the type of a use.  Correct for this with a
2298       // bitcast.
2299       QualType NoProtoType =
2300           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2301       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2302       V = llvm::ConstantExpr::getBitCast(V,
2303                                       CGM.getTypes().ConvertType(NoProtoType));
2304     }
2305   }
2306   return V;
2307 }
2308 
2309 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2310                                      const Expr *E, const FunctionDecl *FD) {
2311   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2312   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2313   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2314                             AlignmentSource::Decl);
2315 }
2316 
2317 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2318                                       llvm::Value *ThisValue) {
2319   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2320   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2321   return CGF.EmitLValueForField(LV, FD);
2322 }
2323 
2324 /// Named Registers are named metadata pointing to the register name
2325 /// which will be read from/written to as an argument to the intrinsic
2326 /// @llvm.read/write_register.
2327 /// So far, only the name is being passed down, but other options such as
2328 /// register type, allocation type or even optimization options could be
2329 /// passed down via the metadata node.
2330 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2331   SmallString<64> Name("llvm.named.register.");
2332   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2333   assert(Asm->getLabel().size() < 64-Name.size() &&
2334       "Register name too big");
2335   Name.append(Asm->getLabel());
2336   llvm::NamedMDNode *M =
2337     CGM.getModule().getOrInsertNamedMetadata(Name);
2338   if (M->getNumOperands() == 0) {
2339     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2340                                               Asm->getLabel());
2341     llvm::Metadata *Ops[] = {Str};
2342     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2343   }
2344 
2345   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2346 
2347   llvm::Value *Ptr =
2348     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2349   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2350 }
2351 
2352 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2353   const NamedDecl *ND = E->getDecl();
2354   QualType T = E->getType();
2355 
2356   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2357     // Global Named registers access via intrinsics only
2358     if (VD->getStorageClass() == SC_Register &&
2359         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2360       return EmitGlobalNamedRegister(VD, CGM);
2361 
2362     // A DeclRefExpr for a reference initialized by a constant expression can
2363     // appear without being odr-used. Directly emit the constant initializer.
2364     const Expr *Init = VD->getAnyInitializer(VD);
2365     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2366         VD->isUsableInConstantExpressions(getContext()) &&
2367         VD->checkInitIsICE() &&
2368         // Do not emit if it is private OpenMP variable.
2369         !(E->refersToEnclosingVariableOrCapture() &&
2370           ((CapturedStmtInfo &&
2371             (LocalDeclMap.count(VD->getCanonicalDecl()) ||
2372              CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
2373            LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
2374            isa<BlockDecl>(CurCodeDecl)))) {
2375       llvm::Constant *Val =
2376         ConstantEmitter(*this).emitAbstract(E->getLocation(),
2377                                             *VD->evaluateValue(),
2378                                             VD->getType());
2379       assert(Val && "failed to emit reference constant expression");
2380       // FIXME: Eventually we will want to emit vector element references.
2381 
2382       // Should we be using the alignment of the constant pointer we emitted?
2383       CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
2384                                                     /* BaseInfo= */ nullptr,
2385                                                     /* TBAAInfo= */ nullptr,
2386                                                     /* forPointeeType= */ true);
2387       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2388     }
2389 
2390     // Check for captured variables.
2391     if (E->refersToEnclosingVariableOrCapture()) {
2392       VD = VD->getCanonicalDecl();
2393       if (auto *FD = LambdaCaptureFields.lookup(VD))
2394         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2395       else if (CapturedStmtInfo) {
2396         auto I = LocalDeclMap.find(VD);
2397         if (I != LocalDeclMap.end()) {
2398           if (VD->getType()->isReferenceType())
2399             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2400                                              AlignmentSource::Decl);
2401           return MakeAddrLValue(I->second, T);
2402         }
2403         LValue CapLVal =
2404             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2405                                     CapturedStmtInfo->getContextValue());
2406         return MakeAddrLValue(
2407             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2408             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2409             CapLVal.getTBAAInfo());
2410       }
2411 
2412       assert(isa<BlockDecl>(CurCodeDecl));
2413       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2414       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2415     }
2416   }
2417 
2418   // FIXME: We should be able to assert this for FunctionDecls as well!
2419   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2420   // those with a valid source location.
2421   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2422           !E->getLocation().isValid()) &&
2423          "Should not use decl without marking it used!");
2424 
2425   if (ND->hasAttr<WeakRefAttr>()) {
2426     const auto *VD = cast<ValueDecl>(ND);
2427     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2428     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2429   }
2430 
2431   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2432     // Check if this is a global variable.
2433     if (VD->hasLinkage() || VD->isStaticDataMember())
2434       return EmitGlobalVarDeclLValue(*this, E, VD);
2435 
2436     Address addr = Address::invalid();
2437 
2438     // The variable should generally be present in the local decl map.
2439     auto iter = LocalDeclMap.find(VD);
2440     if (iter != LocalDeclMap.end()) {
2441       addr = iter->second;
2442 
2443     // Otherwise, it might be static local we haven't emitted yet for
2444     // some reason; most likely, because it's in an outer function.
2445     } else if (VD->isStaticLocal()) {
2446       addr = Address(CGM.getOrCreateStaticVarDecl(
2447           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2448                      getContext().getDeclAlign(VD));
2449 
2450     // No other cases for now.
2451     } else {
2452       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2453     }
2454 
2455 
2456     // Check for OpenMP threadprivate variables.
2457     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2458       return EmitThreadPrivateVarDeclLValue(
2459           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2460           E->getExprLoc());
2461     }
2462 
2463     // Drill into block byref variables.
2464     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2465     if (isBlockByref) {
2466       addr = emitBlockByrefAddress(addr, VD);
2467     }
2468 
2469     // Drill into reference types.
2470     LValue LV = VD->getType()->isReferenceType() ?
2471         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2472         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2473 
2474     bool isLocalStorage = VD->hasLocalStorage();
2475 
2476     bool NonGCable = isLocalStorage &&
2477                      !VD->getType()->isReferenceType() &&
2478                      !isBlockByref;
2479     if (NonGCable) {
2480       LV.getQuals().removeObjCGCAttr();
2481       LV.setNonGC(true);
2482     }
2483 
2484     bool isImpreciseLifetime =
2485       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2486     if (isImpreciseLifetime)
2487       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2488     setObjCGCLValueClass(getContext(), E, LV);
2489     return LV;
2490   }
2491 
2492   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2493     return EmitFunctionDeclLValue(*this, E, FD);
2494 
2495   // FIXME: While we're emitting a binding from an enclosing scope, all other
2496   // DeclRefExprs we see should be implicitly treated as if they also refer to
2497   // an enclosing scope.
2498   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2499     return EmitLValue(BD->getBinding());
2500 
2501   llvm_unreachable("Unhandled DeclRefExpr");
2502 }
2503 
2504 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2505   // __extension__ doesn't affect lvalue-ness.
2506   if (E->getOpcode() == UO_Extension)
2507     return EmitLValue(E->getSubExpr());
2508 
2509   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2510   switch (E->getOpcode()) {
2511   default: llvm_unreachable("Unknown unary operator lvalue!");
2512   case UO_Deref: {
2513     QualType T = E->getSubExpr()->getType()->getPointeeType();
2514     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2515 
2516     LValueBaseInfo BaseInfo;
2517     TBAAAccessInfo TBAAInfo;
2518     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2519                                             &TBAAInfo);
2520     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2521     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2522 
2523     // We should not generate __weak write barrier on indirect reference
2524     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2525     // But, we continue to generate __strong write barrier on indirect write
2526     // into a pointer to object.
2527     if (getLangOpts().ObjC1 &&
2528         getLangOpts().getGC() != LangOptions::NonGC &&
2529         LV.isObjCWeak())
2530       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2531     return LV;
2532   }
2533   case UO_Real:
2534   case UO_Imag: {
2535     LValue LV = EmitLValue(E->getSubExpr());
2536     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2537 
2538     // __real is valid on scalars.  This is a faster way of testing that.
2539     // __imag can only produce an rvalue on scalars.
2540     if (E->getOpcode() == UO_Real &&
2541         !LV.getAddress().getElementType()->isStructTy()) {
2542       assert(E->getSubExpr()->getType()->isArithmeticType());
2543       return LV;
2544     }
2545 
2546     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2547 
2548     Address Component =
2549       (E->getOpcode() == UO_Real
2550          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2551          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2552     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2553                                    CGM.getTBAAInfoForSubobject(LV, T));
2554     ElemLV.getQuals().addQualifiers(LV.getQuals());
2555     return ElemLV;
2556   }
2557   case UO_PreInc:
2558   case UO_PreDec: {
2559     LValue LV = EmitLValue(E->getSubExpr());
2560     bool isInc = E->getOpcode() == UO_PreInc;
2561 
2562     if (E->getType()->isAnyComplexType())
2563       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2564     else
2565       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2566     return LV;
2567   }
2568   }
2569 }
2570 
2571 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2572   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2573                         E->getType(), AlignmentSource::Decl);
2574 }
2575 
2576 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2577   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2578                         E->getType(), AlignmentSource::Decl);
2579 }
2580 
2581 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2582   auto SL = E->getFunctionName();
2583   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2584   StringRef FnName = CurFn->getName();
2585   if (FnName.startswith("\01"))
2586     FnName = FnName.substr(1);
2587   StringRef NameItems[] = {
2588       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2589   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2590   if (auto *BD = dyn_cast<BlockDecl>(CurCodeDecl)) {
2591     std::string Name = SL->getString();
2592     if (!Name.empty()) {
2593       unsigned Discriminator =
2594           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2595       if (Discriminator)
2596         Name += "_" + Twine(Discriminator + 1).str();
2597       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2598       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2599     } else {
2600       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2601       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2602     }
2603   }
2604   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2605   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2606 }
2607 
2608 /// Emit a type description suitable for use by a runtime sanitizer library. The
2609 /// format of a type descriptor is
2610 ///
2611 /// \code
2612 ///   { i16 TypeKind, i16 TypeInfo }
2613 /// \endcode
2614 ///
2615 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2616 /// integer, 1 for a floating point value, and -1 for anything else.
2617 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2618   // Only emit each type's descriptor once.
2619   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2620     return C;
2621 
2622   uint16_t TypeKind = -1;
2623   uint16_t TypeInfo = 0;
2624 
2625   if (T->isIntegerType()) {
2626     TypeKind = 0;
2627     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2628                (T->isSignedIntegerType() ? 1 : 0);
2629   } else if (T->isFloatingType()) {
2630     TypeKind = 1;
2631     TypeInfo = getContext().getTypeSize(T);
2632   }
2633 
2634   // Format the type name as if for a diagnostic, including quotes and
2635   // optionally an 'aka'.
2636   SmallString<32> Buffer;
2637   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2638                                     (intptr_t)T.getAsOpaquePtr(),
2639                                     StringRef(), StringRef(), None, Buffer,
2640                                     None);
2641 
2642   llvm::Constant *Components[] = {
2643     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2644     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2645   };
2646   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2647 
2648   auto *GV = new llvm::GlobalVariable(
2649       CGM.getModule(), Descriptor->getType(),
2650       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2651   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2652   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2653 
2654   // Remember the descriptor for this type.
2655   CGM.setTypeDescriptorInMap(T, GV);
2656 
2657   return GV;
2658 }
2659 
2660 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2661   llvm::Type *TargetTy = IntPtrTy;
2662 
2663   if (V->getType() == TargetTy)
2664     return V;
2665 
2666   // Floating-point types which fit into intptr_t are bitcast to integers
2667   // and then passed directly (after zero-extension, if necessary).
2668   if (V->getType()->isFloatingPointTy()) {
2669     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2670     if (Bits <= TargetTy->getIntegerBitWidth())
2671       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2672                                                          Bits));
2673   }
2674 
2675   // Integers which fit in intptr_t are zero-extended and passed directly.
2676   if (V->getType()->isIntegerTy() &&
2677       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2678     return Builder.CreateZExt(V, TargetTy);
2679 
2680   // Pointers are passed directly, everything else is passed by address.
2681   if (!V->getType()->isPointerTy()) {
2682     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2683     Builder.CreateStore(V, Ptr);
2684     V = Ptr.getPointer();
2685   }
2686   return Builder.CreatePtrToInt(V, TargetTy);
2687 }
2688 
2689 /// \brief Emit a representation of a SourceLocation for passing to a handler
2690 /// in a sanitizer runtime library. The format for this data is:
2691 /// \code
2692 ///   struct SourceLocation {
2693 ///     const char *Filename;
2694 ///     int32_t Line, Column;
2695 ///   };
2696 /// \endcode
2697 /// For an invalid SourceLocation, the Filename pointer is null.
2698 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2699   llvm::Constant *Filename;
2700   int Line, Column;
2701 
2702   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2703   if (PLoc.isValid()) {
2704     StringRef FilenameString = PLoc.getFilename();
2705 
2706     int PathComponentsToStrip =
2707         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2708     if (PathComponentsToStrip < 0) {
2709       assert(PathComponentsToStrip != INT_MIN);
2710       int PathComponentsToKeep = -PathComponentsToStrip;
2711       auto I = llvm::sys::path::rbegin(FilenameString);
2712       auto E = llvm::sys::path::rend(FilenameString);
2713       while (I != E && --PathComponentsToKeep)
2714         ++I;
2715 
2716       FilenameString = FilenameString.substr(I - E);
2717     } else if (PathComponentsToStrip > 0) {
2718       auto I = llvm::sys::path::begin(FilenameString);
2719       auto E = llvm::sys::path::end(FilenameString);
2720       while (I != E && PathComponentsToStrip--)
2721         ++I;
2722 
2723       if (I != E)
2724         FilenameString =
2725             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2726       else
2727         FilenameString = llvm::sys::path::filename(FilenameString);
2728     }
2729 
2730     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2731     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2732                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2733     Filename = FilenameGV.getPointer();
2734     Line = PLoc.getLine();
2735     Column = PLoc.getColumn();
2736   } else {
2737     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2738     Line = Column = 0;
2739   }
2740 
2741   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2742                             Builder.getInt32(Column)};
2743 
2744   return llvm::ConstantStruct::getAnon(Data);
2745 }
2746 
2747 namespace {
2748 /// \brief Specify under what conditions this check can be recovered
2749 enum class CheckRecoverableKind {
2750   /// Always terminate program execution if this check fails.
2751   Unrecoverable,
2752   /// Check supports recovering, runtime has both fatal (noreturn) and
2753   /// non-fatal handlers for this check.
2754   Recoverable,
2755   /// Runtime conditionally aborts, always need to support recovery.
2756   AlwaysRecoverable
2757 };
2758 }
2759 
2760 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2761   assert(llvm::countPopulation(Kind) == 1);
2762   switch (Kind) {
2763   case SanitizerKind::Vptr:
2764     return CheckRecoverableKind::AlwaysRecoverable;
2765   case SanitizerKind::Return:
2766   case SanitizerKind::Unreachable:
2767     return CheckRecoverableKind::Unrecoverable;
2768   default:
2769     return CheckRecoverableKind::Recoverable;
2770   }
2771 }
2772 
2773 namespace {
2774 struct SanitizerHandlerInfo {
2775   char const *const Name;
2776   unsigned Version;
2777 };
2778 }
2779 
2780 const SanitizerHandlerInfo SanitizerHandlers[] = {
2781 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2782     LIST_SANITIZER_CHECKS
2783 #undef SANITIZER_CHECK
2784 };
2785 
2786 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2787                                  llvm::FunctionType *FnType,
2788                                  ArrayRef<llvm::Value *> FnArgs,
2789                                  SanitizerHandler CheckHandler,
2790                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2791                                  llvm::BasicBlock *ContBB) {
2792   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2793   bool NeedsAbortSuffix =
2794       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2795   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2796   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2797   const StringRef CheckName = CheckInfo.Name;
2798   std::string FnName = "__ubsan_handle_" + CheckName.str();
2799   if (CheckInfo.Version && !MinimalRuntime)
2800     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2801   if (MinimalRuntime)
2802     FnName += "_minimal";
2803   if (NeedsAbortSuffix)
2804     FnName += "_abort";
2805   bool MayReturn =
2806       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2807 
2808   llvm::AttrBuilder B;
2809   if (!MayReturn) {
2810     B.addAttribute(llvm::Attribute::NoReturn)
2811         .addAttribute(llvm::Attribute::NoUnwind);
2812   }
2813   B.addAttribute(llvm::Attribute::UWTable);
2814 
2815   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2816       FnType, FnName,
2817       llvm::AttributeList::get(CGF.getLLVMContext(),
2818                                llvm::AttributeList::FunctionIndex, B),
2819       /*Local=*/true);
2820   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2821   if (!MayReturn) {
2822     HandlerCall->setDoesNotReturn();
2823     CGF.Builder.CreateUnreachable();
2824   } else {
2825     CGF.Builder.CreateBr(ContBB);
2826   }
2827 }
2828 
2829 void CodeGenFunction::EmitCheck(
2830     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2831     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2832     ArrayRef<llvm::Value *> DynamicArgs) {
2833   assert(IsSanitizerScope);
2834   assert(Checked.size() > 0);
2835   assert(CheckHandler >= 0 &&
2836          CheckHandler < sizeof(SanitizerHandlers) / sizeof(*SanitizerHandlers));
2837   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
2838 
2839   llvm::Value *FatalCond = nullptr;
2840   llvm::Value *RecoverableCond = nullptr;
2841   llvm::Value *TrapCond = nullptr;
2842   for (int i = 0, n = Checked.size(); i < n; ++i) {
2843     llvm::Value *Check = Checked[i].first;
2844     // -fsanitize-trap= overrides -fsanitize-recover=.
2845     llvm::Value *&Cond =
2846         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2847             ? TrapCond
2848             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2849                   ? RecoverableCond
2850                   : FatalCond;
2851     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2852   }
2853 
2854   if (TrapCond)
2855     EmitTrapCheck(TrapCond);
2856   if (!FatalCond && !RecoverableCond)
2857     return;
2858 
2859   llvm::Value *JointCond;
2860   if (FatalCond && RecoverableCond)
2861     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2862   else
2863     JointCond = FatalCond ? FatalCond : RecoverableCond;
2864   assert(JointCond);
2865 
2866   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2867   assert(SanOpts.has(Checked[0].second));
2868 #ifndef NDEBUG
2869   for (int i = 1, n = Checked.size(); i < n; ++i) {
2870     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2871            "All recoverable kinds in a single check must be same!");
2872     assert(SanOpts.has(Checked[i].second));
2873   }
2874 #endif
2875 
2876   llvm::BasicBlock *Cont = createBasicBlock("cont");
2877   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2878   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2879   // Give hint that we very much don't expect to execute the handler
2880   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2881   llvm::MDBuilder MDHelper(getLLVMContext());
2882   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2883   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2884   EmitBlock(Handlers);
2885 
2886   // Handler functions take an i8* pointing to the (handler-specific) static
2887   // information block, followed by a sequence of intptr_t arguments
2888   // representing operand values.
2889   SmallVector<llvm::Value *, 4> Args;
2890   SmallVector<llvm::Type *, 4> ArgTypes;
2891   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
2892     Args.reserve(DynamicArgs.size() + 1);
2893     ArgTypes.reserve(DynamicArgs.size() + 1);
2894 
2895     // Emit handler arguments and create handler function type.
2896     if (!StaticArgs.empty()) {
2897       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2898       auto *InfoPtr =
2899           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2900                                    llvm::GlobalVariable::PrivateLinkage, Info);
2901       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2902       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2903       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2904       ArgTypes.push_back(Int8PtrTy);
2905     }
2906 
2907     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2908       Args.push_back(EmitCheckValue(DynamicArgs[i]));
2909       ArgTypes.push_back(IntPtrTy);
2910     }
2911   }
2912 
2913   llvm::FunctionType *FnType =
2914     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2915 
2916   if (!FatalCond || !RecoverableCond) {
2917     // Simple case: we need to generate a single handler call, either
2918     // fatal, or non-fatal.
2919     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
2920                          (FatalCond != nullptr), Cont);
2921   } else {
2922     // Emit two handler calls: first one for set of unrecoverable checks,
2923     // another one for recoverable.
2924     llvm::BasicBlock *NonFatalHandlerBB =
2925         createBasicBlock("non_fatal." + CheckName);
2926     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2927     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2928     EmitBlock(FatalHandlerBB);
2929     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
2930                          NonFatalHandlerBB);
2931     EmitBlock(NonFatalHandlerBB);
2932     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
2933                          Cont);
2934   }
2935 
2936   EmitBlock(Cont);
2937 }
2938 
2939 void CodeGenFunction::EmitCfiSlowPathCheck(
2940     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
2941     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
2942   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2943 
2944   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2945   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2946 
2947   llvm::MDBuilder MDHelper(getLLVMContext());
2948   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2949   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2950 
2951   EmitBlock(CheckBB);
2952 
2953   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
2954 
2955   llvm::CallInst *CheckCall;
2956   if (WithDiag) {
2957     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2958     auto *InfoPtr =
2959         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2960                                  llvm::GlobalVariable::PrivateLinkage, Info);
2961     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2962     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2963 
2964     llvm::Constant *SlowPathDiagFn = CGM.getModule().getOrInsertFunction(
2965         "__cfi_slowpath_diag",
2966         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
2967                                 false));
2968     CheckCall = Builder.CreateCall(
2969         SlowPathDiagFn,
2970         {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
2971   } else {
2972     llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2973         "__cfi_slowpath",
2974         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
2975     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2976   }
2977 
2978   CheckCall->setDoesNotThrow();
2979 
2980   EmitBlock(Cont);
2981 }
2982 
2983 // Emit a stub for __cfi_check function so that the linker knows about this
2984 // symbol in LTO mode.
2985 void CodeGenFunction::EmitCfiCheckStub() {
2986   llvm::Module *M = &CGM.getModule();
2987   auto &Ctx = M->getContext();
2988   llvm::Function *F = llvm::Function::Create(
2989       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
2990       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
2991   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
2992   // FIXME: consider emitting an intrinsic call like
2993   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
2994   // which can be lowered in CrossDSOCFI pass to the actual contents of
2995   // __cfi_check. This would allow inlining of __cfi_check calls.
2996   llvm::CallInst::Create(
2997       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
2998   llvm::ReturnInst::Create(Ctx, nullptr, BB);
2999 }
3000 
3001 // This function is basically a switch over the CFI failure kind, which is
3002 // extracted from CFICheckFailData (1st function argument). Each case is either
3003 // llvm.trap or a call to one of the two runtime handlers, based on
3004 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3005 // failure kind) traps, but this should really never happen.  CFICheckFailData
3006 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3007 // check kind; in this case __cfi_check_fail traps as well.
3008 void CodeGenFunction::EmitCfiCheckFail() {
3009   SanitizerScope SanScope(this);
3010   FunctionArgList Args;
3011   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3012                             ImplicitParamDecl::Other);
3013   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3014                             ImplicitParamDecl::Other);
3015   Args.push_back(&ArgData);
3016   Args.push_back(&ArgAddr);
3017 
3018   const CGFunctionInfo &FI =
3019     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3020 
3021   llvm::Function *F = llvm::Function::Create(
3022       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3023       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3024   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3025 
3026   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3027                 SourceLocation());
3028 
3029   llvm::Value *Data =
3030       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3031                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3032   llvm::Value *Addr =
3033       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3034                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3035 
3036   // Data == nullptr means the calling module has trap behaviour for this check.
3037   llvm::Value *DataIsNotNullPtr =
3038       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3039   EmitTrapCheck(DataIsNotNullPtr);
3040 
3041   llvm::StructType *SourceLocationTy =
3042       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3043   llvm::StructType *CfiCheckFailDataTy =
3044       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3045 
3046   llvm::Value *V = Builder.CreateConstGEP2_32(
3047       CfiCheckFailDataTy,
3048       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3049       0);
3050   Address CheckKindAddr(V, getIntAlign());
3051   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3052 
3053   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3054       CGM.getLLVMContext(),
3055       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3056   llvm::Value *ValidVtable = Builder.CreateZExt(
3057       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3058                          {Addr, AllVtables}),
3059       IntPtrTy);
3060 
3061   const std::pair<int, SanitizerMask> CheckKinds[] = {
3062       {CFITCK_VCall, SanitizerKind::CFIVCall},
3063       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3064       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3065       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3066       {CFITCK_ICall, SanitizerKind::CFIICall}};
3067 
3068   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3069   for (auto CheckKindMaskPair : CheckKinds) {
3070     int Kind = CheckKindMaskPair.first;
3071     SanitizerMask Mask = CheckKindMaskPair.second;
3072     llvm::Value *Cond =
3073         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3074     if (CGM.getLangOpts().Sanitize.has(Mask))
3075       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3076                 {Data, Addr, ValidVtable});
3077     else
3078       EmitTrapCheck(Cond);
3079   }
3080 
3081   FinishFunction();
3082   // The only reference to this function will be created during LTO link.
3083   // Make sure it survives until then.
3084   CGM.addUsedGlobal(F);
3085 }
3086 
3087 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3088   llvm::BasicBlock *Cont = createBasicBlock("cont");
3089 
3090   // If we're optimizing, collapse all calls to trap down to just one per
3091   // function to save on code size.
3092   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3093     TrapBB = createBasicBlock("trap");
3094     Builder.CreateCondBr(Checked, Cont, TrapBB);
3095     EmitBlock(TrapBB);
3096     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3097     TrapCall->setDoesNotReturn();
3098     TrapCall->setDoesNotThrow();
3099     Builder.CreateUnreachable();
3100   } else {
3101     Builder.CreateCondBr(Checked, Cont, TrapBB);
3102   }
3103 
3104   EmitBlock(Cont);
3105 }
3106 
3107 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3108   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3109 
3110   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3111     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3112                                   CGM.getCodeGenOpts().TrapFuncName);
3113     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3114   }
3115 
3116   return TrapCall;
3117 }
3118 
3119 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3120                                                  LValueBaseInfo *BaseInfo,
3121                                                  TBAAAccessInfo *TBAAInfo) {
3122   assert(E->getType()->isArrayType() &&
3123          "Array to pointer decay must have array source type!");
3124 
3125   // Expressions of array type can't be bitfields or vector elements.
3126   LValue LV = EmitLValue(E);
3127   Address Addr = LV.getAddress();
3128 
3129   // If the array type was an incomplete type, we need to make sure
3130   // the decay ends up being the right type.
3131   llvm::Type *NewTy = ConvertType(E->getType());
3132   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3133 
3134   // Note that VLA pointers are always decayed, so we don't need to do
3135   // anything here.
3136   if (!E->getType()->isVariableArrayType()) {
3137     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3138            "Expected pointer to array");
3139     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
3140   }
3141 
3142   // The result of this decay conversion points to an array element within the
3143   // base lvalue. However, since TBAA currently does not support representing
3144   // accesses to elements of member arrays, we conservatively represent accesses
3145   // to the pointee object as if it had no any base lvalue specified.
3146   // TODO: Support TBAA for member arrays.
3147   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3148   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3149   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3150 
3151   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3152 }
3153 
3154 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3155 /// array to pointer, return the array subexpression.
3156 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3157   // If this isn't just an array->pointer decay, bail out.
3158   const auto *CE = dyn_cast<CastExpr>(E);
3159   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3160     return nullptr;
3161 
3162   // If this is a decay from variable width array, bail out.
3163   const Expr *SubExpr = CE->getSubExpr();
3164   if (SubExpr->getType()->isVariableArrayType())
3165     return nullptr;
3166 
3167   return SubExpr;
3168 }
3169 
3170 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3171                                           llvm::Value *ptr,
3172                                           ArrayRef<llvm::Value*> indices,
3173                                           bool inbounds,
3174                                           bool signedIndices,
3175                                           SourceLocation loc,
3176                                     const llvm::Twine &name = "arrayidx") {
3177   if (inbounds) {
3178     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3179                                       CodeGenFunction::NotSubtraction, loc,
3180                                       name);
3181   } else {
3182     return CGF.Builder.CreateGEP(ptr, indices, name);
3183   }
3184 }
3185 
3186 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3187                                       llvm::Value *idx,
3188                                       CharUnits eltSize) {
3189   // If we have a constant index, we can use the exact offset of the
3190   // element we're accessing.
3191   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3192     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3193     return arrayAlign.alignmentAtOffset(offset);
3194 
3195   // Otherwise, use the worst-case alignment for any element.
3196   } else {
3197     return arrayAlign.alignmentOfArrayElement(eltSize);
3198   }
3199 }
3200 
3201 static QualType getFixedSizeElementType(const ASTContext &ctx,
3202                                         const VariableArrayType *vla) {
3203   QualType eltType;
3204   do {
3205     eltType = vla->getElementType();
3206   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3207   return eltType;
3208 }
3209 
3210 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3211                                      ArrayRef<llvm::Value *> indices,
3212                                      QualType eltType, bool inbounds,
3213                                      bool signedIndices, SourceLocation loc,
3214                                      const llvm::Twine &name = "arrayidx") {
3215   // All the indices except that last must be zero.
3216 #ifndef NDEBUG
3217   for (auto idx : indices.drop_back())
3218     assert(isa<llvm::ConstantInt>(idx) &&
3219            cast<llvm::ConstantInt>(idx)->isZero());
3220 #endif
3221 
3222   // Determine the element size of the statically-sized base.  This is
3223   // the thing that the indices are expressed in terms of.
3224   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3225     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3226   }
3227 
3228   // We can use that to compute the best alignment of the element.
3229   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3230   CharUnits eltAlign =
3231     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3232 
3233   llvm::Value *eltPtr = emitArraySubscriptGEP(
3234       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3235   return Address(eltPtr, eltAlign);
3236 }
3237 
3238 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3239                                                bool Accessed) {
3240   // The index must always be an integer, which is not an aggregate.  Emit it
3241   // in lexical order (this complexity is, sadly, required by C++17).
3242   llvm::Value *IdxPre =
3243       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3244   bool SignedIndices = false;
3245   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3246     auto *Idx = IdxPre;
3247     if (E->getLHS() != E->getIdx()) {
3248       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3249       Idx = EmitScalarExpr(E->getIdx());
3250     }
3251 
3252     QualType IdxTy = E->getIdx()->getType();
3253     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3254     SignedIndices |= IdxSigned;
3255 
3256     if (SanOpts.has(SanitizerKind::ArrayBounds))
3257       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3258 
3259     // Extend or truncate the index type to 32 or 64-bits.
3260     if (Promote && Idx->getType() != IntPtrTy)
3261       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3262 
3263     return Idx;
3264   };
3265   IdxPre = nullptr;
3266 
3267   // If the base is a vector type, then we are forming a vector element lvalue
3268   // with this subscript.
3269   if (E->getBase()->getType()->isVectorType() &&
3270       !isa<ExtVectorElementExpr>(E->getBase())) {
3271     // Emit the vector as an lvalue to get its address.
3272     LValue LHS = EmitLValue(E->getBase());
3273     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3274     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3275     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3276                                  LHS.getBaseInfo(), TBAAAccessInfo());
3277   }
3278 
3279   // All the other cases basically behave like simple offsetting.
3280 
3281   // Handle the extvector case we ignored above.
3282   if (isa<ExtVectorElementExpr>(E->getBase())) {
3283     LValue LV = EmitLValue(E->getBase());
3284     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3285     Address Addr = EmitExtVectorElementLValue(LV);
3286 
3287     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3288     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3289                                  SignedIndices, E->getExprLoc());
3290     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3291                           CGM.getTBAAInfoForSubobject(LV, EltType));
3292   }
3293 
3294   LValueBaseInfo EltBaseInfo;
3295   TBAAAccessInfo EltTBAAInfo;
3296   Address Addr = Address::invalid();
3297   if (const VariableArrayType *vla =
3298            getContext().getAsVariableArrayType(E->getType())) {
3299     // The base must be a pointer, which is not an aggregate.  Emit
3300     // it.  It needs to be emitted first in case it's what captures
3301     // the VLA bounds.
3302     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3303     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3304 
3305     // The element count here is the total number of non-VLA elements.
3306     llvm::Value *numElements = getVLASize(vla).first;
3307 
3308     // Effectively, the multiply by the VLA size is part of the GEP.
3309     // GEP indexes are signed, and scaling an index isn't permitted to
3310     // signed-overflow, so we use the same semantics for our explicit
3311     // multiply.  We suppress this if overflow is not undefined behavior.
3312     if (getLangOpts().isSignedOverflowDefined()) {
3313       Idx = Builder.CreateMul(Idx, numElements);
3314     } else {
3315       Idx = Builder.CreateNSWMul(Idx, numElements);
3316     }
3317 
3318     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3319                                  !getLangOpts().isSignedOverflowDefined(),
3320                                  SignedIndices, E->getExprLoc());
3321 
3322   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3323     // Indexing over an interface, as in "NSString *P; P[4];"
3324 
3325     // Emit the base pointer.
3326     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3327     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3328 
3329     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3330     llvm::Value *InterfaceSizeVal =
3331         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3332 
3333     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3334 
3335     // We don't necessarily build correct LLVM struct types for ObjC
3336     // interfaces, so we can't rely on GEP to do this scaling
3337     // correctly, so we need to cast to i8*.  FIXME: is this actually
3338     // true?  A lot of other things in the fragile ABI would break...
3339     llvm::Type *OrigBaseTy = Addr.getType();
3340     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3341 
3342     // Do the GEP.
3343     CharUnits EltAlign =
3344       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3345     llvm::Value *EltPtr =
3346         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3347                               SignedIndices, E->getExprLoc());
3348     Addr = Address(EltPtr, EltAlign);
3349 
3350     // Cast back.
3351     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3352   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3353     // If this is A[i] where A is an array, the frontend will have decayed the
3354     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3355     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3356     // "gep x, i" here.  Emit one "gep A, 0, i".
3357     assert(Array->getType()->isArrayType() &&
3358            "Array to pointer decay must have array source type!");
3359     LValue ArrayLV;
3360     // For simple multidimensional array indexing, set the 'accessed' flag for
3361     // better bounds-checking of the base expression.
3362     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3363       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3364     else
3365       ArrayLV = EmitLValue(Array);
3366     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3367 
3368     // Propagate the alignment from the array itself to the result.
3369     Addr = emitArraySubscriptGEP(
3370         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3371         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3372         E->getExprLoc());
3373     EltBaseInfo = ArrayLV.getBaseInfo();
3374     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3375   } else {
3376     // The base must be a pointer; emit it with an estimate of its alignment.
3377     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3378     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3379     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3380                                  !getLangOpts().isSignedOverflowDefined(),
3381                                  SignedIndices, E->getExprLoc());
3382   }
3383 
3384   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3385 
3386   if (getLangOpts().ObjC1 &&
3387       getLangOpts().getGC() != LangOptions::NonGC) {
3388     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3389     setObjCGCLValueClass(getContext(), E, LV);
3390   }
3391   return LV;
3392 }
3393 
3394 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3395                                        LValueBaseInfo &BaseInfo,
3396                                        TBAAAccessInfo &TBAAInfo,
3397                                        QualType BaseTy, QualType ElTy,
3398                                        bool IsLowerBound) {
3399   LValue BaseLVal;
3400   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3401     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3402     if (BaseTy->isArrayType()) {
3403       Address Addr = BaseLVal.getAddress();
3404       BaseInfo = BaseLVal.getBaseInfo();
3405 
3406       // If the array type was an incomplete type, we need to make sure
3407       // the decay ends up being the right type.
3408       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3409       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3410 
3411       // Note that VLA pointers are always decayed, so we don't need to do
3412       // anything here.
3413       if (!BaseTy->isVariableArrayType()) {
3414         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3415                "Expected pointer to array");
3416         Addr = CGF.Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(),
3417                                            "arraydecay");
3418       }
3419 
3420       return CGF.Builder.CreateElementBitCast(Addr,
3421                                               CGF.ConvertTypeForMem(ElTy));
3422     }
3423     LValueBaseInfo TypeBaseInfo;
3424     TBAAAccessInfo TypeTBAAInfo;
3425     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3426                                                   &TypeTBAAInfo);
3427     BaseInfo.mergeForCast(TypeBaseInfo);
3428     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3429     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3430   }
3431   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3432 }
3433 
3434 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3435                                                 bool IsLowerBound) {
3436   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3437   QualType ResultExprTy;
3438   if (auto *AT = getContext().getAsArrayType(BaseTy))
3439     ResultExprTy = AT->getElementType();
3440   else
3441     ResultExprTy = BaseTy->getPointeeType();
3442   llvm::Value *Idx = nullptr;
3443   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3444     // Requesting lower bound or upper bound, but without provided length and
3445     // without ':' symbol for the default length -> length = 1.
3446     // Idx = LowerBound ?: 0;
3447     if (auto *LowerBound = E->getLowerBound()) {
3448       Idx = Builder.CreateIntCast(
3449           EmitScalarExpr(LowerBound), IntPtrTy,
3450           LowerBound->getType()->hasSignedIntegerRepresentation());
3451     } else
3452       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3453   } else {
3454     // Try to emit length or lower bound as constant. If this is possible, 1
3455     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3456     // IR (LB + Len) - 1.
3457     auto &C = CGM.getContext();
3458     auto *Length = E->getLength();
3459     llvm::APSInt ConstLength;
3460     if (Length) {
3461       // Idx = LowerBound + Length - 1;
3462       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3463         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3464         Length = nullptr;
3465       }
3466       auto *LowerBound = E->getLowerBound();
3467       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3468       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3469         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3470         LowerBound = nullptr;
3471       }
3472       if (!Length)
3473         --ConstLength;
3474       else if (!LowerBound)
3475         --ConstLowerBound;
3476 
3477       if (Length || LowerBound) {
3478         auto *LowerBoundVal =
3479             LowerBound
3480                 ? Builder.CreateIntCast(
3481                       EmitScalarExpr(LowerBound), IntPtrTy,
3482                       LowerBound->getType()->hasSignedIntegerRepresentation())
3483                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3484         auto *LengthVal =
3485             Length
3486                 ? Builder.CreateIntCast(
3487                       EmitScalarExpr(Length), IntPtrTy,
3488                       Length->getType()->hasSignedIntegerRepresentation())
3489                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3490         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3491                                 /*HasNUW=*/false,
3492                                 !getLangOpts().isSignedOverflowDefined());
3493         if (Length && LowerBound) {
3494           Idx = Builder.CreateSub(
3495               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3496               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3497         }
3498       } else
3499         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3500     } else {
3501       // Idx = ArraySize - 1;
3502       QualType ArrayTy = BaseTy->isPointerType()
3503                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3504                              : BaseTy;
3505       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3506         Length = VAT->getSizeExpr();
3507         if (Length->isIntegerConstantExpr(ConstLength, C))
3508           Length = nullptr;
3509       } else {
3510         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3511         ConstLength = CAT->getSize();
3512       }
3513       if (Length) {
3514         auto *LengthVal = Builder.CreateIntCast(
3515             EmitScalarExpr(Length), IntPtrTy,
3516             Length->getType()->hasSignedIntegerRepresentation());
3517         Idx = Builder.CreateSub(
3518             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3519             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3520       } else {
3521         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3522         --ConstLength;
3523         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3524       }
3525     }
3526   }
3527   assert(Idx);
3528 
3529   Address EltPtr = Address::invalid();
3530   LValueBaseInfo BaseInfo;
3531   TBAAAccessInfo TBAAInfo;
3532   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3533     // The base must be a pointer, which is not an aggregate.  Emit
3534     // it.  It needs to be emitted first in case it's what captures
3535     // the VLA bounds.
3536     Address Base =
3537         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3538                                 BaseTy, VLA->getElementType(), IsLowerBound);
3539     // The element count here is the total number of non-VLA elements.
3540     llvm::Value *NumElements = getVLASize(VLA).first;
3541 
3542     // Effectively, the multiply by the VLA size is part of the GEP.
3543     // GEP indexes are signed, and scaling an index isn't permitted to
3544     // signed-overflow, so we use the same semantics for our explicit
3545     // multiply.  We suppress this if overflow is not undefined behavior.
3546     if (getLangOpts().isSignedOverflowDefined())
3547       Idx = Builder.CreateMul(Idx, NumElements);
3548     else
3549       Idx = Builder.CreateNSWMul(Idx, NumElements);
3550     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3551                                    !getLangOpts().isSignedOverflowDefined(),
3552                                    /*SignedIndices=*/false, E->getExprLoc());
3553   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3554     // If this is A[i] where A is an array, the frontend will have decayed the
3555     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3556     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3557     // "gep x, i" here.  Emit one "gep A, 0, i".
3558     assert(Array->getType()->isArrayType() &&
3559            "Array to pointer decay must have array source type!");
3560     LValue ArrayLV;
3561     // For simple multidimensional array indexing, set the 'accessed' flag for
3562     // better bounds-checking of the base expression.
3563     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3564       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3565     else
3566       ArrayLV = EmitLValue(Array);
3567 
3568     // Propagate the alignment from the array itself to the result.
3569     EltPtr = emitArraySubscriptGEP(
3570         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3571         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3572         /*SignedIndices=*/false, E->getExprLoc());
3573     BaseInfo = ArrayLV.getBaseInfo();
3574     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3575   } else {
3576     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3577                                            TBAAInfo, BaseTy, ResultExprTy,
3578                                            IsLowerBound);
3579     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3580                                    !getLangOpts().isSignedOverflowDefined(),
3581                                    /*SignedIndices=*/false, E->getExprLoc());
3582   }
3583 
3584   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3585 }
3586 
3587 LValue CodeGenFunction::
3588 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3589   // Emit the base vector as an l-value.
3590   LValue Base;
3591 
3592   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3593   if (E->isArrow()) {
3594     // If it is a pointer to a vector, emit the address and form an lvalue with
3595     // it.
3596     LValueBaseInfo BaseInfo;
3597     TBAAAccessInfo TBAAInfo;
3598     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3599     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3600     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3601     Base.getQuals().removeObjCGCAttr();
3602   } else if (E->getBase()->isGLValue()) {
3603     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3604     // emit the base as an lvalue.
3605     assert(E->getBase()->getType()->isVectorType());
3606     Base = EmitLValue(E->getBase());
3607   } else {
3608     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3609     assert(E->getBase()->getType()->isVectorType() &&
3610            "Result must be a vector");
3611     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3612 
3613     // Store the vector to memory (because LValue wants an address).
3614     Address VecMem = CreateMemTemp(E->getBase()->getType());
3615     Builder.CreateStore(Vec, VecMem);
3616     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3617                           AlignmentSource::Decl);
3618   }
3619 
3620   QualType type =
3621     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3622 
3623   // Encode the element access list into a vector of unsigned indices.
3624   SmallVector<uint32_t, 4> Indices;
3625   E->getEncodedElementAccess(Indices);
3626 
3627   if (Base.isSimple()) {
3628     llvm::Constant *CV =
3629         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3630     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3631                                     Base.getBaseInfo(), TBAAAccessInfo());
3632   }
3633   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3634 
3635   llvm::Constant *BaseElts = Base.getExtVectorElts();
3636   SmallVector<llvm::Constant *, 4> CElts;
3637 
3638   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3639     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3640   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3641   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3642                                   Base.getBaseInfo(), TBAAAccessInfo());
3643 }
3644 
3645 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3646   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3647     EmitIgnoredExpr(E->getBase());
3648     return EmitDeclRefLValue(DRE);
3649   }
3650 
3651   Expr *BaseExpr = E->getBase();
3652   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3653   LValue BaseLV;
3654   if (E->isArrow()) {
3655     LValueBaseInfo BaseInfo;
3656     TBAAAccessInfo TBAAInfo;
3657     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3658     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3659     SanitizerSet SkippedChecks;
3660     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3661     if (IsBaseCXXThis)
3662       SkippedChecks.set(SanitizerKind::Alignment, true);
3663     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3664       SkippedChecks.set(SanitizerKind::Null, true);
3665     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3666                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3667     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3668   } else
3669     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3670 
3671   NamedDecl *ND = E->getMemberDecl();
3672   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3673     LValue LV = EmitLValueForField(BaseLV, Field);
3674     setObjCGCLValueClass(getContext(), E, LV);
3675     return LV;
3676   }
3677 
3678   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3679     return EmitFunctionDeclLValue(*this, E, FD);
3680 
3681   llvm_unreachable("Unhandled member declaration!");
3682 }
3683 
3684 /// Given that we are currently emitting a lambda, emit an l-value for
3685 /// one of its members.
3686 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3687   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3688   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3689   QualType LambdaTagType =
3690     getContext().getTagDeclType(Field->getParent());
3691   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3692   return EmitLValueForField(LambdaLV, Field);
3693 }
3694 
3695 /// Drill down to the storage of a field without walking into
3696 /// reference types.
3697 ///
3698 /// The resulting address doesn't necessarily have the right type.
3699 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3700                                       const FieldDecl *field) {
3701   const RecordDecl *rec = field->getParent();
3702 
3703   unsigned idx =
3704     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3705 
3706   CharUnits offset;
3707   // Adjust the alignment down to the given offset.
3708   // As a special case, if the LLVM field index is 0, we know that this
3709   // is zero.
3710   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3711                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3712          "LLVM field at index zero had non-zero offset?");
3713   if (idx != 0) {
3714     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3715     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3716     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3717   }
3718 
3719   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3720 }
3721 
3722 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3723   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3724   if (!RD)
3725     return false;
3726 
3727   if (RD->isDynamicClass())
3728     return true;
3729 
3730   for (const auto &Base : RD->bases())
3731     if (hasAnyVptr(Base.getType(), Context))
3732       return true;
3733 
3734   for (const FieldDecl *Field : RD->fields())
3735     if (hasAnyVptr(Field->getType(), Context))
3736       return true;
3737 
3738   return false;
3739 }
3740 
3741 LValue CodeGenFunction::EmitLValueForField(LValue base,
3742                                            const FieldDecl *field) {
3743   LValueBaseInfo BaseInfo = base.getBaseInfo();
3744 
3745   if (field->isBitField()) {
3746     const CGRecordLayout &RL =
3747       CGM.getTypes().getCGRecordLayout(field->getParent());
3748     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3749     Address Addr = base.getAddress();
3750     unsigned Idx = RL.getLLVMFieldNo(field);
3751     if (Idx != 0)
3752       // For structs, we GEP to the field that the record layout suggests.
3753       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3754                                      field->getName());
3755     // Get the access type.
3756     llvm::Type *FieldIntTy =
3757       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3758     if (Addr.getElementType() != FieldIntTy)
3759       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3760 
3761     QualType fieldType =
3762       field->getType().withCVRQualifiers(base.getVRQualifiers());
3763     // TODO: Support TBAA for bit fields.
3764     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
3765     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3766                                 TBAAAccessInfo());
3767   }
3768 
3769   // Fields of may-alias structures are may-alias themselves.
3770   // FIXME: this should get propagated down through anonymous structs
3771   // and unions.
3772   QualType FieldType = field->getType();
3773   const RecordDecl *rec = field->getParent();
3774   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3775   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
3776   TBAAAccessInfo FieldTBAAInfo;
3777   if (base.getTBAAInfo().isMayAlias() ||
3778           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
3779     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3780   } else if (rec->isUnion()) {
3781     // TODO: Support TBAA for unions.
3782     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3783   } else {
3784     // If no base type been assigned for the base access, then try to generate
3785     // one for this base lvalue.
3786     FieldTBAAInfo = base.getTBAAInfo();
3787     if (!FieldTBAAInfo.BaseType) {
3788         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3789         assert(!FieldTBAAInfo.Offset &&
3790                "Nonzero offset for an access with no base type!");
3791     }
3792 
3793     // Adjust offset to be relative to the base type.
3794     const ASTRecordLayout &Layout =
3795         getContext().getASTRecordLayout(field->getParent());
3796     unsigned CharWidth = getContext().getCharWidth();
3797     if (FieldTBAAInfo.BaseType)
3798       FieldTBAAInfo.Offset +=
3799           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3800 
3801     // Update the final access type.
3802     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3803   }
3804 
3805   Address addr = base.getAddress();
3806   unsigned RecordCVR = base.getVRQualifiers();
3807   if (rec->isUnion()) {
3808     // For unions, there is no pointer adjustment.
3809     assert(!FieldType->isReferenceType() && "union has reference member");
3810     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3811         hasAnyVptr(FieldType, getContext()))
3812       // Because unions can easily skip invariant.barriers, we need to add
3813       // a barrier every time CXXRecord field with vptr is referenced.
3814       addr = Address(Builder.CreateInvariantGroupBarrier(addr.getPointer()),
3815                      addr.getAlignment());
3816   } else {
3817     // For structs, we GEP to the field that the record layout suggests.
3818     addr = emitAddrOfFieldStorage(*this, addr, field);
3819 
3820     // If this is a reference field, load the reference right now.
3821     if (FieldType->isReferenceType()) {
3822       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
3823                                       FieldTBAAInfo);
3824       if (RecordCVR & Qualifiers::Volatile)
3825         RefLVal.getQuals().setVolatile(true);
3826       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
3827 
3828       // Qualifiers on the struct don't apply to the referencee.
3829       RecordCVR = 0;
3830       FieldType = FieldType->getPointeeType();
3831     }
3832   }
3833 
3834   // Make sure that the address is pointing to the right type.  This is critical
3835   // for both unions and structs.  A union needs a bitcast, a struct element
3836   // will need a bitcast if the LLVM type laid out doesn't match the desired
3837   // type.
3838   addr = Builder.CreateElementBitCast(
3839       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
3840 
3841   if (field->hasAttr<AnnotateAttr>())
3842     addr = EmitFieldAnnotations(field, addr);
3843 
3844   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
3845   LV.getQuals().addCVRQualifiers(RecordCVR);
3846 
3847   // __weak attribute on a field is ignored.
3848   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3849     LV.getQuals().removeObjCGCAttr();
3850 
3851   return LV;
3852 }
3853 
3854 LValue
3855 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3856                                                   const FieldDecl *Field) {
3857   QualType FieldType = Field->getType();
3858 
3859   if (!FieldType->isReferenceType())
3860     return EmitLValueForField(Base, Field);
3861 
3862   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3863 
3864   // Make sure that the address is pointing to the right type.
3865   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3866   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3867 
3868   // TODO: Generate TBAA information that describes this access as a structure
3869   // member access and not just an access to an object of the field's type. This
3870   // should be similar to what we do in EmitLValueForField().
3871   LValueBaseInfo BaseInfo = Base.getBaseInfo();
3872   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
3873   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
3874   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
3875                         CGM.getTBAAInfoForSubobject(Base, FieldType));
3876 }
3877 
3878 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3879   if (E->isFileScope()) {
3880     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3881     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3882   }
3883   if (E->getType()->isVariablyModifiedType())
3884     // make sure to emit the VLA size.
3885     EmitVariablyModifiedType(E->getType());
3886 
3887   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3888   const Expr *InitExpr = E->getInitializer();
3889   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3890 
3891   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3892                    /*Init*/ true);
3893 
3894   return Result;
3895 }
3896 
3897 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3898   if (!E->isGLValue())
3899     // Initializing an aggregate temporary in C++11: T{...}.
3900     return EmitAggExprToLValue(E);
3901 
3902   // An lvalue initializer list must be initializing a reference.
3903   assert(E->isTransparent() && "non-transparent glvalue init list");
3904   return EmitLValue(E->getInit(0));
3905 }
3906 
3907 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3908 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3909 /// LValue is returned and the current block has been terminated.
3910 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3911                                                     const Expr *Operand) {
3912   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3913     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3914     return None;
3915   }
3916 
3917   return CGF.EmitLValue(Operand);
3918 }
3919 
3920 LValue CodeGenFunction::
3921 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3922   if (!expr->isGLValue()) {
3923     // ?: here should be an aggregate.
3924     assert(hasAggregateEvaluationKind(expr->getType()) &&
3925            "Unexpected conditional operator!");
3926     return EmitAggExprToLValue(expr);
3927   }
3928 
3929   OpaqueValueMapping binding(*this, expr);
3930 
3931   const Expr *condExpr = expr->getCond();
3932   bool CondExprBool;
3933   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3934     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3935     if (!CondExprBool) std::swap(live, dead);
3936 
3937     if (!ContainsLabel(dead)) {
3938       // If the true case is live, we need to track its region.
3939       if (CondExprBool)
3940         incrementProfileCounter(expr);
3941       return EmitLValue(live);
3942     }
3943   }
3944 
3945   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3946   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3947   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3948 
3949   ConditionalEvaluation eval(*this);
3950   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3951 
3952   // Any temporaries created here are conditional.
3953   EmitBlock(lhsBlock);
3954   incrementProfileCounter(expr);
3955   eval.begin(*this);
3956   Optional<LValue> lhs =
3957       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3958   eval.end(*this);
3959 
3960   if (lhs && !lhs->isSimple())
3961     return EmitUnsupportedLValue(expr, "conditional operator");
3962 
3963   lhsBlock = Builder.GetInsertBlock();
3964   if (lhs)
3965     Builder.CreateBr(contBlock);
3966 
3967   // Any temporaries created here are conditional.
3968   EmitBlock(rhsBlock);
3969   eval.begin(*this);
3970   Optional<LValue> rhs =
3971       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3972   eval.end(*this);
3973   if (rhs && !rhs->isSimple())
3974     return EmitUnsupportedLValue(expr, "conditional operator");
3975   rhsBlock = Builder.GetInsertBlock();
3976 
3977   EmitBlock(contBlock);
3978 
3979   if (lhs && rhs) {
3980     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3981                                            2, "cond-lvalue");
3982     phi->addIncoming(lhs->getPointer(), lhsBlock);
3983     phi->addIncoming(rhs->getPointer(), rhsBlock);
3984     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3985     AlignmentSource alignSource =
3986       std::max(lhs->getBaseInfo().getAlignmentSource(),
3987                rhs->getBaseInfo().getAlignmentSource());
3988     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
3989         lhs->getTBAAInfo(), rhs->getTBAAInfo());
3990     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
3991                           TBAAInfo);
3992   } else {
3993     assert((lhs || rhs) &&
3994            "both operands of glvalue conditional are throw-expressions?");
3995     return lhs ? *lhs : *rhs;
3996   }
3997 }
3998 
3999 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4000 /// type. If the cast is to a reference, we can have the usual lvalue result,
4001 /// otherwise if a cast is needed by the code generator in an lvalue context,
4002 /// then it must mean that we need the address of an aggregate in order to
4003 /// access one of its members.  This can happen for all the reasons that casts
4004 /// are permitted with aggregate result, including noop aggregate casts, and
4005 /// cast from scalar to union.
4006 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4007   switch (E->getCastKind()) {
4008   case CK_ToVoid:
4009   case CK_BitCast:
4010   case CK_ArrayToPointerDecay:
4011   case CK_FunctionToPointerDecay:
4012   case CK_NullToMemberPointer:
4013   case CK_NullToPointer:
4014   case CK_IntegralToPointer:
4015   case CK_PointerToIntegral:
4016   case CK_PointerToBoolean:
4017   case CK_VectorSplat:
4018   case CK_IntegralCast:
4019   case CK_BooleanToSignedIntegral:
4020   case CK_IntegralToBoolean:
4021   case CK_IntegralToFloating:
4022   case CK_FloatingToIntegral:
4023   case CK_FloatingToBoolean:
4024   case CK_FloatingCast:
4025   case CK_FloatingRealToComplex:
4026   case CK_FloatingComplexToReal:
4027   case CK_FloatingComplexToBoolean:
4028   case CK_FloatingComplexCast:
4029   case CK_FloatingComplexToIntegralComplex:
4030   case CK_IntegralRealToComplex:
4031   case CK_IntegralComplexToReal:
4032   case CK_IntegralComplexToBoolean:
4033   case CK_IntegralComplexCast:
4034   case CK_IntegralComplexToFloatingComplex:
4035   case CK_DerivedToBaseMemberPointer:
4036   case CK_BaseToDerivedMemberPointer:
4037   case CK_MemberPointerToBoolean:
4038   case CK_ReinterpretMemberPointer:
4039   case CK_AnyPointerToBlockPointerCast:
4040   case CK_ARCProduceObject:
4041   case CK_ARCConsumeObject:
4042   case CK_ARCReclaimReturnedObject:
4043   case CK_ARCExtendBlockObject:
4044   case CK_CopyAndAutoreleaseBlockObject:
4045   case CK_AddressSpaceConversion:
4046   case CK_IntToOCLSampler:
4047     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4048 
4049   case CK_Dependent:
4050     llvm_unreachable("dependent cast kind in IR gen!");
4051 
4052   case CK_BuiltinFnToFnPtr:
4053     llvm_unreachable("builtin functions are handled elsewhere");
4054 
4055   // These are never l-values; just use the aggregate emission code.
4056   case CK_NonAtomicToAtomic:
4057   case CK_AtomicToNonAtomic:
4058     return EmitAggExprToLValue(E);
4059 
4060   case CK_Dynamic: {
4061     LValue LV = EmitLValue(E->getSubExpr());
4062     Address V = LV.getAddress();
4063     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4064     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4065   }
4066 
4067   case CK_ConstructorConversion:
4068   case CK_UserDefinedConversion:
4069   case CK_CPointerToObjCPointerCast:
4070   case CK_BlockPointerToObjCPointerCast:
4071   case CK_NoOp:
4072   case CK_LValueToRValue:
4073     return EmitLValue(E->getSubExpr());
4074 
4075   case CK_UncheckedDerivedToBase:
4076   case CK_DerivedToBase: {
4077     const RecordType *DerivedClassTy =
4078       E->getSubExpr()->getType()->getAs<RecordType>();
4079     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4080 
4081     LValue LV = EmitLValue(E->getSubExpr());
4082     Address This = LV.getAddress();
4083 
4084     // Perform the derived-to-base conversion
4085     Address Base = GetAddressOfBaseClass(
4086         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4087         /*NullCheckValue=*/false, E->getExprLoc());
4088 
4089     // TODO: Support accesses to members of base classes in TBAA. For now, we
4090     // conservatively pretend that the complete object is of the base class
4091     // type.
4092     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4093                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4094   }
4095   case CK_ToUnion:
4096     return EmitAggExprToLValue(E);
4097   case CK_BaseToDerived: {
4098     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4099     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4100 
4101     LValue LV = EmitLValue(E->getSubExpr());
4102 
4103     // Perform the base-to-derived conversion
4104     Address Derived =
4105       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4106                                E->path_begin(), E->path_end(),
4107                                /*NullCheckValue=*/false);
4108 
4109     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4110     // performed and the object is not of the derived type.
4111     if (sanitizePerformTypeCheck())
4112       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4113                     Derived.getPointer(), E->getType());
4114 
4115     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4116       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4117                                 /*MayBeNull=*/false,
4118                                 CFITCK_DerivedCast, E->getLocStart());
4119 
4120     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4121                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4122   }
4123   case CK_LValueBitCast: {
4124     // This must be a reinterpret_cast (or c-style equivalent).
4125     const auto *CE = cast<ExplicitCastExpr>(E);
4126 
4127     CGM.EmitExplicitCastExprType(CE, this);
4128     LValue LV = EmitLValue(E->getSubExpr());
4129     Address V = Builder.CreateBitCast(LV.getAddress(),
4130                                       ConvertType(CE->getTypeAsWritten()));
4131 
4132     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4133       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4134                                 /*MayBeNull=*/false,
4135                                 CFITCK_UnrelatedCast, E->getLocStart());
4136 
4137     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4138                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4139   }
4140   case CK_ObjCObjectLValueCast: {
4141     LValue LV = EmitLValue(E->getSubExpr());
4142     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4143                                              ConvertType(E->getType()));
4144     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4145                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4146   }
4147   case CK_ZeroToOCLQueue:
4148     llvm_unreachable("NULL to OpenCL queue lvalue cast is not valid");
4149   case CK_ZeroToOCLEvent:
4150     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
4151   }
4152 
4153   llvm_unreachable("Unhandled lvalue cast kind?");
4154 }
4155 
4156 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4157   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4158   return getOpaqueLValueMapping(e);
4159 }
4160 
4161 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4162                                            const FieldDecl *FD,
4163                                            SourceLocation Loc) {
4164   QualType FT = FD->getType();
4165   LValue FieldLV = EmitLValueForField(LV, FD);
4166   switch (getEvaluationKind(FT)) {
4167   case TEK_Complex:
4168     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4169   case TEK_Aggregate:
4170     return FieldLV.asAggregateRValue();
4171   case TEK_Scalar:
4172     // This routine is used to load fields one-by-one to perform a copy, so
4173     // don't load reference fields.
4174     if (FD->getType()->isReferenceType())
4175       return RValue::get(FieldLV.getPointer());
4176     return EmitLoadOfLValue(FieldLV, Loc);
4177   }
4178   llvm_unreachable("bad evaluation kind");
4179 }
4180 
4181 //===--------------------------------------------------------------------===//
4182 //                             Expression Emission
4183 //===--------------------------------------------------------------------===//
4184 
4185 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4186                                      ReturnValueSlot ReturnValue) {
4187   // Builtins never have block type.
4188   if (E->getCallee()->getType()->isBlockPointerType())
4189     return EmitBlockCallExpr(E, ReturnValue);
4190 
4191   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4192     return EmitCXXMemberCallExpr(CE, ReturnValue);
4193 
4194   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4195     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4196 
4197   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4198     if (const CXXMethodDecl *MD =
4199           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4200       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4201 
4202   CGCallee callee = EmitCallee(E->getCallee());
4203 
4204   if (callee.isBuiltin()) {
4205     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4206                            E, ReturnValue);
4207   }
4208 
4209   if (callee.isPseudoDestructor()) {
4210     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4211   }
4212 
4213   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4214 }
4215 
4216 /// Emit a CallExpr without considering whether it might be a subclass.
4217 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4218                                            ReturnValueSlot ReturnValue) {
4219   CGCallee Callee = EmitCallee(E->getCallee());
4220   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4221 }
4222 
4223 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4224   if (auto builtinID = FD->getBuiltinID()) {
4225     return CGCallee::forBuiltin(builtinID, FD);
4226   }
4227 
4228   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4229   return CGCallee::forDirect(calleePtr, FD);
4230 }
4231 
4232 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4233   E = E->IgnoreParens();
4234 
4235   // Look through function-to-pointer decay.
4236   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4237     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4238         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4239       return EmitCallee(ICE->getSubExpr());
4240     }
4241 
4242   // Resolve direct calls.
4243   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4244     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4245       return EmitDirectCallee(*this, FD);
4246     }
4247   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4248     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4249       EmitIgnoredExpr(ME->getBase());
4250       return EmitDirectCallee(*this, FD);
4251     }
4252 
4253   // Look through template substitutions.
4254   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4255     return EmitCallee(NTTP->getReplacement());
4256 
4257   // Treat pseudo-destructor calls differently.
4258   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4259     return CGCallee::forPseudoDestructor(PDE);
4260   }
4261 
4262   // Otherwise, we have an indirect reference.
4263   llvm::Value *calleePtr;
4264   QualType functionType;
4265   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4266     calleePtr = EmitScalarExpr(E);
4267     functionType = ptrType->getPointeeType();
4268   } else {
4269     functionType = E->getType();
4270     calleePtr = EmitLValue(E).getPointer();
4271   }
4272   assert(functionType->isFunctionType());
4273   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(),
4274                           E->getReferencedDeclOfCallee());
4275   CGCallee callee(calleeInfo, calleePtr);
4276   return callee;
4277 }
4278 
4279 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4280   // Comma expressions just emit their LHS then their RHS as an l-value.
4281   if (E->getOpcode() == BO_Comma) {
4282     EmitIgnoredExpr(E->getLHS());
4283     EnsureInsertPoint();
4284     return EmitLValue(E->getRHS());
4285   }
4286 
4287   if (E->getOpcode() == BO_PtrMemD ||
4288       E->getOpcode() == BO_PtrMemI)
4289     return EmitPointerToDataMemberBinaryExpr(E);
4290 
4291   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4292 
4293   // Note that in all of these cases, __block variables need the RHS
4294   // evaluated first just in case the variable gets moved by the RHS.
4295 
4296   switch (getEvaluationKind(E->getType())) {
4297   case TEK_Scalar: {
4298     switch (E->getLHS()->getType().getObjCLifetime()) {
4299     case Qualifiers::OCL_Strong:
4300       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4301 
4302     case Qualifiers::OCL_Autoreleasing:
4303       return EmitARCStoreAutoreleasing(E).first;
4304 
4305     // No reason to do any of these differently.
4306     case Qualifiers::OCL_None:
4307     case Qualifiers::OCL_ExplicitNone:
4308     case Qualifiers::OCL_Weak:
4309       break;
4310     }
4311 
4312     RValue RV = EmitAnyExpr(E->getRHS());
4313     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4314     if (RV.isScalar())
4315       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4316     EmitStoreThroughLValue(RV, LV);
4317     return LV;
4318   }
4319 
4320   case TEK_Complex:
4321     return EmitComplexAssignmentLValue(E);
4322 
4323   case TEK_Aggregate:
4324     return EmitAggExprToLValue(E);
4325   }
4326   llvm_unreachable("bad evaluation kind");
4327 }
4328 
4329 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4330   RValue RV = EmitCallExpr(E);
4331 
4332   if (!RV.isScalar())
4333     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4334                           AlignmentSource::Decl);
4335 
4336   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4337          "Can't have a scalar return unless the return type is a "
4338          "reference type!");
4339 
4340   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4341 }
4342 
4343 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4344   // FIXME: This shouldn't require another copy.
4345   return EmitAggExprToLValue(E);
4346 }
4347 
4348 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4349   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4350          && "binding l-value to type which needs a temporary");
4351   AggValueSlot Slot = CreateAggTemp(E->getType());
4352   EmitCXXConstructExpr(E, Slot);
4353   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4354 }
4355 
4356 LValue
4357 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4358   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4359 }
4360 
4361 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4362   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4363                                       ConvertType(E->getType()));
4364 }
4365 
4366 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4367   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4368                         AlignmentSource::Decl);
4369 }
4370 
4371 LValue
4372 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4373   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4374   Slot.setExternallyDestructed();
4375   EmitAggExpr(E->getSubExpr(), Slot);
4376   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4377   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4378 }
4379 
4380 LValue
4381 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
4382   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4383   EmitLambdaExpr(E, Slot);
4384   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4385 }
4386 
4387 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4388   RValue RV = EmitObjCMessageExpr(E);
4389 
4390   if (!RV.isScalar())
4391     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4392                           AlignmentSource::Decl);
4393 
4394   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4395          "Can't have a scalar return unless the return type is a "
4396          "reference type!");
4397 
4398   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4399 }
4400 
4401 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4402   Address V =
4403     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4404   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4405 }
4406 
4407 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4408                                              const ObjCIvarDecl *Ivar) {
4409   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4410 }
4411 
4412 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4413                                           llvm::Value *BaseValue,
4414                                           const ObjCIvarDecl *Ivar,
4415                                           unsigned CVRQualifiers) {
4416   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4417                                                    Ivar, CVRQualifiers);
4418 }
4419 
4420 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4421   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4422   llvm::Value *BaseValue = nullptr;
4423   const Expr *BaseExpr = E->getBase();
4424   Qualifiers BaseQuals;
4425   QualType ObjectTy;
4426   if (E->isArrow()) {
4427     BaseValue = EmitScalarExpr(BaseExpr);
4428     ObjectTy = BaseExpr->getType()->getPointeeType();
4429     BaseQuals = ObjectTy.getQualifiers();
4430   } else {
4431     LValue BaseLV = EmitLValue(BaseExpr);
4432     BaseValue = BaseLV.getPointer();
4433     ObjectTy = BaseExpr->getType();
4434     BaseQuals = ObjectTy.getQualifiers();
4435   }
4436 
4437   LValue LV =
4438     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4439                       BaseQuals.getCVRQualifiers());
4440   setObjCGCLValueClass(getContext(), E, LV);
4441   return LV;
4442 }
4443 
4444 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4445   // Can only get l-value for message expression returning aggregate type
4446   RValue RV = EmitAnyExprToTemp(E);
4447   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4448                         AlignmentSource::Decl);
4449 }
4450 
4451 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4452                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4453                                  llvm::Value *Chain) {
4454   // Get the actual function type. The callee type will always be a pointer to
4455   // function type or a block pointer type.
4456   assert(CalleeType->isFunctionPointerType() &&
4457          "Call must have function pointer type!");
4458 
4459   const Decl *TargetDecl = OrigCallee.getAbstractInfo().getCalleeDecl();
4460 
4461   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4462     // We can only guarantee that a function is called from the correct
4463     // context/function based on the appropriate target attributes,
4464     // so only check in the case where we have both always_inline and target
4465     // since otherwise we could be making a conditional call after a check for
4466     // the proper cpu features (and it won't cause code generation issues due to
4467     // function based code generation).
4468     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4469         TargetDecl->hasAttr<TargetAttr>())
4470       checkTargetFeatures(E, FD);
4471 
4472   CalleeType = getContext().getCanonicalType(CalleeType);
4473 
4474   const auto *FnType =
4475       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
4476 
4477   CGCallee Callee = OrigCallee;
4478 
4479   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4480       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4481     if (llvm::Constant *PrefixSig =
4482             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4483       SanitizerScope SanScope(this);
4484       llvm::Constant *FTRTTIConst =
4485           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
4486       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4487       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4488           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4489 
4490       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4491 
4492       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4493           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4494       llvm::Value *CalleeSigPtr =
4495           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4496       llvm::Value *CalleeSig =
4497           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4498       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4499 
4500       llvm::BasicBlock *Cont = createBasicBlock("cont");
4501       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4502       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4503 
4504       EmitBlock(TypeCheck);
4505       llvm::Value *CalleeRTTIPtr =
4506           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4507       llvm::Value *CalleeRTTIEncoded =
4508           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4509       llvm::Value *CalleeRTTI =
4510           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4511       llvm::Value *CalleeRTTIMatch =
4512           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4513       llvm::Constant *StaticData[] = {
4514         EmitCheckSourceLocation(E->getLocStart()),
4515         EmitCheckTypeDescriptor(CalleeType)
4516       };
4517       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4518                 SanitizerHandler::FunctionTypeMismatch, StaticData, CalleePtr);
4519 
4520       Builder.CreateBr(Cont);
4521       EmitBlock(Cont);
4522     }
4523   }
4524 
4525   // If we are checking indirect calls and this call is indirect, check that the
4526   // function pointer is a member of the bit set for the function type.
4527   if (SanOpts.has(SanitizerKind::CFIICall) &&
4528       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4529     SanitizerScope SanScope(this);
4530     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4531 
4532     llvm::Metadata *MD;
4533     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4534       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4535     else
4536       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4537 
4538     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4539 
4540     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4541     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4542     llvm::Value *TypeTest = Builder.CreateCall(
4543         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4544 
4545     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4546     llvm::Constant *StaticData[] = {
4547         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4548         EmitCheckSourceLocation(E->getLocStart()),
4549         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4550     };
4551     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4552       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4553                            CastedCallee, StaticData);
4554     } else {
4555       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4556                 SanitizerHandler::CFICheckFail, StaticData,
4557                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4558     }
4559   }
4560 
4561   CallArgList Args;
4562   if (Chain)
4563     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4564              CGM.getContext().VoidPtrTy);
4565 
4566   // C++17 requires that we evaluate arguments to a call using assignment syntax
4567   // right-to-left, and that we evaluate arguments to certain other operators
4568   // left-to-right. Note that we allow this to override the order dictated by
4569   // the calling convention on the MS ABI, which means that parameter
4570   // destruction order is not necessarily reverse construction order.
4571   // FIXME: Revisit this based on C++ committee response to unimplementability.
4572   EvaluationOrder Order = EvaluationOrder::Default;
4573   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4574     if (OCE->isAssignmentOp())
4575       Order = EvaluationOrder::ForceRightToLeft;
4576     else {
4577       switch (OCE->getOperator()) {
4578       case OO_LessLess:
4579       case OO_GreaterGreater:
4580       case OO_AmpAmp:
4581       case OO_PipePipe:
4582       case OO_Comma:
4583       case OO_ArrowStar:
4584         Order = EvaluationOrder::ForceLeftToRight;
4585         break;
4586       default:
4587         break;
4588       }
4589     }
4590   }
4591 
4592   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4593                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4594 
4595   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4596       Args, FnType, /*isChainCall=*/Chain);
4597 
4598   // C99 6.5.2.2p6:
4599   //   If the expression that denotes the called function has a type
4600   //   that does not include a prototype, [the default argument
4601   //   promotions are performed]. If the number of arguments does not
4602   //   equal the number of parameters, the behavior is undefined. If
4603   //   the function is defined with a type that includes a prototype,
4604   //   and either the prototype ends with an ellipsis (, ...) or the
4605   //   types of the arguments after promotion are not compatible with
4606   //   the types of the parameters, the behavior is undefined. If the
4607   //   function is defined with a type that does not include a
4608   //   prototype, and the types of the arguments after promotion are
4609   //   not compatible with those of the parameters after promotion,
4610   //   the behavior is undefined [except in some trivial cases].
4611   // That is, in the general case, we should assume that a call
4612   // through an unprototyped function type works like a *non-variadic*
4613   // call.  The way we make this work is to cast to the exact type
4614   // of the promoted arguments.
4615   //
4616   // Chain calls use this same code path to add the invisible chain parameter
4617   // to the function type.
4618   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4619     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4620     CalleeTy = CalleeTy->getPointerTo();
4621 
4622     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4623     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4624     Callee.setFunctionPointer(CalleePtr);
4625   }
4626 
4627   return EmitCall(FnInfo, Callee, ReturnValue, Args);
4628 }
4629 
4630 LValue CodeGenFunction::
4631 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4632   Address BaseAddr = Address::invalid();
4633   if (E->getOpcode() == BO_PtrMemI) {
4634     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4635   } else {
4636     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4637   }
4638 
4639   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4640 
4641   const MemberPointerType *MPT
4642     = E->getRHS()->getType()->getAs<MemberPointerType>();
4643 
4644   LValueBaseInfo BaseInfo;
4645   TBAAAccessInfo TBAAInfo;
4646   Address MemberAddr =
4647     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4648                                     &TBAAInfo);
4649 
4650   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4651 }
4652 
4653 /// Given the address of a temporary variable, produce an r-value of
4654 /// its type.
4655 RValue CodeGenFunction::convertTempToRValue(Address addr,
4656                                             QualType type,
4657                                             SourceLocation loc) {
4658   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4659   switch (getEvaluationKind(type)) {
4660   case TEK_Complex:
4661     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4662   case TEK_Aggregate:
4663     return lvalue.asAggregateRValue();
4664   case TEK_Scalar:
4665     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4666   }
4667   llvm_unreachable("bad evaluation kind");
4668 }
4669 
4670 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4671   assert(Val->getType()->isFPOrFPVectorTy());
4672   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4673     return;
4674 
4675   llvm::MDBuilder MDHelper(getLLVMContext());
4676   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4677 
4678   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4679 }
4680 
4681 namespace {
4682   struct LValueOrRValue {
4683     LValue LV;
4684     RValue RV;
4685   };
4686 }
4687 
4688 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4689                                            const PseudoObjectExpr *E,
4690                                            bool forLValue,
4691                                            AggValueSlot slot) {
4692   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4693 
4694   // Find the result expression, if any.
4695   const Expr *resultExpr = E->getResultExpr();
4696   LValueOrRValue result;
4697 
4698   for (PseudoObjectExpr::const_semantics_iterator
4699          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4700     const Expr *semantic = *i;
4701 
4702     // If this semantic expression is an opaque value, bind it
4703     // to the result of its source expression.
4704     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4705 
4706       // If this is the result expression, we may need to evaluate
4707       // directly into the slot.
4708       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4709       OVMA opaqueData;
4710       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4711           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4712         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4713         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4714                                        AlignmentSource::Decl);
4715         opaqueData = OVMA::bind(CGF, ov, LV);
4716         result.RV = slot.asRValue();
4717 
4718       // Otherwise, emit as normal.
4719       } else {
4720         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4721 
4722         // If this is the result, also evaluate the result now.
4723         if (ov == resultExpr) {
4724           if (forLValue)
4725             result.LV = CGF.EmitLValue(ov);
4726           else
4727             result.RV = CGF.EmitAnyExpr(ov, slot);
4728         }
4729       }
4730 
4731       opaques.push_back(opaqueData);
4732 
4733     // Otherwise, if the expression is the result, evaluate it
4734     // and remember the result.
4735     } else if (semantic == resultExpr) {
4736       if (forLValue)
4737         result.LV = CGF.EmitLValue(semantic);
4738       else
4739         result.RV = CGF.EmitAnyExpr(semantic, slot);
4740 
4741     // Otherwise, evaluate the expression in an ignored context.
4742     } else {
4743       CGF.EmitIgnoredExpr(semantic);
4744     }
4745   }
4746 
4747   // Unbind all the opaques now.
4748   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4749     opaques[i].unbind(CGF);
4750 
4751   return result;
4752 }
4753 
4754 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4755                                                AggValueSlot slot) {
4756   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4757 }
4758 
4759 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4760   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4761 }
4762