1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/CodeGenOptions.h"
29 #include "llvm/ADT/Hashing.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/Support/ConvertUTF.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Path.h"
38 #include "llvm/Transforms/Utils/SanitizerStats.h"
39 
40 #include <string>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 
45 //===--------------------------------------------------------------------===//
46 //                        Miscellaneous Helper Methods
47 //===--------------------------------------------------------------------===//
48 
49 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
50   unsigned addressSpace =
51       cast<llvm::PointerType>(value->getType())->getAddressSpace();
52 
53   llvm::PointerType *destType = Int8PtrTy;
54   if (addressSpace)
55     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
56 
57   if (value->getType() == destType) return value;
58   return Builder.CreateBitCast(value, destType);
59 }
60 
61 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
62 /// block.
63 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
64                                                      CharUnits Align,
65                                                      const Twine &Name,
66                                                      llvm::Value *ArraySize) {
67   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
68   Alloca->setAlignment(Align.getQuantity());
69   return Address(Alloca, Align);
70 }
71 
72 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
73 /// block. The alloca is casted to default address space if necessary.
74 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
75                                           const Twine &Name,
76                                           llvm::Value *ArraySize,
77                                           Address *AllocaAddr) {
78   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
79   if (AllocaAddr)
80     *AllocaAddr = Alloca;
81   llvm::Value *V = Alloca.getPointer();
82   // Alloca always returns a pointer in alloca address space, which may
83   // be different from the type defined by the language. For example,
84   // in C++ the auto variables are in the default address space. Therefore
85   // cast alloca to the default address space when necessary.
86   if (getASTAllocaAddressSpace() != LangAS::Default) {
87     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
88     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
89     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
90     // otherwise alloca is inserted at the current insertion point of the
91     // builder.
92     if (!ArraySize)
93       Builder.SetInsertPoint(AllocaInsertPt);
94     V = getTargetHooks().performAddrSpaceCast(
95         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
96         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
97   }
98 
99   return Address(V, Align);
100 }
101 
102 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
103 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
104 /// insertion point of the builder.
105 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
106                                                     const Twine &Name,
107                                                     llvm::Value *ArraySize) {
108   if (ArraySize)
109     return Builder.CreateAlloca(Ty, ArraySize, Name);
110   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
111                               ArraySize, Name, AllocaInsertPt);
112 }
113 
114 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
115 /// default alignment of the corresponding LLVM type, which is *not*
116 /// guaranteed to be related in any way to the expected alignment of
117 /// an AST type that might have been lowered to Ty.
118 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
119                                                       const Twine &Name) {
120   CharUnits Align =
121     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
122   return CreateTempAlloca(Ty, Align, Name);
123 }
124 
125 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
126   assert(isa<llvm::AllocaInst>(Var.getPointer()));
127   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
128   Store->setAlignment(Var.getAlignment().getQuantity());
129   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
130   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
131 }
132 
133 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
134   CharUnits Align = getContext().getTypeAlignInChars(Ty);
135   return CreateTempAlloca(ConvertType(Ty), Align, Name);
136 }
137 
138 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
139                                        Address *Alloca) {
140   // FIXME: Should we prefer the preferred type alignment here?
141   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
142 }
143 
144 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
145                                        const Twine &Name, Address *Alloca) {
146   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
147                           /*ArraySize=*/nullptr, Alloca);
148 }
149 
150 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
151                                                   const Twine &Name) {
152   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
153 }
154 
155 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
156                                                   const Twine &Name) {
157   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
158                                   Name);
159 }
160 
161 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
162 /// expression and compare the result against zero, returning an Int1Ty value.
163 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
164   PGO.setCurrentStmt(E);
165   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
166     llvm::Value *MemPtr = EmitScalarExpr(E);
167     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
168   }
169 
170   QualType BoolTy = getContext().BoolTy;
171   SourceLocation Loc = E->getExprLoc();
172   if (!E->getType()->isAnyComplexType())
173     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
174 
175   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
176                                        Loc);
177 }
178 
179 /// EmitIgnoredExpr - Emit code to compute the specified expression,
180 /// ignoring the result.
181 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
182   if (E->isRValue())
183     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
184 
185   // Just emit it as an l-value and drop the result.
186   EmitLValue(E);
187 }
188 
189 /// EmitAnyExpr - Emit code to compute the specified expression which
190 /// can have any type.  The result is returned as an RValue struct.
191 /// If this is an aggregate expression, AggSlot indicates where the
192 /// result should be returned.
193 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
194                                     AggValueSlot aggSlot,
195                                     bool ignoreResult) {
196   switch (getEvaluationKind(E->getType())) {
197   case TEK_Scalar:
198     return RValue::get(EmitScalarExpr(E, ignoreResult));
199   case TEK_Complex:
200     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
201   case TEK_Aggregate:
202     if (!ignoreResult && aggSlot.isIgnored())
203       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
204     EmitAggExpr(E, aggSlot);
205     return aggSlot.asRValue();
206   }
207   llvm_unreachable("bad evaluation kind");
208 }
209 
210 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
211 /// always be accessible even if no aggregate location is provided.
212 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
213   AggValueSlot AggSlot = AggValueSlot::ignored();
214 
215   if (hasAggregateEvaluationKind(E->getType()))
216     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
217   return EmitAnyExpr(E, AggSlot);
218 }
219 
220 /// EmitAnyExprToMem - Evaluate an expression into a given memory
221 /// location.
222 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
223                                        Address Location,
224                                        Qualifiers Quals,
225                                        bool IsInit) {
226   // FIXME: This function should take an LValue as an argument.
227   switch (getEvaluationKind(E->getType())) {
228   case TEK_Complex:
229     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
230                               /*isInit*/ false);
231     return;
232 
233   case TEK_Aggregate: {
234     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
235                                          AggValueSlot::IsDestructed_t(IsInit),
236                                          AggValueSlot::DoesNotNeedGCBarriers,
237                                          AggValueSlot::IsAliased_t(!IsInit),
238                                          AggValueSlot::MayOverlap));
239     return;
240   }
241 
242   case TEK_Scalar: {
243     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
244     LValue LV = MakeAddrLValue(Location, E->getType());
245     EmitStoreThroughLValue(RV, LV);
246     return;
247   }
248   }
249   llvm_unreachable("bad evaluation kind");
250 }
251 
252 static void
253 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
254                      const Expr *E, Address ReferenceTemporary) {
255   // Objective-C++ ARC:
256   //   If we are binding a reference to a temporary that has ownership, we
257   //   need to perform retain/release operations on the temporary.
258   //
259   // FIXME: This should be looking at E, not M.
260   if (auto Lifetime = M->getType().getObjCLifetime()) {
261     switch (Lifetime) {
262     case Qualifiers::OCL_None:
263     case Qualifiers::OCL_ExplicitNone:
264       // Carry on to normal cleanup handling.
265       break;
266 
267     case Qualifiers::OCL_Autoreleasing:
268       // Nothing to do; cleaned up by an autorelease pool.
269       return;
270 
271     case Qualifiers::OCL_Strong:
272     case Qualifiers::OCL_Weak:
273       switch (StorageDuration Duration = M->getStorageDuration()) {
274       case SD_Static:
275         // Note: we intentionally do not register a cleanup to release
276         // the object on program termination.
277         return;
278 
279       case SD_Thread:
280         // FIXME: We should probably register a cleanup in this case.
281         return;
282 
283       case SD_Automatic:
284       case SD_FullExpression:
285         CodeGenFunction::Destroyer *Destroy;
286         CleanupKind CleanupKind;
287         if (Lifetime == Qualifiers::OCL_Strong) {
288           const ValueDecl *VD = M->getExtendingDecl();
289           bool Precise =
290               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
291           CleanupKind = CGF.getARCCleanupKind();
292           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
293                             : &CodeGenFunction::destroyARCStrongImprecise;
294         } else {
295           // __weak objects always get EH cleanups; otherwise, exceptions
296           // could cause really nasty crashes instead of mere leaks.
297           CleanupKind = NormalAndEHCleanup;
298           Destroy = &CodeGenFunction::destroyARCWeak;
299         }
300         if (Duration == SD_FullExpression)
301           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
302                           M->getType(), *Destroy,
303                           CleanupKind & EHCleanup);
304         else
305           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
306                                           M->getType(),
307                                           *Destroy, CleanupKind & EHCleanup);
308         return;
309 
310       case SD_Dynamic:
311         llvm_unreachable("temporary cannot have dynamic storage duration");
312       }
313       llvm_unreachable("unknown storage duration");
314     }
315   }
316 
317   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
318   if (const RecordType *RT =
319           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
320     // Get the destructor for the reference temporary.
321     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
322     if (!ClassDecl->hasTrivialDestructor())
323       ReferenceTemporaryDtor = ClassDecl->getDestructor();
324   }
325 
326   if (!ReferenceTemporaryDtor)
327     return;
328 
329   // Call the destructor for the temporary.
330   switch (M->getStorageDuration()) {
331   case SD_Static:
332   case SD_Thread: {
333     llvm::FunctionCallee CleanupFn;
334     llvm::Constant *CleanupArg;
335     if (E->getType()->isArrayType()) {
336       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
337           ReferenceTemporary, E->getType(),
338           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
339           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
340       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
341     } else {
342       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
343           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
344       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
345     }
346     CGF.CGM.getCXXABI().registerGlobalDtor(
347         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
348     break;
349   }
350 
351   case SD_FullExpression:
352     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
353                     CodeGenFunction::destroyCXXObject,
354                     CGF.getLangOpts().Exceptions);
355     break;
356 
357   case SD_Automatic:
358     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
359                                     ReferenceTemporary, E->getType(),
360                                     CodeGenFunction::destroyCXXObject,
361                                     CGF.getLangOpts().Exceptions);
362     break;
363 
364   case SD_Dynamic:
365     llvm_unreachable("temporary cannot have dynamic storage duration");
366   }
367 }
368 
369 static Address createReferenceTemporary(CodeGenFunction &CGF,
370                                         const MaterializeTemporaryExpr *M,
371                                         const Expr *Inner,
372                                         Address *Alloca = nullptr) {
373   auto &TCG = CGF.getTargetHooks();
374   switch (M->getStorageDuration()) {
375   case SD_FullExpression:
376   case SD_Automatic: {
377     // If we have a constant temporary array or record try to promote it into a
378     // constant global under the same rules a normal constant would've been
379     // promoted. This is easier on the optimizer and generally emits fewer
380     // instructions.
381     QualType Ty = Inner->getType();
382     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
383         (Ty->isArrayType() || Ty->isRecordType()) &&
384         CGF.CGM.isTypeConstant(Ty, true))
385       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
386         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
387           auto AS = AddrSpace.getValue();
388           auto *GV = new llvm::GlobalVariable(
389               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
390               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
391               llvm::GlobalValue::NotThreadLocal,
392               CGF.getContext().getTargetAddressSpace(AS));
393           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
394           GV->setAlignment(alignment.getQuantity());
395           llvm::Constant *C = GV;
396           if (AS != LangAS::Default)
397             C = TCG.performAddrSpaceCast(
398                 CGF.CGM, GV, AS, LangAS::Default,
399                 GV->getValueType()->getPointerTo(
400                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
401           // FIXME: Should we put the new global into a COMDAT?
402           return Address(C, alignment);
403         }
404       }
405     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
406   }
407   case SD_Thread:
408   case SD_Static:
409     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
410 
411   case SD_Dynamic:
412     llvm_unreachable("temporary can't have dynamic storage duration");
413   }
414   llvm_unreachable("unknown storage duration");
415 }
416 
417 LValue CodeGenFunction::
418 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
419   const Expr *E = M->GetTemporaryExpr();
420 
421   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
422           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
423          "Reference should never be pseudo-strong!");
424 
425   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
426   // as that will cause the lifetime adjustment to be lost for ARC
427   auto ownership = M->getType().getObjCLifetime();
428   if (ownership != Qualifiers::OCL_None &&
429       ownership != Qualifiers::OCL_ExplicitNone) {
430     Address Object = createReferenceTemporary(*this, M, E);
431     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
432       Object = Address(llvm::ConstantExpr::getBitCast(Var,
433                            ConvertTypeForMem(E->getType())
434                              ->getPointerTo(Object.getAddressSpace())),
435                        Object.getAlignment());
436 
437       // createReferenceTemporary will promote the temporary to a global with a
438       // constant initializer if it can.  It can only do this to a value of
439       // ARC-manageable type if the value is global and therefore "immune" to
440       // ref-counting operations.  Therefore we have no need to emit either a
441       // dynamic initialization or a cleanup and we can just return the address
442       // of the temporary.
443       if (Var->hasInitializer())
444         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
445 
446       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
447     }
448     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
449                                        AlignmentSource::Decl);
450 
451     switch (getEvaluationKind(E->getType())) {
452     default: llvm_unreachable("expected scalar or aggregate expression");
453     case TEK_Scalar:
454       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
455       break;
456     case TEK_Aggregate: {
457       EmitAggExpr(E, AggValueSlot::forAddr(Object,
458                                            E->getType().getQualifiers(),
459                                            AggValueSlot::IsDestructed,
460                                            AggValueSlot::DoesNotNeedGCBarriers,
461                                            AggValueSlot::IsNotAliased,
462                                            AggValueSlot::DoesNotOverlap));
463       break;
464     }
465     }
466 
467     pushTemporaryCleanup(*this, M, E, Object);
468     return RefTempDst;
469   }
470 
471   SmallVector<const Expr *, 2> CommaLHSs;
472   SmallVector<SubobjectAdjustment, 2> Adjustments;
473   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
474 
475   for (const auto &Ignored : CommaLHSs)
476     EmitIgnoredExpr(Ignored);
477 
478   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
479     if (opaque->getType()->isRecordType()) {
480       assert(Adjustments.empty());
481       return EmitOpaqueValueLValue(opaque);
482     }
483   }
484 
485   // Create and initialize the reference temporary.
486   Address Alloca = Address::invalid();
487   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
488   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
489           Object.getPointer()->stripPointerCasts())) {
490     Object = Address(llvm::ConstantExpr::getBitCast(
491                          cast<llvm::Constant>(Object.getPointer()),
492                          ConvertTypeForMem(E->getType())->getPointerTo()),
493                      Object.getAlignment());
494     // If the temporary is a global and has a constant initializer or is a
495     // constant temporary that we promoted to a global, we may have already
496     // initialized it.
497     if (!Var->hasInitializer()) {
498       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
499       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
500     }
501   } else {
502     switch (M->getStorageDuration()) {
503     case SD_Automatic:
504       if (auto *Size = EmitLifetimeStart(
505               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
506               Alloca.getPointer())) {
507         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
508                                                   Alloca, Size);
509       }
510       break;
511 
512     case SD_FullExpression: {
513       if (!ShouldEmitLifetimeMarkers)
514         break;
515 
516       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
517       // marker. Instead, start the lifetime of a conditional temporary earlier
518       // so that it's unconditional. Don't do this in ASan's use-after-scope
519       // mode so that it gets the more precise lifetime marks. If the type has
520       // a non-trivial destructor, we'll have a cleanup block for it anyway,
521       // so this typically doesn't help; skip it in that case.
522       ConditionalEvaluation *OldConditional = nullptr;
523       CGBuilderTy::InsertPoint OldIP;
524       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
525           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
526         OldConditional = OutermostConditional;
527         OutermostConditional = nullptr;
528 
529         OldIP = Builder.saveIP();
530         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
531         Builder.restoreIP(CGBuilderTy::InsertPoint(
532             Block, llvm::BasicBlock::iterator(Block->back())));
533       }
534 
535       if (auto *Size = EmitLifetimeStart(
536               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
537               Alloca.getPointer())) {
538         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
539                                              Size);
540       }
541 
542       if (OldConditional) {
543         OutermostConditional = OldConditional;
544         Builder.restoreIP(OldIP);
545       }
546       break;
547     }
548 
549     default:
550       break;
551     }
552     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
553   }
554   pushTemporaryCleanup(*this, M, E, Object);
555 
556   // Perform derived-to-base casts and/or field accesses, to get from the
557   // temporary object we created (and, potentially, for which we extended
558   // the lifetime) to the subobject we're binding the reference to.
559   for (unsigned I = Adjustments.size(); I != 0; --I) {
560     SubobjectAdjustment &Adjustment = Adjustments[I-1];
561     switch (Adjustment.Kind) {
562     case SubobjectAdjustment::DerivedToBaseAdjustment:
563       Object =
564           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
565                                 Adjustment.DerivedToBase.BasePath->path_begin(),
566                                 Adjustment.DerivedToBase.BasePath->path_end(),
567                                 /*NullCheckValue=*/ false, E->getExprLoc());
568       break;
569 
570     case SubobjectAdjustment::FieldAdjustment: {
571       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
572       LV = EmitLValueForField(LV, Adjustment.Field);
573       assert(LV.isSimple() &&
574              "materialized temporary field is not a simple lvalue");
575       Object = LV.getAddress();
576       break;
577     }
578 
579     case SubobjectAdjustment::MemberPointerAdjustment: {
580       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
581       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
582                                                Adjustment.Ptr.MPT);
583       break;
584     }
585     }
586   }
587 
588   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
589 }
590 
591 RValue
592 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
593   // Emit the expression as an lvalue.
594   LValue LV = EmitLValue(E);
595   assert(LV.isSimple());
596   llvm::Value *Value = LV.getPointer();
597 
598   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
599     // C++11 [dcl.ref]p5 (as amended by core issue 453):
600     //   If a glvalue to which a reference is directly bound designates neither
601     //   an existing object or function of an appropriate type nor a region of
602     //   storage of suitable size and alignment to contain an object of the
603     //   reference's type, the behavior is undefined.
604     QualType Ty = E->getType();
605     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
606   }
607 
608   return RValue::get(Value);
609 }
610 
611 
612 /// getAccessedFieldNo - Given an encoded value and a result number, return the
613 /// input field number being accessed.
614 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
615                                              const llvm::Constant *Elts) {
616   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
617       ->getZExtValue();
618 }
619 
620 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
621 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
622                                     llvm::Value *High) {
623   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
624   llvm::Value *K47 = Builder.getInt64(47);
625   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
626   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
627   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
628   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
629   return Builder.CreateMul(B1, KMul);
630 }
631 
632 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
633   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
634          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
635 }
636 
637 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
638   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
639   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
640          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
641           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
642           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
643 }
644 
645 bool CodeGenFunction::sanitizePerformTypeCheck() const {
646   return SanOpts.has(SanitizerKind::Null) |
647          SanOpts.has(SanitizerKind::Alignment) |
648          SanOpts.has(SanitizerKind::ObjectSize) |
649          SanOpts.has(SanitizerKind::Vptr);
650 }
651 
652 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
653                                     llvm::Value *Ptr, QualType Ty,
654                                     CharUnits Alignment,
655                                     SanitizerSet SkippedChecks,
656                                     llvm::Value *ArraySize) {
657   if (!sanitizePerformTypeCheck())
658     return;
659 
660   // Don't check pointers outside the default address space. The null check
661   // isn't correct, the object-size check isn't supported by LLVM, and we can't
662   // communicate the addresses to the runtime handler for the vptr check.
663   if (Ptr->getType()->getPointerAddressSpace())
664     return;
665 
666   // Don't check pointers to volatile data. The behavior here is implementation-
667   // defined.
668   if (Ty.isVolatileQualified())
669     return;
670 
671   SanitizerScope SanScope(this);
672 
673   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
674   llvm::BasicBlock *Done = nullptr;
675 
676   // Quickly determine whether we have a pointer to an alloca. It's possible
677   // to skip null checks, and some alignment checks, for these pointers. This
678   // can reduce compile-time significantly.
679   auto PtrToAlloca =
680       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
681 
682   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
683   llvm::Value *IsNonNull = nullptr;
684   bool IsGuaranteedNonNull =
685       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
686   bool AllowNullPointers = isNullPointerAllowed(TCK);
687   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
688       !IsGuaranteedNonNull) {
689     // The glvalue must not be an empty glvalue.
690     IsNonNull = Builder.CreateIsNotNull(Ptr);
691 
692     // The IR builder can constant-fold the null check if the pointer points to
693     // a constant.
694     IsGuaranteedNonNull = IsNonNull == True;
695 
696     // Skip the null check if the pointer is known to be non-null.
697     if (!IsGuaranteedNonNull) {
698       if (AllowNullPointers) {
699         // When performing pointer casts, it's OK if the value is null.
700         // Skip the remaining checks in that case.
701         Done = createBasicBlock("null");
702         llvm::BasicBlock *Rest = createBasicBlock("not.null");
703         Builder.CreateCondBr(IsNonNull, Rest, Done);
704         EmitBlock(Rest);
705       } else {
706         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
707       }
708     }
709   }
710 
711   if (SanOpts.has(SanitizerKind::ObjectSize) &&
712       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
713       !Ty->isIncompleteType()) {
714     uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
715     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
716     if (ArraySize)
717       Size = Builder.CreateMul(Size, ArraySize);
718 
719     // Degenerate case: new X[0] does not need an objectsize check.
720     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
721     if (!ConstantSize || !ConstantSize->isNullValue()) {
722       // The glvalue must refer to a large enough storage region.
723       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
724       //        to check this.
725       // FIXME: Get object address space
726       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
727       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
728       llvm::Value *Min = Builder.getFalse();
729       llvm::Value *NullIsUnknown = Builder.getFalse();
730       llvm::Value *Dynamic = Builder.getFalse();
731       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
732       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
733           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
734       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
735     }
736   }
737 
738   uint64_t AlignVal = 0;
739   llvm::Value *PtrAsInt = nullptr;
740 
741   if (SanOpts.has(SanitizerKind::Alignment) &&
742       !SkippedChecks.has(SanitizerKind::Alignment)) {
743     AlignVal = Alignment.getQuantity();
744     if (!Ty->isIncompleteType() && !AlignVal)
745       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
746 
747     // The glvalue must be suitably aligned.
748     if (AlignVal > 1 &&
749         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
750       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
751       llvm::Value *Align = Builder.CreateAnd(
752           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
753       llvm::Value *Aligned =
754           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
755       if (Aligned != True)
756         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
757     }
758   }
759 
760   if (Checks.size() > 0) {
761     // Make sure we're not losing information. Alignment needs to be a power of
762     // 2
763     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
764     llvm::Constant *StaticData[] = {
765         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
766         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
767         llvm::ConstantInt::get(Int8Ty, TCK)};
768     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
769               PtrAsInt ? PtrAsInt : Ptr);
770   }
771 
772   // If possible, check that the vptr indicates that there is a subobject of
773   // type Ty at offset zero within this object.
774   //
775   // C++11 [basic.life]p5,6:
776   //   [For storage which does not refer to an object within its lifetime]
777   //   The program has undefined behavior if:
778   //    -- the [pointer or glvalue] is used to access a non-static data member
779   //       or call a non-static member function
780   if (SanOpts.has(SanitizerKind::Vptr) &&
781       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
782     // Ensure that the pointer is non-null before loading it. If there is no
783     // compile-time guarantee, reuse the run-time null check or emit a new one.
784     if (!IsGuaranteedNonNull) {
785       if (!IsNonNull)
786         IsNonNull = Builder.CreateIsNotNull(Ptr);
787       if (!Done)
788         Done = createBasicBlock("vptr.null");
789       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
790       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
791       EmitBlock(VptrNotNull);
792     }
793 
794     // Compute a hash of the mangled name of the type.
795     //
796     // FIXME: This is not guaranteed to be deterministic! Move to a
797     //        fingerprinting mechanism once LLVM provides one. For the time
798     //        being the implementation happens to be deterministic.
799     SmallString<64> MangledName;
800     llvm::raw_svector_ostream Out(MangledName);
801     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
802                                                      Out);
803 
804     // Blacklist based on the mangled type.
805     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
806             SanitizerKind::Vptr, Out.str())) {
807       llvm::hash_code TypeHash = hash_value(Out.str());
808 
809       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
810       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
811       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
812       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
813       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
814       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
815 
816       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
817       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
818 
819       // Look the hash up in our cache.
820       const int CacheSize = 128;
821       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
822       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
823                                                      "__ubsan_vptr_type_cache");
824       llvm::Value *Slot = Builder.CreateAnd(Hash,
825                                             llvm::ConstantInt::get(IntPtrTy,
826                                                                    CacheSize-1));
827       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
828       llvm::Value *CacheVal =
829         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
830                                   getPointerAlign());
831 
832       // If the hash isn't in the cache, call a runtime handler to perform the
833       // hard work of checking whether the vptr is for an object of the right
834       // type. This will either fill in the cache and return, or produce a
835       // diagnostic.
836       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
837       llvm::Constant *StaticData[] = {
838         EmitCheckSourceLocation(Loc),
839         EmitCheckTypeDescriptor(Ty),
840         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
841         llvm::ConstantInt::get(Int8Ty, TCK)
842       };
843       llvm::Value *DynamicData[] = { Ptr, Hash };
844       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
845                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
846                 DynamicData);
847     }
848   }
849 
850   if (Done) {
851     Builder.CreateBr(Done);
852     EmitBlock(Done);
853   }
854 }
855 
856 /// Determine whether this expression refers to a flexible array member in a
857 /// struct. We disable array bounds checks for such members.
858 static bool isFlexibleArrayMemberExpr(const Expr *E) {
859   // For compatibility with existing code, we treat arrays of length 0 or
860   // 1 as flexible array members.
861   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
862   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
863     if (CAT->getSize().ugt(1))
864       return false;
865   } else if (!isa<IncompleteArrayType>(AT))
866     return false;
867 
868   E = E->IgnoreParens();
869 
870   // A flexible array member must be the last member in the class.
871   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
872     // FIXME: If the base type of the member expr is not FD->getParent(),
873     // this should not be treated as a flexible array member access.
874     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
875       RecordDecl::field_iterator FI(
876           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
877       return ++FI == FD->getParent()->field_end();
878     }
879   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
880     return IRE->getDecl()->getNextIvar() == nullptr;
881   }
882 
883   return false;
884 }
885 
886 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
887                                                    QualType EltTy) {
888   ASTContext &C = getContext();
889   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
890   if (!EltSize)
891     return nullptr;
892 
893   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
894   if (!ArrayDeclRef)
895     return nullptr;
896 
897   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
898   if (!ParamDecl)
899     return nullptr;
900 
901   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
902   if (!POSAttr)
903     return nullptr;
904 
905   // Don't load the size if it's a lower bound.
906   int POSType = POSAttr->getType();
907   if (POSType != 0 && POSType != 1)
908     return nullptr;
909 
910   // Find the implicit size parameter.
911   auto PassedSizeIt = SizeArguments.find(ParamDecl);
912   if (PassedSizeIt == SizeArguments.end())
913     return nullptr;
914 
915   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
916   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
917   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
918   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
919                                               C.getSizeType(), E->getExprLoc());
920   llvm::Value *SizeOfElement =
921       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
922   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
923 }
924 
925 /// If Base is known to point to the start of an array, return the length of
926 /// that array. Return 0 if the length cannot be determined.
927 static llvm::Value *getArrayIndexingBound(
928     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
929   // For the vector indexing extension, the bound is the number of elements.
930   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
931     IndexedType = Base->getType();
932     return CGF.Builder.getInt32(VT->getNumElements());
933   }
934 
935   Base = Base->IgnoreParens();
936 
937   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
938     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
939         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
940       IndexedType = CE->getSubExpr()->getType();
941       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
942       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
943         return CGF.Builder.getInt(CAT->getSize());
944       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
945         return CGF.getVLASize(VAT).NumElts;
946       // Ignore pass_object_size here. It's not applicable on decayed pointers.
947     }
948   }
949 
950   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
951   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
952     IndexedType = Base->getType();
953     return POS;
954   }
955 
956   return nullptr;
957 }
958 
959 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
960                                       llvm::Value *Index, QualType IndexType,
961                                       bool Accessed) {
962   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
963          "should not be called unless adding bounds checks");
964   SanitizerScope SanScope(this);
965 
966   QualType IndexedType;
967   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
968   if (!Bound)
969     return;
970 
971   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
972   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
973   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
974 
975   llvm::Constant *StaticData[] = {
976     EmitCheckSourceLocation(E->getExprLoc()),
977     EmitCheckTypeDescriptor(IndexedType),
978     EmitCheckTypeDescriptor(IndexType)
979   };
980   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
981                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
982   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
983             SanitizerHandler::OutOfBounds, StaticData, Index);
984 }
985 
986 
987 CodeGenFunction::ComplexPairTy CodeGenFunction::
988 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
989                          bool isInc, bool isPre) {
990   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
991 
992   llvm::Value *NextVal;
993   if (isa<llvm::IntegerType>(InVal.first->getType())) {
994     uint64_t AmountVal = isInc ? 1 : -1;
995     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
996 
997     // Add the inc/dec to the real part.
998     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
999   } else {
1000     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
1001     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1002     if (!isInc)
1003       FVal.changeSign();
1004     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1005 
1006     // Add the inc/dec to the real part.
1007     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1008   }
1009 
1010   ComplexPairTy IncVal(NextVal, InVal.second);
1011 
1012   // Store the updated result through the lvalue.
1013   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1014 
1015   // If this is a postinc, return the value read from memory, otherwise use the
1016   // updated value.
1017   return isPre ? IncVal : InVal;
1018 }
1019 
1020 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1021                                              CodeGenFunction *CGF) {
1022   // Bind VLAs in the cast type.
1023   if (CGF && E->getType()->isVariablyModifiedType())
1024     CGF->EmitVariablyModifiedType(E->getType());
1025 
1026   if (CGDebugInfo *DI = getModuleDebugInfo())
1027     DI->EmitExplicitCastType(E->getType());
1028 }
1029 
1030 //===----------------------------------------------------------------------===//
1031 //                         LValue Expression Emission
1032 //===----------------------------------------------------------------------===//
1033 
1034 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1035 /// derive a more accurate bound on the alignment of the pointer.
1036 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1037                                                   LValueBaseInfo *BaseInfo,
1038                                                   TBAAAccessInfo *TBAAInfo) {
1039   // We allow this with ObjC object pointers because of fragile ABIs.
1040   assert(E->getType()->isPointerType() ||
1041          E->getType()->isObjCObjectPointerType());
1042   E = E->IgnoreParens();
1043 
1044   // Casts:
1045   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1046     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1047       CGM.EmitExplicitCastExprType(ECE, this);
1048 
1049     switch (CE->getCastKind()) {
1050     // Non-converting casts (but not C's implicit conversion from void*).
1051     case CK_BitCast:
1052     case CK_NoOp:
1053     case CK_AddressSpaceConversion:
1054       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1055         if (PtrTy->getPointeeType()->isVoidType())
1056           break;
1057 
1058         LValueBaseInfo InnerBaseInfo;
1059         TBAAAccessInfo InnerTBAAInfo;
1060         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1061                                                 &InnerBaseInfo,
1062                                                 &InnerTBAAInfo);
1063         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1064         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1065 
1066         if (isa<ExplicitCastExpr>(CE)) {
1067           LValueBaseInfo TargetTypeBaseInfo;
1068           TBAAAccessInfo TargetTypeTBAAInfo;
1069           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1070                                                            &TargetTypeBaseInfo,
1071                                                            &TargetTypeTBAAInfo);
1072           if (TBAAInfo)
1073             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1074                                                  TargetTypeTBAAInfo);
1075           // If the source l-value is opaque, honor the alignment of the
1076           // casted-to type.
1077           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1078             if (BaseInfo)
1079               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1080             Addr = Address(Addr.getPointer(), Align);
1081           }
1082         }
1083 
1084         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1085             CE->getCastKind() == CK_BitCast) {
1086           if (auto PT = E->getType()->getAs<PointerType>())
1087             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1088                                       /*MayBeNull=*/true,
1089                                       CodeGenFunction::CFITCK_UnrelatedCast,
1090                                       CE->getBeginLoc());
1091         }
1092         return CE->getCastKind() != CK_AddressSpaceConversion
1093                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1094                    : Builder.CreateAddrSpaceCast(Addr,
1095                                                  ConvertType(E->getType()));
1096       }
1097       break;
1098 
1099     // Array-to-pointer decay.
1100     case CK_ArrayToPointerDecay:
1101       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1102 
1103     // Derived-to-base conversions.
1104     case CK_UncheckedDerivedToBase:
1105     case CK_DerivedToBase: {
1106       // TODO: Support accesses to members of base classes in TBAA. For now, we
1107       // conservatively pretend that the complete object is of the base class
1108       // type.
1109       if (TBAAInfo)
1110         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1111       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1112       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1113       return GetAddressOfBaseClass(Addr, Derived,
1114                                    CE->path_begin(), CE->path_end(),
1115                                    ShouldNullCheckClassCastValue(CE),
1116                                    CE->getExprLoc());
1117     }
1118 
1119     // TODO: Is there any reason to treat base-to-derived conversions
1120     // specially?
1121     default:
1122       break;
1123     }
1124   }
1125 
1126   // Unary &.
1127   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1128     if (UO->getOpcode() == UO_AddrOf) {
1129       LValue LV = EmitLValue(UO->getSubExpr());
1130       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1131       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1132       return LV.getAddress();
1133     }
1134   }
1135 
1136   // TODO: conditional operators, comma.
1137 
1138   // Otherwise, use the alignment of the type.
1139   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1140                                                    TBAAInfo);
1141   return Address(EmitScalarExpr(E), Align);
1142 }
1143 
1144 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1145   if (Ty->isVoidType())
1146     return RValue::get(nullptr);
1147 
1148   switch (getEvaluationKind(Ty)) {
1149   case TEK_Complex: {
1150     llvm::Type *EltTy =
1151       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1152     llvm::Value *U = llvm::UndefValue::get(EltTy);
1153     return RValue::getComplex(std::make_pair(U, U));
1154   }
1155 
1156   // If this is a use of an undefined aggregate type, the aggregate must have an
1157   // identifiable address.  Just because the contents of the value are undefined
1158   // doesn't mean that the address can't be taken and compared.
1159   case TEK_Aggregate: {
1160     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1161     return RValue::getAggregate(DestPtr);
1162   }
1163 
1164   case TEK_Scalar:
1165     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1166   }
1167   llvm_unreachable("bad evaluation kind");
1168 }
1169 
1170 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1171                                               const char *Name) {
1172   ErrorUnsupported(E, Name);
1173   return GetUndefRValue(E->getType());
1174 }
1175 
1176 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1177                                               const char *Name) {
1178   ErrorUnsupported(E, Name);
1179   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1180   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1181                         E->getType());
1182 }
1183 
1184 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1185   const Expr *Base = Obj;
1186   while (!isa<CXXThisExpr>(Base)) {
1187     // The result of a dynamic_cast can be null.
1188     if (isa<CXXDynamicCastExpr>(Base))
1189       return false;
1190 
1191     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1192       Base = CE->getSubExpr();
1193     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1194       Base = PE->getSubExpr();
1195     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1196       if (UO->getOpcode() == UO_Extension)
1197         Base = UO->getSubExpr();
1198       else
1199         return false;
1200     } else {
1201       return false;
1202     }
1203   }
1204   return true;
1205 }
1206 
1207 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1208   LValue LV;
1209   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1210     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1211   else
1212     LV = EmitLValue(E);
1213   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1214     SanitizerSet SkippedChecks;
1215     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1216       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1217       if (IsBaseCXXThis)
1218         SkippedChecks.set(SanitizerKind::Alignment, true);
1219       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1220         SkippedChecks.set(SanitizerKind::Null, true);
1221     }
1222     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1223                   E->getType(), LV.getAlignment(), SkippedChecks);
1224   }
1225   return LV;
1226 }
1227 
1228 /// EmitLValue - Emit code to compute a designator that specifies the location
1229 /// of the expression.
1230 ///
1231 /// This can return one of two things: a simple address or a bitfield reference.
1232 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1233 /// an LLVM pointer type.
1234 ///
1235 /// If this returns a bitfield reference, nothing about the pointee type of the
1236 /// LLVM value is known: For example, it may not be a pointer to an integer.
1237 ///
1238 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1239 /// this method guarantees that the returned pointer type will point to an LLVM
1240 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1241 /// length type, this is not possible.
1242 ///
1243 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1244   ApplyDebugLocation DL(*this, E);
1245   switch (E->getStmtClass()) {
1246   default: return EmitUnsupportedLValue(E, "l-value expression");
1247 
1248   case Expr::ObjCPropertyRefExprClass:
1249     llvm_unreachable("cannot emit a property reference directly");
1250 
1251   case Expr::ObjCSelectorExprClass:
1252     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1253   case Expr::ObjCIsaExprClass:
1254     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1255   case Expr::BinaryOperatorClass:
1256     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1257   case Expr::CompoundAssignOperatorClass: {
1258     QualType Ty = E->getType();
1259     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1260       Ty = AT->getValueType();
1261     if (!Ty->isAnyComplexType())
1262       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1263     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1264   }
1265   case Expr::CallExprClass:
1266   case Expr::CXXMemberCallExprClass:
1267   case Expr::CXXOperatorCallExprClass:
1268   case Expr::UserDefinedLiteralClass:
1269     return EmitCallExprLValue(cast<CallExpr>(E));
1270   case Expr::VAArgExprClass:
1271     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1272   case Expr::DeclRefExprClass:
1273     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1274   case Expr::ConstantExprClass:
1275     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1276   case Expr::ParenExprClass:
1277     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1278   case Expr::GenericSelectionExprClass:
1279     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1280   case Expr::PredefinedExprClass:
1281     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1282   case Expr::StringLiteralClass:
1283     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1284   case Expr::ObjCEncodeExprClass:
1285     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1286   case Expr::PseudoObjectExprClass:
1287     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1288   case Expr::InitListExprClass:
1289     return EmitInitListLValue(cast<InitListExpr>(E));
1290   case Expr::CXXTemporaryObjectExprClass:
1291   case Expr::CXXConstructExprClass:
1292     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1293   case Expr::CXXBindTemporaryExprClass:
1294     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1295   case Expr::CXXUuidofExprClass:
1296     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1297   case Expr::LambdaExprClass:
1298     return EmitAggExprToLValue(E);
1299 
1300   case Expr::ExprWithCleanupsClass: {
1301     const auto *cleanups = cast<ExprWithCleanups>(E);
1302     enterFullExpression(cleanups);
1303     RunCleanupsScope Scope(*this);
1304     LValue LV = EmitLValue(cleanups->getSubExpr());
1305     if (LV.isSimple()) {
1306       // Defend against branches out of gnu statement expressions surrounded by
1307       // cleanups.
1308       llvm::Value *V = LV.getPointer();
1309       Scope.ForceCleanup({&V});
1310       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1311                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1312     }
1313     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1314     // bitfield lvalue or some other non-simple lvalue?
1315     return LV;
1316   }
1317 
1318   case Expr::CXXDefaultArgExprClass: {
1319     auto *DAE = cast<CXXDefaultArgExpr>(E);
1320     CXXDefaultArgExprScope Scope(*this, DAE);
1321     return EmitLValue(DAE->getExpr());
1322   }
1323   case Expr::CXXDefaultInitExprClass: {
1324     auto *DIE = cast<CXXDefaultInitExpr>(E);
1325     CXXDefaultInitExprScope Scope(*this, DIE);
1326     return EmitLValue(DIE->getExpr());
1327   }
1328   case Expr::CXXTypeidExprClass:
1329     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1330 
1331   case Expr::ObjCMessageExprClass:
1332     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1333   case Expr::ObjCIvarRefExprClass:
1334     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1335   case Expr::StmtExprClass:
1336     return EmitStmtExprLValue(cast<StmtExpr>(E));
1337   case Expr::UnaryOperatorClass:
1338     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1339   case Expr::ArraySubscriptExprClass:
1340     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1341   case Expr::OMPArraySectionExprClass:
1342     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1343   case Expr::ExtVectorElementExprClass:
1344     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1345   case Expr::MemberExprClass:
1346     return EmitMemberExpr(cast<MemberExpr>(E));
1347   case Expr::CompoundLiteralExprClass:
1348     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1349   case Expr::ConditionalOperatorClass:
1350     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1351   case Expr::BinaryConditionalOperatorClass:
1352     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1353   case Expr::ChooseExprClass:
1354     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1355   case Expr::OpaqueValueExprClass:
1356     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1357   case Expr::SubstNonTypeTemplateParmExprClass:
1358     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1359   case Expr::ImplicitCastExprClass:
1360   case Expr::CStyleCastExprClass:
1361   case Expr::CXXFunctionalCastExprClass:
1362   case Expr::CXXStaticCastExprClass:
1363   case Expr::CXXDynamicCastExprClass:
1364   case Expr::CXXReinterpretCastExprClass:
1365   case Expr::CXXConstCastExprClass:
1366   case Expr::ObjCBridgedCastExprClass:
1367     return EmitCastLValue(cast<CastExpr>(E));
1368 
1369   case Expr::MaterializeTemporaryExprClass:
1370     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1371 
1372   case Expr::CoawaitExprClass:
1373     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1374   case Expr::CoyieldExprClass:
1375     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1376   }
1377 }
1378 
1379 /// Given an object of the given canonical type, can we safely copy a
1380 /// value out of it based on its initializer?
1381 static bool isConstantEmittableObjectType(QualType type) {
1382   assert(type.isCanonical());
1383   assert(!type->isReferenceType());
1384 
1385   // Must be const-qualified but non-volatile.
1386   Qualifiers qs = type.getLocalQualifiers();
1387   if (!qs.hasConst() || qs.hasVolatile()) return false;
1388 
1389   // Otherwise, all object types satisfy this except C++ classes with
1390   // mutable subobjects or non-trivial copy/destroy behavior.
1391   if (const auto *RT = dyn_cast<RecordType>(type))
1392     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1393       if (RD->hasMutableFields() || !RD->isTrivial())
1394         return false;
1395 
1396   return true;
1397 }
1398 
1399 /// Can we constant-emit a load of a reference to a variable of the
1400 /// given type?  This is different from predicates like
1401 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1402 /// in situations that don't necessarily satisfy the language's rules
1403 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1404 /// to do this with const float variables even if those variables
1405 /// aren't marked 'constexpr'.
1406 enum ConstantEmissionKind {
1407   CEK_None,
1408   CEK_AsReferenceOnly,
1409   CEK_AsValueOrReference,
1410   CEK_AsValueOnly
1411 };
1412 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1413   type = type.getCanonicalType();
1414   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1415     if (isConstantEmittableObjectType(ref->getPointeeType()))
1416       return CEK_AsValueOrReference;
1417     return CEK_AsReferenceOnly;
1418   }
1419   if (isConstantEmittableObjectType(type))
1420     return CEK_AsValueOnly;
1421   return CEK_None;
1422 }
1423 
1424 /// Try to emit a reference to the given value without producing it as
1425 /// an l-value.  This is just an optimization, but it avoids us needing
1426 /// to emit global copies of variables if they're named without triggering
1427 /// a formal use in a context where we can't emit a direct reference to them,
1428 /// for instance if a block or lambda or a member of a local class uses a
1429 /// const int variable or constexpr variable from an enclosing function.
1430 CodeGenFunction::ConstantEmission
1431 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1432   ValueDecl *value = refExpr->getDecl();
1433 
1434   // The value needs to be an enum constant or a constant variable.
1435   ConstantEmissionKind CEK;
1436   if (isa<ParmVarDecl>(value)) {
1437     CEK = CEK_None;
1438   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1439     CEK = checkVarTypeForConstantEmission(var->getType());
1440   } else if (isa<EnumConstantDecl>(value)) {
1441     CEK = CEK_AsValueOnly;
1442   } else {
1443     CEK = CEK_None;
1444   }
1445   if (CEK == CEK_None) return ConstantEmission();
1446 
1447   Expr::EvalResult result;
1448   bool resultIsReference;
1449   QualType resultType;
1450 
1451   // It's best to evaluate all the way as an r-value if that's permitted.
1452   if (CEK != CEK_AsReferenceOnly &&
1453       refExpr->EvaluateAsRValue(result, getContext())) {
1454     resultIsReference = false;
1455     resultType = refExpr->getType();
1456 
1457   // Otherwise, try to evaluate as an l-value.
1458   } else if (CEK != CEK_AsValueOnly &&
1459              refExpr->EvaluateAsLValue(result, getContext())) {
1460     resultIsReference = true;
1461     resultType = value->getType();
1462 
1463   // Failure.
1464   } else {
1465     return ConstantEmission();
1466   }
1467 
1468   // In any case, if the initializer has side-effects, abandon ship.
1469   if (result.HasSideEffects)
1470     return ConstantEmission();
1471 
1472   // Emit as a constant.
1473   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1474                                                result.Val, resultType);
1475 
1476   // Make sure we emit a debug reference to the global variable.
1477   // This should probably fire even for
1478   if (isa<VarDecl>(value)) {
1479     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1480       EmitDeclRefExprDbgValue(refExpr, result.Val);
1481   } else {
1482     assert(isa<EnumConstantDecl>(value));
1483     EmitDeclRefExprDbgValue(refExpr, result.Val);
1484   }
1485 
1486   // If we emitted a reference constant, we need to dereference that.
1487   if (resultIsReference)
1488     return ConstantEmission::forReference(C);
1489 
1490   return ConstantEmission::forValue(C);
1491 }
1492 
1493 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1494                                                         const MemberExpr *ME) {
1495   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1496     // Try to emit static variable member expressions as DREs.
1497     return DeclRefExpr::Create(
1498         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1499         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1500         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1501   }
1502   return nullptr;
1503 }
1504 
1505 CodeGenFunction::ConstantEmission
1506 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1507   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1508     return tryEmitAsConstant(DRE);
1509   return ConstantEmission();
1510 }
1511 
1512 llvm::Value *CodeGenFunction::emitScalarConstant(
1513     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1514   assert(Constant && "not a constant");
1515   if (Constant.isReference())
1516     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1517                             E->getExprLoc())
1518         .getScalarVal();
1519   return Constant.getValue();
1520 }
1521 
1522 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1523                                                SourceLocation Loc) {
1524   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1525                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1526                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1527 }
1528 
1529 static bool hasBooleanRepresentation(QualType Ty) {
1530   if (Ty->isBooleanType())
1531     return true;
1532 
1533   if (const EnumType *ET = Ty->getAs<EnumType>())
1534     return ET->getDecl()->getIntegerType()->isBooleanType();
1535 
1536   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1537     return hasBooleanRepresentation(AT->getValueType());
1538 
1539   return false;
1540 }
1541 
1542 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1543                             llvm::APInt &Min, llvm::APInt &End,
1544                             bool StrictEnums, bool IsBool) {
1545   const EnumType *ET = Ty->getAs<EnumType>();
1546   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1547                                 ET && !ET->getDecl()->isFixed();
1548   if (!IsBool && !IsRegularCPlusPlusEnum)
1549     return false;
1550 
1551   if (IsBool) {
1552     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1553     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1554   } else {
1555     const EnumDecl *ED = ET->getDecl();
1556     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1557     unsigned Bitwidth = LTy->getScalarSizeInBits();
1558     unsigned NumNegativeBits = ED->getNumNegativeBits();
1559     unsigned NumPositiveBits = ED->getNumPositiveBits();
1560 
1561     if (NumNegativeBits) {
1562       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1563       assert(NumBits <= Bitwidth);
1564       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1565       Min = -End;
1566     } else {
1567       assert(NumPositiveBits <= Bitwidth);
1568       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1569       Min = llvm::APInt(Bitwidth, 0);
1570     }
1571   }
1572   return true;
1573 }
1574 
1575 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1576   llvm::APInt Min, End;
1577   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1578                        hasBooleanRepresentation(Ty)))
1579     return nullptr;
1580 
1581   llvm::MDBuilder MDHelper(getLLVMContext());
1582   return MDHelper.createRange(Min, End);
1583 }
1584 
1585 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1586                                            SourceLocation Loc) {
1587   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1588   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1589   if (!HasBoolCheck && !HasEnumCheck)
1590     return false;
1591 
1592   bool IsBool = hasBooleanRepresentation(Ty) ||
1593                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1594   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1595   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1596   if (!NeedsBoolCheck && !NeedsEnumCheck)
1597     return false;
1598 
1599   // Single-bit booleans don't need to be checked. Special-case this to avoid
1600   // a bit width mismatch when handling bitfield values. This is handled by
1601   // EmitFromMemory for the non-bitfield case.
1602   if (IsBool &&
1603       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1604     return false;
1605 
1606   llvm::APInt Min, End;
1607   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1608     return true;
1609 
1610   auto &Ctx = getLLVMContext();
1611   SanitizerScope SanScope(this);
1612   llvm::Value *Check;
1613   --End;
1614   if (!Min) {
1615     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1616   } else {
1617     llvm::Value *Upper =
1618         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1619     llvm::Value *Lower =
1620         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1621     Check = Builder.CreateAnd(Upper, Lower);
1622   }
1623   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1624                                   EmitCheckTypeDescriptor(Ty)};
1625   SanitizerMask Kind =
1626       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1627   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1628             StaticArgs, EmitCheckValue(Value));
1629   return true;
1630 }
1631 
1632 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1633                                                QualType Ty,
1634                                                SourceLocation Loc,
1635                                                LValueBaseInfo BaseInfo,
1636                                                TBAAAccessInfo TBAAInfo,
1637                                                bool isNontemporal) {
1638   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1639     // For better performance, handle vector loads differently.
1640     if (Ty->isVectorType()) {
1641       const llvm::Type *EltTy = Addr.getElementType();
1642 
1643       const auto *VTy = cast<llvm::VectorType>(EltTy);
1644 
1645       // Handle vectors of size 3 like size 4 for better performance.
1646       if (VTy->getNumElements() == 3) {
1647 
1648         // Bitcast to vec4 type.
1649         llvm::VectorType *vec4Ty =
1650             llvm::VectorType::get(VTy->getElementType(), 4);
1651         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1652         // Now load value.
1653         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1654 
1655         // Shuffle vector to get vec3.
1656         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1657                                         {0, 1, 2}, "extractVec");
1658         return EmitFromMemory(V, Ty);
1659       }
1660     }
1661   }
1662 
1663   // Atomic operations have to be done on integral types.
1664   LValue AtomicLValue =
1665       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1666   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1667     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1668   }
1669 
1670   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1671   if (isNontemporal) {
1672     llvm::MDNode *Node = llvm::MDNode::get(
1673         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1674     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1675   }
1676 
1677   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1678 
1679   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1680     // In order to prevent the optimizer from throwing away the check, don't
1681     // attach range metadata to the load.
1682   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1683     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1684       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1685 
1686   return EmitFromMemory(Load, Ty);
1687 }
1688 
1689 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1690   // Bool has a different representation in memory than in registers.
1691   if (hasBooleanRepresentation(Ty)) {
1692     // This should really always be an i1, but sometimes it's already
1693     // an i8, and it's awkward to track those cases down.
1694     if (Value->getType()->isIntegerTy(1))
1695       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1696     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1697            "wrong value rep of bool");
1698   }
1699 
1700   return Value;
1701 }
1702 
1703 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1704   // Bool has a different representation in memory than in registers.
1705   if (hasBooleanRepresentation(Ty)) {
1706     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1707            "wrong value rep of bool");
1708     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1709   }
1710 
1711   return Value;
1712 }
1713 
1714 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1715                                         bool Volatile, QualType Ty,
1716                                         LValueBaseInfo BaseInfo,
1717                                         TBAAAccessInfo TBAAInfo,
1718                                         bool isInit, bool isNontemporal) {
1719   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1720     // Handle vectors differently to get better performance.
1721     if (Ty->isVectorType()) {
1722       llvm::Type *SrcTy = Value->getType();
1723       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1724       // Handle vec3 special.
1725       if (VecTy && VecTy->getNumElements() == 3) {
1726         // Our source is a vec3, do a shuffle vector to make it a vec4.
1727         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1728                                   Builder.getInt32(2),
1729                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1730         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1731         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1732                                             MaskV, "extractVec");
1733         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1734       }
1735       if (Addr.getElementType() != SrcTy) {
1736         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1737       }
1738     }
1739   }
1740 
1741   Value = EmitToMemory(Value, Ty);
1742 
1743   LValue AtomicLValue =
1744       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1745   if (Ty->isAtomicType() ||
1746       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1747     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1748     return;
1749   }
1750 
1751   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1752   if (isNontemporal) {
1753     llvm::MDNode *Node =
1754         llvm::MDNode::get(Store->getContext(),
1755                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1756     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1757   }
1758 
1759   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1760 }
1761 
1762 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1763                                         bool isInit) {
1764   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1765                     lvalue.getType(), lvalue.getBaseInfo(),
1766                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1767 }
1768 
1769 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1770 /// method emits the address of the lvalue, then loads the result as an rvalue,
1771 /// returning the rvalue.
1772 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1773   if (LV.isObjCWeak()) {
1774     // load of a __weak object.
1775     Address AddrWeakObj = LV.getAddress();
1776     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1777                                                              AddrWeakObj));
1778   }
1779   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1780     // In MRC mode, we do a load+autorelease.
1781     if (!getLangOpts().ObjCAutoRefCount) {
1782       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1783     }
1784 
1785     // In ARC mode, we load retained and then consume the value.
1786     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1787     Object = EmitObjCConsumeObject(LV.getType(), Object);
1788     return RValue::get(Object);
1789   }
1790 
1791   if (LV.isSimple()) {
1792     assert(!LV.getType()->isFunctionType());
1793 
1794     // Everything needs a load.
1795     return RValue::get(EmitLoadOfScalar(LV, Loc));
1796   }
1797 
1798   if (LV.isVectorElt()) {
1799     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1800                                               LV.isVolatileQualified());
1801     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1802                                                     "vecext"));
1803   }
1804 
1805   // If this is a reference to a subset of the elements of a vector, either
1806   // shuffle the input or extract/insert them as appropriate.
1807   if (LV.isExtVectorElt())
1808     return EmitLoadOfExtVectorElementLValue(LV);
1809 
1810   // Global Register variables always invoke intrinsics
1811   if (LV.isGlobalReg())
1812     return EmitLoadOfGlobalRegLValue(LV);
1813 
1814   assert(LV.isBitField() && "Unknown LValue type!");
1815   return EmitLoadOfBitfieldLValue(LV, Loc);
1816 }
1817 
1818 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1819                                                  SourceLocation Loc) {
1820   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1821 
1822   // Get the output type.
1823   llvm::Type *ResLTy = ConvertType(LV.getType());
1824 
1825   Address Ptr = LV.getBitFieldAddress();
1826   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1827 
1828   if (Info.IsSigned) {
1829     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1830     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1831     if (HighBits)
1832       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1833     if (Info.Offset + HighBits)
1834       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1835   } else {
1836     if (Info.Offset)
1837       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1838     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1839       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1840                                                               Info.Size),
1841                               "bf.clear");
1842   }
1843   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1844   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1845   return RValue::get(Val);
1846 }
1847 
1848 // If this is a reference to a subset of the elements of a vector, create an
1849 // appropriate shufflevector.
1850 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1851   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1852                                         LV.isVolatileQualified());
1853 
1854   const llvm::Constant *Elts = LV.getExtVectorElts();
1855 
1856   // If the result of the expression is a non-vector type, we must be extracting
1857   // a single element.  Just codegen as an extractelement.
1858   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1859   if (!ExprVT) {
1860     unsigned InIdx = getAccessedFieldNo(0, Elts);
1861     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1862     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1863   }
1864 
1865   // Always use shuffle vector to try to retain the original program structure
1866   unsigned NumResultElts = ExprVT->getNumElements();
1867 
1868   SmallVector<llvm::Constant*, 4> Mask;
1869   for (unsigned i = 0; i != NumResultElts; ++i)
1870     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1871 
1872   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1873   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1874                                     MaskV);
1875   return RValue::get(Vec);
1876 }
1877 
1878 /// Generates lvalue for partial ext_vector access.
1879 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1880   Address VectorAddress = LV.getExtVectorAddress();
1881   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1882   QualType EQT = ExprVT->getElementType();
1883   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1884 
1885   Address CastToPointerElement =
1886     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1887                                  "conv.ptr.element");
1888 
1889   const llvm::Constant *Elts = LV.getExtVectorElts();
1890   unsigned ix = getAccessedFieldNo(0, Elts);
1891 
1892   Address VectorBasePtrPlusIx =
1893     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1894                                    "vector.elt");
1895 
1896   return VectorBasePtrPlusIx;
1897 }
1898 
1899 /// Load of global gamed gegisters are always calls to intrinsics.
1900 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1901   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1902          "Bad type for register variable");
1903   llvm::MDNode *RegName = cast<llvm::MDNode>(
1904       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1905 
1906   // We accept integer and pointer types only
1907   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1908   llvm::Type *Ty = OrigTy;
1909   if (OrigTy->isPointerTy())
1910     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1911   llvm::Type *Types[] = { Ty };
1912 
1913   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1914   llvm::Value *Call = Builder.CreateCall(
1915       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1916   if (OrigTy->isPointerTy())
1917     Call = Builder.CreateIntToPtr(Call, OrigTy);
1918   return RValue::get(Call);
1919 }
1920 
1921 
1922 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1923 /// lvalue, where both are guaranteed to the have the same type, and that type
1924 /// is 'Ty'.
1925 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1926                                              bool isInit) {
1927   if (!Dst.isSimple()) {
1928     if (Dst.isVectorElt()) {
1929       // Read/modify/write the vector, inserting the new element.
1930       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1931                                             Dst.isVolatileQualified());
1932       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1933                                         Dst.getVectorIdx(), "vecins");
1934       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1935                           Dst.isVolatileQualified());
1936       return;
1937     }
1938 
1939     // If this is an update of extended vector elements, insert them as
1940     // appropriate.
1941     if (Dst.isExtVectorElt())
1942       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1943 
1944     if (Dst.isGlobalReg())
1945       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1946 
1947     assert(Dst.isBitField() && "Unknown LValue type");
1948     return EmitStoreThroughBitfieldLValue(Src, Dst);
1949   }
1950 
1951   // There's special magic for assigning into an ARC-qualified l-value.
1952   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1953     switch (Lifetime) {
1954     case Qualifiers::OCL_None:
1955       llvm_unreachable("present but none");
1956 
1957     case Qualifiers::OCL_ExplicitNone:
1958       // nothing special
1959       break;
1960 
1961     case Qualifiers::OCL_Strong:
1962       if (isInit) {
1963         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1964         break;
1965       }
1966       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1967       return;
1968 
1969     case Qualifiers::OCL_Weak:
1970       if (isInit)
1971         // Initialize and then skip the primitive store.
1972         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1973       else
1974         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1975       return;
1976 
1977     case Qualifiers::OCL_Autoreleasing:
1978       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1979                                                      Src.getScalarVal()));
1980       // fall into the normal path
1981       break;
1982     }
1983   }
1984 
1985   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1986     // load of a __weak object.
1987     Address LvalueDst = Dst.getAddress();
1988     llvm::Value *src = Src.getScalarVal();
1989      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1990     return;
1991   }
1992 
1993   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1994     // load of a __strong object.
1995     Address LvalueDst = Dst.getAddress();
1996     llvm::Value *src = Src.getScalarVal();
1997     if (Dst.isObjCIvar()) {
1998       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1999       llvm::Type *ResultType = IntPtrTy;
2000       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2001       llvm::Value *RHS = dst.getPointer();
2002       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2003       llvm::Value *LHS =
2004         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2005                                "sub.ptr.lhs.cast");
2006       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2007       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2008                                               BytesBetween);
2009     } else if (Dst.isGlobalObjCRef()) {
2010       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2011                                                 Dst.isThreadLocalRef());
2012     }
2013     else
2014       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2015     return;
2016   }
2017 
2018   assert(Src.isScalar() && "Can't emit an agg store with this method");
2019   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2020 }
2021 
2022 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2023                                                      llvm::Value **Result) {
2024   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2025   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2026   Address Ptr = Dst.getBitFieldAddress();
2027 
2028   // Get the source value, truncated to the width of the bit-field.
2029   llvm::Value *SrcVal = Src.getScalarVal();
2030 
2031   // Cast the source to the storage type and shift it into place.
2032   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2033                                  /*IsSigned=*/false);
2034   llvm::Value *MaskedVal = SrcVal;
2035 
2036   // See if there are other bits in the bitfield's storage we'll need to load
2037   // and mask together with source before storing.
2038   if (Info.StorageSize != Info.Size) {
2039     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2040     llvm::Value *Val =
2041       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2042 
2043     // Mask the source value as needed.
2044     if (!hasBooleanRepresentation(Dst.getType()))
2045       SrcVal = Builder.CreateAnd(SrcVal,
2046                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2047                                                             Info.Size),
2048                                  "bf.value");
2049     MaskedVal = SrcVal;
2050     if (Info.Offset)
2051       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2052 
2053     // Mask out the original value.
2054     Val = Builder.CreateAnd(Val,
2055                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2056                                                      Info.Offset,
2057                                                      Info.Offset + Info.Size),
2058                             "bf.clear");
2059 
2060     // Or together the unchanged values and the source value.
2061     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2062   } else {
2063     assert(Info.Offset == 0);
2064   }
2065 
2066   // Write the new value back out.
2067   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2068 
2069   // Return the new value of the bit-field, if requested.
2070   if (Result) {
2071     llvm::Value *ResultVal = MaskedVal;
2072 
2073     // Sign extend the value if needed.
2074     if (Info.IsSigned) {
2075       assert(Info.Size <= Info.StorageSize);
2076       unsigned HighBits = Info.StorageSize - Info.Size;
2077       if (HighBits) {
2078         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2079         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2080       }
2081     }
2082 
2083     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2084                                       "bf.result.cast");
2085     *Result = EmitFromMemory(ResultVal, Dst.getType());
2086   }
2087 }
2088 
2089 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2090                                                                LValue Dst) {
2091   // This access turns into a read/modify/write of the vector.  Load the input
2092   // value now.
2093   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2094                                         Dst.isVolatileQualified());
2095   const llvm::Constant *Elts = Dst.getExtVectorElts();
2096 
2097   llvm::Value *SrcVal = Src.getScalarVal();
2098 
2099   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2100     unsigned NumSrcElts = VTy->getNumElements();
2101     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2102     if (NumDstElts == NumSrcElts) {
2103       // Use shuffle vector is the src and destination are the same number of
2104       // elements and restore the vector mask since it is on the side it will be
2105       // stored.
2106       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2107       for (unsigned i = 0; i != NumSrcElts; ++i)
2108         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2109 
2110       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2111       Vec = Builder.CreateShuffleVector(SrcVal,
2112                                         llvm::UndefValue::get(Vec->getType()),
2113                                         MaskV);
2114     } else if (NumDstElts > NumSrcElts) {
2115       // Extended the source vector to the same length and then shuffle it
2116       // into the destination.
2117       // FIXME: since we're shuffling with undef, can we just use the indices
2118       //        into that?  This could be simpler.
2119       SmallVector<llvm::Constant*, 4> ExtMask;
2120       for (unsigned i = 0; i != NumSrcElts; ++i)
2121         ExtMask.push_back(Builder.getInt32(i));
2122       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2123       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2124       llvm::Value *ExtSrcVal =
2125         Builder.CreateShuffleVector(SrcVal,
2126                                     llvm::UndefValue::get(SrcVal->getType()),
2127                                     ExtMaskV);
2128       // build identity
2129       SmallVector<llvm::Constant*, 4> Mask;
2130       for (unsigned i = 0; i != NumDstElts; ++i)
2131         Mask.push_back(Builder.getInt32(i));
2132 
2133       // When the vector size is odd and .odd or .hi is used, the last element
2134       // of the Elts constant array will be one past the size of the vector.
2135       // Ignore the last element here, if it is greater than the mask size.
2136       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2137         NumSrcElts--;
2138 
2139       // modify when what gets shuffled in
2140       for (unsigned i = 0; i != NumSrcElts; ++i)
2141         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2142       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2143       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2144     } else {
2145       // We should never shorten the vector
2146       llvm_unreachable("unexpected shorten vector length");
2147     }
2148   } else {
2149     // If the Src is a scalar (not a vector) it must be updating one element.
2150     unsigned InIdx = getAccessedFieldNo(0, Elts);
2151     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2152     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2153   }
2154 
2155   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2156                       Dst.isVolatileQualified());
2157 }
2158 
2159 /// Store of global named registers are always calls to intrinsics.
2160 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2161   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2162          "Bad type for register variable");
2163   llvm::MDNode *RegName = cast<llvm::MDNode>(
2164       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2165   assert(RegName && "Register LValue is not metadata");
2166 
2167   // We accept integer and pointer types only
2168   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2169   llvm::Type *Ty = OrigTy;
2170   if (OrigTy->isPointerTy())
2171     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2172   llvm::Type *Types[] = { Ty };
2173 
2174   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2175   llvm::Value *Value = Src.getScalarVal();
2176   if (OrigTy->isPointerTy())
2177     Value = Builder.CreatePtrToInt(Value, Ty);
2178   Builder.CreateCall(
2179       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2180 }
2181 
2182 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2183 // generating write-barries API. It is currently a global, ivar,
2184 // or neither.
2185 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2186                                  LValue &LV,
2187                                  bool IsMemberAccess=false) {
2188   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2189     return;
2190 
2191   if (isa<ObjCIvarRefExpr>(E)) {
2192     QualType ExpTy = E->getType();
2193     if (IsMemberAccess && ExpTy->isPointerType()) {
2194       // If ivar is a structure pointer, assigning to field of
2195       // this struct follows gcc's behavior and makes it a non-ivar
2196       // writer-barrier conservatively.
2197       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2198       if (ExpTy->isRecordType()) {
2199         LV.setObjCIvar(false);
2200         return;
2201       }
2202     }
2203     LV.setObjCIvar(true);
2204     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2205     LV.setBaseIvarExp(Exp->getBase());
2206     LV.setObjCArray(E->getType()->isArrayType());
2207     return;
2208   }
2209 
2210   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2211     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2212       if (VD->hasGlobalStorage()) {
2213         LV.setGlobalObjCRef(true);
2214         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2215       }
2216     }
2217     LV.setObjCArray(E->getType()->isArrayType());
2218     return;
2219   }
2220 
2221   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2222     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2223     return;
2224   }
2225 
2226   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2227     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2228     if (LV.isObjCIvar()) {
2229       // If cast is to a structure pointer, follow gcc's behavior and make it
2230       // a non-ivar write-barrier.
2231       QualType ExpTy = E->getType();
2232       if (ExpTy->isPointerType())
2233         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2234       if (ExpTy->isRecordType())
2235         LV.setObjCIvar(false);
2236     }
2237     return;
2238   }
2239 
2240   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2241     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2242     return;
2243   }
2244 
2245   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2246     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2247     return;
2248   }
2249 
2250   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2251     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2252     return;
2253   }
2254 
2255   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2256     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2257     return;
2258   }
2259 
2260   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2261     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2262     if (LV.isObjCIvar() && !LV.isObjCArray())
2263       // Using array syntax to assigning to what an ivar points to is not
2264       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2265       LV.setObjCIvar(false);
2266     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2267       // Using array syntax to assigning to what global points to is not
2268       // same as assigning to the global itself. {id *G;} G[i] = 0;
2269       LV.setGlobalObjCRef(false);
2270     return;
2271   }
2272 
2273   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2274     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2275     // We don't know if member is an 'ivar', but this flag is looked at
2276     // only in the context of LV.isObjCIvar().
2277     LV.setObjCArray(E->getType()->isArrayType());
2278     return;
2279   }
2280 }
2281 
2282 static llvm::Value *
2283 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2284                                 llvm::Value *V, llvm::Type *IRType,
2285                                 StringRef Name = StringRef()) {
2286   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2287   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2288 }
2289 
2290 static LValue EmitThreadPrivateVarDeclLValue(
2291     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2292     llvm::Type *RealVarTy, SourceLocation Loc) {
2293   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2294   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2295   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2296 }
2297 
2298 static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF,
2299                                                const VarDecl *VD, QualType T) {
2300   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2301       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2302   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To)
2303     return Address::invalid();
2304   assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause");
2305   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2306   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2307   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2308 }
2309 
2310 Address
2311 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2312                                      LValueBaseInfo *PointeeBaseInfo,
2313                                      TBAAAccessInfo *PointeeTBAAInfo) {
2314   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2315                                             RefLVal.isVolatile());
2316   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2317 
2318   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2319                                             PointeeBaseInfo, PointeeTBAAInfo,
2320                                             /* forPointeeType= */ true);
2321   return Address(Load, Align);
2322 }
2323 
2324 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2325   LValueBaseInfo PointeeBaseInfo;
2326   TBAAAccessInfo PointeeTBAAInfo;
2327   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2328                                             &PointeeTBAAInfo);
2329   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2330                         PointeeBaseInfo, PointeeTBAAInfo);
2331 }
2332 
2333 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2334                                            const PointerType *PtrTy,
2335                                            LValueBaseInfo *BaseInfo,
2336                                            TBAAAccessInfo *TBAAInfo) {
2337   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2338   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2339                                                BaseInfo, TBAAInfo,
2340                                                /*forPointeeType=*/true));
2341 }
2342 
2343 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2344                                                 const PointerType *PtrTy) {
2345   LValueBaseInfo BaseInfo;
2346   TBAAAccessInfo TBAAInfo;
2347   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2348   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2349 }
2350 
2351 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2352                                       const Expr *E, const VarDecl *VD) {
2353   QualType T = E->getType();
2354 
2355   // If it's thread_local, emit a call to its wrapper function instead.
2356   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2357       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2358     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2359   // Check if the variable is marked as declare target with link clause in
2360   // device codegen.
2361   if (CGF.getLangOpts().OpenMPIsDevice) {
2362     Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T);
2363     if (Addr.isValid())
2364       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2365   }
2366 
2367   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2368   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2369   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2370   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2371   Address Addr(V, Alignment);
2372   // Emit reference to the private copy of the variable if it is an OpenMP
2373   // threadprivate variable.
2374   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2375       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2376     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2377                                           E->getExprLoc());
2378   }
2379   LValue LV = VD->getType()->isReferenceType() ?
2380       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2381                                     AlignmentSource::Decl) :
2382       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2383   setObjCGCLValueClass(CGF.getContext(), E, LV);
2384   return LV;
2385 }
2386 
2387 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2388                                                const FunctionDecl *FD) {
2389   if (FD->hasAttr<WeakRefAttr>()) {
2390     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2391     return aliasee.getPointer();
2392   }
2393 
2394   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2395   if (!FD->hasPrototype()) {
2396     if (const FunctionProtoType *Proto =
2397             FD->getType()->getAs<FunctionProtoType>()) {
2398       // Ugly case: for a K&R-style definition, the type of the definition
2399       // isn't the same as the type of a use.  Correct for this with a
2400       // bitcast.
2401       QualType NoProtoType =
2402           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2403       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2404       V = llvm::ConstantExpr::getBitCast(V,
2405                                       CGM.getTypes().ConvertType(NoProtoType));
2406     }
2407   }
2408   return V;
2409 }
2410 
2411 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2412                                      const Expr *E, const FunctionDecl *FD) {
2413   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2414   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2415   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2416                             AlignmentSource::Decl);
2417 }
2418 
2419 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2420                                       llvm::Value *ThisValue) {
2421   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2422   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2423   return CGF.EmitLValueForField(LV, FD);
2424 }
2425 
2426 /// Named Registers are named metadata pointing to the register name
2427 /// which will be read from/written to as an argument to the intrinsic
2428 /// @llvm.read/write_register.
2429 /// So far, only the name is being passed down, but other options such as
2430 /// register type, allocation type or even optimization options could be
2431 /// passed down via the metadata node.
2432 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2433   SmallString<64> Name("llvm.named.register.");
2434   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2435   assert(Asm->getLabel().size() < 64-Name.size() &&
2436       "Register name too big");
2437   Name.append(Asm->getLabel());
2438   llvm::NamedMDNode *M =
2439     CGM.getModule().getOrInsertNamedMetadata(Name);
2440   if (M->getNumOperands() == 0) {
2441     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2442                                               Asm->getLabel());
2443     llvm::Metadata *Ops[] = {Str};
2444     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2445   }
2446 
2447   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2448 
2449   llvm::Value *Ptr =
2450     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2451   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2452 }
2453 
2454 /// Determine whether we can emit a reference to \p VD from the current
2455 /// context, despite not necessarily having seen an odr-use of the variable in
2456 /// this context.
2457 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2458                                                const DeclRefExpr *E,
2459                                                const VarDecl *VD,
2460                                                bool IsConstant) {
2461   // For a variable declared in an enclosing scope, do not emit a spurious
2462   // reference even if we have a capture, as that will emit an unwarranted
2463   // reference to our capture state, and will likely generate worse code than
2464   // emitting a local copy.
2465   if (E->refersToEnclosingVariableOrCapture())
2466     return false;
2467 
2468   // For a local declaration declared in this function, we can always reference
2469   // it even if we don't have an odr-use.
2470   if (VD->hasLocalStorage()) {
2471     return VD->getDeclContext() ==
2472            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2473   }
2474 
2475   // For a global declaration, we can emit a reference to it if we know
2476   // for sure that we are able to emit a definition of it.
2477   VD = VD->getDefinition(CGF.getContext());
2478   if (!VD)
2479     return false;
2480 
2481   // Don't emit a spurious reference if it might be to a variable that only
2482   // exists on a different device / target.
2483   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2484   // cross-target reference.
2485   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2486       CGF.getLangOpts().OpenCL) {
2487     return false;
2488   }
2489 
2490   // We can emit a spurious reference only if the linkage implies that we'll
2491   // be emitting a non-interposable symbol that will be retained until link
2492   // time.
2493   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2494   case llvm::GlobalValue::ExternalLinkage:
2495   case llvm::GlobalValue::LinkOnceODRLinkage:
2496   case llvm::GlobalValue::WeakODRLinkage:
2497   case llvm::GlobalValue::InternalLinkage:
2498   case llvm::GlobalValue::PrivateLinkage:
2499     return true;
2500   default:
2501     return false;
2502   }
2503 }
2504 
2505 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2506   const NamedDecl *ND = E->getDecl();
2507   QualType T = E->getType();
2508 
2509   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2510          "should not emit an unevaluated operand");
2511 
2512   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2513     // Global Named registers access via intrinsics only
2514     if (VD->getStorageClass() == SC_Register &&
2515         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2516       return EmitGlobalNamedRegister(VD, CGM);
2517 
2518     // If this DeclRefExpr does not constitute an odr-use of the variable,
2519     // we're not permitted to emit a reference to it in general, and it might
2520     // not be captured if capture would be necessary for a use. Emit the
2521     // constant value directly instead.
2522     if (E->isNonOdrUse() == NOUR_Constant &&
2523         (VD->getType()->isReferenceType() ||
2524          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2525       VD->getAnyInitializer(VD);
2526       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2527           E->getLocation(), *VD->evaluateValue(), VD->getType());
2528       assert(Val && "failed to emit constant expression");
2529 
2530       Address Addr = Address::invalid();
2531       if (!VD->getType()->isReferenceType()) {
2532         // Spill the constant value to a global.
2533         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2534                                            getContext().getDeclAlign(VD));
2535       } else {
2536         // Should we be using the alignment of the constant pointer we emitted?
2537         CharUnits Alignment =
2538             getNaturalTypeAlignment(E->getType(),
2539                                     /* BaseInfo= */ nullptr,
2540                                     /* TBAAInfo= */ nullptr,
2541                                     /* forPointeeType= */ true);
2542         Addr = Address(Val, Alignment);
2543       }
2544       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2545     }
2546 
2547     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2548 
2549     // Check for captured variables.
2550     if (E->refersToEnclosingVariableOrCapture()) {
2551       VD = VD->getCanonicalDecl();
2552       if (auto *FD = LambdaCaptureFields.lookup(VD))
2553         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2554       else if (CapturedStmtInfo) {
2555         auto I = LocalDeclMap.find(VD);
2556         if (I != LocalDeclMap.end()) {
2557           if (VD->getType()->isReferenceType())
2558             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2559                                              AlignmentSource::Decl);
2560           return MakeAddrLValue(I->second, T);
2561         }
2562         LValue CapLVal =
2563             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2564                                     CapturedStmtInfo->getContextValue());
2565         return MakeAddrLValue(
2566             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2567             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2568             CapLVal.getTBAAInfo());
2569       }
2570 
2571       assert(isa<BlockDecl>(CurCodeDecl));
2572       Address addr = GetAddrOfBlockDecl(VD);
2573       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2574     }
2575   }
2576 
2577   // FIXME: We should be able to assert this for FunctionDecls as well!
2578   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2579   // those with a valid source location.
2580   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2581           !E->getLocation().isValid()) &&
2582          "Should not use decl without marking it used!");
2583 
2584   if (ND->hasAttr<WeakRefAttr>()) {
2585     const auto *VD = cast<ValueDecl>(ND);
2586     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2587     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2588   }
2589 
2590   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2591     // Check if this is a global variable.
2592     if (VD->hasLinkage() || VD->isStaticDataMember())
2593       return EmitGlobalVarDeclLValue(*this, E, VD);
2594 
2595     Address addr = Address::invalid();
2596 
2597     // The variable should generally be present in the local decl map.
2598     auto iter = LocalDeclMap.find(VD);
2599     if (iter != LocalDeclMap.end()) {
2600       addr = iter->second;
2601 
2602     // Otherwise, it might be static local we haven't emitted yet for
2603     // some reason; most likely, because it's in an outer function.
2604     } else if (VD->isStaticLocal()) {
2605       addr = Address(CGM.getOrCreateStaticVarDecl(
2606           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2607                      getContext().getDeclAlign(VD));
2608 
2609     // No other cases for now.
2610     } else {
2611       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2612     }
2613 
2614 
2615     // Check for OpenMP threadprivate variables.
2616     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2617         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2618       return EmitThreadPrivateVarDeclLValue(
2619           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2620           E->getExprLoc());
2621     }
2622 
2623     // Drill into block byref variables.
2624     bool isBlockByref = VD->isEscapingByref();
2625     if (isBlockByref) {
2626       addr = emitBlockByrefAddress(addr, VD);
2627     }
2628 
2629     // Drill into reference types.
2630     LValue LV = VD->getType()->isReferenceType() ?
2631         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2632         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2633 
2634     bool isLocalStorage = VD->hasLocalStorage();
2635 
2636     bool NonGCable = isLocalStorage &&
2637                      !VD->getType()->isReferenceType() &&
2638                      !isBlockByref;
2639     if (NonGCable) {
2640       LV.getQuals().removeObjCGCAttr();
2641       LV.setNonGC(true);
2642     }
2643 
2644     bool isImpreciseLifetime =
2645       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2646     if (isImpreciseLifetime)
2647       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2648     setObjCGCLValueClass(getContext(), E, LV);
2649     return LV;
2650   }
2651 
2652   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2653     return EmitFunctionDeclLValue(*this, E, FD);
2654 
2655   // FIXME: While we're emitting a binding from an enclosing scope, all other
2656   // DeclRefExprs we see should be implicitly treated as if they also refer to
2657   // an enclosing scope.
2658   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2659     return EmitLValue(BD->getBinding());
2660 
2661   llvm_unreachable("Unhandled DeclRefExpr");
2662 }
2663 
2664 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2665   // __extension__ doesn't affect lvalue-ness.
2666   if (E->getOpcode() == UO_Extension)
2667     return EmitLValue(E->getSubExpr());
2668 
2669   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2670   switch (E->getOpcode()) {
2671   default: llvm_unreachable("Unknown unary operator lvalue!");
2672   case UO_Deref: {
2673     QualType T = E->getSubExpr()->getType()->getPointeeType();
2674     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2675 
2676     LValueBaseInfo BaseInfo;
2677     TBAAAccessInfo TBAAInfo;
2678     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2679                                             &TBAAInfo);
2680     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2681     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2682 
2683     // We should not generate __weak write barrier on indirect reference
2684     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2685     // But, we continue to generate __strong write barrier on indirect write
2686     // into a pointer to object.
2687     if (getLangOpts().ObjC &&
2688         getLangOpts().getGC() != LangOptions::NonGC &&
2689         LV.isObjCWeak())
2690       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2691     return LV;
2692   }
2693   case UO_Real:
2694   case UO_Imag: {
2695     LValue LV = EmitLValue(E->getSubExpr());
2696     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2697 
2698     // __real is valid on scalars.  This is a faster way of testing that.
2699     // __imag can only produce an rvalue on scalars.
2700     if (E->getOpcode() == UO_Real &&
2701         !LV.getAddress().getElementType()->isStructTy()) {
2702       assert(E->getSubExpr()->getType()->isArithmeticType());
2703       return LV;
2704     }
2705 
2706     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2707 
2708     Address Component =
2709       (E->getOpcode() == UO_Real
2710          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2711          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2712     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2713                                    CGM.getTBAAInfoForSubobject(LV, T));
2714     ElemLV.getQuals().addQualifiers(LV.getQuals());
2715     return ElemLV;
2716   }
2717   case UO_PreInc:
2718   case UO_PreDec: {
2719     LValue LV = EmitLValue(E->getSubExpr());
2720     bool isInc = E->getOpcode() == UO_PreInc;
2721 
2722     if (E->getType()->isAnyComplexType())
2723       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2724     else
2725       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2726     return LV;
2727   }
2728   }
2729 }
2730 
2731 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2732   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2733                         E->getType(), AlignmentSource::Decl);
2734 }
2735 
2736 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2737   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2738                         E->getType(), AlignmentSource::Decl);
2739 }
2740 
2741 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2742   auto SL = E->getFunctionName();
2743   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2744   StringRef FnName = CurFn->getName();
2745   if (FnName.startswith("\01"))
2746     FnName = FnName.substr(1);
2747   StringRef NameItems[] = {
2748       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2749   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2750   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2751     std::string Name = SL->getString();
2752     if (!Name.empty()) {
2753       unsigned Discriminator =
2754           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2755       if (Discriminator)
2756         Name += "_" + Twine(Discriminator + 1).str();
2757       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2758       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2759     } else {
2760       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2761       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2762     }
2763   }
2764   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2765   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2766 }
2767 
2768 /// Emit a type description suitable for use by a runtime sanitizer library. The
2769 /// format of a type descriptor is
2770 ///
2771 /// \code
2772 ///   { i16 TypeKind, i16 TypeInfo }
2773 /// \endcode
2774 ///
2775 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2776 /// integer, 1 for a floating point value, and -1 for anything else.
2777 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2778   // Only emit each type's descriptor once.
2779   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2780     return C;
2781 
2782   uint16_t TypeKind = -1;
2783   uint16_t TypeInfo = 0;
2784 
2785   if (T->isIntegerType()) {
2786     TypeKind = 0;
2787     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2788                (T->isSignedIntegerType() ? 1 : 0);
2789   } else if (T->isFloatingType()) {
2790     TypeKind = 1;
2791     TypeInfo = getContext().getTypeSize(T);
2792   }
2793 
2794   // Format the type name as if for a diagnostic, including quotes and
2795   // optionally an 'aka'.
2796   SmallString<32> Buffer;
2797   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2798                                     (intptr_t)T.getAsOpaquePtr(),
2799                                     StringRef(), StringRef(), None, Buffer,
2800                                     None);
2801 
2802   llvm::Constant *Components[] = {
2803     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2804     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2805   };
2806   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2807 
2808   auto *GV = new llvm::GlobalVariable(
2809       CGM.getModule(), Descriptor->getType(),
2810       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2811   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2812   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2813 
2814   // Remember the descriptor for this type.
2815   CGM.setTypeDescriptorInMap(T, GV);
2816 
2817   return GV;
2818 }
2819 
2820 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2821   llvm::Type *TargetTy = IntPtrTy;
2822 
2823   if (V->getType() == TargetTy)
2824     return V;
2825 
2826   // Floating-point types which fit into intptr_t are bitcast to integers
2827   // and then passed directly (after zero-extension, if necessary).
2828   if (V->getType()->isFloatingPointTy()) {
2829     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2830     if (Bits <= TargetTy->getIntegerBitWidth())
2831       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2832                                                          Bits));
2833   }
2834 
2835   // Integers which fit in intptr_t are zero-extended and passed directly.
2836   if (V->getType()->isIntegerTy() &&
2837       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2838     return Builder.CreateZExt(V, TargetTy);
2839 
2840   // Pointers are passed directly, everything else is passed by address.
2841   if (!V->getType()->isPointerTy()) {
2842     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2843     Builder.CreateStore(V, Ptr);
2844     V = Ptr.getPointer();
2845   }
2846   return Builder.CreatePtrToInt(V, TargetTy);
2847 }
2848 
2849 /// Emit a representation of a SourceLocation for passing to a handler
2850 /// in a sanitizer runtime library. The format for this data is:
2851 /// \code
2852 ///   struct SourceLocation {
2853 ///     const char *Filename;
2854 ///     int32_t Line, Column;
2855 ///   };
2856 /// \endcode
2857 /// For an invalid SourceLocation, the Filename pointer is null.
2858 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2859   llvm::Constant *Filename;
2860   int Line, Column;
2861 
2862   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2863   if (PLoc.isValid()) {
2864     StringRef FilenameString = PLoc.getFilename();
2865 
2866     int PathComponentsToStrip =
2867         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2868     if (PathComponentsToStrip < 0) {
2869       assert(PathComponentsToStrip != INT_MIN);
2870       int PathComponentsToKeep = -PathComponentsToStrip;
2871       auto I = llvm::sys::path::rbegin(FilenameString);
2872       auto E = llvm::sys::path::rend(FilenameString);
2873       while (I != E && --PathComponentsToKeep)
2874         ++I;
2875 
2876       FilenameString = FilenameString.substr(I - E);
2877     } else if (PathComponentsToStrip > 0) {
2878       auto I = llvm::sys::path::begin(FilenameString);
2879       auto E = llvm::sys::path::end(FilenameString);
2880       while (I != E && PathComponentsToStrip--)
2881         ++I;
2882 
2883       if (I != E)
2884         FilenameString =
2885             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2886       else
2887         FilenameString = llvm::sys::path::filename(FilenameString);
2888     }
2889 
2890     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2891     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2892                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2893     Filename = FilenameGV.getPointer();
2894     Line = PLoc.getLine();
2895     Column = PLoc.getColumn();
2896   } else {
2897     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2898     Line = Column = 0;
2899   }
2900 
2901   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2902                             Builder.getInt32(Column)};
2903 
2904   return llvm::ConstantStruct::getAnon(Data);
2905 }
2906 
2907 namespace {
2908 /// Specify under what conditions this check can be recovered
2909 enum class CheckRecoverableKind {
2910   /// Always terminate program execution if this check fails.
2911   Unrecoverable,
2912   /// Check supports recovering, runtime has both fatal (noreturn) and
2913   /// non-fatal handlers for this check.
2914   Recoverable,
2915   /// Runtime conditionally aborts, always need to support recovery.
2916   AlwaysRecoverable
2917 };
2918 }
2919 
2920 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2921   assert(Kind.countPopulation() == 1);
2922   if (Kind == SanitizerKind::Vptr)
2923     return CheckRecoverableKind::AlwaysRecoverable;
2924   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
2925     return CheckRecoverableKind::Unrecoverable;
2926   else
2927     return CheckRecoverableKind::Recoverable;
2928 }
2929 
2930 namespace {
2931 struct SanitizerHandlerInfo {
2932   char const *const Name;
2933   unsigned Version;
2934 };
2935 }
2936 
2937 const SanitizerHandlerInfo SanitizerHandlers[] = {
2938 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2939     LIST_SANITIZER_CHECKS
2940 #undef SANITIZER_CHECK
2941 };
2942 
2943 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2944                                  llvm::FunctionType *FnType,
2945                                  ArrayRef<llvm::Value *> FnArgs,
2946                                  SanitizerHandler CheckHandler,
2947                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2948                                  llvm::BasicBlock *ContBB) {
2949   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2950   Optional<ApplyDebugLocation> DL;
2951   if (!CGF.Builder.getCurrentDebugLocation()) {
2952     // Ensure that the call has at least an artificial debug location.
2953     DL.emplace(CGF, SourceLocation());
2954   }
2955   bool NeedsAbortSuffix =
2956       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2957   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2958   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2959   const StringRef CheckName = CheckInfo.Name;
2960   std::string FnName = "__ubsan_handle_" + CheckName.str();
2961   if (CheckInfo.Version && !MinimalRuntime)
2962     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2963   if (MinimalRuntime)
2964     FnName += "_minimal";
2965   if (NeedsAbortSuffix)
2966     FnName += "_abort";
2967   bool MayReturn =
2968       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2969 
2970   llvm::AttrBuilder B;
2971   if (!MayReturn) {
2972     B.addAttribute(llvm::Attribute::NoReturn)
2973         .addAttribute(llvm::Attribute::NoUnwind);
2974   }
2975   B.addAttribute(llvm::Attribute::UWTable);
2976 
2977   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
2978       FnType, FnName,
2979       llvm::AttributeList::get(CGF.getLLVMContext(),
2980                                llvm::AttributeList::FunctionIndex, B),
2981       /*Local=*/true);
2982   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2983   if (!MayReturn) {
2984     HandlerCall->setDoesNotReturn();
2985     CGF.Builder.CreateUnreachable();
2986   } else {
2987     CGF.Builder.CreateBr(ContBB);
2988   }
2989 }
2990 
2991 void CodeGenFunction::EmitCheck(
2992     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2993     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
2994     ArrayRef<llvm::Value *> DynamicArgs) {
2995   assert(IsSanitizerScope);
2996   assert(Checked.size() > 0);
2997   assert(CheckHandler >= 0 &&
2998          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
2999   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3000 
3001   llvm::Value *FatalCond = nullptr;
3002   llvm::Value *RecoverableCond = nullptr;
3003   llvm::Value *TrapCond = nullptr;
3004   for (int i = 0, n = Checked.size(); i < n; ++i) {
3005     llvm::Value *Check = Checked[i].first;
3006     // -fsanitize-trap= overrides -fsanitize-recover=.
3007     llvm::Value *&Cond =
3008         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3009             ? TrapCond
3010             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3011                   ? RecoverableCond
3012                   : FatalCond;
3013     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3014   }
3015 
3016   if (TrapCond)
3017     EmitTrapCheck(TrapCond);
3018   if (!FatalCond && !RecoverableCond)
3019     return;
3020 
3021   llvm::Value *JointCond;
3022   if (FatalCond && RecoverableCond)
3023     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3024   else
3025     JointCond = FatalCond ? FatalCond : RecoverableCond;
3026   assert(JointCond);
3027 
3028   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3029   assert(SanOpts.has(Checked[0].second));
3030 #ifndef NDEBUG
3031   for (int i = 1, n = Checked.size(); i < n; ++i) {
3032     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3033            "All recoverable kinds in a single check must be same!");
3034     assert(SanOpts.has(Checked[i].second));
3035   }
3036 #endif
3037 
3038   llvm::BasicBlock *Cont = createBasicBlock("cont");
3039   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3040   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3041   // Give hint that we very much don't expect to execute the handler
3042   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3043   llvm::MDBuilder MDHelper(getLLVMContext());
3044   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3045   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3046   EmitBlock(Handlers);
3047 
3048   // Handler functions take an i8* pointing to the (handler-specific) static
3049   // information block, followed by a sequence of intptr_t arguments
3050   // representing operand values.
3051   SmallVector<llvm::Value *, 4> Args;
3052   SmallVector<llvm::Type *, 4> ArgTypes;
3053   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3054     Args.reserve(DynamicArgs.size() + 1);
3055     ArgTypes.reserve(DynamicArgs.size() + 1);
3056 
3057     // Emit handler arguments and create handler function type.
3058     if (!StaticArgs.empty()) {
3059       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3060       auto *InfoPtr =
3061           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3062                                    llvm::GlobalVariable::PrivateLinkage, Info);
3063       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3064       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3065       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3066       ArgTypes.push_back(Int8PtrTy);
3067     }
3068 
3069     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3070       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3071       ArgTypes.push_back(IntPtrTy);
3072     }
3073   }
3074 
3075   llvm::FunctionType *FnType =
3076     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3077 
3078   if (!FatalCond || !RecoverableCond) {
3079     // Simple case: we need to generate a single handler call, either
3080     // fatal, or non-fatal.
3081     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3082                          (FatalCond != nullptr), Cont);
3083   } else {
3084     // Emit two handler calls: first one for set of unrecoverable checks,
3085     // another one for recoverable.
3086     llvm::BasicBlock *NonFatalHandlerBB =
3087         createBasicBlock("non_fatal." + CheckName);
3088     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3089     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3090     EmitBlock(FatalHandlerBB);
3091     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3092                          NonFatalHandlerBB);
3093     EmitBlock(NonFatalHandlerBB);
3094     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3095                          Cont);
3096   }
3097 
3098   EmitBlock(Cont);
3099 }
3100 
3101 void CodeGenFunction::EmitCfiSlowPathCheck(
3102     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3103     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3104   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3105 
3106   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3107   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3108 
3109   llvm::MDBuilder MDHelper(getLLVMContext());
3110   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3111   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3112 
3113   EmitBlock(CheckBB);
3114 
3115   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3116 
3117   llvm::CallInst *CheckCall;
3118   llvm::FunctionCallee SlowPathFn;
3119   if (WithDiag) {
3120     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3121     auto *InfoPtr =
3122         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3123                                  llvm::GlobalVariable::PrivateLinkage, Info);
3124     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3125     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3126 
3127     SlowPathFn = CGM.getModule().getOrInsertFunction(
3128         "__cfi_slowpath_diag",
3129         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3130                                 false));
3131     CheckCall = Builder.CreateCall(
3132         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3133   } else {
3134     SlowPathFn = CGM.getModule().getOrInsertFunction(
3135         "__cfi_slowpath",
3136         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3137     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3138   }
3139 
3140   CGM.setDSOLocal(
3141       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3142   CheckCall->setDoesNotThrow();
3143 
3144   EmitBlock(Cont);
3145 }
3146 
3147 // Emit a stub for __cfi_check function so that the linker knows about this
3148 // symbol in LTO mode.
3149 void CodeGenFunction::EmitCfiCheckStub() {
3150   llvm::Module *M = &CGM.getModule();
3151   auto &Ctx = M->getContext();
3152   llvm::Function *F = llvm::Function::Create(
3153       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3154       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3155   CGM.setDSOLocal(F);
3156   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3157   // FIXME: consider emitting an intrinsic call like
3158   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3159   // which can be lowered in CrossDSOCFI pass to the actual contents of
3160   // __cfi_check. This would allow inlining of __cfi_check calls.
3161   llvm::CallInst::Create(
3162       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3163   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3164 }
3165 
3166 // This function is basically a switch over the CFI failure kind, which is
3167 // extracted from CFICheckFailData (1st function argument). Each case is either
3168 // llvm.trap or a call to one of the two runtime handlers, based on
3169 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3170 // failure kind) traps, but this should really never happen.  CFICheckFailData
3171 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3172 // check kind; in this case __cfi_check_fail traps as well.
3173 void CodeGenFunction::EmitCfiCheckFail() {
3174   SanitizerScope SanScope(this);
3175   FunctionArgList Args;
3176   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3177                             ImplicitParamDecl::Other);
3178   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3179                             ImplicitParamDecl::Other);
3180   Args.push_back(&ArgData);
3181   Args.push_back(&ArgAddr);
3182 
3183   const CGFunctionInfo &FI =
3184     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3185 
3186   llvm::Function *F = llvm::Function::Create(
3187       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3188       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3189   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3190 
3191   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3192                 SourceLocation());
3193 
3194   // This function should not be affected by blacklist. This function does
3195   // not have a source location, but "src:*" would still apply. Revert any
3196   // changes to SanOpts made in StartFunction.
3197   SanOpts = CGM.getLangOpts().Sanitize;
3198 
3199   llvm::Value *Data =
3200       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3201                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3202   llvm::Value *Addr =
3203       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3204                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3205 
3206   // Data == nullptr means the calling module has trap behaviour for this check.
3207   llvm::Value *DataIsNotNullPtr =
3208       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3209   EmitTrapCheck(DataIsNotNullPtr);
3210 
3211   llvm::StructType *SourceLocationTy =
3212       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3213   llvm::StructType *CfiCheckFailDataTy =
3214       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3215 
3216   llvm::Value *V = Builder.CreateConstGEP2_32(
3217       CfiCheckFailDataTy,
3218       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3219       0);
3220   Address CheckKindAddr(V, getIntAlign());
3221   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3222 
3223   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3224       CGM.getLLVMContext(),
3225       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3226   llvm::Value *ValidVtable = Builder.CreateZExt(
3227       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3228                          {Addr, AllVtables}),
3229       IntPtrTy);
3230 
3231   const std::pair<int, SanitizerMask> CheckKinds[] = {
3232       {CFITCK_VCall, SanitizerKind::CFIVCall},
3233       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3234       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3235       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3236       {CFITCK_ICall, SanitizerKind::CFIICall}};
3237 
3238   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3239   for (auto CheckKindMaskPair : CheckKinds) {
3240     int Kind = CheckKindMaskPair.first;
3241     SanitizerMask Mask = CheckKindMaskPair.second;
3242     llvm::Value *Cond =
3243         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3244     if (CGM.getLangOpts().Sanitize.has(Mask))
3245       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3246                 {Data, Addr, ValidVtable});
3247     else
3248       EmitTrapCheck(Cond);
3249   }
3250 
3251   FinishFunction();
3252   // The only reference to this function will be created during LTO link.
3253   // Make sure it survives until then.
3254   CGM.addUsedGlobal(F);
3255 }
3256 
3257 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3258   if (SanOpts.has(SanitizerKind::Unreachable)) {
3259     SanitizerScope SanScope(this);
3260     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3261                              SanitizerKind::Unreachable),
3262               SanitizerHandler::BuiltinUnreachable,
3263               EmitCheckSourceLocation(Loc), None);
3264   }
3265   Builder.CreateUnreachable();
3266 }
3267 
3268 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3269   llvm::BasicBlock *Cont = createBasicBlock("cont");
3270 
3271   // If we're optimizing, collapse all calls to trap down to just one per
3272   // function to save on code size.
3273   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3274     TrapBB = createBasicBlock("trap");
3275     Builder.CreateCondBr(Checked, Cont, TrapBB);
3276     EmitBlock(TrapBB);
3277     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3278     TrapCall->setDoesNotReturn();
3279     TrapCall->setDoesNotThrow();
3280     Builder.CreateUnreachable();
3281   } else {
3282     Builder.CreateCondBr(Checked, Cont, TrapBB);
3283   }
3284 
3285   EmitBlock(Cont);
3286 }
3287 
3288 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3289   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3290 
3291   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3292     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3293                                   CGM.getCodeGenOpts().TrapFuncName);
3294     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3295   }
3296 
3297   return TrapCall;
3298 }
3299 
3300 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3301                                                  LValueBaseInfo *BaseInfo,
3302                                                  TBAAAccessInfo *TBAAInfo) {
3303   assert(E->getType()->isArrayType() &&
3304          "Array to pointer decay must have array source type!");
3305 
3306   // Expressions of array type can't be bitfields or vector elements.
3307   LValue LV = EmitLValue(E);
3308   Address Addr = LV.getAddress();
3309 
3310   // If the array type was an incomplete type, we need to make sure
3311   // the decay ends up being the right type.
3312   llvm::Type *NewTy = ConvertType(E->getType());
3313   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3314 
3315   // Note that VLA pointers are always decayed, so we don't need to do
3316   // anything here.
3317   if (!E->getType()->isVariableArrayType()) {
3318     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3319            "Expected pointer to array");
3320     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3321   }
3322 
3323   // The result of this decay conversion points to an array element within the
3324   // base lvalue. However, since TBAA currently does not support representing
3325   // accesses to elements of member arrays, we conservatively represent accesses
3326   // to the pointee object as if it had no any base lvalue specified.
3327   // TODO: Support TBAA for member arrays.
3328   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3329   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3330   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3331 
3332   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3333 }
3334 
3335 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3336 /// array to pointer, return the array subexpression.
3337 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3338   // If this isn't just an array->pointer decay, bail out.
3339   const auto *CE = dyn_cast<CastExpr>(E);
3340   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3341     return nullptr;
3342 
3343   // If this is a decay from variable width array, bail out.
3344   const Expr *SubExpr = CE->getSubExpr();
3345   if (SubExpr->getType()->isVariableArrayType())
3346     return nullptr;
3347 
3348   return SubExpr;
3349 }
3350 
3351 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3352                                           llvm::Value *ptr,
3353                                           ArrayRef<llvm::Value*> indices,
3354                                           bool inbounds,
3355                                           bool signedIndices,
3356                                           SourceLocation loc,
3357                                     const llvm::Twine &name = "arrayidx") {
3358   if (inbounds) {
3359     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3360                                       CodeGenFunction::NotSubtraction, loc,
3361                                       name);
3362   } else {
3363     return CGF.Builder.CreateGEP(ptr, indices, name);
3364   }
3365 }
3366 
3367 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3368                                       llvm::Value *idx,
3369                                       CharUnits eltSize) {
3370   // If we have a constant index, we can use the exact offset of the
3371   // element we're accessing.
3372   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3373     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3374     return arrayAlign.alignmentAtOffset(offset);
3375 
3376   // Otherwise, use the worst-case alignment for any element.
3377   } else {
3378     return arrayAlign.alignmentOfArrayElement(eltSize);
3379   }
3380 }
3381 
3382 static QualType getFixedSizeElementType(const ASTContext &ctx,
3383                                         const VariableArrayType *vla) {
3384   QualType eltType;
3385   do {
3386     eltType = vla->getElementType();
3387   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3388   return eltType;
3389 }
3390 
3391 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3392                                      ArrayRef<llvm::Value *> indices,
3393                                      QualType eltType, bool inbounds,
3394                                      bool signedIndices, SourceLocation loc,
3395                                      const llvm::Twine &name = "arrayidx") {
3396   // All the indices except that last must be zero.
3397 #ifndef NDEBUG
3398   for (auto idx : indices.drop_back())
3399     assert(isa<llvm::ConstantInt>(idx) &&
3400            cast<llvm::ConstantInt>(idx)->isZero());
3401 #endif
3402 
3403   // Determine the element size of the statically-sized base.  This is
3404   // the thing that the indices are expressed in terms of.
3405   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3406     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3407   }
3408 
3409   // We can use that to compute the best alignment of the element.
3410   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3411   CharUnits eltAlign =
3412     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3413 
3414   llvm::Value *eltPtr = emitArraySubscriptGEP(
3415       CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
3416   return Address(eltPtr, eltAlign);
3417 }
3418 
3419 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3420                                                bool Accessed) {
3421   // The index must always be an integer, which is not an aggregate.  Emit it
3422   // in lexical order (this complexity is, sadly, required by C++17).
3423   llvm::Value *IdxPre =
3424       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3425   bool SignedIndices = false;
3426   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3427     auto *Idx = IdxPre;
3428     if (E->getLHS() != E->getIdx()) {
3429       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3430       Idx = EmitScalarExpr(E->getIdx());
3431     }
3432 
3433     QualType IdxTy = E->getIdx()->getType();
3434     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3435     SignedIndices |= IdxSigned;
3436 
3437     if (SanOpts.has(SanitizerKind::ArrayBounds))
3438       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3439 
3440     // Extend or truncate the index type to 32 or 64-bits.
3441     if (Promote && Idx->getType() != IntPtrTy)
3442       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3443 
3444     return Idx;
3445   };
3446   IdxPre = nullptr;
3447 
3448   // If the base is a vector type, then we are forming a vector element lvalue
3449   // with this subscript.
3450   if (E->getBase()->getType()->isVectorType() &&
3451       !isa<ExtVectorElementExpr>(E->getBase())) {
3452     // Emit the vector as an lvalue to get its address.
3453     LValue LHS = EmitLValue(E->getBase());
3454     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3455     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3456     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3457                                  LHS.getBaseInfo(), TBAAAccessInfo());
3458   }
3459 
3460   // All the other cases basically behave like simple offsetting.
3461 
3462   // Handle the extvector case we ignored above.
3463   if (isa<ExtVectorElementExpr>(E->getBase())) {
3464     LValue LV = EmitLValue(E->getBase());
3465     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3466     Address Addr = EmitExtVectorElementLValue(LV);
3467 
3468     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3469     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3470                                  SignedIndices, E->getExprLoc());
3471     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3472                           CGM.getTBAAInfoForSubobject(LV, EltType));
3473   }
3474 
3475   LValueBaseInfo EltBaseInfo;
3476   TBAAAccessInfo EltTBAAInfo;
3477   Address Addr = Address::invalid();
3478   if (const VariableArrayType *vla =
3479            getContext().getAsVariableArrayType(E->getType())) {
3480     // The base must be a pointer, which is not an aggregate.  Emit
3481     // it.  It needs to be emitted first in case it's what captures
3482     // the VLA bounds.
3483     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3484     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3485 
3486     // The element count here is the total number of non-VLA elements.
3487     llvm::Value *numElements = getVLASize(vla).NumElts;
3488 
3489     // Effectively, the multiply by the VLA size is part of the GEP.
3490     // GEP indexes are signed, and scaling an index isn't permitted to
3491     // signed-overflow, so we use the same semantics for our explicit
3492     // multiply.  We suppress this if overflow is not undefined behavior.
3493     if (getLangOpts().isSignedOverflowDefined()) {
3494       Idx = Builder.CreateMul(Idx, numElements);
3495     } else {
3496       Idx = Builder.CreateNSWMul(Idx, numElements);
3497     }
3498 
3499     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3500                                  !getLangOpts().isSignedOverflowDefined(),
3501                                  SignedIndices, E->getExprLoc());
3502 
3503   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3504     // Indexing over an interface, as in "NSString *P; P[4];"
3505 
3506     // Emit the base pointer.
3507     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3508     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3509 
3510     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3511     llvm::Value *InterfaceSizeVal =
3512         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3513 
3514     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3515 
3516     // We don't necessarily build correct LLVM struct types for ObjC
3517     // interfaces, so we can't rely on GEP to do this scaling
3518     // correctly, so we need to cast to i8*.  FIXME: is this actually
3519     // true?  A lot of other things in the fragile ABI would break...
3520     llvm::Type *OrigBaseTy = Addr.getType();
3521     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3522 
3523     // Do the GEP.
3524     CharUnits EltAlign =
3525       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3526     llvm::Value *EltPtr =
3527         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3528                               SignedIndices, E->getExprLoc());
3529     Addr = Address(EltPtr, EltAlign);
3530 
3531     // Cast back.
3532     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3533   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3534     // If this is A[i] where A is an array, the frontend will have decayed the
3535     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3536     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3537     // "gep x, i" here.  Emit one "gep A, 0, i".
3538     assert(Array->getType()->isArrayType() &&
3539            "Array to pointer decay must have array source type!");
3540     LValue ArrayLV;
3541     // For simple multidimensional array indexing, set the 'accessed' flag for
3542     // better bounds-checking of the base expression.
3543     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3544       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3545     else
3546       ArrayLV = EmitLValue(Array);
3547     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3548 
3549     // Propagate the alignment from the array itself to the result.
3550     Addr = emitArraySubscriptGEP(
3551         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3552         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3553         E->getExprLoc());
3554     EltBaseInfo = ArrayLV.getBaseInfo();
3555     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3556   } else {
3557     // The base must be a pointer; emit it with an estimate of its alignment.
3558     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3559     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3560     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3561                                  !getLangOpts().isSignedOverflowDefined(),
3562                                  SignedIndices, E->getExprLoc());
3563   }
3564 
3565   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3566 
3567   if (getLangOpts().ObjC &&
3568       getLangOpts().getGC() != LangOptions::NonGC) {
3569     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3570     setObjCGCLValueClass(getContext(), E, LV);
3571   }
3572   return LV;
3573 }
3574 
3575 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3576                                        LValueBaseInfo &BaseInfo,
3577                                        TBAAAccessInfo &TBAAInfo,
3578                                        QualType BaseTy, QualType ElTy,
3579                                        bool IsLowerBound) {
3580   LValue BaseLVal;
3581   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3582     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3583     if (BaseTy->isArrayType()) {
3584       Address Addr = BaseLVal.getAddress();
3585       BaseInfo = BaseLVal.getBaseInfo();
3586 
3587       // If the array type was an incomplete type, we need to make sure
3588       // the decay ends up being the right type.
3589       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3590       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3591 
3592       // Note that VLA pointers are always decayed, so we don't need to do
3593       // anything here.
3594       if (!BaseTy->isVariableArrayType()) {
3595         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3596                "Expected pointer to array");
3597         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3598       }
3599 
3600       return CGF.Builder.CreateElementBitCast(Addr,
3601                                               CGF.ConvertTypeForMem(ElTy));
3602     }
3603     LValueBaseInfo TypeBaseInfo;
3604     TBAAAccessInfo TypeTBAAInfo;
3605     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3606                                                   &TypeTBAAInfo);
3607     BaseInfo.mergeForCast(TypeBaseInfo);
3608     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3609     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3610   }
3611   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3612 }
3613 
3614 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3615                                                 bool IsLowerBound) {
3616   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3617   QualType ResultExprTy;
3618   if (auto *AT = getContext().getAsArrayType(BaseTy))
3619     ResultExprTy = AT->getElementType();
3620   else
3621     ResultExprTy = BaseTy->getPointeeType();
3622   llvm::Value *Idx = nullptr;
3623   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3624     // Requesting lower bound or upper bound, but without provided length and
3625     // without ':' symbol for the default length -> length = 1.
3626     // Idx = LowerBound ?: 0;
3627     if (auto *LowerBound = E->getLowerBound()) {
3628       Idx = Builder.CreateIntCast(
3629           EmitScalarExpr(LowerBound), IntPtrTy,
3630           LowerBound->getType()->hasSignedIntegerRepresentation());
3631     } else
3632       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3633   } else {
3634     // Try to emit length or lower bound as constant. If this is possible, 1
3635     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3636     // IR (LB + Len) - 1.
3637     auto &C = CGM.getContext();
3638     auto *Length = E->getLength();
3639     llvm::APSInt ConstLength;
3640     if (Length) {
3641       // Idx = LowerBound + Length - 1;
3642       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3643         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3644         Length = nullptr;
3645       }
3646       auto *LowerBound = E->getLowerBound();
3647       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3648       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3649         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3650         LowerBound = nullptr;
3651       }
3652       if (!Length)
3653         --ConstLength;
3654       else if (!LowerBound)
3655         --ConstLowerBound;
3656 
3657       if (Length || LowerBound) {
3658         auto *LowerBoundVal =
3659             LowerBound
3660                 ? Builder.CreateIntCast(
3661                       EmitScalarExpr(LowerBound), IntPtrTy,
3662                       LowerBound->getType()->hasSignedIntegerRepresentation())
3663                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3664         auto *LengthVal =
3665             Length
3666                 ? Builder.CreateIntCast(
3667                       EmitScalarExpr(Length), IntPtrTy,
3668                       Length->getType()->hasSignedIntegerRepresentation())
3669                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3670         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3671                                 /*HasNUW=*/false,
3672                                 !getLangOpts().isSignedOverflowDefined());
3673         if (Length && LowerBound) {
3674           Idx = Builder.CreateSub(
3675               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3676               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3677         }
3678       } else
3679         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3680     } else {
3681       // Idx = ArraySize - 1;
3682       QualType ArrayTy = BaseTy->isPointerType()
3683                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3684                              : BaseTy;
3685       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3686         Length = VAT->getSizeExpr();
3687         if (Length->isIntegerConstantExpr(ConstLength, C))
3688           Length = nullptr;
3689       } else {
3690         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3691         ConstLength = CAT->getSize();
3692       }
3693       if (Length) {
3694         auto *LengthVal = Builder.CreateIntCast(
3695             EmitScalarExpr(Length), IntPtrTy,
3696             Length->getType()->hasSignedIntegerRepresentation());
3697         Idx = Builder.CreateSub(
3698             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3699             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3700       } else {
3701         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3702         --ConstLength;
3703         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3704       }
3705     }
3706   }
3707   assert(Idx);
3708 
3709   Address EltPtr = Address::invalid();
3710   LValueBaseInfo BaseInfo;
3711   TBAAAccessInfo TBAAInfo;
3712   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3713     // The base must be a pointer, which is not an aggregate.  Emit
3714     // it.  It needs to be emitted first in case it's what captures
3715     // the VLA bounds.
3716     Address Base =
3717         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3718                                 BaseTy, VLA->getElementType(), IsLowerBound);
3719     // The element count here is the total number of non-VLA elements.
3720     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3721 
3722     // Effectively, the multiply by the VLA size is part of the GEP.
3723     // GEP indexes are signed, and scaling an index isn't permitted to
3724     // signed-overflow, so we use the same semantics for our explicit
3725     // multiply.  We suppress this if overflow is not undefined behavior.
3726     if (getLangOpts().isSignedOverflowDefined())
3727       Idx = Builder.CreateMul(Idx, NumElements);
3728     else
3729       Idx = Builder.CreateNSWMul(Idx, NumElements);
3730     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3731                                    !getLangOpts().isSignedOverflowDefined(),
3732                                    /*SignedIndices=*/false, E->getExprLoc());
3733   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3734     // If this is A[i] where A is an array, the frontend will have decayed the
3735     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3736     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3737     // "gep x, i" here.  Emit one "gep A, 0, i".
3738     assert(Array->getType()->isArrayType() &&
3739            "Array to pointer decay must have array source type!");
3740     LValue ArrayLV;
3741     // For simple multidimensional array indexing, set the 'accessed' flag for
3742     // better bounds-checking of the base expression.
3743     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3744       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3745     else
3746       ArrayLV = EmitLValue(Array);
3747 
3748     // Propagate the alignment from the array itself to the result.
3749     EltPtr = emitArraySubscriptGEP(
3750         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3751         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3752         /*SignedIndices=*/false, E->getExprLoc());
3753     BaseInfo = ArrayLV.getBaseInfo();
3754     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3755   } else {
3756     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3757                                            TBAAInfo, BaseTy, ResultExprTy,
3758                                            IsLowerBound);
3759     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3760                                    !getLangOpts().isSignedOverflowDefined(),
3761                                    /*SignedIndices=*/false, E->getExprLoc());
3762   }
3763 
3764   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3765 }
3766 
3767 LValue CodeGenFunction::
3768 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3769   // Emit the base vector as an l-value.
3770   LValue Base;
3771 
3772   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3773   if (E->isArrow()) {
3774     // If it is a pointer to a vector, emit the address and form an lvalue with
3775     // it.
3776     LValueBaseInfo BaseInfo;
3777     TBAAAccessInfo TBAAInfo;
3778     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3779     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3780     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3781     Base.getQuals().removeObjCGCAttr();
3782   } else if (E->getBase()->isGLValue()) {
3783     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3784     // emit the base as an lvalue.
3785     assert(E->getBase()->getType()->isVectorType());
3786     Base = EmitLValue(E->getBase());
3787   } else {
3788     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3789     assert(E->getBase()->getType()->isVectorType() &&
3790            "Result must be a vector");
3791     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3792 
3793     // Store the vector to memory (because LValue wants an address).
3794     Address VecMem = CreateMemTemp(E->getBase()->getType());
3795     Builder.CreateStore(Vec, VecMem);
3796     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3797                           AlignmentSource::Decl);
3798   }
3799 
3800   QualType type =
3801     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3802 
3803   // Encode the element access list into a vector of unsigned indices.
3804   SmallVector<uint32_t, 4> Indices;
3805   E->getEncodedElementAccess(Indices);
3806 
3807   if (Base.isSimple()) {
3808     llvm::Constant *CV =
3809         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3810     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3811                                     Base.getBaseInfo(), TBAAAccessInfo());
3812   }
3813   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3814 
3815   llvm::Constant *BaseElts = Base.getExtVectorElts();
3816   SmallVector<llvm::Constant *, 4> CElts;
3817 
3818   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3819     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3820   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3821   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3822                                   Base.getBaseInfo(), TBAAAccessInfo());
3823 }
3824 
3825 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3826   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3827     EmitIgnoredExpr(E->getBase());
3828     return EmitDeclRefLValue(DRE);
3829   }
3830 
3831   Expr *BaseExpr = E->getBase();
3832   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3833   LValue BaseLV;
3834   if (E->isArrow()) {
3835     LValueBaseInfo BaseInfo;
3836     TBAAAccessInfo TBAAInfo;
3837     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3838     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3839     SanitizerSet SkippedChecks;
3840     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3841     if (IsBaseCXXThis)
3842       SkippedChecks.set(SanitizerKind::Alignment, true);
3843     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3844       SkippedChecks.set(SanitizerKind::Null, true);
3845     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3846                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3847     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3848   } else
3849     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3850 
3851   NamedDecl *ND = E->getMemberDecl();
3852   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3853     LValue LV = EmitLValueForField(BaseLV, Field);
3854     setObjCGCLValueClass(getContext(), E, LV);
3855     return LV;
3856   }
3857 
3858   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3859     return EmitFunctionDeclLValue(*this, E, FD);
3860 
3861   llvm_unreachable("Unhandled member declaration!");
3862 }
3863 
3864 /// Given that we are currently emitting a lambda, emit an l-value for
3865 /// one of its members.
3866 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3867   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3868   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3869   QualType LambdaTagType =
3870     getContext().getTagDeclType(Field->getParent());
3871   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3872   return EmitLValueForField(LambdaLV, Field);
3873 }
3874 
3875 /// Drill down to the storage of a field without walking into
3876 /// reference types.
3877 ///
3878 /// The resulting address doesn't necessarily have the right type.
3879 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3880                                       const FieldDecl *field) {
3881   const RecordDecl *rec = field->getParent();
3882 
3883   unsigned idx =
3884     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3885 
3886   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
3887 }
3888 
3889 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3890   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3891   if (!RD)
3892     return false;
3893 
3894   if (RD->isDynamicClass())
3895     return true;
3896 
3897   for (const auto &Base : RD->bases())
3898     if (hasAnyVptr(Base.getType(), Context))
3899       return true;
3900 
3901   for (const FieldDecl *Field : RD->fields())
3902     if (hasAnyVptr(Field->getType(), Context))
3903       return true;
3904 
3905   return false;
3906 }
3907 
3908 LValue CodeGenFunction::EmitLValueForField(LValue base,
3909                                            const FieldDecl *field) {
3910   LValueBaseInfo BaseInfo = base.getBaseInfo();
3911 
3912   if (field->isBitField()) {
3913     const CGRecordLayout &RL =
3914       CGM.getTypes().getCGRecordLayout(field->getParent());
3915     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3916     Address Addr = base.getAddress();
3917     unsigned Idx = RL.getLLVMFieldNo(field);
3918     if (Idx != 0)
3919       // For structs, we GEP to the field that the record layout suggests.
3920       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
3921     // Get the access type.
3922     llvm::Type *FieldIntTy =
3923       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3924     if (Addr.getElementType() != FieldIntTy)
3925       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3926 
3927     QualType fieldType =
3928       field->getType().withCVRQualifiers(base.getVRQualifiers());
3929     // TODO: Support TBAA for bit fields.
3930     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
3931     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
3932                                 TBAAAccessInfo());
3933   }
3934 
3935   // Fields of may-alias structures are may-alias themselves.
3936   // FIXME: this should get propagated down through anonymous structs
3937   // and unions.
3938   QualType FieldType = field->getType();
3939   const RecordDecl *rec = field->getParent();
3940   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
3941   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
3942   TBAAAccessInfo FieldTBAAInfo;
3943   if (base.getTBAAInfo().isMayAlias() ||
3944           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
3945     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3946   } else if (rec->isUnion()) {
3947     // TODO: Support TBAA for unions.
3948     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
3949   } else {
3950     // If no base type been assigned for the base access, then try to generate
3951     // one for this base lvalue.
3952     FieldTBAAInfo = base.getTBAAInfo();
3953     if (!FieldTBAAInfo.BaseType) {
3954         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
3955         assert(!FieldTBAAInfo.Offset &&
3956                "Nonzero offset for an access with no base type!");
3957     }
3958 
3959     // Adjust offset to be relative to the base type.
3960     const ASTRecordLayout &Layout =
3961         getContext().getASTRecordLayout(field->getParent());
3962     unsigned CharWidth = getContext().getCharWidth();
3963     if (FieldTBAAInfo.BaseType)
3964       FieldTBAAInfo.Offset +=
3965           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
3966 
3967     // Update the final access type and size.
3968     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
3969     FieldTBAAInfo.Size =
3970         getContext().getTypeSizeInChars(FieldType).getQuantity();
3971   }
3972 
3973   Address addr = base.getAddress();
3974   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
3975     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3976         ClassDef->isDynamicClass()) {
3977       // Getting to any field of dynamic object requires stripping dynamic
3978       // information provided by invariant.group.  This is because accessing
3979       // fields may leak the real address of dynamic object, which could result
3980       // in miscompilation when leaked pointer would be compared.
3981       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
3982       addr = Address(stripped, addr.getAlignment());
3983     }
3984   }
3985 
3986   unsigned RecordCVR = base.getVRQualifiers();
3987   if (rec->isUnion()) {
3988     // For unions, there is no pointer adjustment.
3989     assert(!FieldType->isReferenceType() && "union has reference member");
3990     if (CGM.getCodeGenOpts().StrictVTablePointers &&
3991         hasAnyVptr(FieldType, getContext()))
3992       // Because unions can easily skip invariant.barriers, we need to add
3993       // a barrier every time CXXRecord field with vptr is referenced.
3994       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
3995                      addr.getAlignment());
3996   } else {
3997     // For structs, we GEP to the field that the record layout suggests.
3998     addr = emitAddrOfFieldStorage(*this, addr, field);
3999 
4000     // If this is a reference field, load the reference right now.
4001     if (FieldType->isReferenceType()) {
4002       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
4003                                       FieldTBAAInfo);
4004       if (RecordCVR & Qualifiers::Volatile)
4005         RefLVal.getQuals().addVolatile();
4006       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4007 
4008       // Qualifiers on the struct don't apply to the referencee.
4009       RecordCVR = 0;
4010       FieldType = FieldType->getPointeeType();
4011     }
4012   }
4013 
4014   // Make sure that the address is pointing to the right type.  This is critical
4015   // for both unions and structs.  A union needs a bitcast, a struct element
4016   // will need a bitcast if the LLVM type laid out doesn't match the desired
4017   // type.
4018   addr = Builder.CreateElementBitCast(
4019       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4020 
4021   if (field->hasAttr<AnnotateAttr>())
4022     addr = EmitFieldAnnotations(field, addr);
4023 
4024   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4025   LV.getQuals().addCVRQualifiers(RecordCVR);
4026 
4027   // __weak attribute on a field is ignored.
4028   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4029     LV.getQuals().removeObjCGCAttr();
4030 
4031   return LV;
4032 }
4033 
4034 LValue
4035 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4036                                                   const FieldDecl *Field) {
4037   QualType FieldType = Field->getType();
4038 
4039   if (!FieldType->isReferenceType())
4040     return EmitLValueForField(Base, Field);
4041 
4042   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
4043 
4044   // Make sure that the address is pointing to the right type.
4045   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4046   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4047 
4048   // TODO: Generate TBAA information that describes this access as a structure
4049   // member access and not just an access to an object of the field's type. This
4050   // should be similar to what we do in EmitLValueForField().
4051   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4052   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4053   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4054   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4055                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4056 }
4057 
4058 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4059   if (E->isFileScope()) {
4060     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4061     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4062   }
4063   if (E->getType()->isVariablyModifiedType())
4064     // make sure to emit the VLA size.
4065     EmitVariablyModifiedType(E->getType());
4066 
4067   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4068   const Expr *InitExpr = E->getInitializer();
4069   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4070 
4071   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4072                    /*Init*/ true);
4073 
4074   return Result;
4075 }
4076 
4077 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4078   if (!E->isGLValue())
4079     // Initializing an aggregate temporary in C++11: T{...}.
4080     return EmitAggExprToLValue(E);
4081 
4082   // An lvalue initializer list must be initializing a reference.
4083   assert(E->isTransparent() && "non-transparent glvalue init list");
4084   return EmitLValue(E->getInit(0));
4085 }
4086 
4087 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4088 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4089 /// LValue is returned and the current block has been terminated.
4090 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4091                                                     const Expr *Operand) {
4092   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4093     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4094     return None;
4095   }
4096 
4097   return CGF.EmitLValue(Operand);
4098 }
4099 
4100 LValue CodeGenFunction::
4101 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4102   if (!expr->isGLValue()) {
4103     // ?: here should be an aggregate.
4104     assert(hasAggregateEvaluationKind(expr->getType()) &&
4105            "Unexpected conditional operator!");
4106     return EmitAggExprToLValue(expr);
4107   }
4108 
4109   OpaqueValueMapping binding(*this, expr);
4110 
4111   const Expr *condExpr = expr->getCond();
4112   bool CondExprBool;
4113   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4114     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4115     if (!CondExprBool) std::swap(live, dead);
4116 
4117     if (!ContainsLabel(dead)) {
4118       // If the true case is live, we need to track its region.
4119       if (CondExprBool)
4120         incrementProfileCounter(expr);
4121       return EmitLValue(live);
4122     }
4123   }
4124 
4125   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4126   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4127   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4128 
4129   ConditionalEvaluation eval(*this);
4130   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4131 
4132   // Any temporaries created here are conditional.
4133   EmitBlock(lhsBlock);
4134   incrementProfileCounter(expr);
4135   eval.begin(*this);
4136   Optional<LValue> lhs =
4137       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4138   eval.end(*this);
4139 
4140   if (lhs && !lhs->isSimple())
4141     return EmitUnsupportedLValue(expr, "conditional operator");
4142 
4143   lhsBlock = Builder.GetInsertBlock();
4144   if (lhs)
4145     Builder.CreateBr(contBlock);
4146 
4147   // Any temporaries created here are conditional.
4148   EmitBlock(rhsBlock);
4149   eval.begin(*this);
4150   Optional<LValue> rhs =
4151       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4152   eval.end(*this);
4153   if (rhs && !rhs->isSimple())
4154     return EmitUnsupportedLValue(expr, "conditional operator");
4155   rhsBlock = Builder.GetInsertBlock();
4156 
4157   EmitBlock(contBlock);
4158 
4159   if (lhs && rhs) {
4160     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4161                                            2, "cond-lvalue");
4162     phi->addIncoming(lhs->getPointer(), lhsBlock);
4163     phi->addIncoming(rhs->getPointer(), rhsBlock);
4164     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4165     AlignmentSource alignSource =
4166       std::max(lhs->getBaseInfo().getAlignmentSource(),
4167                rhs->getBaseInfo().getAlignmentSource());
4168     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4169         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4170     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4171                           TBAAInfo);
4172   } else {
4173     assert((lhs || rhs) &&
4174            "both operands of glvalue conditional are throw-expressions?");
4175     return lhs ? *lhs : *rhs;
4176   }
4177 }
4178 
4179 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4180 /// type. If the cast is to a reference, we can have the usual lvalue result,
4181 /// otherwise if a cast is needed by the code generator in an lvalue context,
4182 /// then it must mean that we need the address of an aggregate in order to
4183 /// access one of its members.  This can happen for all the reasons that casts
4184 /// are permitted with aggregate result, including noop aggregate casts, and
4185 /// cast from scalar to union.
4186 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4187   switch (E->getCastKind()) {
4188   case CK_ToVoid:
4189   case CK_BitCast:
4190   case CK_ArrayToPointerDecay:
4191   case CK_FunctionToPointerDecay:
4192   case CK_NullToMemberPointer:
4193   case CK_NullToPointer:
4194   case CK_IntegralToPointer:
4195   case CK_PointerToIntegral:
4196   case CK_PointerToBoolean:
4197   case CK_VectorSplat:
4198   case CK_IntegralCast:
4199   case CK_BooleanToSignedIntegral:
4200   case CK_IntegralToBoolean:
4201   case CK_IntegralToFloating:
4202   case CK_FloatingToIntegral:
4203   case CK_FloatingToBoolean:
4204   case CK_FloatingCast:
4205   case CK_FloatingRealToComplex:
4206   case CK_FloatingComplexToReal:
4207   case CK_FloatingComplexToBoolean:
4208   case CK_FloatingComplexCast:
4209   case CK_FloatingComplexToIntegralComplex:
4210   case CK_IntegralRealToComplex:
4211   case CK_IntegralComplexToReal:
4212   case CK_IntegralComplexToBoolean:
4213   case CK_IntegralComplexCast:
4214   case CK_IntegralComplexToFloatingComplex:
4215   case CK_DerivedToBaseMemberPointer:
4216   case CK_BaseToDerivedMemberPointer:
4217   case CK_MemberPointerToBoolean:
4218   case CK_ReinterpretMemberPointer:
4219   case CK_AnyPointerToBlockPointerCast:
4220   case CK_ARCProduceObject:
4221   case CK_ARCConsumeObject:
4222   case CK_ARCReclaimReturnedObject:
4223   case CK_ARCExtendBlockObject:
4224   case CK_CopyAndAutoreleaseBlockObject:
4225   case CK_IntToOCLSampler:
4226   case CK_FixedPointCast:
4227   case CK_FixedPointToBoolean:
4228   case CK_FixedPointToIntegral:
4229   case CK_IntegralToFixedPoint:
4230     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4231 
4232   case CK_Dependent:
4233     llvm_unreachable("dependent cast kind in IR gen!");
4234 
4235   case CK_BuiltinFnToFnPtr:
4236     llvm_unreachable("builtin functions are handled elsewhere");
4237 
4238   // These are never l-values; just use the aggregate emission code.
4239   case CK_NonAtomicToAtomic:
4240   case CK_AtomicToNonAtomic:
4241     return EmitAggExprToLValue(E);
4242 
4243   case CK_Dynamic: {
4244     LValue LV = EmitLValue(E->getSubExpr());
4245     Address V = LV.getAddress();
4246     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4247     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4248   }
4249 
4250   case CK_ConstructorConversion:
4251   case CK_UserDefinedConversion:
4252   case CK_CPointerToObjCPointerCast:
4253   case CK_BlockPointerToObjCPointerCast:
4254   case CK_NoOp:
4255   case CK_LValueToRValue:
4256     return EmitLValue(E->getSubExpr());
4257 
4258   case CK_UncheckedDerivedToBase:
4259   case CK_DerivedToBase: {
4260     const RecordType *DerivedClassTy =
4261       E->getSubExpr()->getType()->getAs<RecordType>();
4262     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4263 
4264     LValue LV = EmitLValue(E->getSubExpr());
4265     Address This = LV.getAddress();
4266 
4267     // Perform the derived-to-base conversion
4268     Address Base = GetAddressOfBaseClass(
4269         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4270         /*NullCheckValue=*/false, E->getExprLoc());
4271 
4272     // TODO: Support accesses to members of base classes in TBAA. For now, we
4273     // conservatively pretend that the complete object is of the base class
4274     // type.
4275     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4276                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4277   }
4278   case CK_ToUnion:
4279     return EmitAggExprToLValue(E);
4280   case CK_BaseToDerived: {
4281     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4282     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4283 
4284     LValue LV = EmitLValue(E->getSubExpr());
4285 
4286     // Perform the base-to-derived conversion
4287     Address Derived =
4288       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4289                                E->path_begin(), E->path_end(),
4290                                /*NullCheckValue=*/false);
4291 
4292     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4293     // performed and the object is not of the derived type.
4294     if (sanitizePerformTypeCheck())
4295       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4296                     Derived.getPointer(), E->getType());
4297 
4298     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4299       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4300                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4301                                 E->getBeginLoc());
4302 
4303     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4304                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4305   }
4306   case CK_LValueBitCast: {
4307     // This must be a reinterpret_cast (or c-style equivalent).
4308     const auto *CE = cast<ExplicitCastExpr>(E);
4309 
4310     CGM.EmitExplicitCastExprType(CE, this);
4311     LValue LV = EmitLValue(E->getSubExpr());
4312     Address V = Builder.CreateBitCast(LV.getAddress(),
4313                                       ConvertType(CE->getTypeAsWritten()));
4314 
4315     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4316       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4317                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4318                                 E->getBeginLoc());
4319 
4320     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4321                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4322   }
4323   case CK_AddressSpaceConversion: {
4324     LValue LV = EmitLValue(E->getSubExpr());
4325     QualType DestTy = getContext().getPointerType(E->getType());
4326     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4327         *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(),
4328         E->getType().getAddressSpace(), ConvertType(DestTy));
4329     return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()),
4330                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4331   }
4332   case CK_ObjCObjectLValueCast: {
4333     LValue LV = EmitLValue(E->getSubExpr());
4334     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4335                                              ConvertType(E->getType()));
4336     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4337                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4338   }
4339   case CK_ZeroToOCLOpaqueType:
4340     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4341   }
4342 
4343   llvm_unreachable("Unhandled lvalue cast kind?");
4344 }
4345 
4346 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4347   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4348   return getOrCreateOpaqueLValueMapping(e);
4349 }
4350 
4351 LValue
4352 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4353   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4354 
4355   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4356       it = OpaqueLValues.find(e);
4357 
4358   if (it != OpaqueLValues.end())
4359     return it->second;
4360 
4361   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4362   return EmitLValue(e->getSourceExpr());
4363 }
4364 
4365 RValue
4366 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4367   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4368 
4369   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4370       it = OpaqueRValues.find(e);
4371 
4372   if (it != OpaqueRValues.end())
4373     return it->second;
4374 
4375   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4376   return EmitAnyExpr(e->getSourceExpr());
4377 }
4378 
4379 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4380                                            const FieldDecl *FD,
4381                                            SourceLocation Loc) {
4382   QualType FT = FD->getType();
4383   LValue FieldLV = EmitLValueForField(LV, FD);
4384   switch (getEvaluationKind(FT)) {
4385   case TEK_Complex:
4386     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4387   case TEK_Aggregate:
4388     return FieldLV.asAggregateRValue();
4389   case TEK_Scalar:
4390     // This routine is used to load fields one-by-one to perform a copy, so
4391     // don't load reference fields.
4392     if (FD->getType()->isReferenceType())
4393       return RValue::get(FieldLV.getPointer());
4394     return EmitLoadOfLValue(FieldLV, Loc);
4395   }
4396   llvm_unreachable("bad evaluation kind");
4397 }
4398 
4399 //===--------------------------------------------------------------------===//
4400 //                             Expression Emission
4401 //===--------------------------------------------------------------------===//
4402 
4403 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4404                                      ReturnValueSlot ReturnValue) {
4405   // Builtins never have block type.
4406   if (E->getCallee()->getType()->isBlockPointerType())
4407     return EmitBlockCallExpr(E, ReturnValue);
4408 
4409   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4410     return EmitCXXMemberCallExpr(CE, ReturnValue);
4411 
4412   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4413     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4414 
4415   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4416     if (const CXXMethodDecl *MD =
4417           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4418       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4419 
4420   CGCallee callee = EmitCallee(E->getCallee());
4421 
4422   if (callee.isBuiltin()) {
4423     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4424                            E, ReturnValue);
4425   }
4426 
4427   if (callee.isPseudoDestructor()) {
4428     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4429   }
4430 
4431   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4432 }
4433 
4434 /// Emit a CallExpr without considering whether it might be a subclass.
4435 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4436                                            ReturnValueSlot ReturnValue) {
4437   CGCallee Callee = EmitCallee(E->getCallee());
4438   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4439 }
4440 
4441 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4442   if (auto builtinID = FD->getBuiltinID()) {
4443     return CGCallee::forBuiltin(builtinID, FD);
4444   }
4445 
4446   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4447   return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4448 }
4449 
4450 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4451   E = E->IgnoreParens();
4452 
4453   // Look through function-to-pointer decay.
4454   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4455     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4456         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4457       return EmitCallee(ICE->getSubExpr());
4458     }
4459 
4460   // Resolve direct calls.
4461   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4462     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4463       return EmitDirectCallee(*this, FD);
4464     }
4465   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4466     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4467       EmitIgnoredExpr(ME->getBase());
4468       return EmitDirectCallee(*this, FD);
4469     }
4470 
4471   // Look through template substitutions.
4472   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4473     return EmitCallee(NTTP->getReplacement());
4474 
4475   // Treat pseudo-destructor calls differently.
4476   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4477     return CGCallee::forPseudoDestructor(PDE);
4478   }
4479 
4480   // Otherwise, we have an indirect reference.
4481   llvm::Value *calleePtr;
4482   QualType functionType;
4483   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4484     calleePtr = EmitScalarExpr(E);
4485     functionType = ptrType->getPointeeType();
4486   } else {
4487     functionType = E->getType();
4488     calleePtr = EmitLValue(E).getPointer();
4489   }
4490   assert(functionType->isFunctionType());
4491 
4492   GlobalDecl GD;
4493   if (const auto *VD =
4494           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4495     GD = GlobalDecl(VD);
4496 
4497   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4498   CGCallee callee(calleeInfo, calleePtr);
4499   return callee;
4500 }
4501 
4502 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4503   // Comma expressions just emit their LHS then their RHS as an l-value.
4504   if (E->getOpcode() == BO_Comma) {
4505     EmitIgnoredExpr(E->getLHS());
4506     EnsureInsertPoint();
4507     return EmitLValue(E->getRHS());
4508   }
4509 
4510   if (E->getOpcode() == BO_PtrMemD ||
4511       E->getOpcode() == BO_PtrMemI)
4512     return EmitPointerToDataMemberBinaryExpr(E);
4513 
4514   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4515 
4516   // Note that in all of these cases, __block variables need the RHS
4517   // evaluated first just in case the variable gets moved by the RHS.
4518 
4519   switch (getEvaluationKind(E->getType())) {
4520   case TEK_Scalar: {
4521     switch (E->getLHS()->getType().getObjCLifetime()) {
4522     case Qualifiers::OCL_Strong:
4523       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4524 
4525     case Qualifiers::OCL_Autoreleasing:
4526       return EmitARCStoreAutoreleasing(E).first;
4527 
4528     // No reason to do any of these differently.
4529     case Qualifiers::OCL_None:
4530     case Qualifiers::OCL_ExplicitNone:
4531     case Qualifiers::OCL_Weak:
4532       break;
4533     }
4534 
4535     RValue RV = EmitAnyExpr(E->getRHS());
4536     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4537     if (RV.isScalar())
4538       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4539     EmitStoreThroughLValue(RV, LV);
4540     return LV;
4541   }
4542 
4543   case TEK_Complex:
4544     return EmitComplexAssignmentLValue(E);
4545 
4546   case TEK_Aggregate:
4547     return EmitAggExprToLValue(E);
4548   }
4549   llvm_unreachable("bad evaluation kind");
4550 }
4551 
4552 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4553   RValue RV = EmitCallExpr(E);
4554 
4555   if (!RV.isScalar())
4556     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4557                           AlignmentSource::Decl);
4558 
4559   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4560          "Can't have a scalar return unless the return type is a "
4561          "reference type!");
4562 
4563   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4564 }
4565 
4566 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4567   // FIXME: This shouldn't require another copy.
4568   return EmitAggExprToLValue(E);
4569 }
4570 
4571 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4572   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4573          && "binding l-value to type which needs a temporary");
4574   AggValueSlot Slot = CreateAggTemp(E->getType());
4575   EmitCXXConstructExpr(E, Slot);
4576   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4577 }
4578 
4579 LValue
4580 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4581   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4582 }
4583 
4584 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4585   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4586                                       ConvertType(E->getType()));
4587 }
4588 
4589 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4590   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4591                         AlignmentSource::Decl);
4592 }
4593 
4594 LValue
4595 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4596   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4597   Slot.setExternallyDestructed();
4598   EmitAggExpr(E->getSubExpr(), Slot);
4599   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4600   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4601 }
4602 
4603 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4604   RValue RV = EmitObjCMessageExpr(E);
4605 
4606   if (!RV.isScalar())
4607     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4608                           AlignmentSource::Decl);
4609 
4610   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4611          "Can't have a scalar return unless the return type is a "
4612          "reference type!");
4613 
4614   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4615 }
4616 
4617 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4618   Address V =
4619     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4620   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4621 }
4622 
4623 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4624                                              const ObjCIvarDecl *Ivar) {
4625   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4626 }
4627 
4628 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4629                                           llvm::Value *BaseValue,
4630                                           const ObjCIvarDecl *Ivar,
4631                                           unsigned CVRQualifiers) {
4632   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4633                                                    Ivar, CVRQualifiers);
4634 }
4635 
4636 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4637   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4638   llvm::Value *BaseValue = nullptr;
4639   const Expr *BaseExpr = E->getBase();
4640   Qualifiers BaseQuals;
4641   QualType ObjectTy;
4642   if (E->isArrow()) {
4643     BaseValue = EmitScalarExpr(BaseExpr);
4644     ObjectTy = BaseExpr->getType()->getPointeeType();
4645     BaseQuals = ObjectTy.getQualifiers();
4646   } else {
4647     LValue BaseLV = EmitLValue(BaseExpr);
4648     BaseValue = BaseLV.getPointer();
4649     ObjectTy = BaseExpr->getType();
4650     BaseQuals = ObjectTy.getQualifiers();
4651   }
4652 
4653   LValue LV =
4654     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4655                       BaseQuals.getCVRQualifiers());
4656   setObjCGCLValueClass(getContext(), E, LV);
4657   return LV;
4658 }
4659 
4660 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4661   // Can only get l-value for message expression returning aggregate type
4662   RValue RV = EmitAnyExprToTemp(E);
4663   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4664                         AlignmentSource::Decl);
4665 }
4666 
4667 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4668                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4669                                  llvm::Value *Chain) {
4670   // Get the actual function type. The callee type will always be a pointer to
4671   // function type or a block pointer type.
4672   assert(CalleeType->isFunctionPointerType() &&
4673          "Call must have function pointer type!");
4674 
4675   const Decl *TargetDecl =
4676       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4677 
4678   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4679     // We can only guarantee that a function is called from the correct
4680     // context/function based on the appropriate target attributes,
4681     // so only check in the case where we have both always_inline and target
4682     // since otherwise we could be making a conditional call after a check for
4683     // the proper cpu features (and it won't cause code generation issues due to
4684     // function based code generation).
4685     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4686         TargetDecl->hasAttr<TargetAttr>())
4687       checkTargetFeatures(E, FD);
4688 
4689   CalleeType = getContext().getCanonicalType(CalleeType);
4690 
4691   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4692 
4693   CGCallee Callee = OrigCallee;
4694 
4695   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4696       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4697     if (llvm::Constant *PrefixSig =
4698             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4699       SanitizerScope SanScope(this);
4700       // Remove any (C++17) exception specifications, to allow calling e.g. a
4701       // noexcept function through a non-noexcept pointer.
4702       auto ProtoTy =
4703         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4704       llvm::Constant *FTRTTIConst =
4705           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4706       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4707       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4708           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4709 
4710       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4711 
4712       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4713           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4714       llvm::Value *CalleeSigPtr =
4715           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4716       llvm::Value *CalleeSig =
4717           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4718       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4719 
4720       llvm::BasicBlock *Cont = createBasicBlock("cont");
4721       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4722       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4723 
4724       EmitBlock(TypeCheck);
4725       llvm::Value *CalleeRTTIPtr =
4726           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4727       llvm::Value *CalleeRTTIEncoded =
4728           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4729       llvm::Value *CalleeRTTI =
4730           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4731       llvm::Value *CalleeRTTIMatch =
4732           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4733       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4734                                       EmitCheckTypeDescriptor(CalleeType)};
4735       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4736                 SanitizerHandler::FunctionTypeMismatch, StaticData,
4737                 {CalleePtr, CalleeRTTI, FTRTTIConst});
4738 
4739       Builder.CreateBr(Cont);
4740       EmitBlock(Cont);
4741     }
4742   }
4743 
4744   const auto *FnType = cast<FunctionType>(PointeeType);
4745 
4746   // If we are checking indirect calls and this call is indirect, check that the
4747   // function pointer is a member of the bit set for the function type.
4748   if (SanOpts.has(SanitizerKind::CFIICall) &&
4749       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4750     SanitizerScope SanScope(this);
4751     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4752 
4753     llvm::Metadata *MD;
4754     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4755       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4756     else
4757       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4758 
4759     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4760 
4761     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4762     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4763     llvm::Value *TypeTest = Builder.CreateCall(
4764         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4765 
4766     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4767     llvm::Constant *StaticData[] = {
4768         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4769         EmitCheckSourceLocation(E->getBeginLoc()),
4770         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4771     };
4772     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4773       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4774                            CastedCallee, StaticData);
4775     } else {
4776       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4777                 SanitizerHandler::CFICheckFail, StaticData,
4778                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4779     }
4780   }
4781 
4782   CallArgList Args;
4783   if (Chain)
4784     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4785              CGM.getContext().VoidPtrTy);
4786 
4787   // C++17 requires that we evaluate arguments to a call using assignment syntax
4788   // right-to-left, and that we evaluate arguments to certain other operators
4789   // left-to-right. Note that we allow this to override the order dictated by
4790   // the calling convention on the MS ABI, which means that parameter
4791   // destruction order is not necessarily reverse construction order.
4792   // FIXME: Revisit this based on C++ committee response to unimplementability.
4793   EvaluationOrder Order = EvaluationOrder::Default;
4794   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4795     if (OCE->isAssignmentOp())
4796       Order = EvaluationOrder::ForceRightToLeft;
4797     else {
4798       switch (OCE->getOperator()) {
4799       case OO_LessLess:
4800       case OO_GreaterGreater:
4801       case OO_AmpAmp:
4802       case OO_PipePipe:
4803       case OO_Comma:
4804       case OO_ArrowStar:
4805         Order = EvaluationOrder::ForceLeftToRight;
4806         break;
4807       default:
4808         break;
4809       }
4810     }
4811   }
4812 
4813   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4814                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4815 
4816   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4817       Args, FnType, /*isChainCall=*/Chain);
4818 
4819   // C99 6.5.2.2p6:
4820   //   If the expression that denotes the called function has a type
4821   //   that does not include a prototype, [the default argument
4822   //   promotions are performed]. If the number of arguments does not
4823   //   equal the number of parameters, the behavior is undefined. If
4824   //   the function is defined with a type that includes a prototype,
4825   //   and either the prototype ends with an ellipsis (, ...) or the
4826   //   types of the arguments after promotion are not compatible with
4827   //   the types of the parameters, the behavior is undefined. If the
4828   //   function is defined with a type that does not include a
4829   //   prototype, and the types of the arguments after promotion are
4830   //   not compatible with those of the parameters after promotion,
4831   //   the behavior is undefined [except in some trivial cases].
4832   // That is, in the general case, we should assume that a call
4833   // through an unprototyped function type works like a *non-variadic*
4834   // call.  The way we make this work is to cast to the exact type
4835   // of the promoted arguments.
4836   //
4837   // Chain calls use this same code path to add the invisible chain parameter
4838   // to the function type.
4839   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4840     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4841     CalleeTy = CalleeTy->getPointerTo();
4842 
4843     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4844     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4845     Callee.setFunctionPointer(CalleePtr);
4846   }
4847 
4848   return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc());
4849 }
4850 
4851 LValue CodeGenFunction::
4852 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4853   Address BaseAddr = Address::invalid();
4854   if (E->getOpcode() == BO_PtrMemI) {
4855     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4856   } else {
4857     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4858   }
4859 
4860   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4861 
4862   const MemberPointerType *MPT
4863     = E->getRHS()->getType()->getAs<MemberPointerType>();
4864 
4865   LValueBaseInfo BaseInfo;
4866   TBAAAccessInfo TBAAInfo;
4867   Address MemberAddr =
4868     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4869                                     &TBAAInfo);
4870 
4871   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4872 }
4873 
4874 /// Given the address of a temporary variable, produce an r-value of
4875 /// its type.
4876 RValue CodeGenFunction::convertTempToRValue(Address addr,
4877                                             QualType type,
4878                                             SourceLocation loc) {
4879   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4880   switch (getEvaluationKind(type)) {
4881   case TEK_Complex:
4882     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4883   case TEK_Aggregate:
4884     return lvalue.asAggregateRValue();
4885   case TEK_Scalar:
4886     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4887   }
4888   llvm_unreachable("bad evaluation kind");
4889 }
4890 
4891 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4892   assert(Val->getType()->isFPOrFPVectorTy());
4893   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4894     return;
4895 
4896   llvm::MDBuilder MDHelper(getLLVMContext());
4897   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4898 
4899   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4900 }
4901 
4902 namespace {
4903   struct LValueOrRValue {
4904     LValue LV;
4905     RValue RV;
4906   };
4907 }
4908 
4909 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4910                                            const PseudoObjectExpr *E,
4911                                            bool forLValue,
4912                                            AggValueSlot slot) {
4913   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
4914 
4915   // Find the result expression, if any.
4916   const Expr *resultExpr = E->getResultExpr();
4917   LValueOrRValue result;
4918 
4919   for (PseudoObjectExpr::const_semantics_iterator
4920          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
4921     const Expr *semantic = *i;
4922 
4923     // If this semantic expression is an opaque value, bind it
4924     // to the result of its source expression.
4925     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
4926       // Skip unique OVEs.
4927       if (ov->isUnique()) {
4928         assert(ov != resultExpr &&
4929                "A unique OVE cannot be used as the result expression");
4930         continue;
4931       }
4932 
4933       // If this is the result expression, we may need to evaluate
4934       // directly into the slot.
4935       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
4936       OVMA opaqueData;
4937       if (ov == resultExpr && ov->isRValue() && !forLValue &&
4938           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
4939         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
4940         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4941                                        AlignmentSource::Decl);
4942         opaqueData = OVMA::bind(CGF, ov, LV);
4943         result.RV = slot.asRValue();
4944 
4945       // Otherwise, emit as normal.
4946       } else {
4947         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4948 
4949         // If this is the result, also evaluate the result now.
4950         if (ov == resultExpr) {
4951           if (forLValue)
4952             result.LV = CGF.EmitLValue(ov);
4953           else
4954             result.RV = CGF.EmitAnyExpr(ov, slot);
4955         }
4956       }
4957 
4958       opaques.push_back(opaqueData);
4959 
4960     // Otherwise, if the expression is the result, evaluate it
4961     // and remember the result.
4962     } else if (semantic == resultExpr) {
4963       if (forLValue)
4964         result.LV = CGF.EmitLValue(semantic);
4965       else
4966         result.RV = CGF.EmitAnyExpr(semantic, slot);
4967 
4968     // Otherwise, evaluate the expression in an ignored context.
4969     } else {
4970       CGF.EmitIgnoredExpr(semantic);
4971     }
4972   }
4973 
4974   // Unbind all the opaques now.
4975   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4976     opaques[i].unbind(CGF);
4977 
4978   return result;
4979 }
4980 
4981 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4982                                                AggValueSlot slot) {
4983   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4984 }
4985 
4986 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4987   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4988 }
4989